
J2UL-2480-02ENZ0(15)
September 2025

Fujitsu Software
Technical Computing Suite V4.0L20

Development Studio
MPI User's Guide

Preface

Purpose of This Manual

This manual describes how to use the MPI library intended for the system that has the Fujitsu CPU A64FX (referred to below as "this
computing system").

MPI (Message Passing Interface) is the MPI library interface regulated by the MPI Forum, and is the interface installed in the MPI library
documented here (referred to below as "this software system"). Note that this software system conforms to the MPI-3.1 Standard and a
subset of the MPI-4.0 Standard regulated by the MPI Forum.

Intended Readers

The intended readers of this manual are those who use this software system to develop programs in Fortran, C, C++ or Java. In addition to
knowledge of MPI and of programming in Fortran, C, C++ and Java, readers need to have a basic knowledge of Linux commands, file
manipulation, and shell programming, and a knowledge of Job Operation Software.

Structure of This Manual

The structure of this manual is as follows:

Chapter 1 Overview

An overview of this software system

Chapter 2 Environment and Advance Settings

The environment settings that must be set in advance

Chapter 3 MPI Program Compilation/Linkage

How to compile and link MPI programs

Chapter 4 MPI Program Execution

How to execute MPI programs

Chapter 5 Extended Interfaces

Details the extended interface

Chapter 6 Supplementary Items

Supplementary information for this software system

Chapter 7 Error Messages

Error messages detected by this software system

Chapter 8 Speeding Up Blocking Collective Communication

Description about advanced performance tuning method for blocking collective communication

Appendix A Error Class List

Error classes detected by this software system

Glossary

Terminology

Related Manuals

The following manuals are related to this manual. Refer to these manuals in conjunction with this manual.

- Fortran Language Reference

- Fortran User's Guide

- Fortran User's Guide Additional Volume COARRAY

- Fortran Compiler Messages

- i -

- C User's Guide

- C++ User's Guide

- C/C++ Compiler Optimization Messages

- Fortran/C/C++ Runtime Messages

- IDE User's Guide

- Profiler User's Guide

- Debugger for Parallel Applications User's Guide

- Programmer's Guide for Usage of Mathematical Libraries

- FUJITSU SSL II User's Guide

- FUJITSU SSL II Extended Capabilities User's Guide

- FUJITSU SSL II Extended Capabilities User's Guide II

- FUJITSU SSL II Thread-Parallel Capabilities User's Guide

- FUJITSU C-SSL II User's Guide

- FUJITSU C-SSL II Thread-Parallel Capabilities User's Guide

- FUJITSU SSL II/MPI User's Guide

- BLAS LAPACK ScaLAPACK User's Guide

- Fast Basic Operations Library for Quadruple Precision User's Guide

- uTofu User's Guide

- MPI User's Guide Additional Volume Java Interface

Also, refer to the manuals of provided with the following related software:

- Job Operation Software

- FEFS

To learn details of the MPI standard, refer to the following standard:

MPI: A Message-Passing Interface Standard

Version 3.1

Message Passing Interface Forum

June 4, 2015

Information concerning MPI is available from https://www.mpi-forum.org/.

However, note that the information obtained from the above website might vary slightly from installations of this software system.

Notations

Expression of Units

In this manual, the following prefixes are used to express units:

Prefix Value Prefix Value

k (kilo) 103 Ki (kibi) 210

M (mega) 106 Mi (mebi) 220

G (giga) 109 Gi (gibi) 230

- ii -

https://www.mpi-forum.org/

Syntax Description Symbols

A syntax description symbol is a symbol that has a specific meaning when used to describe syntax. The following symbols are used in
this manual

Symbol name Symbol Explanation

Selection symbols
{} Indicates to select any one of the enclosed items

| Used as a delimiter in a list of items

Omission permitted symbol []
Indicates that the enclosed item can be omitted. This symbol includes the
meaning of the selection symbol "{}".

Repeat symbol ...
The item immediately preceding the ellipsis can be specified repeatedly in
the syntax.

Representation of Routine Names

This software system provides the language bindings for Fortran, C, C++, and Java.

As defined in the MPI standard and "MPI User's Guide Additional Volume Java Interface" which is an additional volume of this manual,
the specifications of C functions, C++ member functions, Fortran subroutines and functions, and Java methods are almost same,
although they are called differently.

Therefore, in this manual, they are called "routines" as a common name which does not depend on languages.

In addition, C function names written in capital letters is used to represent routine names as well as the MPI standard.

As for routines defined only in the Fortran bindings, they are represented by corresponding Fortran subroutine/function names written
in capital letters.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks

- Java is registered trademarks of Oracle and/or its affiliates.

- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

- The trademark notice symbol (TM, (R)) is not necessarily added in the system name and the product name, etc. published in this
material.

Date of Publication and Version

Version Manual code

September 2025, Version 2.15 J2UL-2480-02ENZ0(15)

March 2025, Version 2.14 J2UL-2480-02ENZ0(14)

September 2024, Version 2.13 J2UL-2480-02ENZ0(13)

March 2024, Version 2.12 J2UL-2480-02ENZ0(12)

September 2023, Version 2.11 J2UL-2480-02ENZ0(11)

March 2023, Version 2.10 J2UL-2480-02ENZ0(10)

September 2022, Version 2.9 J2UL-2480-02ENZ0(09)

March 2022, Version 2.8 J2UL-2480-02ENZ0(08)

November 2021, Version 2.7 J2UL-2480-02ENZ0(07)

August 2021, Version 2.6 J2UL-2480-02ENZ0(06)

- iii -

Version Manual code

July 2021, Version 2.5 J2UL-2480-02ENZ0(05)

March 2021, Version 2.4 J2UL-2480-02ENZ0(04)

November 2020, Version 2.3 J2UL-2480-02ENZ0(03)

September 2020, Version 2.2 J2UL-2480-02ENZ0(02)

June 2020, Version 2.1 J2UL-2480-02ENZ0(01)

March 2020, 2nd Version J2UL-2480-02ENZ0(00)

January 2020, 1st Version J2UL-2480-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020-2025

Update History

Changes Location Version

Reference to UFS is removed. 6.4.12 Version 2.15

The following collective communication algorithms are added.

- knomial

- rabenseifner

Chapter 8

The maximum values of the following MCA parameters are changed.

- common_tofu_large_recv_buf_size

- common_tofu_medium_recv_buf_size

4.2 Version 2.14

The maximum values of "value" for the following Info key are changed.

- striping_unit

- striping_factor

6.4.12

The explanations are improved. 4.2 Version 2.13

6.5

6.10.1

The following MCA parameters are added.

- common_tofu_conv_dim

- common_tofu_conv_dim_log

4.2 Version 2.12

The explanation about the memory usage is improved. 6.11

The section "Job Dimension Conversion Function" is added. 6.15

The explanation is improved. Chapter 4 Version 2.11

Improved figures design. - Version 2.10

The explanation is added. Chapter 4 Version 2.9

The Notes on isend/irecv are added. 6.10.2

The explanations are improved. -

The explanation to the following MCA parameter is corrected.

- mpi_print_stats

4.2 Version 2.8

- iv -

Changes Location Version

The section "Notes on Stride RDMA Communication" is added. 6.6.1

The explanations are added. 6.12.1
6.12.2
6.12.3

Improved the explanation. -

The note on the assumed-rank of the Fortran 2018 language specification is removed. 3.2 Version 2.7

An explanation about the environment variable UTOFU_SWAP_PROTECT is added. 4.3

The explanations are added. 4.4

The article about the maximum value of the file input-output size is corrected. 6.4.12 Version 2.6

The article is added to "Compilation/linkage notes". 3.2 Version 2.5

The following environment variable is added.

- coll

4.2
6.12.1
6.12.2
6.12.3
6.12.4

The following MCA parameter is added.

- UTOFU_SWAP_PROTECT

4.3

The default of "value" for the following Info key is changed.

- romio_ds_write

6.4.12

The explanations are corrected. 6.17.1

The explanations are corrected. Chapter 4 Version 2.4

The explanations to the following MCA parameters are added.

- common_tofu_use_memory_pool

- mpi_java_eager

4.2

The allocation images are corrected. 4.7.2

The explanations are added. 6.9
6.11.1

Version 2.3

The explanations to the following MCA parameters are added.

- common_tofu_large_recv_buf_size

- coll_tuned_prealloc_size

4.2

The following MCA parameter is added.

- common_tofu_use_memory_pool

4.2

The explanations are corrected. 4.2
6.13
6.15

Note is added 6.13

The examples of MPI statistical information output are corrected. 6.15

The explanations are added. Chapter 4
4.1

Version 2.2

The section "Notes on running large-scale MPI jobs" is added. 4.1

The explanations are corrected. 4.1

The error messages are added. 7.3

- v -

Changes Location Version

The explanations are corrected. 7.3

The example are corrected. 8.3.2.2

The application conditions of algorithms selected is corrected. 8.3.4.4

The descriptions of { -c | -np | --np | -n | --n } related options are corrected. 4.1 Version 2.1

The explanations are added. 4.2
6.8
6.18.5
8.3.1.4.4
8.3.1.4.6
8.3.1.5.5
8.3.2.2

The memory usage estimation formula is changed. 6.11.1
6.11.2
6.11.3.2

The explanations are corrected. 8.3.1.1

The conditions required for application the algorithm is corrected. 8.3.4.1
8.3.4.2
8.3.4.4

The table are added. 8.3.4.12
8.4.1.12

The descriptions of -of/-std related options are corrected. 4.1 2nd Version

The local_options -am is changed to -tune. 4.1
4.2

The explanations are corrected. 4.1
4.3
8.2.1.1
8.3.1.1
8.3.1.4.1
8.3.1.4.2
8.3.1.4.3
8.3.1.4.5
8.3.4.7
8.3.4.8
8.4.2.2

The estimated size of the work area allocated statically by the following MCA parameters is
corrected.

- coll_tuned_prealloc_size

4.2

The following MCA parameters are added.

- opal_abort_delay

- opal_progress_timeout

4.2

The default value of the following MCA parameter is corrected.

- pml_ob1_use_stride_rdma

4.2

The info key is corrected. 6.4.9.1

The explanations are added. 6.16
8.2.1.2
8.3.1.1
8.3.1.4

- vi -

Changes Location Version

The section "Notes on Job Execution Continuation Function at Link-down" is added. 6.18

The error messages are added. 7.3

The algorithms are added. 8.2.1.1
8.3.4.1
8.3.4.2
8.3.4.3
8.3.4.4
8.3.4.7
8.3.4.10
8.4.1.1
8.4.1.2
8.4.1.3
8.4.1.4
8.4.1.7
8.4.1.10
8.4.3.1
8.4.3.2
8.4.3.3

The title of section is corrected. 8.3.1.4.2

The examples are corrected. 8.3.1.4.2
8.3.1.4.3
8.3.1.4.4

The title of table is corrected. 8.3.1.4.6

The explanation of the Algorithm statement of the table "Definition of External Input File" is
corrected.

8.3.1.5.5

The caller_id is removed from the table "Variable Names that can be Specified in External
Input File".

8.3.1.5.5

The notes are added. 8.3.4.3
8.3.4.4
8.3.4.8
8.3.4.10
8.3.4.11
8.3.4.12

Changed the look according to product upgrades. -

All rights reserved.

The information in this manual is subject to change without notice.

- vii -

Contents
Chapter 1 Overview..1

1.1 Features of This Software System... 1
1.2 Outline of How to Use This Software System...1

1.2.1 Flow from Compilation to Execution of an MPI Program... 1

Chapter 2 Environment and Advance Settings...3
2.1 MPI Program Compilation/Linkage Environment.. 3
2.2 MPI Program Execution Environment.. 3
2.3 Online Manual... 4

Chapter 3 MPI Program Compilation/Linkage..5
3.1 Overview of Compilation/Linkage Commands...5
3.2 Compilation/Linkage Command Format... 5

Chapter 4 MPI Program Execution...8
4.1 Execution Command Formats... 8
4.2 MCA Parameters..17
4.3 Environment Variables.. 32
4.4 mpiexec Command Return Values.. 33
4.5 VCOORD file format...34
4.6 Execution of Multiple MPI Programs on the Same Node... 36
4.7 Settings in NUMA system... 37

4.7.1 Setting value of NUMA memory allocation policy..37
4.7.2 Setting value of CPU (core) allocation policy.. 39

Chapter 5 Extended Interfaces...42
5.1 Rank Query Interface...42

5.1.1 Querying the Number of Dimensions and Shape... 42
5.1.1.1 FJMPI_TOPOLOGY_GET_DIMENSION...42
5.1.1.2 FJMPI_TOPOLOGY_GET_SHAPE...43

5.1.2 Querying the Coordinates... 44
5.1.2.1 FJMPI_TOPOLOGY_GET_COORDS... 44

5.1.3 Querying the Rank.. 46
5.1.3.1 FJMPI_TOPOLOGY_GET_RANKS..46

5.1.4 Querying the Ranking of a Communicator that Has a Cartesian Structure.. 47
5.1.4.1 FJMPI_TOPOLOGY_CART_REORDER..47

5.1.5 Sample Program..48
5.2 MPI Statistical Information Section Specifying Interface...50

5.2.1 The MPI Statistical Information Section Specifying Routine.. 51
5.2.1.1 FJMPI_COLLECTION_START...51
5.2.1.2 FJMPI_COLLECTION_STOP..51
5.2.1.3 FJMPI_COLLECTION_PRINT..52
5.2.1.4 FJMPI_COLLECTION_CLEAR.. 53

5.2.2 Sample Program..53
5.3 Extended Persistent Communication Requests Interface.. 55

5.3.1 Overview...56
5.3.2 Extended Persistent Communication Requests Interface Specifications..56

5.3.2.1 FJMPI_PREQUEST_SEND_INIT..56
5.3.2.2 FJMPI_PREQUEST_RECV_INIT..57
5.3.2.3 FJMPI_PREQUEST_START..58
5.3.2.4 FJMPI_PREQUEST_STARTALL..59

5.3.3 Sample Program..59
5.4 MPI Asynchronous Communication Promotion Section Specifying Interface... 60

5.4.1 The MPI Asynchronous Communication Promotion Section Specifying Routine.. 61
5.4.1.1 FJMPI_PROGRESS_START..61
5.4.1.2 FJMPI_PROGRESS_STOP...61

- viii -

5.4.2 Sample Program..62
5.5 Persistent Collective Communication Request Interface...63

5.5.1 Overview...63
5.5.2 Persistent Collective Communication Request Interface Specification... 63
5.5.3 Overlap of Computation and Communication..71

5.5.3.1 Conditions for Applying Overlap of Computation and Communication.. 71
5.5.3.2 Notes.. 71

5.6 Additional Predefined Datatype...72
5.6.1 Overview...72
5.6.2 Predefined Datatype for the Half-Precision Floating-Point Type.. 72

Chapter 6 Supplementary Items...73
6.1 Tofu Interconnect...73

6.1.1 Tofu Interconnect Configuration.. 73
6.1.2 Routing..74
6.1.3 Configuration within a Node.. 75

6.2 Promoting Asynchronous Communication Using an Assistant Core..76
6.3 Parallelizing Memory Copy Processing in MPI Library with Threads... 77
6.4 Notes Concerning MPI Standard Specifications... 78

6.4.1 Supported Level of MPI Standard.. 78
6.4.2 Predefined Datatypes that can be Used in This Software System.. 79
6.4.3 Reserved Communicators... 84
6.4.4 Values of Constants Set in This Software System..84
6.4.5 Operations in a Multi-Threaded Environment..85
6.4.6 Signal Operation Changes.. 85
6.4.7 One-sided Communications..85

6.4.7.1 Assertions for Optimization...85
6.4.7.2 Info Argument..86

6.4.8 Establishing Communication between Groups not Sharing a Communicator... 86
6.4.8.1 info Argument Value... 86
6.4.8.2 MPI_COMM_JOIN Return Value...86
6.4.8.3 Service Names in the MPI_PUBLISH_NAME...86

6.4.9 Dynamic Process Creation..86
6.4.9.1 info Argument Value... 86

6.4.9.1.1 Designation of Current Directory by wdir Key.. 87
6.4.9.1.2 Designation of Node and the Number of CPUs (cores) by vcoordfile Key... 87
6.4.9.1.3 Designation of the Number of Nodes by num_nodes Key... 88
6.4.9.1.4 Designation of the Rule of Rank Placement of Processes by rank_map Key.. 88
6.4.9.1.5 Designation of Environment Variables by env Key... 89
6.4.9.1.6 Designation of Output of Profiling Data by fjprof_spawn_dir_name Key.. 89
6.4.9.1.7 Designation of Output of Result of Deadlock Detection Function by fjdbg_spawn_dir_name Key........................... 89

6.4.9.2 Search for Executable Files... 89
6.4.9.3 MPI_UNIVERSE_SIZE.. 90
6.4.9.4 Designation of max-proc-per-node..90
6.4.9.5 Identification of the Cause of Failure of Dynamic Process Creation by the Error Code.. 90

6.4.9.5.1 Error Code for Identifying the Cause of Failure of Dynamic Process Creation...90
6.4.9.5.2 Usage Example... 90

6.4.9.6 Notes.. 91
6.4.9.7 Dynamic Process Creation for Java program.. 91

6.4.10 Rank Changes in Accordance with Cartesian Topology.. 92
6.4.10.1 Conditions Enabling Rank Changes.. 92
6.4.10.2 Rules for Rank Changes.. 92
6.4.10.3 Checking Rank Changes..93
6.4.10.4 Sample Program...93

6.4.11 Notes on Send Buffer and Receive Buffer..94
6.4.12 MPI Input-Output... 94
6.4.13 Use of the Profiling Interface..95

- ix -

6.4.14 MPI Tool Information Interface... 96
6.4.15 Routines implemented by macros...96
6.4.16 Arguments of User-defined Error Handlers..96
6.4.17 Collective Communications in Inter-communicator...96

6.5 Eager Protocol and Rendezvous Protocol..97
6.6 Stride RDMA Communication.. 98

6.6.1 Notes on Stride RDMA Communication..99
6.7 Using Multiple TNIs..99
6.8 Reduction Operation Sequence Guarantee in Collective Communication..100
6.9 Process Creation from Inside an MPI Program... 100
6.10 Suppressing Memory Usage.. 101

6.10.1 Switching between Fast Communication Mode and Memory-Saving Communication Mode.. 101
6.10.2 Influence of Dynamic Connection on Performance... 102

6.11 Memory Usage Estimation Formulae and Tuning Guidelines.. 102
6.11.1 Memory Usage Estimation Formulae... 102
6.11.2 Memory Usage Tuning Guidelines...106
6.11.3 Specifying Memory Allocation Restriction Values..106

6.11.3.1 Specification Memory Allocation Restriction Values... 107
6.11.3.2 MCA Parameters Targeted by Automatic Tuning...107
6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified.. 108

6.12 Use of Tofu Barrier Communication for Better Performance... 108
6.12.1 MPI_BARRIER.. 108
6.12.2 MPI_BCAST.. 108
6.12.3 MPI_REDUCE and MPI_ALLREDUCE...110
6.12.4 Notes on Tofu Barrier Communication.. 111

6.13 MPI_BCAST/MPI_IBCAST routines When the Same Count is Used among the Processes...112
6.14 Algorithms of Collective Communication and Shape of Compute Nodes Allocated to the Communicator................................ 113

6.14.1 Shape of Compute Nodes Allocated to the MPI_COMM_WORLD... 113
6.14.2 Compute Nodes Allocated to the Intra-communicator... 115
6.14.3 Shape of Compute Nodes for Algorithms Tuned for Tofu Interconnect..116
6.14.4 Length of Axis with Cuboid Shape...119

6.15 Job Dimension Conversion Function...119
6.15.1 Overview of Job Dimension Conversion Function...119
6.15.2 Log Output for Job Dimension Conversion Function.. 120

6.16 MPI Statistical Information... 121
6.17 Dynamic Debug during MPI Program Execution..132

6.17.1 Communication Timeout Setting..132
6.17.2 Monitoring Incorrect Writing to MPI Communication Buffer...133
6.17.3 Argument Check Function..133

6.18 Note on using 3rd Party Tools... 134
6.18.1 Notes on Using Valgrind.. 134

6.19 Notes on Job Execution Continuation Function at Link-down..135
6.19.1 Communication Performance... 135
6.19.2 Conditions in MPI_ALLTOALL Routine.. 135
6.19.3 Algorithms which are not Applicable...135
6.19.4 Note on Specification of MCA Parameters and Options..136
6.19.5 Dynamic Process Creation..136

Chapter 7 Error Messages... 137
7.1 Output Format for Information Related to Parallel Processes...137
7.2 mpiexec Command Error Messages.. 137
7.3 Communication Library Error Messages...143
7.4 Compilation/linkage command Error Messages..158

Chapter 8 Speeding Up Blocking Collective Communication...159
8.1 Outline... 159
8.2 MCA Parameter Tuning of Algorithms... 159

8.2.1 Changing Segment Size.. 159

- x -

8.2.1.1 Change of Algorithm Performance by Changing Segment Size... 159
8.2.1.2 Notes by Changing Segment Size..160

8.3 Tuning by Algorithm Selection... 161
8.3.1 How to Select Algorithms...161

8.3.1.1 Flow of Selecting Algorithms..161
8.3.1.2 Flow of Selecting Algorithms in Special Case.. 162
8.3.1.3 Selecting Algorithms by MCA Parameter... 162
8.3.1.4 Selecting Algorithms by Info Object... 163

8.3.1.4.1 Parameter to Specify with key of Info Object.. 163
8.3.1.4.2 Specification for Each Collective Communication Routine Call... 163
8.3.1.4.3 Specification for Each Communicator..164
8.3.1.4.4 Specifying Rules for Selecting Algorithms.. 164
8.3.1.4.5 Notes for Selecting Algorithms by Info Object.. 166
8.3.1.4.6 List of Values that can be Specified to Key of Info Object..166

8.3.1.5 Selecting Algorithms by External Input File... 167
8.3.1.5.1 How to Use... 167
8.3.1.5.2 Example of External Input File...167
8.3.1.5.3 Multiple Entries of Algorithms and Parameter...168
8.3.1.5.4 Conditional Statement...168
8.3.1.5.5 Entries of External Input File..170
8.3.1.5.6 Notes for Specifying External Input File..175

8.3.1.6 Conditions Required for Application of Algorithms... 175
8.3.2 How to Confirm Selection Results... 176

8.3.2.1 Displaying Selection Process of Algorithms... 176
8.3.2.2 Obtaining Selection Results of Algorithms by Using Info Object.. 176
8.3.2.3 Obtaining Results Only with MCA Parameter.. 177

8.3.3 Notes for Selecting Algorithms.. 177
8.3.4 List of Algorithms and Conditions Required for Application.. 177

8.3.4.1 Algorithms Selected by MPI_ALLGATHER Routine..178
8.3.4.2 Algorithms Selected by MPI_ALLGATHERV Routine... 178
8.3.4.3 Algorithms Selected by MPI_ALLREDUCE Routine.. 179
8.3.4.4 Algorithms Selected by MPI_ALLTOALL Routine... 181
8.3.4.5 Algorithms Selected by MPI_ALLTOALLV Routine.. 182
8.3.4.6 Algorithms Selected by MPI_BARRIER Routine...182
8.3.4.7 Algorithms Selected by MPI_BCAST Routine... 183
8.3.4.8 Algorithms Selected by MPI_GATHER Routine..184
8.3.4.9 Algorithms Selected by MPI_GATHERV Routine...184
8.3.4.10 Algorithms Selected by MPI_REDUCE Routine..185
8.3.4.11 Algorithms Selected by MPI_REDUCE_SCATTER Routine.. 187
8.3.4.12 Algorithms Selected by MPI_SCAN Routine... 187
8.3.4.13 Algorithms Selected by MPI_SCATTER Routine.. 187
8.3.4.14 Algorithms Selected by MPI_SCATTERV Routine... 188

8.4 MCA Parameter related to Algorithm Selection..188
8.4.1 MCA Parameter to Specify Algorithm Selection... 188

8.4.1.1 coll_select_allgather_algorithm (Specifying the Algorithm of the MPI_ALLGATHER Routine).................................. 188
8.4.1.2 coll_select_allgatherv_algorithm (Specifying the Algorithm of the MPI_ALLGATHERV Routine)............................. 189
8.4.1.3 coll_select_allreduce_algorithm (Specifying the Algorithm of the MPI_ALLREDUCE Routine)..................................189
8.4.1.4 coll_select_alltoall_algorithm (Specifying the Algorithm of the MPI_ALLTOALL Routine).. 190
8.4.1.5 coll_select_alltoallv_algorithm (Specifying the Algorithm of the MPI_ALLTOALLV Routine)................................... 190
8.4.1.6 coll_select_barrier_algorithm (Specifying the Algorithm of the MPI_BARRIER Routine).. 190
8.4.1.7 coll_select_bcast_algorithm (Specifying the Algorithm of the MPI_BCAST Routine)... 191
8.4.1.8 coll_select_gather_algorithm (Specifying the Algorithm of the MPI_GATHER Routine).. 191
8.4.1.9 coll_select_gatherv_algorithm (Specifying the Algorithm of the MPI_GATHERV Routine)... 191
8.4.1.10 coll_select_reduce_algorithm (Specifying the Algorithm of the MPI_REDUCE Routine)..192
8.4.1.11 coll_select_reduce_scatter_algorithm (Specifying the Algorithm of the MPI_REDUCE_SCATTER Routine)........... 192
8.4.1.12 coll_select_scan_algorithm (Specifying the Algorithm of the MPI_SCAN Routine).. 192
8.4.1.13 coll_select_scatter_algorithm (Specifying the Algorithm of the MPI_SCATTER Routine).. 192

- xi -

8.4.1.14 coll_select_scatterv_algorithm (Specifying the Algorithm of the MPI_SCATTERV Routine)..................................... 193
8.4.2 MCA Parameter related to Algorithm Selection Itself... 193

8.4.2.1 coll_select_dectree_file (Specification of External Input User Definition File of Algorithm Selection)......................... 193
8.4.2.2 coll_select_decision_process (Output of Algorithm Selection Process)... 193

8.4.3 MCA Parameter to Tune Algorithm Itself..194
8.4.3.1 coll_select_allreduce_algorithm_segmentsize (Specifying the Segment Size of the MPI_ALLREDUCE Routine)....... 194
8.4.3.2 coll_select_bcast_algorithm_segmentsize (Specifying the Segment Size of the MPI_BCAST Routine)........................ 194
8.4.3.3 coll_select_reduce_algorithm_segmentsize (Specifying the Segment Size of the MPI_REDUCE Routine)...................195

8.4.4 MCA Parameter to Obtain Algorithm Selection Result... 195
8.4.4.1 coll_select_get_tuning_info (Obtaining the Algorithm Information of the Collective Communication Executed Immediately

Before)..195
8.5 Output Message... 196

8.5.1 Output Message Related to Algorithm Selection (Warning)..196
8.5.2 Output Message by Display Function of Algorithm Selection Process (Warning)..196
8.5.3 Output Message by Display Function of Algorithm Selection Process (Information)...199

Appendix A Error Class List..201

Glossary... 204

- xii -

Chapter 1 Overview
This software system is based on an open source MPI library (Open MPI).

This chapter gives an overview of this software system and an outline of how to use it.

1.1 Features of This Software System
This MPI library is intended for use with this computing system. MPI (Message Passing Interface) is the set of standards defined by the MPI
Forum. The library interface for the Fortran and C language is regulated in MPI to enable parallel programming based on message passing
in parallel computing systems with distributed memory.
It is assumed that the C language interface is also used for C++ programs.
In order to enable parallel MPI programming in Java, this software system specially provides the Java binding of MPI. However, OpenJDK
must be installed in the login node and compute nodes. Refer to "Table 6.3 Routines not provided by Java binding of this software system",
for routines of not support.

This computing system use an interconnect, known as Tofu, comprised of a 6-dimensional mesh/torus. A virtual torus shape can be
configured from the physical 6-dimensional mesh/torus in the Tofu interconnect, and users can specify a network configuration having a
torus shape of from one to three dimensions when executing programs. This software system supports this Tofu interconnect, thus achieving
maximum performance for the application programs that use the system. In addition, users can use the extended interface to describe
programs that make use of the 6-dimensional mesh/torus. Read "6.1 Tofu Interconnect" for details of the Tofu interconnect.

1.2 Outline of How to Use This Software System
The MPI library provided by this software system can be used in application programs written in Fortran, C, C++, or Java. In this manual,
application programs that use the MPI library are called MPI programs.

This software system provides commands for compiling and linking MPI programs and MPI program execution commands.

This section gives a simple description of the flow of procedures, from compilation to execution of an MPI program intended for this
computing system.

1.2.1 Flow from Compilation to Execution of an MPI Program
To execute an MPI program at this computing system, the user performs the required operations at the login node.

Compiling and linking an MPI program

This software system provides compilation/linkage commands that compile and link MPI programs written in Fortran, C, C++, and Java
in order to convert them to the executable file format intended for this computing system.

The compilation/linkage commands of Fortran, C, and C++ internally invoke the corresponding Fujitsu compiler commands. The
compilation command of Java internally invokes the corresponding Java compiler command.

Some of these compilation/linkage commands are used at the login node (cross compiler) and the others are used at compute nodes (native
compiler).

These compilation/linkage commands are shown below.

Use these compilation/linkage commands in accordance with the program language you use to write an MPI program.

Table 1.1 Compilation/linkage commands

Type Command name Command of the
corresponding Fujitsu/Java

compiler

Programming language to
write MPI program

Cross compiler mpifrtpx

mpifccpx

mpiFCCpx

mpijavac

frtpx

fccpx

FCCpx

javac

Fortran

C

C++

Java

- 1 -

Type Command name Command of the
corresponding Fujitsu/Java

compiler

Programming language to
write MPI program

Native compiler mpifrt

mpifcc

mpiFCC

mpijavac

frt

fcc

FCC

javac

Fortran

C

C++

Java

Invoke these cross compiler compilation/linkage commands from at the login node. They can be used to convert MPI programs to a format
that can be executed on this computing system. Refer to "Chapter 3 MPI Program Compilation/Linkage" for information on how to use the
MPI program compilation/linkage commands. Refer to the compiler manuals for information on the Fujitsu compilers.

Use the native compiler compilation/linkage commands at the compute nodes. To execute a command at a compute node, submit a job which
includes the command execution to the Job Operation Software. Refer to the Job Operation Software manual for details.

The cross compiler and native compiler for MPI programs have no functional differences other than the command launching methods
described above. Refer to "Chapter 3 MPI Program Compilation/Linkage" for information on how to use native compiler compilation/
linkage commands.

Executing an MPI program

Use the mpiexec command to execute an MPI program that has been converted to an executable file format using a compilation/linkage
command. The mpiexec command must be executed from the compute node within this computing system but the user does not execute it
directly in the compute node. Instead, the user requests Job Operation Software to launch the job that executes the MPI program. Refer to
the Job Operation Software manual for information on how to launch jobs.

This software system has two communication ways between two parallel processes of an MPI program internally, Tofu interconnect
communication and shared memory communication. Tofu interconnect communication is used in MPI communication between nodes, and
shared memory communication is used in MPI communication inside each node.

- 2 -

Chapter 2 Environment and Advance Settings
This chapter describes the environment settings that must be set when using this software system.

"installation_path" is the product/software installation path. For "installation_path", contact the system administrator.

2.1 MPI Program Compilation/Linkage Environment
The following setting is required at the login node in order to enable MPI program compilation and linkage with the cross compiler :

- Append the following path name to user environment variable PATH

/installation_path/bin

When the javac command placed other than /usr/bin is used, append the javac command path name to user environment variable PATH.

The following setting is required in the job script when the compilation/linkage command execution job is launched. The setting enables
MPI program compilation and linkage with the native compiler.

- Append the following path name to user environment variable PATH

/installation_path/bin

In order to compile a Java program with the javac command placed other than /usr/bin, append the javac command path name to user
environment variable PATH when the compilation command execution job is launched.

Refer to the Job Operation Software manual for information on job launching and job scripts.

The MPI library resources are shown below.

Table 2.1 MPI library resource list

Name Usage

Path within () indicates the install locationC/C++ Fortran Java

mpi.h

mpi-ext.h

mpif.h

mpif-ext.h

mpi.mod

mpi_ext.mod

mpi_f08.mod

mpi_f08_ext.mod

- When compiling: MPI library header file (for Fortran, the module information
file is also included)

(/installation_path/include/mpi/fujitsu)

- - mpi.jar When compiling and executing: MPI library jar file

(/installation_path/lib64)

mpifccpx

mpiFCCpx

mpifcc

mpiFCC

mpifrtpx

mpifrt

- When compiling and linking: Fortran, C, and C++ compilation/linkage
commands

(/installation_path/bin)

- - mpijavac When compiling: Java compilation command

(/installation_path/bin)

2.2 MPI Program Execution Environment
The settings below are required in the job script used to launch an MPI program execution job. Refer to the Job Operation Software manual
for information on launching jobs and job scripts.

- 3 -

- Append the following path name to user environment variable PATH

/installation_path/bin

In order to execute a Java program with the java command placed other than /usr/bin, append the java command path name to user
environment variable PATH.

- Append the following path name to user environment variable LD_LIBRARY_PATH

/installation_path/lib64

2.3 Online Manual
The following setting is required at the login node in order to use the related online manual:

- Append the following path name to user environment variable MANPATH

/installation_path/man

- 4 -

Chapter 3 MPI Program Compilation/Linkage
This chapter describes how to compile and link an MPI program.

3.1 Overview of Compilation/Linkage Commands
As described in "1.2 Outline of How to Use This Software System", an MPI program is a Fortran, C, C++, or Java program that includes
invocation of the MPI library.

Fujitsu compiler frtpx, fccpx, or FCCpx command (native compiler: frt, fcc, or FCC command) is used to compile and link ordinary Fortran,
C, or C++ programs. However the compilation/linkage command mpifrtpx, mpifccpx, or mpiFCCpx (native compiler: mpifrt, mpifcc, or
mpiFCC command) is used to compile and link MPI programs.

javac command is used to compile Java programs; however the compile command for MPI programs, mpijavac command is used to compile
MPI programs.

mpifrtpx, mpifccpx, mpiFCCpx, mpifrt, mpifcc, and mpiFCC commands are wrapper commands for frtpx, fccpx, FCCpx, frt, fcc, and FCC
commands respectively, and internally invoke the corresponding Fujitsu compiler. Therefore, the corresponding Fujitsu compiler options
can be specified as is in the compile/linkage commands for MPI programs.

mpijavac command is a wrapper command for javac command and internally invokes javac command included in JDK. Therefore, javac
command options can be specified as is in the compilation command for MPI programs.

The conformance of types of arguments of MPI routine calls can be checked when an MPI program is compiled.
In the case of a Fortran program, if the program uses the mpi module, the compiler checks argument types based on the contents of the
module, and an error or a warning message is output. Note that the mpi_f08 module is not supported in this software system.
In the case of a C program or a C++ program, the compiler checks argument types based on the contents of mpi.h, and an error or a warning
message is output.

Refer to the compiler manuals for details on Fujitsu compilers.

3.2 Compilation/Linkage Command Format

Table 3.1 Compilation/linkage command format for Fortran, C, or C++

Command name Options

Cross compiler mpifrtpx [-showme|-showme:compile|-showme:link|-showme:version]

[-SCALAPACK] [-SSL2MPI] [compiler_arguments] file ...

Native compiler mpifrt

Cross compiler mpifccpx [-showme|-showme:compile|-showme:link|-showme:version]

[-SCALAPACK] [-SSL2MPI] [compiler_arguments] file ...

Native compiler mpifcc

Cross compiler mpiFCCpx [-showme|-showme:compile|-showme:link|-showme:version]

[-SCALAPACK] [-SSL2MPI] [compiler_arguments] file ...

Native compiler mpiFCC

Table 3.2 Compilation command format for Java

Command name Options

mpijavac [--showme|--verbose|--help|-help|-h] [javac_arguments]

file ...

With this software system, MPI programs can be a mix of Fortran, C, and C++. Refer to the compiler manuals for notes and details
concerning mixing program languages.

The compilation/linkage command options are explained below:

- 5 -

Table 3.3 Compilation/linkage command options for Fortran, C, or C++
Option Explanation

-showme Displays the call line used when the MPI program compilation/linkage command invokes the Fujitsu
compiler command. Actual compilation/linkage processing is not performed.

-showme:compile Displays the option list that is passed to the Fujitsu compiler command. Actual compilation/linkage
processing is not performed.

-showme:help Displays the help information. Actual compilation/linkage processing is not performed.

-showme:link Displays the option list that is passed to the linker. Actual compilation/linkage processing is not
performed.

-showme:version Displays the version information. Actual compilation/linkage processing is not performed.

-SCALAPACK Links the ScaLAPACK library. With this option, specify the Fujitsu compiler option -SSL2 or -
SSL2BLAMP.

-SSL2MPI Links the SSL II/MPI library. With this option, specify the Fujitsu compiler option -SSL2 or -
SSL2BLAMP.

compiler_arguments Specifies the options passed to the Fujitsu compiler.

Refer to the Fujitsu compiler manuals for practical details of the options that can be specified.

Table 3.4 Compilation command options for Java

Option Explanation

--showme Displays the call line where the MPI program compilation command invokes the javac command.

Actual compilation processing is not performed.

--verbose Displays the call line where the MPI program compilation command invokes the javac command.

Actual compilation processing is performed.

--help

-help

-h

Displays the help information. Actual compilation processing is not performed.

javac_arguments Specifies the options passed to the javac command.

 Note

Compilation/linkage notes

- The MPI library is provided in only the dynamic link library format.

- mpifrtpx command and mpifrt command automatically specify the following frtpx command and frt command option:

- -f2004

- -Knointentopt (-Kintentopt option is disable even if it is specified)

- When the following option of frtpx command and frt command is specified with mpifrtpx command and mpifrt command, the language
entities must be lowercase letter:

- -AU

- The mpif.h file cannot be included by the INCLUDE line more than once in one scoping unit of a Fortran program.

- Java programs can be compiled without setting the classpath of the MPI library.
In order to compile an MPI program with jar files, set the path of the MPI program in the environment variable CLASSPATH or the
-classpath option.
If both the environment variable CLASSPATH and the -classpath option are set, the value specified for -classpath option takes priority.

- 6 -

 Example

Examples of using mpifrtpx command to compile and link an MPI program

1. Compile the user program "test.f" and create the object program "test.o".

$ mpifrtpx -c test.f

2. Link edit the object program "test.o" and create the executable program "test".

$ mpifrtpx -o test test.o

- 7 -

Chapter 4 MPI Program Execution
This chapter describes how to execute MPI programs.

In this software system, mpiexec command is used to execute MPI programs. mpiexec command passes control to Job Operation Software.
Process creation and execution of the MPI program takes place on the compute node. The Job Operation Software sets the environment
variables PMIX_RANK and PLE_RANK_ON_NODE of the Job Operation Software to MPI process.

Refer to the Job Operation Software manual for information on Job Operation Software and the environment variables PMIX_RANK and
PLE_RANK_ON_NODE.

Almost all options or the like of Open MPI on which this software system is based can be specified. However, the behavior of an option or
the like not described in this chapter is not only not guaranteed but may also have a serious impact on this system. Therefore, do not use
options or the like which are not described in this chapter especially when executing an MPI program using many nodes or many processes.

4.1 Execution Command Formats
The format of the execution command varies depending on whether the SPMD model, the MPMD model, or the execution definition file
specification is used for execution.

1. SPMD model

Table 4.1 SPMD model execution command format

Command name Options

mpiexec global_options local_options execfile execfile_arguments

2. MPMD model

Table 4.2 MPMD model execution command format

Command name Options

mpiexec global_options local_options execfile1 execfile1_arguments

: local_options execfile2 execfile2_arguments

[: local_options execfile3 execfile3_arguments] ...

<Notes>

- If there are three or more different programs, the items enclosed in square brackets [] are specified repeatedly to give the
required number of specifications.

3. Execution definition file

Table 4.3 Execution definition file specifying execution command format

Command name Options

mpiexec global_options { -app | --app } execution_definition_file local_options

The execution definition file is described in the form of the following:

local_options execfile1 execfile1_arguments

[local_options execfile2 execfile2_arguments] ...

<Notes>

- If there are two or more different programs, the items enclosed in square brackets [] are specified repeatedly to give the
required number of specifications.

- The options that can be specified for the local_options of the mpiexec command are only -tune option and { -mca | --mca }
option.

- The { -mca | --mca } option in local_options cannot be specified in the execution definition file.

- 8 -

- When -tune option is specified for both the mpiexec command and the execution definition file, only that specified in the
execution definition file is enabled.

- When the same MCA parameter is specified for both the { -mca | --mca } option of the mpiexec command and the AMCA
parameter file (MCA parameter settings file) of -tune option in the execution definition file, the value specified by the
mpiexec command takes priority.

- When "#" or "//" is included in the execution definition file, the following content in the line is ignored.

 Note

Note that, if a single colon (:) is specified in the command line of mpiexec command, the colon is regarded as a delimiter. For example, a
single colon cannot be specified as an execfile name or an argument name to be passed to the corresponding execfile.

The execution of a Java program in the MPMD model is not guaranteed.

The format for global_options and explanations of options that can be specified as global_options are shown under "global_options format
and explanation".

The format for local_options and explanations of options that can be specified at local_options are shown under "local_options format and
explanation".

Explanations of all options are provided in "Execution command options".

In this software system, some variables, known as MCA parameters, are held internally by the MPI library. The operating conditions that
apply when this software system is executed can be changed by temporarily changing the values of these MCA parameters. Refer to "4.2
MCA Parameters" for information on MCA parameters.

MCA parameters can also be set by environment variables. Refer to "4.3 Environment Variables" for information on using environment
variables to set MCA parameters.

 Example

Specification example for using mpiexec command to execute an MPI program

1. Example of execution command specification in the SPMD model

$ mpiexec -of-proc procfile -mca mpi_print_stats 2 ./a.out

Execute the MPI program executable file a.out. The program output results and statistical information for each process is output to
the file with the name created by the specified method.

2. Example of execution command specification in the MPMD model

$ mpiexec -n 2 ./a.out : -n 4 ./b.out : -n 6 ./c.out

Execute the MPI program files a.out, b.out, and c.out using 2, 4, and 6 parallel processes respectively.

3. Example of execution command specification in the format of the execution definition file

$ cat abc.exec

-n 2 ./a.out

-n 4 ./b.out

-n 6 ./c.out

$ mpiexec --app abc.exec

Execute the MPI program files a.out, b.out, and c.out using 2, 4, and 6 parallel processes respectively.

4. Example of specifying execution command in the SPMD model for a Java program

$ mpiexec -n 8 java -classpath ./dir JavaTest

Executes the JavaTest.class as the Java class file of the MPI program with 8 processes.

- 9 -

The classpath is specified by -classpath option of java command.

global_options format and explanation

[{ -app | --app } APP_FILE]

[{ -debuglib | --debuglib }]

[{ -h | --help }]

[{ -of | --of | -std | --std } FILE]

[{ -oferr | --oferr | -stderr | --stderr } ERR_FILE]

[{ -oferr-proc | --oferr-proc | -stderr-proc | --stderr-proc } ERR_PROC_FILE]

[{ -ofout | --ofout | -stdout | --stdout } OUT_FILE]

[{ -ofout-proc | --ofout-proc | -stdout-proc | --stdout-proc } OUT_PROC_FILE]

[{ -of-proc | --of-proc | -std-proc | --std-proc } PROC_FILE]

[{ -ofprefix | --ofprefix | -stdprefix | --stdprefix } PREFIX]

[{ -stdin | --stdin } STDIN_FILE]

[{ -vcoordfile | --vcoordfile } VCOORD]

[{ -V | --version }]

{ -app | --app } APP_FILE

Specifies when the execution definition file of APP_FILE is used. Following the app option, specify the path of execution definition file.
Read permission to the user who executes the job is required for the specified file. Specify the number of parallel processes for each of
the MPI programs.

If this option is specified more than once, the parameter specified last takes priority.

{ -debuglib | --debuglib }

Links the debug MPI library.

If you are using the argument check function, which is one of the dynamic debug functions at the time of execution, specify this option.

Use of this option may cause execution of the MPI program to become very slow as the debug MPI library is linked. Take care when
using this option.

Refer to "6.17.3 Argument Check Function" for information on the argument check function.

In addition, you need to use this option when you use Valgrind that is an open source software for memory checking and other functions.
Read "6.18.1 Notes on Using Valgrind" for details.

{ -h | --help }

Displays help messages for this command and ends mpiexec command.

{ -of | --of | -std | --std } FILE

The parallel process standard output and standard error output are saved in the file. If just the filename or the relative path is specified
as the output destination, the relative path from the job execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

The output destination varies depending on the restriction set in the job ACL (Access Control List) function of Job Operation Software.
If this option is permitted, the output is saved in the file with the name specified at FILE. In addition, metacharacters can be used for
FILE.
If this option is not permitted, the output destination depends the job ACL function setting in the Job Operation Software.

Refer to the Job Operation Software manual for metacharacters specification and the job ACL function settings in the Job Operation
Software.

{ -oferr | --oferr | -stderr | --stderr } ERR_FILE

The parallel process standard error output is saved in the file. If just the filename or the relative path is specified as the output destination,
the relative path from the job execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

- 10 -

The output destination varies depending on the restriction set in the job ACL function of Job Operation Software.
If this option is permitted, the output is saved in the file with the name specified at ERR_FILE. In addition, metacharacters can be used
for ERR_FILE.
If this option is not permitted, the output destination depends the job ACL function setting in the Job Operation Software.

Refer to the Job Operation Software manual for metacharacters specification and the job ACL function settings in the Job Operation
Software.

{ -oferr-proc | --oferr-proc | -stderr-proc | --stderr-proc } ERR_PROC_FILE

Saves the parallel process standard error output to the file with the filename "ERR_PROC_FILE.mpiexec.rank" for each process.

In addition, metacharacters can be used for ERR_PROC_FILE. Refer to the Job Operation Software manual for metacharacters
specification.

If just the filename or the relative path is specified as the output destination, the relative path from the job execution current directory
is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -ofout | --ofout | -stdout | --stdout } OUT_FILE

The parallel process standard output is saved in the file. If just the filename or the relative path is specified as the output destination, the
relative path from the job execution current directory is used.

If this option is specified more than once, the parameter specified last takes priority.

The output destination varies depending on the restriction set in the job ACL function of Job Operation Software.
If this option is permitted, the output is saved in the file with the name specified at OUT_FILE. In addition, metacharacters can be used
for OUT_FILE.
If this option is not permitted, the output destination depends the job ACL function setting in the Job Operation Software.

Refer to the Job Operation Software manual for metacharacters specification and the job ACL function settings in the Job Operation
Software.

{ -ofout-proc | --ofout-proc | -stdout-proc | --stdout-proc } OUT_PROC_FILE

Saves the parallel process standard output to the file with the filename "OUT_PROC_FILE.mpiexec.rank" for each process.

In addition, metacharacters can be used for OUT_PROC_FILE. Refer to the Job Operation Software manual for metacharacters
specification.

If just the filename or the relative path is specified as the output destination, the relative path from the job execution current directory
is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -of-proc | --of-proc | -std-proc | --std-proc } PROC_FILE

Saves the parallel process standard output and standard error output to the file with the filename "PROC_FILE.mpiexec.rank" for each
process.

In addition, metacharacters can be used for PROC_FILE. Refer to the Job Operation Software manual for metacharacters specification.

If just the filename or the relative path is specified as the output destination, the relative path from the job execution current directory
is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -ofprefix | --ofprefix | -stdprefix | --stdprefix } PREFIX

Outputs the character string corresponding to the keyword specified at PREFIX at the start of the parallel process standard output and
standard error output lines.

The output format of the character string depends on which keyword shown below is specified. Multiple keywords can be specified by
separating them by commas "," (for example, date, rank, nid). When multiple keywords are specified, the character string corresponding
to the keywords is output in the order of date, rank, nid.

date

The output time is attached at the start of the output character string.

- 11 -

rank

The rank under MPI_COMM_WORLD is attached at the start of the output character string.

nid

The node ID is attached at the start of the output character string.

If this option is specified more than once, the parameter specified last takes priority.

If a parallel process is created dynamically, the character string "@spawn" is added after the rank. The character string "spawn" indicates
the number assigned by the Job Operation Software for each dynamically created process.

The node ID is the number that identifies the compute node allocated to the parallel process. Refer to the Job Operation Software manual
for information concerning node IDs.

{ -stdin | --stdin } STDIN_FILE

Loads from the file with the filename specified at STDIN_FILE, the standard input for all parallel processes that were created by
executing the MPI program. If just the filename or the relative path is specified, the relative path from the job execution current directory
is used.

If this option is specified more than once, the parameter specified last takes priority.

{ -vcoordfile | --vcoordfile } VCOORD

Specifies that parallel processes are allocated on the basis of the process assignment information specified in the VCOORD file when
an MPI program is executed. If just the filename or the relative path is specified, the relative path from the current directory of the
mpiexec command process is used.

Ensure that this option is specified if background execution is used to execute more than one mpiexec command simultaneously. The
maximum number of mpiexec command that can be executed simultaneously in background execution is 128.

Refer to "4.5 VCOORD file format" for details on the VCOORD file.

If this option is specified more than once, the parameter specified last takes priority.

{ -V | --version }

Displays version information for this command and ends mpiexec command.

Character strings in filenames for per-process standard output and standard error output are explained below.

The character string "mpiexec" indicates how many times the mpiexec command was executed in the job script. The character string "rank"
indicates the actual rank under MPI_COMM_WORLD.

If a parallel process is created dynamically, the character string "@spawn" is added after the rank. The character string "spawn" indicates
the number assigned by the Job Operation Software for each dynamically created process.

 Note

Notes concerning parallel process standard input, standard output, and standard error output

The standard output and standard error output of each parallel process and mpiexec command are normally connected to the job
execution results file that is created by Job Operation Software when the job is executed.

Destinations of each process' standard output and standard error output according to the various -of/-std options specified for the
mpiexec command are shown in the table below:

Table 4.4 Parallel process standard output and standard error output resulting from -of/-std option
specifications

mpiexec option specification Standard output Standard error output

No type of -of/-std option
specified

Depends the job ACL function setting
(following combination of the output item of
pjacl commands) in the Job Operation
Software.

- For a batch job

Depends the job ACL function setting
(following combination of the output item of
pjacl commands) in the Job Operation
Software.

- For a batch job

- 12 -

mpiexec option specification Standard output Standard error output

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stdout"

- For an interactive job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stdout(interact)"

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stderr"

- For an interactive job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stderr(interact)"

-of/-std option specified

(permitted by the job ACL
function of Job Operation
Software)

Specified file Specified file

-of/-std option specified

(not permitted by the job ACL
function of Job Operation
Software)

Depends the job ACL function setting
(following combination of the output item of
pjacl commands) in the Job Operation
Software.

- For a batch job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stdout"

- For an interactive job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stdout(interact)"

Depends the job ACL function setting
(following combination of the output item of
pjacl commands) in the Job Operation
Software.

- For a batch job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stderr"

- For an interactive job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stderr(interact)"

-ofout/-stdout option specified

(permitted by the job ACL
function of Job Operation
Software)

Specified file -

-ofout/-stdout option specified

(not permitted by the job ACL
function of Job Operation
Software)

Depends the job ACL function setting
(following combination of the output item of
pjacl commands) in the Job Operation
Software.

- For a batch job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stdout"

- For an interactive job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stdout(interact)"

-

-oferr/-stderr option specified

(permitted by the job ACL
function of Job Operation
Software)

- Specified file

-oferr/-stderr option specified

(not permitted by the job ACL
function of Job Operation
Software)

- Depends the job ACL function setting
(following combination of the output item of
pjacl commands) in the Job Operation
Software.

- For a batch job

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stderr"

- For an interactive job

- 13 -

mpiexec option specification Standard output Standard error output

Combination of "mpiexec-stdouterr-
unit" and "mpiexec-stderr(interact)"

-of-proc/-std-proc option specified Specified file name.mpiexec.rank Specified file name.mpiexec.rank

-ofout-proc/-stdout-proc option
specified

Specified file name.mpiexec.rank -

-oferr-proc/-stderr-proc option
specified

- Specified file name.mpiexec.rank

The redirected standard input of mpiexec command cannot be used as the standard input for each of the parallel processes. A function
for specifying the standard input for each parallel process, and a function for changing the connection destination of the standard output
and standard error output of each parallel process, are provided in the mpiexec command options. Note the dynamically created parallel
process standard input, standard output, and standard error output also conform to these option specifications for mpiexec command.

Refer to the Job Operation Software manual for information concerning the job execution results file.

 Note

Notes on running large-scale MPI jobs

For MPI jobs that are highly parallel (Generates approximately 10000 or more MPI processes) and output standard output or standard
error output to a file for each rank, it is recommend to run them as follows, considering the system load of writing to a file:

- Output the standard output/standard error output of the mpiexec command to a different file for each rank (process).

- Output the standard output/standard error output files for each rank to a different directory for every several files, rather than to the
same directory.

- Do not create an empty file if there is no standard output/standard error output for ranks.

 Example

Change the output directory for standard output and standard error output every 1000 rank numbers. Also, an empty file is not created
if there is no standard output or standard error output.

export PLE_MPI_STD_EMPTYFILE="off"

mpiexec -stdout-proc ./%/1000R/%j.stdout -stderr-proc ./%/1000R/%j.stderr ./a.out

 Note

Notes concerning DT_RPATH

If the DT_RPATH dynamic section attribute exists in a MPI program and /installation_path/lib64 is included in DT_RPATH, --debuglib
option is disabled. Deal with either as follows for such a MPI program. "installation_path" is the product/software installation path. For
"installation_path", contact the system administrator.

- Do not let /installation_path/lib64 be included in the DT_RPATH. (Relinking program and so on)

- Specify the --inhibit-rpath option of a dynamic linker when a MPI program is executed. Specifying the option is shown below.

$ mpiexec -n 2 /lib64/ld-linux-aarch64.so.1 --inhibit-rpath :./a.out ./a.out

- Set the environment variable PATH and LD_LIBRARY_PATH corresponding to the executed package.

- Specify the argument of the --inhibit-rpath option of /lib64/ld-linux-aarch64.so.1 in the form of ":MPI program".

- 14 -

local_options format and explanation

[-tune AM_FILE]

[-x NAME=VALUE]

[{ -mca | --mca } MCA_PARAM_NAME MCA_PARAM_VALUE]

[{ -c | -np | --np | -n | --n } N]

[{ -fjdbg-dlock | --fjdbg-dlock }]

[{ -fjdbg-sig | --fjdbg-sig } SIGNAL]

[{ -fjdbg-out-dir | --fjdbg-out-dir } OUTPUT-DIR]

[{ -gdbx | --gdbx } "[RANK:] COMMAND-FILE [;...]"]

-tune AM_FILE

Specifies the path name of the AMCA parameter file (MCA parameter settings file) corresponding to the relevant MPI program.

Specify the same MCA parameter values for all programs. If different values are specified, the operation results are not guaranteed.

The specification method within the file is as follows:

- In each line, use following format for the specification:

MCA-parameter-name=value

- If multiple values are to be specified in the same MCA parameter, use commas as separators as shown below.

MCA-parameter-name=value1,value2

If this option is specified more than once for the same MPI program, the parameter specified last takes priority.

-x NAME=VALUE

Specifies the environment variable when executing an MPI program.

NAME indicates the environment variable name. VALUE indicates the value to be set in that environment variable. If it is necessary
to specify spaces, the following format is also allowed.

"NAME=VALUE"

Only one environment variable can be specified for this option. To set multiple environment variables, specify this option as often as
needed.

However, if the environment variable name is specified more than once for the same MPI program, the value specified last takes priority.

Specification example:

-x OMP_NUM_THREADS=8 -x THREAD_STACK_SIZE=4096

{ -mca | --mca } MCA_PARAM_NAME MCA_PARAM_VALUE

Specifies MCA parameters for the relevant MPI program.

Specify the same value in the MCA parameter for all programs. If different values are specified, the operation is not guaranteed.

{ -c | -np | --np | -n | --n } N

Specifies the number (an integer) of parallel processes for the relevant MPI program.

If the SPMD model is used for execution and this option is omitted, the maximum number of parallel processes that can be created is
assumed.

This option must be specified when the MPMD model is used for execution.

If this option is specified more than once for the same MPI program, the parameter specified last takes priority.

For execution of an MPI program in this computing system, the parallel processes can be allocated to an appropriate torus format. Refer
to the Job Operation Software manual for information concerning how to specify torus format and how to deploy parallel processes.

{ -fjdbg-dlock | --fjdbg-dlock }

Enables the deadlock investigative function in the debugging support functions. For more information about the deadlock investigative
function, refer to Debugger for Parallel Applications User's Guide.

- 15 -

{ -fjdbg-sig | --fjdbg-sig } SIGNAL

Enables the abnormal termination investigative function in the debugging support functions. For more information about the abnormal
termination investigative function, refer to Debugger for Parallel Applications User's Guide.

{ -fjdbg-out-dir | --fjdbg-out-dir } OUTPUT-DIR

Specifies the directory to store the result file for the deadlock investigative function or abnormal termination investigative function in
the debugging support functions. For more information about the deadlock investigative function and the abnormal termination
investigative function, refer to Debugger for Parallel Applications User's Guide.

{ -gdbx | --gdbx } "[RANK:] COMMAND-FILE [;...]"

Enables the debugging control function with command files in the debugging support functions. For more information about the
debugging control function with command files, refer to Debugger for Parallel Applications User's Guide.

Execution command options

execfile

Specifies an executable file of an MPI program, an executable file other than an MPI program, or a shell script.

Specifies java command when an MPI program is written in Java.

If a specified executable file or a shell script is not exist in path which is specified for the environment variable PATH, the absolute path
or the relative path from the current directory where the mpiexec command is executed must be set.

A shell script cannot be coded to execute more than one MPI program. The shell script behavior is not guaranteed if it contains code to
execute more than one MPI program.

Recursive execution of mpiexec command cannot be specified. If it is executed recursively, an error message is output and then mpiexec
command ends abnormally. For example, the mpiexec command start filename cannot be specified for execfile.

 Point

If a shell script is specified, execution permission is required for the shell script.

execfile_arguments

Specifies the arguments to be passed to execfile.

For Java programs, specify the options to be passed to java command such as class name or -jar option.

execfile1
execfile2
execfile3

Specifies an executable file of an MPI program, an executable file other than an MPI program, or a shell script.

For execution in the MPMD model, specify multiple executable files of MPI programs or shell scripts by delimiting them by colons.

If a specified executable file or a shell script is not exist in path which is specified for the environment variable PATH, the absolute path
or the relative path from the current directory where the mpiexec command is executed must be set.

A shell script cannot be coded to execute more than one MPI program. The shell script behaviour is not guaranteed if it contains code
to execute more than one MPI program.

Recursive execution of mpiexec command cannot be specified. If it is executed recursively, an error message is output and then mpiexec
command ends abnormally. For example, the mpiexec command start filename cannot be specified for execfile1, execfile2, execfile3.

 Point

If a shell script is specified, execution permission is required for the shell script.

- 16 -

execfile1_arguments
execfile2_arguments
execfile3_arguments

Specifies the arguments to be passed to execfile1.
Specifies the arguments to be passed to execfile2.
Specifies the arguments to be passed to execfile3.

4.2 MCA Parameters
When an MPI program is executed in this software system, the system operating conditions can be changed by temporarily changing the
values of the MPI library internal variables. These variables are called MCA parameters. This section describes the MCA parameter types
and how to use them. Environment variables can be used to set MCA parameters. Refer to "4.3 Environment Variables" for details.

In this software system, MCA parameters can be specified in the following ways:

- Use the -tune option of mpiexec command to specify the parameters in the MCA parameter settings file (AMCA parameter file).

- Use the -mca option of mpiexec command to specify the MCA parameters directly.

- Use the environment variables to set the MCA parameters.

If different methods are used to specify values for the same MCA parameter, the specification with the highest priority takes effect. The
priority levels for the different MCA parameter specification methods are shown in table below:

Table 4.5 MCA parameter specification methods and priorities

Rank MCA parameter setting method Example of use

1 -mca option of mpiexec command -mca btl_tofu_eager_limit 4096

2 Environment variable export OMPI_MCA_btl_tofu_eager_limit=4096

3 AMCA parameter file (MCA parameter
settings file) specified in the -tune option

-tune mca_file

Note: A smaller priority value indicates a higher priority.

MCA parameters

The "MCA parameters" that can be used in this software system are shown below. The text in parentheses after each MCA parameter name
describes the function of that MCA parameter.

If only an integer value is specified, it is assumed to be in bytes. If 'k' is concatenated after an integer, the value is assumed to be in units
of KiB. If 'm' is concatenated, the value is assumed to be in units of MiB.

Table 4.6 btl_tofu_eager_limit (changes the threshold value for switching the communication method)

MCA parameter value Content

Integer value of 1 or more Specifies the message size (number of bytes) used as the "threshold value" for switching between the
Eager protocol and the Rendezvous protocol in the fast communication mode. Messages that are
smaller than the specified message size (number of bytes) are sent under Eager protocol. More
precisely, the value used is obtained by adding the size of the actual message (number of bytes) and the
size of the internally added header part (several tens of bytes). Refer to "6.10.1 Switching between Fast
Communication Mode and Memory-Saving Communication Mode" for information on the fast
communication mode.

If a value smaller than 256 is specified, 256 is set.

Note that, if a large value is specified, it may be reduced internally to a value that is smaller than the
specified value. Generally, values up to about 128,000 can be specified effectively but, depending on
the memory usage status, the value may need to be smaller than this to take effect. In practice, this
depends on the Large receive buffer size specified in the common_tofu_large_recv_buf_size MCA
parameter and the send buffer size. More specifically, an approximation of the value that can be
specified effectively can be obtained from the expression below, and has an upper limit value of around
512,000, derived from the send buffer size. For a more precise value, if the control information and

- 17 -

MCA parameter value Content

other information used internally is considered, the value is reduced by several hundreds of bytes,
however that can be ignored here.

Large receive buffer size / 2

Usually, this software system dynamically determines an appropriate value internally as the "threshold
value" for fast communication modes. This is because the distance of the compute node that is
performing the communication is taken into account, not just the message size (number of bytes). For
message communication between nearby compute nodes, for example, 38,896 is set internally. As the
distance between the compute nodes performing the message communication increases, the "threshold
value" also increases. With this MCA parameter, the specified value is used as the "threshold value"
regardless of the compute node distance.

Refer to "6.5 Eager Protocol and Rendezvous Protocol" for details.

"l" in the character string btl used in the MCA parameter name is a lowercase "L".

Table 4.7 coll_base_reduce_commute_safe (guarantees the reduction operation sequence)

MCA parameter value Content

1 Guarantees the reduction operation sequence for MPI_REDUCE, MPI_IREDUCE,
MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER, MPI_REDUCE_SCATTER_BLOCK,
MPI_IREDUCE_SCATTER_BLOCK, and MPI_SCAN routines in collective communication that
performs reduction operations.

In collective communication that performs these reduction operations, the operation sequence may be
changed in accordance with communication conditions to optimize the communication time. Changing
the reduction operation sequence may affect the accuracy of the computing results.

The operation sequence can be fixed by specifying a value in this parameter.

Note that fixing the operation sequence lengthens the communication time.

Refer to "6.8 Reduction Operation Sequence Guarantee in Collective Communication" for details.

0 Does not guarantee the reduction operation sequence. The reduction operation sequence may be
changed internally to make the communication time as short as possible. Note that, if the
communication conditions are the same, the computing results are the same regardless of the number
of times the same program is executed.

The default value for this parameter is 0.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.8 coll_tbi_intra_node_reduction (specifies the algorithms used in intra-node Tofu barrier communication
for reduction operations of floating point type or complex type data if multiple processes are assigned within a
node)

MCA parameter value Content

2 If the conditions for applying Tofu barrier communication, as explained in "6.12.3 MPI_REDUCE and
MPI_ALLREDUCE", are met, Tofu barrier communication is not used for reduction operations of
floating point type or complex type data within a node.

Instead, recursive_doubling algorithm implemented at software is used.

3 Tofu Barrier communication is used for reduction operations of floating point type or complex type
data within a node.

Binary_tree algorithm which can save the required number of gates is used.

The default value for this parameter is 3.

4 Tofu Barrier communication is used for reduction operations of floating point type or complex type
data within a node.

- 18 -

MCA parameter value Content

Although the required number of barrier gates is greater than when 3 is specified for this MCA
parameter, recursive_doubling algorithm that better performance can be expected is used.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.9 coll (changes settings applied to all collective communications in common)

MCA parameter value Content

^tbi Specifies that Tofu barrier communication (hardware function) is not used in execution of the
following MPI routines: MPI_BARRIER, MPI_BCAST, MPI_REDUCE, and MPI_ALLREDUCE.

Refer to "6.12 Use of Tofu Barrier Communication for Better Performance" for details.

Do not specify this parameter when you want to use Tofu barrier communication.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.10 coll_tbi_repeat_max (Controls the range of message length to communicate by Tofu barrier
communication)

MCA parameter value Content

Integer value of 1 or more For the MPI_BCAST routine, MPI_REDUCE routine, and MPI_ALLREDUCE routine, Tofu barrier
communication uses the count of this value as an upper bound.

The number of elements in a message that can be operated per the Tofu barrier communication is
limited.

Therefore, when count exceeding the maximum number of elements in a message per the Tofu barrier
communication is specified in an argument of the MPI routine, the Tofu barrier communication range
can be expanded by implementing Tofu barrier communication multiple times.

The default value for this parameter is 1.

Refer to "Table 6.19 Combinations that allow the MPI_BCAST routine to apply Tofu barrier
communication" and "Table 6.20 Operation combinations that allow the MPI_REDUCE and
MPI_ALLREDUCE routines to apply Tofu barrier communication" for the maximum number of
elements in a message per the Tofu barrier communication.

 Example

- For the MPI_BCAST routine, the basic datatype (MPI_UINT64_T)

- When 6 is specified for the number of elements in a message, the Tofu barrier communication function is applied.

- When 7 is specified for the number of elements in a message, the Tofu barrier communication function is not applied by default,
but if 2 is specified for this MCA parameter, the Tofu barrier communication function is applied.

- Using the MPI_TYPE_CONTIGUOUS routine for the MPI_BCAST routine, concatenate seven elements of the basic datatype
(MPI_UINT64_T) to create a derived datatype.

- When 1 is specified for the number of elements in a message, the Tofu barrier communication function is not applied by default,
but if 2 is specified for this MCA parameter, the Tofu barrier communication function is applied.

- When 2 is specified for the number of elements in a message, the Tofu barrier communication function is not applied by default,
but if 3 is specified for this MCA parameter, the Tofu barrier communication function is applied.

- For the MPI_REDUCE routine, the basic datatype (MPI_DOUBLE), the reduction operation (MPI_SUM)

- When 6 is specified for the number of elements in a message, the Tofu barrier communication function is applied, but if 2 is
specified for this MCA parameter, the Tofu barrier communication function is applied.

- When 9 is specified for the number of elements in a message, the Tofu barrier communication function is not applied, but if 3 is
specified for this MCA parameter, the Tofu barrier communication function is applied.

- 19 -

Table 4.11 coll_tbi_use_on_bcast (uses Tofu barrier communication in MPI_BCAST routine)

MCA parameter value Content

1 Specifies that Tofu barrier communication (hardware function) is used on execution of MPI_BCAST
routine.

Refer to "6.12.2 MPI_BCAST" for details.

The default value for this parameter is 1

0 Specifies that Tofu barrier communication is not used on execution of MPI_BCAST routine.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.12 coll_tbi_use_on_comm_dup (uses Tofu barrier communication for a communicator created by
MPI_COMM_DUP routine, MPI_COMM_IDUP routine, and MPI_COMM_DUP_WITH_INFO routine)

MCA parameter value Content

1 Specifies that Tofu barrier communication is used for a communicator created by the
MPI_COMM_DUP routine, MPI_COMM_IDUP routine, and MPI_COMM_DUP_WITH_INFO
routine if Tofu barrier communication (hardware function), explained in "6.12 Use of Tofu Barrier
Communication for Better Performance", is applied.

The default value for this parameter is 1.

0 Specifies that Tofu barrier communication is not used for a communicator created by the
MPI_COMM_DUP routine, MPI_COMM_IDUP routine, and MPI_COMM_DUP_WITH_INFO
routine.

Read "6.12.4 Notes on Tofu Barrier Communication" for details.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.13 coll_tbi_use_on_max_min (uses Tofu barrier communication for floating point datatypes MPI_MAX
and MPI_MIN)

MCA parameter value Content

1 Specifies that Tofu barrier communication is used on execution of floating point datatypes MPI_MAX
and MPI_MIN operations in the MPI_REDUCE routine and MPI_ALLREDUCE routine.

A calculation result to which Tofu barrier communication is applied might be different in either of
special following conditions according to whether Tofu barrier communication is applied. This fact
must be noted if the value specified for the MCA parameter is being changed.

- When there is a NaN in the values used for the operation, note the following.

- When Tofu Barrier Communication is applied, the values except for NaN are used for
comparison. However, when all values are NaN, the calculation result is one of them.

- When Tofu Barrier Communication is not applied, the values except for NaN are used for
comparison or the calculation result is one of NaNs depending on the conditions at the time of
execution.

- When there are both of +0.0 and -0.0 in the values used for the operation, note the following.

- When Tofu Barrier Communication is applied, +0.0 is assumed to be greater than -0.0.

- When Tofu Barrier Communication is not applied, sign of 0.0 is not concerned. Therefore,
which one of +0.0 and -0.0 is chosen is depending on the conditions at the time of execution.

The default value for this parameter is 1.

0 Specifies that Tofu barrier communication is not used on the operation combinations explained by the
content that the value of this parameter is 1.

The default value for this parameter is 0.

- 20 -

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.14 coll_tuned_bcast_same_count (achieves faster communication when MPI_BCAST/MPI_IBCAST
routines are used with the same count among the processes)

MCA parameter value Content

1 Specifies to achieve faster communication when MPI_BCAST routine or MPI_IBCAST routine is
used with the same count among the processes.

This MCA parameter also affects the MPI_ALLGATHER and MPI_ALLGATHERV routines.

Refer to "6.13 MPI_BCAST/MPI_IBCAST routines When the Same Count is Used among the
Processes" for details.

0 Specifies not to use a faster communication mechanism.

The default value for this parameter is 0.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

Table 4.15 coll_tuned_prealloc_size (specifies the size of the static work area used internally by the collective
communication routine)

MCA parameter value Content

Integer value of 1 or more Specifies the size (MiB) of the work area allocated statically for the following collective
communication routines:

- MPI_ALLREDUCE routine

- MPI_REDUCE routine

- MPI_REDUCE_SCATTER_BLOCK routine

- MPI_REDUCE_SCATTER routine

- MPI_ALLGATHER routine

- MPI_GATHER routine

- MPI_SCATTER routine

- MPI_ALLTOALL routine

For MPI programs that call these routines multiple times, the MPI program execution time can be
reduced by using this parameter effectively for statically allocating memory.

The following size gives an estimate to be specified:

For MPI_ALLREDUCE routine

(Size of messages sent in the program * 2) + 2MiB

For MPI_REDUCE routine and MPI_REDUCE_SCATTER_BLOCK routine

(Size of messages sent in the program * 3) + 2MiB

For MPI_REDUCE_SCATTER routine

(Size of messages sent in the program * 2) + 2MiB

For MPI_ALLGATHER routine

Size of messages received in the program + 2MiB

For MPI_GATHER routine

Size of messages received on the root process in the program + 2MiB

For MPI_SCATTER routine

- 21 -

MCA parameter value Content

Size of messages sent on the root process in the program + 2MiB

For MPI_ALLTOALL routine

(Size of messages sent in the program * Number of ranks in communicators)

+ 2MiB

If the size of the work area allocated statically corresponding to this parameter specification is smaller
than the work area size required to process the collective communication routine, the statically
allocated work area is not used.

The default value for this parameter is 6(MiB).

However, if the value of the MCA parameter common_toufu_use_memory_pool is 1, the size of the
work area allocated statically may be greater than the value specified for this parameter. Refer to
"Table 4.31 common_tofu_use_memory_pool (uses memory pool for the MPI library)" for
information on the MCA parameter common_tofu_use_memory_pool.

0 Specifies that the static work area is not allocated.

Both "l" characters in the character string coll used in the MCA parameter name are the lowercase "L".

Table 4.16 common_tofu_conv_dim (executes an MPI program after converting the dimensions of the coordinate
of each process to higher dimensions)

MCA parameter value Content

2 Specifies that the MPI program runs as a two-dimensional job if possible.

Valid only when the job is run in one dimension.

Refer to "6.15 Job Dimension Conversion Function" for details.

3 Specifies that the MPI program runs as a three-dimensional job if possible.

Valid only when the job is run in one or two dimensions.

Refer to "6.15 Job Dimension Conversion Function" for details.

0 Specifies that the MPI program runs as a job in the specified dimension at the start of execution.

If a value other than 0, 2, or 3 is specified, the specified value is assumed to be 0.

The default value for this parameter is 0.

Table 4.17 common_tofu_conv_dim_log (outputs a log when executing an MPI program after converting the
dimensions of the coordinate of each process to higher dimensions)

MCA parameter value Content

1 Specifies that a parallel process with a rank of 0 outputs log about dimension conversion in the MPI
library to standard error. If the dimension conversion function was not applied, the log contains the
reason. Refer to "6.15.2 Log Output for Job Dimension Conversion Function" for details about the
output contents.

0 Specifies that no logs are output for dimension conversion in the MPI library.

If a value other than 0 or 1 is specified, the specified value is assumed to be 0.

The default value for this parameter is 0.

Table 4.18 common_tofu_fastmode_threshold (changes the conditions for switching to fast communication
mode)

MCA parameter value Content

Integer value of 0 or more Specifies the communication count used as the condition for switching from memory-saving
communication mode to fast communication mode.

- 22 -

MCA parameter value Content

If 0 is specified, communication is performed in fast communication mode from the start, provided that
the upper limit is not reached for the number of communication partner processes that communicate in
fast communication mode. If -1 or a lower numeric is specified, a 0 specification is assumed.

Refer to "6.10 Suppressing Memory Usage" for details.

The default value for this parameter is 16.

Table 4.19 common_tofu_large_recv_buf_size (changes the size of the Large receive buffer)

MCA parameter value Content

Integer value from 1024 to
16700000

Specifies the size (number of bytes) of the Large receive buffer.

If a value lower than 1024 is specified, a specification of 1024 is assumed. If a value greater than
16700000 is specified, a specification of 16700000 is assumed.

Refer to "6.10 Suppressing Memory Usage" for information on the large receive buffer.

The default value for this parameter is 1048576.

However, if the value of the MCA parameter common_toufu_use_memory_pool is 1, the default value
of this parameter is changed to 1048064. Refer to "Table 4.31 common_tofu_use_memory_pool (uses
memory pool for the MPI library)" for information on the MCA parameter
common_tofu_use_memory_pool.

Table 4.20 common_tofu_max_fastmode_procs (changes the upper limit for the number of processes that can
communicate in fast communication mode)

MCA parameter value Content

Integer value of -1 or 0 or
more

Specifies the upper limit for the number of communication partner processes that each parallel process
can communicate with in fast communication mode.

If -1 is specified, communication with all processes is performed in fast communication mode. If 0 is
specified, fast communication mode is not used and communication with all processes is in memory-
saving communication mode. If a value of -2 or less is specified, a specification of -1 is assumed.

Refer to "6.10 Suppressing Memory Usage" for details.

The default value for this parameter is 256.

Table 4.21 common_tofu_max_tnis (changes the upper limit for the number of TNIs to be used)

MCA parameter value Content

Integer value of 1 or more Specifies the upper limit for the number of network interface devices (TNIs) to be used. If a number
greater than the maximum number (6) is specified, the parameter value becomes the number that can
actually be used. Refer to "6.7 Using Multiple TNIs" for details.

-1 Specifies to use the maximum number of network interface devices (TNIs) that can be used.

If a value of 0 or -2 or less is specified, a specification of -1 is assumed.

The default value for this parameter is -1.

Table 4.22 common_tofu_medium_recv_buf_size (changes the size of the Medium receive buffer)

MCA parameter value Content

Integer value from 256 to
16700000

Specifies the size (number of bytes) of the Medium receive buffer.

If a value lower than 256 is specified, a specification of 256 is assumed. If a value greater than 16700000
is specified, a specification of 16700000 is assumed.

Refer to "6.10 Suppressing Memory Usage" for information on the medium receive buffer.

The default value for this parameter is 2048.

- 23 -

Table 4.23 common_tofu_memory_limit (specifies the memory allocation limit value)

MCA parameter value Content

Integer value of 0 or more Specifies the limit (MiB) for the memory allocation that this software system's MPI library itself can
use.

A memory allocation limit cannot be specified if using dynamic process creation or if establishing
communication between MPI process groups that do not share a communicator.

Specify 0 to disable memory allocation restriction. If a value of -1 or less is specified, 0 is assumed.

Refer to "6.11.3 Specifying Memory Allocation Restriction Values" for details.

The default value for this parameter is 0MiB

Table 4.24 common_tofu_memory_limit_peers (specifies the assumed number of communication partner
processes when the memory allocation is limited)

MCA parameter value Content

Integer value of 0 or more Specifies the assumed number of communication partner processes when the usable memory allocation
of this software system's MPI library is limited.

The number of processes belonging to the communicator MPI_COMM_WORLD is set as the default
value for this parameter. However, to perform automatic tuning more accurately, the number of
connections for Tofu communication, obtainable from the MPI statistical information, must be
specified.

Refer to "6.11.3 Specifying Memory Allocation Restriction Values" for information on how to specify
memory allocation limit values.

The default value for this parameter is the number of processes belonging to the communicator
MPI_COMM_WORLD.

Table 4.25 common_tofu_memory_saving_method (changes the method used for the memory-saving
communication mode)

MCA parameter value Content

1 Uses the method which uses the Medium receive buffer when a communication using the memory-
saving communication mode is performed.

If a value less than 1 or greater than 2 is specified, the specified value is assumed to be 1.

Refer to "6.10 Suppressing Memory Usage" for details.

The default value for this parameter is 1.

2 Uses the method which uses the Shared receive buffer when a communication using the memory-
saving communication mode is performed.

Refer to "6.10 Suppressing Memory Usage" for details.

Table 4.26 common_tofu_num_mrq_entries (change the number of entries in a completion queue)

MCA parameter value Content

One of the following integer
values:

2048, 8192, 32768, 131072,
524288, or 2097152

Specify the number of entries in a completion queue of Tofu interconnect. If you encountered an error
message starting with [mpi::common-tofu::tofu-mrq-overflow], the error may be avoided by changing
the value of this parameter larger. Or memory usage of a MPI process can be decreased by changing this
value smaller.

Specifiable values for this parameter are either 2048, 8192, 32768, 131072, 524288, or 2097152. If a
value that is not in the list is specified, the closest value in the list is assumed. If there are two closest
values, the larger value is assumed.

The default value for this parameter is 131072.

- 24 -

MCA parameter value Content

Refer to "7.3 Communication Library Error Messages" for details of the error message starting with
[mpi::common-tofu::tofu-mrq-overflow].

Table 4.27 common_tofu_packet_gap (changes the packet transfer interval time)

MCA parameter value Content

Integer value from 0 to 255 An integer value, called a gap value, specifies the packet transfer interval time.

One unit of the gap value corresponds to 1/8 of the time taken to transfer data of the packet maximum
transmission unit, described below.

An integer value from 0 to 255 can be specified for this parameter. If a value of -1 or less is specified,
0 is assumed. If a value of 255 or more is specified, 255 is assumed.

The default value for this parameter is 0.

Message transfer is performed within the MPI library in units called packets. One packet has an upper
limit value, known as the maximum transmission unit. If a message larger than the maximum
transmission unit is being transferred, the message is split into multiple packets so that the size of each
packet is the maximum transmission unit or less. This maximum transmission unit can be changed by
the MCA parameter common_tofu_packet_mtu. Refer to "Table 4.28 common_tofu_packet_mtu
(changes the maximum packet transfer size)" for information on this parameter.

Bandwidth can be controlled by adjusting the packet transfer interval time. This may improve
communication throughput time when other message communication is being attempted at the same
time. For example, if gap value 8 is specified in this parameter, the time interval between packets is
exactly the amount of time it takes to transfer one packet and the targeted message transfer bandwidth
is adjusted to 1/2. However, depending on the circumstances, performance may deteriorate, so care is
essential when using this parameter.

Table 4.28 common_tofu_packet_mtu (changes the maximum packet transfer size)

MCA parameter value Content

One of the following integer
values:

256, 512, 768, 1024, 1280,
1536, or 1792

Message transfer is performed within the MPI library in units called packets. This parameter specifies
the packet maximum transmission unit in bytes.

Specifiable values for this parameter are either 256, 512, 768, 1024, 1280, 1536, or 1792. If a value that
is not in the list is specified, the value rounded up or down to a multiple of 256 becomes the packet
maximum transmission unit size.

The default value for this parameter is 1792.

If communication of multiple large messages is attempted, communication throughput times can be
improved by changing the value of this parameter in conjunction with specifying the MCA parameter
common_tofu_packet_gap. However, depending on the circumstances, performance may deteriorate,
so care is essential when using this parameter. Refer to "Table 4.27 common_tofu_packet_gap
(changes the packet transfer interval time)" for details.

Table 4.29 common_tofu_shared_recv_buf_size (changes the size of the Shared receive buffer)

MCA parameter value Content

Integer value greater than or
equal to 65536

Specifies the size (in bytes) of the Shared receive buffer.

If the specified value is not a power of 2, the value is rounded up to the next power of 2. If the specified
value is less than 65536, the specified value is assumed to be 65536.

Refer to "6.10 Suppressing Memory Usage" for details of the Shared receive buffer.

The default value for this parameter is 16777216.

- 25 -

Table 4.30 common_tofu_use_multi_path (performs point-to-point communication using multiple communication
paths)

MCA parameter value Content

1 Specifies that multiple communication paths are used for point-to-point communication, that is, that
trunking is implemented.

Since multiple TNIs are used to reserve multiple communication paths, the result of this parameter is
also affected by the number of usable TNIs. In addition, depending on communication conditions,
communication performance may deteriorate, so care is essential when using this parameter.

Read "6.7 Using Multiple TNIs" for details of using multiple TNIs.

0 Specifies that multiple communication paths are not used for point-to-point communication.

The default value for this parameter is 0.

Table 4.31 common_tofu_use_memory_pool (uses memory pool for the MPI library)

MCA parameter value Content

1 Uses memory pool for the MPI library.

By using the memory pool which is a multiple of page size in size and aligned by page boundary, the
memory region of the communication buffers held within the MPI library and the memory region of the
user program are allocated on separate pages. This allows you to avoid restrictions on process creation
from inside an MPI program if there is no uncompleted communication.

However, note that you may not be able to avoid the restrictions when the value 2 is specified for the
MCA parameter common_tofu_memory_saving method even if this function is enabled. See "6.9
Process Creation from Inside an MPI Program" for the restrictions.

Also note that enabling this function has the following effects.

- The default value of the Large receive buffer size is set to not 1048576 bytes but 1048064 bytes.
See "6.10 Suppressing Memory Usage" for information on the Large receive buffer.

- Memory usage may increase.

- The MPI library uses large pages even if the environment variable
XOS_MMM_L_HPAGE_TYPE=none is specified. See "Job Operation Software End-user's
Guide for HPC Extensions" for information on the environment variable
XOS_MMM_L_HPAGE_TYPE and large page.

If a value other than 0 or 1 specified for this parameter, the specified value is assumed to be 1.

0 Does not use memory pool for the MPI library.

The memory region of the communication buffers held within the MPI library may be allocated on the
same page as the memory region of the user program. For this reason, you may not be able to avoid
restrictions on process creation from inside an MPI program even if there is no uncompleted
communication. See "6.9 Process Creation from Inside an MPI Program" for the restrictions.

The default value for this parameter is 0.

Table 4.32 mca_base_param_file_prefix (specifies the AMCA parameter file)

MCA parameter value Content

File path name of the AMCA
parameter file

Interprets the specified file as being an AMCA parameter file (MCA parameter settings file). If an
MCA parameter coded within this settings file has already been set as an environment variable, the
relevant MCA parameter setting coded in this settings file has no effect.

If an invalid file path name is specified, a warning message is output and the AMCA parameter file
specification has no effect.

- 26 -

Table 4.33 mpi_check_buffer_write (monitors incorrect writing to communication buffers)
MCA parameter value Content

1 Specifies to monitor whether there is incorrect writing, which is data writing to a send buffer which is
in use for a nonblocking communication.

If data is written in the send buffer before completing the send operation, a message and stack trace
information are output to the standard error output, and the MPI program execution ends.

Refer to "6.17.2 Monitoring Incorrect Writing to MPI Communication Buffer" for details.

0 Specifies not to monitor whether there is incorrect writing to a communication buffer.

The default value for this parameter is 0.

Table 4.34 mpi_java_eager (Specifies the size of temporary buffer for Java program)

MCA parameter value Content

Integer value of 1 or more Specifies the size (in bytes) of the temporary buffer to be allocated for Java programs. The default value
for this parameter is 65536 (64 KiB).

Using the temporary buffer secured in advance, the time to copy data between the Java heap area and
the C heap area can be reduced, and the execution time of blocking communication routines can also
be reduced.

The roughly estimated value to be set for this parameter is the size of data which are sent or received
in a routine call. In other words, it is the product of the datatype size and the number of elements
specified for the routine.

If the value of this parameter is less than the roughly estimated value, the execution time of blocking
communication routines may increase because the number of times to secure buffers increase.

If the value of this parameter is greater than the roughly estimated value, the execution time of blocking
communication routines is rarely improved.

Note that this parameter is enabled only when a primitive datatype is specified for a blocking
communication routine.

Also note that specifying a larger value for this parameter may cause memory shortage.

Table 4.35 mpi_no_establish_communication (specifies that the MPI program does not establish communication
using background execution)

MCA parameter value Content

1 Specifies that the MPI program does not establish communication between two groups of MPI
processes that do not share a communicator using background execution of mpiexec command.

The number of communication resources allocated to a process is determined by the number of CPUs
(cores) allocated to a process.

When the MPI program is run with description of the number of CPUs in the VCOORD file and the
numbers of CPUs allocated to processes are not identical, the number of communication resources
allocated to each process is aligned with the one for the process that has least CPUs in the entire job.
This rule may degrade the performance of Tofu communication on processes that have more CPUs.

By specifying this parameter, it is aligned with the one for the process that has least CPUs in the
processes spawned by a same mpiexec process, not in the processes in the entire job.

This may be able to prevent the communication performance degradation.

However, the MPI program ends abnormally if the program establishes communication between two
groups of MPI processes that do not share a communicator even this MCA parameter is specified.

If background execution of mpiexec command is not used or the numbers of CPUs allocated to
processes are identical, there is no benefit to specifying this parameter.

Refer to "4.5 VCOORD file format" for details of the VCOORD.

- 27 -

MCA parameter value Content

0 Specifies that the MPI program may establish communication between two groups of MPI processes
that do not share a communicator using background execution of mpiexec command.

The default value for this parameter is 0.

Table 4.36 mpi_preconnect_mpi (specifies the timing for establishing connections)

MCA parameter value Content

Integer value of 1 or more If this parameter is not specified in this software system, Tofu connection is established at the time of
first communication with each process that is a communication partner.

If a positive integer value is specified in this parameter, connections are established within the
MPI_INIT routine from all process to all processes that communicate internally. This increases the
execution time of the MPI_INIT routine but makes execution times stable for MPI routines that
communicate.

Normally, specify 1 for this parameter. If a value of 2 or more is specified, this will make the execution
time of the MPI_INIT routine longer than necessary.

If there is no communication between compute nodes, there is no benefit to specifying this parameter.

0 Does not establish Tofu connections within the MPI_INIT routine. At the point when an MPI routine
that performs communication is invoked, a connection is established with the communication partner
process.

This reduces the execution time of the MPI_INIT routine but may increase the execution time of MPI
routines that perform communication by the number of initial communications.

The default value for this parameter is 0.

Table 4.37 mpi_print_stats (outputs MPI statistical information)

MCA parameter value Content

1 Specifies to output MPI statistical information to the standard error output. With this specification, the
MPI statistical information of all parallel processes is aggregated and output by parallel processes
belonging to MPI_COMM_WORLD with a rank of 0.

However, for the information about collective communication algorithms, only the information about
communications that the process belonging to MPI_COMM_WORLD with a rank of 0 involved is
displayed.

The MPI statistical information is output when the MPI_FINALIZE routine is called.

2 Specifies to output MPI statistical information to the standard error output. With this specification, the
MPI statistical information of each parallel process is output separately by each parallel process itself.

The MPI statistical information is output when the MPI_FINALIZE routine or MPI_ABORT routine
is called. It is also output when this software system terminates parallel processes due to a detected
error.

Process Mapping information is output only at the normal termination.

To output statistical information from a particular parallel process, specify the MCA parameter
mpi_print_stats_ranks. Refer to "Table 4.38 mpi_print_stats_ranks (specifies the parallel process that
outputs MPI statistical information)" for details.

3 It is similar to parameter value 1. However, it is necessary to specify the
FJMPI_COLLECTION_PRINT routine to output it to the standard error output. In addition, the
content of the output is output separately for the header department, body department including section
line, and the footer department. Refer to "5.2.1.3 FJMPI_COLLECTION_PRINT" for details.

4 It is similar to parameter value 2. However, it is necessary to specify the
FJMPI_COLLECTION_PRINT routine to output it to the standard error output. In addition, the

- 28 -

MCA parameter value Content

content of the output is output separately for the header department, body department including section
line, and the footer department. Refer to "5.2.1.3 FJMPI_COLLECTION_PRINT" for details.

0 Specifies to not output MPI statistical information.

Refer to "6.16 MPI Statistical Information" for information on MPI statistical information.

If a value other than an integer from 0 to 2 is specified in this parameter, 0 is assumed.

The default value for this parameter is 0.

Table 4.38 mpi_print_stats_ranks (specifies the parallel process that outputs MPI statistical information)

MCA parameter value Content

0 or higher integer value Specifies the rank of the parallel process that outputs MPI statistical information. This MCA parameter
is enabled only if 2 or 4 is specified for the MCA parameter mpi_print_stats.

Specify the rank belonging to MPI_COMM_WORLD.

Multiple ranks can be specified, separated by commas ",".

If a rank that does not exist is specified, it is ignored.

Refer to "Table 4.37 mpi_print_stats (outputs MPI statistical information)" for information on the
MCA parameter mpi_print_stats.

-1 Specifies to output MPI statistical information from all parallel processes. This MCA parameter is
enabled only if 2 or 4 is specified for the MCA parameter mpi_print_stats. Refer to "Table 4.37
mpi_print_stats (outputs MPI statistical information)" for details.

If a value of -1 or less is specified in this parameter, a specification of -1 is assumed.

The default value for this parameter is -1.

Table 4.39 opal_abort_delay (delays program termination when an error is detected)

MCA parameter value Content

A positive integer value If the MPI_ABORT routine is called or the MPI library detects an error in an MPI program execution,
termination of the program is delayed by the specified time (seconds).

0 If the MPI_ABORT routine is called or the MPI library detects an error in an MPI program execution,
the program ends immediately.

The default value for this parameter is 0.

Table 4.40 opal_abort_print_stack (outputs stack trace information)

MCA parameter value Content

1 If MPI_ABORT routine is called, or if the MPI library ends the execution of the MPI program detecting
abnormalities of the execution environment and the communication, stack trace information are output
following the error message to the standard error.

It might be useful for the specification of the cause of abnormal termination.

The default value for this parameter is 1.

0 Stack trace information are not output.

Table 4.41 opal_mt_memcpy (parallelizes some memory copy processings performed in the MPI library using
multiple threads)

MCA parameter value Content

1 Specifies that some memory copy processings in the MPI library are parallelized with multiple threads
depending on the conditions.

If the specified value is less than 0 or greater than 1, the specified value is assumed to be 1.

- 29 -

MCA parameter value Content

Whether actual thread parallelization is performed or not is decided by the MPI library depending on
the conditions.

The number of threads used for thread parallelization is specified by the user.
Processings of the following MPI routines can be parallelized with threads when this function is
enabled.

- MPI_PACK and MPI_UNPACK routines

- MPI routines for point-to-point communication

- MPI routines for collective communication and one-sided communication that point-to-point
communication is performed as a part of processings in the MPI library

Refer to "6.3 Parallelizing Memory Copy Processing in MPI Library with Threads" for details.

0 Specifies that all processings in the MPI library are performed with only a thread where an MPI routine
is called (except for the case that an assistant core is used).

Refer to "6.2 Promoting Asynchronous Communication Using an Assistant Core" for details of the use
of an assistant core.

The default value for this parameter is 0.

Table 4.42 opal_progress_thread_mode (specifies the operation mode of the MPI asynchronous processing
progress thread)

MCA parameter value Content

1 Specifies to use manual section (without MPI call) mode to promote asynchronous communication
using an assistant core.
Refer to "6.2 Promoting Asynchronous Communication Using an Assistant Core" for details.

2 Specifies to use manual section (with MPI call) mode to promote asynchronous communication using
an assistant core.

3 Specifies to use automatic section mode to promote asynchronous communication using an assistant
core.

0 Specifies that function of promoting asynchronous communication using an assistant core is not used.
The default value for this parameter is 0. If a value smaller than 0 or larger than 3 is specified in this
parameter, the error messages starting with [mpi::mca-var::invalid-value-enum] and [mpi::opal-
runtime::opal_init:startup:internal-failure] might be output, and execution of the mpiexec command
ends.

Table 4.43 opal_progress_timeout (specifies the timeout time in communication wait)

MCA parameter value Content

A positive integer value Specifies the timeout time (in seconds) for the communication timeout setting function.

If the wait time of an MPI communication exceeds the time (in seconds) specified for this parameter,
a message and stack trace information are output to the standard error, and the MPI program execution
ends.

Refer to "6.17.1 Communication Timeout Setting" for details.

0 Specifies to disable the communication timeout setting function.

The default value for this parameter is 0.

Table 4.44 plm_ple_cpu_affinity (specifies CPU affinity for MPI processes)

MCA parameter value Content

1 Specifies that the optimum number of CPUs (cores) is bound to each MPI process if neither compiler
automatic parallelization function nor OpenMP function is used.

- 30 -

MCA parameter value Content

If those functions are used, this MCA parameter specification is disabled because CPU (core) binding
for parallel threads is performed by the compiler.

Which CPU (core) bind to the process is decided based on the numanode_assign_policy in the
VCOORD file or the MCA parameter plm_ple_numanode_assign_policy.

The default value for this parameter is 1.

0 Specifies that MPI processes are not bound to CPUs (cores) and they are scheduled by the operating
system, if neither compiler automatic parallelization function nor OpenMP function is used.

In case of specifying this MCA parameter value, two or more processes may be bound to one CPU
(core), but only rarely. Use of the sched_setaffinity function in case of specifying this MCA parameter
value is recommended.

If those functions are used, this MCA parameter specification is disabled because CPU (core) binding
for parallel threads is performed by the compiler.

Refer to Fujitsu compiler manuals for details of CPU (core) binding for threads.

The operation is not guaranteed if a value other than 0 or 1 is specified.

"l" in both the character string pml and ple used in the MCA parameter name is a lowercase "L".

Table 4.45 plm_ple_memory_allocation_policy (specifies the NUMA memory policy)

MCA parameter value Content

Either of following value

localalloc
interleave_local
interleave_nonlocal
interleave_all
bind_local
bind_nonlocal
bind_all
prefer_local
prefer_nonlocal

Specifies the NUMA memory policy of the MPI processes. The value below can be specified. Refer to
"Table 4.53 NUMA memory allocation policy" for details.

- localalloc: The memory is allocated from the NUMA node that CPU (core) where the process is
allocated belongs.

- interleave_local: The memory is alternately allocated from each NUMA node in "Local node set".

- interleave_nonlocal: The memory is alternately allocated from each NUMA node in "Non-local
node set".

- interleave_all: The memory is alternately allocated from each NUMA node in "All node set".

- bind_local: The memory allocations will come from the NUMA node that belongs to "Local node
set" with the lowest numeric node ID first.

- bind_nonlocal: The memory allocations will come from the NUMA node that belongs to "Non-
local node set" with the lowest numeric node ID first.

- bind_all: The memory is allocated in the NUMA node of "All node set".

- prefer_local: The lowest numeric node ID in the NUMA node that belongs to "Local node set" will
be selected as the preferred node, then the memory allocations will come from the preferred node.

- prefer_nonlocal: The lowest numeric node ID in the NUMA node that belongs to "Non-local node
set" will be selected as the preferred node, then the memory allocations will come from the
preferred node.

Refer to the Job Operation Software manual for information on NUMA node.

The specification of the NUMA memory policy is decided by the following priority levels:

1. Specification with VCOORD file

2. Specification with this parameter

3. (If memory_allocation_policy is not specified in the VCOORD file, and this parameter is
omitted) localalloc

"l" in both the character string pml and ple used in the MCA parameter name is a lowercase "L".

- 31 -

Table 4.46 plm_ple_numanode_assign_policy (specifies the CPUs (cores) allocation policy to the NUMA nodes)
MCA parameter value Content

Either of following value

simplex

share_cyclic

share_band

Specifies the CPUs (cores) allocation policy that allocates the MPI process to the NUMA nodes. The
value below can be specified. Refer to "Table 4.54 CPU (core) allocation policy" for details.

- simplex: The processes are allocated to the NUMA node without sharing with other processes.

- share_cyclic: The processes are allocated to the NUMA node with sharing with other processes.
The processes are sequentially allocated in different NUMA nodes.

- share_band: The processes are allocated to the NUMA node with sharing with other processes. The
processes are sequentially allocated in a same NUMA node.

Refer to the Job Operation Software manual for information on NUMA node.

The specification of the CPUs (cores) allocation policy is decided by the following priority levels:

1. Specification with VCOORD file

2. Specification with this parameter

3. (If numanode_assign_policy is not specified in the VCOORD file, and this parameter is omitted)
share_cyclic

"l" in both the character string pml and ple used in the MCA parameter name is a lowercase "L".

Table 4.47 pml_ob1_use_stride_rdma (use of Stride RDMA communication)

MCA parameter value Content

1 Specifies that Stride RDMA communication is used. Refer to "6.6 Stride RDMA Communication" for
details.

The default value for this parameter is 1.

0 Specifies that Stride RDMA communication is not used.

"l" in the character string pml used in the MCA parameter name is a lowercase "L", and the "1" in the ob1 character string is a numeric.

4.3 Environment Variables
In this software system, environment variables can be used to control the behavior of the MPI program.

Dynamically created parallel processes inherit environment variables of the root process of the original parallel processes that created them.
Do not set environment variables which have names starting with the string "OMPI_MCA" in the program of the original parallel processes.

PLE_MPI_STD_EMPTYFILE

If there is no output to the parallel process standard output and standard error output, specify whether to create an empty file.

on: The empty file is created. (default)

off: The empty file is not created.

This is applied to both the output file for each execution of mpiexec specified with --std option etc. and the output file for each process
specified with --std-proc option etc.

If a value other than on or off is specified in this parameter, the behavior depends on the job ACL function ("mpiexec-std-emptyfile" by the
pjacl command) setting in the Job Operation Software. Refer to the Job Operation Software manual for the job ACL function settings.

UTOFU_SWAP_PROTECT

On a compute node, an allocated memory region may be swapped out due to memory shortage or other reasons. When a memory region
used for communication on the Tofu interconnect is swapped out, an error may occur in communication using the memory region. In this
case, the MPI process outputs any of the following error messages and terminates abnormally.

- An error message containing the string "[mpi::common-tofu::tcq-error] Communication error is reported by Tofu TCQ.".

- 32 -

- An error message containing the string "[mpi::common-tofu::mrq-error] Communication error is reported by Tofu MRQ.".

- An error message containing the string "[mpi::common-tofu::mrq-peer-error] Communication peer error is reported by Tofu MRQ.".

By specifying the environment variable UTOFU_SWAP_PROTECT, you can select whether to exclude the memory region for
communication from swap out.

An integer value 0 or 1 can be specified, and the default value is 0. If a value other than 0 or 1 is specified, it is assumed to be 1.

When the value 1 is specified for this environment variable, the mlock system call is called inside the MPI library and the memory region
used for communication on the Tofu interconnect is guaranteed not to be subject to swap out. The size of the memory region that can be
excluded from the swap out target is subject to the software resource limit RLIMIT_MEMLOCK. See the Job Operation Software manual
for details on how to check or change the RLIMIT_MEMLOCK at job execution.

When the value 0 is specified for this environment variable, the memory region used for communication on the Tofu interconnect may be
subject to swap out.

 Note

- Communication performance may decrease if a memory region for communication is excluded from swap out.

- If the value of RLIMIT_MEMLOCK is less than the total size of the memory region for communication used by the job, the
communication error due to swap out may not be avoided even if the value 1 is specified for this environment variable.

Environment variables with name starting with the "OMPI_"

These environment variables can control the behavior when the MPI library is executed.

The environment variables provided by this software system are just items derived from the MCA parameters. By adding "OMPI_MCA_"
to the start of an MCA parameter name, the MCA parameter can be used as an environment variable. This is possible for all of the MCA
parameters. Refer to "4.2 MCA Parameters" for details.

An example of setting an MCA parameter as an environment variable is shown below.

 Example

MCA parameter specification example:

-mca mca_base_param_file_prefix MCAFILE

The MCA parameter "mca_base_param_file_prefix" specifies the AMCA parameter file. Attaching "OMPI_MCA_" to the start of this
parameter name allows it to be used as the environment variable name.

Example of the above MCA parameter used as an environment variable:

OMPI_MCA_mca_base_param_file_prefix=MCAFILE

4.4 mpiexec Command Return Values
In principle, the mpiexec command return values are the values that the user has specified in the MPI program or the values set by the
language processing systems. Refer to the manuals of the language processing systems (Fortran User's Guide, C User's Guide, and C++
User's Guide) for the values set by the language processing systems.

- If there are multiple MPI program processes, the return value of the first process identified internally becomes the mpiexec command
return value.

- If an MPI program ends abnormally, the return values of the MPI program that ended abnormally become the return values. However,
if an MPI program ends abnormally after receiving a signal, the return value is a logical sum of the received signal number and 0x80.

- 33 -

- If a dynamically created parallel process ended abnormally, the return value becomes the return value of the abnormally ended dynamic
process.

- If this software system ends abnormally, the return values specified by this software system become the return values.

However, in this software system, the return values shown below are reserved. The return values reserved by this software system take
priority. Therefore, users must avoid using these return values when setting return values in MPI programs.

Table 4.48 mpiexec command return values reserved in this software system

mpiexec command return value Explanation

1 Indicates occurrence of an mpiexec command option settings error, an internal
inconsistency within this software system, or a fatal error within an MPI routine.

2 to 92 If there is an error class regulated by the MPI standard within an MPI routine in the MPI
program, the corresponding error code becomes the return value.

Refer to "Appendix A Error Class List" for the error classes regulated by the MPI
standard.

Logical sum of signal number and 0x80 Indicates the return value if mpiexec command or the MPI program ended abnormally
after receiving a signal.

The value is the logical sum of the signal number received when the MPI program ended
abnormally and 0x80.

This behavior is based on how an exit status is handled in general UNIX shells when a
command exits after receiving a signal.

255 Indicates the return value if the parallel execution environment side of Job Operation
Software ended abnormally.

4.5 VCOORD file format
The VCOORD file specifies coordinates and the number of CPUs (cores) allocated to the processes in the form of the following.

Table 4.49 Form of the coordinates

Type of coordinates Format

1-dimensional (X)

2-dimensional (X,Y)

3-dimensional (X,Y,Z)

Table 4.50 Form of the number of CPUs (cores)

Type of options Format

The number of CPUs (cores) core=N

Table 4.51 Specification of NUMA memory allocation policy

Content Format

Method of allocating NUMA memory memory_allocation_policy=value

Either of value in "Table 4.45 plm_ple_memory_allocation_policy (specifies the NUMA memory policy)" can be specified for a policy.

When MCA parameter plm_ple_memory_allocation_policy specification exists and this specification exists in the VCOORD file, the
VCOORD file specification becomes effective.

When both specifications do not exist, it is equal to the result of specifying "localalloc" for MCA parameter
plm_ple_memory_allocation_policy.

Refer to the Job Operation Software manual for information on NUMA node.

- 34 -

Table 4.52 Specification of CPU (core) allocation policy to the NUMA node
Content Format

Method of allocating CPU (core) numanode_assign_policy=value

Either of value in "Table 4.46 plm_ple_numanode_assign_policy (specifies the CPUs (cores) allocation policy to the NUMA nodes)" can
be specified for a policy.

When MCA parameter plm_ple_numanode_assign_policy specification exists and this specification exists in the VCOORD file, the
VCOORD file specification becomes effective.

When both specifications do not exist, it is equal to the result of specifying "share_cyclic" for MCA parameter
plm_ple_numanode_assign_policy.

Refer to the Job Operation Software manual for information on NUMA node.

The following examples show the format of the VCOORD file.

 Example

Format 1. Specifying the logical coordinates and the numbers of CPUs (cores)

In this form, both the coordinates with which each process is created and the numbers of CPUs (cores) allocated to the processes are
specified.

(0) core=8

(0) core=8

(1) core=4

(1) core=4

(1) core=4

(1) core=4

(2) core=1

(3) core=1

Format 2. Specifying only the logical coordinates

In this form, only the coordinates with which each process is created are specified. The numbers of CPUs (cores) allocated to the processes
are decided based on the MCA parameter plm_ple_cpu_affinity by Job Operation Software.

(0)

(0)

(1)

(1)

(2)

(2)

(3)

(3)

Format 3. specifying only the number of CPUs (cores)

In this form, only the numbers of CPUs (cores) allocated to the processes are specified. The coordinates with which each process is created
are decided by Job Operation Software.

core=8

core=8

core=4

core=4

core=4

core=4

core=1

core=1

Format 4. Specifying the NUMA memory allocation policy

In this form, the allocation policy of the NUMA memory in addition to form 1 or 2 or 3 are specified.

- 35 -

(0) core=2 memory_allocation_policy=localalloc

(0) memory_allocation_policy=interleave_local

core=2 memory_allocation_policy=interleave_all

Format 5. Specifying the CPU (core) allocation policy to the NUMA node

In this form, the CPU (core) allocation policy to the NUMA node in addition to form 1 or 2 or 3 are specified.

(0) core=2 numanode_assign_policy=simplex

(0) numanode_assign_policy=share_cyclic

core=2 numanode_assign_policy=share_band

2-dimensional coordinates or 3-dimensional coordinates also can be specified. Moreover, multiple processes can be created to the same
coordinates by writing the same coordinates multiple times.

When two or more of core, memory_allocation_policy, and numanode_assign_policy are specified, there is no restriction in order.

 Note

In the following cases, Job Operation Software error occurs

- The number of processes created with the same coordinates exceeds the number of processes per node decided by "--mpi proc=" option
of pjsub command.

- The total number of CPUs (cores) allocated to the process created with the same coordinates exceeds the number of CPUs (cores)
installed in the compute node.

- The lines with coordinates and the lines without coordinates exist together in one VCOORD file.

- The coordinate is written besides the head of the line.

- The number of processes specified with mpiexec command (the number of processes specified with pjsub command when the mpiexec
command's specification is omitted) exceeds the number of lines of the VCOORD file.

- There is a possibility that CPU (core) allocation to the process fails due to the lack of the number of CPUs (cores) when one or more
processes where "simplex" was specified for CPU (core) allocation policy to the NUMA node exist.

4.6 Execution of Multiple MPI Programs on the Same Node
In this software system, multiple MPI programs can be executed on the same node without using the MPMD model. Refer to the Job
Operation Software manual for details on the execution method.

This section provides notes on execution of multiple MPI programs on the same node.

In this section, the mpiexec command, the MPI_COMM_SPAWN routine, and MPI_COMM_SPAWN_MULTIPLE routine are
collectively referred as the process creation procedure.

- Specify the coordinates with the VCOORD file as for the process creation procedure executed later than the first execution of the
process creation procedure. If only the number of CPUs (cores) is specified with the VCOORD file, the coordinates allocated to the
processes are decided by Job Operation Software.

- If the number of CPUs (cores) is not specified with the VCOORD file, the number of CPUs (cores) per node is the value calculated from
the expression :

"The number of CPUs (cores) per node"

 / "The value specified with --mpi max-proc-per-node option of pjsub command"

- 36 -

- If the number of processes per node exceeds the value specified with "--mpi max-proc-per-node" option of pjsub command, an error
occurs in the process creation procedure. In that case, mpiexec command is returned with the value 1, and the MPI_COMM_SPAWN
routine or MPI_COMM_SPAWN_MULTIPLE routine returns the error class MPI_ERR_SPAWN as the error code.

- If multiple process creation procedures are executed without the "--mpi max-proc-per-node" option of the pjsub command, the limit of
the number of processes per node is the value decided with the "--mpi proc" option of the pjsub command.

- If the MCA parameter mpi_no_establish_communication is specified, multiple MPI programs cannot be executed on the same node.
The specification of MCA parameter mpi_no_establish_communication is mutually exclusive to the specification of "--mpi max-proc-
per-node" option of pjsub command. If both of them are specified, the specification of MCA parameter
mpi_no_establish_communication is effective.

4.7 Settings in NUMA system
The compute nodes in this computing system are NUMA system. The MCA parameter is prepared to decrease job execution performance
deteriorate because of the memory access speed in the NUMA system.

4.7.1 Setting value of NUMA memory allocation policy
The memory policy can be set by the MCA parameter plm_ple_memory_allocation_policy. Values that can be specified are shown in the
table below. Refer to "Table 4.45 plm_ple_memory_allocation_policy (specifies the NUMA memory policy)" for information on the MCA
parameter plm_ple_memory_allocation_policy.

In the explanation of this table, NUMA node sets are defined as follows.

- All node set (all)

Set of all NUMA nodes in a compute node

- Local node set (local)

Set union of NUMA node that each CPU core where process is allocated belongs

- Non-local node set (nonlocal)

Set of elements in "All node set" but not in "Local node set"

Table 4.53 NUMA memory allocation policy

Value Content Note

localalloc The memory is allocated from the NUMA node that
CPU (core) where the process is allocated belongs. If
that NUMA node contains no free memory, the system
will attempt to allocate memory from a "nearby" node.

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_DEFAULT,NULL, ..)

interleave_local The memory is alternately allocated from each NUMA
node in "Local node set". The memory is allocated from
the next NUMA node in "Local node set" when there is
no remainder capacity in the memory of the NUMA
node that tried to be allocated. It operates according to
the specification of OS when there is no remainder
capacity of the memory of all NUMA nodes that belongs
to the "Local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_INTERLEAVE,local, ..)

interleave_nonlocal The memory is alternately allocated from each NUMA
node in "Non-local node set". The memory is allocated
from the next NUMA node in "Non-local node set"
when there is no remainder capacity in the memory of
the NUMA node that tried to be allocated. It operates
according to the specification of OS when there is no
remainder capacity of the memory of all NUMA nodes
that belongs to the "Non-local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_INTERLEAVE,nonlocal, ..)

It fails in the call of set_mempolicy(2)
when "Non-local node set" is empty. In

- 37 -

Value Content Note

that case, the warning message PLE 0601
is output to the standard error output of
the job, and processing is continued. In
this case, the NUMA memory allocation
policy of parallel processes is equal to the
result of calling the following system
calls from the parallel processes.

set_mempolicy
(MPOL_DEFAULT,NULL, ..)

interleave_all The memory is alternately allocated from each NUMA
node in "All node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_INTERLEAVE,all, ..)

bind_local The memory allocations will come from the NUMA
node that belongs to "Local node set" with the lowest
numeric node ID first. It fails in the allocation when
there is no remainder capacity of the memory of the
NUMA node that belongs to "Local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_BIND,local, ..)

bind_nonlocal The memory allocations will come from the NUMA
node that belongs to "Non-local node set" with the
lowest numeric node ID first. It fails in the allocation
when there is no remainder capacity of the memory of
the NUMA node that belongs to "Non-local node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_BIND,nonlocal, ..)

It fails in the call of set_mempolicy(2)
when "Non-local node set" is empty. In
that case, the warning message PLE 0601
is output to the standard error output of
the job, and processing is continued. In
this case, the NUMA memory allocation
policy of parallel processes is equal to the
result of calling the following system
calls from the parallel processes.

set_mempolicy
(MPOL_DEFAULT,NULL, ..)

bind_all The memory is allocated in the NUMA nodes of "All
node set".

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_BIND,all, ..)

prefer_local The lowest numeric node ID in the NUMA node that
belongs to "Local node set" will be selected as the
preferred node. The memory allocation is done the
preferred node by priority. If that NUMA node contains
no free memory, the system will attempt to allocate
memory from a "nearby" node.

It is equal to the result of calling the
following system calls from the parallel
processes.

set_mempolicy
(MPOL_PREFERRED,local, ..)

prefer_nonlocal The lowest numeric node ID in the NUMA node that
belongs to "Non-local node set" will be selected as the
preferred node. The memory allocation is done the
preferred node by priority. If that NUMA node contains

It is equal to the result of calling the
following system calls from the parallel
processes.

- 38 -

Value Content Note

no free memory, the system will attempt to allocate
memory from a "nearby" node.

set_mempolicy
(MPOL_PREFERRED,nonlocal, ..)

The specification of "nonlocal" is
disregarded when "Non-local node set"
does not exist, and it is equal to the result
of specifying "localalloc".

4.7.2 Setting value of CPU (core) allocation policy
The CPU (core) allocation policy can be set by the MCA parameter plm_ple_numanode_assign_policy. Values that can be specified are
shown in the table below. Refer to "Table 4.46 plm_ple_numanode_assign_policy (specifies the CPUs (cores) allocation policy to the
NUMA nodes)" for information on the MCA parameter plm_ple_numanode_assign_policy.

Table 4.54 CPU (core) allocation policy

Value Content

simplex The processes are allocated to the NUMA node without sharing with other processes.

share_cyclic The processes are allocated to the NUMA node with sharing with other processes.
The processes are sequentially allocated in a different NUMA node.

share_band The processes are allocated to the NUMA node with sharing with other processes.
The processes are sequentially allocated in a same NUMA node.

The allocation images are shown as follows.

Figure 4.1 Example of allocating process for simplex

In the "Figure 4.1 Example of allocating process for simplex", rank 0 (red) and rank 1 (green) are assigned to different NUMA nodes in order.
A NUMA node is never shared by multiple ranks.

In the "Figure 4.1 Example of allocating process for simplex", the number of CPUs (cores) allocated to each process is specified with the
VCOORD file as follows.

- 39 -

- Rank 0 uses 8 CPUs (cores).

- Rank 1 uses 4 CPUs (cores).

Figure 4.2 Example of allocating process for share_cyclic

In the "Figure 4.2 Example of allocating process for share_cyclic", rank 0 (red), rank 1 (green), rank 2 (blue), rank 3 (gray), and rank 4
(yellow) are assigned to different NUMA nodes in a round-robin fashion. A NUMA node can be shared by multiple ranks because ranks
are assigned to free CPUs (cores) within NUMA nodes.

In the "Figure 4.2 Example of allocating process for share_cyclic", the number of CPUs (cores) allocated to each process is specified with
the VCOORD file as follows.

- Rank 0 uses 2 CPUs (cores).

- Rank 1 uses 4 CPUs (cores).

- Rank 2 uses 6 CPUs (cores).

- Rank 3 uses 8 CPUs (cores).

- Rank 4 uses 10 CPUs (cores).

- 40 -

Figure 4.3 Example of allocating process for share_band

In the "Figure 4.3 Example of allocating process for share_band", rank 0 (red), rank 1 (green), rank 2 (blue), rank 3 (gray), and rank 4
(yellow) are assigned to pack into the same NUMA node in that order. A NUMA node can be shared by multiple ranks because ranks are
assigned to free CPUs (cores) within NUMA nodes.

In the "Figure 4.3 Example of allocating process for share_band", the number of CPUs (cores) allocated to each process is specified with
the VCOORD file as follows.

- Rank 0 uses 2 CPUs (cores).

- Rank 1 uses 6 CPUs (cores).

- Rank 2 uses 6 CPUs (cores).

- Rank 3 uses 2 CPUs (cores).

- Rank 4 uses 4 CPUs (cores).

- 41 -

Chapter 5 Extended Interfaces
This chapter describes the following MPI extended interfaces provided by this software system:

- Rank query interface

- Section specifying MPI statistical information interface

- Extended persistent communication requests interface

- MPI asynchronous communication promotion section specifying interface

- Additional predefined datatype

 Information

- All extended interfaces support the C language and Fortran.
The C++ program can use the C language interface.
In the Fortran, either "USE mpi_f08_ext" or "USE mpi_ext", which respectively correspond to "USE mpi_f08" and "USE mpi" defined
in the MPI standard, can be used. In addition, "INCLUDE 'mpif-ext.h'" can be used instead of "USE mpi_ext".

- When the job type is node-sharing job, extended interfaces, Rank query interface and Extended persistent communication requests
interface, cannot be used.
Refer to the Job Operation Software manual for information on node-sharing job.

5.1 Rank Query Interface
This software system can execute MPI programs in logical node space that has a torus structure of from one to three dimensions. Job
Operation Software allocates logical coordinates in this logical node space. These logical coordinates may be referred to simply as
coordinates. An MPI program with a torus structure process shape can be deployed at a suitable location within this logical node space.

It is useful to know from within the MPI program the position (coordinates) where each parallel process rank of the MPI program is deployed
in the torus structure process shape. For example, this software system normally deploys two parallel processes with neighboring torus
structure shape coordinates such that they are physically at a distance of one hop. Knowing the ranks of two neighboring parallel processes
enables communication performance to be considered when programming.

Table below shows a list of concrete routines for the rank query interface provided by this software system.

Table 5.1 Rank query interface routine list

Routine name Routine overview

FJMPI_TOPOLOGY_GET_DIMENSION Gets the number of dimensions given to MPI_COMM_WORLD

FJMPI_TOPOLOGY_GET_SHAPE Gets the process shape given to MPI_COMM_WORLD

FJMPI_TOPOLOGY_GET_COORDS Gets the coordinate values from the rank

FJMPI_TOPOLOGY_GET_RANKS Gets the ranks from the coordinates

FJMPI_TOPOLOGY_CART_REORDER Gets the value that determines the rank of a communicator with a Cartesian
structure

5.1.1 Querying the Number of Dimensions and Shape

5.1.1.1 FJMPI_TOPOLOGY_GET_DIMENSION
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Topology_get_dimension(int *size)

- 42 -

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Topology_get_dimension(size, ierror)

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_TOPOLOGY_GET_DIMENSION(SIZE, IERROR)

INTEGER SIZE, IERROR

<Explanation>

This query returns the number of dimensions in the process shape where the MPI processes belonging to the MPI_COMM_WORLD
created internally when MPI_INIT is executed are deployed.

Type Variable Explanation IN/OUT

int* size Number of dimensions in the process shape of processes
belonging to MPI_COMM_WORLD

OUT

<Return value>

Normal FJMPI_SUCCESS -

Error FJMPI_ERR_TOPOLOGY_INVALID_COMM If this routine was called from a dynamically created
MPI process

FJMPI_ERR_TOPOLOGY_NODE_SHARED_JOB If the job type is node-sharing job

(Refer to the Job Operation Software manual for
information on node-sharing job)

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This routine is called before the MPI_INIT routine is executed

- This routine is called after the MPI_FINALIZE routine is executed

5.1.1.2 FJMPI_TOPOLOGY_GET_SHAPE
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Topology_get_shape(int *x, int *y, int *z)

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Topology_get_shape(x, y, z, ierror)

INTEGER, INTENT(OUT) :: x, y, z

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_TOPOLOGY_GET_SHAPE(X, Y, Z, IERROR)

INTEGER X, Y, Z, IERROR

- 43 -

<Explanation>

This query returns the MPI parallel process shape XYZ given to the MPI_COMM_WORLD created internally when the MPI_INIT
routine is executed.

Type Variable Explanation IN/OUT

int* x Size of the X axis of the process shape given to MPI_COMM_WORLD OUT

int* y Size of the Y axis of the process shape given to MPI_COMM_WORLD OUT

int* z Size of the Z axis of the process shape given to MPI_COMM_WORLD OUT

<Return value>

Normal FJMPI_SUCCESS -

Error FJMPI_ERR_TOPOLOGY_INVALID_COMM If this routine was called from a dynamically created
MPI process

FJMPI_ERR_TOPOLOGY_NODE_SHARED_JOB If the job type is node-sharing job

(Refer to the Job Operation Software manual for
information on node-sharing job)

<Notes>

The Y axis and Z axis values are 0 if the process shape is one-dimensional. The Z axis value is 0 if the process shape is two-dimensional.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This routine is called before the MPI_INIT routine is executed

- This routine is called after the MPI_FINALIZE routine is executed

5.1.2 Querying the Coordinates

5.1.2.1 FJMPI_TOPOLOGY_GET_COORDS
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Topology_get_coords(MPI_Comm comm, int rank, int view, int maxdims, int coords[])

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Topology_get_coords(comm, rank, view, maxdims, coords, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank, view, maxdims

INTEGER, INTENT(OUT) :: coords(maxdims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_TOPOLOGY_GET_COORDS(COMM, RANK, VIEW, MAXDIMS, COORDS, IERROR)

INTEGER COMM, RANK, VIEW, MAXDIMS, COORDS(*), IERROR

<Explanation>

This routine gets the logical coordinates or the Tofu coordinates corresponding to the rank of a process in the specified communicator.

- 44 -

- To get the logical coordinates

Specify FJMPI_LOGICAL for the view argument, and a number which is greater than 0 and less than 4 for the maxdims argument.
The logical coordinates of the node which corresponds to the arguments comm and rank are stored in the coords argument. The
coordinates X, Y, Z are stored in coords[0], coords[1], coords[2], respectively.

- To get the Tofu coordinates (the coordinates actually allocated on the system)

Specify FJMPI_TOFU_SYS for the view argument, and 6 for the maxdims argument. The Tofu coordinates of the node which
corresponds to the arguments comm and rank are stored in the coords argument. The coordinates X, Y, Z, A, B, C are stored in
coords[0], coords[1], coords[2], coords[3], coords[4], coords[5], respectively.

- To get the Tofu coordinates (the relative coordinates based on rank 0 in the argument comm)

Specify FJMPI_TOFU_REL for the view argument, and 6 for the maxdims argument. The Tofu coordinates (the relative
coordinates based on rank 0 in the argument comm) of the node which corresponds to the arguments comm and rank are stored in
the coords argument. The coordinates X, Y, Z, A, B, C are stored in coords[0], coords[1], coords[2], coords[3], coords[4], coords[5],
respectively.

Type Variable Explanation IN/OUT

MPI_Comm comm Specify the communicator. IN

int rank Specify the rank of a process in the communicator comm.

If the communicator comm is an inter-communicator, specify the rank in the remote
group.

IN

int view Specify the macro defined to choose the logical coordinates or the Tofu coordinates.

- FJMPI_LOGICAL

The logical coordinates.

- FJMPI_TOFU_SYS

The Tofu coordinates (The coordinates actually allocated on the system).

- FJMPI_TOFU_REL

The Tofu coordinates (The relative coordinates based on rank 0 in the argument
comm. If the communicator comm is an inter-communicator, the relative
coordinates based on rank 0 in the remote group of the argument comm).

IN

int maxdims Specify the number of dimensions of the coordinates.

If the view argument is FJMPI_LOGICAL: Specify a number which is greater than
0 and less than 4.

If the view argument is not FJMPI_LOGICAL: Specify a number which is greater
than 0 and less than 7.

IN

int[] coords Array of the coordinates corresponding to the communicator and rank. OUT

<Return value>

Normal FJMPI_SUCCESS -

Error FJMPI_ERR_TOPOLOGY_NODE_SHARED_JOB If the job type is node-sharing job

(Refer to the Job Operation Software manual for
information on node-sharing job)

<Notes>

The number of elements in the array specified for the coords argument must be greater than or equal to the value specified for the
maxdims argument.

The specified value for the argument rank must correspond to the rank of a process in the communicator specified for the argument
comm.

- 45 -

If FJMPI_LOGICAL is specified for the argument view, the specified value for the argument maxdims can be different from the job
shape. In that case, coordinates whose number of dimensions is same as lesser value of the two are gotten with this routine.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This routine is called before the MPI_INIT routine is executed

- This routine is called after the MPI_FINALIZE routine is executed

5.1.3 Querying the Rank

5.1.3.1 FJMPI_TOPOLOGY_GET_RANKS
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Topology_get_ranks(MPI_Comm comm, int view, int coords[], int maxppn, int *outppn, int

ranks[])

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Topology_get_ranks(comm, view, coords, maxppn, outppn, ranks, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: view, coords(*), maxppn

INTEGER, INTENT(OUT) :: outppn, ranks(maxppn)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_TOPOLOGY_GET_RANKS(COMM, VIEW, COORDS, MAXPPN, OUTPPN, RANKS, IERROR)

INTEGER COMM, VIEW, COORDS(*), MAXPPN, OUTPPN, RANKS(*), IERROR

<Explanation>

This routine gets the ranks of the processes which are in the specified communicator and on the specified logical coordinates or Tofu
coordinates. The maximum number of ranks obtained by this routine is same as the value specified for the argument maxppn. The
number of ranks actually gotten is stored in the outppn argument.

Examples of how to use this routine are shown below.

- When one process is allocated on the logical coordinates

Specify FJMPI_LOGICAL for the view argument, the number greater than 0 for the maxppn argument, the logical coordinates X,
Y, Z for the coords[0], coords[1], coords[2] arguments, respectively. The rank of the process which is allocated to the specified
arguments comm and coords is stored in ranks[0] of the array specified for the argument ranks. The value 1 is stored in the outppn
argument.

- When four processes are allocated on the Tofu coordinates

Specify FJMPI_TOFU_SYS or FJMPI_TOFU_REL for the view argument, the number greater than 4 for the maxppn argument,
the Tofu coordinates X, Y, Z, A, B, C for the coords[0], coords[1], coords[2], coords[3], coords[4], coords[5] arguments,
respectively. The ranks of the processes which are allocated to the specified arguments comm and coords are stored in ranks[0],
ranks[1], ranks[2], and ranks[3] of the array specified for the argument ranks. The value 4 is stored in the outppn argument.

Type Variable Explanation IN/OUT

MPI_Comm comm Specify the communicator. IN

int view Specify the macro defined to choose the logical coordinates or the Tofu coordinates.

- FJMPI_LOGICAL

The logical coordinates.

IN

- 46 -

Type Variable Explanation IN/OUT

- FJMPI_TOFU_SYS

The Tofu coordinates (the coordinates actually allocated on the system).

- FJMPI_TOFU_REL

The Tofu coordinates (The relative coordinates based on rank 0 in the argument
comm. If the communicator comm is an inter-communicator, the relative
coordinates based on rank 0 in the remote group of the argument comm).

int[] coords Specify the coordinates where processes which have ranks to get are allocated. IN

int maxppn Specify the maximum number of processes which have ranks to get. IN

int* outppn The number of ranks actually stored. OUT

int[] ranks The array to store ranks.

If the inter-communicator is specified for the comm argument, the ranks of processes
in the remote group are stored.

OUT

<Return value>

Normal FJMPI_SUCCESS -

Error FJMPI_ERR_TOPOLOGY_NO_PROCESS There is no process in the specified coordinates.

FJMPI_ERR_TOPOLOGY_NODE_SHARED_JOB If the job type is node-sharing job

(Refer to the Job Operation Software manual for
information on node-sharing job)

<Note>

If FJMPI_LOGICAL is specified for the view argument, the number of values set in the array specified for the coords argument must
be same as the number of dimensions in the job shape. If FJMPI_TOFU_SYS or FJMPI_TOFU_REL is specified for the view argument,
six values must be set in the array specified for the coords argument. The operation is not guaranteed if the values set in the array specified
for the coords argument are incorrect.

In order to get the actual number of processes which are allocated to the coordinates specified for the coords argument, refer to the value
set in the outppn argument after calling this routine with specifying a large value for the maxppn argument.

The value stored in the outppn argument can be less than the value specified for the maxppn argument depending on the number of
processes actually existing. In this case, the number of updated values in the array specified for the ranks argument is same as the value
of the outppn.

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This routine is called before the MPI_INIT routine is executed

- This routine is called after the MPI_FINALIZE routine is executed

5.1.4 Querying the Ranking of a Communicator that Has a Cartesian
Structure

5.1.4.1 FJMPI_TOPOLOGY_CART_REORDER
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Topology_cart_reorder(MPI_Comm comm, int *reorder)

Fortran (USE mpi_f08_ext) format

- 47 -

USE mpi_f08_ext

FJMPI_Topology_cart_reorder(comm, reorder, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(OUT) :: reorder

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_TOPOLOGY_CART_REORDER(COMM, REORDER, IERROR)

INTEGER COMM, IERROR

LOGICAL REORDER

<Explanation>

This query returns information used to determine whether or not rankings were executed from the topology information of a
communicator that has a Cartesian structure. If the value of the reorder argument is 1, this indicates that rank reordering is implemented.
If the value of the reorder argument is 0, this indicates that rank reordering is not implemented.

Type Variable Explanation IN/OUT

MPI_Comm comm Communicator for which ranking is to be determined IN

int* reorder Communicator ranking information OUT

<Return value>

Normal FJMPI_SUCCESS -

Error FJMPI_ERR_TOPOLOGY_INVALID_COMM - If an inter-communicator was specified

- If a communicator that does not have a Cartesian structure
was specified

<Notes>

If any of the following conditions apply, the behavior is uncertain and not guaranteed:

- This routine is called before the MPI_INIT routine is executed

- This routine is called after the MPI_FINALIZE routine is executed

5.1.5 Sample Program
A sample program of a rank query interface is shown below.

This program performs the following processing with assumption that the process shape is three-dimensional.

1. Queries the MPI process number of dimensions and process shape

2. Obtains the coordinates of this process and the neighboring process for each coordinate, and gets the rank information from those
coordinates

3. Obtains the coordinates for each coordinate from the rank information queried in 2 above, and checks that these are the same as the
original coordinates

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <mpi.h>

#include <mpi-ext.h>

#define FAILURE 1

int main(int argc, char *argv[])

{

 int coords[3], i, size, rank;

- 48 -

 int rc, dim;

 int shape_x, shape_y, shape_z;

 int tmp_coords[3];

 int next_coords[3];

 int ans;

 int outppn;

 char host[255];

 gethostname(host, 255);

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 rc = FJMPI_Topology_get_dimension(&dim);

 if (FJMPI_SUCCESS != rc) {

 fprintf(stderr, "[%s] FJMPI_Topology_get_dimension ERROR\n", host);

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 /* Result check */

 if (3 != dim) {

 fprintf(stderr, "[%s] Dimension size ERROR\n", host);

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 rc = FJMPI_Topology_get_shape(&shape_x, &shape_y, &shape_z);

 if (FJMPI_SUCCESS != rc) {

 fprintf(stderr, "[%s] FJMPI_Topology_get_shape ERROR\n", host);

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 /**

 * Get own coordinates *

 **/

 rc = FJMPI_Topology_get_coords(MPI_COMM_WORLD, rank, FJMPI_LOGICAL, 3, coords);

 if (FJMPI_SUCCESS != rc) {

 fprintf(stderr, "[%s] FJMPI_Topology_get_coords ERROR\n", host);

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 /**

 * Get neighboring processes before and after each coordinate *

 **/

 for(i = 0; i < 6; i++)

 {

 switch(i)

 {

 case 0: /* Neighboring X axis */

 case 1:

 tmp_coords[0] = (0 == i) ?

 (coords[0] - 1 >= 0) ? coords[0] - 1 : shape_x - 1

 : (coords[0] + 1 < shape_x) ? coords[0] + 1 : 0;

 tmp_coords[1] = coords[1];

 tmp_coords[2] = coords[2];

 break;

 case 2: /* Neighboring Y axis */

 case 3:

 tmp_coords[1] = (2 == i) ?

 (coords[1] - 1 >= 0) ? coords[1] - 1 : shape_y - 1

 : (coords[1] + 1 < shape_y) ? coords[1] + 1 : 0;

 tmp_coords[0] = coords[0];

- 49 -

 tmp_coords[2] = coords[2];

 break;

 case 4: /* Neighboring Z axis */

 case 5:

 tmp_coords[2] = (4 == i) ?

 (coords[2] - 1 >= 0) ? coords[2] - 1 : shape_z - 1

 : (coords[2] + 1 < shape_z) ? coords[2] + 1 : 0;

 tmp_coords[0] = coords[0];

 tmp_coords[1] = coords[1];

 break;

 }

 rc = FJMPI_Topology_get_ranks(MPI_COMM_WORLD, FJMPI_LOGICAL, tmp_coords,

 1, &outppn, &ans);

 switch (rc)

 {

 case FJMPI_SUCCESS:

 break;

 case FJMPI_ERR_TOPOLOGY_NO_PROCESS:

 /* Searches until the closest MPI process is found */

 while (rc == FJMPI_ERR_TOPOLOGY_NO_PROCESS) {

 coords[0] = coords[0] - 1;

 rc = FJMPI_Topology_get_ranks(MPI_COMM_WORLD, FJMPI_LOGICAL, coords,

 1, &outppn, &ans);

 }

 break;

 default:

 fprintf(stderr, "[%s] FATAL ERROR\n", host);

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 /**

 * Checks if used coordinates and fetched coordinates are the same *

 **/

 rc = FJMPI_Topology_get_coords(MPI_COMM_WORLD, ans, FJMPI_LOGICAL, 3, next_coords);

 if (MPI_SUCCESS != rc) {

 fprintf(stderr, "[%s] FJMPI_Topology_rank2xyz ERROR\n", host);

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 if ((next_coords[0] != tmp_coords[0]) ||

 (next_coords[1] != tmp_coords[1]) ||

 (next_coords[2] != tmp_coords[2])) {

 fprintf(stderr, "[%s] PARAM ERROR\n", host);

 fprintf(stderr, "[%s %d] [user:%u-%u-%u] [get:%u-%u-%u] [rank|next:%d|%d]\n",

 host, i, tmp_coords[0], tmp_coords[1], tmp_coords[2],

 next_coords[0], next_coords[1], next_coords[2], rank, ans);

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 }

 MPI_Finalize();

 return 0;

}

5.2 MPI Statistical Information Section Specifying Interface
The MPI statistical information section specifying routine is a routine to specify the range to measure the communication data of MPI. To
specify the analyzing range on the source code, please insert the routines in the measurement beginning and end position. These routines
are meaningful only if a value of MCA parameter mpi_print_stats is equal to 3 or 4.

Table below shows the overview of section specifying routine of MPI statistical information.

- 50 -

Table 5.2 Overview of MPI statistical information section specifying routines list

Routine name Routine overview

FJMPI_COLLECTION_START Starts MPI statistical information measurement

FJMPI_COLLECTION_STOP Stops MPI statistical information measurement

FJMPI_COLLECTION_PRINT Prints MPI statistical information measurement

FJMPI_COLLECTION_CLEAR Initializes MPI statistical information

5.2.1 The MPI Statistical Information Section Specifying Routine

5.2.1.1 FJMPI_COLLECTION_START
<Format>

C language format

#include <mpi-ext.h>

void FJMPI_Collection_start()

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Collection_start()

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_COLLECTION_START()

<Explanation>

This routine starts measuring MPI statistics.

This routine is enabled only if the value of MCA parameter mpi_print_stats is equal to 3 or 4. However, this routine is ignored if any
of the following conditions is met.

- When this routine is called before MPI_INIT routine.

- When this routine is called after MPI_FINALIZE routine.

<Return value>

None.

<Notes>

When this routine is continuously called, only the first start instruction becomes effective.

5.2.1.2 FJMPI_COLLECTION_STOP
<Format>

C language format

#include <mpi-ext.h>

void FJMPI_Collection_stop()

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Collection_stop()

Fortran (USE mpi_ext) format

- 51 -

USE MPI_EXT

FJMPI_COLLECTION_STOP()

<Explanation>

This routine stops measuring MPI statistics.

This routine is enabled only if the value of MCA parameter mpi_print_stats is equal to 3 or 4. However, this routine is ignored if any
of the following conditions is met.

- When this routine is called before MPI_INIT routine.

- When this routine is called after MPI_FINALIZE routine.

<Return value>

None.

<Notes>

It accumulates the collection result when the data collection is repeated.

When this routine is continuously called, only the first stop instruction becomes effective.

5.2.1.3 FJMPI_COLLECTION_PRINT
<Format>

C language format

#include <mpi-ext.h>

void FJMPI_Collection_print(char *str)

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Collection_print(str)

CHARACTER(LEN=*), INTENT(IN) :: str

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_COLLECTION_PRINT(STR)

CHARACTER*(*) STR

<Explanation>

Type Variable Explanation IN/OUT

char* str Character string to be output each section to standard error output. IN

str is a string of up to 30 alphanumeric characters for distinguishing statistical information. The characters over the 30th character of str
are dropped.

This routine prints measuring MPI statistical information to standard error output.

This routine is enabled only if the value of MCA parameter mpi_print_stats is equal to 3 or 4. However, this routine is ignored if any
of the following conditions is met.

- When this routine is called before MPI_INIT routine.

- When this routine is called after MPI_FINALIZE routine.

The behavior of this routine changes depending on the value of MCA parameter mpi_print_stats.

mpi_print_stats Operation Explanation

3 The collective operation This routine must be executed by all processes in
MPI_COMM_WORLD.

- 52 -

mpi_print_stats Operation Explanation

4 The independent
operation

This routine can be executed independently of other processes.

<Return value>

None.

<Notes>

Please specify a string of printable single-byte characters.

MPI statistical information is printed only if the program executed this routine.

5.2.1.4 FJMPI_COLLECTION_CLEAR
<Format>

C language format

#include <mpi-ext.h>

void FJMPI_Collection_clear()

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Collection_clear()

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_COLLECTION_CLEAR()

<Explanation>

This routine clears all MPI statistical data.

This routine is enabled only the value of MCA parameter mpi_print_stats is equal to 3 or 4. However, this routine is ignored if any of
the following conditions is met.

- When this routine is called before MPI_INIT routine.

- When this routine is called after MPI_FINALIZE routine.

<Return value>

None.

<Notes>

This routine clears all statistical data including collected data and elapsed time.

5.2.2 Sample Program
The sample program of the MPI statistical information section specifying interface is shown below. This program measures the MPI
statistical information that is section specifying of the MPI_ALLTOALL and section specifying of the user routine including
MPI_ALLGATHER routine.

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

#include <mpi-ext.h>

int test_aa = 200;

int test_ag = 300;

void func_aa(int,int,MPI_Comm,int);

- 53 -

void func_ag(int,int,MPI_Comm,int);

int main(int argc, char *argv[])

{

 int size,rank,loop;

 MPI_Comm comm=MPI_COMM_WORLD;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(comm, &size);

 MPI_Comm_rank(comm, &rank);

 loop=20;

 func_aa(rank,size,comm,loop);

 FJMPI_Collection_print("alltoall");

 FJMPI_Collection_clear();

 FJMPI_Collection_start();

 loop=40;

 func_ag(rank,size,comm,loop);

 FJMPI_Collection_print("func_ag");

 MPI_Finalize();

 return 0;

}

void func_aa(int rank,int size,MPI_Comm comm, int comm_count)

{

 int i,*sendbuf,*recvbuf;

 sendbuf = (int*)malloc(sizeof(int) * test_aa * size);

 recvbuf = (int*)malloc(sizeof(int) * test_aa * size);

 for(i = 0; i < test_aa * size; i++) {

 sendbuf[i] = rank;

 recvbuf[i] = -1;

 }

 FJMPI_Collection_start();

 for(i = 0; i < comm_count ; i++) {

 MPI_Alltoall(sendbuf, test_aa, MPI_INT,

 recvbuf, test_aa, MPI_INT, comm);

 }

 FJMPI_Collection_stop();

 free(sendbuf);

 free(recvbuf);

 MPI_Barrier(comm);

}

void func_ag(int rank,int size,MPI_Comm comm, int comm_count)

{

 int *sendbuf,*recvbuf;

 int i;

 sendbuf = (int*)malloc(sizeof(int) * test_ag * size);

 recvbuf = (int*)malloc(sizeof(int) * test_ag * size);

 for(i = 0; i < test_ag * size; i++) {

 sendbuf[i] = rank;

 recvbuf[i] = -1;

 }

 for(i = 0; i < comm_count ; i++) {

- 54 -

 MPI_Allgather(sendbuf, test_ag, MPI_INT,

 recvbuf, test_ag, MPI_INT, comm);

 }

 free(sendbuf);

 free(recvbuf);

 MPI_Barrier(comm);

}

The sample program of the section specifying MPI statistical information interface is shown. This program is section specifying of
MPI_BCAST, a program that is section specifying of MPI_ALLREDUCE, and either one node one process or a process two or more one
node operates by a parallel number of arbitrary.

program main

use mpi

implicit none

integer i,ierr,myrank,size

real(8) buf1(100),buf2(100)

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD,myrank,ierr)

call MPI_COMM_SIZE(MPI_COMM_WORLD,size,ierr)

buf2 = -1

do i=1,100

 buf1(i) = (size - myrank) * 0.001

end do

call FJMPI_COLLECTION_START()

do i=1,50

 call MPI_BCAST(buf1,100,MPI_REAL8,0,MPI_COMM_WORLD,ierr)

end do

call FJMPI_COLLECTION_STOP()

call FJMPI_COLLECTION_PRINT('Bcast')

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call FJMPI_COLLECTION_CLEAR()

call FJMPI_COLLECTION_START()

do i=1,100

 call MPI_ALLREDUCE(buf1,buf2,100,MPI_REAL8,MPI_SUM,MPI_COMM_WORLD,ierr)

end do

call FJMPI_COLLECTION_PRINT('Allreduce')

call MPI_BARRIER(MPI_COMM_WORLD,ierr)

call MPI_FINALIZE(ierr)

end program main

5.3 Extended Persistent Communication Requests Interface
Using this interface, overlap of computation and communication, which could not be achieved completely by using only the persistent
communication request interface in the MPI standard, can be achieved by starting communication asynchronously.

See table below for a list of the practical routines for the extended persistent communication requests interface supported by this software
system.

Table 5.3 Extended persistent communication requests interface routine list

Routine name Routine overview

FJMPI_PREQUEST_SEND_INIT Initialization of send using an extended persistent communication requests interface

FJMPI_PREQUEST_RECV_INIT Initialization of receive using an extended persistent communication requests interface

FJMPI_PREQUEST_START Starts communication using an extended persistent communication requests interface

- 55 -

Routine name Routine overview

FJMPI_PREQUEST_STARTALL Starts all communication using persistent an extended persistent communication requests
interface

5.3.1 Overview
The extended persistent communication requests interface overlaps computation and communication by the following mechanism.

Table 5.4 The extended persistent communication requests interface mechanism

FJMPI_Prequest_send_init...

 1. Notify the partner process of information

FJMPI_Prequest_start

 2. Begin the send of message body with start

(computation)

MPI_Wait

FJMPI_Prequest_recv_init...

 1. Notify the partner process of information

FJMPI_Preqeust_start

 2. Begin the receive of message body with start

(computation)

MPI_Wait

Note that the communication performance may degrade compared to the MPI routine if a derived datatype which represents
non-contiguous message on memory is specified.

5.3.2 Extended Persistent Communication Requests Interface
Specifications

5.3.2.1 FJMPI_PREQUEST_SEND_INIT
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Prequest_send_init(void *buf, int count, MPI_Datatype datatype,

 int dest, int tag, MPI_Comm comm,

 MPI_Request *request)

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Prequest_send_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_PREQUEST_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

<Explanation>

The arguments are same as those of the MPI_SEND_INIT routine.

- 56 -

Like a send request created with the MPI_SEND_INIT routine, a send request created with this routine can be used by other MPI routines
except for the conditions described in the notes.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

<Notes>

- The request created with this routine can be initiated only by the FJMPI_PREQUEST_START routine or the
FJMPI_PREQUEST_STARTALL routine.

- The communication using the request created with this routine must be received using the request created with
FJMPI_PREQUEST_RECV_INIT routine.

- It is not possible to cancel using the MPI_CANCEL routine. In that case, the MPI_CANCEL routine returns an error.

- Communication requests that have same source/destination rank, message tag, and communicator cannot exist at the same time. The
following message is output if another communication request that was created with the same arguments already exists on calling
this routine.

[mpi::fjmpi-prequest::same-request-args] The arguments of source/destination rank, message tag,

and communicator for the request are identical to those of another request.

5.3.2.2 FJMPI_PREQUEST_RECV_INIT
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Prequest_recv_init(void *buf, int count, MPI_Datatype datatype,

 int source, int tag, MPI_Comm comm,

 MPI_Request *request)

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Prequest_recv_init(buf, count, datatype, source, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_PREQUEST_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

<Explanation>

The arguments are same as those of the MPI_RECV_INIT routine.

Like a receive request created with the MPI_RECV_INIT routine, a receive request created with this routine can be used by other MPI
routines except for the conditions described in the notes.

- 57 -

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

<Notes>

- MPI_ANY_SOURCE cannot be specified for the argument source.

- The communication using the request created with this routine must be received using the request created with
FJMPI_PREQUEST_SEND_INIT routine.

- The request created with this routine can be initiated only by the FJMPI_PREQUEST_START routine or the
FJMPI_PREQUEST_STARTALL routine.

- It is not possible to cancel using the MPI_CANCEL routine. In that case, the MPI_CANCEL routine returns an error.

- The probe routines such as MPI_PROBE cannot check for incoming messages which are bound to requests created by this routine.

- Communication requests that have same source/destination rank, message tag, and communicator cannot exist at the same time. The
following message is output if another communication request that was created with the same arguments already exists on calling
this routine.

[mpi::fjmpi-prequest::same-request-args] The arguments of source/destination rank, message tag,

and communicator for the request are identical to those of another request.

5.3.2.3 FJMPI_PREQUEST_START
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Prequest_start(MPI_Request *request)

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Prequest_start(request, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_PREQUEST_START(REQUEST, IERROR)

INTEGER REQUEST, IERROR

<Explanation>

The arguments are same as those of the MPI_START routine.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

- 58 -

<Notes>

- Only communication requests that were created by FJMPI_PREQUEST_SEND_INIT routine or
FJMPI_PREQUEST_RECV_INIT routine can be passed to this routine.

- When the request created with a FJMPI_PREQUEST_SEND_INIT routine is used, the procedure is non-local and waits calling
FJMPI_PREQUEST_START or FJMPI_PREQUEST_STARTALL routine by the process which executes receive routine.

5.3.2.4 FJMPI_PREQUEST_STARTALL
<Format>

C language format

#include <mpi-ext.h>

int FJMPI_Prequest_startall(int count, MPI_Request array_of_requests[])

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Prequest_startall(count, array_of_requests, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_PREQUEST_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

<Explanation>

The arguments are same as those of the MPI_STARTALL routine.

<Return value>

Normal 0 is returned.

Error A value other than 0 is returned.

If the job type is node-sharing job A value other than 0 is returned.

Refer to the Job Operation Software manual for information on node-
sharing job.

<Notes>

- Only communication requests that were created by FJMPI_PREQUEST_SEND_INIT routine or
FJMPI_PREQUEST_RECV_INIT routine can be passed to this routine.

- When the request created with a FJMPI_PREQUEST_SEND_INIT routine is included, the procedure of the request is non-local and
wait calling FJMPI_PREQUEST_START or FJMPI_PREQUEST_STARTALL routine by the process which executes receive
routine.

5.3.3 Sample Program
The sample program of the extended persistent communication requests interface is shown below.

#include <stdio.h>

#include <mpi.h>

#include <mpi-ext.h>

#define VEC_LEN (4*1024*1024)

#define BSIZE (1024*1024)

static double x[VEC_LEN], y[VEC_LEN], a = 0.1;

- 59 -

int main(int argc, char *argv[])

{

 int j, rank, size, prev, next;

 double sb[BSIZE], rb[BSIZE];

 MPI_Request reqs[2];

 double stime, etime;

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD,&size);

 MPI_Comm_rank(MPI_COMM_WORLD,&rank);

 prev = (rank - 1 + size) % size;

 next = (rank + 1) % size;

 MPI_Barrier(MPI_COMM_WORLD);

 FJMPI_Prequest_recv_init(rb,BSIZE,MPI_DOUBLE,prev,1000,MPI_COMM_WORLD,&reqs[0]);

 FJMPI_Prequest_send_init(sb,BSIZE,MPI_DOUBLE,next,1000,MPI_COMM_WORLD,&reqs[1]);

 MPI_Barrier(MPI_COMM_WORLD);

 stime = MPI_Wtime();

 FJMPI_Prequest_startall(2,&reqs[0]);

 for (j = 0; j < VEC_LEN; j++) {

 y[j] = a * x[j] + y[j];

 }

 MPI_Waitall(2,&reqs[0],MPI_STATUSES_IGNORE);

 etime = MPI_Wtime();

 MPI_Barrier(MPI_COMM_WORLD);

 if (0 == rank) {

 printf("%.6f sec\n", etime - stime);

 }

 MPI_Request_free(&reqs[0]);

 MPI_Request_free(&reqs[1]);

 MPI_Finalize();

 return (0);

}

5.4 MPI Asynchronous Communication Promotion Section
Specifying Interface

The MPI asynchronous communication promotion section specifying routine is a routine to specify the range to promote asynchronous
communication using an assistant core. Refer to "6.2 Promoting Asynchronous Communication Using an Assistant Core" for details of the
asynchronous communication promotion.

These routines are meaningful only if a value of MCA parameter opal_progress_thread_mode is equal to 1 or 2.

Table below shows the overview of asynchronous communication promotion section specifying routine.

Table 5.5 Overview of asynchronous communication promotion section specifying routines list

Routine name Routine overview

FJMPI_PROGRESS_START Starts the promotion of asynchronous communication

- 60 -

Routine name Routine overview

FJMPI_PROGRESS_STOP Stops the promotion of asynchronous communication

5.4.1 The MPI Asynchronous Communication Promotion Section Specifying
Routine

5.4.1.1 FJMPI_PROGRESS_START
<Format>

C language format

#include <mpi-ext.h>

void FJMPI_Progress_start(void);

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Progress_start()

Fortran (USE mpi_ext) format

USE MPI_EXT

FJMPI_PROGRESS_START()

<Explanation>

This routine starts the promotion of asynchronous communication on the manual section (without MPI call) mode or the manual section
(with MPI call) mode of the MPI asynchronous processing progress thread.

On the manual section (without MPI call) mode, any MPI routines or extended interfaces cannot be called before
FJMPI_PROGRESS_STOP routine is called. routine calls in the section are not checked and the behavior on the calls is uncertain. On
the manual section (with MPI call) mode, those routines can be called but they involves a performance overhead.

This routine also can be called when one or more active requests exist. Also, this routine can be called when no active request exists.
The latter case causes almost no performance effect.

Call of this routine is ignored in any of the following cases.

- The operation mode is not the manual section (without MPI call) mode nor the manual section (with MPI call) mode.

- The promotion of asynchronous communication was started already. That is, FJMPI_PROGRESS_START routine was already
called and FJMPI_PROGRESS_STOP routine is not called yet.

<Return value>

None.

5.4.1.2 FJMPI_PROGRESS_STOP
<Format>

C language format

#include <mpi-ext.h>

void FJMPI_Progress_stop(void);

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

FJMPI_Progress_stop()

Fortran (USE mpi_ext) format

- 61 -

USE MPI_EXT

FJMPI_PROGRESS_STOP()

<Explanation>

This routine stops the promotion of asynchronous communication on the manual section (without MPI call) mode or the manual section
(with MPI call) mode of the MPI asynchronous processing progress thread.

Call of this routine is ignored in any of the following cases.

- The operation mode is not the manual section (without MPI call) mode nor the manual section (with MPI call) mode

- The promotion of asynchronous communication is not started yet. That is, FJMPI_PROGRESS_START routine has never called,
or FJMPI_PROGRESS_START routine was called and corresponding FJMPI_PROGRESS_STOP routine was also already called

<Return value>

None.

5.4.2 Sample Program
A sample program of a MPI asynchronous communication promotion section specifying interface is shown below. This program performs
computation and four communications concurrently.

You can see an execution time difference between the case of value 0 and 1 that is specified for the MCA parameter
opal_progress_thread_mode. But if the difference of the execution time of computation only and the execution time of communication only
is large, the effect of the overlap of computation and communication becomes small. So the degree of the effect varies greatly depend on
the compiler options on the compilation, the process layout on the execution, and so on.

#include <stdio.h>

#include <mpi.h>

#include <mpi-ext.h>

#define VEC_LEN (4*1024*1024)

#define MSG_LEN (16*1024*1024)

static double x[VEC_LEN], y[VEC_LEN], a = 0.1;

static double sbuf[2][MSG_LEN], rbuf[2][MSG_LEN];

int main(int argc, char *argv[])

{

 int i, j, size, rank, prev, next;

 MPI_Request reqs[4];

 double stime, etime;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 prev = (rank - 1 + size) % size;

 next = (rank + 1) % size;

 for (i = 0; i < 2; i++) {

 stime = MPI_Wtime();

 MPI_Irecv(rbuf[0], MSG_LEN, MPI_DOUBLE, prev, 0, MPI_COMM_WORLD, &reqs[0]);

 MPI_Irecv(rbuf[1], MSG_LEN, MPI_DOUBLE, next, 0, MPI_COMM_WORLD, &reqs[1]);

 MPI_Isend(sbuf[0], MSG_LEN, MPI_DOUBLE, prev, 0, MPI_COMM_WORLD, &reqs[2]);

 MPI_Isend(sbuf[1], MSG_LEN, MPI_DOUBLE, next, 0, MPI_COMM_WORLD, &reqs[3]);

 FJMPI_Progress_start();

 for (j = 0; j < VEC_LEN; j++) {

 y[j] = a * x[j] + y[j];

- 62 -

 }

 FJMPI_Progress_stop();

 MPI_Waitall(4, reqs, MPI_STATUSES_IGNORE);

 etime = MPI_Wtime();

 }

 MPI_Finalize();

 if (rank == 0) {

 printf("%.6f sec\n", etime - stime);

 }

 return 0;

}

5.5 Persistent Collective Communication Request Interface

5.5.1 Overview
In this software system, the interfaces of persistent collective communication request included in the draft specification (https://www.mpi-
forum.org/docs/drafts/mpi-2018-draft-report.pdf) for the MPI-4.0 Standard are implemented with routine names prefixed with MPIX_
instead of MPI_.

5.5.2 Persistent Collective Communication Request Interface Specification
The list of persistent collective communication request routines implemented in this software system follows below.

See the MPI standard draft for the behavior and the meaning of arguments of these routines.

<Format>

C language format

#include <mpi-ext.h>

int MPIX_Allgather_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Allgatherv_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Allreduce_init(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype,

MPI_Op op,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Alltoall_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Alltoallv_init(const void *sendbuf, const int sendcounts[], const int sdispls[],

MPI_Datatype sendtype,

 void *recvbuf, const int recvcounts[], const int rdispls[], MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Alltoallw_init(const void *sendbuf, const int sendcounts[], const int sdispls[], const

MPI_Datatype sendtypes[],

 void *recvbuf, const int recvcounts[], const int rdispls[], const MPI_Datatype recvtypes[],

- 63 -

https://www.mpi-forum.org/docs/drafts/mpi-2018-draft-report.pdf
https://www.mpi-forum.org/docs/drafts/mpi-2018-draft-report.pdf

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Barrier_init(MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Bcast_init(void *buffer, int count, MPI_Datatype datatype, int root,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Exscan_init(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op

op,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Gather_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Gatherv_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype, int root,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Reduce_init(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op

op, int root,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Reduce_scatter_init(const void *sendbuf, void *recvbuf, const int recvcounts[],

MPI_Datatype datatype, MPI_Op op,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Reduce_scatter_block_init(const void *sendbuf, void *recvbuf, int recvcount, MPI_Datatype

datatype, MPI_Op op,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Scan_init(const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Scatter_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype, void *recvbuf,

int recvcount, MPI_Datatype recvtype, int root,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Scatterv_init(const void *sendbuf, const int sendcounts[], const int displs[],

MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Neighbor_allgather_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Neighbor_allgatherv_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, const int recvcounts[], const int displs[], MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Neighbor_alltoall_init(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Neighbor_alltoallv_init(const void *sendbuf, const int sendcounts[], const int sdispls[],

MPI_Datatype sendtype,

 void *recvbuf, const int recvcounts[], const int rdispls[], MPI_Datatype recvtype,

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

int MPIX_Neighbor_alltoallw_init(const void *sendbuf, const int sendcounts[], const MPI_Aint

sdispls[], const MPI_Datatype sendtypes[],

- 64 -

 void *recvbuf, const int recvcounts[], const MPI_Aint rdispls[], const MPI_Datatype recvtypes[],

 MPI_Comm comm, MPI_Info info, MPI_Request *request)

Fortran (USE mpi_f08_ext) format

 MPIX_Allgather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,

 recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount, recvcount

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Allgatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

 displs, recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount

 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Allreduce_init(sendbuf, recvbuf, count, datatype, op, comm, info,

 request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: count

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Op), INTENT(IN) :: op

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Alltoall_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,

 recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount, recvcount

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Alltoallv_init(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

 recvcounts, rdispls, recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

- 65 -

 recvcounts, rdispls, recvtypes, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)

 TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Barrier_init(comm, info, request, ierror)

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Bcast_init(buffer, count, datatype, root, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer

 INTEGER, INTENT(IN) :: count, root

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Exscan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,

 ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: count

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Op), INTENT(IN) :: op

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Gather_init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

 root, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount, recvcount, root

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Gatherv_init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

 recvtype, root, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount, root

 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Reduce_init(sendbuf, recvbuf, count, datatype, op, root, comm, info,

 request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

- 66 -

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: count, root

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Op), INTENT(IN) :: op

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Reduce_scatter_init(sendbuf, recvbuf, recvcounts, datatype, op, comm,

 info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Op), INTENT(IN) :: op

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Reduce_scatter_block_init(sendbuf, recvbuf, recvcount, datatype, op,

 comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: recvcount

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Op), INTENT(IN) :: op

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Scan_init(sendbuf, recvbuf, count, datatype, op, comm, info, request,

 ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: count

 TYPE(MPI_Datatype), INTENT(IN) :: datatype

 TYPE(MPI_Op), INTENT(IN) :: op

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Scatter_init(sendbuf, sendcount, sendtype, recvbuf, recvcount,

 recvtype, root, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount, recvcount, root

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Scatterv_init(sendbuf, sendcounts, displs, sendtype, recvbuf,

 recvcount, recvtype, root, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), displs(*)

 INTEGER, INTENT(IN) :: recvcount, root

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

- 67 -

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Neighbor_allgather_init(sendbuf, sendcount, sendtype, recvbuf,

 recvcount, recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount, recvcount

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Neighbor_allgatherv_init(sendbuf, sendcount, sendtype, recvbuf,

 recvcounts, displs, recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount

 INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Neighbor_alltoall_init(sendbuf, sendcount, sendtype, recvbuf,

 recvcount, recvtype, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN) :: sendcount, recvcount

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Request), INTENT(OUT) :: request

 TYPE(MPI_Info), INTENT(IN) :: info

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Neighbor_alltoallv_init(sendbuf, sendcounts, sdispls, sendtype,

 recvbuf, recvcounts, rdispls, recvtype, comm, info, request,

 ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*), recvcounts(*), rdispls(*)

 TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

 MPIX_Neighbor_alltoallw_init(sendbuf, sendcounts, sdispls, sendtypes,

 recvbuf, recvcounts, rdispls, recvtypes, comm, info, request, ierror)

 TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

 TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

 INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)

 INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS :: sdispls(*), rdispls(*)

 TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*), recvtypes(*)

 TYPE(MPI_Comm), INTENT(IN) :: comm

 TYPE(MPI_Info), INTENT(IN) :: info

 TYPE(MPI_Request), INTENT(OUT) :: request

 INTEGER, OPTIONAL, INTENT(OUT) :: ierror

- 68 -

Fortran (USE mpi_ext) format

 MPIX_ALLGATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

 RECVTYPE, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF (*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM

 INTEGER INFO, REQUEST, IERROR

 MPIX_ALLGATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

 RECVCOUNT, DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT(*)

 INTEGER DISPLS(*), RECVTYPE, COMM, INFO

 INTEGER REQUEST, IERROR

 MPIX_ALLREDUCE_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM,

 INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

 MPIX_ALLTOALL_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

 RECVTYPE, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,

 RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, REQUEST, COMM,

 INFO, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE

 INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_ALLTOALLW_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES,

 RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*)

 INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPES(*)

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_BARRIER_INIT(COMM, INFO, REQUEST, IERROR)

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_BCAST_INIT(BUFFER, COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR)

 <type> BUFFER(*)

 INTEGER COUNT, DATATYPE, ROOT, COMM, INFO, REQUEST, IERROR

 MPIX_EXSCAN_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST,

 IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER COUNT, INFO, DATATYPE, OP, COMM, REQUEST, IERROR

 MPIX_GATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

 RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_GATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

 DISPLS, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*)

- 69 -

 INTEGER RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR

 MPIX_REDUCE_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM,

 INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER COUNT, DATATYPE, OP, ROOT, COMM, INFO, REQUEST, IERROR

 MPIX_REDUCE_SCATTER_INIT(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP,

 COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, INFO, REQUEST, IERROR

 MPIX_REDUCE_SCATTER_BLOCK_INIT(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP,

 COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER RECVCOUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

 MPIX_SCAN_INIT(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, INFO, REQUEST,

 IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER COUNT, DATATYPE, OP, COMM, INFO, REQUEST, IERROR

 MPIX_SCATTER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

 RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_SCATTERV_INIT(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF,

 RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE

 INTEGER RECVCOUNT, RECVTYPE, ROOT, COMM, INFO, REQUEST, IERROR

 MPIX_NEIGHBOR_ALLGATHER_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

 RECVTYPE, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF (*), RECVBUF (*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, INFO

 INTEGER REQUEST, IERROR

 MPIX_NEIGHBOR_ALLGATHERV_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF,

 RECVCOUNT, DISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT(*)

 INTEGER DISPLS(*), RECVTYPE, COMM, INFO, REQUEST, IERROR

 MPIX_NEIGHBOR_ALLTOALL_INIT(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

 RECVTYPE, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_NEIGHBOR_ALLTOALLV_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE,

 RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPE, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE

 INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPE

 INTEGER COMM, INFO, REQUEST, IERROR

 MPIX_NEIGHBOR_ALLTOALLW_INIT(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES,

 RECVBUF, RECVCOUNTS, RDISPLS, RECVTYPES, COMM, INFO, REQUEST, IERROR)

 <type> SENDBUF(*), RECVBUF(*)

 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*)

- 70 -

 INTEGER RECVCOUNTS(*), RDISPLS(*), RECVTYPES(*)

 INTEGER COMM, INFO, REQUEST, IERROR

<Explanation>

The requests created with these routines can be used with the request operation routine which is defined in the MPI standard.

These routines ignore hints specified in the info argument.

<Return Value>

Normal MPI_SUCCESS is returned.

Error A value other than MPI_SUCCESS is returned.

<Note>

These routines are based on the draft version of the MPI standard. Therefore, the behavior or the arguments of these routines may be
changed in the future. Both this interface prefixed with MPIX_ and MPI-standardized interface prefixed with MPI_ will be available
in the future releases, and after a certain period of time, this interface will be deleted from this software system.

5.5.3 Overlap of Computation and Communication
Some communications invoked from persistent collective communication requests can be overlapped with computation using the feature
of the Tofu interconnect. Otherwise if promotion of asynchronous communication using assistant cores is applied, communication invoked
by the request can be overlapped with computation.

When overlap of computation and communication using the feature of the Tofu interconnect is applied, the communication starts
immediately after MPI_START or MPI_STARTALL routines are called and can be overlapped with computation code until MPI_WAIT
or MPI_WAITALL routines are called.

Refer to "6.2 Promoting Asynchronous Communication Using an Assistant Core" for the behavior when asynchronous communication
promotion is applied.

5.5.3.1 Conditions for Applying Overlap of Computation and Communication
Communications invoked from a persistent collective communication request which meet all the following conditions can be overlapped
with computation using the feature of the Tofu interconnect.

- The request is created from MPIX_ALLGATHER_INIT routine

- The start operation for the request is the second time or later

- The send/receive datatypes are basic datatypes

- The communicator is intra-communicator

- The number of processes per node (proc_per_node), the communicator size (comm_size) and the send message size (msg_size) satisfy
the following inequality

comm_size-2+ceil(ceil(msg_size/(floor((15-proc_per_node)/15)+2))/16777215)*(comm_size-1) <= 2048

- The number of processes per node of the MPI job is not more than 30

- When the request is created, other requests which meet the conditions above do not exist in the process

These conditions may be changed in the future version.

5.5.3.2 Notes
When overlap of computation and communication using the feature of the Tofu interconnect is applied on persistent collective
communication requests, monitoring communication buffer write damage using the MCA parameter mpi_check_buffer_write is not
applied on the requests.

- 71 -

5.6 Additional Predefined Datatype

5.6.1 Overview
Clang Mode of the Fujitsu C compiler and the Fujitsu C++ compiler supports the following two types for the half-precision (16 bit) floating-
point type.

- _Float16

- __fp16

Since the MPI-3.1 Standard does not define a predefined datatype for these types, this software system provides an own predefined datatype.

Refer to C User's Guide and C++ User's Guide for information on the half-precision floating-point type supported by the Fujitsu compilers.

5.6.2 Predefined Datatype for the Half-Precision Floating-Point Type
<Format>

C language format

#include <mpi-ext.h>

MPI_Datatype MPIX_C_FLOAT16

Fortran (USE mpi_f08_ext) format

USE mpi_f08_ext

TYPE(MPI_Datatype) :: mpix_c_float16

Fortran (USE mpi_ext) format

USE MPI_EXT

INTEGER mpix_c_float16

<Explanation>

This is a named predefined datatype for the types _Float16 and __fp16 in C and C++.

This datatype can be used as a basic datatype in MPI routines in the same way as other named predefined datatypes of complex types
like MPI_FLOAT. However, the datatype name returned by the MPI_TYPE_GET_NAME routine is different from
"MPIX_C_FLOAT16".

 Information

- For the half-precision floating-point type REAL(2) in Fortran, the named predefined datatype MPI_REAL2, which is defined in the
MPI-3.1 Standard, can be used.

- Fortran formats are required to use these C/C++ types in a Fortran program using interlanguage linkage. Refer to the compiler manuals
for information on interlanguage linkage.

- 72 -

Chapter 6 Supplementary Items

6.1 Tofu Interconnect

6.1.1 Tofu Interconnect Configuration
A Tofu interconnect is physically comprised of a 6-dimensional mesh/torus network. The coordinates of the 6-dimensional mesh/torus
network are given by the six dimensions X, Y, Z, A, B, and C. The unit comprised of the A, B, and C axes of size 2*3*2 is known as a Tofu
unit.

Figure 6.1 A Tofu unit

Neighboring Tofu units are connected by the X, Y, and Z axes, and constructed such that nodes having the same A, B, and C axis coordinates
are tied together. Accordingly, a Tofu unit has 12 connections in each X, Y, and Z direction.

- 73 -

Figure 6.2 Connections to other Tofu units

6.1.2 Routing
Packets move in the Tofu interconnect in the coordinate axis sequence of B, C, A, X, Y, Z, A, C, B. The initial ABC axis routes are aimed
at avoiding faulty nodes and distributing routes. The rest routes are aimed at reaching the destination node. The MPI library specifies which
route to be used among 12 initial ABC routes. The Tofu interconnect's routing have more routes than ordinary dimension order routing.
Therefore, this is known as extended dimension order routing.

- 74 -

Figure 6.3 Example of initial ABC axis routing moving all ABC axes

6.1.3 Configuration within a Node
Each node contains a module known as an Interconnect Controller (ICC) for controlling communication with other nodes. Internally there
are six RDMA engines, known as Tofu Network Interfaces (TNI). Each TNI is capable of one send and one receive simultaneously. By using
six TNIs, an ICC is capable of six sends and six receives simultaneously. There are a total of 10 ports, six in the XYZ direction and four in
the ABC direction.

The MPI library uses these six RDMA engines, and executes RDMA communication.

- 75 -

Figure 6.4 ICC configuration

6.2 Promoting Asynchronous Communication Using an Assistant
Core

On this software system, even if you use nonblocking communication with an expectation of overlap of computation and communication,
the communication may not progress completely asynchronously behind the computation, and the transfer of the message body may begin
when a completion routine such as MPI_WAIT routine is called. In this case, the expected overlap cannot be achieved. A64FX, the CPU
of the this computing system, has 2 or 4 assistant cores that are dedicated to the OS and IO processing, in addition to 48 calculation cores
that are dedicated to execution of user programs submitted as jobs. So this software system has a function to promote asynchronous
communication in an MPI programs that use nonblocking communication, by using the assistant core. This function creates a thread called
"MPI asynchronous processing progress thread" on the assistant core in order to progress nonblocking communication when an MPI
program is executed. This enables asynchronous communication on the assistant core behind computation on the calculation cores. In other
words, it encourages overlap of computation and communication, aiming for a reduced MPI program execution time. This effect tends to
be larger when the message size to be sent by nonblocking communication is large, especially when the message size is equal to or more
than the threshold value.

However, as the assistant core is shared and used by multiple user processes, daemon processes, and OS in the compute node, there is a
possibility that the side effects are generated that the execution times vary on multiple runs or the execution time is increased. These side
effects may become larger especially if there are more than or equal to four processes at one node as a guide.

Moreover, when an MPI program calls an MPI routine, an exclusive lock operation needed between a thread that processes the MPI routine
on the calculation core and the MPI asynchronous processing progress thread on the assistant core becomes a high cost. Therefore this
software system provides three operation modes shown in the "Table 6.1 Operation modes of the MPI asynchronous processing progress
thread" below. The "value" column means values to specify for the MCA parameter opal_progress_thread_mode.

Table 6.1 Operation modes of the MPI asynchronous processing progress thread

Operation mode name Value Explanation of operation mode

Manual section (without MPI call) mode 1 Promote asynchronous communication in the sections specified by
section specifying functions. MPI routines and extended interfaces
cannot be called in the section. Modification of the MPI program is
required to use this mode. In this mode, the exclusive lock operation is

- 76 -

Operation mode name Value Explanation of operation mode

processed only when the section specifying functions are called.
Therefore the performance overhead is smallest among three modes.

Manual section (with MPI call) mode 2 Promote asynchronous communication in the sections specified by
section specifying functions. MPI routines and extended interfaces can
be called in the section. Modification of the MPI program is required to
use this mode. In this mode, the exclusive lock operation is processed
only when the section specifying functions are called and when any MPI
routines are called in the section. Therefore the performance overhead is
relatively small if there are few MPI routine calls in the section. But each
MPI routine call involves a small overhead even on the outside the
section.

Automatic section mode 3 Promote asynchronous communication in the sections where at least one
active request of nonblocking communication exists. MPI routines and
extended interfaces can be called in the section. Modification of the MPI
program is not required to use this mode. The section is automatically
detected by this software system. In this mode, the exclusive lock
operation is processed when MPI routines are called in the section.
Therefore the performance overhead is large if the MPI program calls
many MPI routines between the start of the nonblocking communication
by MPI_ISEND routine etc. and the completion the nonblocking
communication by MPI_WAIT routine etc.

Refer to "5.4 MPI Asynchronous Communication Promotion Section Specifying Interface" for details of the section specifying functions
described above.

To use this function, the MCA parameter opal_progress_thread_mode must be specified. Refer to "Table 4.42 opal_progress_thread_mode
(specifies the operation mode of the MPI asynchronous processing progress thread)" for details.

Though this function can be used in combination with the extended interface described in "5.3 Extended Persistent Communication
Requests Interface", there will be almost no performance gain.

 Example

Extract from a program where asynchronous communications are promoted

MPI_Isend(sendbuf, 1048576, MPI_BYTE, sendpeer, tag, MPI_COMM_WORLD, &request[0]);

MPI_Irecv(recvbuf, 1048576, MPI_BYTE, recvpeer, tag, MPI_COMM_WORLD, &request[1]);

(computations)

MPI_Waitall(2, request, stat);

6.3 Parallelizing Memory Copy Processing in MPI Library with
Threads

On this software system, although processings in the MPI library are basically performed on a thread where an MPI routine is called, a
function that some memory copy processings in the MPI library can be parallelized with multiple threads is provided. In order to use this
function, specifying the compiler option, the environment variable, and the MCA parameter shown in "Table 6.2 Usage of the function of
parallelizing memory copy processing in MPI library with threads" are necessary.

Main processings which can be parallelized with threads are packing and unpacking using derived datatype data. Packing is a processing
which positions noncontiguous data into a contiguous buffer. Unpacking is a processing which unpacks the packed data according to the
original noncontiguous layout. This function may be able to improve performance of MPI routines such as the MPI_PACK,
MPI_UNPACK, and communication routines using derived datatype data. The number of threads used for thread parallelization is decided
by the environment variable specified at the time of the MPI program execution. If the omp_set_num_threads routine of the OpenMP is
called in the MPI program, the number of threads set by the routine is used.

However, if any of the following conditions is met, an MPI routine is not parallelized even if the routine is a target of thread parallelization.

- 77 -

- The MPI routine is called in a parallel region of the OpenMP in the MPI program.

- According to some conditions such as the number of threads and the size of data to be handled, the performance of the MPI routine with
single thread is considered to be better than with multiple threads.

Table 6.2 Usage of the function of parallelizing memory copy processing in MPI library with threads

Timing to specify a value Content

MPI program compilation/linkage

Specify -Nlibomp and at least one of the -Kparallel and -Kopenmp as options of a
compilation/linkage command.

Refer to the compiler manuals for details of -Kparallel and -Kopenmp options.

MPI program execution

- Specify the number of threads for the environment variable OMP_NUM_THREADS.
If the environment variable is not specified, the number of threads is same as that of
available CPUs in the job.

- Specify the value 1 for the MCA parameter opal_mt_memcpy as an option of the
mpiexec command.

Refer to "Table 4.41 opal_mt_memcpy (parallelizes some memory copy processings
performed in the MPI library using multiple threads)" for details of the MCA parameter
opal_mt_memcpy.

 Note

If different numbers of threads are specified with multiple ways, the number of threads actually used when thread parallelization is
performed is decided according to the following priority.

1. The value set by the omp_set_num_threads routine in the MPI program

2. The value specified for the environment variable OMP_NUM_THREADS

6.4 Notes Concerning MPI Standard Specifications

6.4.1 Supported Level of MPI Standard
The MPI library provided by this software system conforms to the MPI-3.1 Standard and a subset of the MPI-4.0 Standard.

C++ bindings are supported within the range of the MPI-2.2 Standard.

Refer to the "MPI User's Guide Additional Volume Java Interface" for information on Java interface.

"Table 6.3 Routines not provided by Java binding of this software system" shows the routines which are defined in the range of the MPI-3.1
Standard but are not supported for use in Java programs.

The interfaces removed from the MPI standard may also be removed from a future product version of this software system. Do not use them.
Refer to the MPI standard for the removed interfaces and their replacements.

Table 6.3 Routines not provided by Java binding of this software system

Routines

MPI_AINT_ADD
MPI_AINT_DIFF
MPI_ALLOC_MEM
MPI_COMM_CREATE_ERRHANDLER
MPI_COMM_JOIN
MPI_ERRHANDLER_FREE
MPI_FILE_CREATE_ERRHANDLER
MPI_FREE_MEM
MPI_GET_ADDRESS
MPI_GREQUEST_COMPLETE

- 78 -

Routines

MPI_GREQUEST_START
MPI_INEIGHBOR_ALLTOALLW
MPI_INFO_GET_VALUELEN
MPI_NEIGHBOR_ALLTOALLW
MPI_PACK_EXTERNAL
MPI_PACK_EXTERNAL_SIZE
MPI_PCONTROL
MPI_REGISTER_DATAREP
MPI_TYPE_CREATE_DARRAY
MPI_TYPE_CREATE_HINDEXED_BLOCK
MPI_TYPE_CREATE_INDEXED_BLOCK
MPI_TYPE_CREATE_SUBARRAY
MPI_TYPE_GET_CONTENTS
MPI_TYPE_GET_ENVELOPE
MPI_T_CATEGORY_CHANGED
MPI_T_CATEGORY_GET_CATEGORIES
MPI_T_CATEGORY_GET_CVARS
MPI_T_CATEGORY_GET_INDEX
MPI_T_CATEGORY_GET_INFO
MPI_T_CATEGORY_GET_NUM
MPI_T_CATEGORY_GET_PVARS
MPI_T_CVAR_GET_INDEX
MPI_T_CVAR_GET_INFO
MPI_T_CVAR_GET_NUM
MPI_T_CVAR_HANDLE_ALLOC
MPI_T_CVAR_HANDLE_FREE
MPI_T_CVAR_READ
MPI_T_CVAR_WRITE
MPI_T_ENUM_GET_INFO
MPI_T_ENUM_GET_ITEM
MPI_T_FINALIZE
MPI_T_INIT_THREAD
MPI_T_PVAR_GET_INDEX
MPI_T_PVAR_GET_INFO
MPI_T_PVAR_GET_NUM
MPI_T_PVAR_HANDLE_ALLOC
MPI_T_PVAR_HANDLE_FREE
MPI_T_PVAR_READ
MPI_T_PVAR_READRESET
MPI_T_PVAR_RESET
MPI_T_PVAR_SESSION_CREATE
MPI_T_PVAR_SESSION_FREE
MPI_T_PVAR_START
MPI_T_PVAR_STOP
MPI_T_PVAR_WRITE
MPI_UNPACK_EXTERNAL
MPI_WIN_CREATE_ERRHANDLER
MPI_WIN_SHARED_QUERY

6.4.2 Predefined Datatypes that can be Used in This Software System
The predefined MPI datatypes that can be used in this software system vary depending on the language bindings used for an MPI program.

The predefined MPI datatypes and the corresponding datatypes of each program language are shown in "Table 6.4 Predefined MPI
datatypes usable by Fortran binding", "Table 6.5 Predefined MPI datatypes usable by C binding", "Table 6.6 Predefined MPI datatypes
usable by C++ binding", and "Table 6.7 Predefined MPI datatypes usable by Java binding".

- 79 -

The valid datatypes in reduction operations for Java binding are shown in "Table 6.7 Predefined MPI datatypes usable by Java binding".
Refer to the MPI standard for the datatypes that can be specified in reduction operations.

Table 6.4 Predefined MPI datatypes usable by Fortran binding

Predefined MPI datatypes Fortran datatypes

[Basic datatypes]
MPI_CHARACTER
MPI_LOGICAL
MPI_LOGICAL1
MPI_LOGICAL2
MPI_LOGICAL4
MPI_LOGICAL8
MPI_INTEGER
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_REAL
MPI_REAL2
MPI_REAL4
MPI_REAL8
MPI_REAL16
MPI_DOUBLE_PRECISION
MPI_COMPLEX
MPI_COMPLEX4
MPI_COMPLEX8
MPI_COMPLEX16
MPI_COMPLEX32
MPI_DOUBLE_COMPLEX

MPI_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_SIGNED_CHAR
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_BYTE
MPI_PACKED

MPI_C_BOOL
MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX
MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX

MPI_INT8_T

CHARACTER
LOGICAL
LOGICAL(1)
LOGICAL(2)
LOGICAL(4)
LOGICAL(8)
INTEGER
INTEGER(1)
INTEGER(2)
INTEGER(4)
INTEGER(8)
REAL
REAL(2)
REAL(4)
REAL(8)
REAL(16)
DOUBLE PRECISION
COMPLEX
COMPLEX(2)
COMPLEX(4)
COMPLEX(8)
COMPLEX(16)
COMPLEX(8)

char (C)
signed short int (C)
signed int (C)
signed long int (C)
signed long long int (C)
signed long long int (C)
signed char (C)
unsigned char (C)
unsigned short int (C)
unsigned int (C)
unsigned long int (C)
unsigned long long int (C)
float (C)
double (C)
long double (C)
wchar_t (C)

_Bool (C)
float _Complex (C)
float _Complex (C)
double _Complex (C)
long double _Complex (C)

int8_t (C)

- 80 -

Predefined MPI datatypes Fortran datatypes

MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

MPIX_C_FLOAT16

MPI_AINT
MPI_OFFSET
MPI_COUNT

MPI_CXX_BOOL
MPI_CXX_FLOAT_COMPLEX
MPI_CXX_DOUBLE_COMPLEX
MPI_CXX_LONG_DOUBLE_COMPLEX

int16_t (C)
int32_t (C)
int64_t (C)
uint8_t (C)
uint16_t (C)
uint32_t (C)
uint64_t (C)

_Float16, __fp16 (C)

INTEGER (KIND=MPI_ADDRESS_KIND)
INTEGER (KIND=MPI_OFFSET_KIND)
INTEGER (KIND=MPI_COUNT_KIND)

bool (C++)
std::complex<float> (C++)
std::complex<double> (C++)
std::complex<long double> (C++)

[Other than the Basic datatypes]
MPI_LB
MPI_UB

MPI_FLOAT_INT
MPI_DOUBLE_INT
MPI_LONG_INT
MPI_2INT
MPI_SHORT_INT
MPI_LONG_DOUBLE_INT

MPI_2REAL
MPI_2DOUBLE_PRECISION
MPI_2INTEGER
MPI_2COMPLEX
MPI_2DOUBLE_COMPLEX

float (C) and signed int (C) pair
double (C) and signed int (C) pair
signed long int (C) and signed int (C) pair
signed int (C) pair
signed short int (C) and signed int (C) pair
long double (C) and signed int (C) pair

REAL pair
DOUBLE PRECISION pair
INTEGER pair
COMPLEX pair
DOUBLE COMPLEX pair

Table 6.5 Predefined MPI datatypes usable by C binding

Predefined MPI datatypes C datatypes

[Basic datatypes]
MPI_CHARACTER
MPI_LOGICAL
MPI_LOGICAL1
MPI_LOGICAL2
MPI_LOGICAL4
MPI_LOGICAL8
MPI_INTEGER
MPI_INTEGER1
MPI_INTEGER2
MPI_INTEGER4
MPI_INTEGER8
MPI_REAL
MPI_REAL2
MPI_REAL4
MPI_REAL8
MPI_REAL16
MPI_DOUBLE_PRECISION

CHARACTER (Fortran)
LOGICAL (Fortran)
LOGICAL(1) (Fortran)
LOGICAL(2) (Fortran)
LOGICAL(4) (Fortran)
LOGICAL(8) (Fortran)
INTEGER (Fortran)
INTEGER(1) (Fortran)
INTEGER(2) (Fortran)
INTEGER(4) (Fortran)
INTEGER(8) (Fortran)
REAL (Fortran)
REAL(2) (Fortran)
REAL(4) (Fortran)
REAL(8) (Fortran)
REAL(16) (Fortran)
DOUBLE PRECISION (Fortran)

- 81 -

Predefined MPI datatypes C datatypes

MPI_COMPLEX
MPI_COMPLEX4
MPI_COMPLEX8
MPI_COMPLEX16
MPI_COMPLEX32
MPI_DOUBLE_COMPLEX

MPI_CHAR
MPI_SHORT
MPI_INT
MPI_LONG
MPI_LONG_LONG_INT
MPI_LONG_LONG
MPI_SIGNED_CHAR
MPI_UNSIGNED_CHAR
MPI_UNSIGNED_SHORT
MPI_UNSIGNED
MPI_UNSIGNED_LONG
MPI_UNSIGNED_LONG_LONG
MPI_FLOAT
MPI_DOUBLE
MPI_LONG_DOUBLE
MPI_WCHAR

MPI_BYTE
MPI_PACKED

MPI_C_BOOL
MPI_C_COMPLEX
MPI_C_FLOAT_COMPLEX
MPI_C_DOUBLE_COMPLEX
MPI_C_LONG_DOUBLE_COMPLEX

MPI_INT8_T
MPI_INT16_T
MPI_INT32_T
MPI_INT64_T
MPI_UINT8_T
MPI_UINT16_T
MPI_UINT32_T
MPI_UINT64_T

MPIX_C_FLOAT16

MPI_AINT
MPI_OFFSET
MPI_COUNT

MPI_CXX_BOOL
MPI_CXX_FLOAT_COMPLEX
MPI_CXX_DOUBLE_COMPLEX
MPI_CXX_LONG_DOUBLE_COMPLEX

COMPLEX (Fortran)
COMPLEX(2) (Fortran)
COMPLEX(4) (Fortran)
COMPLEX(8) (Fortran)
COMPLEX(16) (Fortran)
COMPLEX(8) (Fortran)

char
signed short int
signed int
signed long int
signed long long int
signed long long int
signed char
unsigned char
unsigned short int
unsigned int
unsigned long int
unsigned long long int
float
double
long double
wchar_t

_Bool
float _Complex
float _Complex
double _Complex
long double _Complex

int8_t
int16_t
int32_t
int64_t
uint8_t
uint16_t
uint32_t
uint64_t

_Float16, __fp16

MPI_Aint
MPI_Offset
MPI_Count

bool (C++)
std::complex<float> (C++)
std::complex<double> (C++)
std::complex<long double> (C++)

[Other than the Basic datatypes]
MPI_LB
MPI_UB

- 82 -

Predefined MPI datatypes C datatypes

MPI_FLOAT_INT
MPI_DOUBLE_INT
MPI_LONG_INT
MPI_2INT
MPI_SHORT_INT
MPI_LONG_DOUBLE_INT

MPI_2REAL
MPI_2DOUBLE_PRECISION
MPI_2INTEGER
MPI_2COMPLEX
MPI_2DOUBLE_COMPLEX

float and signed int pair
double and signed int pair
signed long int and signed int pair
signed int pair
signed short int and signed int pair
long double and signed int pair

REAL (Fortran) pair
DOUBLE PRECISION (Fortran) pair
INTEGER (Fortran) pair
COMPLEX (Fortran) pair
COMPLEX(8) (Fortran) pair

Table 6.6 Predefined MPI datatypes usable by C++ binding

Predefined MPI datatypes C++ datatypes

[Basic datatypes]
MPI::INTEGER
MPI::INTEGER1
MPI::INTEGER2
MPI::INTEGER4
MPI::REAL
MPI::REAL4
MPI::REAL8
MPI::DOUBLE_PRECISION
MPI::F_COMPLEX
MPI::LOGICAL
MPI::CHARACTER

MPI::CHAR
MPI::SHORT
MPI::INT
MPI::LONG
MPI::LONG_LONG
MPI::SIGNED_CHAR
MPI::UNSIGNED_CHAR
MPI::UNSIGNED_SHORT
MPI::UNSIGNED
MPI::UNSIGNED_LONG
MPI::UNSIGNED_LONG_LONG
MPI::FLOAT
MPI::DOUBLE
MPI::LONG_DOUBLE
MPI::WCHAR

MPI::BYTE
MPI::PACKED

MPI::BOOL
MPI::COMPLEX
MPI::DOUBLE_COMPLEX
MPI::LONG_DOUBLE_COMPLEX

INTEGER (Fortran)
INTEGER(1) (Fortran)
INTEGER(2) (Fortran)
INTEGER(4) (Fortran)
REAL (Fortran)
REAL(4) (Fortran)
REAL(8) (Fortran)
DOUBLE PRECISION (Fortran)
COMPLEX (Fortran)
LOGICAL (Fortran)
CHARACTER(1) (Fortran)

char
signed short int
signed int
signed long int
signed long long int
signed char
unsigned char
unsigned short int
unsigned int
unsigned long int
unsigned long long int
float
double
long double
wchar_t

bool
Complex<float>
Complex<double>
Complex<long double>

[Other than the Basic datatypes]
MPI::LB
MPI::UB

- 83 -

Predefined MPI datatypes C++ datatypes

MPI::FLOAT_INT
MPI::DOUBLE_INT
MPI::LONG_INT
MPI::TWOINT
MPI::SHORT_INT
MPI::LONG_DOUBLE_INT

MPI::TWOREAL
MPI::TWODOUBLE_PRECISION
MPI::TWOINTEGER

float and signed int pair
double and signed int pair
signed long int and signed int pair
signed int pair
signed short int and signed int pair
long double and signed int pair

REAL (Fortran) pair
DOUBLE PRECISION (Fortran) pair
INTEGER (Fortran) pair

Table 6.7 Predefined MPI datatypes usable by Java binding

Predefined MPI datatypes Java datatypes Datatypes kind

[Basic datatypes]
MPI.CHAR
MPI.SHORT
MPI.INT
MPI.LONG
MPI.FLOAT
MPI.DOUBLE

MPI.BYTE
MPI.PACKED
MPI.BOOLEAN

char
short
int
long
float
double

byte

boolean

C integer
C integer
C integer
C integer
Floating point
Floating point

Byte

Logical

[Other than the Basic datatypes]
MPI.FLOAT_COMPLEX

MPI.DOUBLE_COMPLEX

MPI.FLOAT_INT
MPI.DOUBLE_INT
MPI.LONG_INT
MPI.INT2
MPI.SHORT_INT

java.nio.FloatBuffer (The data of java.nio.FloatBuffer
can be acquired to float [] using the mpi.FloatComplex
class.)
java.nio.DoubleBuffer (The data of
java.nio.DoubleBuffer can be acquired to double [] using
the mpi.DoubleComplex class.)
float and int pair
double and int pair
long and int pair
int pair
short and int pair

6.4.3 Reserved Communicators
As specified in the MPI standard, the following communicators are reserved in this software system:

- MPI_COMM_WORLD

- MPI_COMM_SELF

In addition, MPI_COMM_NULL is reserved as a predefined constant.

6.4.4 Values of Constants Set in This Software System
In this software system, the values of the following named constants of Fortran defined in the MPI standard are ".FALSE.".

- MPI_SUBARRAYS_SUPPORTED

- MPI_ASYNC_PROTECTS_NONBLOCKING

- 84 -

6.4.5 Operations in a Multi-Threaded Environment
This software system supports operations in a multi-thread environment. The thread support level of this software system is
MPI_THREAD_SERIALIZED.

MPI_THREAD_SERIALIZED means that MPI can be called from multiple threads but that they cannot be called simultaneously. In other
words, the invocation of MPI from all of the threads must be serialized. A user application program must internally support this serialization
of MPI calls. Note that the behavior of an MPI program is not guaranteed if MPI invocation is not serialized. Refer to the MPI standard for
details.

6.4.6 Signal Operation Changes
When the MPI_INIT, MPI_INIT_THREAD, or MPI_T_INIT_THREAD routine is called, this software system sets a handler for each
signal shown below if a handler other than the default one is not set yet.

Names of signals with changed system standard operation

- SIGABRT

- SIGBUS

- SIGFPE

- SIGSEGV

- SIGXCPU

In addition, this software system uses one realtime signal. Refer to the commercial Linux-related publications for information on realtime
signals.

6.4.7 One-sided Communications
This section provides notes on one-sided communications.

6.4.7.1 Assertions for Optimization
In this software system, the argument assert of MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE, MPI_WIN_LOCK, and
MPI_WIN_LOCK_ALL routines is used for optimization. Assertions supported in this software system are shown in table below.

Table 6.8 Assertions for optimizations in one-sided communications

MPI routine name Assertion Operation in this software system

MPI_WIN_POST MPI_MODE_NOCHECK Ignored

MPI_MODE_NOSTORE Ignored

MPI_MODE_NOPUT Ignored

MPI_WIN_START MPI_MODE_NOCHECK Ignored

MPI_WIN_FENCE MPI_MODE_NOSTORE Ignored

MPI_MODE_NOPUT Ignored

MPI_MODE_NOPRECEDE The fence does not complete any sequence of locally issued RMA
calls. If this assertion is given by any group, then by any process in the
window group, then it must be given by all processes in the group.

MPI_MODE_NOSUCCEED The fence does not start sequence of locally issued RMA calls. If this
assertion is given by any group, then by any process in the window
group, then it must be given by all processes in the group.

MPI_WIN_LOCK,
MPI_WIN_LOCK_ALL

MPI_MODE_NOCHECK Ignored

- 85 -

6.4.7.2 Info Argument
In this software system, the info argument of MPI_WIN_CREATE, MPI_WIN_ALLOCATE, MPI_WIN_CREATE_DYNAMIC, and
MPI_WIN_ALLOCATE_SHARED routines is used to decide the behavior of the window created by these routines.

The info keys that can be specified for an info argument in this software system are shown below.

Table 6.9 Info key for MPI_WIN_CREATE, MPI_WIN_ALLOCATE, and MPI_WIN_CREATE_DYNAMIC

Info key Operation in this software system

accumulate_ops The behavior when the same_op is specified as a key value is the same as when the
same_op_no_op is specified.

The default value for this info key is the same_op_no_op.

Table 6.10 Info key for MPI_WIN_ALLOCATE_SHARED

Info key Operation in this software system

alloc_shared_noncontig When true is specified for the value of this info key, the memory is allocated in a location that
is close to each process.

When false is specified for the value of this info key, the memory is allocated continuously
across process ranks.

The default value for this info key is false.

6.4.8 Establishing Communication between Groups not Sharing a
Communicator

This section provides notes on establishing communication between two MPI process groups that do not share a communicator.

This communication can be established using background execution within one job, in particular, by using background execution and
specifying execution of the corresponding multiple mpiexec command in the job script. The -vcoordfile option or the --vcoordfile option
must be specified for mpiexec command. Refer to "4.1 Execution Command Formats" for details.

6.4.8.1 info Argument Value
Specify MPI_INFO_NULL as the info input argument of the MPI_OPEN_PORT routine, the MPI_COMM_ACCEPT routine, the
MPI_COMM_CONNECT routine, the MPI_PUBLISH_NAME routine, the MPI_UNPUBLISH_NAME routine, and the
MPI_LOOKUP_NAME routine.

6.4.8.2 MPI_COMM_JOIN Return Value
The output of the MPI_COMM_JOIN routine is MPI_COMM_NULL.

6.4.8.3 Service Names in the MPI_PUBLISH_NAME
The maximum length of a service name in this software system is 63 characters (63 bytes) (NULL characters are not included in C or C+
+). In this software system, the job unit is the effective range for a published service name. If there is an attempt to publish the same service
name again within one job, an error of the error class MPI_ERR_SERVICE may occur.

6.4.9 Dynamic Process Creation
This section provides notes on dynamic process creation.

6.4.9.1 info Argument Value
The keys that can be specified for the info argument of the MPI_COMM_SPAWN routine or the array_of_info argument of the
MPI_COMM_SPAWN_MULTIPLE routine provided by this software system are shown below. When the vcoordfile info key or the
num_nodes info key or the rank_map info key is specified to the array_of_info argument of MPI_COMM_SPAWN_MULTIPLE routine,
set the key and value to the first element of the array_of_info argument.

- 86 -

Table 6.11 Info keys for dynamic process creation
Info key Value Explanation

wdir Directory path name Specify the current directory when the dynamic process creation is
executed.

vcoordfile File path name Specify the path of the VCOORD file which describes the logical
coordinates of dynamic processes and number of CPUs (cores)
allocated to each process etc.

num_nodes String (Integer value of 1 or
more)

Specify the number of nodes that are used for the dynamic process
creation.

rank_map String (bychip or bynode) Specify the rule for the rank placement of the dynamic processes.

env String (NAME=VALUE) Specify the environment variables that are set to the dynamic
processes.

fjprof_spawn_dir_name Directory path name Specify the output directory of the profiling data for the dynamic
processes.

fjdbg_spawn_dir_name Any string Specify the identification name that is used for the output directory
name of deadlock detection of profiler.

6.4.9.1.1 Designation of Current Directory by wdir Key

The current directory path name of the dynamic processes can be passed by specifying the wdir key as the info argument. If the relative path
is specified, the value will be the relative path from the current directory when the MPI_COMM_SPAWN routine or the
MPI_COMM_SPAWN_MULTIPLE routine is called.

6.4.9.1.2 Designation of Node and the Number of CPUs (cores) by vcoordfile Key

The vcoordfile key is used to specify the nodes of the dynamic processes and the number of CPUs (cores) allocated to each process. The
absolute path or the relative path can be specified. If the specified value is the file name or the relative path, the value will be the relative
path from the current directory when the MPI_COMM_SPAWN routine or the MPI_COMM_SPAWN_MULTIPLE routine is called.
Since the VCOORD file that is specified with vcoordfile key can describe the nodes and number of CPUs (cores) of each process, the user
can specify the node, the node shape, the number of processes per node, the number of CPUs (cores), and rank placement of dynamic
processes using the VCOORD file that is appropriately described.

Refer to "4.5 VCOORD file format" for details on the VCOORD file.

 Note

- In the following cases, the error class MPI_ERR_SPAWN is returned as the error code.

- An invalid coordinate is specified in the VCOORD file.

- The specified VCOORD file does not exist.

- The number of processes which is specified with the argument maxprocs of the MPI_COMM_SPAWN routine or the
MPI_COMM_SPAWN_MULTIPLE routine is greater than the number of lines of the VCOORD file.

- The number of processes to be created on a node exceeds the limit on the number of processes that can be created per node.

- When only the number of CPUs (cores) that are assigned to each process is specified, the number of free nodes is too short.

- The number of CPUs (cores) exceeds the number of CPUs (cores) on the node.

- The format of the VCOORD file is invalid.

- Process allocation to the CPU (core) cannot be implemented under the value of numanode_assign_policy.

- In the following case, FJMPI_ERR_SPAWN_NO_AVAILABLE_NODES is returned as the error code. Refer to "6.4.9.5.1 Error Code
for Identifying the Cause of Failure of Dynamic Process Creation" for details on the error code.

- The specified coordinates in the VCOORD file are already used, and the free CPUs (cores) do not exist.

- 87 -

6.4.9.1.3 Designation of the Number of Nodes by num_nodes Key

The num_nodes key is used to specify the number of nodes for the dynamic process creation function. When this key is specified, the number
of processes per node is calculated from the expression "maxprocs / num_nodes". The "maxprocs" means the number of the dynamic
processes specified as the argument of the MPI_COMM_SPAWN routine or the MPI_COMM_SPAWN_MULTIPLE routine.

 Note

Designation of the number of nodes with the num_nodes key should be used with care.

- If the vcoordfile key is specified simultaneously, the designation of the number of nodes with num_nodes key is disabled.

- The nodes for the dynamic processes are decided by Job Operation Software automatically. If it is necessary to allocate the node
effectively in the node shape of job, use the vcoordfile key to specify the node in detail.

- If the number of nodes is invalid (for example, the number of nodes exceed the number of nodes which are allocated to the job), the error
class MPI_ERR_SPAWN is returned as the error code.

- If the specified number of nodes is not allocated since the part of nodes which are allocated to the job are in use, the error code
FJMPI_ERR_SPAWN_NO_AVAILABLE_NODES is returned. Refer to "6.4.9.5.1 Error Code for Identifying the Cause of Failure of
Dynamic Process Creation" for details on error code.

6.4.9.1.4 Designation of the Rule of Rank Placement of Processes by rank_map Key

The rank_map key is used to specify the rule of rank placement of the dynamic processes.

The values below can be specified for the rank_map key. The default value is bychip.

Table 6.12 Values that can be specified with rank_map key

Value Explanation

bychip The rank is set to CPU (core) on the same node first.

When 8 is specified for the maxprocs argument and 2 is specified for the num_nodes argument, the rank is set as the figure
below.

bynode The rank is set to different nodes in order of node ID in round-robin fashion.

When 8 is specified for the maxprocs argument and 2 is specified for the num_nodes argument, the rank is set as the figure
below.

Figure 6.5 Rank placement when bychip is specified

- 88 -

Figure 6.6 Rank placement when bynode is specified

 Note

Designation of the rank placement with the rank_map key should be used with care.

- If the vcoordfile key is specified simultaneously, the designation of the rank placement with rank_map key is disable.

- If the num_nodes key is specified simultaneously, both designations are effective.

6.4.9.1.5 Designation of Environment Variables by env Key

The env key is used to set the new environment variables to processes which are created by dynamic process creation function. The
designation of value to env key is described in the form of "NAME=VALUE". And, to set multiple environment variables, use the "\n" as
a delimiter.

6.4.9.1.6 Designation of Output of Profiling Data by fjprof_spawn_dir_name Key

The fjprof_spawn_dir_name key is set to specify the storage location of the result files for the profiler. The key-value is used as path name
of the output directory. For more information about the profiler, refer to Profiler User's Guide.

6.4.9.1.7 Designation of Output of Result of Deadlock Detection Function by
fjdbg_spawn_dir_name Key

The fjdbg_spawn_dir_name key is set to specify the storage location of the result files for the deadlock investigative function or abnormal
termination investigative function in the debugging support functions. The key-value is used as a part of the output directory name. For more
information about the deadlock investigative function and the abnormal termination investigative function, refer to Debugger for Parallel
Applications User's Guide.

6.4.9.2 Search for Executable Files
The executable files specified for the command argument of the MPI_COMM_SPAWN routine or the array_of_commands argument of
the MPI_COMM_SPAWN_MULTIPLE routine are searched according to the following rules.

- When the wdir info key is specified:

The files are searched in the specified directory.

- When the wdir info key is not specified:

First, the files are searched in the current directory when the MPI_COMM_SPAWN routine or the
MPI_COMM_SPAWN_MULTIPLE routine is called.

Next, the files are searched in the directories which are specified with the user environment variable PATH.

- 89 -

6.4.9.3 MPI_UNIVERSE_SIZE
The value of MPI_UNIVERSE_SIZE which is defined as the predefined attribute of MPI_COMM_WORLD is calculated by the following
formula.

"The number of nodes allocated to the job"

 * "The number of processes per node in the processes which are created by mpiexec command"

 or

"The number of nodes allocated to the job"

 * "The value specified with the -mpi max-proc-per-node option"

6.4.9.4 Designation of max-proc-per-node
If the number of processes per node of the dynamic processes is greater than the number of processes per node of the processes created by
mpiexec command, specify the "--mpi max-proc-per-node" option of Job Operation Software necessarily. Specify the number of processes
per node of dynamic process for the value of this option. Refer to "4.6 Execution of Multiple MPI Programs on the Same Node" for details.

6.4.9.5 Identification of the Cause of Failure of Dynamic Process Creation by the Error
Code

In this software system, when the MPI_COMM_SPAWN routine or the MPI_COMM_SPAWN_MULTIPLE routine is failed, whether or
not the cause of failure is shortage of free node can be identified by the error code. Using this error code,
MPI_COMM_GET_ERRHANDLER routine, and MPI_COMM_SET_ERRHANDLER routine, the user can select whether to continue
the processing of the program when the dynamic process creation is failed.

6.4.9.5.1 Error Code for Identifying the Cause of Failure of Dynamic Process Creation

The original error code with this software system is shown below.

Table 6.13 Original error code for dynamic process creation

Error code Error class Explanation

FJMPI_ERR_SPAWN_NO_AVAILABLE_NODES MPI_ERR_SPAWN Dynamic process creation failed because of the
shortage of free nodes.

6.4.9.5.2 Usage Example

The overview of the program which executes the dynamic process creation as soon as the node is freed using the error code
FJMPI_ERR_SPAWN_NO_AVAILABLE_NODES is shown below.

#include <mpi-ext.h>

 MPI_Comm_get_errhandler(...); /* Get the original error handler */

 MPI_Comm_set_errhandler(...); /* Switch the error handler */

 while (1) {

 while (1) {

 ret = MPI_Comm_spawn(..., &inter_comm, ...);

 if (MPI_SUCCESS == ret) {

 break;

 } else if (FJMPI_ERR_SPAWN_NO_AVAILABLE_NODES != ret) {

 /* End abnormally when the program for a reason other than

 the shortage of free node */

 MPI_Abort(...);

 }

 }

 MPI_Comm_disconnect(&inter_comm);

 if (...) {

 break;

 }

 }

 MPI_Comm_set_errhandler(...); /* Set the original error handler */

- 90 -

6.4.9.6 Notes
- Do not use the dynamic process creation function of this software system when the following conditions apply:

- The total invocation count for the MPI_COMM_SPAWN routine or the MPI_COMM_SPAWN_MULTIPLE routine exceeds
4294967295 for one execution of mpiexec command when dynamic process creation is used.

Job Operation Software outputs an error message and then the MPI program ends abnormally.

- The number of MPI_COMM_WORLD for the dynamic processes that exists at the same time exceeds 65535.

Job Operation Software outputs an error message and then the MPI program ends abnormally.

- Dynamic process creation executes something other than an MPI program.

The behavior is not guaranteed if something other than an MPI program is executed for the dynamic process creation.

Refer to the Job Operation Software manual for details on the Job Operation Software.

- If the same process repeatedly executes dynamic process creation, the created process information and communicator information
accumulates in memory and may cause memory shortages. Use with care.

6.4.9.7 Dynamic Process Creation for Java program
If the MPI_COMM_SPAWN routine or the MPI_COMM_SPAWN_MULTIPLE routine is called in a Java program, the classpath in which
the necessary Java class files exist must be set with not the -classpath option but the environment variable CLASSPATH.

An example of specifying the execution command and environment variables to execute a java program where a routine for dynamic process
creation is called is shown as follows.

An example of such a program is also shown. "installation_path" is the product/software installation path. For "installation_path", contact
the system administrator.

 Example

Example of specifying the execution command and environment variables

CLASSPATH=/home/user1/bin:$CLASSPATH

export CLASSPATH

PATH=/installation_path/bin:$PATH

export PATH

LD_LIBRARY_PATH=/installation_path/lib64:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH

mpiexec -n 2 java Spawn

Java program example

import mpi.*;

public class Spawn {

 private final static String CMD_ARGV1 = "THIS IS ARGV 1"; /* Argument1 to pass to the child process

*/

 private final static String CMD_ARGV2 = "THIS IS ARGV 2"; /* Argument2 to pass to the child process

*/

 private final static String CMD = "Spawn"; /* Name of the class file to be spawned */

 public static void main(String args[]) throws MPIException {

 MPI.Init(args);

 System.out.println("Start");

 String spawn_argv[] = {

 CMD,

 CMD_ARGV1,

 CMD_ARGV2

 };

- 91 -

 int count = 1;

 int errcode[] = new int[1];

 Intercomm parent;

 parent = Intercomm.getParent();

 if (!parent.isNull()) {

 /* child process */

 System.out.println("I am a child");

 }else{

 /* parent process : Spawn oneself */

 MPI.COMM_WORLD.spawn("java", spawn_argv, count, MPI.INFO_NULL, 0, errcode);

 System.out.println("I am a parent");

 }

 System.out.println("End");

 MPI.Finalize();

 }

}

6.4.10 Rank Changes in Accordance with Cartesian Topology
When the MPI_CART_CREATE routine is used to create a new communicator with attached Cartesian topology, new ranks can be
allocated in the order of the Cartesian coordinates, to the parallel processes belonging to the created communicator by specifying true in the
reorder argument. In other words, ranks can be changed on the basis of the Cartesian coordinates.

The conditions for changing ranks on the basis of Cartesian coordinates and the rules for rank changes are explained below.

6.4.10.1 Conditions Enabling Rank Changes
This section explains the conditions that must be met in order to change ranks using the MPI_CART_CREATE routine.

Note that rank changes are performed on the basis of the coordinates of the node space that Job Operation Software allocates to each parallel
process. To distinguish the coordinates of parallel processes from Cartesian coordinates, this manual refers to them as "logical coordinates"
or simply "coordinates".

The MPI_CART_CREATE routine changes ranks if all the following conditions are met:

- true is specified for the reorder argument

- The process shape of the input communicator comm_old (that is, the number of dimensions and the number of processes in each
dimension) is the same as the shape of the Cartesian topology being newly attached

- The process shape of the input communicator comm_old has no logical coordinate duplications or gaps

In this software system, shape matching when changing ranks compares the X, Y, and Z axes of the logical coordinates in sequence from
the start of the array in the dims argument of the MPI_CART_CREATE routine.

6.4.10.2 Rules for Rank Changes
When a Cartesian topology is created by the MPI_CART_CREATE routine, the Cartesian coordinates allocate ranks in ascending order
starting from 0, based on the logical coordinates of the process shape in accordance with the sequence below, to the parallel processes
belonging to input communicator comm_old.

- If the shape is one-dimensional (X axis), the process with coordinates closest to the logical coordinates starting point (0) is set as rank
0, and ranks are set, with that as a starting point, in sequence as processes become further away on the X axis.

- If the shape is two-dimensional (X axis and Y axis), the process with coordinates closest to the logical coordinates starting point (0,0)
is set as rank 0, and ranks are set, with that as a starting point, in sequence as processes become further away on the Y axis, and then
the X axis.

- 92 -

- If the shape is three-dimensional (X axis, Y axis, and Z axis), the process with coordinates closest to the logical coordinates starting point
(0,0,0) is set as rank 0, and ranks are set, with that as a starting point, in sequence as processes become further away on the Z axis, then
the Y axis, and then the X axis.

6.4.10.3 Checking Rank Changes
This software system provides the extended interface FJMPI_TOPOLOGY_CART_REORDER for checking whether or not ranks have
been changed. Refer to "5.1 Rank Query Interface" for information on the extended interface FJMPI_TOPOLOGY_CART_REORDER.

6.4.10.4 Sample Program
The MPI program example below executes the MPI_Cart_create function for a communicator with the following conditions and checks
whether or not the ranks have actually been changed:

1. Dimensions: 3 dimensions

2. Node shape (X:2,Y:3,Z:4)

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <mpi.h>

#include <mpi-ext.h>

#define FAILURE 1

int main(int argc, char *argv[])

{

 MPI_Comm cart_comm_on;

 MPI_Comm cart_comm_off;

 int size, rank;

 int dims_on[3] = {2, 3, 4}; /* 3-dimensions 2x3x4 is reordered. */

 int dims_off[3] = {3, 4, 2}; /* 3-dimensions 3x4x2 is not reordered. */

 int periods[3] = {1, 1, 1}; /* cyclic fixed */

 int cart_result;

 char host[255];

 gethostname(host, 255);

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 fprintf(stderr, "[%s] MPI_COMM_WORLD's MPI_Comm_size : %d\n", host, size);

 fprintf(stderr, "[%s] rank of MPI_COMM_WORLD = %d\n", host, rank);

 MPI_Cart_create(MPI_COMM_WORLD, 3, dims_on, periods, 1, &cart_comm_on);

 MPI_Comm_rank(cart_comm_on, &rank);

 fprintf(stderr, "rank after MPI_Cart_create() = %d\n", rank);

 if(MPI_SUCCESS != FJMPI_Topology_cart_reorder(cart_comm_on, &cart_result)) {

 fprintf(stderr, "FJMPI_Topology_cart_reorder ERROR\n");

 MPI_Abort(cart_comm_on, FAILURE);

 }

 fprintf(stderr, "[%s] Cartesian Reorder cart_comm_on --> %s \n",

 host, cart_result ? "ON" : "OFF");

 MPI_Cart_create(MPI_COMM_WORLD, 3, dims_off, periods, 1, &cart_comm_off);

- 93 -

 if(MPI_SUCCESS != FJMPI_Topology_cart_reorder(cart_comm_off, &cart_result)) {

 fprintf(stderr, "FJMPI_Topology_cart_reorder ERROR\n");

 MPI_Abort(MPI_COMM_WORLD, FAILURE);

 }

 fprintf(stderr, "[%s] Cartesian Reorder cart_comm_off --> %s \n",

 host, cart_result ? "ON" : "OFF");

 MPI_Finalize();

 return 0;

}

Ranks are changed by the first MPI_Cart_create function invocation, but not by the second invocation. This is because the Cartesian
topology shape specified in the argument in the second MPI_Cart_create function invocation is not the same as the process shape specified
when the MPI program was executed.

After these MPI_Cart_create functions are called, the program uses the FJMPI_Topology_cart_reorder function to evaluate whether or not
the ranks have in fact been changed.

The evaluation result is returned to the second argument (cart_result variable in the program) of the FJMPI_Topology_cart_reorder
function. If the evaluation result value is 0, this indicates that the ranks were not changed.

6.4.11 Notes on Send Buffer and Receive Buffer
A memory area to which an MPI program parallel process cannot write should not be specified in the send buffer or receive buffer. Behavior
is not guaranteed if the incorrect type of memory area is specified in the send buffer.

Memory areas to which an MPI program parallel process cannot write include, for example, MPI program instruction areas (.text sections),
and similar.

6.4.12 MPI Input-Output
The behavior of the I/O of MPI in this software system conforms to the implementation of ROMIO.

Information concerning ROMIO is available from http://www.mcs.anl.gov/projects/romio/.

The following restrictions exist.

- The file input-output data size that can be handled once is less than or equal to "2GiB - 64KiB". The data size is "the datatypes size of
one element * number of elements".

The file systems handled as MPI input-output are FEFS, and NFS. Other file systems are not supported. In addition, for NFS, you must
specify noac for mount option to prevent the unmatch of the content because of the data update delay. Refer to the FEFS manual for
information on FEFS.

In this software system, native is the only supported data expression.

The MPI_FILE_OPEN routine provided by this software system does not change the size of the existing file.

The input-output routine of this software system may create a temporary file in the same directory as the user's input-output file. These are
the files created when MPI_FILE_OPEN routine is used to open a file. The size of one of these files is about eight bytes. The
MPI_FILE_CLOSE routine usually deletes this file but it may remain if the program is forcibly ended, or if an error occurs in the system.

If a file with a name like the one below remains after MPI program execution has ended, manually delete the file.

.[MPI I/O filename].shfp.numeric

The information set in the status of collective input-output routines (MPI_FILE_READ_ALL routine and similar) is always based on the
argument information at the time of invocation.

Table below shows the Info object keys and values that can be used by MPI input-output in this software system.

- 94 -

http://www.mcs.anl.gov/projects/romio/

Table 6.14 Info object keys and values that can be used by MPI input-output
Key Default value Description

cb_buffer_size "16777216" Size of the temporary buffer area used for collective
access

cb_nodes Number of hosts assigned to communicator
that performs the input-output

Number of processes that actually perform input-
output using collective access

ind_rd_buffer_size "4194304" Size of buffer area at time of individual process read

ind_wr_buffer_size "524288" Size of buffer area at time of individual process write

romio_ds_write "disable" Specify whether or not to apply data sieving on write.

Specify either "enable" or "ENABLE" to enable data
sieving on write. Specify either "disable" or
"DISABLE" not to enable data sieving on write.
Specify either "automatic" or "AUTOMATIC" to let
the MPI library judge whether to enable data sieving on
write.

romio_ds_read "automatic" Specify whether or not to apply data sieving on read.

Specify either "enable" or "ENABLE" to enable data
sieving on read. Specify either "disable" or
"DISABLE" not to enable data sieving on read. Specify
either "automatic" or "AUTOMATIC" to let the MPI
library judge whether to enable data sieving on read.

In addition to the above, the key shown in table below can be specified if the file system is FEFS.

Table 6.15 Info object keys and values that can be used with FEFS

Key Default value Meaning

direct_read "false" Specify whether or not to perform direct I-O (read).

Specify either "true" or "TRUE" to use direct I-O (read).

direct_write "false" Specify whether or not to perform direct I-O (write).

Specify either "true" or "TRUE" to use direct I-O (write).

striping_unit New directory
settings value

Width of one stripe

striping_factor New directory
settings value

Number of input-output devices that perform file striping

 Note

1. The "striping_unit" value must be a whole number multiple of "65536"(64KiB). The minimum "striping_unit" value is
"65536"(64KiB) and the maximum is "4294901760"(4GiB - 64KiB). If "0" is specified, 1048576 is used.

2. The "striping_factor" value must be within the range "-1" to "4000". If the value exceeds the number of OSTs in the FEFS file system,
the entire number of OSTs in the file system is used as the specified value. If "-1" is specified, striping is performed using all OSTs.
If "0" is specified, 1 is used.

6.4.13 Use of the Profiling Interface
- For C programs, MPI calls can be intercepted using the C binding of the profiling interface.

- For Fortran programs, MPI calls can be intercepted using the Fortran binding of the profiling interface.

- For C++ programs, MPI calls can be intercepted using the C binding of the profiling interface.

- 95 -

6.4.14 MPI Tool Information Interface
In this software system, the MPI tool information interface is supported. But no control variables and no performance variables are exposed.

6.4.15 Routines implemented by macros
The following routines are defined as macros in the mpi.h file for the C language.

- MPI_AINT_ADD

- MPI_AINT_DIFF

- PMPI_AINT_ADD

- PMPI_AINT_DIFF

6.4.16 Arguments of User-defined Error Handlers
Usually, when an error is detected during execution of an MPI program, an error handler defined in the MPI library is called. This error
handler can be changed to a user-defined routine. In the C bindings of the MPI, the prototypes of user-defined error handlers are defined
as the following routines with a variable number of arguments.

typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);

typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);

typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

In the MPI standard, the arguments except for the first and second ones of these error handlers are assumed to be implementation-dependent.
In this software system, a const char * type of string which represents the name of the MPI routine where an error is detected is passed to
the third argument of these error handlers. No value is passed to the fourth and following arguments.

6.4.17 Collective Communications in Inter-communicator
In this section, notes on collective communications executed in an inter-communicator of this library is described.

A process whose argument root is MPI_ROOT is called the root process. A group that have the root process is called the first group and the
otherwise is called the second group.

Number of elements

This library does not guarantee any operations when the conditions showed in the following table are met.

Routine name Condition of not guaranteeing

MPI_Allgather When the product of the size of the second group and the second argument sendcount
specified in rank 0 or the product of the size of the first group and the fifth argument
recvcount in rank 0 is over 2147483647.

MPI_Allgatherv When the sum of the second argument sendcount specified in ranks in a certain group is
over 2147483647.

MPI_Gather When the product of the size of the second group and the second argument sendcount
specified in rank 0 or the product of the size of the first group and the fifth argument
recvcount in rank 0 is over 2147483647.

MPI_Gatherv When the sum of the second argument sendcount specified in ranks in the second group
is over 2147483647.

MPI_Reduce_scatter When the sum of the elements of the third argument recvcounts specified in ranks in a
certain group is over 2147483647.

MPI_Reduce_scatter_block When the product of the third argument recvcount in a certain rank and the size of the
group to which the rank belongs is over 2147483647.

- 96 -

Routine name Condition of not guaranteeing

MPI_Scatter When the product of the size of the second group and the second argument sendcount
specified in the root process in the first group or the product of the size of the first group
and the fifth argument recvcount in rank 0 is over 2147483647.

MPI_Scatterv When the sum of the elements of the second argument sendcounts specified in a certain
rank in the second group is over 2147483647.

MPI_Iallgather

MPIX_Allgather_init

When the product of the fifth argument recvcount specified in a certain rank and the value
obtained by subtracting 1 from the size of the opposite group of the rank is over
2147483647.

MPI_Ialltoall

MPIX_Alltoall_init

When the product of the second argument sendcount specified in a certain rank and the
value obtained by subtracting 1 from the size of the opposite group of the rank or the
product of the fifth argument recvcount specified in a certain rank and the value obtained
by subtracting 1 from the size of the opposite group of the rank is over 2147483647.

MPI_Igather

MPIX_Gather_init

When the product of the fifth argument recvcount specified in the root process in the first
group and the value obtained by subtracting 1 from the size of the second group is over
2147483647.

MPI_Ineighbor_allgather

MPIX_Neighbor_allgather_init

When the product of the value obtained by subtracting 1 from in-degree of a certain rank
and the fifth argument recvcount specified in that rank is over 2147483647.

MPI_Ineighbor_alltoall

MPIX_Neighbor_alltoall_init

When the product of the value obtained by subtracting 1 from out-degree of a certain rank
and the fifth argument recvcount specified in that rank is over 2147483647.

MPI_Ireduce_scatter

MPIX_Reduce_scatter_init

When the sum of the elements of the fifth argument recvcounts specified in a certain rank
is over 2147483647.

MPI_Ireduce_scatter_block

MPIX_Reduce_scatter_block_init

When the product of the fifth argument recvcount in a certain rank and the size of its local
communicator is over 2147483647.

MPI_Iscatter

MPIX_Scatter_init

When the product of the second argument sendcount specified in the root process of the
first group and the value obtained by subtracting 1 from the size of the second group is
over 2147483647.

Datatypes

This library does not guarantee any operations when the conditions showed in the following table are met.

Routine name Condition of not guaranteeing

MPI_Allgatherv When the size of datatype is not same between the ranks in the same group.

MPI_Gatherv When the size of datatype is not same between the ranks in the same group.

MPI_Scatterv When the size of datatype is not same between the ranks in the same group.

6.5 Eager Protocol and Rendezvous Protocol
This software system implements two communication protocols, the Eager protocol and the Rendezvous protocol, for message
communication.

Eager protocol

Under the Eager protocol, the send side sends messages regardless of the receive side status. This is referred to as an asynchronous type
of communication.

Under the Eager protocol, the send side process sends messages without having information about the receive destination memory area
of the user program. Therefore, it prepares in advance a buffer area, the size of the message or greater, in the internal MPI library area.
The Eager protocol does not have the overhead of performing linkage processing between the send side and the receive side, but it does
have the overhead of copying between the internal buffer area and the user program memory space.

- 97 -

Rendezvous protocol

Under the Rendezvous protocol, the send side and receive side perform linkage processing, and the send side does not send the message
until the receive side message storage destination is established. This is referred to as a synchronous type of communication.

Under the Rendezvous protocol, the send side and receive side perform linkage processing in advance, and the send side process sends
the message after the receive destination memory area of the user program is established. Thus, even if a large message is sent, a large
internal buffer area is not required. In particular, if a message is continuous data, the message can be copied directly from the send side
memory space to the receive side memory space of the user program without using the internal buffer area.

This software system internally switches between these protocols according to the size of the message being sent. The Eager protocol is
selected for small messages, and the Rendezvous protocol is selected for communication of large messages. In the case of Tofu
communication, more precisely, the distance (number of hops) of the message communication is also taken into account, not just the
message size. The compute nodes in this computing system are physically connected by a mesh or torus format, and message
communication between any two compute nodes is performed via a number of other compute nodes, as required. In this software system,
the "threshold value" (number of bytes) for switching between Eager communication and Rendezvous communication in the fast
communication mode of Tofu communication is obtained using the following formula:

"Threshold value" = 38,600 + "number of hops" * 296

In the memory-saving communication mode, this software system automatically sets appropriate "threshold values" that reduce memory
usage. Refer to "6.10 Suppressing Memory Usage" for information on the fast communication mode and the memory-saving
communication mode.

In the following cases, the Rendezvous protocol may be faster regardless of the message size:

- MPI programs that use nonblocking communication to perform multiple communications simultaneously

- MPI programs that execute receive routines (the MPI_RECV routine, etc.) more quickly than send routines (the MPI_SEND routine,
etc.)

In these cases, improved MPI program performance can be expected due to changing this "threshold value". The MCA parameter
btl_tofu_eager_limit can be used to change the "threshold value". Refer to "Table 4.6 btl_tofu_eager_limit (changes the threshold value for
switching the communication method)" for information on the MCA parameter btl_tofu_eager_limit.

For intra-node communication, the "threshold value" for switching between Eager communication and Rendezvous communication also
exists. However, the value is fixed to 32,768, that is different from the value for Tofu communication. This "threshold value" cannot be
changed by the user.

6.6 Stride RDMA Communication
With general derived datatype message communication, messages are split into multiple messages internally, and using Eager
communication, messages are sent via a message pipeline. An internal buffer area is secured and the split message fragments are temporarily
copied to that buffer area. As a result, the time taken for communication increases significantly for large messages.

This software system uses the Tofu interconnect RDMA communication function instead of the pipeline-type processing used under Eager
protocol. This improves communication because messages are copied directly from the user program data area and the internal buffer area
is not used. In this software system, this mechanism is called Stride RDMA communication. Stride RDMA communication enables better
communication performance if the derived datatype configuration is relatively simple and the overall message size is large.
Specifically, Stride RDMA communication is enabled for point-to-point communication if all the following conditions are met:

- The datatypes on the sender and the receiver are equivalent

- The message is non-contiguous in memory

- The communication is performed between different compute nodes

- Total size (in bytes) of messages being sent is the same or greater than the "threshold value" for switching the protocol

Refer to "6.5 Eager Protocol and Rendezvous Protocol" for information on the "threshold value" for switching the protocol.

Stride RDMA communication can be disabled by specifying the value 0 for the MCA parameter pml_ob1_use_stride_rdma. Refer to
"Table 4.47 pml_ob1_use_stride_rdma (use of Stride RDMA communication)" for information on the MCA parameter
pml_ob1_use_stride_rdma.

- 98 -

 Example

Extract from a program where Stride RDMA communication is applied

count = 4;

blength = 16384;

stride = blength * 2;

MPI_Type_vector(count, blength, stride, MPI_BYTE, &newtype);

MPI_Type_commit(&newtype);

if (myrank ==0) {

 MPI_Send(sendbuf, 1, newtype, 1, tag, MPI_COMM_WORLD);

 MPI_Recv(recvbuf, 1, newtype, 1, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}

if (myrank == 1) {

 MPI_Recv(recvbuf, 1, newtype, 0, tag, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

 MPI_Send(sendbuf, 1, newtype, 0, tag, MPI_COMM_WORLD);

}

6.6.1 Notes on Stride RDMA Communication
A program may terminate abnormally after outputting the following error message in Stride RDMA communication if memory regions that
are not guaranteed to be within the same sequential storage are used for communication using a derived datatype.

- An error message containing the string "[mpi::common-tofu::tofu-stag-error] Failed to query/register Tofu STag.".

In this case, disable Stride RDMA communication by specifying the value 0 for the MCA parameter pml_ob1_use_stride_rdma. However,
note that the communication performance may decrease.

Refer to "Table 4.47 pml_ob1_use_stride_rdma (use of Stride RDMA communication)" for information on the MCA parameter
pml_ob1_use_stride_rdma.

6.7 Using Multiple TNIs
This computing system is connected by means of Tofu interconnects. A network interface device, known as a TNI (Tofu Network Interface),
is deployed at each compute node. This computing system has six TNIs at each compute node. The MPI programs allocated to each node
use these TNIs, thus enabling highly efficient message send-receive. For MPI programs that have a small number of simultaneous
communications, the communication time for small-sized messages can be shortened by reducing the number of TNIs. The upper limit for
the number of TNIs to be used can be changed using the MCA parameter common_tofu_max_tnis. Refer to "Table 4.21
common_tofu_max_tnis (changes the upper limit for the number of TNIs to be used)" for information on the MCA parameter
common_tofu_max_tnis.

Using multiple TNIs can improve the throughput performance of point-to-point communication by providing more opportunities to use
multiple communication paths, even for large messages. The use of multiple communication paths makes it possible to split the message,
thus increasing the potential for efficient communication. This is referred to as trunking. Trunking can be enabled by specifying a value of
1 in the MCA parameter common_tofu_use_multi_path. Refer to "Table 4.30 common_tofu_use_multi_path (performs point-to-point
communication using multiple communication paths)" for information on using the MCA parameter common_tofu_use_multi_path.

Communication performance throughput can be expected to improve using trunking as described above. However, conversely, the multiple
TNIs may be used exclusively for one communication partner even if there are multiple communication partners. This may affect the overall
throughput performance when message communication is implemented with the other communication partners. In addition, if the
communication path that is to be used is already in use by another communication process, contention occurs and the overall communication
performance may decrease instead of improving. Thus, depending on the application program and other communication environment
factors, the benefits of trunking may not be realized. Trunking should therefore be used with care.

The number of TNIs that can be used for trunking depends on the number of processes executed in the same node or the MCA parameter
common_tofu_max_tnis specification. For example, if 2 is specified as the value for common_tofu_max_tnis, a maximum of 2 TNIs can
be used by MPI processes. In this case, 2 is also the maximum number of TNIs that can be used for trunking.

- 99 -

6.8 Reduction Operation Sequence Guarantee in Collective
Communication

This software system may change the sequence of reduction operations performed by the collective communication routines
MPI_REDUCE, MPI_IREDUCE, MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER, MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK, and MPI_SCAN. The
sequence is changed internally depending on communicator size, message size, rank placement, and other communication conditions in
order to optimize the execution time for collective communication. For floating point data, changing the sequence of reduction operations
may affect the accuracy of the computed results.

This software system provides a function that fixes and guarantees the reduction operation sequence in order to prevent these types of
reduction operations from affecting the computed results. To configure this, specify 1 for the MCA parameter
coll_base_reduce_commute_safe to guarantee that the reduction operation sequence is always fixed. However, note that when this function
is used, the execution time for collective communication will increase because the reduction operation sequence is fixed. Refer to "Table 4.7
coll_base_reduce_commute_safe (guarantees the reduction operation sequence)" for information on the MCA parameter
coll_base_reduce_commute_safe.

Normally, the default value of 0 is set for the MCA parameter coll_base_reduce_commute_safe. Use of the default settings as much as
possible is recommended, except when it is necessary to take precautions with the reduction operation sequence changing.

Note that the MPI_OP_CREATE routine can be used in an MPI program to achieve a result that is equivalent to using this sequence
guarantee function. For example, if false is specified as the commute argument of the MPI_OP_CREATE routine, a new non-commute
operation is defined and this new operation is used to perform reduction operations, giving an equivalent result to that of the sequence
guarantee function.

Moreover, when you want to specify the reduction operation order expressly, collect the data used for the operation in a specific rank, use
the MPI_REDUCE_LOCAL routine, and execute while specifying the order.

6.9 Process Creation from Inside an MPI Program
In this software system, the following restriction applies to MPI programs if they create a child process using a system call

(for example, fork), library function (for example, system), service routine provided by a Fortran system (for example,

FORK), or the like.

- If there is a memory region which is in use for an MPI communication buffer at the time of process creation, pages containing the
memory region may not be inherited to the child process and the child process may not be able to access the pages.

"In use" periods are defined by the following rules.

- For a send/receive buffer of a blocking operation of point-to-point communication, collective communication, or neighborhood
collective communication, a period starts when a communication routine is called and ends when the routine returns.

- For a send/receive buffer of a nonblocking operation of point-to-point communication, collective communication, or neighborhood
collective communication, a period starts when a communication is initiated by the MPI_ISEND routine or the like and ends when the
communication is completed by the MPI_WAIT routine or the like.

- For a send/receive buffer of a persistent request operation of point-to-point communication, collective communication, or
neighborhood collective communication, a period starts when a communication request is created by the MPI_SEND_INIT routine or
the like and ends when the request is freed by the MPI_REQUEST_FREE routine. Before freeing the request, the corresponding
communication must have been completed by the MPI_WAIT routine or the like.

- For a window of one-sided communication created by a routine other than the MPI_WIN_CREATE_DYNAMIC routine, a period
starts when the window is created by the MPI_WIN_CREATE routine or the like and ends when the window is freed by the
MPI_WIN_FREE routine.

- For a memory region attached by the MPI_WIN_ATTACH routine, a period starts when the memory region is attached by the
MPI_WIN_ATTACH routine and ends when the memory region is detached by the MPI_WIN_DETACH routine or the corresponding
window is freed by the MPI_WIN_FREE routine.

- For an origin buffer of RMA communication of one-sided communication, a period starts when an RMA communication is started and
ends when the communication is completed locally by the MPI_WIN_FENCE, MPI_WIN_FLUSH, or MPI_WAIT routines, or the
like.

- 100 -

- For a memory allocated by the MPI_ALLOC_MEM routine, a periods starts when the MPI_ALLOC_MEM routine is called and ends
when the corresponding MPI_FREE_MEM routine is called.

For example, suppose that a child process created by the fork system call accesses such a memory region before the process calls the execve
system call or _exit system call. Then, due to this restriction, a segmentation fault error may occur in the process.

Whether accessible or not is decided for each page managed by the OS. Therefore, if a memory region is in use, the neighboring memory
regions may also not be able to be accessed.

The memory region of a created child process may be allocated on the same page as the memory region used for a communication buffer
within the MPI library. In this case, a segmentation fault error may occur in the child process even if it is not judged to be "in use" by the
above criteria. To make this less likely to occur, specify 1 for the MCA parameter common_tofu_use_memory_pool. Note that this option
may increase memory usage. See "Table 4.31 common_tofu_use_memory_pool (uses memory pool for the MPI library)" for information
on the MCA parameter common_tofu_use_memory_pool.

6.10 Suppressing Memory Usage
When an MPI program is executed, this software system internally secures the memory, such as receive buffers in each parallel process,
required by the MPI library itself. For each parallel process, memory must be secured for each of the communication partner processes. In
order to avoid unnecessary allocation of memory, this software system only secures memory for a communication partner process at the
time of the first communication with that process. In this manual, this method is referred to as dynamic connection. Use of uses dynamic
connection enables memory usage to be suppressed to a certain extent. However, even when the dynamic connection mode is used and the
memory usage is low immediately after execution of the MPI_INIT routine, actual memory usage increases if the number of communication
partner processes increases during execution of the MPI program.

This section describes methods for minimizing the amount of memory used by this software system.

6.10.1 Switching between Fast Communication Mode and Memory-Saving
Communication Mode

In order to save memory usage as much as possible with suppressing degradation of overall communication performance, this software
system provides two communication modes for Tofu communication: the fast communication mode and the memory-saving
communication mode. In this software system, these two communication modes are internally distinguished for each peer process.

The fast communication mode uses a comparatively large receive buffer called the Large receive buffer and an additional receive buffer
called the Small receive buffer for each peer process. Using these receive buffers, communications are performed as fast as possible.

In contrast, a communication with the memory-saving communication mode is performed so that memory usage is saved as much as
possible. There are two methods for the memory-saving communication mode. The first one is the method which uses only a comparatively
small receive buffer called the Medium receive buffer. A process has only one Medium receive buffer for each peer process. This method
can save memory usage, although communication performance is somewhat worse. The second one is the method which uses only a receive
buffer called the Shared receive buffer. A process has only one Shared receive buffer and the buffer is used in common by all peer processes
which communicate with the process using the memory-saving communication mode. Thus, the total memory usage for receive buffers is
constant when this method is used. Therefore, this method can save memory usage more than the first method of the memory-saving
communication mode when there are especially many peer processes which a process actually communicate with. However, note that
communication performance is much worse. The method which is used for the memory-saving communication mode can be chosen using
the MCA parameter common_tofu_memory_saving_method. Refer to "Table 4.25 common_tofu_memory_saving_method (changes the
method used for the memory-saving communication mode)" for details of this MCA parameter. In order to balance communication
performance and memory usage, it is important to use these communication modes appropriately. For example, there is a usage that the fast
communication mode is used for a peer process which a process frequently communicates with and the memory-saving communication
mode is used for a peer process which a process less frequently communicates with.

Peer processes which a process communicate with using the fast communication mode are decided at the time of execution depending on
the communication pattern in an MPI program. Normally, the memory-saving communication mode is used for the first time
communication even if a process communicate with any peer process. If the number of communications with a peer process reaches a
threshold value, the fast communication mode is used for communications with the peer process after that. The upper limit of the number
of peer processes which a process can communicate with using the fast communication mode can be set by a user. If the number of processes
which a process communicates with reaches this upper limit, communication mode on this process will not be switched any more.

Normally, 256 is set as the upper limit for the number of processes that use the fast communication mode. This upper limit can be changed
using the MCA parameter common_tofu_max_fastmode_procs. Depending on this MCA parameter setting, all communications can be

- 101 -

performed in the fast communication mode. Alternatively, all communications can also be performed in the memory-saving communication
mode. Refer to "Table 4.20 common_tofu_max_fastmode_procs (changes the upper limit for the number of processes that can communicate
in fast communication mode)" for information on the MCA parameter common_tofu_max_fastmode_procs.

Normally, 16 is set as the communication count standard value that is the condition for switching from the memory-saving communication
mode to the fast communication mode. This standard value can be changed using the MCA parameter common_tofu_fastmode_threshold.
However, this value includes the count of control communications performed in the MPI library. Therefore this switching may occur before
calling the MPI routines fewer times than the specified value. Refer to "Table 4.18 common_tofu_fastmode_threshold (changes the
conditions for switching to fast communication mode)" for information on the MCA parameter common_tofu_fastmode_threshold.

The sizes of the Large receive buffer, the Medium receive buffer, and the Shared receive buffer can be changed using the MCA parameters
common_tofu_large_recv_buf_size, common_tofu_medium_recv_buf_size, and common_tofu_shared_recv_buf_size, respectively.
Refer to "Table 4.19 common_tofu_large_recv_buf_size (changes the size of the Large receive buffer)", "Table 4.22
common_tofu_medium_recv_buf_size (changes the size of the Medium receive buffer)", and "Table 4.29
common_tofu_shared_recv_buf_size (changes the size of the Shared receive buffer)" for details of these three MCA parameters.

If there are a large number of parallel processes, it is important to use these MCA parameters to tune the system according to the amount
of memory required for the MPI program itself and the desired communication performance. Refer to "6.11 Memory Usage Estimation
Formulae and Tuning Guidelines" for details.

6.10.2 Influence of Dynamic Connection on Performance
The dynamic connection built in this software system executes some processes including control communications at the time of the first
communication with that process. Therefore, the first communication time is longer than subsequent usual communication time.

For example, if an MPI program has a loop including a code that performs a broadcast changing root rank with each cycle, without using
MPI_BCAST/MPI_IBCAST routine, the root rank in each cycle of the loop becomes bottleneck and communication performance may
come down significantly. In that case, all the code that performs the first communication with each of the communication partner processes
should be moved out of (and before) the loop. Such significant communication performance degradation may be prevented.

If the number of peer processes under connection establishment exceeds 130, communication performance may decrease due to frequent
retries of the communication processing. In that case, divide calls of the MPI_WAITALL routines, etc. so that the number of the first time
communication requests to each process issued simultaneously is less than or equal to 130.

6.11 Memory Usage Estimation Formulae and Tuning Guidelines
Each job has a limit in size of usable memory on each compute node, and the size of memory which an MPI program including MPI library
uses on each node cannot exceed the limit. In case an MPI program is not likely to be executed under the memory limitation, program tuning
is required from the efficiency viewpoint on memory usage.

This section describes memory usage estimation formulae, tuning guidelines, and the specification of restriction values.

6.11.1 Memory Usage Estimation Formulae
The MPI library memory usage for a specific MPI process can be estimated using the formula shown in "Figure 6.7 Estimation formula".
However, note the following:

- The estimation formula shown in "Figure 6.7 Estimation formula" can be used only for when using large pages. Refer to "Job Operation
Software End-user's Guide for HPC Extensions" for information on large pages.

- Because the memory management of operating system is done per page, more memory than the estimated result may be required
depending on page size.

- Due to fluctuations in memory usage by factors other than the MPI library, the difference between the result estimated by the formula
shown in "Figure 6.7 Estimation formula" and the actual result measured in an MPI job execution may be large.

- Use the estimation formula shown in the figure below if the number of parallel processes in the MPI program is about 200 or more. If
the number of parallel processes is less than this, note that there will be large errors in the calculated results, so they do not make good
references. Also note that the values obtained are not necessarily accurate even if the number of parallel processes is over 200.

- The estimation formula shown in the figure below cannot be used if the MPI program uses one-sided communication, if dynamic
process creation is being used, or if communication is established between MPI process groups that do not share a communicator.

- 102 -

- The estimation formula shown in the figure below also cannot be used if the MCA parameter common_tofu_use_memory_pool is set
to 1. Refer to "Table 4.31 common_tofu_use_memory_pool (uses memory pool for the MPI library)" for information on the MCA
parameter common_tofu_use_memory_pool.

- The difference between the result estimated by the formula shown in "Figure 6.7 Estimation formula" and the actual memory usage may
be large when the value 2 or 3 is specified for the MCA parameter common_tofu_conv_dim. Refer to "Table 4.16
common_tofu_conv_dim (executes an MPI program after converting the dimensions of the coordinate of each process to higher
dimensions)" for information on the MCA parameter common_tofu_conv_dim.

- If there are multiple MPI processes in a compute node, the larger percentage of memory on the compute node is used by the MPI
processes. Therefore, pay particular attention to memory usage if the number of MPI processes per compute node is large. For example,
if the number of compute nodes which are used in a job execution is 25600 and the number of MPI processes per compute node is 48,
the memory usage immediately after the MPI_INIT routine is called will reach 90% of the memory on the compute node and it is likely
that the application will not work.

"Table 6.16 Variables in memory usage estimation formulae" shows the meanings of the variables in this estimation formula.

Figure 6.7 Estimation formula

The first line in the estimation formula shown in the Figure above indicates the minimum amount of memory consumed by any MPI
program. This is the amount of memory secured when execution of the MPI program is started and the MPI_INIT routine is called. This
value depends on the total number of processes.

The value in the second line through the fifth line in the estimation formula shown in the Figure above changes depending on the total
number of communication partner processes, the number of processes communicating in the fast communication mode, and whether the
process has MPI communications with itself or not. This value increases at the point when communication with a new communication
partner process is first performed.

The sixth line in the estimation formula shown in the figure above indicates the sum of the memory amounts consumed by each
communicator. These communicators include MPI_COMM_WORLD. The value increases at the point when each communicator is created
and when a communication is issued by that communicator.

The seventh line in the estimation formula shown in the Figure above becomes larger when an unexpected message is issued. An unexpected
message is a message for which invocation of a receive routine, such as the MPI_RECV routine, in response to a send routine, such as the
MPI_SEND routine, is delayed. The receive side process uses memory to temporarily save the received message.

- 103 -

Table 6.16 Variables in memory usage estimation formulae
Variable Meaning of

variable
Explanation of variable Value

NProc Total number of
processes

The number of processes belonging to the
communicator MPI_COMM_WORLD
including that process.

-

NPeer Number of
communication
partner processes

The number of communication partner
processes of that MPI process. The value is
0 immediately after the MPI_INIT routine is
called, but the value increases at the point of
the first communication with a new
communication partner process. This value
includes processes performed by
communication internally in the MPI library
during collective communication or similar,
not just the number of processes performed
by point-to-point communication coded in
the MPI program.

-

NFastPeer Number of
communication
partner processes
using fast
communication
mode

Out of the number of communication
partner processes, the number of processes
that use the fast communication mode. If the
memory-saving communication mode is not
used, this value is the same as the number of
communication partner processes. The
value specified in the MCA parameter
common_tofu_max_fastmode_procs
becomes the upper limit value.

-

NLoopback Whether the
process has MPI
communications
with itself or not

The value is 1 if the process has MPI
communication with itself. The value is 0
immediately after the MPI_INIT routine is
called, but the value becomes 1 at the point
of the first communication with itself.

-

NMember Number of
processes
belonging to that
communicator

The number of processes varies for different
communicators.

-

NPeerMember Number of
communication
partner processes
in that
communicator

Number of communication partner
processes that communicate using that
communicator. The value varies for
different communicators. The value is 0
immediately after the communicator is
created, but the value increases at the point
of the first communication with a new
communication partner process. This value
includes processes performed by
communication internally in the MPI library
during collective communication or similar,
not just the number of processes performed
by point-to-point communication coded in
the MPI program. If multiple
communicators are used for communication
with a particular MPI process, the values for
those communicators are added.

-

- 104 -

Variable Meaning of
variable

Explanation of variable Value

BLarge Size of Large
receive buffer

The value specified in the MCA parameter
common_tofu_large_recv_buf_size

Default value: 1MiB

BSmall Size of Small
receive buffer

A constant 64KiB

BMedium Size of Medium
receive buffer

The value specified in the MCA parameter
common_tofu_medium_recv_buf_size

Default value: 2KiB

Note that if the value 2 is specified for the
MCA parameter
common_tofu_memory_saving_method, the
value of BMedium is 0B regardless of the value

specified for the MCA parameter
common_tofu_medium_recv_buf_size.

Refer to "Table 4.25
common_tofu_memory_saving_method
(changes the method used for the memory-
saving communication mode)" for details of
the MCA parameter
common_tofu_memory_saving_method.

BShared Size of Shared
receive buffer

The value specified in the MCA parameter
common_tofu_shared_recv_buf_size

Default value: 16MiB

Note that if the value 1 is specified for the
MCA parameter
common_tofu_memory_saving_method, the
value of BShared is 0B regardless of the value

specified for the MCA parameter
common_tofu_shared_recv_buf_size.

Refer to "Table 4.25
common_tofu_memory_saving_method
(changes the method used for the memory-
saving communication mode)" for details of
the MCA parameter
common_tofu_memory_saving_method.

BLoopback Size of buffer for
communication
with the process
itself

A constant 4MiB

BUnexpectedMessage Quantity of
unexpected
messages

Increases with each unexpected message
that is stored

-

KBuffer Efficiency of
memory allocation

A constant 1.0

CBase Coefficient A constant determined in accordance with
the number of processes per node (referred
to as "ppn" in the next column)

1-4ppn: 89MiB
5ppn: 67MiB
6-9ppn: 45MiB
10-15ppn: 30MiB
16-48ppn: 20MiB

CProc Coefficient A constant determined in accordance with
the number of processes per node (referred
to as "ppn" in the next column)

1ppn: 1702B
2ppn: 941B
3ppn: 841B
4ppn: 740B
5ppn: 673B

- 105 -

Variable Meaning of
variable

Explanation of variable Value

6-15ppn: 606B
16-48ppn: 514B

CPeer Coefficient A constant 1952B

CMember Coefficient A constant determined in accordance with
the number of processes per node (referred
to as "ppn" in the next column)

1ppn: 408B
2ppn: 184B
3-4ppn: 144B
5-8ppn: 80B
9-16ppn: 56B
17-48ppn: 32B

CPeerMember Coefficient A constant. 0

6.11.2 Memory Usage Tuning Guidelines
Tuning considerations vary for different MPI program patterns. Table below shows the tuning issues to be considered for the various
patterns.

Table 6.17 Tuning guidelines

Pattern Tuning considerations

The number of processes which require communication
performance is fewer compared with the number of all
communication partner processes

Use the MCA parameter common_tofu_max_fastmode_procs to set the
upper limit for the number of processes that use the fast communication
mode for communications.

However, consider the performance of communication with the
communication partners (processes) that are unable to switch to fast
communication mode after the upper limit for the number of processes
that can use the fast communication mode for communication has been
reached.

If the processes to which the fast communication mode and the memory-
saving communication mode are assigned are not as anticipated, use the
MCA parameter common_tofu_fastmode_threshold to adjust the number
at which communication switches from the memory-saving
communication mode to the fast communication mode.

Almost all communication partner processes require equal
communication performance

Use the MCA parameter common_tofu_large_recv_buf_size to adjust the
size of the Large receive buffer for the fast communication mode.

However, note that communication performance may deteriorate
uniformly if the data size ranges from several KiB to several 10s of KiBs.

If the above measures are insufficient In addition to tuning using the MCA parameters
common_tofu_max_fastmode_procs and
common_tofu_large_recv_buf_size, use the MCA parameter
common_tofu_medium_recv_buf_size to adjust the size of the Medium
receive buffer for the memory-saving communication mode.

If these measures are also insufficient, specify the value 2 for the MCA
parameter common_tofu_memory_saving_method and adjust the size of
the Shared receive buffer using the MCA parameter
common_tofu_shared_recv_buf_size.

6.11.3 Specifying Memory Allocation Restriction Values
As described in "6.11.2 Memory Usage Tuning Guidelines", when using the memory-saving communication mode, the upper limit for the
number of communication partner processes using the fast communication mode must be specified in MCA parameter

- 106 -

common_tofu_max_fastmode_procs. However, just specifying this upper limit may not be sufficient to achieve both performance and
memory allocation. If not, the reception buffer size must also be specified.

Using a different approach, if the user knows the amount of memory used by the MPI program itself, and if the MPI library can operate in
the remaining memory range, the user need not calculate a value for the above MCA parameter. In practice, the memory allocation that the
MPI library is allowed to use can be specified. If the user specifies this limit, this software system automatically tunes the MCA parameters
internally and, as much as possible, operates within the specified range of restriction values for memory allocations. The actual memory
allocation when an MPI program is executed will vary depending on the MPI routines used within the MPI program, the number of parallels,
the execution method, and so on. Operation is not necessarily possible within the specified range of restriction values for memory
allocations. Refer to the notes in "6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified" that apply to
your usage circumstances.

Note that memory allocation restriction values cannot be specified if dynamic process creation is used or if communication is being
established between MPI process groups that do not share a communicator. If specified, the behavior is unpredictable.

6.11.3.1 Specification Memory Allocation Restriction Values
In practice, memory allocation restrictions are enabled if at least one value is specified in MCA parameter common_tofu_memory_limit.
The value specified in this MCA parameter is interpreted as being the restriction value (MiB) for the memory allocation that can be used
by the MPI library, and other MCA parameters are tuned automatically. At this time, the value specified in MCA parameter
common_tofu_memory_limit_peers is used as the number of communication partner processes. If the MCA parameter
common_tofu_memory_limit_peers is not specified, the number of processes belonging to the same communicator
MPI_COMM_WORLD is used as the number of communication partner processes. Refer to "Table 4.23 common_tofu_memory_limit
(specifies the memory allocation limit value)" and "Table 4.24 common_tofu_memory_limit_peers (specifies the assumed number of
communication partner processes when the memory allocation is limited)" for information on the MCA parameters
common_tofu_memory_limit and common_tofu_memory_limit_peers respectively.

Note that if the MPI library for debug is being used, operations do not necessarily conform to the specified values and, for example, more
memory than the specified restriction values for memory allocations may be used.

6.11.3.2 MCA Parameters Targeted by Automatic Tuning
Table below shows the MCA parameters targeted for automatic tuning.

Table 6.18 MCA parameters tuned automatically in accordance with memory allocation restriction values

Priority MCA parameter Description

1 common_tofu_max_fastmode_procs Upper limit for the number of communication partner processes that use
the fast communication mode

2 common_tofu_large_recv_buf_size Large receive buffer size

3 common_tofu_medium_recv_buf_size Medium receive buffer size.

This parameter is enabled if the value of the MCA parameter
common_tofu_memory_saving_method is 1.

common_tofu_shared_recv_buf_size Shared receive buffer size.

This parameter is enabled if the value of the MCA parameter
common_tofu_memory_saving_method is 2.

Note: Smaller priority values indicate a higher priority.

If automatic tuning of specified memory allocations can be achieved just by using the highest priority MCA parameter, tuning is not required
for the lower priority MCA parameters and, therefore, the default values remain unchanged.

Regardless of whether a value of 1 or higher is specified in MCA parameter common_tofu_memory_limit, if two or fewer of the MCA
parameters shown in the table above are specified simultaneously, the specified values are enabled as is for the specified MCA parameters.
Then, the remaining unspecified MCA parameters in the table above are the only parameters tuned automatically, in order of highest priority
(smallest numerical value).

If the three MCA parameters shown in the table above and the MCA parameter common_tofu_memory_limit are specified simultaneously,
automatic tuning is not performed.

- 107 -

Assume, for example, that the maximum number of partner processes that one process communicates with is known from MPI statistical
information, and that the MCA parameters common_tofu_memory_limit, common_tofu_memory_limit_peers, and
common_tofu_max_fastmode_procs are specified. In this case, the MCA parameter common_tofu_large_recv_buf_size value is tuned
automatically first. If this is insufficient, the MCA parameter common_tofu_medium_recv_buf_size is then also tuned automatically. If the
value of the MCA parameter common_tofu_memory_saving_method is 2, the MCA parameter common_tofu_shared_recv_buf_size is
tuned automatically instead of the common_tofu_medium_recv_buf_size.

6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified
Automatic tuning is performed by calculating back from the estimation expressions in "Figure 6.7 Estimation formula". Therefore, note the
following when executing MPI programs in which memory allocation restriction values are specified.

The minimum memory allocation required by this software system varies in accordance with the number of parallel processes and other
conditions. Therefore, the memory allocation restriction values specified by the user may be exceeded.

For example, if unexpected messages are issued, these are saved within the MPI library, and may therefore affect the amount of memory
used. MPI library automatic tuning does not consider the likelihood of unexpected messages because the number of unexpected messages
issued during execution of an MPI program cannot be known. This means that the memory allocation restriction values specified by the user
may be exceeded for MPI programs that issue a large number of unexpected messages.

Additional memory is also used if automatic process creation is performed, if communicators are created, and so on. These allocations are
also excluded from the calculations performed internally during automatic tuning because this software system cannot know these memory
allocations in advance. Note that in these cases too, the memory allocation restriction values specified by the user may be exceeded.

6.12 Use of Tofu Barrier Communication for Better Performance
When the routines MPI_BARRIER, MPI_BCAST, MPI_REDUCE, and MPI_ALLREDUCE are executed, communication performance
can be improved by using Tofu barrier communication provided by this software system as a Tofu interconnect hardware function.

This section describes the conditions that Tofu barrier communication is applied for each of the MPI routines, and gives notes about this
communication.

6.12.1 MPI_BARRIER
The MPI_BARRIER routine can apply the Tofu barrier communication function if all the following conditions are met:

- The value ^tbi is not specified for the MCA parameter coll.

- The communicator is a communicator in a group (intra-communicator) and is not created using the MPI_INTERCOMM_MERGE
routine.

- Any of the following conditions a. or b. is met.

a. The specified value for the MCA parameter coll_tbi_intra_node_reduction is 2, and the number of compute nodes allocated to
the communicator is greater than or equal to 4.

b. The specified value for the MCA parameter coll_tbi_intra_node_reduction is 3 or 4, and any of the following conditions 1. or 2.
is met.

1. The number of processes in the communicator is greater than or equal to 4. In addition, if the number of compute nodes
allocated to the communicator is less than or equal to 3, the number of processes per compute node is greater than or equal
to 2.

2. Both the number of processes in the communicator and the number of compute nodes allocated to the communicator are
greater than or equal to 4.

- The required number of barrier gates, explained in "6.12.4 Notes on Tofu Barrier Communication", can be secured.

6.12.2 MPI_BCAST
The MPI_BCAST routine can apply the Tofu barrier communication function if all the following conditions are met:

- The value ^tbi is not specified for the MCA parameter coll.

- 108 -

- MCA parameter coll_tbi_use_on_bcast is not set to 0.

- The communicator is a communicator in a group (intra-communicator) and is not created using the MPI_INTERCOMM_MERGE
routine.

- Any of the following conditions a. or b. is met.

a. The specified value for the MCA parameter coll_tbi_intra_node_reduction is 2, and the number of compute nodes allocated to
the communicator is greater than or equal to 4.

b. The specified value for the MCA parameter coll_tbi_intra_node_reduction is 3 or 4, and any of the following conditions 1. or 2.
is met.

1. The number of processes in the communicator is greater than or equal to 4.In addition, if the number of compute nodes
allocated to the communicator is less than or equal to 3, the number of processes per compute node is greater than or equal
to 2.

2. Both the number of processes in the communicator and the number of compute nodes allocated to the communicator are
greater than or equal to 4.

- The required number of barrier gates, explained in "6.12.4 Notes on Tofu Barrier Communication", can be secured.

- The combination of the datatype, the size of each element, and the maximum number of elements in a message is the one of the ways
shown in "Table 6.19 Combinations that allow the MPI_BCAST routine to apply Tofu barrier communication".

- When using a datatype other than the basic datatype, the number of elements in a message is within a range not exceeding the
maximum number of elements in a message described in "Table 6.19 Combinations that allow the MPI_BCAST routine to apply
Tofu barrier communication" for the number of the basic datatype as a constituent element.

- When combined with the MCA parameter coll_tbi_repeat_max described in "Table 4.10 coll_tbi_repeat_max (Controls the range
of message length to communicate by Tofu barrier communication)", the number of elements in a message is within a range not
exceeding the value obtained by multiplying the maximum number of elements in a message by coll_tbi_repeat_max.

Table 6.19 Combinations that allow the MPI_BCAST routine to apply Tofu barrier communication

Datatypes Size of each element Maximum number of elements in a message

Integer datatypes

Floating point datatypes

Logical datatypes

8 bytes or less 6 (Each element is 8 bytes)

12 (Each element is 4 bytes)

24 (Each element is 2 bytes)

48 (Each element is 8 bytes)

Complex datatypes 4 bytes (2 bytes * 2)
or
8 bytes (4 bytes * 2)
or
16 bytes (8 bytes * 2)

12 (Each element is 4 bytes)
or
6 (Each element is 8 bytes)
or
3 (Each element is 16 bytes)

Byte datatypes 1 byte 48

Multi-language type 8 bytes 6

If the type signature of the send side of MPI_BCAST routine is different from that of the receive side, that is incorrect according to the MPI
standard. The MPI program may not work correctly, such as abnormal end, because Tofu barrier cannot be used correctly. This is a problem
that causes inconsistency in the environment of Tofu barrier communication because any of conditions above is not met on either side.
Originally, such a program is incorrect according to the MPI standard, but you can avoid using Tofu barrier when executing the MPI
program including MPI_BCAST routine by setting 0 in the MCA parameter coll_tbi_use_on_bcast value. It is also possible to avoid using
Tofu barrier regardless of the MPI routine by setting the value ^tbi in the MCA parameter coll.

Refer to "Table 4.11 coll_tbi_use_on_bcast (uses Tofu barrier communication in MPI_BCAST routine)" for information on the MCA
parameter coll_tbi_use_on_bcast.

Refer to "Table 4.9 coll (changes settings applied to all collective communications in common)" for information on the MCA parameter coll.

- 109 -

6.12.3 MPI_REDUCE and MPI_ALLREDUCE
The MPI_REDUCE routine and the MPI_ALLREDUCE routine can apply the Tofu barrier communication function if all the following
conditions are met:

- The value ^tbi is not specified for the MCA parameter coll.

- The communicator is a communicator in a group (intra-communicator) and is not created using the MPI_INTERCOMM_MERGE
routine.

- Any of the following conditions a. or b. is met.

a. The specified value for the MCA parameter coll_tbi_intra_node_reduction is 2, and the number of compute nodes allocated to
the communicator is greater than or equal to 4.

b. The specified value for the MCA parameter coll_tbi_intra_node_reduction is 3 or 4, and any of the following conditions 1. or 2.
is met.

1. The number of processes in the communicator is greater than or equal to 4.In addition, if the number of compute nodes
allocated to the communicator is less than or equal to 3, the number of processes per compute node is greater than or equal
to 2.

2. Both the number of processes in the communicator and the number of compute nodes allocated to the communicator are
greater than or equal to 4.

- The required number of barrier gates, explained in "6.12.4 Notes on Tofu Barrier Communication", can be secured.

- The MCA parameter coll_base_reduce_commute_safe is not set to guarantee the sequence of reduction operations.

- The combination of the reduction operation, the datatype, the size of each element, and the maximum number of elements in a message
is the one of the ways shown in "Table 6.20 Operation combinations that allow the MPI_REDUCE and MPI_ALLREDUCE routines
to apply Tofu barrier communication".

- When combined with the MCA parameter coll_tbi_repeat_max described in "Table 4.10 coll_tbi_repeat_max (Controls the range
of message length to communicate by Tofu barrier communication)", the number of elements in a message is within a range not
exceeding the value obtained by multiplying the maximum number of elements in a message by coll_tbi_repeat_max.

Table 6.20 Operation combinations that allow the MPI_REDUCE and MPI_ALLREDUCE routines to apply
Tofu barrier communication

MPI predefined
operation

Datatypes Size Maximum number of elements in
a message

[C/Fortran]
MPI_MAX
MPI_MIN

[C++]
MPI::MAX
MPI::MIN

[Java]
MPI.MAX
MPI.MIN

Integer datatypes

Floating point datatypes

8 bytes or less 6

Multi-language type 8 bytes 6

[C/Fortran]
MPI_SUM

[C++]
MPI::SUM

[Java]
MPI.SUM

Integer datatypes 8 bytes or less 6

Floating point datatypes 8 bytes or less 3

Complex datatypes 4 bytes (2 bytes * 2)
or
8 bytes (4 bytes * 2)
or
16 bytes (8 bytes * 2)

1

Multi-language type 8 bytes 6

- 110 -

MPI predefined
operation

Datatypes Size Maximum number of elements in
a message

[C/Fortran]
MPI_LAND
MPI_LOR
MPI_LXOR

[C++]
MPI::LAND
MPI::LOR
MPI::LXOR

[Java]
MPI.LAND
MPI.LOR
MPI.LXOR

Integer datatypes

Logical datatypes

8 bytes or less 384

[C/Fortran]
MPI_BAND
MPI_BOR
MPI_BXOR

[C++]
MPI::BAND
MPI::BOR
MPI::BXOR

[Java]
MPI.BAND
MPI.BOR
MPI.BXOR

Integer datatypes 8 bytes or less 6 (Each element is 8 bytes)

12 (Each element is 4 bytes)

24 (Each element is 2 bytes)

48 (Each element is 8 bytes)

Byte datatypes 1 byte 48

Multi-language type 8 bytes 6

[C/Fortran]
MPI_MAXLOC
MPI_MINLOC

[C++]
MPI::MAXLOC
MPI::MINLOC

[Java]
MPI.MAXLOC
MPI.MINLOC

[C]
MPI_2INT
MPI_LONG_INT
MPI_SHORT_INT

[Fortran]
MPI_2INTEGER

[C++]
MPI::TWOINT
MPI::LONG_INT
MPI::SHORT_INT
MPI::TWOINTEGER

[Java]
MPI.INT2
MPI.LONG_INT
MPI.SHORT_INT

8 bytes (4 bytes + 4 bytes)

12 bytes (8 bytes + 4 bytes)

6 bytes (2 bytes + 4 bytes)

3

6.12.4 Notes on Tofu Barrier Communication
- For Tofu barrier communication, the required barrier gates are secured from the multiple Tofu interconnect barrier gates provided in

each compute node, and a barrier network is configured within the corresponding communicator. In order to configure a barrier network
for a Tofu barrier communication, a barrier gate for start/end point and multiple barrier gates for relay points must be secured in each
node.

These barrier gates must be secured from the same TNI in each node.

- 111 -

The maximum number of available barrier gates for start/end point is 16 per TNI. Therefore, it is 96 per compute node. The maximum
number of available barrier gates for relay points is 32 per TNI. Therefore, it is 192 per compute node. Note that these maximum values
are provided as guidelines, and the total number of barrier gates may be changed by system conditions or future product version
upgrades.

- When Tofu barrier communication is applied in the MPI_BARRIER, MPI_BCAST, MPI_REDUCE, or MPI_ALLREDUCE routine,
the number of barrier gates used for relay points is estimated as follows.

Note that the number of compute node used on a Tofu barrier communication and the number of processes per compute node are
assumed N and P, respectively.

- When 2 is specified for the MCA parameter coll_tbi_intra_node_reduction, the maximum number of barrier gates which is used
for each compute node is about log2N.

- When 3 is specified for the MCA parameter coll_tbi_intra_node_reduction, the maximum number of barrier gates which is used
for each compute node node is about log2N+(3P-3).

- When 4 is specified for the MCA parameter coll_tbi_intra_node_reduction, the maximum number of barrier gates which is used
for each compute node is about (log2N+log2P)*P.

The number of barrier gates which is actually available changes depending on barrier gates usage in each node.

Even if the same program is executed multiple times, the number of available barrier gates may be different every time if other jobs are
using barrier gates at the same time.

There is also the case that the algorithm corresponding to the specified value for the MCA parameter coll_tbi_intra_node_reduction is
not selected because of the number of available barrier gates.

- Even if 4 is specified for the MCA parameter coll_tbi_intra_node_reduction, there is the case that the algorithm which is used when 2
or 3 is specified for the MCA parameter is selected because of the number of barrier gates usage.

There is also the case that a software algorithm which does not use Tofu barrier communication is selected.

Therefore, note that execution time of a program can be longer than the algorithm which is expected to be selected is used.

Also note that calculation result can be different due to precision error because the order of reduction operation is different for each
algorithm.

- A barrier network is configured when a communicator or a window is created.

In the following cases, the execution time of the program may be longer because a barrier network is frequently configured, but the
execution time may be able to be improved by specifying ^tbi for the MCA parameter coll or by specifying 0 for the MCA parameter
coll_tbi_use_on_comm_dup.

- An MPI program which repeats communicator duplication by the MPI_COMM_DUP, MPI_COMM_IDUP, and
MPI_COMM_DUP_WITH_INFO routine.

- An MPI program which frequently creates and releases communicators.

- An MPI program which repeats window creation.

Read "Table 4.9 coll (changes settings applied to all collective communications in common)" for more information on the MCA
parameter coll.

Read "Table 4.12 coll_tbi_use_on_comm_dup (uses Tofu barrier communication for a communicator created by MPI_COMM_DUP
routine, MPI_COMM_IDUP routine, and MPI_COMM_DUP_WITH_INFO routine)" for more information on the MCA parameter
coll_tbi_use_on_comm_dup.

6.13 MPI_BCAST/MPI_IBCAST routines When the Same Count is
Used among the Processes

In this software system, a faster communication mechanism is available when the MPI_BCAST routine or MPI_IBCAST routine is used
with the same count among the processes. This mechanism can be used by specifying 1 for the MCA parameter
coll_tuned_bcast_same_count.

- 112 -

But, when this mechanism is used in MPI programs that use the MPI_BCAST routine or MPI_IBCAST routine with different counts among
the processes, a deadlock may be caused in the MPI library. According to the MPI standard, MPI_BCAST routine allows to use different
datatypes and counts among the processes as long as type signature of datatype and count on any process is equal to that on the root process.

For example, the following condition is valid:

- rank 0: datatype = MPI_INT, count = 2

- rank 1: datatype = derived datatype of two MPI_INTs, count = 1

The default value for the MCA parameter coll_tuned_bcast_same_count is usually set to 0 in order to execute such MPI programs correctly.

If it is guaranteed that the MPI_BCAST routine or MPI_IBCAST routine is used with the same count among the processes, it is
recommended to specify 1 for this parameter for faster communication speeds. Refer to "Table 4.14 coll_tuned_bcast_same_count
(achieves faster communication when MPI_BCAST/MPI_IBCAST routines are used with the same count among the processes)" for
information on the MCA parameter coll_tuned_bcast_same_count.

 Note

The MPI_ALLGATHER and MPI_ALLGATHERV routines have algorithms that calls the processing of the MPI_BCAST routine
internally.

Therefore, if the MCA parameter coll_tuned_bcast_same_count is specified to 1 in the following MPI program, an inconsistency may occur
in the MPI library.

- In the case of the MPI_ALLGATHER routine
The MPI program with different send counts or receive counts among the processes.

- In the case of the MPI_ALLGATHERV routine
The MPI program that has a different number of counts on the receiver (The number of counts received for each process of the sender
is specified individually in the array) for each process.

The following measures are required to prevent inconsistency.

- In the case of the MPI_ALLGATHER routine
The sender and receiver must have the same counts.

- In the case of the MPI_ALLGATHERV routine
The receive counts represents as the array. In the array, receive count for each rank of sender is specified. Therefore, same counts for
all ranks is required. The send counts with the different counts for the processes are fine.

6.14 Algorithms of Collective Communication and Shape of
Compute Nodes Allocated to the Communicator

Collective communication has multiple algorithms that use the function of Tofu interconnect. Also, some of these algorithms become ready
for calling when the shape of compute nodes allocated to the communicator has a specific shape. This section refers to this specific shape
as "cuboid."

MPI statistical information has the function to display the shape of compute nodes allocated to the communicator. For the shape of the
compute nodes allocated to the communicator, confirm with "6.16 MPI Statistical Information".

6.14.1 Shape of Compute Nodes Allocated to the MPI_COMM_WORLD
The user can specify the process shape when executing a job. For details of the "specification of the process shape", see the manual of the
Job Operation Software. According to the shape of the process specified by the user, the MPI_COMM_WORLD is generated. When one
or more processes are generated for all of the nodes specified for MPI_COMM_WORLD, the shape of this node is referred to as "cuboid."
You can determine whether or not the shape is "cuboid" according to whether or not the process exists in the compute node, not by the
number of processes within the compute node.

The following explanation is provided using an example when the user specifies the shape of process two-dimensionally. In the "Figure 6.8
Example of 24 Processes Assigned on 6*4 Plane". 24 processes exist on the plane of X*Y = 6*4. At that time one process each is assigned
to all compute nodes. Therefore, MPI_COMM_WORLD is "cuboid".

- 113 -

Figure 6.8 Example of 24 Processes Assigned on 6*4 Plane

In the "Figure 6.9 Example of Indefinite Shape Where 23 Processes are Assigned on 6*4 Plane", 23 processes exist on the plane of X*Y
= 6*4. At that time, the compute node to which no process is assigned exists. Therefore, MPI_COMM_WORLD is not "cuboid."

- 114 -

Figure 6.9 Example of Indefinite Shape Where 23 Processes are Assigned on 6*4 Plane

Later, the section provides explanation assuming that the compute nodes allocated to the MPI_COMM_WORLD are "cuboid."

6.14.2 Compute Nodes Allocated to the Intra-communicator
Intra-communicator is composed of the reproduction of MPI_COMM_WORLD or part of the processes of the MPI_COMM_WORLD.
New intra-communicator generated from part of the MPI_COMM_WORLD may not become "cuboid." In the "Figure 6.8 Example of 24
Processes Assigned on 6*4 Plane", 24 processes exist on the plane of X*Y = 6*4 as MPI_COMM_WORLD.

The "Figure 6.10 Example of Generating the Communicator on 6*4 Plane at Random" is the example of generating the communicator at
random from the MPI_COMM_WORLD of the "Figure 6.8 Example of 24 Processes Assigned on 6*4 Plane". This is not "cuboid." Such
a shape cannot call the algorithms tuned for Tofu interconnect.

- 115 -

Figure 6.10 Example of Generating the Communicator on 6*4 Plane at Random

6.14.3 Shape of Compute Nodes for Algorithms Tuned for Tofu Interconnect
This section describes the "cuboid" in intra-communicator. The method of determining depends on the shape of the process specified by the
user.

- when one dimension is specified

It is always "cuboid" no matter what intra-communicator is generated.

- when two dimension is specified

Suppose the user specifies the shape of the process as X*Y. Then, the value of 1..X-1 is I and the value of 1..Y-1 is J. When the process
of the communicator is allocated so as to meet the following conditions, assume that the shape of the compute nodes allocated to that
communicator is "cuboid".

- X*Y itself

- The shape that can be made by repeated processing to remove the rectangular of I*Y or X*J from X*Y

- 116 -

- when three dimensions are specified

First, suppose the user specifies the shape of process as X*Y*Z. Then, the value of 1..X-1 is I, the value of 1..Y-1 is J, and the value
of 1..Z-1 is K. When the process of the communicator is allocated so as to meet the following conditions, assume that the shape of the
compute nodes allocated to that communicator is "cuboid".

- X*Y*Z itself

- The shape that can be made by repeated processing to remove the cuboid of I*Y*Z, X*J*Z, or X*Y*K from X*Y*Z

There exist algorithms that determine if the shape is "cuboid" based on the similar concept in six-dimensional Tofu coordinates.

As an example, the following explanation is provided for the case of specifying the shape of the process two-dimensionally.

In the "Figure 6.8 Example of 24 Processes Assigned on 6*4 Plane", processes are assigned on the plane of X*Y = 6*4 as
MPI_COMM_WORLD. At that time, MPI_COMM_WORLD is "cuboid."

As is shown in the "Figure 6.11 Example of Specific One Row of 6*4 Removed", we will consider the case where the compute node that
satisfies Y = 2 is not allocated to the new communicator. At that time, the communicator X is "cuboid."

Figure 6.11 Example of Specific One Row of 6*4 Removed

The "Figure 6.12 Example of Specific Two Rows Removed From Figure "Example of Specific One Row of 6*4 Removed"" shows the case
where all compute nodes that satisfy X = 1 or X = 2 in the communicator X are not allocated to new communicator Y. At that time, the
communicator Y is "cuboid."

- 117 -

Figure 6.12 Example of Specific Two Rows Removed From Figure "Example of Specific One Row of 6*4
Removed"

The "Figure 6.13 Example of Indefinite Shape" shows the case where part of the compute nodes that satisfy X = 1 or X = 2 in the
communicator X are not allocated to new communicator Y. At that time, the communicator Y is not "cuboid."

- 118 -

Figure 6.13 Example of Indefinite Shape

6.14.4 Length of Axis with Cuboid Shape
The length of the axis is expressed by the number of the compute nodes allocated to the communicator that exist on each axis.

In the case of the "Figure 6.12 Example of Specific Two Rows Removed From Figure "Example of Specific One Row of 6*4 Removed"",
the length of the X axis is 4 because the compute nodes allocated to the communicator exist on X = 0, 1, 4, 5. In a similar way, the length
of the Y axis is 3 because the compute nodes allocated to the communicator exist on Y = 0, 2, 3. Therefore, this shape is indicated as 4*3
in MPI statistical information.

6.15 Job Dimension Conversion Function

6.15.1 Overview of Job Dimension Conversion Function
When a value greater than the job dimension is specified for the MCA parameter common_tofu_conv_dim at the time of an MPI program
execution, the logical coordinates assigned to the MPI processes are replaced to the coordinates in the specified dimension, if possible. This
makes it possible to reconcile the advantages of low-dimensional jobs, such as a short time to start job execution, with the advantages of
high-dimensional jobs, such as high collective communication performance. However, there are some conditions that prevent the job
dimension conversion function to be applied, and if these conditions are met, the execution continues using the original job dimension. Refer
to "Table 6.21 Explanation of reason in the log of the job dimension conversion function" for the applicable conditions.

- 119 -

 Note

Notes on memory usage

When the job dimension conversion function is applied, the MPI library memory usage increases. The increment per MPI process is the
number of nodes in the job multiplied by 24 bytes.

 Note

Notes on collective communication algorithms

Collective communication typically works faster for high-dimensional jobs than for low-dimensional jobs, but it is not guaranteed to be
faster. In addition, in collective communication where reduction operations are performed, the sequence of reduction operations may
change due to differences in coordinates and algorithms between high- and low-dimensional jobs. This can also affect the accuracy of the
computed results. Refer to "6.8 Reduction Operation Sequence Guarantee in Collective Communication" for more information about the
sequence of reduction operations.

6.15.2 Log Output for Job Dimension Conversion Function
The MCA parameter common_tofu_conv_dim_log can be used to output information about whether the job dimension conversion function
was applied and why it was not applied.

If applied, the following message is output:

The job dimensions were converted from dim1 to dim2.

where dim1 is the original job dimension and dim2 is the job dimension to which the conversion was attempted.

If not applied, the following message is output :

Failed to convert the job dimensions to dim1. Continue as dim2-dimensional job. [reason]

where dim1 is the job dimension for which the conversion was attempted, dim2 is the original job dimension, and reason is the reason why
it could not be applied. For a detailed explanation of reason, see "Table 6.21 Explanation of reason in the log of the job dimension conversion
function".

Table 6.21 Explanation of reason in the log of the job dimension conversion function

reason Description

1 The job dimension conversion function is available only when the job dimension is less than the value
specified for the MCA parameter common_tofu_conv_dim. Check the MCA parameter specification or the
specified node shape. Refer to "Job Operation Software End-user's Guide" for details on how to specify the
node shape.

2 The job dimension conversion function is available only for jobs executed in torus mode. Check that the torus
mode is specified as the method of placing nodes. Refer to "Job Operation Software End-user's Guide" for
details of the method of placing nodes.

3 The job dimension conversion function is not available because the number of request nodes for the job is not
a multiple of 12. Check the specified node shape. Refer to "Job Operation Software End-user's Guide" for
details on how to specify the node shape.

4 The job dimension conversion function cannot be used because the number of nodes in the area allocated by
the Job Operation Software does not match the number of requested nodes in the job. Check that the torus
mode is specified as the method of placing nodes. However, even if the torus mode is specified, the Job
Operation Software may allocate an area where the job dimension conversion function cannot be used,
depending on the job shape or the status of free nodes in the system. For example, the following methods can
be used to change the probability that an area that satisfies the conditions for applying this function is allocated.
However, neither method guarantees that an area that satisfies the conditions for this function will be allocated.

・Change the dimensions of the job shape

- 120 -

reason Description

・Change the number of nodes

・Change the length of each axis

・Change the resource group

・Check system usage status and avoid periods of long job runs that reduce space allocation flexibility

Refer to "Job Operation Software End-user's Guide" for details of a node shape, the method of placing nodes,
and the method of specifying a resource group.

5 If a process shape is specified in the shape parameter of the Job Operation Software and its size is smaller than
the node shape specified in the node parameter, the job dimension conversion function cannot be used. Do not
specify the shape or check the specified value for the shape parameter. Refer to "Job Operation Software End-
user's Guide" for details about the shape and node parameters.

6 The job dimension conversion function cannot be used because a breakdown node is included in the area
allocated by the Job Operation Software. To avoid breakdown nodes, specify the Job Operation Software
option --mpi "assign-online-node". Refer to "Job Operation Software End-user's Guide" for details about the
--mpi "assign-online-node" option.

6.16 MPI Statistical Information
This software system can display statistical information concerning MPI communications. In this manual, this information is referred to as
MPI statistical information.

There are 2 varieties of a whole output mode and the section specifying output mode in the method of outputting the MPI statistical
information.

The output of MPI statistical information can be controlled by the MCA parameter mpi_print_stats. Refer to "Table 4.37 mpi_print_stats
(outputs MPI statistical information)" for details.

The "Table 6.22 Contents of MPI statistical information output for whole output mode" shows the MPI statistical information that can be
output in this software system.

If 1 is specified for the MCA parameter mpi_print_stats, maximum values (MAX), minimum values (MIN), and average values (AVE) are
output for all parallel processes for all output items other than "MPI Information", "Collective Communication Information", and "Process
Mapping" shown in whole output mode "Table 6.22 Contents of MPI statistical information output for whole output mode". For maximum
values and minimum values, the corresponding parallel process ranks are also output in parentheses.

If 2 is specified for the MCA parameter mpi_print_stats, information is output for the corresponding parallel processes for all output items
other than "MPI Information" and "Process Mapping" shown in whole output mode "Table 6.22 Contents of MPI statistical information
output for whole output mode". In this case, the parallel processes targeted for MPI statistical information output can be indicated using the
MCA parameter mpi_print_stats_ranks. Refer to "Table 4.38 mpi_print_stats_ranks (specifies the parallel process that outputs MPI
statistical information)" for details on mpi_print_stats_ranks. Note that these statistics are output to the standard error output. To avoid
output overlaps when statistics are output for multiple parallel processes, specifications that suit the mpiexec command options -of-proc/-
std-proc, --of-proc/--std-proc, -oferr-proc/-stderr-proc, or --oferr-proc/--stderr-proc are recommended.

If 3 is specified for the MCA parameter mpi_print_stats, maximum values (MAX), minimum values (MIN), and average values (AVE) are
output for all parallel processes for all output items other than "MPI Information", "Collective Communication Information" and "Process
Mapping" shown in specifying output mode "Table 6.23 Contents of MPI statistical information output for section specifying output
mode" similarly to when a value of MCA parameter mpi_print_stats is equal to 1. For maximum values and minimum values, the
corresponding parallel process ranks are also output in parentheses. However, the header part, the body part and the footer part are output
separately.

If 4 is specified for the MCA parameter mpi_print_stats, all items except "MPI Information" and "Process Mapping" shown in specifying
output mode "Table 6.23 Contents of MPI statistical information output for section specifying output mode" similarly to when a value of
MCA parameter mpi_print_stats is equal to 2. However, the header part, the body part and the footer part are output separately.

Refer to "5.2 MPI Statistical Information Section Specifying Interface" for details.

The Process Mapping output item of MPI statistical information is output only for parallel processes with a rank of 0, regardless of the value
in the above MCA parameter mpi_print_stats_ranks.

- 121 -

When you use section specifying output mode, the specified section is ignored for Connection, Max_Hop and Average_Hop output items
of MPI statistical information. The information at the point of an FJMPI_COLLECTION_PRINT routine call or an MPI_FINALIZE
routine call is always output.

Output item Per-protocol Nonblocking/Persistent Communication Count and Per-protocol Nonblocking/Persistent Communication Count
Started in Wait of the MPI statistical information will be a reference when MCA parameter opal_progress_thread_mode is used. Refer to
"6.2 Promoting Asynchronous Communication Using an Assistant Core" for details.

Table 6.22 Contents of MPI statistical information output for whole output mode

Output title and output item name Output content

MPI Information

Dimension Number of dimensions in the torus structure where the parallel processes belonging to
MPI_COMM_WORLD are deployed

Shape Process shape of the torus structure where the parallel processes belonging to
MPI_COMM_WORLD are deployed

MPI Memory Usage

Estimated_Memory_Size Estimated MPI library memory allocation

Estimated memory allocation value described in "6.11.1 Memory Usage Estimation
Formulae"

Per-peer Communication Count

In_Node Communication count within node for point-to-point communication

Neighbor Communication count between neighboring nodes for point-to-point communication

Not_Neighbor Communication count between non-neighboring nodes for point-to-point
communication

Total_Count Total communication count for point-to-point communication

Connection Number of connections for Tofu communication

Max_Hop Maximum number of hops between processes for Tofu communication

Average_Hop Average number of hops between processes for Tofu communication

Per-peer Transmission size

In_Node Transfer data size within node for point-to-point communication

Neighbor Transfer data size between neighboring nodes for point-to-point communication

Not_Neighbor Transfer data size between non-neighboring nodes for point-to-point communication

Total_Size Transfer data size for point-to-point communication

Per-protocol Communication Count

Eager Eager communication mode use count at send side for point-to-point communication

Rendezvous Rendezvous communication mode use count at send side for point-to-point
communication

Prequest_Extended_IF Extended persistent communication requests interface use count at send side for point-
to-point communication

Unexpected_Message Maximum number of messages saved temporarily in the internal buffer during point-
to-point communication

Barrier Communication Count

Tofu Count for barriers using the Tofu barrier communication function

Soft Count for software-style barriers executed

Tofu Barrier Collective Communication Count

- 122 -

Output title and output item name Output content

Bcast Invocation count for collective communication MPI_BCAST routine using the Tofu
barrier communication function

Reduce Invocation count for collective communication MPI_REDUCE routine using the Tofu
barrier communication function

Allreduce Invocation count for collective communication MPI_ALLREDUCE routine using the
Tofu barrier communication function

6D-Tofu-specific Collective Communication Count

Alltoall It is the number of executions of the blacc6d algorithm of the MPI_ALLTOALL
routine, which is the algorithm tuned for Tofu interconnect.

Tofu-specific Collective Communication Count

Bcast Count for collective communication MPI_BCAST routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Reduce Count for collective communication MPI_REDUCE routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Gather Count for collective communication MPI_GATHER routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Gatherv Count for collective communication MPI_GATHERV routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Allreduce Count for collective communication MPI_ALLREDUCE routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Alltoall Count for collective communication MPI_ALLTOALL routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Alltoallv Count for collective communication MPI_ALLTOALLV routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Allgather Count for collective communication MPI_ALLGATHER routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Allgatherv Count for collective communication MPI_ALLGATHERV routine invocations that
specifically invoke algorithms tuned for Tofu interconnect

Non-Tofu-specific Collective Communication Count

Bcast Count for collective communication MPI_BCAST routine invocations that could not
specifically use algorithms tuned for Tofu interconnect

Reduce Count for collective communication MPI_REDUCE routine invocations that could
not specifically use algorithms tuned for Tofu interconnect

Gather Count for collective communication MPI_GATHER routine invocations that could
not specifically use algorithms tuned for Tofu interconnect

Gatherv Count for collective communication MPI_GATHERV routine invocations that could
not specifically use algorithms tuned for Tofu interconnect

Allreduce Count for collective communication MPI_ALLREDUCE routine invocations that
could not specifically use algorithms tuned for Tofu interconnect

Alltoall Count for collective communication MPI_ALLTOALL routine invocations that could
not specifically use algorithms tuned for Tofu interconnect

Alltoallv Count for collective communication MPI_ALLTOALLV routine invocations that
could not specifically use algorithms tuned for Tofu interconnect

Allgather Count for collective communication MPI_ALLGATHER routine invocations that
could not specifically use algorithms tuned for Tofu interconnect

- 123 -

Output title and output item name Output content

Allgatherv Count for collective communication MPI_ALLGATHERV routine invocations that
could not specifically use algorithms tuned for Tofu interconnect

Per-protocol Nonblocking/Persistent Communication Count

Eager Eager communication mode use count at send side for point-to-point communication
that used a nonblocking or persistent request

Rendezvous Rendezvous communication mode use count at send side for point-to-point
communication that used a nonblocking or persistent request

Collective Nonblocking collective operations use count

Per-protocol Nonblocking/Persistent Communication Count Started in Wait

Eager Eager communication mode use count at send side for point-to-point communication
that used a nonblocking or persistent request and the transfer of the message body
started when any of MPI_WAIT, MPI_WAITANY, MPI_WAITALL, or
MPI_WAITSOME routine is called

Rendezvous Rendezvous communication mode use count at send side for point-to-point
communication that used a nonblocking or persistent request and the transfer of the
message body started when any of MPI_WAIT, MPI_WAITANY, MPI_WAITALL,
or MPI_WAITSOME routine s called

Collective Communication Information

COLLECTIVE Name of the executed blocking collective communication routine.

Each block collective communication routine name minus MPI_ is displayed.

ALG Figure of the algorithm number of the executed blocking collective communication
routine.

For the algorithm that corresponds to the figure, see the table of the "8.3.4 List of
Algorithms and Conditions Required for Application".

MSGMIN - MSGMAX Range of the message size of the blocking collective communication routine.

It shows that the message sizes which were specified for each blocking collective
communication routine were within MSGMIN to MSGMAX.

For the definition of message size of each blocking collective communication routine,
see "Table 8.4 Definition of Message Size by Blocking Collective Communication
Routine to Be Used for Info Object". However, the collective communication routines
given below are expressed at a rough estimate based on the count of the output rank.

- MPI_GATHERV routine

- MPI_SCATTERV routine

NODE Shape of the compute nodes allocated to the communicator that called the executed
blocking collective communication.

For the shape, see "6.14 Algorithms of Collective Communication and Shape of
Compute Nodes Allocated to the Communicator".

There are four types of expressions as given below.

- Those with indefinite shape are expressed by the "number of compute nodes (I)".

- Those with one-dimensional shape are expressed by the "number of compute
nodes (R)".

- Those with two-dimensional shape are expressed by the "X axis length x Y axis
length".

- Those with three-dimensional shape are expressed by the "X axis length x Y axis
length x Z axis length".

- 124 -

Output title and output item name Output content

COMM Number of processes of the communicator that called the executed blocking collective
communication.

COUNT Number of executions.

AVE.TIME(MSEC) Average execution time (millisecond unit)

Process Mapping

List of ranks and coordinate correspondences of all parallel processes belonging to
MPI_COMM_WORLD

However, this information is output for only parallel processes having rank 0.

 Example

Example of MPI statistical information output when 1 is specified as the value of MCA parameter mpi_print_stats

===

/****************** MPI Statistical Information ******************/

===

------------------------- MPI Information -------------------------

Dimension 3

Shape 2x2x2

---------------------- MPI Memory Usage (MiB) ---------------------

 MAX MIN AVE

Estimated_Memory_Size 89.05 [3] 89.04 [5] 89.05

------------------- Per-peer Communication Count ------------------

 MAX MIN AVE

In_Node 0 [0] 0 [0] 0.0

Neighbor 0 [0] 0 [0] 0.0

Not_Neighbor 0 [0] 0 [0] 0.0

Total_Count 0 [0] 0 [0] 0.0

Connection 8 [3] 6 [5] 7.1

Max_Hop 4 [0] 2 [6] 3.4

Average_Hop 2.62 [15] 1.33 [6] 2.03

----------------- Per-peer Transmission Size (MiB) ----------------

 MAX MIN AVE

In_Node 0.00 [0] 0.00 [0] 0.00

Neighbor 0.00 [0] 0.00 [0] 0.00

Not_Neighbor 0.00 [0] 0.00 [0] 0.00

Total_Size 0.00 [0] 0.00 [0] 0.00

----------------- Per-protocol Communication Count ----------------

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Persistent_Extended_IF 0 [0] 0 [0] 0.0

Unexpected_Message 2 [0] 1 [1] 1.5

------------------- Barrier Communication Count -------------------

 MAX MIN AVE

Tofu 10 [0] 10 [0] 10.0

Soft 0 [0] 0 [0] 0.0

----------- Tofu Barrier Collective Communication Count -----------

 MAX MIN AVE

Bcast 0 [0] 0 [0] 0.0

- 125 -

Reduce 0 [0] 0 [0] 0.0

Allreduce 0 [0] 0 [0] 0.0

--------- 6D-Tofu-specific Collective Communication Count ---------

 MAX MIN AVE

Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------

 MAX MIN AVE

Bcast 0 [0] 0 [0] 0.0

Reduce 0 [0] 0 [0] 0.0

Gather 0 [0] 0 [0] 0.0

Gatherv 1 [0] 1 [0] 1.0

Allreduce 0 [0] 0 [0] 0.0

Alltoall 1 [0] 1 [0] 1.0

Alltoallv 0 [0] 0 [0] 0.0

Allgather 1 [0] 1 [0] 1.0

Allgatherv 1 [0] 1 [0] 1.0

--------- Non-Tofu-specific Collective Communication Count --------

 MAX MIN AVE

Bcast 1 [0] 1 [0] 1.0

Reduce 1 [0] 1 [0] 1.0

Gather 0 [0] 0 [0] 0.0

Gatherv 0 [0] 0 [0] 0.0

Allreduce 1 [0] 1 [0] 1.0

Alltoall 0 [0] 0 [0] 0.0

Alltoallv 0 [0] 0 [0] 0.0

Allgather 0 [0] 0 [0] 0.0

Allgatherv 0 [0] 0 [0] 0.0

----- Per-protocol Nonblocking/Persistent Communication Count -----

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in Wait --

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

--------------- Collective Communication Information --------------

COLLECTIVE ALG MSGMIN - MSGMAX NODE COMM COUNT AVE.TIME(MSEC)

Allgather 101 16777216 - 67108863 2x 2x 2 32 1 33.773

Allgatherv 101 67108864 - inf 2x 2x 2 32 1 137.815

Alltoall 100 1048576 - 4194303 2x 2x 2 32 1 25.393

Barrier 200 0 - inf 2x 2x 2 32 6 2.438

Gatherv 100 4194304 - 16777215 2x 2x 2 32 1 4.499

Scan 1 0 - 4095 2x 2x 2 32 1 0.022

Scatter 300 262144 - 1048575 2x 2x 2 32 1 16.054

Allreduce 3 16384 - 65535 5(I) 5 1 0.809

Barrier 200 0 - inf 5(I) 5 4 0.101

Bcast 5 4096 - 16383 5(I) 5 1 0.257

Exscan 1 0 - 4095 5(I) 5 1 0.050

Reduce 6 65536 - 262143 5(I) 5 1 3.170

------------------------- Process Mapping -------------------------

(0,0,0) 0,1,2,3

(1,0,0) 4,5,6,7

(0,1,0) 8,9,10,11

(1,1,0) 12,13,14,15

- 126 -

(0,0,1) 16,17,18,19

(1,0,1) 20,21,22,23

(0,1,1) 24,25,26,27

(1,1,1) 28,29,30,31

Table 6.23 Contents of MPI statistical information output for section specifying output mode

Output title and output item name Output content

Header part

Content output by FJMPI_COLLECTION_PRINT execution time of the first time point

MPI Information

Dimension
*Refer to a whole output mode

Shape

Body part

Content output with FJMPI_COLLECTION_PRINT run unit

Section

Time(Sec) Execution time at each section specifying (second)

Per-peer Communication Count

In_Node

*Refer to a whole output mode

Neighbor

Not_Neighbor

Total_Count

Connection

Max_Hop

Average_Hop

Per-peer Transmission size

In_Node

*Refer to a whole output mode
Neighbor

Not_Neighbor

Total_Size

Per-protocol Communication Count

Eager

*Refer to a whole output mode
Rendezvous

Persistent_Extended_IF

Unexpected_Message

Barrier Communication Count

Tofu
*Refer to a whole output mode

Soft

Tofu Barrier Collective Communication Count

Bcast

*Refer to a whole output modeReduce

Allreduce

6D-Tofu-specific Collective Communication Count

- 127 -

Output title and output item name Output content

Alltoall *Refer to a whole output mode

Tofu-specific Collective Communication Count

Bcast

*Refer to a whole output mode

Reduce

Gather

Gatherv

Allreduce

Alltoall

Alltoallv

Allgather

Allgatherv

Non-Tofu-specific Collective Communication Count

Bcast

*Refer to a whole output mode

Reduce

Gather

Gatherv

Allreduce

Alltoall

Alltoallv

Allgather

Allgatherv

Per-protocol Nonblocking/Persistent Communication Count

Eager

*Refer to a whole output modeRendezvous

Collective

Per-protocol Nonblocking/Persistent Communication Count Started in Wait

Eager
*Refer to a whole output mode

Rendezvous

Collective Communication Information

COLLECTIVE

*Refer to a whole output mode

ALG

MSGMIN - MSGMAX

NODE

COMM

COUNT

AVE.TIME(MSEC)

Footer part

Content output when MPI_FINALIZE routine is executed

MPI Memory Usage

- 128 -

Output title and output item name Output content

Estimated_Memory_Size *Refer to a whole output mode

Process Mapping

List of ranks and coordinate correspondences of all parallel processes belonging to
MPI_COMM_WORLD

However, this information is output for only parallel processes having rank 0.

 Example

Example of MPI statistical information output when 3 is specified as the value of MCA parameter mpi_print_stats

===

/****************** MPI Statistical Information ******************/

===

------------------------- MPI Information -------------------------

Dimension 3

Shape 2x2x2

----------- Section 1 MPI_COMM_WORLD -----------

 MAX MIN AVE

Time(Sec) 0.03 [28] 0.03 [15] 0.03

------------------- Per-peer Communication Count ------------------

 MAX MIN AVE

In_Node 0 [0] 0 [0] 0.0

Neighbor 0 [0] 0 [0] 0.0

Not_Neighbor 0 [0] 0 [0] 0.0

Total_Count 0 [0] 0 [0] 0.0

Connection 3 [0] 3 [0] 3.0

Max_Hop 4 [8] 2 [0] 2.6

Average_Hop 2.67 [8] 1.33 [0] 1.92

----------------- Per-peer Transmission Size (MiB) ----------------

 MAX MIN AVE

In_Node 0.00 [0] 0.00 [0] 0.00

Neighbor 0.00 [0] 0.00 [0] 0.00

Not_Neighbor 0.00 [0] 0.00 [0] 0.00

Total_Size 0.00 [0] 0.00 [0] 0.00

----------------- Per-protocol Communication Count ----------------

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Persistent_Extended_IF 0 [0] 0 [0] 0.0

Unexpected_Message 2 [4] 1 [0] 1.4

------------------- Barrier Communication Count -------------------

 MAX MIN AVE

Tofu 5 [0] 5 [0] 5.0

Soft 0 [0] 0 [0] 0.0

----------- Tofu Barrier Collective Communication Count -----------

 MAX MIN AVE

Bcast 0 [0] 0 [0] 0.0

Reduce 0 [0] 0 [0] 0.0

Allreduce 0 [0] 0 [0] 0.0

--------- 6D-Tofu-specific Collective Communication Count ---------

- 129 -

 MAX MIN AVE

Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------

 MAX MIN AVE

Bcast 0 [0] 0 [0] 0.0

Reduce 0 [0] 0 [0] 0.0

Gather 0 [0] 0 [0] 0.0

Gatherv 1 [0] 1 [0] 1.0

Allreduce 0 [0] 0 [0] 0.0

Alltoall 1 [0] 1 [0] 1.0

Alltoallv 0 [0] 0 [0] 0.0

Allgather 1 [0] 1 [0] 1.0

Allgatherv 1 [0] 1 [0] 1.0

--------- Non-Tofu-specific Collective Communication Count --------

 MAX MIN AVE

Bcast 0 [0] 0 [0] 0.0

Reduce 0 [0] 0 [0] 0.0

Gather 0 [0] 0 [0] 0.0

Gatherv 0 [0] 0 [0] 0.0

Allreduce 0 [0] 0 [0] 0.0

Alltoall 0 [0] 0 [0] 0.0

Alltoallv 0 [0] 0 [0] 0.0

Allgather 0 [0] 0 [0] 0.0

Allgatherv 0 [0] 0 [0] 0.0

----- Per-protocol Nonblocking/Persistent Communication Count -----

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in Wait --

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

--------------- Collective Communication Information --------------

COLLECTIVE ALG MSGMIN - MSGMAX NODE COMM COUNT AVE.TIME(MSEC)

Allgather 101 16777216 - 67108863 2x 2x 2 32 1 33.632

Allgatherv 101 67108864 - inf 2x 2x 2 32 1 144.723

Alltoall 100 1048576 - 4194303 2x 2x 2 32 1 25.479

Barrier 200 0 - inf 2x 2x 2 32 5 0.063

Gatherv 100 4194304 - 16777215 2x 2x 2 32 1 4.371

Scatter 300 262144 - 1048575 2x 2x 2 32 1 17.390

----------- Section 2 Splited communicator -----------

 MAX MIN AVE

Time(Sec) 0.00 [12] 0.00 [28] 0.00

------------------- Per-peer Communication Count ------------------

 MAX MIN AVE

In_Node 0 [0] 0 [0] 0.0

Neighbor 0 [0] 0 [0] 0.0

Not_Neighbor 0 [0] 0 [0] 0.0

Total_Count 0 [0] 0 [0] 0.0

Connection 7 [0] 5 [11] 6.4

Max_Hop 4 [0] 2 [6] 3.3

Average_Hop 2.60 [11] 1.33 [6] 2.01

----------------- Per-peer Transmission Size (MiB) ----------------

 MAX MIN AVE

- 130 -

In_Node 0.00 [0] 0.00 [0] 0.00

Neighbor 0.00 [0] 0.00 [0] 0.00

Not_Neighbor 0.00 [0] 0.00 [0] 0.00

Total_Size 0.00 [0] 0.00 [0] 0.00

----------------- Per-protocol Communication Count ----------------

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Persistent_Extended_IF 0 [0] 0 [0] 0.0

Unexpected_Message 1 [1] 0 [0] 0.8

------------------- Barrier Communication Count -------------------

 MAX MIN AVE

Tofu 3 [0] 3 [0] 3.0

Soft 0 [0] 0 [0] 0.0

----------- Tofu Barrier Collective Communication Count -----------

 MAX MIN AVE

Bcast 0 [0] 0 [0] 0.0

Reduce 0 [0] 0 [0] 0.0

Allreduce 0 [0] 0 [0] 0.0

--------- 6D-Tofu-specific Collective Communication Count ---------

 MAX MIN AVE

Alltoall 0 [0] 0 [0] 0.0

----------- Tofu-specific Collective Communication Count ----------

 MAX MIN AVE

Bcast 0 [0] 0 [0] 0.0

Reduce 0 [0] 0 [0] 0.0

Gather 0 [0] 0 [0] 0.0

Gatherv 0 [0] 0 [0] 0.0

Allreduce 0 [0] 0 [0] 0.0

Alltoall 0 [0] 0 [0] 0.0

Alltoallv 0 [0] 0 [0] 0.0

Allgather 0 [0] 0 [0] 0.0

Allgatherv 0 [0] 0 [0] 0.0

--------- Non-Tofu-specific Collective Communication Count --------

 MAX MIN AVE

Bcast 1 [0] 1 [0] 1.0

Reduce 1 [0] 1 [0] 1.0

Gather 0 [0] 0 [0] 0.0

Gatherv 0 [0] 0 [0] 0.0

Allreduce 1 [0] 1 [0] 1.0

Alltoall 0 [0] 0 [0] 0.0

Alltoallv 0 [0] 0 [0] 0.0

Allgather 0 [0] 0 [0] 0.0

Allgatherv 0 [0] 0 [0] 0.0

----- Per-protocol Nonblocking/Persistent Communication Count -----

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

Collective 0 [0] 0 [0] 0.0

-- Per-protocol Nonblocking/Persistent Communication Count Started in Wait --

 MAX MIN AVE

Eager 0 [0] 0 [0] 0.0

Rendezvous 0 [0] 0 [0] 0.0

--------------- Collective Communication Information --------------

- 131 -

COLLECTIVE ALG MSGMIN - MSGMAX NODE COMM COUNT AVE.TIME(MSEC)

Allreduce 3 16384 - 65535 5(I) 5 1 2.926

Barrier 200 0 - inf 5(I) 5 3 0.881

Bcast 5 4096 - 16383 5(I) 5 1 0.262

Reduce 6 65536 - 262143 5(I) 5 1 4.427

---------------------- MPI Memory Usage (MiB) ---------------------

 MAX MIN AVE

Estimated_Memory_Size 92.23 [3] 92.23 [5] 92.23

------------------------- Process Mapping -------------------------

(0,0,0) 0,1,2,3

(1,0,0) 4,5,6,7

(0,1,0) 8,9,10,11

(1,1,0) 12,13,14,15

(0,0,1) 16,17,18,19

(1,0,1) 20,21,22,23

(0,1,1) 24,25,26,27

(1,1,1) 28,29,30,31

6.17 Dynamic Debug during MPI Program Execution
This software system provides the following functions for performing debugging during MPI program execution:

- Communication timeout setting (abort of communication wait)

- Monitoring incorrect writing to MPI communication buffer

- Argument check function

Note that performance of an MPI program may become worse if these debug functions are used. Use these functions with caution.

6.17.1 Communication Timeout Setting
If the state of communication wait continues during an MPI program execution, it is possible that the program is hanging due to
communication deadlock or the like. In order to use system resources efficiently, a hanging program should not exist for a long time. This
software system provides a function to avoid an MPI program to continue communication wait more than a user expected. If an upper limit
value for communication waits is set and time of a communication wait exceeds this upper limit during an MPI program execution, the
program can be terminated after the corresponding message output. Hereinafter, the state that time of a communication wait exceeds its
upper limit is called "communication timeout".

The MCA parameter opal_progress_timeout is used to set an upper limit value (in seconds) of communication wait time. Stack trace
information is included in the message output when time of a communication wait exceeds the upper limit. In order to output symbol names
(routine names) in the trace information, specify "-Wl,-export-dynamic" as an option of the MPI program compilation/linkage command.
Refer to "Table 4.43 opal_progress_timeout (specifies the timeout time in communication wait)" for details of the MCA parameter.

However, if time of communication wait exceeds the upper limit, this communication timeout setting function also terminates an MPI
program where it takes long time for communication wait but there is no error. Use this function with caution. In addition, the location in
the process or the MPI program which was being executed when communication timeout was detected is not always the location which
caused the hang. Therefore, in order to identify the cause of hang, tracing and reviewing the program may be necessary.

This function cannot detect all hang of programs. One effective method to identify the cause of hang is inserting the MPI_BARRIER
routines before and after communication routine calls in a program.

The MCA parameter opal_abort_delay can delay actual timing to terminate an MPI program after a communication timeout detection. If
the timing to terminate the program is delayed, communication timeout in other processes may also be detected. In this way, getting
information of multiple processes when communication timeout was detected may also be useful to identify the cause of hang. Refer to
"Table 4.39 opal_abort_delay (delays program termination when an error is detected)" for details of the MCA parameter.

- 132 -

6.17.2 Monitoring Incorrect Writing to MPI Communication Buffer
Incorrect behaviors such as result error, memory corruption and so on may occur without reproducibility if another writing to a send buffer
which is in use for a not completed nonblocking communication occurs. In order to prevent such incorrect behaviors, this software system
provides a function to detect incorrect writing to a send buffer for a nonblocking communication.

This buffer monitoring function can be enabled using the MCA parameter mpi_check_buffer_write. When this monitoring function is
enabled and incorrect writing to a send buffer which is in use for a nonblocking communication occurs, a corresponding message is output
and the MPI program execution terminates. Stack trace information is included in the output message. In order to output symbol names
(routine names) in the trace information, specify "-Wl,-export-dynamic" as an option of the MPI program compilation/linkage command.
Refer to "Table 4.33 mpi_check_buffer_write (monitors incorrect writing to communication buffers)" for details of the MCA parameter.

Note that nonblocking send operation in buffered mode using the MPI_IBSEND routine is not monitored even if this monitoring function
is enabled.

 Example

Example

It is assumed that a send buffer in the following program is monitored.

main()

{

 ...

 int buf = 0;

 MPI_Isend(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD, &req);

 buf = 1;

 MPI_Wait(&req, &status);

 ...

 }

First, specify "-Wl,-export-dynamic" as an option of MPI program compilation/linkage command mpifccpx to compile the above program.
Next, when the above program is executed, specify the value 1 for the MCA parameter mpi_check_buffer_write as an option of the mpiexec
command. Then, an error message like the one below is output to the standard error output. "installation_path" is the product/software
installation path. For "installation_path", contact the system administrator.

[mpi::opal-util::check-buffer-write] The buffer was destroyed in this process.

/installation_path/lib64/libmpi.so.0(PMPI_Wait+0x50) [0xffffffff20296ad0] (1)

./a.out(main+0x4a4) [0x1012e4](2)

/.../... (...) [0xffffffffa07f381c]

./a.out(...)[0x100cec]

Lines from 2 to 5 in the above error message are stack trace information. This stack trace information shows where the send operation of
nonblocking communication which used a send buffer written in incorrect timing was completed. In this example, from (1) and (2) in the
above message, it can be found that such the send operation of nonblocking communication was completed with the MPI_Wait function
called in the main function. Then, by checking the program refering the address information included in (1), the location where the send
operation (the MPI_Isend function) of such the nonblocking communication is performed can be found. Finally, by checking by checking
between the MPI_Isend and the MPI_Wait function calls in the program, the location where writing to the send buffer buf occurred can be
found.

6.17.3 Argument Check Function
In this software system, using the debug MPI library, simple check whether arguments specified for the MPI routine calls are correct can
be done.

In order to use this argument check function, specify either the -debuglib or --debuglib option at the time of the mpiexec command
execution. Refer to "4.1 Execution Command Formats" for how to specify these options.

If the argument check function detects an error, a corresponding message is output and the MPI routine returns to its caller with the error
class below. See "Appendix A Error Class List" for a list of the error classes output by this software system.

- 133 -

MPI_ERR_COMM Invalid communicator

MPI_ERR_COUNT Invalid count

MPI_ERR_TAG Invalid tag

MPI_ERR_RANK Invalid rank

MPI_ERR_TYPE Invalid data type

MPI_ERR_BUFFER Invalid buffer pointer

MPI_ERR_REQUEST Invalid request

MPI_ERR_TOPOLOGY Invalid topology

MPI_ERR_DIMS Invalid dimension

MPI_ERR_ROOT Invalid root

MPI_ERR_GROUP Invalid group

MPI_ERR_OP Invalid operation

MPI_ERR_ARG Other invalid argument

 Example

Example

#include <mpi.h>

int main(int argc, char *argv[]){

 int sbuf = 1, rbuf;

 MPI_Init(&argc, &argv);

 MPI_Reduce(&sbuf, &rbuf, 1, MPI_INT, MPI_SUM, -1, MPI_COMM_WORLD); // root(-1) is invalid

 MPI_Finalize();

}

In this program example, an incorrect root process is specified for the argument of the MPI_Reduce function. If this MPI program is
executed and an argument check is performed, an error message like the one below is output. The [em99-cn071:18342] output in the second
and following lines show the host name and pid information.

[mpi::mpi-errors::mpi_errors_are_fatal]

[em99-cn071:18342] *** An error occurred in MPI_Reduce

[em99-cn071:18342] *** reported by process [11111,0]

[em99-cn071:18342] *** on communicator MPI_COMM_WORLD

[em99-cn071:18342] *** MPI_ERR_ROOT: invalid root

[em99-cn071:18342] *** MPI_ERRORS_ARE_FATAL (processes in this communicator will now abort,

[em99-cn071:18342] *** and potentially your MPI job)

6.18 Note on using 3rd Party Tools

6.18.1 Notes on Using Valgrind
The Valgrind is an open source software which can detects an illegal memory access or the like. In this software system, the behavior when
the Valgrind is used is not guaranteed. However, the Valgrind may be available when executing an MPI program depending on the version
of the Valgrind.

To use the Valgrind in this software system, you need to use the debug MPI library. Specify -debuglib or --debuglib for an mpiexec
command option.

An example is shown as follows.

$ mpiexec -debuglib valgrind ./a.out

If the Valgrind is used for an MPI program execution, errors and warnings not only in the MPI program but also in the routines or the like
called inside the MPI library may be detected by the Valgrind.

Therefore, note that whether the errors and warnings detected by the Valgrind are regarding the MPI program.

- 134 -

 Information

Many functions called inside the MPI library have names begin with the following prefixes.

- opal

- ompi

- orte

- mca

- MPI

6.19 Notes on Job Execution Continuation Function at Link-down
This section provides notes on job execution continuation function at link-down. Refer to the Job Operation Software manual for
information on job execution continuation function at link-down.

6.19.1 Communication Performance
When this function is enabled and any of the following routines is called in an MPI program, the communication performance may
deteriorate compared to when this function is disabled.

- Following routines which are affected by not applying the Tofu barrier communication

- The MPI_ALLREDUCE routine

- The MPI_BARRIER routine

- The MPI_BCAST routine

- The MPI_REDUCE routine

- The routines of the one-sided communications

- The MPIX_ALLGATHER_INIT routine

6.19.2 Conditions in MPI_ALLTOALL Routine
When this function is enabled and the MPI_ALLTOALL routine is called in an MPI program, the following two conditions must be met.
If they are not met, a deadlock may occur when executing the MPI program.

1. Datatype for the send buffer is equivalent in all ranks.

2. Datatype for the receive buffer is equivalent in all ranks.

6.19.3 Algorithms which are not Applicable
When this function is enabled, algorithms shown in the table below are not applicable in the MPI_ALLGATHER routine, the
MPI_ALLGATHERV routine, and the MPI_ALLTOALL routine.

Table 6.24 List of algorithms which are not applicable

Collective Communication Routine Name Algorithms which are not applicable

MPI_ALLGATHER 3dtorus_sm

MPI_ALLGATHERV 3dtorus_sm

MPI_ALLTOALL blacc3d
blacc6d

- 135 -

6.19.4 Note on Specification of MCA Parameters and Options
In this function, the -tune option in "local_options format and explanation" cannot be specified. If the -tune option is specified, this function
is disabled.

When this function is enable, the specified values for the MCA parameters shown in the table below are invalid. In this case, the values for
these MCA parameters are decided by this software system.

Table 6.25 The behavior when the specified value of the MCA parameter is invalid

Name of MCA Parameter Invalid Value of MCA Parameter Value which is decided by this system

Meaning of Value Meaning of Value

common_tofu_memory_saving_method 2 1 (default value)

The method which uses the Shared
receive buffer is used when a
communication using the memory-
saving communication mode is
performed.

The method which uses the Medium
receive buffer is used when a
communication using the memory-
saving communication mode is
performed.

common_tofu_use_multi_path 1 0 (default value)

Multiple communication paths are
used for point-to-point
communication. In other words,
trunking is performed.

Multiple communication paths are not
used for point-to-point communication.

6.19.5 Dynamic Process Creation
When this function is enabled, and the dynamic process creation function is used, do not terminate the original parallel process that created
the dynamic process until the execution of the dynamic process's MPI_FINALIZE routine is complete.

- 136 -

Chapter 7 Error Messages
This chapter explains the error messages output for this software system.

7.1 Output Format for Information Related to Parallel Processes
At the start of a message specifically related to parallel processes, the host name (host) and process ID (pid) corresponding to that parallel
process may be output. If so, the output format is as follows:

[host:pid] message ID and message text character string

7.2 mpiexec Command Error Messages

[mpi::mca-base::duplicated-mca-params]
The following MCA parameter has been listed multiple times on
the command line:

 MCA param: MCA parameter

MCA parameters can only be listed once on a command line to ensure there
is no ambiguity as to its value. Please correct the situation and
try again.

- Description

The same MCA parameter can only be listed once on a command line.

- Parameters

MCA parameter : MCA parameter

- Action method

Check the MCA parameters.

--
[mpi::mca-base::find-available:not-valid]
A requested component was not found, or was unable to be opened. This
means that this component is either not installed or is unable to be
used on your system (e.g., sometimes this means that shared libraries
that the component requires are unable to be found/loaded). Note that
Open MPI stopped checking at the first component that it did not find.

Host: host
Framework: frame
Component: comp
--

- Description

The specified MPI library function (framework component) could not be selected. An unsupported function may have been
specified. Execution of the mpiexec command or the MPI program ends.

- Parameters

host : Host name

frame : Framework name

comp : Component name

- 137 -

- Action method

Check the value specified for the MCA parameter.

[mpi::mca-base::getcwd-error] Error: Unable to get the current working directory

- Description

Processing failed for the system call getcwd. The current path is set as the current directory. Execution of the mpiexec command
continues.

- Action method

The system may not be operating correctly. Contact the system administrator.

--
[mpi::mca-var::invalid-value-enum]
An invalid value was supplied for an enum variable.

Variable : name
Value : val
Valid values : values
--

- Description

The value specified for the MCA parameter is invalid. Execution of the mpiexec command ends.

- Parameters

name : MCA parameter name

val : MCA parameter value

values : MCA parameter values that can be specified

- Action method

Check the value specified for the MCA parameter.

--
[mpi::mca-var::missing-param-file]
Process pid Unable to locate the variable file "file" in the following search path:
 wdir
--

- Description

The AMCA parameter file (MCA parameter settings file) could not be found in the specified path. After message output, execution
of the mpiexec command or the MPI program continues.

- Parameters

pid : Process ID

file : Specified file path

wdir : Directory path executed by the mpiexec command

- Action method

Check the AMCA parameter file (MCA parameter settings file) specification.

--
[mpi::opal-runtime::opal_init:startup:internal-failure]
It looks like opal_init failed for some reason; your parallel process is
likely to abort. There are many reasons that a parallel process can
fail during opal_init; some of which are due to configuration or

- 138 -

environment problems. This failure appears to be an internal failure;
here's some additional information (which may only be relevant to an
Open MPI developer):

fun failed
--> Returned value errinfo (errno) instead of OPAL_SUCCESS
--

- Description

Initialization processing failed for the mpiexec command or the MPI program. Execution of the mpiexec command or the MPI
program ends.

- Parameters

fun : Error routine name

errinfo : Error details

errno : Error number

- Action method

Check whether there are errors in the MCA parameter specification. If there are no errors in the specification, consult System
Engineer about the message that was output.

[mpi::opal-util::keyval-error] keyval parser: error num reading file file at line lineno:
 code

- Description

The AMCA parameter file (MCA parameter settings file) contains characters that cannot be used. After message output, execution
of the mpiexec command or the MPI program continues.

- Parameters

num : Error number

file : File path of the AMCA parameter file (MCA parameter settings file)

lineno : Line number

code : Character that cannot be used

- Action method

Check whether there are any characters that cannot be used in the AMCA parameter file (MCA parameter settings file)

[mpi::opal-util::memory-error] Unable to allocate memory for the private addresses array

- Description

Memory cannot be allocated for the private address array. Memory acquisition failed. After message output, execution of the
mpiexec command or the MPI program continues.

- Action method

Check the maximum memory size limit value of the program. If there is no problem, the system may not be operating correctly.
Contact the system administrator.

[mpi::opal-util::param-option] mpiexec Error: option "opt" did not have enough parameters (num)

- Description

There are not enough arguments in the option specified in the mpiexec command. Execution of the mpiexec command ends.

- Parameters

mpiexec : mpiexec command

opt : Relevant option

- 139 -

num : Number of required arguments

- Action method

Specify the arguments required for the relevant mpiexec command option.

[mpi::opal-util::private-ipv4-error] FOUND BAD!

- Description

An unsupported MCA parameter may have been specified. (OMPI_MCA_opal_net_private_ipv4) After message output, execution
of the mpiexec command or the MPI program continues.

- Action method

Check the value specified for the MCA parameter.

[mpi::opal-util::unknown-option] mpiexec Error: unknown option "opt"

- Description

An unsupported option was specified in the mpiexec command. Execution of the mpiexec command ends.

- Parameters

mpiexec : mpiexec command

opt : Relevant option

- Action method

Specify the correct option in the mpiexec command.

--
[mpi::orterun::event-def-failed]
mpiexec was unable to define an event required for proper operation of
the system. The reason for this error was:

Error: syserr
--

- Description

System call execution failed. Execution of the mpiexec command ends.

- Parameters

syserr : System error details

- Action method

The system may not be operating correctly. Contact the system administrator.

--
[mpi::orterun::multi-apps-and-zero-np]
mpiexec found multiple applications specified on the command line, with
at least one that failed to specify the number of processes to execute.
When specifying multiple applications, you must specify how many processes
of each to launch via the -np argument.
--

- Description

Processing cannot continue because the number of parallel processes for each MPI program was not specified when executing in
MPMD model. Execution of the mpiexec command ends.

- Action method

Specify the number of parallel processes for each of the MPI programs specified in the mpiexec command.

- 140 -

--
[mpi::orterun::nothing-to-do]
mpiexec could not find anything to do.
--

- Description

An internal error may have occurred. Execution of the mpiexec command ends.

- Action method

Consult System Engineer about the message that was output.

--
[mpi::orterun::orterun:appfile-not-found]
Unable to open the appfile:

 file

Double check that this file exists and is readable.
--

- Description

The file specified by the execution definition file specification method is not found. Execution of the mpiexec command ends.

- Parameters

file : Specified file path

- Action method

Check the file path.

--
[mpi::orterun::orterun:executable-not-specified]
No executable was specified on the mpiexec command line.

Aborting.
--

- Description

No MPI programs were specified in the mpiexec command. Execution of the mpiexec command ends.

- Action method

Specify an MPI program in the mpiexec command.

--
[mpi::orterun::precondition]
mpiexec was unable to precondition transports
Returned value errno instead of ORTE_SUCCESS.
--

- Description

An internal error occurred. Execution of the mpiexec command ends.

- Parameters

errno : Error number

- Action method

Consult System Engineer about the message that was output.

- 141 -

--
[mpi::orte-runtime::orte_init:startup:internal-failure]
It looks like orte_init failed for some reason; your parallel process is
likely to abort. There are many reasons that a parallel process can
fail during orte_init; some of which are due to configuration or
environment problems. This failure appears to be an internal failure;
here's some additional information (which may only be relevant to an
Open MPI developer):

 fun failed
 --> Returned value errinfo (errno) instead of ORTE_SUCCESS
--

- Description

Initialization processing failed for the mpiexec command or the MPI program. Execution of the mpiexec command or the MPI
program ends.

- Parameters

fun : Error routine name

errinfo : Error details

errno : Error number

- Action method

Check whether there are errors in the MCA parameter specification. If there are no errors in the specification, consult System
Engineer about the message that was output.

[mpi::plm-ple::exec-plexec] Failed to invoke PLE. [errinfo:errinfo(errno) path:com]

- Description

Execution of the plexec command failed. The parallel execution environment (PLE) of Job Operation Software may not be
operating correctly. Execution of the mpiexec command ends.

- Parameters

errinfo : Error details

errno : Error number

com : Executing command

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::plm-ple::parallel] Specified number of parallel processes is incorrect.

- Description

The number of parallel processes specified in the mpiexec command is incorrect. Execution of the mpiexec command ends.

- Action method

Check the number of parallel processes in the mpiexec command.

[mpi::plm-ple::recursive-mpiexec] mpiexec cannot be invoked recursively.

- Description

Duplicate startup of the mpiexec command from the mpiexec command is not possible. Execution of the mpiexec command ends.

- 142 -

- Action method

Specify an MPI program in the mpiexec command.

[mpi::plm-ple::signal-plexec] Received signal sent by PLE. [signo:signo]

- Description

The plexec command received a signal and ended abnormally. The parallel execution environment (PLE) of Job Operation Software
may not be operating correctly. Execution of the mpiexec command ends.

- Parameters

signo : Signal number received by child process

- Action method

Ask the system administrator to check whether the parallel execution environment (PLE) of Job Operation Software is operating
correctly. If it is operating correctly, an internal error may have occurred. Consult System Engineer about the message that was
output.

[mpi::plm-ple::wait-plexec] System error caused by waitpid. [errinfo:errinfo(errno)]

- Description

Operation failed for the system call waitpid. Execution of the mpiexec command ends.

- Parameters

errinfo : Error details

errno : Error number

- Action method

The system may not be operating correctly. Contact the system administrator.

[mpi::schizo-ompi::param-env] Warning: could not find environment variable "env"

- Description

The specified environment variable value has not been set. After message output, execution of the mpiexec command continues.

- Parameters

env : Specified environment variable

- Action method

Check the value of the environment variable specified in the option (-x) of the mpiexec command.

7.3 Communication Library Error Messages

[mpi::btl-tofu::memory-error] Unable to allocate memory. [data]

- Description

Memory acquisition failed when communicating through Tofu interconnect. Execution of the MPI program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory usage.

- 143 -

[mpi::coll-mtofu::memory-error] Unable to allocate memory. [data]

- Description

Memory acquisition failed.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Check the amount of memory used and the maximum memory size limit value of the program. If the amount of memory used is too
high, reduce it.

[mpi::coll-select::memory-error] Unable to allocate memory. [data]

- Description

Failed to obtain memory.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Confirm the used amount of memory and the maximum memory size limit value of the program. When the used amount of memory
is large, reduce it.

[mpi::coll-select::module-enable-failure] Internal error. [data]

- Description

Problem occurred during the initialization of the algorithm selection. Exit the program.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-select::module-destruct-failure] Internal error. [data]

- Description

Problem occurred during the process of ending the algorithm selection. Exit the program.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-select::system-file-error] Algorithm selection by the system file does not work. [reason]

- Description

Problem occurred with the algorithm selection of the system. At that time, part of the function of the MPI statistical information
cannot be displayed correctly.

- Parameters

reason : Figure to indicate reason

reason Content of Reason

0 There is an error in string or syntax described in the file to be used at the algorithm selection by the system.

- 144 -

reason Content of Reason

1
The number of rules exceeds the one that can be described in the file to be used at the algorithm selection
by the system.

2
The number of conditional statements exceeds the one that can be described in the file to be used at the
algorithm selection by the system.

3
There is division by zero in calculation described in the file to be used at the algorithm selection by the
system.

4 There is an error in a variable described in the file to be used at the algorithm selection by the system.

5 There is an error in the algorithm name.

6 No executable algorithms exist.

7 The rule for blocking collective communication does not encompass this.

8 Barrier communication is specified in the file to be used at the algorithm selection by the system.

9
An internal error of the MPI library occurred during analysis of the file to be used at the algorithm selection
by the system.

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-tbi::comm-query-failure] Internal error. [reason]

- Description

Creation of a Tofu barrier network failed.

- Parameters

reason : Cause of failure

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-tbi::module-destruct-failure] Internal error. [reason]

- Description

Release of a Tofu barrier network failed.

- Parameters

reason : Cause of failure

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-tbi::internal-file-error] Unable to operate file file.

- Description

Access to the file used internally by the Tofu barrier failed.

- Parameters

operate : Operation

file : File path

- Action method

The file system may not be operating correctly. Contact the system administrator.

- 145 -

[mpi::coll-tbi::memory-error] Unable to allocate memory. [errno]

- Description

Memory acquisition failed for the tofu barrier.

- Parameters

errno : Error number

- Action method

Check the memory usage. If there is no problem, the system may not be operating correctly. Contact the system administrator.

[mpi::coll-tbi::operation-error] Operation error is reported by Tofu barrier communication. [rank function
arguments] [data]
<Stack trace information>

- Description

An operation error was detected in the Tofu barrier communication. An error of the error class MPI_ERR_OP occurs.

- Parameters

rank : Rank in the communicator

function : MPI routine

arguments : Argument of MPI routine

data : Data for System Engineer for analysis purposes

- Action method

Check whether there is either of the following descriptions at the shown MPI routine in your MPI program.

The reduction operation is showed in arguments as op.

- Different reduction operations were specified among processes

- Different collective communication routines were specified among processes

If this checking indicates no errors, an internal error may have occurred. Consult the System Engineer about the message that was
output.

[mpi::coll-tuned::init-subcommunicator-failure] Internal error. [reason]

- Description

Initialization processing failed for the collective communication subcommunicator processing.

- Parameters

reason : Cause of failure

- Action method

Consult System Engineer about the message that was output.

[mpi::coll-tuned::memory-error] Unable to allocate memory.

- Description

Memory acquisition failed.

- Action method

Check the amount of memory used and the maximum memory size limit value of the program. If the amount of memory used is too
high, reduce it.

- 146 -

[mpi::common-tofu::connection-error] Connection error. [data]

- Description

An error was detected when establishing the connection of communication through Tofu interconnect. Execution of the MPI
program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::memory-error] Unable to allocate memory. [data]

- Description

Memory acquisition failed when communicating through Tofu interconnect. Execution of the MPI program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory usage.

[mpi::common-tofu::mrq-error] Communication error is reported by Tofu MRQ. [data]

- Description

The Tofu interconnect detected a problem. Execution of the MPI program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::mrq-memory-error] Communication memory error is reported by Tofu MRQ. [data]

- Description

The Tofu interconnect detected a communication memory specification error. Execution of the MPI program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Check whether there is an error in the start address, datatype, or number of elements in the send buffer and receive buffer specified
in the MPI communication routine.

[mpi::common-tofu::mrq-peer-error] Communication peer error is reported by Tofu MRQ. This error may
be caused by abort of peer process. [data]

- Description

The Tofu interconnect detected an error on the compute node where the communication partner process is being executed. The error
may be caused by reason that the communication partner process was stopped or that the communication partner process released
the send buffer or the receive buffer. Execution of the MPI program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- 147 -

- Action method

In case the job was force-quitted, or the MPI program was terminated before MPI_FINALIZE routine is called, ignore this message.
In case the send buffer or the receive buffer is released before the completion of communication, revise the processing of releasing
buffer. Otherwise, consult System Engineer about the message that was output.

[mpi::common-tofu::tcq-error] Communication error is reported by Tofu TCQ. [data]

- Description

The Tofu interconnect detected a communication error. Execution of the MPI program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::tcq-memory-error] Communication memory error is reported by Tofu TCQ. [data]

- Description

The Tofu interconnect detected a communication memory specification error. Execution of the MPI program ends.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Check whether there is an error in the start address, datatype, or number of elements in the send buffer and receive buffer specified
in the MPI communication routine.

[mpi::common-tofu::tofu-async-error] Tofu interconnect detected an asynchronous error. [Event:
description (eventno), TNI: tniid, BG: bgid]

- Description

An internal error was detected in Tofu barrier communication. Execution of the MPI program ends.

- Parameters

description : Error message provided by the communication library (Tofu library)

eventno : Management number of the communication library (Tofu library) corresponding to the detected internal error

tniid : ID of the network interface device (TNI) which detected the error

bgid : ID of the barrier gate (BG) which detected the error

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::tofu-async-error] Tofu interconnect detected an asynchronous error. [Event:
description (eventno), TNI: tniid, CQ: cqid]

- Description

An internal error was detected in Tofu one-sided communication. Execution of the MPI program ends.

- Parameters

description : Error message provided by the communication library (Tofu library)

eventno : Management number of the communication library (Tofu library) corresponding to the detected internal error

tniid : ID of the network interface device (TNI) which detected the error

cqid : ID of the completion queue (CQ) which detected the error

- 148 -

- Action method

Consult System Engineer about the message that was output.

[mpi::common-tofu::tofu-init-failure] Internal error. [reason]

- Description

Initialization processing for the Tofu interconnect failed. Execution of the MPI program ends.

- Parameters

reason : Cause of initialization processing failure

- Action method

The system may not be operating correctly. Contact the system administrator.

[mpi::common-tofu::tofu-mrq-overflow] Tofu interconnect detected an MRQ overflow. [Event:
description (eventno), TNI: tniid, CQ: cqid]

- Description

The number of completion notices from the Tofu interconnect exceeded the number of entries in a completion queue. There is a
problem with the issue count of nonblocking communication processing in the MPI program. Execution of the MPI program ends.

- Parameters

description : Error message provided by the communication library (Tofu library)

eventno : Management number of the communication library (Tofu library) corresponding to the detected internal error

tniid : ID of the network interface device (TNI) which detected the error

cqid : ID of the completion queue (CQ) which detected the error

- Action method

Revise the processing of nonblocking communication or the completion processing of Eager communication in your MPI program,
or increase the number of entries in a completion queue of the Tofu interconnect as described in "Table 4.26
common_tofu_num_mrq_entries (change the number of entries in a completion queue)".

[mpi::common-tofu::tofu-congestion] Tofu interconnect detected the congestion. [Event: description
(eventno), TNI: tniid, CQ: cqid]

- Description

Congestion has been detected on the Tofu interconnect. Execution of the MPI program ends.

- Parameters

description : Error message provided by the communication library (Tofu library)

eventno : Management number of the communication library (Tofu library) corresponding to the detected internal error

tniid : ID of the network interface device (TNI) which detected the error

cqid : ID of the completion queue (CQ) which detected the error

- Action method

Revise the processing of the MPI program so that communication is not congested to a specific process.

[mpi::common-tofu::tofu-stag-error] Failed to query/register Tofu STag. [data]

- Description

A buffer usage error or a shortage in a Tofu interconnect memory management resource was detected.

- Parameters

data : Data for System Engineer for analysis purposes

- 149 -

- Action method

Check for errors in the start address of the send buffer and receive buffer, the data type, and the number of elements. Memory areas
that MPI program parallel processes cannot write to cannot be specified in send or receive buffers. Alternatively, if the large page
is not used, use the large page, or decrease patterns of the start address and number of elements in the send buffer and receive buffer
specified in the MPI communication routine. If the large page is used and there are no specification errors, an internal error may have
occurred. Consult System Engineer about the message that was output.

[mpi::common-tofu::tofu-stag-release-error] Failed to release Tofu STag. [data]

- Description

Inconsistency was detected when releasing Tofu interconnect memory management resource.

- Parameters

data : Data for System Engineer for analysis purposes

- Action method

Consult System Engineer about the message that was output.

[mpi::dpm::num-nodes-invalid] [[jobid,snum],rank] The specified number of nodes is invalid.

- Description

The number of nodes specified with the info key num_nodes may be greater than the number of nodes which are allocated to the
job.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Revise the number of nodes specified with the info key num_nodes.

[mpi::dpm::rankmap-invalid] [[jobid,snum],rank] The value specified with the info key rank_map is
invalid.

- Description

The value specified with the info key rank_map of the dynamic process creation routine is invalid. Execution of the MPI program
ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Specify "bychip" or "bynode" with the info key rank_map.

[mpi::dpm::spawn-exist-error] [[jobid,snum],rank] The number of MPI_COMM_WORLD for the dynamic
processes that can exist at the same time exceeds the upper limit.

- Description

The upper limit number of MPI_COMM_WORLD for the dynamic processes that can exist at the same time was exceeded.
Execution of the MPI program ends.

- Parameters

jobid : MPI job ID

- 150 -

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Set 65535 or less as the number of MPI_COMM_WORLD for the dynamic processes that exists at the same time.

[mpi::dpm::spawn-limit-error] [[jobid,snum],rank] The total invocation count of the MPI_COMM_SPAWN
routine or the MPI_COMM_SPAWN_MULTIPLE routine exceeds the upper limit.

- Description

The upper limit value for the dynamic process creation count was exceeded. Execution of the MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Set 4294967295 or less as the dynamic process creation count.

[mpi::dpm::spawn-resource-error] [[jobid,snum],rank] There are not enough compute nodes to create
processes dynamically according to the requirement.

- Description

There are not enough free nodes that can execute the specified dynamic process creation. Execution of the MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Confirm the designations of the number of nodes or the number of processes per node for dynamic process creation. If only the
number of CPUs (cores) allocated to each process is specified in the VCOORD file, the designation order may be the cause of this
error.

[mpi::dpm::vcoord-core-num-invalid] [[jobid,snum],rank] The number of CPUs (cores) on a compute
node is not sufficient.

- Description

There are not enough CPUs (cores) to allocate for the dynamic process creation. Execution of the MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

In the VCOORD file specified at dynamic process creation, the total number of CPUs (cores) allocated to processes created on a
node should be less than or equal to the number of CPUs (cores) mounted on the node.

- 151 -

[mpi::dpm::vcoord-format-error] [[jobid,snum],rank] The VCOORD file format is invalid.

- Description

For dynamic process creation, the VCOORD file specified with the info key vcoordfile contains a format error. Execution of the
MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Revise the contents of the file specified in dynamic process creation.

[mpi::dpm::vcoord-invalid] [[jobid,snum],rank] The specified logical coordinates are invalid.

- Description

In the VCOORD file specified with the info key vcoordfile of dynamic process creation, invalid logical corrdinates are specified.
The specified logical coordinates may be out of the range of the nodes allocated to the job. Execution of the MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Revise the contents of the file specified in dynamic process creation.

[mpi::dpm::vcoord-maxproc-invalid] [[jobid,snum],rank] The number of processes exceeds the number
of logical coordinates specified in the VCOORD file.

- Description

The VCOORD file is short of lines compared to the number of processes specified with maxprocs argument of dynamic process
creation routine. Execution of the MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

The number of lines of the VCOORD file should be greater than or equal to the number of processes specified with maxprocs
argument of dynamic process creation routine.

[mpi::dpm::vcoord-not-exist] [[jobid,snum],rank] The file specified with the vcoordfile info key does not
exist.

- Description

The VCOORD file specified with the info key vcoordfile of the dynamic process creation routine does not exist. Execution of the
MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

- 152 -

rank : Rank in MPI_COMM_WORLD

- Action method

Revise the VCOORD file path specified with the info key vcoordfile.

[mpi::dpm::vcoord-numa-error] [[jobid,snum],rank] The process cannot be bound to CPUs (cores) under
numanode_assign_policy.

- Description

For dynamic process creation, a process cannot be bound to the CPU (core) under the value of numanode_assign_policy.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Revise the value of numanode_assign_policy specified in the VCOORD file of dynamic process creation.

[mpi::dpm::vcoord-ppn-invalid] [[jobid,snum],rank] The number of processes exceeds the limit on a
compute node.

- Description

For dynamic process creation, the number of processes to be created on a node exceeds the limit on the number of processes that
can be created per node.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Revise the VCOORD file not to exceed the limit on the number of processes that can be created per node.

[mpi::dpm::vcoord-use-error] [[jobid,snum],rank] The specified logical coordinates are already used.

- Description

For dynamic process creation, the logical coordinates specified with the VCOORD file are already used.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

- Action method

Specify other logical coordinates or execute again after the executing processes end.
FJMPI_ERR_SPAWN_NO_AVAILABLE_NODES is returned for the error code.

[mpi::dpm::violated-establishing-communication] MPI_COMM_CONNECT or MPI_COMM_ACCEPT is
called although the specified value for the MCA parameter mpi_no_establish_communication is 1.

- Description

The program tried to establish communication between two groups of MPI processes that do not share a communicator although
the MCA parameter mpi_no_establish_communication is specified. Execution of the MPI program ends.

- 153 -

- Action method

Check the value specified for the MCA parameter or that the program does not establish communication between two groups of MPI
processes that do not share a communicator.

[mpi::dpm::violated-spawn] MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE is called although
the specified value for the MCA parameter mpi_no_establish_communication is 1.

- Description

The program tried to create the dynamic processes although 1 is specified for the MCA parameter
mpi_no_establish_communication. Execution of the MPI program ends.

- Action method

Check the value specified for the MCA parameter or that the program does not create dynamic processes.

[mpi::errmgr-base::orte-error] [[jobid,snum],rank] ORTE_ERROR_LOG: error in file file at line lineno

- Description

An internal error occurred. Execution of the MPI program ends.

- Parameters

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

error : Error details

file : Error file path

lineno : Line number

- Action method

Consult System Engineer about the message that was output.

[mpi::fjmpi-prequest::same-request-args] The arguments of source/destination rank, message tag, and
communicator for the request are identical to those of another request.

- Description

The arguments of source/destination rank, message tag, and communicator for the request are identical to those of another request.

- Action method

Specify other source/destination rank, message tag, or the communicator as the arguments of the FJMPI_PREQUEST_SEND_INIT
routine or the FJMPI_PREQUEST_RECV_INIT routine. Or execute the FJMPI_PREQUEST_SEND_INIT routine or
FJMPI_PREQUEST_RECV_INIT routine after freeing another request that already exists by the MPI_REQUEST_FREE routine.

--
[mpi::mpi-api::mpi-abort]
MPI_ABORT was invoked on rank rank in communicator comm
with errorcode rc.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.
You may or may not see output from other processes, depending on
exactly when Open MPI kills them.
--

- Description

The MPI_ABORT routine was called. Execution of the MPI program ends.

- 154 -

- Parameters

rank : Rank in MPI_COMM_WORLD

comm : Detailed information of the communicator in the MPI_ABORT routine first argument

rc : MPI_ABORT routine second argument

- Action method

Check whether there is an error in the MPI program content.

--
[mpi::mpi-runtime::mpi_init: already finalized]
Open MPI has detected that this process has attempted to initialize MPI (via MPI_INIT or
MPI_INIT_THREAD) after MPI_FINALIZE has been called.
This is erroneous.
--

- Description

After MPI_FINALIZE routine, an MPI routine that cannot be called after MPI_FINALIZE routine due to MPI standard was called.

- Action method

Check if an MPI routine was called after MPI_FINALIZE routine in the program.

If called, this contravenes MPI standard, so correct the program.

However, the following routines can be called after MPI_FINALIZE routine:

- MPI_INITIALIZED routine

- MPI_FINALIZED routine

- MPI_GET_VERSION routine

--
[mpi::mpi-runtime::mpi_init: invoked multiple times]
Open MPI has detected that this process has attempted to initialize MPI (via MPI_INIT or
MPI_INIT_THREAD) more than once.
This is erroneous.
--

- Description

Either the MPI_INIT routine or the MPI_INIT_THREAD routine was called twice.

- Action method

Check if either the MPI_INIT routine or the MPI_INIT_THREAD routine was called more than once in the program. Either the
MPI_INIT routine or the MPI_INIT_THREAD routine can be called only once due to MPI standard. If called more than once,
correct the program.

--
[mpi::mpi-runtime::mpi-param-check-enabled-but-compiled-out]
WARNING: The MCA parameter mpi_param_check has been set to true, but
parameter checking has been compiled out of Open MPI. The
mpi_param_check value has therefore been ignored.
--

- Description

The MCA parameter "mpi_param_check" was set. MCA parameter check cannot be specified unless the library is the debug MPI
library. After message output, execution of the MPI program continues.

- Action method

Remove the MCA parameter "mpi_param_check" specification.

- 155 -

--
[mpi::mpi-errors::mpi_errors_are_fatal]
[info] *** An error occurred [msg]
[info] *** reported by process [[jobid,rank]]
[info] *** on [type]
[info] *** [error class]
[info] *** MPI_ERRORS_ARE_FATAL (processes in this [type] will now abort,
[info] *** and potentially your MPI job)
--

- Description

A fatal error occurred during execution of the MPI program. The program will abort.

- Parameters

info : Host name and pid information

msg : Explanation of the cause of the problem

jobid : MPI job ID

rank : Rank in MPI_COMM_WORLD

type : Information on either the communicator, file, or window (depending on the cause of the problem)

error class : See "Appendix A Error Class List"

- Action method

Refer to the msg and error class and check for problems in the program. If there is no problem, note the message that is output and
contact the system administrator.

[mpi::opal-free-list::memory-error] Out of memory.

- Description

Memory acquisition failed. Execution of the MPI program ends.

- Action method

- Check the memory usage and memory size limit of the program. If there is a problem in the memory usage, reduce memory
usage.

- Because the MPI library saves messages to other regions if corresponding receive calls are delayed, these saved messages affect
the amount of memory used. Therefore, if the number of all communication partner processes is more than the upper limit for
the number of processes that can use the fast communication mode, and MPI program issues a large number of unexpected
messages, then this problem might be avoided by speeding up the communication according to the following procedure.

1. Execute the MPI program after specifying value 2 for the MCA parameter mpi_print_stats. Do not specify MCA
parameter mpi_print_stats_ranks. When you use the MCA parameter, you must specify -1 for mpi_print_stats_ranks, and
the output from all the parallel processes must enable. Confirm the number of unexpected messages by outputting the
MPI statistical information. Refer to "6.16 MPI Statistical Information" for details.

2. If the number of unexpected messages increased, enlarge the size of the Medium receive buffer. Refer to "Table 4.22
common_tofu_medium_recv_buf_size (changes the size of the Medium receive buffer)" for details.

[mpi::opal-util::check-buffer-write] The buffer was destroyed in this process.
<Stack trace information>

- Description

Another write occurred in the nonblocking communication send buffer. Stack trace information is output and the MPI program
execution ends.

- 156 -

- Action method

Refer to the stack trace information and revise the MPI program so that no processes overwrite the nonblocking communication send
buffer.

[info] Possible hang-up (no progress) is detected on [[jobid,snum],rank]
<Stack trace information>
[data]

- Description

The communication wait time exceeded the upper limit (seconds) specified by the user. A deadlock may have occurred. Stack trace
information and data for System Engineer for analysis purposes are output and execution of the MPI program ends.

- Parameters

info : Host name and pid information

jobid : MPI job ID

snum : spawn number

rank : Rank in MPI_COMM_WORLD

data : Data for System Engineer for analysis purposes

- Action method

Refer to the stack trace information and revise the MPI program to ensure that there is no code that causes deadlocks.

[mpi::opal-util::dynamic-debug-failure] Internal error. [reason]

- Description

Execution of the dynamic debug function failed.

- Parameters

reason : Cause of failure

- Action method

Consult System Engineer about the message that was output.

[mpi::opal-util::dynamic-debug-memory-error] Unable to allocate memory. [errno]

- Description

Memory allocation for use by the dynamic debug function failed.

- Parameters

errno : Error number

- Action method

Check the memory usage. If there is no problem, the system may not be operating correctly. Contact the system administrator.

[info] Delaying for time seconds before aborting

- Description

Termination of the program is delayed by the specified time (time seconds).

- Parameters

info : Host name and pid information

time : The value specified for the MCA parameter opal_abort_delay

- 157 -

7.4 Compilation/linkage command Error Messages

comm unrecognized option: -showme:param

- Description

An unsupported parameter was specified in the -showme option.

- Parameters

comm : Compilation/linkage command

param : Relevant parameter

- Action method

Specify the correct parameter for -showme option.

- 158 -

Chapter 8 Speeding Up Blocking Collective
Communication

This chapter describes two advanced performance tuning method for blocking collective communication. One is parameter tuning of
algorithms and the other is algorithm selection. The intended readers of this chapter are those who have the following knowledge related
to collective communication.

- Functions of available MCA parameters in this software system

- Features and performance characteristics of each algorithm

- Understanding of "6.14 Algorithms of Collective Communication and Shape of Compute Nodes Allocated to the Communicator"

- Performance analysis

 Note

Refer to ompi/mca/coll/base directory in source code of Open MPI and the following references for available algorithms and each feature.

- Performance analysis of MPI collective operations

"https://link.springer.com/article/10.1007/s10586-007-0012-0"

- The design of ultra scalable MPI collective communication on the K computer

"https://link.springer.com/article/10.1007/s00450-012-0211-7"

8.1 Outline
In this system, one or more algorithm is implemented for one blocking collective communication routine. This system selects high-speed
algorithms according to such information as the argument of the collective communication routine and the shape of the communicator, when
the blocking collective communication routine is called. The performance of some algorithms may change by changing the parameter. In
this way, the performance of the algorithm changes by changing the selection of algorithms and the parameter of the algorithm itself.

8.2 MCA Parameter Tuning of Algorithms
The performance of some algorithms may change by changing the MCA parameter.

8.2.1 Changing Segment Size

8.2.1.1 Change of Algorithm Performance by Changing Segment Size
Some algorithms may perform pipeline transfer. The pipeline transfer is the method to transfer message by dividing it into segments of a
certain size. The performance of the pipeline transfer depends on the message size and segment size. This system adjusts the segment size
by message size so as to enhance performance.

The following three MCA parameters can be specified:
coll_select_allreduce_algorithm_segmentsize, coll_select_bcast_algorithm_segmentsize, and
coll_select_reduce_algorithm_segmentsize. Algorithms corresponding to the MCA parameters are given in the following table.

Table 8.1 List of MCA Parameters to Specify Segment Size and Specifiable Algorithms

MCA Parameter
Collective Communication

Routine Name
Specifiable Algorithm

coll_select_allreduce_algorithm_segmentsize MPI_ALLREDUCE

segmented_ring

trinaryx6 (trix6)

trinaryx3 (trix3)

- 159 -

https://link.springer.com/article/10.1007/s10586-007-0012-0
https://link.springer.com/article/10.1007/s00450-012-0211-7

MCA Parameter
Collective Communication

Routine Name
Specifiable Algorithm

coll_select_bcast_algorithm_segmentsize MPI_BCAST

chain

pipeline

split_binary_tree

binary_tree

binomial

knomial

trinaryx6 (trix6)

bintree3d (bin3d)

trinaryx3 (trix3)

bintree6d (bin6d)

coll_select_reduce_algorithm_segmentsize MPI_REDUCE

chain

pipeline

binary

binomial

in-order_binary

trinaryx6 (trix6)

trinaryx3 (trix3)

Use them with the MCA parameter to specify algorithms in each collective communication routine.

 Example

Example of Specifying the Segment Size by MCA Parameter

In the MPI_BCAST routine, specify 1 to the MCA parameter coll_tuned_bcast_same_count in order to enable segment division. For
the MCA parameter coll_tuned_bcast_same_count, see "Table 4.14 coll_tuned_bcast_same_count (achieves faster communication
when MPI_BCAST/MPI_IBCAST routines are used with the same count among the processes)".

$ mpiexec --mca coll_tuned_bcast_same_count 1 \

--mca coll_select_bcast_algorithm binomial \

--mca coll_select_bcast_algorithm_segmentsize 1024 ./a.out

8.2.1.2 Notes by Changing Segment Size
By changing the size, the number of transfers of pipeline transfer changes. In particular, by decreasing the segment size, the number of
transfers of pipeline transfer increases. As a result of the increased number of pipeline transfers, an abnormal end may occur due to the lack
of communication resources. The abnormal end caused by the lack of communication resources outputs the error message beginning with
the following character string.

[mpi::common-tofu::tofu-mrq-overflow]

When the above error message appears by changing the segment size, increase the segment size.

The upper limit of a segment size is 16776960. See "8.4.3 MCA Parameter to Tune Algorithm Itself" for changing the segment size.

- 160 -

8.3 Tuning by Algorithm Selection
This system provides the function to enable users to specify algorithms. This function is the function to allow changing of the performance
of blocking collective communication. This section describes how to select algorithms, how to confirm, and the notes.

Selecting algorithms changes the performance of blocking collective communication. However, it does not necessarily enhance the
performance. Use at the responsibility of users.

8.3.1 How to Select Algorithms
You can select algorithms by repeating the following two processes.

1. Select candidate algorithms

Number 1 selects appropriate candidate algorithms from among multiple algorithms according to the conditions.

2. Determine whether or not the algorithms are call ready

Number 2 determines whether or not there is any problem in executing the candidate algorithms selected in the above 1. Some
algorithms may not have judgment conditions.

First of all, this section describes the flow of selecting algorithms in this system. Next, the section describes multiple methods of selecting
algorithms appearing during the flow. Finally, the section describes how to determine whether or not the algorithms are call ready.

8.3.1.1 Flow of Selecting Algorithms
First of all, this section describes the flow of selecting algorithms in this system.

There are five methods of selecting algorithms. They perform algorithm selection in the order of high priority as shown in "Table 8.2 Flow
of Selecting Algorithms".

If any of the following conditions is satisfied, the method of selecting algorithms specified by the user cannot be applied.

1. The size of the communicator is 1.

2. The communicator is created by using the MPI_INTERCOMM_MERGE routine.

3. The communicator is the inter-communicator.

4. A blocking collective communication whose algorithm is specified by the user is performed as internal processing in another blocking
collective communication.

Also, there are three methods of selecting algorithms that the users can specify. However, the blocking collective communication routine
given below has only one type of algorithm and therefore you cannot specify the algorithm.

- MPI_ALLTOALLW

- MPI_EXSCAN

- MPI_REDUCE_SCATTER_BLOCK

Table 8.2 Flow of Selecting Algorithms

Priority How to Select Outline User can Specify Reference of Details

1
Selection of special
case

This system automatically selects if
specific conditions are satisfied.

No
"8.3.1.2 Flow of Selecting
Algorithms in Special Case"

2
Specification by
MCA parameter

Specify algorithms by specifying the
MCA parameter coll_select_(type of
collective communication)_algorithm.

Yes
"8.3.1.3 Selecting Algorithms
by MCA Parameter"

3
Specification by
Info object

Specify algorithms by modifying the
program and using the Info object.
There are two types of methods for
specifying the Info object.

Yes
"8.3.1.4 Selecting Algorithms
by Info Object"

4
Specification by
external input file

Create the rules of selecting algorithms in
the external input file and specify the

Yes
"8.3.1.5 Selecting Algorithms
by External Input File"

- 161 -

Priority How to Select Outline User can Specify Reference of Details

algorithms by specifying the MCA
parameter at execution.

5
Selection by this
system

Automatically selected by this system. No None

If not specifying the method of selecting algorithms that the users can specify, automatic algorithm selection by this system is used. In this
case, it does not necessarily select algorithms optimum. Therefore, using methods of selecting algorithms that the users can specify may
improve performance.

The following table lists the advantages and disadvantages of the three types of algorithm selection methods that the users can specify. The
following section describes the details.

Table 8.3 Advantages and Disadvantages of Algorithm Selection Method that Users can Specify

How to Select Advantage Disadvantage

Specification by MCA parameter Impossible to be retranslated.
The specified algorithms apply to the entire
application program.

Algorithm specification by Info object
Possible to specify algorithms for each
collective communication routine.

Necessary to modify and retranslate the
source file.

Algorithm specification by external input
file

Not necessary to retranslate.
Possible to specify algorithms for each
condition.

Necessary to create the input file.
Therefore, it may take time to create the
input file.

8.3.1.2 Flow of Selecting Algorithms in Special Case
This selection method performs selection preferentially in the case of special conditions rather than other selection methods. Special cases
refer to any of the following three.

1. Barrier communication is selectable

2. The reduction operations is non-commutative (if any of the following conditions is satisfied)

a. User specifies the operation as non-commutative when creating the user definition operation

b. User specifies 1 to the MCA parameter coll_base_reduce_commute_safe

3. MPI_IN_PLACE is specified to the send buffer in the MPI_ALLTOALL routine and the MPI_ALLTOALLV routine

If any of the above conditions is satisfied, this system performs the algorithm selection that has been implemented in advance in the system.
In the case of condition 1, the system always selects the algorithm by barrier communication. For the conditions required for the application
of barrier communication, see "6.12 Use of Tofu Barrier Communication for Better Performance". If any of the conditions of above 2 is
satisfied, this system selects special algorithms. For the MCA parameter coll_base_reduce_commute_safe, see "Table 4.7
coll_base_reduce_commute_safe (guarantees the reduction operation sequence)". In the case of condition 3, the system selects the
algorithm that corresponds to the MPI_IN_PLACE.

8.3.1.3 Selecting Algorithms by MCA Parameter
This selection method is effective when the blocking collective communication routine is always called by the same argument. When using
the algorithm selection by the MCA parameter, all algorithms of certain collective communication become the algorithms that are specified
by the MCA parameter. This selection method does not require retranslation of the application program.

 Example

Example of Selecting Algorithms by MCA Parameter

$ mpiexec --mca coll_select_allgather_algorithm bruck ./a.out

This example always selects the bruck algorithm as the algorithm of the MPI_ALLGATHER routine. For the values that can be specified
as the MCA parameter, see "8.4.1 MCA Parameter to Specify Algorithm Selection".

- 162 -

8.3.1.4 Selecting Algorithms by Info Object
This system supports the method of selecting algorithms by using the Info object. To enable the tuning of the blocking collective
communication routine with this selection method, you need to modify the application program to use in the following procedure. The
modified application program requires retranslation.

1. Create Info object.

2. Set key and value to the Info object.

3. Set the Info object to the communicator.

4. For the blocking collective communication routine to which you want tuning, specify as the argument the communicator you set in
above 3.

5. Release the Info object.

 Example

Example of Pseudo-code of Algorithm Selection by Info Object

This example shows the pseudo-code of algorithm selection by Info object. Rows from the second row correspond to the above 1 to 5.

MPI_Info info;

MPI_Info_create(&info);

MPI_Info_set(info, key, value);

MPI_Comm_set_info(comm, info);

MPI_Allgather(..., comm);

MPI_Info_free(&info);

You can specify key and value for the Info object. In the algorithm selection, key allows you to set the name of the blocking collective
communication routine to which you want to specify the algorithm and the usage range. With value, you can set the name of the algorithm
to specify and the range of the message size to use such algorithm. Also, it is possible to specify the segment size for value in specific
algorithm.

For the character strings to specify with key, see "8.3.1.4.1 Parameter to Specify with key of Info Object". For the character strings to specify
with value, see "8.3.1.4.4 Specifying Rules for Selecting Algorithms".

8.3.1.4.1 Parameter to Specify with key of Info Object

To set the usage range of the rules for the algorithm selection, you need to specify key to pass to the Info object. The types of usage range
specified with key are two. They specify the algorithm for each collective communication routine call and for each communicator.

8.3.1.4.2 Specification for Each Collective Communication Routine Call

Specify (type of collective communication)_oneshot_rule when using a specific algorithm only once at any of collective communication
routine that can be specified in the external input file. See "Table 8.9 Type of Collective Communication that can be Specified in External
Input File" for specifying type of collective communication.

 Example

Example of Specifying Algorithms for Each Collective Communication Routine

This example shows the pseudo-code of changing algorithm only once at collective communication routine.

MPI_Info info;

MPI_Info_create(&info);

MPI_Info_set(info, "allgather_oneshot_rule", "bruck");

MPI_Comm_set_info(comm, info);

MPI_Allgather(..., comm); //(1)

MPI_Allgather(..., comm); //(2)

MPI_Info_free(&info);

- 163 -

(type of collective communication)_oneshot_rule is the selection method of an algorithm which is effective only for the collective
communication routine specified immediately after the MPI_COMM_SET_INFO routine. This example uses the bruck algorithm in the
MPI_ALLGATHER routine of (1) within the figure. However, after (1) is executed, the specification of (type of collective
communication)_oneshot_rule becomes invalid. Therefore, the MPI_ALLGATHER routine of (2) performs the algorithm selection by
different means.

For specifiable key, see "Table 8.5 Key When Changing Collective Communication Routine Algorithm Only Once".

8.3.1.4.3 Specification for Each Communicator

Specify (type of collective communication)_rule when changing algorithm in the unit of communicator. See "Table 8.9 Type of Collective
Communication that can be Specified in External Input File" for specifying type of collective communication.

 Example

Example of Specifying Algorithms for Each Communicator by Using Info Object

This example shows the pseudo-code of the method to change the algorithm of the collective communication routine to the unit of
communicator.

MPI_Info info;

MPI_Info_create(&info);

MPI_Info_set(info, "allgather_rules", "bruck");

MPI_Comm_set_info(comm, info);

MPI_Allgather(..., comm); //(1)

MPI_Allgather(..., comm); //(2)

MPI_Info_free(&info);

This example executes the bruck algorithm in the MPI_ALLGATHER routine of (1) within the figure. Unlike (type of collective
communication)_oneshot_rule, it executes the bruck algorithm even in the MPI_ALLGATHER routine of (2).

For specifiable key, see "Table 8.6 Key When Changing Collective Communication Routine Algorithm in Unit of Communicator".

8.3.1.4.4 Specifying Rules for Selecting Algorithms

The section describes how to specify the conditions to call algorithms with value. There are the following two types of specifying the
conditions to call algorithms.

1. (Algorithm name)

The specified algorithm is always called regardless of the message size.

2. (Range of message size): (Algorithm name)

The specified algorithm is called to the extent of the specified message size.

For this specification, note the following.

- When (type of collective communication)_oneshot_rule is specified to key, even if you specify multiple algorithms to value, only the
first algorithm becomes enabled. See "Table 8.9 Type of Collective Communication that can be Specified in External Input File" for
specifying type of collective communication.

The algorithm name that can be specified is the same as the character strings that can be specified with the MCA parameter. For details, see
"8.4.1 MCA Parameter to Specify Algorithm Selection".

Some algorithms may set the parameter. The parameter that can be specified currently is the segment size only. For the segment size and
the specifiable algorithm, see "8.2 MCA Parameter Tuning of Algorithms". To specify the segment size, specify value as shown in below.

 Example

Example of Specifying Segment Size of Algorithms by Using Info Object

This is an example of a pseudo-code with a segment size to an algorithm that can specify the segment size.

- 164 -

MPI_Info info;

MPI_Info_create(&info);

MPI_Info_set(info, "bcast_rules", "chain(segsize=2048)");

MPI_Comm_set_info(comm, info);

MPI_Bcast(..., comm); //Chain algorithm is executed with the segment size 2048 bytes.

MPI_Info_free(&info);

 Example

Example of Specifying Message Size of Algorithms by Using Info Object

This is an example of pseudo-code that specified the message size.

MPI_Info info;

MPI_Info_create(&info);

MPI_Info_set(info, "bcast_rules", "1024:chain;2048-4096:binomial");

MPI_Comm_set_info(comm, info);

MPI_Bcast(..., comm); //MPI_BCAST routine with the message size of 1024 bytes and the chain

algorithm is executed.

MPI_Bcast(..., comm); //MPI_BCAST routine with the message size of 3072 bytes and the binomial

algorithm is executed.

MPI_Info_free(&info);

This example uses chain algorithm when the message size (count * datatype size) is 1,024 bytes. Also, the example uses a binomial
algorithm when the size is 2,048 bytes or more and 4,096 bytes or less. When the message size is other than those, the example selects
the algorithm in a different way.

This section describes the definition of the message size that can be specified to value. The definition of the message size is in accordance
with "Table 8.4 Definition of Message Size by Blocking Collective Communication Routine to Be Used for Info Object" shown below.
However, as the message size is not used or the message size cannot be defined between ranks for the collective communication routine
indicated as non-usable, you cannot specify the message size to value. Any message size specified in the applicable collective
communication routine shall be disabled.

Table 8.4 Definition of Message Size by Blocking Collective Communication Routine to Be Used for Info Object
Collective Communication Routine

Name
Definition of Message Size

MPI_ALLGATHER Count * datatype size * communicator size

MPI_ALLGATHERV Sum of count * datatype size

MPI_ALLREDUCE Count * datatype size

MPI_ALLTOALL Count * datatype size * communicator size

MPI_ALLTOALLV Non-usable

MPI_BARRIER Non-usable

MPI_BCAST Count * datatype size

MPI_GATHER Send count * datatype size * communicator size

MPI_GATHERV Sum of receive count of root rank * datatype size

MPI_REDUCE Count * datatype size

MPI_REDUCE_SCATTER Count * datatype size * communicator size

MPI_SCAN Count * datatype size

MPI_SCATTER Receive count * datatype size * communicator size

MPI_SCATTERV Sum of send count of root rank * datatype size

- 165 -

Next, the section describes how to change algorithm selection for each message size. There are two types of methods for specifying the
message size.

1. Specific message size

Select the specified algorithm only for specific message size.

2. msgmin - msgmax

Select the specified algorithm if the message size is msgmin bytes or more and msgmax bytes or less.

To select multiple algorithms, enter value as in "Example of Algorithms Selection to Specify Message Size by Info Object". Enter into value
the character string delimiting the conditions to call algorithms with ";".

Example of Algorithms Selection to Specify Message Size by Info Object

value = "(condition 1 to call algorithm); ... ;(condition N to call algorithm)"

8.3.1.4.5 Notes for Selecting Algorithms by Info Object

This section describes notes for selecting algorithms by Info object.

- Specify key and value that are equal at all processes of the communicator to the Info object.

- The character strings that can be entered as value shall be up to the length of character strings defined as MPI_MAX_INFO_VAL. This
system allows the length under 255 one-byte alphabet characters and numbers.

- As for (type of collective communication)_oneshot_rule to change the algorithms only once, this system deletes key and value of (type
of collective communication)_oneshot_rule after use. Therefore, if you want to use (type of collective communication)_oneshot_rule
again, establish Info object to the communicator again. See "Table 8.9 Type of Collective Communication that can be Specified in
External Input File" for specifying type of collective communication.

- In MPI_GATHERV routine and MPI_SCATTERV routine, this system performs the processing equivalent to MPI_BCAST routine
inside in order to get the message size. Therefore, it takes time to execute.

8.3.1.4.6 List of Values that can be Specified to Key of Info Object

This section describes key that can be specified to Info object.

Table 8.5 Key When Changing Collective Communication Routine Algorithm Only Once

key Meaning

allgather_oneshot_rule Fix the algorithm of the MPI_ALLGATHER routine only once.

allgatherv_oneshot_rule Fix the algorithm of the MPI_ALLGATHERV routine only once.

allreduce_oneshot_rule Fix the algorithm of the MPI_ALLREDUCE routine only once.

alltoall_oneshot_rule Fix the algorithm of the MPI_ALLTOALL routine only once.

alltoallv_oneshot_rule Fix the algorithm of the MPI_ALLTOALLV routine only once.

barrier_oneshot_rule Fix the algorithm of the MPI_BARRIER routine only once.

bcast_oneshot_rule Fix the algorithm of the MPI_BCAST routine only once.

gather_oneshot_rule Fix the algorithm of the MPI_GATHER routine only once.

gatherv_oneshot_rule Fix the algorithm of the MPI_GATHERV routine only once.

reduce_oneshot_rule Fix the algorithm of the MPI_REDUCE routine only once.

reduce_scatter_oneshot_rule Fix the algorithm of the MPI_REDUCE_SCATTER routine only once.

scan_oneshot_rule Fix the algorithm of the MPI_SCAN routine only once.

scatter_oneshot_rule Fix the algorithm of the MPI_SCATTER routine only once.

scatterv_oneshot_rule Fix the algorithm of the MPI_SCATTERV routine only once.

- 166 -

Table 8.6 Key When Changing Collective Communication Routine Algorithm in Unit of Communicator
key Meaning

allgather_rules Fix the algorithm of the MPI_ALLGATHER routine in the unit of communicator.

allgatherv_rules Fix the algorithm of the MPI_ALLGATHER routine in the unit of communicator.

allreduce_rules Fix the algorithm of the MPI_ALLREDUCE routine in the unit of communicator.

alltoall_rules Fix the algorithm of the MPI_ALLTOALL routine in the unit of communicator.

alltoallv_rules Fix the algorithm of the MPI_ALLTOALLV routine in the unit of communicator.

barrier_rules Fix the algorithm of the MPI_BARRIER routine in the unit of communicator.

bcast_rules Fix the algorithm of the MPI_BCAST routine in the unit of communicator.

gather_rules Fix the algorithm of the MPI_GATHER routine in the unit of communicator.

gatherv_rules Fix the algorithm of the MPI_GATHERV routine in the unit of communicator.

reduce_rules Fix the algorithm of the MPI_REDUCE routine in the unit of communicator.

reduce_scatter_rules Fix the algorithm of the MPI_REDUCE_SCATTER routine in the unit of communicator.

scan_rules Fix the algorithm of the MPI_SCAN routine in the unit of communicator.

scatter_rules Fix the algorithm of the MPI_SCATTER routine in the unit of communicator.

scatterv_rules Fix the algorithm of the MPI_SCATTERV routine in the unit of communicator.

8.3.1.5 Selecting Algorithms by External Input File
This system supports selecting algorithms by external input file. The user makes an entry in the external input file in accordance with
"8.3.1.5.5 Entries of External Input File". This section describes how to use external input file, three examples of external input file, entries
of external input file, and notes of external input file.

8.3.1.5.1 How to Use

You can perform the rules to select algorithms entered in the external input file by specifying in the MCA parameter
coll_select_dectree_file. For details of the MCA parameter, see "8.4.2.1 coll_select_dectree_file (Specification of External Input User
Definition File of Algorithm Selection)".

8.3.1.5.2 Example of External Input File

This section describes a basic example of making an entry in the external input file.

Basic External Input File

The external input file consists of the header and the collective communication rules. Be sure to enter the header at the top of the external
input file.

Example of Simple External Input File with Algorithm for MPI_GATHER Routine

header: <--+

 version: 1.0 | Header

 require: mtofu <--+

gather: simple <--- Collective communication

The header portion indicates that this file is the file for algorithm selection.

Be sure to enter these three rows at the top when creating the file for algorithm selection rules. The version number of the function to
analyze the rules entered in the external input file is version 1.0. Specify the component information in require in order to declare
selecting the algorithms that exist in which component. "Example of Simple External Input File with Algorithm for MPI_GATHER
Routine" enters mtofu to require because it uses the algorithm tuned for Tofu interconnect. When using the algorithms of Open MPI,
enter base. When using both, enter mtofu, base.

- 167 -

For the collective communication rules, enter the collective communication to which the algorithm is specified and the algorithm to
specify. For the collective communication with no entry made, this system selects the algorithm. For example, to fix in one algorithm,
enter as follows.

(Type of collective communication) : (Algorithm name)

Or

(Type of collective communication) :

 (Algorithm name)

To use multiple algorithms separately, see explanation of "8.3.1.5.3 Multiple Entries of Algorithms and Parameter".

In "Example of Simple External Input File with Algorithm for MPI_GATHER Routine", the MPI_GATHER routine always attempts
to call the simple algorithm. If the condition to call the simple algorithm is not satisfied, it selects the algorithm by the selection by this
system.

8.3.1.5.3 Multiple Entries of Algorithms and Parameter

This section describes multiple entries of algorithms and parameter. As is described in "8.3.1 How to Select Algorithms", there may be
conditions to call some algorithms and therefore it does not always select the expected algorithms. As such, you can enter by changing the
priority of algorithms to call even under the same condition.

Example of Multiple Entries of Algorithms

header:

 version: 1.0

 require: mtofu, base

gather: simple, binomial

This example specifies the algorithm of the MPI_GATHER routine. This example attempts to call the simple algorithm at first. If the
simple algorithm cannot be called, the binomial algorithm will be selected. In this way, it judges sequentially from the algorithm entered
in the left side. If any of the entered algorithms cannot be selected, it selects the algorithm by the selection by this system.

Also, some algorithms may be set with the parameter. The parameter that can be specified currently is the segment size only. The
example is the selection method even to specify the segment size of the MPI_BCAST routine. For the segment size and the specifiable
algorithm, see "8.2 MCA Parameter Tuning of Algorithms".

Example of Specifying Parameter of Algorithms

header:

 version: 1.0

 require:base

bcast: binomial(segsize=1024)

If the segment size is not specified, it is treated as if 0 is specified. If 0 is specified, it performs communication without dividing the
messages. This example executes the binomial algorithm with the segment size as 1,024 bytes.

8.3.1.5.4 Conditional Statement

In some cases you may want to change the algorithm to select according to conditions in the collective communication rules of the external
input file. This section describes how to write the usable conditional statement in such a case. The conditional statements are divided into
the following two types.

1. When entering two conditions by using if and else

2. When entering multiple conditions by using case and match

Firstly, this section describes the conditional statements using if. Use the if statement in the following way. else: portion is always necessary.

Outline of if Statement

 if (conditional expression) :

 Statement

- 168 -

 else :

 Statement

Example of Using if Statement

header:

 version: 1.0

 require: base

allreduce:

 if msg_size <= 2097152:

 recursive_doubling

 else:

 ring

This example of the MPI_ALLREDUCE routine changes the algorithm selection depending on the message size as shown below.

- When the message size is 2,097,152 bytes or less: Execute the recursive_doubling algorithm

- When the message size is over 2,097,152 bytes: Execute the ring algorithm

Next, the section describes the example of using case and match.

Outline of case and match

 case (expression):

 match A .. B:

 Statement 1

 match C .. D:

 Statement 2

 match _:

 Statement 3

The above example performs Statement 1 if the expression is A or more and B or less, and performs Statement 2 if the expression is C
or more and D or less. When the expression is not applicable to any range, then it performs Statement 3. It does not matter even if three
rows or more of match (range) exist. However, you need to enter match _: at last.

Example of Using case and match

header:

 version: 1.0

 require: mtofu, base

bcast:

 case msg_size:

 match 1 .. 65536

 split_binary_tree

 match 65537 .. 1048576

 bintree3d(segsize = 2048)

 match _:

 bintree3d(segsize = 16384)

In this example of the MPI_BCAST routine, the selection of algorithm changes depending on the message size as shown below.

- When the message size is 1 byte or more and 65,536 bytes or less: Execute the split_binary_tree algorithm.

- When the message size is 65,537 bytes or more and 1,048,576 bytes or less: Execute the bintree3d algorithm with the segment size
of 2,048 bytes.

- When the message size is other than above: Execute the bintree3d algorithm with the segment size of 16,384 bytes.

 Note

The case statement is evaluated from the front. Therefore, if there are multiple match statements that correspond to the expression, the
preceding conditions take priority.

- 169 -

8.3.1.5.5 Entries of External Input File

This section describes the entered content in the external input file.

As is explained in "Basic External Input File", enter the "head portion" and the "collective communication rules" in the external input file.

Outline of External Input File

header:

 version: 1.0

 (Component information)

(Collective communication rules)

The header portion consists of the character string "header", ":", version information, and component information. The version
information consists of "version", ":", and version number. The version number of the function to analyze the rules entered in the external
input file is version 1.0.

- Use space between words and symbols.

- Describe comment with #. All characters following # will be recognized as without meaning.

- You can use indentation using one-byte spaces, too. However, a syntax error occurs when the indention level is wrong such as the
example below.

header:

 version: 1.0

 require: base

allreduce:

 if msg_size <= 2097152:

 recursive_doubling

A syntax error occurs because the indentation level of the following

else statement line does not match that of the corresponding

if statement line.

In this case, modify the indentation level of the else statement so that

it matches the indentation level of the corresponding if statement line.

 else:

 ring

For detailed example, see "8.3.1.5.2 Example of External Input File".

The table below shows the items that can be entered in the external input file. The symbols in the table below are given as follows:

Table 8.7 Symbols Written in Entry Method and Meanings

Symbol Meaning

" "
For the items embedded in these symbols, the user creates selection conditions in accordance with the
format written in the entry method.

[] Perform the content embedded with [] once.

[]+ Repeat the content embedded with [] once or more.

| Select one item from the items separated by this symbol.

The item names embedded with " " as shown in the entry method of the table below indicate that the entry method of the item name
applies.

For example, in the case of the header item, the entry method is "header: 'Version information' 'Component information'". Therefore,
enter in the external input file the content pursuant to the format of the entry method of the version information and component
information after "header:" as shown in the example of "Outline of External Input File".

- 170 -

Table 8.8 Definition of External Input File
External Input

File
Item Entry Method Remarks

Header
portion

Header header: "Version information" "Component
information"

Version information version: "Version number"

Version number 1.0

Component
information

require: (Component location)

Component location mtofu

 | base

 | mtofu, base

Collective
communicati
on rules

Collective
communication rule

["Type of collective communication"]: "Text"

Type of collective
communication

See "Table 8.9 Type of Collective
Communication that can be Specified in
External Input File".

Text "if-else statement"

 | "case-match statement"

 | "Algorithm statement"

if-else statement if " comparative sentence " : "text"

else : "text"

case-match
statement

case "expression" :

 [match "range" :"text"]+

 match _: "text"

Range "positive integer of lower limit".." positive
integer of upper limit"

 | "positive decimal of lower limit".."positive
decimal of upper limit"

Specify the range required by the
expression with case-match statement.
The meaning of the range varies
depending on the expression.

When the expression indicates the
message size, specify as follows:

Ex: When specifying the rage from
1,024 to 2,048 bytes

case msg_size:

 match 1024..2048:

When the expression is sharpness,
specify the dimension ratio of the axis in
Tofu coordinates as follows:

Ex: When indicating the range from 1.0
to 2.0

case sharpness:

 match 1.0..2.0:

Algorithm statement "Algorithm name"

 | "Algorithm name" , "Algorithm statement"

Specify one segsize in principle.

However, trinaryx3 and trinaryx6 which
are the algorithms of the

- 171 -

External Input
File

Item Entry Method Remarks

 | "Algorithm name" (segsize = "positive
integer")

 | "Algorithm name" (segsize = "positive
integer"), "Algorithm statement"

 | "Algorithm name" (segsize = "positive
integer" , "positive integer")

 | "Algorithm name" (segsize = "positive
integer" , "positive integer"), "Algorithm
statement"

MPI_ALLREDUCE routine call reduce
and bcast inside. Therefore, you can
enter two segsize.

Ex:

trinaryx3(segsize=4096,

2048)

The segment size in this example is
4,096 bytes for reduce and 2,048 bytes
for bcast. When specifying only one
segsize, the segment size of reduce and
bcast are the same.

Comparison
statement

"bool-type variable"

 | "variable" is even_num

 | "variable" is odd_num

 | "expression" "comparative operator" "term"

 | "term" "comparative operator" "expression"

When specifying only variables in the
comparison statement, specify only the
bool-type variables.

For "variable" to be specified before "is
even_num" or "is odd_num", bool type
and double type cannot be specified.

For "variable" to be specified as term,
bool type cannot be specified.

Comparative
operator

<=

 | <

 | >=

 | >

 | ==

 | !=

Term "positive integer"

 | "positive decimal"

 | "variable"

For "variable", bool type cannot be
specified.

Comparative
operator

+

 | -

 | *

 | /

Expression "term"

 | "term" "operator" "term"

 | "term" "operator" "term" "operator" "term"

 | ("term" "operator" "term") "operator" "term"

 | "term" "operator" ("term" "operator" "term")

The expression consists of terms,
operators, and brackets. Three terms can
be entered at maximum. Two operators
can be entered at maximum. One pairs
of brackets can be entered at maximum.

Ex:

(proc_count + 1024) *

msg_size

Algorithm name See the algorithms described in the table of
"8.4.1 MCA Parameter to Specify Algorithm
Selection".

- 172 -

External Input
File

Item Entry Method Remarks

Variable See "Table 8.10 Variable Names that can be
Specified in External Input File".

bool type variable log_cuboid

 | pow_two

 | 6d_cuboid

 | equal_proc

See the meaning described in
"Table 8.10 Variable Names that can be
Specified in External Input File".

The table below shows the type of collective communication that can be specified in the external input file.

Table 8.9 Type of Collective Communication that can be Specified in External Input File

Type of Collective Communication that can be
Specified in External Input File

Corresponding Blocking Collective Communication Routine

allgather MPI_ALLGATHER

allgatherv MPI_ALLGATHERV

allreduce MPI_ALLREDUCE

alltoall MPI_ALLTOALL

alltoallv MPI_ALLTOALLV

barrier MPI_BARRIER

bcast MPI_BCAST

gather MPI_GATHER

gatherv MPI_GATHERV

reduce MPI_REDUCE

reduce_scatter MPI_REDUCE_SCATTER

scan MPI_SCAN

scatter MPI_SCATTER

scatterv MPI_SCATTERV

The table below shows the variable names that can be specified as variables in the external input file. The table below also shows the
datatype corresponding to the variable names. Note that the variables that can be specified as the variables of bool type in the comparison
statement are the following four types only (log_cuboid, pow_two, 6d_cuboid, qual_proc).

Regarding the message size of the collective communication of the MPI_GATHERV and MPI_SCATTERV (total_msg_size), this
system performs the processing equivalent to MPI_BCAST routine inside in order to get the message size. Therefore, it takes time to
execute.

Table 8.10 Variable Names that can be Specified in External Input File

Variable Name Datatype Meaning

node_count int32_t Number of nodes in the communicator

proc_count int32_t Number of processes in the communicator

max_proc int32_t Maximum number of processes in the nodes in the communicator

log_cuboid bool
Whether the shape of the nodes in the communicator is cuboid or not (allow missing specific
logical axis).

x_len, y_len, z_len int32_t Each length of logical axis of the nodes to which processes in the communicator belong.

comm_dim int32_t
Value based on the dimension number of the node shape where processes in the
communicator exist. Value is decided under the following conditions.

- 173 -

Variable Name Datatype Meaning

comm_dim=3: When log_cuboid is true and x_len, y_len, and z_len are all 2 or more

comm_dim=2: When log_cuboid is true and two of x_len, y_len, and z_len are 2 or more

comm_dim=1: When log_cuboid is true and one of x_len, y_len, and z_len are 2 or more

comm_dim=0: When log_cuboid is false, or x_len, y_len, and z_len are all 1 or less

msg_count int32_t Count of its own process. Can be used only for the MPI_ALLREDUCE routine.

msg_size int64_t
Message size of the collective communication. For the definition of the message size, see
"Table 8.11 Definition of msg_size for Each Blocking Collective Communication Routine".

total_msg_size int64_t

Sum of the message size of the collective communication. Use when it is not possible to
represent simply with msg_size * proc_count. Specifically, it shows the value of the
following collective communication routine.

- Receive buffer size of the MPI_ALLGATHERV routine

- Send buffer of the MPI_REDUCE_SCATTER routine

- Receive buffer size of root rank of the MPI_GATHERV routine

- Send buffer size of root rank of the MPI_SCATTERV routine

pow_two bool Whether the number of processes in the communicator is as a power of 2 or not.

sharpness double

Sharpness (ratio of the dimension of the physical maximum axis in the communicator and the
remaining two axes). It represents the ratio of the dimensions of the maximum axis and the
remaining axis for X axis, Y axis, and Z axis in the Tofu coordinates in the shape of containing
the communicator.

6d_cuboid bool
Whether the shape of the nodes in the communicator is cuboid or not in the Tofu coordinates
(allow missing specific logical axis).

equal_proc bool Whether the number of processes in the node is even or not.

job_topo int32_t

Type of method of placing nodes at Tofu coordinates. Method of placing nodes at the time of
job execution can be specified using this variable. If this variable is not specified, the job is
executed according to the method of placing nodes by Job Operation Software.

0: Torus mode

1: Mesh mode

2: Non-contiguous mode

tni_count int32_t Number of TNI that can be used at each process.

world_size int32_t Number of processes for MPI_COMM_WORLD.

For the node shape for inside the communicator, see "6.14 Algorithms of Collective Communication and Shape of Compute Nodes
Allocated to the Communicator". In addition, see Job Operation Software manual for details of methods of placing nodes at Tofu
coordinates.

Table 8.11 Definition of msg_size for Each Blocking Collective Communication Routine

Collective Communication Routine Name Definition of Message Size

MPI_ALLGATHER Count * datatype size

MPI_ALLGATHERV Non-usable

MPI_ALLREDUCE Count * datatype size

MPI_ALLTOALL Count * datatype size

MPI_ALLTOALLV Non-usable

MPI_BARRIER Non-usable

MPI_BCAST Count * datatype size

- 174 -

Collective Communication Routine Name Definition of Message Size

MPI_GATHER Send count * datatype size

MPI_GATHERV Non-usable

MPI_REDUCE Count * datatype size

MPI_REDUCE_SCATTER Non-usable

MPI_SCAN Count * datatype size

MPI_SCATTER Receive count * datatype size

MPI_SCATTERV Non-usable

The table below shows "is" that can be specified in comparative statement of the external input file.

Table 8.12 "is" that can be Specified in Comparison Statement of External Input File

Specification Meaning

Expression is even_num Return true when expression value is even number and return false if not.

Expression is odd_num Return true when expression value is odd number and return false if not.

8.3.1.5.6 Notes for Specifying External Input File

This section describes notes for specifying the external input file.

Conditions to be Noted Notes

number of entreies that can be made in
the external input file

There is an upper limit for the number of entries that can be made in the external input file. The
number of entries is decided according to the total number of entered algorithms and the
number of entered conditional statements. The expression to obtain the number of entries is
given below.

Number of entries = total number of entered algorithms + number of if

statements + sum of case and match written with case-match statement

The upper limit on the number of entries that can be made in this system is approximately
3,500. When the number of entries exceeds the upper limit, the following warning is output if
1 or 2 is specified in the MCA parameter coll_select_show_decision_process.

[mpi::coll-select::show-decision-process::warn] Algorithm selection

by the user file does not work. [2]

number of conditional statements that
can be made in the external input file

There is an upper limit for the number of conditional statements that can be made in the external
input file, and the upper limit is 30. The number of conditional statements is sum of the number
of if statements and matches of case-match statement. When the number of entries exceeds the
upper limit, the following warning is output if 1 or 2 is specified in the MCA parameter
coll_select_show_decision_process.

[mpi::coll-select::show-decision-process::warn] Algorithm selection

by the user file does not work. [3]

8.3.1.6 Conditions Required for Application of Algorithms
This section describes the characteristics of algorithms and conditions required for the application. When executing the algorithms, it may
determine according to the requirements such as the number of processes and communicator shape. This system determines whether it can
actually call to execute the algorithms to be called at the time of execution. The determination is divided into the following two types.

1. It is possible to determine only by its own process

2. It is required to determine all processes that comprise the communicator.

- 175 -

Number 1 is used when it is possible to determine uniquely without process. It is, for example, the item depending on the communicator
such as the number of processes.

Number 2 is used when the argument other than the communicator is the condition. It is, for example, the datatype. In MPI standard, most
of the blocking collective communication is allowed to have different datatypes between ranks with conditions. As such, it is not possible
to determine if the condition of datatype is satisfied only by the argument of its own process. For the conditions of argument, see MPI
standard. To perform determination, you must select the same algorithm in the entire communicator. Therefore, it is necessary to make
determination results agree with in the communicator. As such, when performing the determination, perform processing equivalent to the
MPI_ALLREDUCE routine inside this system. For the condition required for applying each algorithm, see "8.3.4 List of Algorithms and
Conditions Required for Application".

8.3.2 How to Confirm Selection Results
This section describes the function to confirm whether the selected algorithm is executed as expected.

8.3.2.1 Displaying Selection Process of Algorithms
When 1 or 2 is specified in the MCA parameter coll_select_show_decision_process, the selection process of the algorithm is displayed in
the standard error output. For the MCA parameter, see "8.4.2.2 coll_select_decision_process (Output of Algorithm Selection Process)". For
the output message, see "8.5.2 Output Message by Display Function of Algorithm Selection Process (Warning)".

8.3.2.2 Obtaining Selection Results of Algorithms by Using Info Object
Just like the algorithm selection, you can obtain the selection results of algorithms by using the Info object. When obtaining the algorithm
selection results, specify 1 to the MCA parameter coll_select_get_tuning_info. For the MCA parameter coll_select_get_tuning_info, see
"8.4.4.1 coll_select_get_tuning_info (Obtaining the Algorithm Information of the Collective Communication Executed Immediately
Before)".

 Example

Pseudo-code of Algorithms Obtained by Using Info Object

char val[MPI_MAX_INFO_VAL];

int flag = 0;

MPI_Info info;

MPI_Allgather(..., comm)//(1)

MPI_Comm_get_info(comm, &info);

MPI_Info_get(info, "last_allgather_algorithm", MPI_MAX_INFO_VAL, val, &flag);

if(flag){//flag is 1, Info is obtained

 printf("val is %s\n",val);//(2)

}

MPI_Info_free(&info);

Example of Results for Obtaining Algorithm Number

val is 5(segsize=0)

val is 1

In “Pseudo-code of Algorithms Obtained by Using Info Object”, the value output in the line (2) is the algorithm number corresponding
to the algorithm used in the line (1).

Each line in “Example of Results for Obtaining Algorithm Number” is an exapmle of value output in the line (2) in “Pseudo-code of
Algorithms Obtained by Using Info Object”, For the algorithms to which the segment size can be set, the segment size is indicated as
segsize as shown in the example below. In other cases, only the algorithm number is output.

"Table 8.13 List of key for Obtaining Results of Algorithm Selection" is the list of key to obtain with the MPI_INFO_GET routine.

Table 8.13 List of key for Obtaining Results of Algorithm Selection

key Meaning

last_allgather_algorithm Obtain the last used algorithm in the MPI_ALLGATHER routine.

- 176 -

key Meaning

last_allgatherv_algorithm Obtain the last used algorithm in the MPI_ALLGATHERV routine.

last_allreduce_algorithm Obtain the last used algorithm in the MPI_ALLREDUCE routine.

last_alltoall_algorithm Obtain the last used algorithm in the MPI_ALLTOALL routine.

last_alltoallv_algorithm Obtain the last used algorithm in the MPI_ALLTOALLV routine.

last_barrier_algorithm Obtain the last used algorithm in the MPI_BARRIER routine.

last_bcast_algorithm Obtain the last used algorithm in the MPI_BCAST routine.

last_gather_algorithm Obtain the last used algorithm in the MPI_GATHER routine.

last_gatherv_algorithm Obtain the last used algorithm in the MPI_GATHERV routine.

last_reduce_algorithm Obtain the last used algorithm in the MPI_REDUCE routine.

last_reduce_scatter_algorithm Obtain the last used algorithm in the MPI_REDUCE_SCATTER routine.

last_scan_algorithm Obtain the last used algorithm in the MPI_SCAN routine.

last_scatter_algorithm Obtain the last used algorithm in the MPI_SCATTER routine.

last_scatterv_algorithm Obtain the last used algorithm in the MPI_SCATTERV routine.

8.3.2.3 Obtaining Results Only with MCA Parameter
As a function of the MPI statistical information, you can display the algorithms executed with the blocking collective communication
routine. For the MPI statistical information, see "6.16 MPI Statistical Information".

8.3.3 Notes for Selecting Algorithms
When thousands or more communications concentrate on one compute node at the same time, the Tofu network near that compute node
becomes busy, thus significantly delaying the network processing. In some algorithms, multiple communications may concentrate on one
process at the same time. Do not use such algorithms for the scale of thousands or more processes.

Also, if you continuously execute the collective communication routine that allows multiple communications to concentrate on one process,
communication resources may be depleted. The abnormal end caused by the lack of communication resources outputs the error message
beginning with the following character string.

[mpi::common-tofu::tofu-mrq-overflow]

As a result of continuous execution, if the above message is output, specify 2 to the MCA parameter
common_tofu_memory_saving_method. However, this may decrease the execution performance. For the MCA parameter
common_tofu_memory_saving_method, see "Table 4.25 common_tofu_memory_saving_method (changes the method used for the
memory-saving communication mode)".

Barrier communication does not allow the user to select whether or not to use. This system selects as necessary.

When the selection method of algorithms is specified in the MPI_REDUCE routine, the order of operations is different from the case when
the selection method of algorithms is not specified. As such, even when you execute with the same argument as in the case when the selection
method of algorithms is not specified, the operation results may differ. According to the MPI standard, it is highly recommended that the
MPI_REDUCE routine has the same result when it is executed by the same argument. Therefore, use the order guarantee mode so as not
to change the order of operations. For the order guarantee mode, see "6.10 Suppressing Memory Usage".

8.3.4 List of Algorithms and Conditions Required for Application
This section describes the following information.

- Numbers indicated by the output function of algorithms that correspond to the MCA parameter

- Values of the specifiable MCA parameter as algorithm selection

- Conditions required for application of algorithms

Numbers indicated by the output function of algorithms have the following rules to follow.

- 177 -

Number Contents

1 to 6 The algorithms published by the Open MPI

100 to 103 The algorithms tuned for CPU of Tofu interconnect or this system

200 The barrier communication

300 The algorithms developed by this system

8.3.4.1 Algorithms Selected by MPI_ALLGATHER Routine

Table 8.14 Number of Algorithm in MPI_ALLGATHER Routine, Corresponding MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_allgather_algorithm

Conditions Required for Application

1 linear None

2 bruck None

3 recursive_doubling pow_two is true.

4 ring None

5 neighbor proc_count is even.

6 two_proc proc_count is 2.

100 gtbc

Datatype is not the MPI_PACKED, but predefined datatype without
space.

log_cuboid is true.

101 3dtorus, 3dtorus_fm

Datatype is not the MPI_PACKED, but predefined datatype without
space.

log_cuboid is true.

102 3dtorus_sm

Datatype is not the MPI_PACKED, but predefined datatype without
space.

log_cuboid is true.

Number of processes in the node in the MPI_COMM_WORLD is 24
or less.

proc_count * max_proc is less than 2048.

msg_size is less than or equal to 16776960B.

Even if the 3dtorus_sm algorithm is specified, it may not be used while the MPI_REQUEST_FREE routine is called after calling the
MPIX_ALLGATHER_INIT routine. In this case, another algorithm is selected by this software system.

For pow_two, proc_count, log_cuboid, max_proc, and msg_size, see "Table 8.10 Variable Names that can be Specified in External Input
File".

8.3.4.2 Algorithms Selected by MPI_ALLGATHERV Routine

Table 8.15 Number of Algorithm in MPI_ALLGATHERV Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_allgatherv_algorithm

Conditions Required for Application

1 default None

2 bruck None

3 ring None

- 178 -

Number of
Algorithm

MCA Parameter
coll_select_allgatherv_algorithm

Conditions Required for Application

4 neighbor proc_count is even.

5 two_proc proc_count is 2.

100 gtvbc

Datatype is not the MPI_PACKED, but predefined datatype without
space.

log_cuboid is true.

There is no space in the alignment of data received by the receive
buffer.

101
3dtorus,

3dtorus_fm

Datatype is not the MPI_PACKED, but predefined datatype without
space.

log_cuboid is true.

102 3dtorus_sm

Datatype is not the MPI_PACKED, but predefined datatype without
space.

log_cuboid is true.

Number of processes in the node in the MPI_COMM_WORLD is 24
or less.

proc_count * max_proc is less than 2048.

The product of the maximum number of receive counts and the size of
receive datatype is 16776960 bytes or less.

Even if the 3dtorus_sm algorithm is specified, it may not be used while the MPI_REQUEST_FREE routine is called after calling the
MPIX_ALLGATHER_INIT routine. In this case, another algorithm is selected by this software system.

For proc_count, log_cuboid, and max_proc, see "Table 8.10 Variable Names that can be Specified in External Input File".

8.3.4.3 Algorithms Selected by MPI_ALLREDUCE Routine

Table 8.16 Number of Algorithm in MPI_ALLREDUCE Routine, Corresponding MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_allreduce_algorithm

Conditions Required for Application

1 basic_linear

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

2 nonoverlapping

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

3 recursive_doubling

- 179 -

Number of
Algorithm

MCA Parameter
coll_select_allreduce_algorithm

Conditions Required for Application

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

4 ring msg_count is greater than or equal to proc_count.

5 segmented_ring

msg_count is greater than or equal to proc_count.

The segment size is greater than or equal to 1.

msg_count * datatype size is greater than the segment size *
proc_count.

6 rabenseifner

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

100 rdbc

Datatype is not the MPI_PACKED, but predefined datatype without
space.

Operation is predefined.

log_cuboid is true.

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

101 trinaryx6, trix6

Datatype is not the MPI_PACKED, but predefined datatype without
space.

Operation is predefined.

log_cuboid is true.

tni_count is greater than or equal to comm_dim * 2.

All of the following conditions about x_len, y_len, and z_len must be
met.

- x_len is greater than 3, or equal to either 1 or 3.

- y_len is greater than 3, or equal to any of 0, 1, and 3.

- z_len is greater than 3, or equal to any of 0, 1, and 3.

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

102 trinaryx3, trix3
Datatype is not the MPI_PACKED, but predefined datatype without
space.

- 180 -

Number of
Algorithm

MCA Parameter
coll_select_allreduce_algorithm

Conditions Required for Application

Operation is predefined.

log_cuboid is true.

tni_count is greater than or equal to comm_dim.

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

200 None

The MPI_ALLREDUCE routine of the barrier communication can be
called.

(For the conditions to call barrier communication, see "6.12 Use of
Tofu Barrier Communication for Better Performance".)

For msg_count, proc_count, log_cuboid, tni_count, comm_dim, x_len, y_len, and z_len, see "Table 8.10 Variable Names that can be
Specified in External Input File".

8.3.4.4 Algorithms Selected by MPI_ALLTOALL Routine

Table 8.17 Number of Algorithm in MPI_ALLTOALL Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_alltoall_algorithm

Conditions Required for Application

1 linear

proc_count is less than or equal to 1536.

 Note

This algorithm may cause multiple communications to concentrate
on one process at the same time. As a result, it may significantly delay
the networking processing. Therefore, do not use it for the scale of
thousands or more processes.

2 pairwise None

3 modified_bruck

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

4 linear_sync None

5 two_proc proc_count is 2.

100 doublespread
Datatype is not the MPI_PACKED, but predefined datatype without
space.

101 blacc3d

Datatype is not the MPI_PACKED, but predefined datatype without
space.

log_cuboid is true.

comm_dim of the communicator is 3.

- 181 -

Number of
Algorithm

MCA Parameter
coll_select_alltoall_algorithm

Conditions Required for Application

x_len, y_len, and z_len of the communicator are all even.

msg_size is less than or equal to 33553920B.

equal_proc is true.

102 blacc6d

Datatype is not the MPI_PACKED, but predefined datatype without
space.

6d_cuboid is true.

Shape of the communicator has no space in abc axis in Tofu
coordinates.

job_topo is not 2.

equal_proc is true.

tni_count is 6.

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may occur
when the size of the send buffer and the receive buffer are large.

103 crp

Datatype is not the MPI_PACKED, but predefined datatype without
space.

node_count is 1 node.

For proc_count, log_cuboid, tni_count, comm_dim, x_len, y_len, z_len, msg_size, 6d_cuboid, equal_proc, job_topo, and node_count, see
"Table 8.10 Variable Names that can be Specified in External Input File".

8.3.4.5 Algorithms Selected by MPI_ALLTOALLV Routine

Table 8.18 Number of Algorithm in MPI_ALLTOALLV Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_alltoallv_algorithm

Conditions Required for Application

1 basic_linear

proc_count is less than or equal to 1536.

 Note

This algorithm may cause multiple communications to concentrate
on one process at the same time. As a result, it may significantly delay
the networking processing. Therefore, do not use it for the scale of
thousands or more processes.

2 pairwise None

100 doublespread
Datatype is not the MPI_PACKED, but predefined datatype without
space.

For proc_count, see "Table 8.10 Variable Names that can be Specified in External Input File".

8.3.4.6 Algorithms Selected by MPI_BARRIER Routine

- 182 -

Table 8.19 Number of Algorithm in MPI_BARRIER Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_barrier_algorithm

Conditions Required for Application

1 linear None

3 recursive_doubling None

4 bruck None

5 two_proc proc_count is 2.

6 tree None

200 None

The MPI_BARRIER routine of the barrier communication can be
called.

(For the conditions to call barrier communication, see "6.12 Use of
Tofu Barrier Communication for Better Performance".)

For proc_count, see "Table 8.10 Variable Names that can be Specified in External Input File".

8.3.4.7 Algorithms Selected by MPI_BCAST Routine

Table 8.20 Number of Algorithm in MPI_BCAST Routine, Corresponding to MCA Parameter and the Application
Conditions

Number of
Algorithm

MCA Parameter
coll_select_bcast_algorithm

Conditions Required for Application

1 basic_linear None

 Note

If you continuously use these algorithms for thousands or more
processes, communication resources may be depleted. For details,
see "8.3.3 Notes for Selecting Algorithms".

2 chain

3 pipeline

4 split_binary_tree

Value of MCA parameter coll_tuned_bcast_same_count is 1.

Count (number of entries in buffer) is greater than or equal to 2.

The segment size is less than or equal to count / 2 *datatype size (if
count is odd, the numbers after the decimal point of "count / 2" is
rounded down.).

5 binary_tree None

6 binomial None

7 knomial None

100 trinaryx6, trix6

Datatype is not the MPI_PACKED, but predefined datatype
without space.

log_cuboid is true.

tni_count is greater than or equal to comm_dim * 2.

All of the following conditions about x_len, y_len, and z_len must
be met.

- x_len is greater than 3, or equal to either 1 or 3.

- y_len is greater than 3, or equal to any of 0, 1, and 3.

- z_len is greater than 3, or equal to any of 0, 1, and 3.

- 183 -

Number of
Algorithm

MCA Parameter
coll_select_bcast_algorithm

Conditions Required for Application

101 bintree3d, bin3d

Datatype is not the MPI_PACKED, but predefined datatype
without space.

log_cuboid is true.

102 trinaryx3, trix3

Datatype is not the MPI_PACKED, but predefined datatype
without space.

log_cuboid is true.

103 bintree6d, bin6d

Datatype is not the MPI_PACKED, but predefined datatype
without space.

log_cuboid is true.

tni_count is greater than or equal to comm_dim * 2.

200 None

The MPI_BCAST routine of the barrier communication can be
called.

(For the conditions to call barrier communication, see "6.12 Use of
Tofu Barrier Communication for Better Performance".)

For log_cuboid, tni_count, comm_dim, x_len, y_len, and z_len, see "Table 8.10 Variable Names that can be Specified in External Input
File".

8.3.4.8 Algorithms Selected by MPI_GATHER Routine

Table 8.21 Number of Algorithm in MPI_GATHER Routine, Corresponding to MCA Parameter and the Application
Conditions

Number of
Algorithm

MCA Parameter
coll_select_gather_algorithm

Conditions Required for Application

1 basic_linear None

2 binomial

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the receive buffer in root process is large.

3 linear_sync

None

 Note

Algorithm to execute at high speed in the case of the same count
between ranks. If the count is different between ranks, the executed
an abnormal end may occur. Make sure that the count between
ranks correspond and call the algorithm.

100 simple
Datatype is not the MPI_PACKED, but predefined datatype
without space.

8.3.4.9 Algorithms Selected by MPI_GATHERV Routine

- 184 -

Table 8.22 Number of Algorithm in MPI_GATHERV Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_gatherv_algorithm

Conditions Required for Application

1 default None

100 simple
Datatype is not the MPI_PACKED, but predefined datatype
without space.

8.3.4.10 Algorithms Selected by MPI_REDUCE Routine

Table 8.23 Number of Algorithm in MPI_REDUCE Routine, Corresponding to MCA Parameter and the Application
Conditions

Number of
Algorithm

MCA Parameter
coll_select_reduce_algorithm

Conditions Required for Application

1 linear

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

2 chain

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

3 pipeline

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

4 binary

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

5 binomial

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

6 in-order_binary

- 185 -

Number of
Algorithm

MCA Parameter
coll_select_reduce_algorithm

Conditions Required for Application

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

7 rabenseifner

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

100 trinaryx6, trix6

Datatype is not the MPI_PACKED, but predefined datatype
without space.

Operation is predefined.

log_cuboid is true.

tni_count is greater than or equal to comm_dim * 2.

All of the following conditions about x_len, y_len, and z_len must
be met.

- x_len is greater than 3, or equal to either 1 or 3.

- y_len is greater than 3, or equal to any of 0, 1, and 3.

- z_len is greater than 3, or equal to any of 0, 1, and 3.

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

101 trinaryx3, trix3

Datatype is not the MPI_PACKED, but predefined datatype
without space.

Operation is predefined.

log_cuboid is true.

tni_count is greater than or equal to comm_dim.

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer in root
process are large.

200 None
The MPI_REDUCE routine of the barrier communication can be
called.

- 186 -

Number of
Algorithm

MCA Parameter
coll_select_reduce_algorithm

Conditions Required for Application

(For the conditions to call barrier communication, see "6.12 Use of
Tofu Barrier Communication for Better Performance".)

For log_cuboid, tni_count, comm_dim, x_len, y_len, and z_len, see "Table 8.10 Variable Names that can be Specified in External Input
File".

8.3.4.11 Algorithms Selected by MPI_REDUCE_SCATTER Routine

Table 8.24 Number of Algorithm in MPI_REDUCE_SCATTER Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_reduce_scatter_algorithm

Conditions Required for Application

1 non-overlapping

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer is large.

2 recursive_halving

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer is large.

3 ring

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer is large.

8.3.4.12 Algorithms Selected by MPI_SCAN Routine

Table 8.25 Number of Algorithm in MPI_SCAN Routine, Corresponding to MCA Parameter and the Application
Condition

Number of
Algorithm

MCA Parameter
coll_select_scan_algorithm

Conditions Required for Application

1 linear None

2 recursive_doubling

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer and the receive buffer are
large.

8.3.4.13 Algorithms Selected by MPI_SCATTER Routine

- 187 -

Table 8.26 Number of Algorithm in MPI_SCATTER Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_scatter_algorithm

Conditions Required for Application

1 basic_linear None

2 binomial

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer in root process is large.

300 use_bcast

msg_size * proc_count is less than or equal to 2147483647.

 Note

In this algorithm, the MPI library allocates much memory for
temporary use. Therefore, note that a shortage of memory may
occur when the size of the send buffer in root process is large.

For msg_size and proc_count, see "Table 8.10 Variable Names that can be Specified in External Input File".

8.3.4.14 Algorithms Selected by MPI_SCATTERV Routine

Table 8.27 Number of Algorithm in MPI_SCATTERV Routine, Corresponding to MCA Parameter and the
Application Conditions

Number of
Algorithm

MCA Parameter
coll_select_scatterv_algorithm

Conditions Required for Application

1 basic_linear None

300 linear_sync None

8.4 MCA Parameter related to Algorithm Selection
This section describes types of the MCA parameter related to the algorithm selection. For the specification method of the MCA parameter
and the priority order, see "Table 4.5 MCA parameter specification methods and priorities".

8.4.1 MCA Parameter to Specify Algorithm Selection

8.4.1.1 coll_select_allgather_algorithm (Specifying the Algorithm of the
MPI_ALLGATHER Routine)

Fix the algorithm to be executed in the MPI_ALLGATHER routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

3dtorus_sm Use the algorithm 3dtorus_sm tuned for Tofu interconnect.

3dtorus_fm, 3dtorus
Use the algorithm 3dtorus_fm tuned for Tofu interconnect. Both character strings of 3dtorus_fm and
3dtorus are effective.

gtbc Use the algorithm gtbc tuned for Tofu interconnect.

two_proc Use the algorithm two_proc implemented with the Open MPI.

neighbor Use the algorithm neighbor implemented with the Open MPI.

- 188 -

Value of MCA Parameter Contents

ring Use the algorithm ring implemented with the Open MPI.

recursive_doubling Use the algorithm recursive_doubling implemented with the Open MPI.

bruck Use the algorithm bruck implemented with the Open MPI.

linear
Use the algorithm linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.2 coll_select_allgatherv_algorithm (Specifying the Algorithm of the
MPI_ALLGATHERV Routine)

Fix the algorithm to be executed in the MPI_ALLGATHERV routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

3dtorus_sm Use the algorithm 3dtorus_sm tuned for Tofu interconnect.

3dtorus_fm, 3dtorus
Use the algorithm 3dtorus_fm tuned for Tofu interconnect.

Both character strings 3dtorus_fm and 3dtorus is available.

gtvbc Use the algorithm gtvbc tuned for Tofu interconnect.

two_proc Use the algorithm two_proc implemented with the Open MPI.

neighbor Use the algorithm neighbor implemented with the Open MPI.

ring Use the algorithm ring implemented with the Open MPI.

bruck Use the algorithm bruck implemented with the Open MPI.

default
Use the algorithm default implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.3 coll_select_allreduce_algorithm (Specifying the Algorithm of the
MPI_ALLREDUCE Routine)

Fix the algorithm to be executed in the MPI_ALLREDUCE routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

trinaryx3, trix3
Use the algorithm trinaryx3 tuned for Tofu interconnect. Both character strings of trinaryx3 and trix3 are
effective.

trinaryx6, trix6
Use the algorithm trinaryx6 tuned for Tofu interconnect. Both character strings of trinaryx6 and trix6 are
effective.

rdbc Use the algorithm rdbc tuned for Tofu interconnect.

rabenseifner Use the algorithm rabenseifner implemented with the Open MPI.

segmented_ring Use the algorithm segmented_ring implemented with the Open MPI.

ring Use the algorithm ring implemented with the Open MPI.

recursive_doubling Use the algorithm recursive_doubling implemented with the Open MPI.

nonoverlapping Use the algorithm nonoverlapping implemented with the Open MPI.

basic_linear
Use the algorithm basic_linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

- 189 -

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.4 coll_select_alltoall_algorithm (Specifying the Algorithm of the MPI_ALLTOALL
Routine)

Fix the algorithm to be executed in the MPI_ALLTOALL routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

crp Use the algorithm crp tuned for Tofu interconnect.

blacc6d Use the algorithm blacc6d tuned for Tofu interconnect.

blacc3d Use the algorithm blacc3d tuned for Tofu interconnect.

doublespread Use the algorithm doublespread tuned for Tofu interconnect.

two_proc Use the algorithm two_proc implemented with the Open MPI.

linear_sync Use the algorithm linear_sync implemented with the Open MPI.

modified_bruck Use the algorithm modified_bruck implemented with the Open MPI.

pairwise Use the algorithm pairwise implemented with the Open MPI.

linear
Use the algorithm linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.5 coll_select_alltoallv_algorithm (Specifying the Algorithm of the
MPI_ALLTOALLV Routine)

Fix the algorithm to be executed in the MPI_ALLTOALLV routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

doublespread Use the algorithm doublespread tuned for Tofu interconnect.

pairwise Use the algorithm pairwise implemented with the Open MPI.

basic_linear Use the algorithm basic_linear implemented with the Open MPI.

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.6 coll_select_barrier_algorithm (Specifying the Algorithm of the MPI_BARRIER
Routine)

Fix the algorithm to be executed in the MPI_BARRIER routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

tree Use the algorithm tree implemented with the Open MPI.

two_proc Use the algorithm two_proc implemented with the Open MPI.

bruck Use the algorithm bruck implemented with the Open MPI.

recursive_doubling Use the algorithm recursive_doubling implemented with the Open MPI.

linear
Use the algorithm linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

- 190 -

8.4.1.7 coll_select_bcast_algorithm (Specifying the Algorithm of the MPI_BCAST
Routine)

Fix the algorithm to be executed in the MPI_BCAST routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

bintree6d, bin6d Use the algorithm bintree6d tuned for Tofu interconnect. Both bintree6d and bin6d are effective.

trinaryx3, trix3 Use the algorithm trinaryx3 tuned for Tofu interconnect. Both trinaryx3 and trix3 are effective.

bintree3d, bin3d Use the algorithm bintree3d tuned for Tofu interconnect. Both bintree3d and bin3d are effective.

trinaryx6, trix6 Use the algorithm trinaryx6 tuned for Tofu interconnect. Both trinaryx6 and trix6 are effective.

knomial Use the algorithm knomial implemented with the Open MPI.

binomial Use the algorithm binomial implemented with the Open MPI.

binary_tree Use the algorithm binary_tree implemented with the Open MPI.

split_binary_tree Use the algorithm split_binary_tree implemented with the Open MPI.

pipeline Use the algorithm pipeline implemented with the Open MPI.

chain Use the algorithm chain implemented with the Open MPI.

basic_linear
Use the algorithm basic_linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.8 coll_select_gather_algorithm (Specifying the Algorithm of the MPI_GATHER
Routine)

Fix the algorithm to be executed in the MPI_GATHER routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

simple Use the algorithm simple tuned for Tofu interconnect.

linear_sync Use the algorithm linear_sync implemented with the Open MPI.

binomial Use the algorithm binomial implemented with the Open MPI.

basic_linear
Use the algorithm basic_linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.9 coll_select_gatherv_algorithm (Specifying the Algorithm of the MPI_GATHERV
Routine)

Fix the algorithm to be executed in the MPI_GATHERV routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

simple Use the algorithm simple tuned for Tofu interconnect.

default
Use the algorithm default implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

- 191 -

8.4.1.10 coll_select_reduce_algorithm (Specifying the Algorithm of the MPI_REDUCE
Routine)

Fix the algorithm to be executed in the MPI_REDUCE routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

trinaryx3, trix3 Use the algorithm trinaryx3 tuned for Tofu interconnect. Both trinaryx3 and trix3 are effective.

trinaryx6, trix6 Use the algorithm trinaryx6 tuned for Tofu interconnect. Both trinaryx6 and trix6 are effective.

rabenseifner Use the algorithm rabenseifner implemented with the Open MPI.

in-order_binary Use the algorithm in-order_binary implemented with the Open MPI.

binomial Use the algorithm binomial implemented with the Open MPI.

binary Use the algorithm binary implemented with the Open MPI.

pipeline Use the algorithm pipeline implemented with the Open MPI.

chain Use the algorithm chain implemented with the Open MPI.

linear
Use the algorithm linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.11 coll_select_reduce_scatter_algorithm (Specifying the Algorithm of the
MPI_REDUCE_SCATTER Routine)

Fix the algorithm to be executed in the MPI_REDUCE_SCATTER routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

ring Use the algorithm ring implemented with the Open MPI.

recursive_halving Use the algorithm recursive_halving implemented with the Open MPI.

non-overlapping
Use the algorithm non-overlapping implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.12 coll_select_scan_algorithm (Specifying the Algorithm of the MPI_SCAN
Routine)

Fix the algorithm to be executed in the MPI_SCAN routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

recursive_doubling Use the algorithm recursive_doubling implemented with the Open MPI.

linaer
Use the algorithm linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.13 coll_select_scatter_algorithm (Specifying the Algorithm of the MPI_SCATTER
Routine)

Fix the algorithm to be executed in the MPI_SCATTER routine in the program to specific algorithm at all times.

- 192 -

Value of MCA Parameter Contents

use_bcast Use the algorithm use_bcast created for this system.

binomial Use the algorithm binomial implemented with the Open MPI.

basic_linear
Use the algorithm basic_linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.1.14 coll_select_scatterv_algorithm (Specifying the Algorithm of the
MPI_SCATTERV Routine)

Fix the algorithm to be executed in the MPI_SCATTERV routine in the program to specific algorithm at all times.

Value of MCA Parameter Contents

linear_sync Use the algorithm linear_sync created for this system.

basic_linear
Use the algorithm basic_linear implemented with the Open MPI.

For selecting algorithms by MCA parameter, see "8.3.1.3 Selecting Algorithms by MCA Parameter".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.2 MCA Parameter related to Algorithm Selection Itself

8.4.2.1 coll_select_dectree_file (Specification of External Input User Definition File of
Algorithm Selection)

Value of MCA Parameter Contents

Path of Entered File

Specify the file in which the algorithm selection of the collective communication is entered. For details
of the entry method for the file and each algorithm, see "8.3.1.5 Selecting Algorithms by External Input
File".

Perform algorithm selection based on the rules for the algorithm selection that the user entered.
However, in case of an error in the rule or an unentered collective communication, perform the algorithm
selected by this system.

The default value of this parameter is NULL.

For selecting algorithms by the external input file, see "8.3.1.5 Selecting Algorithms by External Input
File".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.2.2 coll_select_decision_process (Output of Algorithm Selection Process)

Value of MCA Parameter Contents

2

Output the information of the algorithm selection of the collective communication. It is output in the
standard error output.

Rank 0 outputs information in each communicator.

1 Rank 0 outputs information in the MPI_COMM_WORLD.

0
Information is not output. The default value of this parameter is 0.

For detailed information, see "8.3.2.1 Displaying Selection Process of Algorithms".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

- 193 -

8.4.3 MCA Parameter to Tune Algorithm Itself

8.4.3.1 coll_select_allreduce_algorithm_segmentsize (Specifying the Segment Size of
the MPI_ALLREDUCE Routine)

Value of MCA Parameter Contents

Integer value from 1 to
16776960

Specifies the segment size in bytes of data which is transferred using some algorithm of the
MPI_ALLREDUCE routine. Specific algorithm is specified in the MCA parameter "8.4.1.3
coll_select_allreduce_algorithm (Specifying the Algorithm of the MPI_ALLREDUCE Routine)". If a
value greater than 16776960 is specified, the specified value is assumed to be 16776960.

Specifiable algorithms are given below.

segmented_ring, trinaryx6 (trix6), trinaryx3 (trix3)

When the value specified for this parameter is not divisible by the datatype size specified for the
argument of the MPI_ALLREDUCE routine, the value specified this parameter is changed to a divisible
value.

Adjusting this parameter changes the execution time of specific algorithms. It may decrease
performance compared to when this parameter is not specified.

0

The default value of this parameter is 0. If the message size is less than or equal to 16776960 bytes,
segment division is not performed. If the message size is greater than 16776960 bytes, the behavior is
same as when 16776960 is specified for this parameter.

For detailed information, see "8.2 MCA Parameter Tuning of Algorithms".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.3.2 coll_select_bcast_algorithm_segmentsize (Specifying the Segment Size of the
MPI_BCAST Routine)

Value of MCA Parameter Contents

Integer value from 1 to
16776960

Specifies the segment size in bytes of data which is transferred using some algorithm of the MPI_BCAST
routine. Specific algorithm is specified using the MCA parameter "8.4.1.7 coll_select_bcast_algorithm
(Specifying the Algorithm of the MPI_BCAST Routine)". If a value greater than 16776960 is specified,
the specified value is assumed to be 16776960.

Specifiable algorithms are given below.

chain, pipeline, split_binary_tree, binary_tree, binomial, knomial,

trinaryx6 (trix6), bintree3d (bin3d), trinaryx3 (trix3), bintree6d (bin6d)

When the value specified for this parameter is not divisible by the datatype size specified for the
argument of the MPI_BCAST routine, the value specified for this parameter is changed to a divisible
value.

Adjusting this parameter changes the execution time of specific algorithms. It may decrease
performance compared to when this parameter is not specified.

It is assumed that the value specified for the count argument of the MPI_BCAST routine is the same
among all ranks. It is necessary to specify 1 to the MCA parameter coll_tuned_bcast_same_count. For
the MCA parameter coll_tuned_bcast_same_count, see "Table 4.14 coll_tuned_bcast_same_count
(achieves faster communication when MPI_BCAST/MPI_IBCAST routines are used with the same
count among the processes)".

0
The default value of this parameter is 0. If the message size is less than or equal to 16776960 bytes,
segment division is not performed. If the message size is greater than 16776960 bytes, segment division
is performed as below.

- 194 -

Value of MCA Parameter Contents

- If specified algorithm is chain, pipeline, split_binary_tree, binary_tree, binomial, or knomial,
segment division is not performed.

- If specified algorithm is trinaryx6 (trix6), bintree3d (bin3d), trinaryx3 (trix3), or bintree6d (bin6d),
the behavior is same as when 16776960 is specified for this parameter.

For detailed information, see "8.2 MCA Parameter Tuning of Algorithms".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.3.3 coll_select_reduce_algorithm_segmentsize (Specifying the Segment Size of the
MPI_REDUCE Routine)

Value of MCA Parameter Contents

Integer value from 1 to
16776960

Specifies the segment size in bytes of data which is transferred using some algorithm of the
MPI_REDUCE routine. Specific algorithm is specified using the MCA parameter "8.4.1.10
coll_select_reduce_algorithm (Specifying the Algorithm of the MPI_REDUCE Routine)". If a value
greater than 16776960 is specified, the specified value is assumed to be 16776960.

Specifiable algorithms are given below.

chain, pipeline, binary, binomial, in-order_binary, trinaryx6 (trix6),

trinaryx3 (trix3)

When the value specified for this parameter is not divisible by the datatype size specified for the
argument of the MPI_REDUCE routine, the value specified for this parameter is changed to a divisible
value.

Adjusting this parameter changes the execution time of specific algorithms. It may decrease
performance compared to when this parameter is not specified.

0

The default value of this parameter is 0. If the message size is less than or equal to 16776960 bytes,
segment division is not performed. If the message size is greater than 16776960 bytes, the behavior is
same as when 16776960 is specified for this parameter.

For detailed information, see "8.2 MCA Parameter Tuning of Algorithms".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

8.4.4 MCA Parameter to Obtain Algorithm Selection Result

8.4.4.1 coll_select_get_tuning_info (Obtaining the Algorithm Information of the
Collective Communication Executed Immediately Before)

Value of MCA Parameter Contents

1

By using the MPI_Comm_get_info, it becomes possible to obtain the algorithm of the collective
information executed immediately before.

If this parameter is used, the execution time is longer than usual.

0

Even by using the MPI_Comm_get_info, it is not possible to obtain the algorithm of the collective
information executed immediately before. The default value of this parameter is 0.

For detailed information, see "8.3.2.2 Obtaining Selection Results of Algorithms by Using Info Object".

"l" in the character string coll used in the MCA parameter name is a lowercase "L".

- 195 -

8.5 Output Message
This section describes the warning message related to the algorithm selection and the output message by the display function of the
algorithm selection process.

8.5.1 Output Message Related to Algorithm Selection (Warning)

[mpi::coll-select::user-file-warn] Unable to open file. [path]

- Description

Cannot reference the file specified by the MCA parameter coll_select_dectree_file. Ignore the file specification by the external input
file and continue processing.

- Parameters

path : Path name specified by MCA parameter coll_select_dectree_file.

- Action method

Make sure that the character string specified by the MCA parameter is correct. If it is correct, consult the Service Engineer (SE)
together with the output error message. If it is not correct, specify the file correctly by the MCA parameter.

8.5.2 Output Message by Display Function of Algorithm Selection Process
(Warning)

[mpi-coll::show-decision-process::warn] Algorithm selection does not work. [reason]

- Description

Cannot use the function of algorithm selection in this communicator. Also, cannot obtain part of the MPI statistical information.

- Parameters

reason : Figure to indicate reason

reason Content of Reason

0 The communicator is the inter-communicator.

1 The size of the communicator is 1.

2 The communicator is created by the MPI_INTERCOMM_MERGE routine.

3 Cannot use the function of algorithm selection for other reasons.

- Action method

Make sure that the created communicator satisfies the above reasons. If it satisfies, need not to take measures. If it does not satisfy,
consult the Service Engineer (SE) together with the error message.

[mpi-coll::show-decision-process::warn] The algorithm is judged as not applicable. [collname] [algnum]
[reason] [new_algnum]

- Description

The specified algorithm does not satisfy the application conditions. It selects a different algorithm.

- Parameters

collname : Type of collective communication

algnum : Number to indicate algorithm

reason : Figure to indicate reason

new_algnum : Alternative algorithm number which is selected when algnum is 1 to 6 or 300.

- 196 -

reason Content of Reason

0 The size of communicator does not satisfy the conditions.

1 It does not satisfy the application conditions of algorithm excluding the datatype.

2 It does not satisfy the conditions of datatype.

3 Cannot use gtvbc algorithm as there is space in the data alignment.

4 Cannot divide data as the MCA parameter coll_tuned_bcast_same_count is disabled. Set the segment size
to 0.

5 Cannot select for other reasons.

- Action method

If the intended algorithms are not selected due to this message, see the conditions described in "8.3.4 List of Algorithms and
Conditions Required for Application".

[mpi::coll-select::show-decision-process::warn] Algorithm selection by the user file does not work.
[reason]

- Description

Problem occurred for the algorithm selection by the external input file. Change to the algorithm selection of the system.

- Parameters

reason : Figure to indicate reason

reason Content of Reason

0 Cannot reference the external input file.

1 There is an error in string or syntax entered in the external input file.

2 The number of entries that can be made in the external input file is exceeded.

3 The number of conditional statements that can be entered in the external input file is exceeded.

4 There is division by zero in calculation described in the external input file.

5 There is an error in a variable described in the external input file.

6 Algorithm name is not correct.

7 No executable algorithms exist.

8 An internal error of the MPI library occurred during analysis of the external input file.

- Action method

Confirm whether the various settings are correct according to reason if the reason is other than 8.

If the reason is 8, consult the Service Engineer (SE) together with the external input file and the message that was output.

[mpi::coll-select::show-decision-process::warn] Algorithm selection by the Info object does not work.
[method]

- Description

Problem occurred for the algorithm selection by the Info object. Change to the algorithm selection of next priority.

- Parameters

method : Method for algorithm selection

- info-oneshot

Method for selecting algorithm only once by the Info object. See "8.3.1.4.2 Specification for Each Collective Communication
Routine Call".

- 197 -

- info-rules

Method for selecting algorithm in the unit of communicator by the Info object. See "8.3.1.4.3 Specification for Each
Communicator".

- Action method

Confirm if the value corresponding to the method specified by the Info object is correct. If the value specified by the Info object is
correct, consult the Service Engineer (SE) together with processing of the applicable portion and the error message.

[mpi::coll-select::show-decision-process::warn] Tofu Barrier Communication can not be applicable.
[method]

- Description

Cannot specify barrier communication. Change to the algorithm selection of next priority.

- Parameters

method : Method for algorithm selection

- mca-param

Algorithm selection by the MCA parameter. Confirm "8.3.1.3 Selecting Algorithms by MCA Parameter".

- info-oneshot

Method for selecting algorithm only once by the Info object. See "8.3.1.4.2 Specification for Each Collective Communication
Routine Call".

- info-rules

Method for selecting algorithm in the unit of communicator by the Info object. See "8.3.1.4.3 Specification for Each
Communicator".

- user-file

Algorithm selection by the external input file. See "8.3.1.5 Selecting Algorithms by External Input File".

- Action method

Do not specify the barrier communication to method. Barrier communication can be used only for the automatic selection by the
MPI library.

[mpi::coll-select::show-decision-process::warn] An algorithm different from the selected one was used.
[collname][algnum][reason][new_algnum]

- Description

The 3dtorus_sm algorithm was specified, but could not be used due to contention for communication resource used in the algorithm.
Therefore, another algorithm was used.

- Parameters

collname : Type of collective communication

algnum : Number to indicate algorithm

reason : Figure to indicate reason

new_algnum : Algorithm number for actually selected.

reason Content of Reason

0 Cannot use the specified algorithm due to contention for communication resource.

- Action method

See the conditions described in "8.3.4 List of Algorithms and Conditions Required for Application" if this message was output and
the specified algorithm is not selected.

- 198 -

8.5.3 Output Message by Display Function of Algorithm Selection Process
(Information)

[mpi::coll-select::show-decision-process::info] Any algorithm is not selected. [method] [collname]

- Description

Algorithm selection by method was not performed.

- Parameters

method : Method for algorithm selection

- mca-param

Method for algorithm selection. See "8.3.1.3 Selecting Algorithms by MCA Parameter".

- info-oneshot

Method for selecting algorithm only once by the Info object. See "8.3.1.4.2 Specification for Each Collective Communication
Routine Call".

- info-rules

Method for selecting algorithm in the unit of communicator by the Info object. See "8.3.1.4.3 Specification for Each
Communicator".

- user-file

Algorithm selection by the external input file. See "8.3.1.5 Selecting Algorithms by External Input File".

collname : Type of collective communication

- Action method

No need to take measures.

[mpi::coll-select::show-decision-process::info] An algorithm is selected. [method] [collname] [algnum]
[reason]

- Description

Algorithm selection by method was performed. Determine the conditions required for the application from now.

- Parameters

method : Method for algorithm selection

- special-route

Algorithm selection by special cases. See "8.3.1.2 Flow of Selecting Algorithms in Special Case".

- mca-param

Algorithm selection by the MCA parameter. See "8.3.1.3 Selecting Algorithms by MCA Parameter".

- info-oneshot

Method for selecting algorithm only once by the Info object. See "8.3.1.4.2 Specification for Each Collective Communication
Routine Call".

- info-rules

Method for selecting algorithm in the unit of communicator by the Info object. See "8.3.1.4.3 Specification for Each
Communicator".

- user-file

Algorithm selection by the external input file. See "8.3.1.5 Selecting Algorithms by External Input File".

- system-file

Automatic algorithm selection by this system.

- 199 -

collname : Type of collective communication

algnum : Number to indicate algorithm

reason : Reason for selecting the selection method in case of special-route

reason Content of the reason for Special

0 Select barrier communication preferentially.

1 Select the algorithms that correspond to non-commutative operations and the order guarantee mode.

2 Select the algorithm for the MPI_IN_PLACE.

- Action method

No need to take measures.

[mpi::coll-select::show-decision-process::info] The algorithm is judged as applicable. [method]
[collname] [algnum]

- Description

Algorithm selection by method was performed. As the conditions required for the application are satisfied, execute this algorithm.

- Parameters

method : Method for algorithm selection

- mca-param

Algorithm selection by the MCA parameter. See "8.3.1.3 Selecting Algorithms by MCA Parameter".

- info-oneshot

Method for selecting algorithm only once by the Info object. See "8.3.1.4.2 Specification for Each Collective Communication
Routine Call".

- info-rules

Method for selecting algorithm in the unit of communicator by the Info object. See "8.3.1.4.3 Specification for Each
Communicator".

- user-file

Algorithm selection by the external input file. See "8.3.1.5 Selecting Algorithms by External Input File".

- system-file

Automatic algorithm selection by this system.

collname : Type of collective communication

algnum : Number to indicate algorithm

- Action method

No need to take measures.

[mpi::coll-select::show-decision-process::info] Rules are not set for this collective communication.
[collname]

- Description

The rules for this collective communication are not entered in the external input file specified by the user.

- Parameters

collname : Type of collective communication

- Action method

Make sure that the type of displayed collective communication is not entered in the external input file. If it is entered in the external
input file, consult the Service Engineer (SE) together with the external input file and the error message.

- 200 -

Appendix A Error Class List
This appendix lists the error classes output by this software system. These are the error classes regulated by the MPI standard. Refer to the
MPI standard for details.

Table A.1 Error class list

Error class Description Value

MPI_SUCCESS No error 0

MPI_ERR_BUFFER Invalid buffer pointer 1

MPI_ERR_COUNT Invalid count argument 2

MPI_ERR_TYPE Invalid datatype argument 3

MPI_ERR_TAG Invalid tag argument 4

MPI_ERR_COMM Invalid communicator 5

MPI_ERR_RANK Invalid rank 6

MPI_ERR_REQUEST Invalid request (handle) 7

MPI_ERR_ROOT Invalid root 8

MPI_ERR_GROUP Invalid group 9

MPI_ERR_OP Invalid operation 10

MPI_ERR_TOPOLOGY Invalid topology 11

MPI_ERR_DIMS Invalid dimension argument 12

MPI_ERR_ARG Invalid argument of some other kind 13

MPI_ERR_UNKNOWN Unknown error 14

MPI_ERR_TRUNCATE Message truncated on receive 15

MPI_ERR_OTHER Known error not in this list 16

MPI_ERR_INTERN Internal MPI (implementation) error 17

MPI_ERR_IN_STATUS Error code is in status 18

MPI_ERR_PENDING Pending request 19

MPI_ERR_ACCESS Permission denied 20

MPI_ERR_AMODE Error related to the amode passed to MPI_FILE_OPEN 21

MPI_ERR_ASSERT Invalid assert argument 22

MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long) 23

MPI_ERR_BASE Invalid base passed to MPI_FREE_MEM 24

MPI_ERR_CONVERSION An error occurred in a user supplied data conversion function 25

MPI_ERR_DISP Invalid disp argument 26

MPI_ERR_DUP_DATAREP Conversion functions could not be registered because a data
representation identifier that was already defined was passed to
MPI_REGISTER_DATAREP

27

MPI_ERR_FILE_EXISTS File exists 28

MPI_ERR_FILE_IN_USE File operation could not be completed, as the file is currently open
by some process

29

MPI_ERR_FILE Invalid file handle 30

MPI_ERR_INFO_KEY Key longer than MPI_MAX_INFO_KEY 31

MPI_ERR_INFO_NOKEY Invalid key passed to MPI_INFO_DELETE 32

- 201 -

Error class Description Value

MPI_ERR_INFO_VALUE Value longer than MPI_MAX_INFO_VAL 33

MPI_ERR_INFO Invalid Info argument 34

MPI_ERR_IO Other I/O error 35

MPI_ERR_KEYVAL Invalid keyval has been passed 36

MPI_ERR_LOCKTYPE Invalid locktype argument 37

MPI_ERR_NAME Invalid service name passed to MPI_LOOKUP_NAME 38

MPI_ERR_NO_MEM MPI_ALLOC_MEM failed because memory is exhausted 39

MPI_ERR_NOT_SAME Collective argument not identical on all processes, or collective
routines called in a different order by different processes

40

MPI_ERR_NO_SPACE Not enough space 41

MPI_ERR_NO_SUCH_FILE File does not exist 42

MPI_ERR_PORT Invalid port name passed to MPI_COMM_CONNECT 43

MPI_ERR_QUOTA Quota exceeded 44

MPI_ERR_READ_ONLY Read-only file or file system 45

MPI_ERR_RMA_CONFLICT Window access conflict 46

MPI_ERR_RMA_SYNC Wrong synchronization of RMA calls 47

MPI_ERR_SERVICE Invalid service name passed to MPI_UNPUBLISH_NAME 48

MPI_ERR_SIZE Invalid size argument 49

MPI_ERR_SPAWN Error in spawning processes 50

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to MPI_FILE_SET_VIEW 51

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on a file which supports
sequential access only

52

MPI_ERR_WIN Invalid win argument 53

MPI_T_ERR_MEMORY Out of memory 54

MPI_T_ERR_NOT_INITIALIZED Interface not initialized 55

MPI_T_ERR_CANNOT_INIT Interface not in the state to be initialized 56

MPI_T_ERR_INVALID_INDEX The enumeration index is invalid 57

MPI_T_ERR_INVALID_ITEM The item index queried is out of range 58

MPI_T_ERR_INVALID_HANDLE The handle is invalid 59

MPI_T_ERR_OUT_OF_HANDLES No more handles available 60

MPI_T_ERR_OUT_OF_SESSIONS No more sessions available 61

MPI_T_ERR_INVALID_SESSION Session argument is not a valid session 62

MPI_T_ERR_CVAR_SET_NOT_NOW Variable cannot be set at this moment 63

MPI_T_ERR_CVAR_SET_NEVER Variable cannot be set until end of execution 64

MPI_T_ERR_PVAR_NO_STARTSTOP Variable cannot be started or stopped 65

MPI_T_ERR_PVAR_NO_WRITE Variable cannot be written or reset 66

MPI_T_ERR_PVAR_NO_ATOMIC Variable cannot be read and written atomically 67

MPI_ERR_RMA_RANGE Target memory is not part of the window (in the case of a window
created with MPI_WIN_CREATE_DYNAMIC, target memory is
not attached)

68

- 202 -

Error class Description Value

MPI_ERR_RMA_ATTACH Memory cannot be attached (e.g., because of resource exhaustion) 69

MPI_ERR_RMA_FLAVOR Passed window has the wrong flavor for the called function 70

MPI_ERR_RMA_SHARED Memory cannot be shared (e.g., some process in the group of the
specified communicator cannot expose shared memory)

71

MPI_T_ERR_INVALID Invalid use of the interface or bad parameter values(s) 72

MPI_T_ERR_INVALID_NAME The variable name or category name is invalid 73

MPI_ERR_LASTCODE Last error code 92

- 203 -

Glossary

Barrier gate

A hardware resource used for Tofu barrier communication. There are two types of barrier gates. One is input-output gate for start and
end point and the other is relay gate for relay point. The total number of input-output gates and relay gates per network interface device
(TNI) is 48. An MPI library can use up to 96 input-output gates and 192 relay gates per compute node. These maximum numbers of
barrier gates which are available for an MPI library may be changed when the edition number of a product on this software system is
changed.

Blocking communication

Indicates message send-receive for which the user buffer specified at MPI routine invocation can be re-used if there is a return from the
MPI routine.

Compute nodes allocated to the communicator

This refers to the compute nodes where at least one parallel process that belongs to the communicator exists in a certain communicator.

Inter-communicator

This refers to the communicator connecting the two different communicators. The term is defined as inter-communicator in the MPI
standard. For example, it is used for the communication between the communicator generated by the MPI_COMM_SPAWN routine
and the communicator that called the MPI_COMM_SPAWN routine.

Intra-communicator

This refers to the communicator generated from the MPI_COMM_WORLD or the communicator generated by the communicator
generating routine other than the MPI_INTERCOMM_CREATE. The term is defined as intra-communicator in the MPI standard.

Maximum transmission unit

Message transfer is performed by transmitting units, known as packets, within the MPI library. Each packet has an upper limit value,
and the maximum transmission unit indicates this upper limit.

Messages that are larger than the maximum transmission unit are split into multiple packets such that the size of each packet is the
maximum transmission unit or less, and then transferred.

Message length

Indicates the number of elements in a message. This conforms to the message length definition in the MPI standard.

Message size

The message size expressed as the number of bytes. In this manual, this term is used to distinguish the number of bytes from the "message
length".

MPMD

Acronym meaning Multiple Program/Multiple Data. This is one parallel programming model. It uses two or more different MPI
programs and operates by sharing processing.

Nonblocking communication

Indicates message send-receive for which it is possible that there will be a return from the MPI routine before the actual procedures of
the MPI routine are completed. The user buffer specified at MPI routine invocation cannot be re-used until completion of operations is
confirmed.

Parallel process

A process started on the compute node by mpiexec command is called a parallel process. A number, starting from 0, is assigned to each
parallel process. In this software system, these numbers correspond to the rank numbers of the MPI program communicator
MPI_COMM_WORLD.

- 204 -

Pipeline transfer

It means to transfer the message by dividing it into segments of a certain size instead of transferring all messages at one time. In the
collective communication, there are algorithms that implement the pipeline transfer.

Segment size

Transfer amount of data for each time of pipeline transfer. In the MCA parameter, you can specify the segment size for each collective
communication routine. By changing this value, the number of pipeline transfers and the transfer time for each transfer will change.

SPMD

Acronym meaning Single Program/Multiple Data. This is one parallel programming model. It uses the same MPI program for each
process and operates by sharing processing.

Tofu barrier communication

A hardware communication function. It provides a data reduction function for data which is 48 bytes or less. It also provides barrier
synchronization between processes on a Tofu interconnect.

Type signature

It is essential that the messages transmitted by MPI routines can be split into basic data type data lists. The type signatures are these "basic
data type lists". Type signature is a term defined in the MPI standard.

Unexpected message

A message that needs to be left saved in the temporary buffer during the receive-side process due to a delay in calling a receive-type
routine (such as the MPI_RECV routine) in response to a send-type routine (such as the MPI_SEND routine).

- 205 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Overview
	1.1 Features of This Software System
	1.2 Outline of How to Use This Software System
	1.2.1 Flow from Compilation to Execution of an MPI Program

	Chapter 2 Environment and Advance Settings
	2.1 MPI Program Compilation/Linkage Environment
	2.2 MPI Program Execution Environment
	2.3 Online Manual

	Chapter 3 MPI Program Compilation/Linkage
	3.1 Overview of Compilation/Linkage Commands
	3.2 Compilation/Linkage Command Format

	Chapter 4 MPI Program Execution
	4.1 Execution Command Formats
	4.2 MCA Parameters
	4.3 Environment Variables
	4.4 mpiexec Command Return Values
	4.5 VCOORD file format
	4.6 Execution of Multiple MPI Programs on the Same Node
	4.7 Settings in NUMA system
	4.7.1 Setting value of NUMA memory allocation policy
	4.7.2 Setting value of CPU (core) allocation policy

	Chapter 5 Extended Interfaces
	5.1 Rank Query Interface
	5.1.1 Querying the Number of Dimensions and Shape
	5.1.1.1 FJMPI_TOPOLOGY_GET_DIMENSION
	5.1.1.2 FJMPI_TOPOLOGY_GET_SHAPE

	5.1.2 Querying the Coordinates
	5.1.2.1 FJMPI_TOPOLOGY_GET_COORDS

	5.1.3 Querying the Rank
	5.1.3.1 FJMPI_TOPOLOGY_GET_RANKS

	5.1.4 Querying the Ranking of a Communicator that Has a Cartesian Structure
	5.1.4.1 FJMPI_TOPOLOGY_CART_REORDER

	5.1.5 Sample Program

	5.2 MPI Statistical Information Section Specifying Interface
	5.2.1 The MPI Statistical Information Section Specifying Routine
	5.2.1.1 FJMPI_COLLECTION_START
	5.2.1.2 FJMPI_COLLECTION_STOP
	5.2.1.3 FJMPI_COLLECTION_PRINT
	5.2.1.4 FJMPI_COLLECTION_CLEAR

	5.2.2 Sample Program

	5.3 Extended Persistent Communication Requests Interface
	5.3.1 Overview
	5.3.2 Extended Persistent Communication Requests Interface Specifications
	5.3.2.1 FJMPI_PREQUEST_SEND_INIT
	5.3.2.2 FJMPI_PREQUEST_RECV_INIT
	5.3.2.3 FJMPI_PREQUEST_START
	5.3.2.4 FJMPI_PREQUEST_STARTALL

	5.3.3 Sample Program

	5.4 MPI Asynchronous Communication Promotion Section Specifying Interface
	5.4.1 The MPI Asynchronous Communication Promotion Section Specifying Routine
	5.4.1.1 FJMPI_PROGRESS_START
	5.4.1.2 FJMPI_PROGRESS_STOP

	5.4.2 Sample Program

	5.5 Persistent Collective Communication Request Interface
	5.5.1 Overview
	5.5.2 Persistent Collective Communication Request Interface Specification
	5.5.3 Overlap of Computation and Communication
	5.5.3.1 Conditions for Applying Overlap of Computation and Communication
	5.5.3.2 Notes

	5.6 Additional Predefined Datatype
	5.6.1 Overview
	5.6.2 Predefined Datatype for the Half-Precision Floating-Point Type

	Chapter 6 Supplementary Items
	6.1 Tofu Interconnect
	6.1.1 Tofu Interconnect Configuration
	6.1.2 Routing
	6.1.3 Configuration within a Node

	6.2 Promoting Asynchronous Communication Using an Assistant Core
	6.3 Parallelizing Memory Copy Processing in MPI Library with Threads
	6.4 Notes Concerning MPI Standard Specifications
	6.4.1 Supported Level of MPI Standard
	6.4.2 Predefined Datatypes that can be Used in This Software System
	6.4.3 Reserved Communicators
	6.4.4 Values of Constants Set in This Software System
	6.4.5 Operations in a Multi-Threaded Environment
	6.4.6 Signal Operation Changes
	6.4.7 One-sided Communications
	6.4.7.1 Assertions for Optimization
	6.4.7.2 Info Argument

	6.4.8 Establishing Communication between Groups not Sharing a Communicator
	6.4.8.1 info Argument Value
	6.4.8.2 MPI_COMM_JOIN Return Value
	6.4.8.3 Service Names in the MPI_PUBLISH_NAME

	6.4.9 Dynamic Process Creation
	6.4.9.1 info Argument Value
	6.4.9.1.1 Designation of Current Directory by wdir Key
	6.4.9.1.2 Designation of Node and the Number of CPUs (cores) by vcoordfile Key
	6.4.9.1.3 Designation of the Number of Nodes by num_nodes Key
	6.4.9.1.4 Designation of the Rule of Rank Placement of Processes by rank_map Key
	6.4.9.1.5 Designation of Environment Variables by env Key
	6.4.9.1.6 Designation of Output of Profiling Data by fjprof_spawn_dir_name Key
	6.4.9.1.7 Designation of Output of Result of Deadlock Detection Function by fjdbg_spawn_dir_name Key

	6.4.9.2 Search for Executable Files
	6.4.9.3 MPI_UNIVERSE_SIZE
	6.4.9.4 Designation of max-proc-per-node
	6.4.9.5 Identification of the Cause of Failure of Dynamic Process Creation by the Error Code
	6.4.9.5.1 Error Code for Identifying the Cause of Failure of Dynamic Process Creation
	6.4.9.5.2 Usage Example

	6.4.9.6 Notes
	6.4.9.7 Dynamic Process Creation for Java program

	6.4.10 Rank Changes in Accordance with Cartesian Topology
	6.4.10.1 Conditions Enabling Rank Changes
	6.4.10.2 Rules for Rank Changes
	6.4.10.3 Checking Rank Changes
	6.4.10.4 Sample Program

	6.4.11 Notes on Send Buffer and Receive Buffer
	6.4.12 MPI Input-Output
	6.4.13 Use of the Profiling Interface
	6.4.14 MPI Tool Information Interface
	6.4.15 Routines implemented by macros
	6.4.16 Arguments of User-defined Error Handlers
	6.4.17 Collective Communications in Inter-communicator

	6.5 Eager Protocol and Rendezvous Protocol
	6.6 Stride RDMA Communication
	6.6.1 Notes on Stride RDMA Communication

	6.7 Using Multiple TNIs
	6.8 Reduction Operation Sequence Guarantee in Collective Communication
	6.9 Process Creation from Inside an MPI Program
	6.10 Suppressing Memory Usage
	6.10.1 Switching between Fast Communication Mode and Memory-Saving Communication Mode
	6.10.2 Influence of Dynamic Connection on Performance

	6.11 Memory Usage Estimation Formulae and Tuning Guidelines
	6.11.1 Memory Usage Estimation Formulae
	6.11.2 Memory Usage Tuning Guidelines
	6.11.3 Specifying Memory Allocation Restriction Values
	6.11.3.1 Specification Memory Allocation Restriction Values
	6.11.3.2 MCA Parameters Targeted by Automatic Tuning
	6.11.3.3 Notes on Execution When Memory Allocation Restriction Values are Specified

	6.12 Use of Tofu Barrier Communication for Better Performance
	6.12.1 MPI_BARRIER
	6.12.2 MPI_BCAST
	6.12.3 MPI_REDUCE and MPI_ALLREDUCE
	6.12.4 Notes on Tofu Barrier Communication

	6.13 MPI_BCAST/MPI_IBCAST routines When the Same Count is Used among the Processes
	6.14 Algorithms of Collective Communication and Shape of Compute Nodes Allocated to the Communicator
	6.14.1 Shape of Compute Nodes Allocated to the MPI_COMM_WORLD
	6.14.2 Compute Nodes Allocated to the Intra-communicator
	6.14.3 Shape of Compute Nodes for Algorithms Tuned for Tofu Interconnect
	6.14.4 Length of Axis with Cuboid Shape

	6.15 Job Dimension Conversion Function
	6.15.1 Overview of Job Dimension Conversion Function
	6.15.2 Log Output for Job Dimension Conversion Function

	6.16 MPI Statistical Information
	6.17 Dynamic Debug during MPI Program Execution
	6.17.1 Communication Timeout Setting
	6.17.2 Monitoring Incorrect Writing to MPI Communication Buffer
	6.17.3 Argument Check Function

	6.18 Note on using 3rd Party Tools
	6.18.1 Notes on Using Valgrind

	6.19 Notes on Job Execution Continuation Function at Link-down
	6.19.1 Communication Performance
	6.19.2 Conditions in MPI_ALLTOALL Routine
	6.19.3 Algorithms which are not Applicable
	6.19.4 Note on Specification of MCA Parameters and Options
	6.19.5 Dynamic Process Creation

	Chapter 7 Error Messages
	7.1 Output Format for Information Related to Parallel Processes
	7.2 mpiexec Command Error Messages
	7.3 Communication Library Error Messages
	7.4 Compilation/linkage command Error Messages

	Chapter 8 Speeding Up Blocking Collective Communication
	8.1 Outline
	8.2 MCA Parameter Tuning of Algorithms
	8.2.1 Changing Segment Size
	8.2.1.1 Change of Algorithm Performance by Changing Segment Size
	8.2.1.2 Notes by Changing Segment Size

	8.3 Tuning by Algorithm Selection
	8.3.1 How to Select Algorithms
	8.3.1.1 Flow of Selecting Algorithms
	8.3.1.2 Flow of Selecting Algorithms in Special Case
	8.3.1.3 Selecting Algorithms by MCA Parameter
	8.3.1.4 Selecting Algorithms by Info Object
	8.3.1.4.1 Parameter to Specify with key of Info Object
	8.3.1.4.2 Specification for Each Collective Communication Routine Call
	8.3.1.4.3 Specification for Each Communicator
	8.3.1.4.4 Specifying Rules for Selecting Algorithms
	8.3.1.4.5 Notes for Selecting Algorithms by Info Object
	8.3.1.4.6 List of Values that can be Specified to Key of Info Object

	8.3.1.5 Selecting Algorithms by External Input File
	8.3.1.5.1 How to Use
	8.3.1.5.2 Example of External Input File
	8.3.1.5.3 Multiple Entries of Algorithms and Parameter
	8.3.1.5.4 Conditional Statement
	8.3.1.5.5 Entries of External Input File
	8.3.1.5.6 Notes for Specifying External Input File

	8.3.1.6 Conditions Required for Application of Algorithms

	8.3.2 How to Confirm Selection Results
	8.3.2.1 Displaying Selection Process of Algorithms
	8.3.2.2 Obtaining Selection Results of Algorithms by Using Info Object
	8.3.2.3 Obtaining Results Only with MCA Parameter

	8.3.3 Notes for Selecting Algorithms
	8.3.4 List of Algorithms and Conditions Required for Application
	8.3.4.1 Algorithms Selected by MPI_ALLGATHER Routine
	8.3.4.2 Algorithms Selected by MPI_ALLGATHERV Routine
	8.3.4.3 Algorithms Selected by MPI_ALLREDUCE Routine
	8.3.4.4 Algorithms Selected by MPI_ALLTOALL Routine
	8.3.4.5 Algorithms Selected by MPI_ALLTOALLV Routine
	8.3.4.6 Algorithms Selected by MPI_BARRIER Routine
	8.3.4.7 Algorithms Selected by MPI_BCAST Routine
	8.3.4.8 Algorithms Selected by MPI_GATHER Routine
	8.3.4.9 Algorithms Selected by MPI_GATHERV Routine
	8.3.4.10 Algorithms Selected by MPI_REDUCE Routine
	8.3.4.11 Algorithms Selected by MPI_REDUCE_SCATTER Routine
	8.3.4.12 Algorithms Selected by MPI_SCAN Routine
	8.3.4.13 Algorithms Selected by MPI_SCATTER Routine
	8.3.4.14 Algorithms Selected by MPI_SCATTERV Routine

	8.4 MCA Parameter related to Algorithm Selection
	8.4.1 MCA Parameter to Specify Algorithm Selection
	8.4.1.1 coll_select_allgather_algorithm (Specifying the Algorithm of the MPI_ALLGATHER Routine)
	8.4.1.2 coll_select_allgatherv_algorithm (Specifying the Algorithm of the MPI_ALLGATHERV Routine)
	8.4.1.3 coll_select_allreduce_algorithm (Specifying the Algorithm of the MPI_ALLREDUCE Routine)
	8.4.1.4 coll_select_alltoall_algorithm (Specifying the Algorithm of the MPI_ALLTOALL Routine)
	8.4.1.5 coll_select_alltoallv_algorithm (Specifying the Algorithm of the MPI_ALLTOALLV Routine)
	8.4.1.6 coll_select_barrier_algorithm (Specifying the Algorithm of the MPI_BARRIER Routine)
	8.4.1.7 coll_select_bcast_algorithm (Specifying the Algorithm of the MPI_BCAST Routine)
	8.4.1.8 coll_select_gather_algorithm (Specifying the Algorithm of the MPI_GATHER Routine)
	8.4.1.9 coll_select_gatherv_algorithm (Specifying the Algorithm of the MPI_GATHERV Routine)
	8.4.1.10 coll_select_reduce_algorithm (Specifying the Algorithm of the MPI_REDUCE Routine)
	8.4.1.11 coll_select_reduce_scatter_algorithm (Specifying the Algorithm of the MPI_REDUCE_SCATTER Routine)
	8.4.1.12 coll_select_scan_algorithm (Specifying the Algorithm of the MPI_SCAN Routine)
	8.4.1.13 coll_select_scatter_algorithm (Specifying the Algorithm of the MPI_SCATTER Routine)
	8.4.1.14 coll_select_scatterv_algorithm (Specifying the Algorithm of the MPI_SCATTERV Routine)

	8.4.2 MCA Parameter related to Algorithm Selection Itself
	8.4.2.1 coll_select_dectree_file (Specification of External Input User Definition File of Algorithm Selection)
	8.4.2.2 coll_select_decision_process (Output of Algorithm Selection Process)

	8.4.3 MCA Parameter to Tune Algorithm Itself
	8.4.3.1 coll_select_allreduce_algorithm_segmentsize (Specifying the Segment Size of the MPI_ALLREDUCE Routine)
	8.4.3.2 coll_select_bcast_algorithm_segmentsize (Specifying the Segment Size of the MPI_BCAST Routine)
	8.4.3.3 coll_select_reduce_algorithm_segmentsize (Specifying the Segment Size of the MPI_REDUCE Routine)

	8.4.4 MCA Parameter to Obtain Algorithm Selection Result
	8.4.4.1 coll_select_get_tuning_info (Obtaining the Algorithm Information of the Collective Communication Executed Immediately Before)

	8.5 Output Message
	8.5.1 Output Message Related to Algorithm Selection (Warning)
	8.5.2 Output Message by Display Function of Algorithm Selection Process (Warning)
	8.5.3 Output Message by Display Function of Algorithm Selection Process (Information)

	Appendix A Error Class List
	Glossary

