
J2UL-2456-02ENZ0(10)
September 2024

Fujitsu Software
Technical Computing Suite V4.0L20

Job Operation Software
Administrator's Guide
for Job Management

Preface

Purpose of This Manual

This manual describes the Job Operation management function settings and operation methods of the Job Operation Software included in
Technical Computing Suite.

Intended Readers

This manual is intended for the administrator who operates and manages the system with the Job Operation Software.

The manual assumes that readers as follows.

- Linux basic knowledge is required.

- Understand the overview of Job Operation Software in the "Job Operation Software Overview."

- Knowledge of container virtualization technology and Docker in Linux.

- Knowledge of Linux virtualization technology (KVM) and virtualization management utilities (libvirt and virsh)

System management administrators are requested to read "Job Operation Software Administrator's Guide for System Management."

For details on maintenance and troubleshooting, see "Job Operation Software Administrator's Guide for Maintenance" and "Job Operation
Software Troubleshooting."

Organization of This Manual

This manual is organized as follows.

Chapter 1 Overview of the Job Operation Management Function

This chapter provides an overview of the job operation management function.

Chapter 2 Details of the Job Operation Management Function

This chapter describes in detail the functions provided by the job operation management function.

Chapter 3 Job Operation Management Function Settings

This chapter describes the necessary setting items for using the job operation management function.

Chapter 4 Operation with the Job Operation Management Function

This chapter describes specific kinds of operation methods for using the job operation management function.

Appendix A Invalid Values for Job Statistical Information at State Transition

This appendix describes job statistical information that is invalid during state transition.

Appendix B Settings Related to Execution in MPI Processing Systems Other Than Development Studio

This appendix describes the settings for executing MPI programs in MPI processing systems other than Development Studio on the Job
Operation Software.

Appendix C Settings for Using GPUs [PG]

This appendix describes the settings for job execution using GPUs.

Appendix D Settings for Using Singularity [PG]

This appendix describes the settings for executing Singularity in Docker mode in the job execution environment. Singularity is container
virtualization software for HPC.

Appendix E How to Use Dynamic Parameters in Startup Configuration Files (Docker Mode) [PG]

This appendix describes how to configure the startup configuration files for the job execution environment in order to apply values
appropriate to the environment at the job runtime.

Appendix F Defined items of the job ACL function

This appendix describes the defined items of the job ACL function.

- i -

Notation Used in This Manual

Representation of units

The following table lists the prefixes used to represent units in this manual. Basically, disk size is represented as a power of 10, and
memory size is represented as a power of 2. Be careful about specifying them when displaying or entering commands.

Prefix Value Prefix Value

K (kilo) 103 Ki (kibi) 210

M (mega) 106 Mi (mebi) 220

G (giga) 109 Gi (gibi) 230

T (tera) 1012 Ti (tebi) 240

P (peta) 1015 Pi (pebi) 250

Notation of model names

In this manual, the computer that based on Fujitsu A64FX CPU is abbreviated as "FX server", and FUJITSU server PRIMERGY as
"PRIMERGY server" (or simply "PRIMERGY").
Also, specifications of some of the functions described in the manual are different depending on the target model. In the description of
such a function, the target model is represented by its abbreviation as follows:
[FX]: The description applies to FX servers.
[PG]: The description applies to PRIMERGY servers.

Administrators

The Job Operation Software has different types of administrator: system administrator, cluster administrator, and job operation
administrator. Unless otherwise noted, the descriptions in this manual apply to functions for system administrators and cluster
administrators. The term "administrator" in the text usually means a system administrator and cluster administrator.

Path names of the commands

In the examples of the operations, the path names of the commands in the directory /bin, /usr/bin, /sbin or /usr/sbin might not be
represented by absolute path.

Symbols in This Manual

This manual uses the following symbols.

 Note

The Note symbol indicates an item requiring special care. Be sure to read these items.

 See

The See symbol indicates the written reference source of detailed information.

 Information

The Information symbol indicates a reference note related to Job Operation Software.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

- ii -

Trademarks

- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- Red Hat and Red Hat Enterprise Linux are registered trademarks of Red Hat, Inc. in the U.S. and other countries.

- Intel is a trademark of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

- All other trademarks are the property of their respective owners.

Date of Publication and Version

Version Manual code

September 2024, Version 2.10 J2UL-2456-02ENZ0(10)

September 2023, Version 2.9 J2UL-2456-02ENZ0(09)

March 2022, Version 2.8 J2UL-2456-02ENZ0(08)

November 2021, Version 2.7 J2UL-2456-02ENZ0(07)

August 2021, Version 2.6 J2UL-2456-02ENZ0(06)

March 2021, Version 2.5 J2UL-2456-02ENZ0(05)

January 2021, Version 2.4 J2UL-2456-02ENZ0(04)

December 2020, Version 2.3 J2UL-2456-02ENZ0(03)

September 2020, Version 2.2 J2UL-2456-02ENZ0(02)

June 2020, Version 2.1 J2UL-2456-02ENZ0(01)

March 2020, Second version J2UL-2456-02ENZ0(00)

January 2020, First version J2UL-2456-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020-2024

Update history

Changes Location Version

Support for NVIDIA H100 GPUs on PRIMERGY compute nodes. Appendix C 2.10

Added a description of how to use jobs that use the GPU's MPS functionality. C.1
C.6.1

Fixed errata. - 2.9

Added an item of power information acquisition status to the periodic collection of job statistical
information.

2.6.3 2.8

Added description of setting files for using GPU. C.3

Added description of setting files for using Singularity. D.2

Added notes on using Docker mode script on RHEL8 based PRIMERGY compute nodes. Appendix E.

Improved description of resource units.
Improved description of ResourceUnitName in the pmpjm.conf and the pmrsc.conf files.

2.2
3.5.1.1
3.5.2.1

2.7

Improved procedure for changing JobMem in the parsc.conf and the pmrsc.conf files. 3.4.3.2
3.5.2.2

Changed the default values for the setting items JobSchedulingTargetLimit and
JobSchedulingTargetMode in the papjm.conf and pmpjm.conf files.

3.4.1
3.4.1.2

2.6

- iii -

Changes Location Version

3.4.1.5
3.5.1
3.5.1.9

Fixed description of Image specification when Docker mode and NeedCustomImage
specification is true.

3.5.7.3

Improved description about overtaking the order in which jobs run by the backfill function. 2.5.4.1
2.5.4.2

2.5

Added notes for UDI specification in Docker mode.

- Only one job resource manager exit script can be registered per resource unit.

- About the changing the path of the commands in the sample script.

3.5.7.7

Changed NVIDIA Tesla to NVIDIA V100 and A100. Appendix C

Added notes for the systems with a single node serving as all of the system management node,
compute cluster management node, and login node.

3.4.5
3.5.7
3.5.7.3

2.4

Added setting for RHEL 8 in the ODBC configuration (.odbc.ini file). 3.3 2.3

Added a description of the settings required to use Intel MPI 2019. B.4

Added a note about job statistical information that require to set multiple items for its definition. 3.4.2.2 2.2

Changed the description of StepJobAcceptDate and StepSchedUnit in the pjs.conf file. 3.4.5

Improved description of creating startup configuration file for the Docker mode. 3.5.7.4

Added description about the disturbance to the job performance due to the memory recovery
process of the OS.

3.7

Modified the output example due to the specification change of the output of the pmpjmopt
command.

4.2.7

Added a note about the tcs-bare.conf startup configuration file for the normal mode. C.4

Improved the description of the range specification for the item NodeID set in the
CustomResource section of the pmpjm.conf file.

3.5.1.6 2.1

Fixed the procedure for applying the contents of the job execution environment information file
to the system.

3.5.7.3

Added procedure for avoiding disturbance to job execution performance. 3.7

Added notes on changing resource units and resource groups running jobs with the pmalter
command.

4.2.3

The communication path of a job can now be dynamically changed when a Tofu interconnect
link goes down.

2.4.3
4.1.2
Appendix F

2

The elapsed time limit value of a running job can be changed. 2.5.2.2
3.4.1
3.4.1.1
4.2.3

The behavior of job information output at deleting the job in a QUEUED state can be specified. 3.4.1
3.4.1.1
Appendix F

Fixed the description of conditions under which job history information displayed by the -H
option of the pjstat command is removed by changing job statistics or custom resource settings.

3.4.2.5
3.5.1.9

KVM mode in job execution environments is supported. 3.5.7

Use of GPUs by jobs is now supported. Appendix C

- iv -

Changes Location Version

Execution of Singularity in job execution environments is now supported. Appendix D

File system mount points can now have parameters that changes dynamically to match the
environments in Docker mode in job execution environments.

3.5.7.3
Appendix E

Changed the look according to product upgrades. -

All rights reserved.

The information in this manual is subject to change without notice.

- v -

Contents
Chapter 1 Overview of the Job Operation Management Function... 1

Chapter 2 Details of the Job Operation Management Function... 3
2.1 Jobs.. 3
2.2 Resource Units and Resource Groups... 3
2.3 Roles of Users with Operation Administrator Privileges.. 4
2.4 Job Manager Function... 4

2.4.1 Job execution control.. 4
2.4.1.1 Job states and operations..5
2.4.1.2 Job ACL function...7

2.4.2 Job operation support..13
2.4.2.1 Saving ended job script files ...13
2.4.2.2 Prologue and epilogue function .. 13
2.4.2.3 Job Manager Exit Function..13
2.4.2.4 Job statistical information function..14

2.4.3 High availability of job operations... 18
2.5 Job Scheduler Function..19

2.5.1 Job resource selection function...19
2.5.1.1 Allocation in units of nodes... 19
2.5.1.2 Allocation in units of virtual nodes..20
2.5.1.3 NUMA allocation policy... 21

2.5.2 Job execution selection function...21
2.5.2.1 Job selection policy..21
2.5.2.2 Fair share function... 25

2.5.3 Deadline scheduling function... 28
2.5.4 Job scheduling function.. 30

2.5.4.1 Backfill function.. 30
2.5.4.2 Job scheduling parameters... 31
2.5.4.3 Scheduling of sub jobs of a step job.. 40
2.5.4.4 Guarantee of planned job execution start time (setting that prevents a delay in the job execution start time)................... 41
2.5.4.5 Limit on the number of jobs to schedule... 44
2.5.4.6 Elapsed time limit for a job..45

2.5.5 Job scheduling function using custom resources..48
2.5.5.1 Power cap scheduling function.. 50

2.5.6 Job scheduler exit function... 53
2.6 Job Resource Management Function...53

2.6.1 Job Resource Management... 54
2.6.2 Job Resource management exit function ... 54
2.6.3 Periodic collection of job statistical information..54

2.7 Parallel Execution Environment.. 56
2.8 Job Execution Environment Customization Function... 56
2.9 Command API... 56
2.10 Job Information Notification API.. 57
2.11 Scheduler Plugin Function...57

Chapter 3 Job Operation Management Function Settings... 60
3.1 Checking the System Configuration.. 60
3.2 How to Code a Configuration File...61
3.3 MariaDB Settings.. 62
3.4 Settings for the Cluster Administrator... 63

3.4.1 Settings for job operation management function in a cluster (papjm.conf file)... 63
3.4.1.1 Job manager function settings..66
3.4.1.2 Default value settings for resource units..67
3.4.1.3 Job selection policy settings.. 70
3.4.1.4 Settings for the fair share function ..72
3.4.1.5 Reflecting and referencing the papjm.conf file... 72

- vi -

3.4.2 Settings for job statistical information in a cluster (papjmstats.conf file).. 74
3.4.2.1 Settings of administrator-defined items in job statistical information...74
3.4.2.2 Definitions of output items in job statistical information.. 81
3.4.2.3 Path to a job statistical information file... 84
3.4.2.4 Custom resource item name...85
3.4.2.5 Reflecting and viewing the papjmstats.conf file..85
3.4.2.6 Example of job statistical information settings..86

3.4.3 Settings for job resource management function in a cluster (parsc.conf file).. 87
3.4.3.1 Settings for job resource management function in a cluster..88
3.4.3.2 Reflecting and referencing the parsc.conf file... 89

3.4.4 Job ACL function settings in a cluster..89
3.4.4.1 Format of job ACL function definitions.. 91
3.4.4.2 Defined items of the job ACL function... 92
3.4.4.3 Priority control of allocated nodes [PG] ... 93
3.4.4.4 How to define a fair share set.. 94
3.4.4.5 Changing the display format of planned job execution start times..94
3.4.4.6 Settings for limiting access to job information..97
3.4.4.7 Application rules for job ACL function definitions...99
3.4.4.8 Examples of job ACL function settings...100
3.4.4.9 Precautions when applying the limit value of the job ACL function (definition item limit).. 101

3.4.5 Settings for advanced job scheduling... 103
3.4.6 Settings for other...106

3.5 Settings for the Job Operation Administrator.. 106
3.5.1 Job operation management function settings in a resource unit (pmpjm.conf file)..107

3.5.1.1 Resource unit settings.. 109
3.5.1.2 Resource group settings... 110
3.5.1.3 Prologue and epilogue function settings ...114
3.5.1.4 Job selection policy settings.. 114
3.5.1.5 Settings for the fair share function ..115
3.5.1.6 Custom resource settings... 116
3.5.1.7 Settings for the job manager exit function and the job scheduler exit function.. 117
3.5.1.8 Settings for Scheduler Plug-in... 117
3.5.1.9 Reflecting and referencing the pmpjm.conf file.. 117

3.5.2 Job resource management function settings in a resource unit (pmrsc.conf file)...118
3.5.2.1 Settings for job resource management function in a resource unit..119
3.5.2.2 Reflecting and referencing the pmrsc.conf file..120

3.5.3 Job ACL function settings in a resource unit..121
3.5.4 Incorporating the job manager exit function and job scheduler exit function.. 123
3.5.5 Incorporating the job resource manager exit function.. 123
3.5.6 Customizing the display by the pjstat command.. 123
3.5.7 Configuring a Job Execution Environment.. 124

3.5.7.1 Preparing an image file.. 124
3.5.7.2 Registering an image file... 125
3.5.7.3 Creating a job execution environment information file...125
3.5.7.4 Creating a container startup configuration file (Docker mode only)...128
3.5.7.5 Setting custom resources... 131
3.5.7.6 Setting the job ACL function...132
3.5.7.7 Configuring the job resource manager exit scripts (Docker mode only)...132
3.5.7.8 Setting the job manager exit function.. 135
3.5.7.9 Note on the setting time... 136
3.5.7.10 Use of Singularity [PG]... 136

3.5.8 Command API settings... 136
3.6 Setting Log Rotation..138
3.7 Procedure for avoiding disturbance to job execution performance... 139

Chapter 4 Operation with the Job Operation Management Function... 140
4.1 Operational Work of the Cluster Administrator.. 140

- vii -

4.1.1 Cluster state monitoring..140
4.1.2 Cluster deadline scheduling management...141
4.1.3 Changing job ACL function settings for a cluster.. 143
4.1.4 Saving ended job script files ..148

4.2 Operational Work of the Job Operation Administrator... 148
4.2.1 Resource unit state monitoring... 149
4.2.2 Job state monitoring..149
4.2.3 Job Operations.. 149
4.2.4 Job resource monitoring..152
4.2.5 Monitoring and changing a fair share value and initial fair share value ..153
4.2.6 Changing job ACL function settings for a resource unit.. 156
4.2.7 Changing whether jobs can be submitted or can be executed.. 156
4.2.8 Displaying job statistical information...157

4.3 Notes for Job Operation...157
4.3.1 Job Scheduler Function...158
4.3.2 Job Execution Environment Customization Function.. 158

Appendix A Invalid Values for Job Statistical Information at State Transition.. 160

Appendix B Settings Related to Execution in MPI Processing Systems Other Than Development Studio..........................163
B.1 Settings Related to Environment Variables.. 163
B.2 Settings Related to the Wrapper Command mpiexec.tcs_intel...164
B.3 Settings Related to the mpiexec.tcs_intel Command..165
B.4 Settings when Using the Intel MPI 2019.. 166

Appendix C Settings for Using GPUs [PG]...167
C.1 Configuring Custom Resources and the Job Manager Exit Function... 167

C.1.1 GPU exclusive allocation...168
C.1.2 GPU shared allocation..170

C.2 Reflecting Job Operation Settings...171
C.3 Configuring the Job Resource Manager Exit Function...171
C.4 Changing Startup Options for the Job Execution Environment..172

C.4.1 Using the GPUs in normal mode... 172
C.4.2 Using the MPS function in docker mode... 173

C.5 Configuring Job Statistical Information..174
C.6 Job Submission Options..176

C.6.1 Specifying GPU custom resources...176
C.6.2 Environment variable for the NVIDIA Container Toolkit...177
C.6.3 Environment variable for GPU statistical information.. 177

Appendix D Settings for Using Singularity [PG]..178
D.1 Job Execution Environment Settings.. 178
D.2 Startup Configuration File Settings.. 179
D.3 Custom Resource Settings.. 180

Appendix E How to Use Dynamic Parameters in Startup Configuration Files (Docker Mode) [PG].....................................182

Appendix F Defined items of the job ACL function...185

- viii -

Chapter 1 Overview of the Job Operation Management
Function

This chapter describes the purpose of the job operation management function and provides a functional overview.

In a computer system that performs scientific computations, an enormous number of nodes execute parallel processing to improve
computational performance. The following conditions must be met for this kind of ultra-large-scale system.

- The system can efficiently process an enormous number of jobs submitted by many end users.

- There is a capability for control in accordance with the operation policy defined by the job operation administrator.

- The job operation administrator can easily control and monitor job operations.

- Though consisting of many nodes, the system can be seen as one virtual parallel computer.

The Job Operation Software provides a "job operation management function" that satisfies these requirements.

The job operation management function roughly consists of the following functions.

Table 1.1 Features of the job operation management function

Name Description

Job manager function Function for job execution control and job management.
- Job submission acceptance, information display, deletion, and execution request to the
job resource management function
- Job access control list (ACL) function, which controls access to the system by jobs
- Job statistical information function, which records information such as the actual
quantity of resources used by jobs

Job scheduler function Function that allows multiple submitted jobs to be executed efficiently.
- Selecting the resources to be allocated to jobs
- Determining the execution order

Job resource management function Function for managing the resources required by jobs.
- Resource allocation
- Resource release
It requests job execution in the parallel execution environment.

Parallel execution environment Mechanism of job process control for many nodes. With this mechanism, jobs treat the
system as though they were running on one parallel computer.

- 1 -

Figure 1.1 job operation management function

Administrators can also take advantage of the following functions for flexible job operations.

Table 1.2 The functions for flexible job operations

Name Description

Job execution environment
customization function

The function that switches the software environment (job execution environment) for
executing job programs according to user specifications.

Command API The APIs for calling functions (job operation and information acquisition) from
programs, equivalent to the commands provided by the job operation management
function

Job information notification API The APIs for job-related information notification of the programs used for processing
specific to job operations. Examples of program include charge processing and job trace
processing created by the job operation administrator. The programs are notified at the
timing of job state transition.

Scheduler plugin function The function that incorporates an original scheduling algorithm created by the job
operation administrator into the job scheduler to replace the scheduling algorithm of the
job operation management function.

- 2 -

Chapter 2 Details of the Job Operation Management
Function

This chapter describes the job operation management function in detail.

2.1 Jobs
The job operation management function batch processes programs, created by end users, in units called "jobs." For details on jobs, see "What
Are Jobs?" in "Chapter 1 Mechanism of Jobs" in "Job Operation Software End-user's Guide."

2.2 Resource Units and Resource Groups
For efficient job operation and management, the job operation management function adopts internal cluster structures called resource units
and resource groups.

This section describes clusters, resource units, and resource groups.

Cluster

A cluster is a range of nodes grouped together by role in a functional hierarchy for efficient management of system components.

Resource unit

A job selection policy, such as on how to allocate computer resources, is applied to a range of nodes. This range of nodes is called a
"resource unit." Job operations are performed in units of resource units.

Resource units are determined by logically dividing the nodes in a cluster.

Resource group

A unit of computer resources gathered in a resource unit that can execute a job is called a "resource group." The resource group is the
smallest unit for a job operation. It is used to divide a job operation in further detail within a resource unit.

Each job is executed within a single resource group.

You can set a resource group range within any resource unit regardless of its structure for system configuration management, such as
the node group structure. You can also use a configuration that shares computer resources among multiple resource groups.

From the perspective of information confidentiality, you can create a resource group to restrict users who do not have the privileges for
this specific resource group from referencing the job execution status, etc.

The following figure shows the relationship between clusters, resource units, and resource groups.

Figure 2.1 Relationship between clusters, resource units, and resource groups

- 3 -

2.3 Roles of Users with Operation Administrator Privileges
The cluster administrator and job operation administrator play different roles in the job operation management function. The following table
describes each administrator role.

Table 2.1 Role of each administrator privilege

Administrator privileges Role

Cluster administrator This administrator manages and operates an entire cluster.
On behalf of the job operation administrator, the cluster administrator can manage and
operate resource units and resource groups in the cluster.

Job operation administrator This administrator manages and operates the resource units in a cluster and the resource
groups in the resource units.
The administrator can apply different operation policies to different resource units for
operations.

2.4 Job Manager Function
The job manager function has the following functions.

- Job execution control

This function controls and manages the workflow from job acceptance to execution to completion.

- Job operation support

This function supports job operations for smooth job management.

- High availability of job operations

This function allows job operation to continue even if an error occurs on a redundantly configured compute cluster management node
or on the compute node running the job.

2.4.1 Job execution control
The job manager function controls the workflow related to job execution. The workflow includes job submission, execution, display, and
deletion.

A job undergoes state transitions according to the processing by the job manager function. The following table lists the job states.

Table 2.2 Job states

State name Description

ACCEPT Checking whether the job satisfies the acceptance conditions (items restricted with the job ACL
function)

QUEUED Waiting for a turn to execute the job, which has been accepted

RUNNING-A Reserving the resources required for job execution

RUNNING-P Executing the prologue process

RUNNING Executing the job

RUNNING-E Executing the epilogue process

RUNOUT Job end being processed

EXIT Job end

REJECT Job acceptance rejected

CANCEL Job stopped by an instruction from the job submitter or the administrator

HOLD Job execution canceled, with the job held in the submitted state

- 4 -

State name Description

ERROR Submitted job stopped, but kept in the submitted state, because of an error detected by the job operation
management function

The following shows the basic actions of the job operation management function from job submission to execution to completion.

Figure 2.2 Processes and job states of the job operation management function

2.4.1.1 Job states and operations
This section describes the actions of the job operation management function from job submission to job completion.

1. Submitting a job

When an end user submits a job, the job enters the ACCEPT state.

Then, the job manager function checks whether the job satisfies the conditions defined by the job ACL function. If the conditions are
satisfied, the job enters the QUEUED state. If the conditions are not satisfied, the job is rejected and enters the REJECT state.

- 5 -

2. Job scheduling

When a job enters the QUEUED state, the job manager function requests the job scheduler function to schedule the job. The
scheduling process evaluates the submitted job based on limit values and determines the job execution order and the selection of
resources for jobs.

3. Job execution

When determining the scheduling of a job, the job manager function or job scheduler function requests the job resource management
function to execute the job. The job resource management function allocates resources to the job and returns the results to the
requester. In this process, the job is in the RUNNING-A state, where it waits for resources to be reserved.

When the resources are successfully allocated, the job resource management function requests the parallel execution environment to
execute the job. At this time, the job enters the RUNNING state.

When the prologue and epilogue functions are set, the job is in the RUNNING-P and RUNNING when prologue script completed.

4. Job end

Once a job receives the end notification from the job resource management function, the job end process starts for the job. When the
prologue and epilogue functions are set, the job is in the RUNNING-E, and receives the end notification. The job is in the RUNOUT
state while waiting for the end process to complete. When the end process completes, the job enters the EXIT state.

You can perform the following operations for a job.

Deleting a job

When requested by the job operation administrator or an end user to delete a job, the job manager function deletes the job, which then
enters the CANCEL state. This is called job deletion. If the job is in the RUNNING state, it goes through the RUNOUT state and is then
deleted. The job when deleted enters the CANCEL state. If the job deletion request is for a job in the RUNOUT state, the job when
deleted enters the EXIT state.

Holding a job and canceling the hold

Interrupting a job but keeping the state of the submitted job from changing is called holding a job. The job at this time is in the HOLD
state.

When the hold on a job is canceled, the job is rescheduled and then executed.

Also, for a job in the ERROR state because it could not be executed normally, canceling this state reschedules the job, which is then
executed.

Changing job parameters

You can change the following parameters for a submitted job:

- Elapsed time limit value

- Resource unit on which the job is executed

- Resource group on which the job is executed

- Job priority of the same user

- Priority in resource unit

Recovery from the job error state

After job submission, the job that was temporarily in the ERROR state can be canceled, and queuing can be done again.

Sending a signal to a job

You can send a signal to a running job.

For details on these operations, see "4.2.3 Job Operations" in this manual, or "Checking the Job Status" in "Chapter 2 Job Operation
Procedures" in "Job Operation Software End-user's Guide."

- 6 -

2.4.1.2 Job ACL function
Before submitting a job, the end user needs to specify items such as the amount of resources to allocate to the job and the executable times.
To prevent these resources from being allocated to individual jobs without limit, the cluster administrator and job operation administrator
need to set limits in accordance with the job selection policy of the system they are operating. The job ACL function controls the limits.

The job ACL function manages the upper and lower limit values for specifiable values and the default values used when nothing is specified.
Moreover, you can change these limit values in management units of job operations and by group or user.

The job ACL function retains all this aggregated information relating to various limit values. The retained information is called a "job ACL
database."

The job ACL function can control the following items:

- Definitions on the simultaneous job acceptance limit and simultaneous job execution limit

- Definitions on the upper limit values, lower limit values, and default values for resources and custom resources at job submission

- Definitions involving job control setting values

- Definitions specifying whether a job operation command is executable

- Definitions specifying permission for the operated objects of a job

The job ACL database is operated and managed by two types of administrator: cluster administrator and job operation administrator.

The following describes the details of management by each administrator.

Cluster administrator

Basically, the job operation administrator who manages resource units configures the operation of the job ACL database. However, the
cluster administrator sets the following items:

- Exclusive defined items of a cluster

- Common definition values in a cluster

 Information

- Basically, job operations are performed in units of resource units, but some items are managed in units of clusters. Since this setting
has an influence on the cluster range, the cluster administrator and not the job operation administrator makes the setting.

- Cluster settings are supposed to be made when the job operation management function is installed or when the resource unit
configuration is changed. Users seldom need to make these settings in normal operation.

Job operation administrator

The job operation administrator sets and manages the following defined items for the target resource unit:

- Exclusive defined items of resource units

- Common definition values in resource units

- Defined items for each resource group in the target resource unit

 Information

Resource groups have been prepared for the job operation administrator as a means to performing more detailed operations within a
resource unit. The job ACL database allows definitions by resource group for some items.

- 7 -

Figure 2.3 Job ACL and administrator privileges

The following shows the relationship between the job manager function and job ACL database.

Figure 2.4 Job manager function and job ACL database

You can define the above definition units within a cluster, within a resource unit, and within a resource group.

The job ACL function can change settings by user, by group, and by layer in a cluster.

The job ACL function manages information in the following units of definitions.

- 8 -

Table 2.3 Units of definitions of the job ACL function
Definition unit Meaning

By user These definitions can store information for individual users, such as setting values and limit values for jobs.
Without items defined for individual users, these definitions are valid for application of the same definition
to the users in a group or to all the users who submit jobs.
You can specify the following definition targets:

- Default definitions for users

- Default definitions for the users in a group

- Specific user definitions

- Specific group definitions among specific users

By group These definitions store information for controlling jobs by group.
The definitions include the following definitions, which target all the users in a group:

- Default definitions for groups

- Specific group definitions

Overall These definitions store information for controlling jobs as a whole.
The items under control as a whole are limited to special definitions such as the limit value for simultaneous
acceptance.

The following table lists the exclusive defined items and common defined items in the ranges of the job ACL function by layer.

Table 2.4 Job ACL function ranges by layer

Application range Item Description

Inside a cluster Exclusive defined items
of the cluster

These items can be defined only for the cluster.
They cannot be defined for resource units and resource groups.

These items do not affect the definitions within resource units, such as
the default name for a submitting resource unit.

Common definition
values in the cluster

These defined items can be applied to resource units and resource
groups.

Basically, they serve as default values to supplement undefined items in
the resource units in the cluster. Even in resource units that have the
corresponding definitions, these values are applied according to
application rules.

Inside a resource unit Exclusive defined items
of the resource unit

These items can be defined only for resource units.

They cannot be defined for resource groups.

The items include items that do not affect the definitions within resource
groups, such as the default name for a submitting resource group. They
also include control items for a resource unit range, such as the limit on
accepted jobs within a resource unit.

Common definition
values in the resource
unit

These defined items can be applied to resource groups.

Basically, they serve as default values to supplement undefined items in
the resource groups in the resource unit. Even in resource groups that
have the corresponding definitions, these values are applied according to
application rules.

Inside a resource group Defined items of the
resource group

These defined items can be applied in a resource group range.

The following shows units of definitions and ranges by layer of the job ACL function.

- 9 -

Figure 2.5 Units of definitions and ranges by layer of the job ACL function

The following describes conceptual images of application within each application range.

Conceptual image of application within a cluster

For each resource unit or resource group that has no definitions, common definition values in the cluster from among the definitions
made in the cluster are applied to its individual resource units. Among the definitions applied to resource units, the common definition
values in a resource unit are also applied as the definition values of its individual resource groups. So even if there are no cluster
definitions, default values will apply.

Figure 2.6 Conceptual image of application within a cluster (before application)

- 10 -

Figure 2.7 Conceptual image of application within a cluster (after application)

Conceptual image of application within a resource unit

Suppose each resource group has no definitions. If resource unit 2 has definitions, the contents of the resource unit 2 definitions are
applied to the resource group3, 4.

Figure 2.8 Conceptual image of application within a resource unit (before application)

- 11 -

Figure 2.9 Conceptual image of application within a resource unit (after application)

Conceptual image of application within a resource group

You can make definitions by resource group. For resource units and resource groups that have no definitions, higher-layer definitions
will apply.

Figure 2.10 Conceptual image of application within a resource group (before application)

- 12 -

Figure 2.11 Conceptual image of application within a resource group (after application)

2.4.2 Job operation support
The job manager function has various auxiliary functions for smooth job operations as described below.

This section describes these functions.

2.4.2.1 Saving ended job script files
The job manager function has a function for saving the job script files of ended jobs for the job operation administrator. For details on the
setting for saving ended job script files, see "3.4.1 Settings for job operation management function in a cluster (papjm.conf file)". For the
save destination of ended job script files, see "4.1.4 Saving ended job script files ".

2.4.2.2 Prologue and epilogue function
Before and after every job script, you can execute any process specified by the job operation administrator. This is called the prologue and
epilogue function.

Use this function to apply settings and processes conforming to the job selection policy to all job scripts. For example, the function is used
in the following ways.

- Set system-specific environment variables for use in job scripts.

- Create a work directory at a specific location where a job script can use it, and delete it when the job ends.

 See

The prologue and epilogue function is one of the mechanisms called "hooks" in the job operation management function. For details, see "Job
Operation Software Administrator's Guide for Job Operation Manager Hook."

2.4.2.3 Job Manager Exit Function
The job manager function has exit functions for calling an arbitrary process, which has been prepared by the administrator, at the specific
timing for the execution of each job.

- 13 -

You can use the job manager exit function to, for example, achieve ticket control that allows job submission and execution within the budget
allocated to each user who submits a job.

 See

The job manager exit function is one of the mechanisms called "hooks" in the job operation management function. For details, see "Job
Operation Software Administrator's Guide for Job Operation Manager Hook."

2.4.2.4 Job statistical information function
The job manager function has the job statistical information function, which can record information (job statistical information) such as the
amount of resources used by an executed job and various limit values.

The function outputs job statistical information to a job statistical information file. After steps have been taken in job execution, the job
operation administrator can analyze the steps by referencing job statistical information from this file.

 Information

- Note that, besides the CPU core allocated to jobs, the job information enabled with the FX server has a CPU core called the assistant
core. The assistant core is included in the use status calculation. The assistant core handles OS interrupt processing and daemon
processing that deteriorate job execution performance. Also, in jobs, MPI asynchronous communication processing is executed on this
assistant core. Therefore, the job statistical information of jobs being executed with the FX server includes, besides the resources
allocated to jobs, the assistant core use information related to MPI asynchronous communication processing.

- The job statistical information file is backed up by function (logrotate) of OS log rotation. For details, see "3.6 Setting Log Rotation."

To display the contents of the job statistical information file, use the pmdumpjobinfo command on the system management node or compute
cluster management node. The pmdumpjobinfo command converts the job statistical information file, which is a binary file, into CSV text
format form delimited by comma before displaying the contents.

 Note

The pmdumpjobinfo command outputs just character strings and numerical values to facilitate automatic processing of the output. The
output is different from the job statistical information displayed by the pjsub command.

The job statistical information file has job statistical information arranged in units called records.

- 14 -

Figure 2.12 Structure of the job statistical information file

Table 2.5 Job statistical information file and records

Record name Description

Statistical information output start
record
(START_JACCT)

This record contains time information about when the job statistical information function
starts.
When the job operation software starts, this record is output. Moreover, when the job statistical
information file is switched by the function (logrotate) of OS log rotation, it is output to the
head of the file newly switched.

Statistical information item record
(JACCT_HEAD)

This record contains the item names of statistical information.
This record follows the statistical information output record. It is also output when the items
of statistical information are added or removed by the papjmstatsadm command.

Job information record Job information record is a general term for the following records containing statistical
information on one job or sub job: Job statistical information record, allocation node
information record, and node statistical information record.

Job statistical information record (JI) This record contains statistical information
about one job or sub job.

Allocation node information record (JA) This record contains statistical information
about each node allocated to job.
Only one of this record is output after the job
statistical information record.

Node statistical information record (JN) This record contains statistical information
about each node allocated to the job. If virtual
nodes are allocated to the job, the record
contains information about each virtual node.
Only the records for the number of nodes (for
node allocated jobs on the FX servers nodes and
PRIMERGY servers) or virtual nodes (for
virtual node allocated jobs on the PRIMERGY

- 15 -

Record name Description

servers) are output after the allocation node
information record.

Statistical information output stop
record
(SHUT_JACCT)

This record contains time information about when the job statistical information function
stops.
When the job operation software stops, this record is output. Moreover, when the job statistical
information file is switched by the function (logrotate) of OS log rotation, it is output to the tail
of the old file.

In a bulk job or step job, a job information record is output for each sub job assigned a sub job ID. When all the sub jobs end, only the job
statistical information record assigned the job ID is output as a job summary.

The pmdumpjobinfo command outputs the above records (statistical information output start record, statistical information item record, job
statistical information record, allocation node information record, node statistical information record, and statistical information output stop
record), with one record per line.

Figure 2.13 Job information record of a bulk job or a step job

A job information record is output when a job or sub job ends or is deleted. Specifically, the record is output when the job or sub job state
changes as shown below.

Table 2.6 Job information record output conditions

Before the state
changes

After the state changes

Pattern A RUNNING-A
RUNNING
RUNOUT

CANCEL
EXIT
HOLD
ERROR
QUEUED

Pattern B QUEUED
HOLD
ERROR

CANCEL

- 16 -

There are pattern A and pattern B at the output opportunity. In the state transition of pattern B, the job is not executed, so that the value of
a part of job statistical information in the job information record is not set (see "Appendix A Invalid Values for Job Statistical Information
at State Transition"). Therefore, please total the job information record output at the opportunity of pattern A when you total results of the
job execution by the pmdumpjobinfo command. You can confirm if the transition corresponds to pattern A by confirming the value output
to "State of job" and "Prior state of job" in the job information record.

 Note

- Accordingly, multiple job information records may be output for one job ID. The following cases are examples.

- The running job is held by the pjhold command and then deleted by the pjdel command.

- The running job is held by the pjhold command. After the hold is released by the pjrls command, the pjdel command deletes the
job while it is in the QUEUED state.

- The system error (the compute node down etc.) occurred while executing the job and the job is re-executed.

- Job statistical information is not output for jobs rejected at acceptance.

The administrator can set the job statistical information function as follows.

Enable/disable output of job statistical information

The cluster administrator can set whether to output job statistical information. For details on the setting method, see "3.4.1 Settings for
job operation management function in a cluster (papjm.conf file)."

Add a new job statistical information item

The cluster administrator can add an original item for output in job statistical information. For details on how to add the item, see "3.4.2.1
Settings of administrator-defined items in job statistical information."

Specify the items to output from job statistical information

The cluster administrator can specify the items to output from job statistical information. Output items can be specified for each of the
following output destinations:

- Job statistical information file (file specified in the pmdumpjobinfo command)

- .stats file (file output when the job was submitted with the -s or -S option specified in the pjsub command)

- Output for display when the -s or -S option in the pjstat command is specified

The administrator can also specify a path name for the job statistical information file.

- 17 -

For details on the setting method, see "3.4.2.2 Definitions of output items in job statistical information."

Set a value for an added job statistical information item

From the job manager exit function or a resource manager exit script, the job operation administrator can set a value for a job statistical
information item added by the cluster administrator. For details, see "[Settings for Job Statistical Information]" in "Creating an Exit
Function Source File" and "Creating an Exit Script" in "Chapter 2 Creating and Incorporating Hooks" in "Job Operation Software
Administrator's Guide for Job Operation Manager Hook."

2.4.3 High availability of job operations
The job manager function has the high availability function, which allows job operation to continue even if an error occurs on the active or
standby node of the redundantly configured compute cluster management node or on the compute node running the job.

Among the redundantly configured compute cluster management nodes, if an error occurs on the active compute cluster management node,
the standby compute cluster management node is automatically switched with the active node. Even though the active compute cluster
management node is switched with the standby node, the jobs running on compute nodes continue to run without interruption. If an error
occurs on the compute node running a job, the running job will be automatically re-executed provided that re-execution is specified.

Operation when a Tofu interconnect link is down [FX]

If a Tofu interconnect link goes down due to a hardware failure or other cause during job execution on an FX server, communication between
job processes is affected. However, this may be avoided by dynamically changing the communication path.

When submitting a job, the end-user can specify (--net-route option of the pjsub command) whether to change the communication path at
the time that a Tofu interconnect link is down.

For this specification, the administrator can set the following with the job ACL function:

- Default setting for the job submission time (define net-route)

- Permission to specify the --net-route option (execute pjsub-net-route)

These settings are valid only for node-exclusive jobs on an FX server and MPI jobs (only for MPI processing systems using Development
Studio).

When the link goes down during job execution and the Tofu interconnect communication path is changed, communication is retransmitted.
Then, a message is output to the /var/log/messages file on the compute node where the communication was retransmitted.

 See

- For details on job ACL function settings related to the --net-route option of the pjsub command, see "3.4.4 Job ACL function settings
in a cluster." For details on the --net-route option of the pjsub command, see "Specifying the operation when a Tofu interconnect link
is down" in "Chapter 2 Job Operation Procedures" in the "Job Operation Software End-user's Guide."

- For details on the message, see "Tofu Library (TOF) Messages" in "Appendix B System Log Messages" in the "Job Operation Software
Troubleshooting."

 Note

- Enabling the setting that dynamically changes a Tofu interconnect communication path may cause job execution performance to
deteriorate. Be careful in environments for executing jobs where execution performance is critical.

- Depending on the location of the link that went down, there may be no alternative communication path, in which case the job is aborted.

- Enabling the setting that dynamically changes a Tofu interconnect communication path extends the range of nodes that can be used as
a communication path. Therefore, even when deadline scheduling is set so that a node should not be the communication path of a job
(padeadline --ic), the node may fall in the range of nodes for a running job. So the node might be used as a communication path of the
job. In that case, the padeadline command causes an error, and the deadline schedule cannot be set.

- 18 -

- In cases where a Tofu interconnect link goes down, the communication path is changed, and the job continues, the -v option of the
pjshowclst command displays the following for the node where the link went down:

- REASON field: PortRouterFatal

- ARCH_STATUS field: ICC_PreDisable

For details on what the pashowclst command displays, see "Displaying Operation Status of the System" in "Chapter 3 Details of the
System Management Function" in the "Job Operation Software Administrator's Guide for System Management."
New jobs are not allocated to this node until link down recovery.

2.5 Job Scheduler Function
The job scheduler function has the following functions:

- Job resource selection function

The function selects the resources required for a job from computer resources.

- Job execution selection function

The function determines the execution order of multiple jobs.

- Deadline scheduling function

The function schedules job execution to prevent jobs from being executed within the scope and period of stoppage.

- Job rescheduling function

The function determines when the job runs.

- Job scheduling function using custom resources
The function defines and manages custom resources, selects the required custom resources for jobs, and determines the execution order.

- Job scheduler exit function

The function calls an arbitrary process prepared by the administrator at a specific time related to the scheduling of each job.

2.5.1 Job resource selection function
The job resource selection function selects a node according to the requirements of a job and allocates it to the job.
The concept varies depending on the unit of allocation (node or virtual node) of node resources.

2.5.1.1 Allocation in units of nodes
For allocation of node resources in units of nodes, specify a shape for FX servers, or specify a number of nodes for PRIMERGY servers.

The concept of the shape of FX servers is described below.

Nodes are assumed located in a virtual space, and end users can specify the number and shape (one-dimensional to three-dimensional
shapes) of nodes to allocate. The job scheduler function selects nodes according to those specifications.

Regardless of their shape, if nodes cannot be allocated at the present time, they will be allocated when the amount of free space required
by the job can be reserved.

The job administrator sets the maximum node dimensions that allow nodes to be allocated to jobs. The shape of nodes allocated to a job must
fit within the maximum node dimensions.

Suppose that the maximum values of the Tofu coordinates (which are along the X, Y, and Z axes) in the system are Lx, Ly, and Lz in the
case of nodes allocated in torus mode or mesh mode (described below). In this case, the maximum dimensions (Xmax, Ymax, and Zmax)
for nodes that can be allocated to a job are calculated as follows.

Table 2.7 Maximum dimensions for nodes

Number of dimensions Maximum node dimensions

One-dimensional Xmax = Lx * Ly * Lz * 12

- 19 -

Number of dimensions Maximum node dimensions

Two-dimensional Xmax = Lx * 6, Ymax = Ly * Lz * 2

Three-dimensional Xmax = Lx * 2, Ymax = Ly * 3, Zmax = Lz * 2

If a specified two-dimensional or three dimensional shape does not fit within the maximum dimensions as is, it may fit when rotated as an
adjustment. You can specify such a shape. In that case, the job scheduler function automatically adjusts it in that way.

For example, suppose the maximum node dimensions are 2 x 3 x 32. You can specify a node shape of 6 x 3 x 2 even though it does not fit
as specified. This is because the node shape fits within the maximum dimensions of 2 x 3 x 32 when the job scheduler function automatically
rotates it to 2 x 3 x 6. In contrast, a node shape of 4 x 4 x 4 does not fit within the maximum dimensions of 2 x 3 x 32 no matter how it is
rotated. For this shape, the job would not be submitted.

For non-contiguously allocated jobs, nodes can be allocated to the jobs regardless of the node shape of the jobs if the number of free nodes
fulfills the requests from the jobs.

Node placement methods

When allocating FX servers, you can give an instruction for a node placement method on Tofu coordinates.

- Torus mode
The minimum node allocation unit is one Tofu (12 nodes).
Nodes are placed so that they are mutually adjacent in the Tofu coordinate space.

- Mesh mode
The minimum node allocation unit is one node.
Nodes are placed so that they are mutually adjacent in the Tofu coordinate space.

- Non-contiguous mode
The minimum node allocation unit is one node.
Nodes are allocated so that they are mutually adjacent in the Tofu coordinate space as far as possible. However, this may not always
be possible.

 Note

- Even in torus mode, if the job uses only the single node of a one-dimensional shape, resources are allocated in units of nodes. However,
if the specified shape is two dimensional (1 x 1) or three dimensional (1 x 1 x 1), the unit for node allocation is rounded up to the Tofu
unit.

- In torus mode, multiple jobs, including multi-node jobs, can share the nodes contained within the same Tofu unit under the following
conditions. First, the jobs must be in a one-dimensional shape. Also, the number of nodes requested by the jobs is in a range from 1 to
11. To enable this function, use resource group settings. For details on the setting method, see the "ResourceGroupTsha" definition item
in "3.5.1.2 Resource group settings."

- In the following cases, job execution may fail due to the node resources being judged insufficient:

- In torus mode or mesh mode, the specified shape fits within the maximum shape and the nodes are specified within the range of the
number of nodes that can be used. However, since one or more nodes are faulty, a torus cannot be formed.

- In non-contiguous mode, inter-node all-to-all communication is not guaranteed.

- Suppose that both a job in torus mode or mesh mode and a job in non-contiguous mode are mixed and executed in a resource unit. In
this situation, the job in non-contiguous mode may deteriorate the communication performance of the job in torus mode or mesh mode.

2.5.1.2 Allocation in units of virtual nodes
Job resources are handled in the unit of a set of a CPU core and memory on a virtual node. End users can specify the number of virtual nodes
to allocate to their jobs, the number of CPU cores and amount of memory per virtual node, and the amount of memory per CPU core. For
details, see "Node Resource Allocation" in "Chapter 1 Job Mechanism" in the "Job Operation Software End-user's Guide."

- 20 -

2.5.1.3 NUMA allocation policy
For NUMA (Non Uniformed Memory Access) architecture compute nodes, the cost of accessing memory shared among multiple CPU
cores is not uniform. Depending on the CPU core allocated to the job, this may cause variation in or deterioration of the execution
performance. Therefore, the CPU cores for which the cost of accessing memory is the same are logically paired with memory and divided
into groups. These groups are called "NUMA nodes."

Figure 2.14 NUMA nodes

On virtual nodes, the job operation management function can be set so that a job is allocated so that it can fit within the NUMA node or so
that a job spans NUMA nodes (NUMA allocation policy). For details on the NUMA allocation priority setting method, see "3.4.4.2 Defined
items of the job ACL function."

2.5.2 Job execution selection function
Numerous jobs are submitted to the system. The job execution selection function efficiently allocates resources to these jobs and determines
the order in which to execute these jobs. The concept of determining the job execution order is called "job selection policy."

2.5.2.1 Job selection policy
The job selection policy is an evaluation criterion used to determine job execution priority. It can be defined by combining multiple
evaluation items. Jobs are executed in descending order of execution priority when the backfill function, which is described in a subsequent
section, is disabled.
Job operation administrators apply the job selection policy defined by the cluster administrator to the resource units that they manage. They
can change those definitions for each resource unit and resource group as required.

The following table lists evaluation items.

Table 2.8 Evaluation items for determining the job execution order

Item name Description

fcfs A job that is submitted earlier has a higher execution priority. This is called the fcfs method (First-
Come First-Serve).

node (*) The evaluation is based on size, that is, the number of nodes used. It can be specified only for the
FX server.

group_prio (*) The evaluation is based on the priority of the group to which the user (job submitter) belongs.

user_prio (*) The evaluation is based on the user (job submitter) priority.

usr_in_grp_prio (*) The evaluation is based on the user priority within the group.

job_prio (*) The evaluation is based on the job priority.

job_aprio (*) The evaluation is based on the job priority within the resource unit.

- 21 -

Item name Description

rscgrp_prio (*) The evaluation is based on the resource group priority.

group_fairshare (*) The evaluation is based on the group's fair share value.
The fair share value is an evaluation value used by the fair share function to ensure fair use of
computer resources. For details, see "2.5.2.2 Fair share function."

user_fairshare (*) The evaluation is based on the user's fair share value.

usr_in_grp_fairshare (*) The evaluation is based on the user's fair share value within the group.

elapse_limit (*) The evaluation is based on the limit value on the elapsed execution time for the job.

node_times_elapse (*) The evaluation is based on the product of the number of nodes (node) multiplied by the limit value
on the elapsed execution time for the job (elapse_limit). It can be specified only for the FX server.

at The evaluation is based on whether the execution start time is specified.

interact The evaluation is based on whether the job is an interactive job.

job_epoint (*) The evaluation is based on job evaluation points calculated from the length of the job execution
wait time.
The method of calculating the job evaluation points is defined by the administrator.

 Information

For the marked (*) items in the above table, you can specify whether to evaluate the value in ascending or descending order in size.

The cluster administrator or job operation administrator can define the job selection policy by choosing multiple items to be used for
evaluation. The administrator can specify an evaluation order for the chosen items. Until the job execution priority is determined, lower-
order items are evaluated.

The settings by the cluster administrator are written in the papjm.conf file. The settings by the job operation administrator are written in the
pmpjm.conf file. For details on how to code the papjm.conf file, see "3.4.1.3 Job selection policy settings." The method of coding the
pmpjm.conf file is the same as for the papjm.conf file. For details on how to reflect the papjm.conf file contents, see "3.4.1.5 Reflecting and
referencing the papjm.conf file." For details on how to reflect the pmpjm.conf file contents, see "3.5.1.9 Reflecting and referencing the
pmpjm.conf file."

The execution priority of jobs in a resource unit is determined as follows based on the job selection policies defined the resource unit and
the resource group.

1. For each resource group, the job representing each resource group is determined as the highest priority job based on the job selection
policy on each resource group.

2. The highest priority job in the resource unit is determined by the job selection policy on the resource unit, from among the jobs
representing each resource group.

3. For the resource group that has the highest priority job in the resource unit, the second highest priority job in the resource group is
chosen by the job selection policy on the resource group, and becomes next representative job in the resource group.

4. Then, steps 2 and 3 are repeated to determine the job execution priority in the resource unit.

 Note

If no job selection policy is set for a resource group of the job, the resource unit policy is applied.

The steps in determining the execution priority of jobs 1 to 4 submitted to resource groups A and B are described below.

- 22 -

Figure 2.15 Steps in determining the execution priority of jobs submitted to resource groups

1. Select the representative jobs (of job 2 and job 4) based on the job selection policy of each resource group.

- 23 -

2. Based on the job selection policy (fcfs) of the resource unit, compare the representative jobs of the respective resource groups. Job
2 was submitted earlier, so select it.

3. Since job 2 has been selected from resource group A, the next representative job becomes job 3. Evaluate job 3 and job 4 as the
representative jobs of the respective resource groups. Job 3 was submitted earlier, so select it.

- 24 -

4. In this way, jobs are evaluated and the execution priority is finally determined, as shown below.

2.5.2.2 Fair share function
To prevent the jobs from being executed only by specific groups and users, the fair share function determines the execution priority of jobs
based on past resource use results (nodes for FX server, CPU cores for PRIMERGY server) by group, user and user in group.
In the fair share function, the job execution priority is determined by the fair share value. The fair share value reduces when the job is
executed, and it recovers as time passes.

The following figure shows how the fair share value changes from "job execution starts" to "after the job ends."

Figure 2.16 Change of fair share value after end from job execution start

When job execution starts

The fair share value is reduced according to the elapsed time limit value for the job. This reduction at the job execution start time is called
fair share usage.
The start of job execution reduces the fair share value by the fair share usage (*1). The fair share usage is determined as follows.

- 25 -

Fair share usage (*1) = amount of resource for job x elapsed time limit value for job (seconds)

For an FX server, the amount of resources for a job may be either the number of nodes requested by the job or the requested number of
CPU cores. As for the PRIMERGY server, it is all the numbers of CPU cores allocated to the job.

 Information

- By default, for an FX server, the number of nodes is used to calculate the amount of resources for a job. For details on changing this
calculation to use the number of CPU cores instead, see "3.4.5 Settings for advanced job scheduling."

- For the FX server, though the number of allocated nodes is rounded up to the nearest Tofu unit, the fair share usage is calculated
based on the requested number of nodes.

During job execution

The reduced fair share value recovers over time to an upper limit, which is the initial fair share value.
The fair share value that was reduced at job execution start recovers with the passage of time during job execution.

Amount recovered by job end (*2) = fair share recovery rate x job execution time (t2 - t1) (seconds)

The fair share recovery value is the product of the base for recovery of a fair share value and recovery factor.

Fair share value recovery rate = fair share recovery value x recovery factor

 Information

If you want to change the fair share recovery rate for each user, group, or user in a group, adjust it with the recovery factor. The fair share
recovery value is constant within a resource unit.

When the job ends

When the job ends before reaching the elapsed time limit value, the fair share value recovers by an amount equal to the time not used
by job (elapsed time limit value - actual execution time) (*3).

Amount recovered immediately after job end (*3) = amount of resource for job x (t3 - t2) (seconds)

 Information

This fair share value recovery can be disabled. For details on the setting method, see "3.4.5 Settings for advanced job scheduling."

 Note

If the elapsed time limit value of a running job decreases, the fair share value recovers by the amount of the reduction.

Recovery amount = amount of job resources x (elapsed time limit value before change - elapsed time

limit value after change)

In contrast, if the elapsed time limit value of a running job increases, the fair share value is reduced by the amount of the increase.

Reduction amount = amount of job resources x (elapsed time limit value after change - elapsed time

limit value before change)

After the job ends

Even after the job ends, the fair share value continues to recover until it reaches the initial fair share value (*4). In this case too, the
recovery rate is the fair share recovery value x recovery factor.

- 26 -

 Information

The fair share function has fair share values for each group, user, and user in a group. A set of these values is called a fair share set. By
defining a fair share set for every resource unit and resource group, you are determining the job execution priority for every resource unit
and resource group. Also, by defining a fair share set shared by multiple resource groups, you are determining the job execution priority in
these groups.

Figure 2.17 Fair share set

The difference between the fair share value of a user and the fair share value of a user in a group is as follows.
The fair share value determined for each user is a unique value for the user within a single fair share set. The fair share value is updated each
time that a job is executed in any group to which the user belongs.
In contrast, each user has as many fair share values of the user in a group as the number of groups to which the user belongs in the fair share
set. The fair share value of the user is updated only when a job is executed by a corresponding group or a user belonging to the group. At
this time in the corresponding groups, the fair share values of this user in the other groups to which the user belongs are not updated.
In the following example, the user userA has the respective fair share values for the groups group1, group2, and group3 in a resource unit,
and the userA job is executed by group1.

The appearance from which the job is executed without biasing to one user by using the fair share value when two or more users exist is
shown as follows.

- 27 -

Figure 2.18 Job execution priority control by difference of users' fair share values

 See

To use the fair share function, configure the papjm.conf or pmpjm.conf file to subtract the fair share value when job execution starts and
to use the fair share value as a job selection policy. For details on the setting method, see "3.4.1.4 Settings for the fair share function ."

For details on the Initial fair share value settings and the recovery factor settings, see "3.4.4.2 Defined items of the job ACL function. For
details on the fair share recovery value settings, see "3.4.1.2 Default value settings for resource units."

You can also change the fair share value and the initial fair share value with the pmpjmopt command. For details on how to change the value,
see "4.2.5 Monitoring and changing a fair share value and initial fair share value ."

2.5.3 Deadline scheduling function
If you want to stop operation in all or part of the system for planned maintenance or a power outage, you must not do so until every running
job has been aborted or terminated. The deadline scheduling function schedules job execution to prevent jobs from being executed within
the scope and period of stoppage.

The following example shows the deadline scheduling function settings for system maintenance.

- 28 -

Figure 2.19 Example of deadline scheduling function settings (when the maintenance target does not have a faulty
node)

In the above example, all the normal resources Rc-A, Rc-B, Rc-C, and Rc-D are available for the period from the current time, t0, to the
deadline t1.

Resource Rc-A is excluded from the allocation targets for an indefinite time after deadline t1, because the end of the allocation suppression
period is not specified.

In contrast, resources Rc-B, Rc-C, and Rc-D are excluded from the allocation targets for limited periods. They can be allocated after their
respective periods end.

Figure 2.20 Example of deadline scheduling function settings (when the maintenance target has a faulty node)

- 29 -

In the above example, Rc-C is faulty. The normal resources Rc-A, Rc-B, and Rc-D are available for the same period of time as in the example
where the maintenance target does not have a faulty node (Figure 2.19).

Since Rc-C is faulty, it cannot be allocated after the current time, t0. However, Rc-C is expected to recover from the fault through
maintenance work during the deadline period, so it can be allocated for a job after t4, the end time of the deadline period. For example,
suppose that job scheduling is done at the time t1. Rc-C is considered as a resource that cannot be allocated during the period of time from
t1 to t4 but can be allocated after t4, the end time of the deadline period. If no deadline is set for the faulty Rc-C, the resource is considered
as not allocatable in any period of time.

For details on the deadline scheduling function, see "4.1.2 Cluster deadline scheduling management".

2.5.4 Job scheduling function

2.5.4.1 Backfill function
As a rule, jobs are allocated free resources and executed in descending order of execution priority. Suppose that job execution priorities are
strictly observed to determine the job execution order and that a job requesting a lot of resources is waiting to be executed. Even though
resources are free, subsequent jobs cannot be executed, so this may be a waste of resources.

If a job with a lower execution priority can be executed with the available resources, it is executed before a job with a higher execution
priority. This function is called the backfill function.
The administrator can set to enable or disable the backfill function for each resource group or resource unit. Set it with the Backfill setting
item of the papjm.conf or pmpjm.conf file. For details of settings, see "3.4.1.2 Default value settings for resource units" and "3.5.1.2
Resource group settings".

The following example determines the order of execution priority of jobs by using the backfill function.

Figure 2.21 Moving a job past other jobs in the execution order by using the backfill function

- At the current time t0 in the above figure, one job is running, and three jobs are waiting to be executed. The three jobs are A, B, and C,
which were submitted in this order.

- With the fcfs method used to determine the execution order, jobs A, B, and C will be executed at times t1, t2, and t3, respectively. In
this case, resource amount Rc is available for period t1, which are what is needed to execute job C, between the current time t0 and time
t1, but job C is not executed until time t3.

- 30 -

- If the backfill function is enabled in these circumstances, it schedules job C to overtake jobs A and B, which have higher execution
priority, and be executed first.
However, overtaking in scheduling is done within a range that does not interfere with the start of a higher priority job.

The job scheduler function manages the allocation schedule of the resource for the future from the current time, and judges whether backfill
is possible based on the allocation schedule of the resource.

 See

Because the occurrence of job overtaking with the backfill function is also related to the scheduling period described in "2.5.4.2 Job
scheduling parameters", see also "Scheduling period (SchedulePeriod, DynamicSchedulePeriod)".

2.5.4.2 Job scheduling parameters
The job scheduler function manages plans involving changes in the amounts of available resources from the present time to the future. The
allocation schedule of the resource at a certain time is called "Resource map", and the resource map to two or more time of the future is
created. The job scheduler function schedules jobs waiting to be executed (in a node resource allocation plan) based on these resource maps.
When the rescheduling occurs due to an event (ex. job termination and job submitting), the resource map during the future is recreated.

The cluster administrator and job operation administrator can adjust the following parameter for efficient job scheduling.

 See

For details on how to set scheduling time-related parameters, see "3.4.1 Settings for job operation management function in a cluster
(papjm.conf file)" and "3.4.5 Settings for advanced job scheduling".

Scheduling period (SchedulePeriod, DynamicSchedulePeriod)

Scheduling period is a term for the job scheduling to the future.
If the period is too long, the resource maps to be created increase. Therefore, the load of the job scheduler function goes up, and the
scheduling processing may be delayed.
If a job cannot start during the schedule period, the scheduling for the job is suspended. The scheduling for other job whose priority is lower
than the job is also suspended.

 Information

The SchedulePeriod parameter represents a fixed-length scheduling period. The DynamicSchedulePeriod parameter is a scheduling period
variable that depends on the maximum elapsed time limit value of the submitted job.

The following describes the relationship between the scheduling period and the backfill function when overtaking an unscheduled job.

In the following example, the scheduling for Job4 is suspended because there are no free resources in the scheduling period. If Job5, which
has a lower priority than Job4, is submitted, and the backfill function is disabled, then Job5 is also suspended due to the impact of Job4.

- 31 -

Figure 2.22 Example of suspending the scheduling (When the backfill function is disabled)

When there are jobs pending scheduling, the backfill function allows a low-priority job to be scheduled first if the following conditions are
met:

a. There are free resources available at the current time (Time the schedule started) for the job being scheduled.

b. The expected end time of the job to be scheduled does not exceed the latest expected end time of the running job in all resource groups
in the resource unit and does not exceed the scheduling period.

If the backfill function is enabled in above figure, Job5 is scheduled to overtake Job4 and run from time t0 as shown below (Condition 'a').
The backfill function does not schedule Job5 to run after Job1, rather than at the current time t0.

Figure 2.23 Example of overtaking an unscheduled job (1)

In the following example, if Job5 is scheduled to run from time t0, its expected end time exceeds the expected end time of the running Job1,
but it does not exceed the latest expected end time of Job2(Condition 'b'), allowing Job5 to overtake Job4.

Figure 2.24 Example of overtaking an unscheduled job (2)

- 32 -

In the following example, Job5 does not be allowed overtaking Job4. Because if Job5 is scheduled to run from time t0, its expected end time
exceeds the expected end time of Job2, which is the latest.

Figure 2.25 Example of not allowed to overtake the unscheduled job (1)

In the following example, Job4 does not be allowed overtaking Job3. Because if Job4 is scheduled to run from time t0, its expected end time
does not exceed the latest expected end time of Job2, but exceeds the scheduling period.

Figure 2.26 Example of not allowed to overtake the unscheduled job (2)

 Note

If the elapse time limit of the job is longer than the scheduling period, the expected end time always exceeds the end of the scheduling period
regardless of resource usage.
A value that is longer than the elapse time limit of job is recommended to be set to the scheduling period. The administrator should examine
the tendency of the elapse time limits of the job.

If the backfill function is enabled, the overtaking target range of the job is, by default, all jobs in the same resource group.
The following figure shows an example. In this example, the job with priority order N is called JobN, and there are no jobs running for the
sake of simplicity.
This example assumes that job 1 and job 2 are already scheduled.

- 33 -

Figure 2.27 Example of overtaking the job in scheduling on multiple resource groups (1)

When Job3 to job8 are submitted as shown below, the situation becomes "Figure 2.28 Example of overtaking the job in scheduling on
multiple resource groups (2)".

- Job 3 (Submitted to resource group A)
Since no resources are free in resource group A, the scheduling of job 3 is suspended.

- Job 4 (Submitted to resource group B)
Since resources are free in resource group B, job 4 is scheduled. The comparison on whether a job has a lower priority is limited to jobs
in resource group B, where job 4 belongs. Therefore, jobs 1, 2, and 3 in resource group A are not considered as jobs with lower priority.
In this case, job 4 is executed before job 1, 2, and 3. But this behavior is not due to the backfill function.

- Job 5 (Submitted to resource group B)
The scheduled end time of job 5 is out of the scheduled period. However, job 5 is scheduled because there are no higher-priority jobs
in the same resource group. This does not affect the execution start time of job 3.

- Job 6 (Submitted to resource group A)
Job 7 (Submitted to resource group B)
Job 8 (Submitted to resource group A)
For these jobs, the resource group to which they were submitted has available resources. In addition, the execution of lower-priority jobs
does not affect the execution start time of the higher-priority jobs in their resource groups. Therefore, in jobs 6 to 8, lower-priority jobs
can be executed ahead of higher-priority jobs.

Figure 2.28 Example of overtaking the job in scheduling on multiple resource groups (2)

- 34 -

If multiple resource groups share the same resources, there may be an influence on the higher-priority jobs in another resource group when
lower-priority jobs are executed before higher-priority jobs in a resource group.
For example, you can see this situation below where job 5 with a lower priority in resource group B is executed ahead of job 3, which has
a higher priority, in resource group A. In this case, since both resource groups share the same resources, the execution start time of job 3
is delayed due to the prioritized execution of job 5.

Figure 2.29 Example of overtaking the job in scheduling on multiple resource groups (3)

As a way to prevent such a disadvantage, you can set the backfill function for a job that has a lower priority in a resource unit. To do so, set
the BackfillTarget setting item in the pmpjm.conf or papjm.conf file for rscunit.

Minimum interval for creating the resource map (CreateRscMap)

The resource maps are created for the expected job start and end time at which the resource allocation changes. The expected job start and
end time are rounded in the minimum interval of creating the resource map.
If the interval is short, the accuracy of the expected job start and end time improves. However, the number of resource maps increases. It
might cause to increase the load of the scheduling function.
Therefore, the scheduling period is divided at some time zones, and the minimum interval of creating the resource map can be changed every
time zone (ex. the value is set as short to the near future, and long to the far future).

Figure 2.30 Creating the resource maps for future at a certain time

Buffer time for the job execution interval (DecidedGap)

A job may end later than the planned time because job resource allocation or release took a longer time. Consequently, if jobs are scheduled
without time gaps between them, a resource shortage may occur at the time between one job and the next, so the later job cannot be executed.

- 35 -

When scheduling jobs with the job scheduler function, you can set a time margin that considers possible delays at job end. These time
margins are called "buffer periods."

If a buffer period is too long, the planned execution start time of a job following another job may be unnecessarily delayed.

Figure 2.31 Buffer periods not taken into consideration

Figure 2.32 Buffer periods taken into consideration

Grace time for rescheduling (Grace)

A job may end earlier than expected, before the planned end time, making resources available but also lowering the efficiency of resource
use. In such a case, it may be better to review the subsequent schedule.
However, frequent rescheduling increases the load on the job scheduler function, possibly delaying the scheduling process.

Therefore, with the job scheduler function, you can specify a "grace time" for rescheduling. The grace time serves as a threshold value for
the difference between the planned job end time and actual job end time. It is used to determine whether to reschedule jobs.

- 36 -

Figure 2.33 Relationship between the grace time and rescheduling

Figure 2.34 Free time longer than the grace time

- 37 -

Figure 2.35 Free time shorter than the grace time

 Information

The planned end time of a job is calculated as the sum of the planned start time (resource allocation start time), the upper limit of the
executable time, and the above-described buffer period.

However, the planned start time and planned end time may change according to the schedule, and they do not need to be calculated exactly.
The actual scheduling uses the time values obtained by rounding up time values by a certain unit of time. Thus, multiple jobs can be
scheduled together, decreasing the load on processing. In addition, the unit of time for rounding up increases for plans further in the future
as the plans become less certain.

The job scheduler function provides parameters, described below, for adjusting rescheduling triggers in order to perform more advanced
job scheduling.

Rescheduling start wait time

The jobs waiting to be executed are rescheduled by the job scheduler function triggered by an event such as job submission or end. If job
submission or end is a frequent occurrence when numerous jobs are waiting to be executed, rescheduling is repetitious. In the resulting
situation, lower priority jobs waiting to be executed may remain unexecuted indefinitely. To prevent this situation, you can adjust the
rescheduling start wait time for when a job is submitted or ends.

 Note

The following two settings adjust the start time for rescheduling: "rescheduling grace time setting," which is mentioned above, and
"rescheduling start wait time setting."
The "rescheduling grace time setting" can adjust the rescheduling frequency only when a job ends. On the other hand, the "rescheduling start
wait time setting" can adjust the rescheduling frequency not only when a job ends but also when a new job is submitted. Thus, since the
"rescheduling start wait time setting" can deal with a greater variety of situations, we recommend adjusting rescheduling using the setting
in normal occasions.

The following parameters are used with the rescheduling start wait time setting.

- 38 -

- Time to wait until rescheduling starts if a job ends earlier than the upper limit of the elapsed execution time
(GraceOverReschedAggregateTime, AggregateReschedGapFactor)
A shorter wait time is selected in a comparison of GraceOverReschedAggregateTime (seconds) and the value obtained by multiplying
AggregateReschedGapFactor (milliseconds) by the number of queued jobs.

- Time to wait until rescheduling starts if a batch job is submitted
(NewJobBatchReschedAggregateTime, AggregateReschedNewJobFactor)
A shorter wait time is selected in a comparison of NewJobBatchReschedAggregateTime (seconds) and the value obtained by
multiplying AggregateReschedNewJobFactor (milliseconds) by the number of queued jobs.

- Time to wait until rescheduling starts if an interactive job is submitted
(NewJobInterReschedAggregateTime)
A shorter wait time is selected in a comparison of NewJobInterReschedAggregateTime (seconds) and the value obtained by multiplying
AggregateReschedNewJobFactor (milliseconds) by the number of queued jobs.

- Time to wait until rescheduling starts if a job parameter is changed with the pjalter command or pmalter command
(PmpjmAlterReschedAggregateTime)

- Rescheduling start wait time when there are jobs waiting for scheduling (ExtendSchedPeriod)
The submission of many jobs extends the scheduling period per job. Consequently, rescheduling during the scheduling process is more
likely to occur, resulting in a situation with incomplete scheduling. This parameter specifies the wait time for scheduling to complete
when rescheduling occurs during the scheduling process.

The following are examples of the above cases.

Example 1: When a new batch job is submitted

The time to wait until rescheduling starts when a new batch job is submitted is proportional to the number of jobs waiting for execution.

AggregateReschedNewJobFactor x number of jobs waiting for execution

Figure 2.36 Time to wait until rescheduling starts when a new batch job is submitted

Increase the NewJobBatchReschedAggregateTime value to extend the time to wait until rescheduling starts.

Example 2: When a job ends

The time to wait until rescheduling starts when a job ends is proportional to the number of jobs waiting for execution.

AggregateReschedGapFactor x number of jobs waiting for execution

Increase the GraceOverReschedAggregateTime value to extend the time to wait until rescheduling starts.

- 39 -

 Note

- You can reduce the time until resources are available and effectively use resources by reducing the job rescheduling start wait time.
However, if the wait time is too short, rescheduling frequently occurs, which may lead to a delay in the scheduling process.

- If the wait time until rescheduling starts needs to be determined because a new event occurs after the wait time until the next scheduling
starts is determined due to the occurrence of an event such as new job submission or job end, the wait time determined previously and
the wait time determined at this event are compared. Then, the shorter wait time is selected. The longer wait time setting is discarded.

2.5.4.3 Scheduling of sub jobs of a step job
Job scheduling is performed each time that a job is submitted. However, the scheduling of a sub job of a step job is performed after the
preceding sub job ends.
Consequently, multiple sub jobs of a step job may remain unscheduled when another job is submitted. If the jobs in this situation are
scheduled based on the submission time, the multiple sub jobs of the step job submitted earlier are executed with priority over the newly
submitted job. To the end user, the newly submitted job seems to have been left unexecuted because it was passed by the sub jobs of the step
job.

The following example describes the submission of job A (step job) and job B (Figure 2.37).

Figure 2.37 How the priority of a job becomes lower than the priority of a sub job of a step job (1)

First, job B is submitted during execution of sub job 1 of the step job. The scheduled execution time of job B is t2 (Figure 2.38). Sub jobs
2 and 3 have yet to be scheduled.

Figure 2.38 How the priority of a job becomes lower than the priority of a sub job of a step job (2)

Rescheduling takes place when sub job 1 ends at time t2. The submission times of sub job 2 and job B are compared. The submission time
of job B is later than that of sub job 2, so the execution of job B is postponed until time t3, after sub job 2 ends (Figure 2.39).

Figure 2.39 How the priority of a job becomes lower than the priority of a sub job of a step job (3)

When sub job 2 ends, sub job 3 is executed with priority over job B, like in the above step. The execution start time of job B is further
postponed to time t4 (Figure 2.40).

- 40 -

Figure 2.40 How the priority of a job becomes lower than the priority of a sub job of a step job (4)

As shown above, after being scheduled once, job B is passed by a sub job of the step job each time that rescheduling takes place. The
execution start time of job B is postponed accordingly.

To prevent this, you can configure the scheduling times of sub jobs to be considered as their submission times.

 See

For details on the setting method, see "3.4.5 Settings for advanced job scheduling."

2.5.4.4 Guarantee of planned job execution start time (setting that prevents a delay in the
job execution start time)

The planned execution start time of a job may change when a new job with a higher priority is submitted. To prevent this, the administrator
can configure a setting for Guarantee of planned job execution start times (setting that prevents a delay in the job execution start time).
Enabling this setting prevents a delay in the planned execution start time by prohibiting rescheduling of jobs scheduled to be executed within
a certain period from that point in time, even if new jobs are submitted. However, the execution start time automatically becomes earlier
if resources are free.

 Note

- The planned execution start time of a job belonging to the relevant resource unit or resource group is reset by the pmpjmopt command
stopping and restarting the submission of the job to the resource unit or resource group.

- If the compute cluster management node starts or a failover occurs, the planned execution start time of all jobs are reset even when the
guarantee of planned execution start times is in effect.

- If the following event occurs, the planned job execution start time may be reset even when the guarantee of planned execution start times
is in effect.

- The compute node to be allocated cannot be used.
Since the planned execution start time of the job to be allocated the compute node is reset, the execution start time of the job is later
than that of other jobs.
The following cases are examples:

- An error occurs, such as the node going down.

- The range of a node belonging to the resource group is changed.

- A job scheduler function-related setting, such as the end time for creating a resource map or the time interval for creating a resource
map, is changed by the papjmadm or pmpjmadm command.

- A job parameter is changed by the pmalter or pjalter command.

- A new deadline schedule is set by the --enforce option of the padeadline command.

- The quantitative limit on simultaneously executed jobs, quantitative limit on simultaneously used nodes, or quantitative limit on
simultaneously used CPU cores, all of which are setting items of the job ACL function, is changed by the pmjacladm command.

- If the setting for guarantee of planned execution start times is enabled, the planned execution start time of the job is guaranteed even
if another job is aborted because of a system problem, such as a node failure, and will be re-executed.
Therefore, the aborted job may be re-executed later than the job with the planned execution start time that is guaranteed.

- 41 -

- Suppose that you are setting a deadline schedule. Then, the set nodes and time zone for the deadline schedule may overlap the nodes
and time zone to be used by a job that guarantees the planned execution start time. In this case, set the deadline schedule by specifying
the --enforce option in the padeadline command.

The following example shows the operation when a new higher-priority job is submitted.

When the setting for guarantee of planned execution start times is disabled

If a new higher-priority job is submitted when the setting for guarantee of planned execution start times is disabled, the scheduling of the
higher-priority job has priority. Therefore, the start time of the job with the fixed schedule is rescheduled.

Figure 2.41 When the setting for guarantee of planned execution start times is disabled

In the above example, the planned execution start times of jobs 3 and 4 are rescheduled since job 5 with a higher priority is submitted.
However, the scheduling of jobs 3 and 4 is suspended because the rescheduled execution start times cannot be assigned in the scheduling
period (SchedulePeriod or DynamicSchedulePeriod).

When the setting for guarantee of planned execution start times is enabled

If the setting for guaranteeing planned execution start times is enabled, a job with a scheduled execution start time is assigned within the
scheduling period even after rescheduling.

- 42 -

Figure 2.42 When the setting for guarantee of planned execution start times is enabled

In the above example, job 5 cannot be assigned in the scheduling period since the planned execution start times of jobs 3 and 4 are not
extended even when job 5 with higher priority is submitted. Therefore, even if a higher-priority job is submitted, the scheduling of the job
may be suspended.

To prevent this situation, change the guarantee period of planned execution start times (NotReschedPeriod).

When the setting for guarantee of planned execution start times is enabled and when the guarantee period
of planned execution start times is reduced to half the time of the scheduling period

If the guarantee period of planned execution start times is set to less than the scheduling period, the planned execution start time that exceeds
the guarantee period of planned execution start times is reset at rescheduling. Accordingly, a newly submitted job with a higher priority can
be easily assigned within the scheduling period.

- 43 -

Figure 2.43 When the setting for guarantee of planned execution start times is enabled and when the guarantee
period of planned execution start times is reduced to half the time of the scheduling period

In the above example, the planned execution start times of jobs 3 and 4 are rescheduled since job 5 with a higher priority is submitted. Since
the planned execution start time of job 3 is within the guarantee period of planned execution start times, it is assigned in the planned
execution start time. However, the planned execution start time of job 4 is set outside the guarantee period of planned execution start times.
Therefore, the scheduling of job 4 is suspended. This creates an available time in the scheduling period, where job 5 can be assigned.

 See

For details on how to set, see "3.4.1.2 Default value settings for resource units", "3.5.1.2 Resource group settings", and "3.4.5 Settings for
advanced job scheduling".

2.5.4.5 Limit on the number of jobs to schedule
Set the ExtendSchedPeriod parameter (one of the parameters in "Rescheduling start wait time"), which is described in "2.5.4.2 Job
scheduling parameters," to have rescheduling done only after waiting for the completion of scheduling. However, an increase in the number
of jobs to schedule will extend the scheduling period. Consequently, newly submitted jobs may not be promptly scheduled.

To prevent this, you can limit the number of jobs to be scheduled each time. When the number of jobs to schedule reaches the specified value,
the remaining jobs are processed at the next scheduling time. In step jobs and bulk jobs, the number of sub jobs is counted as the number
of jobs.

To limit the number of jobs to schedule, you can specify the following methods of selecting the jobs.

- 44 -

Table 2.9 Methods of selecting jobs to schedule
Selection Method Description

In order by job priority
and
job submission time

Sort the jobs in a resource unit by priority and by submission time. Select jobs in order
from the top.
For details on job priority within a resource unit, see "2.5.2.1 Job selection policy."

In line with job selection policy Select jobs according to the job selection policy settings described in "2.5.2.1 Job
selection policy."

However, the following selection policies are ignored even if set:
usr_in_grp_prio (User priority within the group)
job_prio (Job priority)
group_fairshare (Priority based on the group's fair share value)
usr_in_grp_fairshare (Priority based on the user's fair share value within the group)
user_fairshare (Priority based on the user's fair share value)

 See

To limit the number of jobs to schedule, set the JobSchedulingTargetLimit and JobSchedulingTargetMode items in the papjm.conf file. For
details, see "3.4.1.2 Default value settings for resource units."

2.5.4.6 Elapsed time limit for a job
When submitting a job, you can specify the elapsed time limit (executable time) for the job in the following format.

Specifying an elapsed time limit value

{-L | --rsc-list} elapse=limit

When the elapsed time of a job reaches limit, the SIGXCPU signal is sent to the job. The job is forcibly terminated 10 seconds later.

Specifying a range of elapsed time limit values [FX]

{-L | --rsc-list} elapse=min_limit- (*) Hyphen needed after min_limit

{-L | --rsc-list} elapse=min_limit-max_limit

Even after the elapsed time reaches min_limit, execution can continue until the elapsed time reaches max_limit. However, when the
elapsed time has passed min_limit and the job is still running, a node may be required for a subsequent job or processing may enter a
period where nodes are reserved by deadline scheduling. In either case, the job is forcibly terminated even if the elapsed time has not
yet reached max_limit.
To not limit the maximum time that execution can continue, specify "unlimited" in max_limit (e.g., elapse=600-unlimited). If max_limit
is not specified (e.g., elapse=600-), the set value in the job ACL function is applied.
By specifying a range of elapsed time limit values for a job in this submission method, you can effectively utilize available compute
nodes and expect improvement in system availability (job fill rate).
When a job is forcibly terminated, a grace time is given for termination processing of the job. By default, the SIGTERM signal is sent
to the job 10 seconds before termination.
When the elapsed time reaches max_limit, the SIGXCPU signal is sent to the job. The job is forcibly terminated 10 seconds later.

 Information

The administrator can change the period between the sending of the SIGTERM signal and the forced termination by using the
AdaptiveElapsedTimeJobTerminateGrace item in the papjm.conf or pmpjm.conf file. For details on how to change it, see "3.4.1 Settings
for job operation management function in a cluster (papjm.conf file)."

- 45 -

Figure 2.44 Specifying a range of elapsed time limit values

The following definition items of the job ACL function relate to the elapsed time limit values for jobs:

- Specifying which format, elapse=limit or elapse=min_limit[-max_limit], to apply as the operation when the elapse parameter is omitted
at the job submission time

define elapsed-time-mode

- Availability of the methods for specifying elapsed time limit values

execute pjsub-fixed-elapsed-time

execute pjsub-adaptive-elapsed-time

- Default value for the elapsed time limit and upper and lower limits on the values that can be specified

joblimit elapse

joblimit adaptive-elapsed-time-min

joblimit adaptive-elapsed-time-max

joblimit interact-adaptive-elapsed-time-min

joblimit interact-adaptive-elapsed-time-max

joblimit adaptive-node-elapse-min

joblimit adaptive-node-elapse-max

joblimit interact-adaptive-node-elapse-min

joblimit interact-adaptive-node-elapse-max

 See

For details on the items and setting method, see "3.4.4 Job ACL function settings in a cluster.

The following descriptions provide notes on job scheduling when specifying a range of elapsed time limit values for a job
(elapse=min_limit-max_limit).

- 46 -

Step job

Each sub job of a step job is scheduled to be executed after "planned start time of previously executed sub job + maximum elapsed time limit
value."

Deadline schedule

When you set a deadline schedule with the padeadline command, there may be a forecast that an existing job will be running at the start time
of the deadline schedule period. If so, the operation for the job is one of the following, depending on the expected elapsed time of the job
at that time.

 Information

The forecast on whether a job is running at the start time of a deadline schedule period is based on the planned execution start time and
elapsed time limit value for the job.

Job has not reached the minimum elapsed time limit value

The deadline schedule is not set because the job execution time is guaranteed until the job reaches the minimum elapsed time limit value.

Job has exceeded the minimum elapsed time limit value

The job is forcibly terminated before the start of the deadline schedule period. If it is expected that the forced termination will not be
able to be completed before the start of the deadline schedule period, the deadline schedule is not set.

Specifically, the deadline schedule is not set if the time from the job reaching the minimum elapsed time limit value to the start of the
deadline schedule period is shorter than the sum of the following times:

- Grace time before forced termination (Set value of AdaptiveElapsedTimeJobTerminateGrace)

- Approximate execution time of the epilogue script (Set value of EpilogueTime)

- Buffer time between job executions (DecidedGap)

Fair share value

The elapsed time limit value for a job is used to calculate fair share usage and the recovery rate of the fair share value (see "2.5.2.2 Fair share
function"). For a job specified with a range of elapsed time limit values, the maximum elapsed time limit value is used to calculate fair share
usage and the fair share value.

Job selection policy

The job selection policy determines the job execution order (see "2.5.2.1 Job selection policy"). Some policy items are based on the elapsed
time limit values for jobs. For a job specified with a range of elapsed time limit values, the job selection policy handles the order as follows.

Table 2.10 Job execution order when a range of elapsed time limit values is specified

Element Description

elapse_limit Evaluates based on the maximum elapsed time limit value.

node_times_elapse Evaluates based on the product of the number of requested nodes multiplied by the maximum
elapsed time limit value.

group_fairshare
user_fairshare
usr_in_grp_fairshare

Calculates the fair share value, as described above, by using the maximum elapsed time limit value.

Quantitative limits on simultaneously executed jobs and simultaneously used nodes

Jobs are subject to limits on the number of simultaneously executed jobs and the number of simultaneously used nodes even when still
running after exceeding the minimum elapsed time limit value. Subsequent jobs are scheduled for execution at times when these limits will
not be exceeded. In other words, a job exceeding the minimum elapsed time limit value may be running when a subsequent job is executed,
but the job is not forcibly terminated even if the number of simultaneously executed jobs or used nodes at this time exceeds the limit.

The following figure shows an example where the number of simultaneously executed jobs is limited to two.

- 47 -

Figure 2.45 Example of scheduling with a limit on the number of simultaneously executed jobs

Job 2 is running after exceeding the minimum elapsed time limit value, min. During this time, the number of simultaneously executed jobs
reaches the limit of 2. Consequently, subsequent jobs 3 and 4 are not executed. This means that job 2 is not forcibly terminated in order to
execute job 4.
The end of job 1 allows for a job to be added to the number of simultaneously executed jobs. As a result, running job 2, which has exceeded
the minimum elapsed time limit value, is forcibly terminated in order to execute job 3. This results in an available node, so job 4 is also
executed.

2.5.5 Job scheduling function using custom resources
The Job Operation Software allows you to define any resource, such as a software license and power. This arbitrary resource is called
"custom resource."
For example, you define a software license as a custom resource and request the necessary quantity of software licenses when submitting
a job. Then, the job is scheduled to be executed at a time when there is a sufficient quantity of software licenses for use in the job.
By using custom resources in this way, you can schedule jobs according to various purposes with not only a hardware resource, such as the
CPU or memory of a compute node, but also a general resource.

The following figure shows job scheduling with and without consideration of the number of custom resources.

Figure 2.46 Comparison of job scheduling with and without consideration of the number of custom resources

When you have specified a custom resource for a job, the backfill function can be used for the job. (For details on the backfill function, see
"2.5.4.1 Backfill function.") In the following example, a custom resource is specified for a job, and the backfill function moves the job past
other jobs in the execution order.

- 48 -

Figure 2.47 Scheduling of jobs with custom resources by using the backfill function

Custom resources are defined per resource unit or resource group.
To use a custom resource, the resource can be defined with a numerical value or a type. In addition to these two types of custom resources,
custom resources can be defined in the following units.

- Custom resources per resource unit or resource group

You can define the numerical number and type of resources for all the compute nodes in a resource unit or resource group.

For example, if the defined numerical number of this resource is eight, the compute nodes in the resource unit or resource group can
altogether use eight resources. Also, if the custom resource types a and b are set, all of the compute nodes in the resource unit or resource
group can use these two types.

- Custom resources per node

You can define the numerical number and type of resources for the specified compute node in a resource unit or resource group.

If the set numerical number of custom resources is eight, each of the specified nodes in a resource unit or resource group can use eight
resources. Also, if the custom resource types a and b are defined, each of the specified nodes can use the types a and b.

For details on how to define custom resources, see "3.5.1.6 Custom resource settings."

Custom resources are resources defined by the job administrator. The administrator needs to create a process for determining whether there
are enough resources to handle requests from users and whether the requested types are available as custom resources.
The administrator is requested to create programs using the following mechanisms called "hooks" to check the amount of requested
resources and determine request types at a specific timing during job submission or execution.

To determine whether a job can be executed, the job operation management function checks the total quantity of custom resources and the
quantities or types of custom resources requested by the job. However, the function does not substantially manage custom resources, so it
cannot determine the validity of the custom resources specified for a job. In other words, when the job is submitted, the function cannot
determine whether enough resources were requested by the job or whether the types requested by the job can be used as custom resources.
Therefore, the job operation management function provides the multiple exit functions described below. They can check the requested
quantities, requested types, etc. of custom resources. This document generally refers to these functions as "hooks."

- Job information acquisition function and job information setting function APIs that can be used in an exit function (job manager exit
function and job scheduler exit function)

- Environment variables that can be referenced in prologue and epilogue scripts (prologue and epilogue function)

- Environment variables that can be referenced in an exit script (resource management exit function)

By using these hooks, you can determine whether the custom resources specified at job submission or at a specific timing during job
execution can be used.

- 49 -

 Information

On PRIMERGY server, by defining GPUs as custom resources, the Job Operation Software can manage them as computer resources and
schedule their allocation to jobs. To define GPUs as custom resources, settings must be configured as described in "Appendix C Settings
for Using GPUs [PG]."

 See

For details on hooks in the job operation management function, see "Job Operation Software Administrator's Guide for Job Operation
Manager Hook."

2.5.5.1 Power cap scheduling function
One function defines system power consumption as a custom resource. When a job is submitted, the function estimates the power
consumption of the job and schedules the job with this estimate as the requested quantities of the custom resource. This function is called
the power cap scheduling function.

This function enables capping of system power consumption.

The power cap scheduling function is implemented in linkage with the job operation management function (job manager function, job
scheduler function, and job resource management function) and the power management function. For the power cap scheduling function,
the job operation management function supports functions for allocating resources to jobs based on the estimated power consumption of
the jobs and determining the job execution order.

 See

For the power cap scheduling function, a function estimates the power consumption of a submitted job is called "job power estimate
function." The power management function supports the job power estimate function. For details on the job power estimate function, see
"Job power estimate function" in "Chapter 2 Details of the Power Management Function" in "Job Operation Software Administrator's Guide
for Power Management."

The following figure shows the behavior of the power cap scheduling function at the submission of a job with power as a resource.

Figure 2.48 Behavior of the power cap scheduling function at the submission of a job with power as a resource (At
job submission)

- 50 -

At job submission

1. The user submits a job.

2. The job manager function accepts the submission of this job.

3. The job manager function uses a hook of the job operation management function to hand over information on the submitted job to
the job power estimate function.
Based on past job information saved in the job power database, the job power estimate function estimates the power consumption of
the submitted job. Then, it uses a hook to hand over the estimated value to the job manager function.

4. The job manager function requests the job scheduler function to schedule the job.

5. The job scheduler function schedules this job based on the power consumption estimate for the job, without exceeding the preset
number of custom resources (see the description below).

Figure 2.49 Behavior of the power cap scheduling function at the end of a job with power as a resource (At
job end)

At job end

1. The job resource management function measures the power consumption of the executed job when the job ends. This function hands
over the measured power consumption value (power consumption information on the job) to the job manager function.

2. Upon accepting the end of the job, the job manager function uses a hook to hand over the power consumption information on the job
to the job power estimate function.

3. The job power estimate function saves the power consumption information on this job in the job power database of the job power
estimate function. The saved information will be used to estimate the power consumption of the next job.

 Information

As described above, hooks are configured to call the power management function to estimate the power consumption of jobs. However, you
can change them to call an original power estimate module created by the administrator.

The job manager exit function, which is one of the hooks, is used for this purpose. The job manager exit function works by making the job
operation management function call a function (exit function) with a specific name at a specific timing during job submission or execution.

For power consumption estimates of a job, the administrator creates the following exit function and incorporates it into the job operation
management function. The exit function is called at job submission or end.

- 51 -

At job submission: Job manager exit function pjmx_quejob()

1. Acquire information on the submitted job by using the job information acquisition function provided by the job manager exit
function.

2. Hand over the acquired job information to the power estimate module created by the administrator.

3. The power estimate module estimates power consumption based on the information on the submitted job and the accumulated
power consumption information on past jobs in the database.

4. Hand over the estimated power consumption to the job manager function by using the job information setting function
pjmx_setinfo_power_estimation() provided by the job manager exit function.

At job end: Job manager exit function pjmx_endjob()

1. Acquire the job information and power consumption information handed over from the job manager function. Use the job
information acquisition function pjmx_getinfo_power_consumption() to acquire the power consumption information.

2. Save the acquired job information and power consumption information in the database for subsequent use in estimating the power
consumption of a job.

For details on the job manager exit function (exit function and job information acquisition function), see "Job Operation Software
Administrator's Guide for Job Operation Manager Hook."

The scheduling by the power cap scheduling function takes into consideration the compute node power consumption increasing due to job
execution.

Figure 2.50 Compute node power consumption increasing due to job execution

Therefore, it is necessary to set the "upper limit value on power consumption increasing due to job execution" for the values where system
power consumption has been defined as a custom resource. The idle power when no job is running is subtracted from the allowable power
of the system to calculate the upper limit value on power consumption increasing due to job execution. For details on how to set this upper
limit value, see "3.5.1.6 Custom resource settings."

The following figure shows job scheduling by the power cap scheduling function.

- 52 -

Figure 2.51 Job scheduling by the power cap scheduling function

Jobs A and C require less power consumption, and job B requires greater power consumption. The power cap scheduling function schedules
jobs A and C to be executed first, and job B to be executed after them. In this way, it controls power consumption so that it does not exceed
the upper limit on power consumption.

 Note

The power cap scheduling function uses the power consumption estimates of jobs to schedule the jobs. Therefore, if an estimate is wrong,
the upper limit on power consumption may be exceeded. In such cases, the administrator needs to stop the job manually. Check system
power consumption with the pasyspwr command. For details on how to use the pasyspwr command, see Chapter 4 in "Job Operation
Software Administrator's Guide for Power Management."

2.5.6 Job scheduler exit function
The job scheduler function has an exit function for calling any process prepared by the administrator. The function is called at a specific
timing during the execution of each job. The exit function allows the job operation administrator to configure a process for each resource
unit or resource group.
Using the job scheduler exit function, the administrator can implement ticket control that, for example, permits job submission and
execution within the budget allocated to each job submitter.

 See

The job scheduler exit function is one of the mechanisms called "hooks" in the job operation management function. For details, see "Job
Operation Software Administrator's Guide for Job Operation Manager Hook."

2.6 Job Resource Management Function
The job resource management function ensures that resources are not repeatedly allocated to different jobs and resource shortages do not
occur, by exclusively allocating computer resources such as CPUs and memory to jobs. The function manages the usage amounts of
computer resources, such as CPUs and memory, contained in the system.

According to instructions from the job manager function, the job resource management function controls the start of jobs and allocates and
releases the resources required by jobs.

- 53 -

2.6.1 Job Resource Management
The job resource management function runs on the compute cluster management node to centrally manage the total amount of job resources
on compute clusters.

The managed job resources are as follows.

CPU resources

All the cores in the CPU chips installed on the compute nodes are managed as CPU resources for jobs. The CPU resource management
does not consider chips. It manages only the number of cores.

Memory resources

Normally, the job management function manages 90% of the amount of mounted memory on the compute nodes as the memory
resources for jobs.
You can change the percentage of the amount of memory for jobs to any value from 1 to 100%. Set this percentage of the memory amount
in the parsc.conf file or pmrsc.conf file. For details on parsc.conf file settings, see "3.4.3 Settings for job resource management function
in a cluster (parsc.conf file)". For details on pmrsc.conf file settings, see "3.5.2 Job resource management function settings in a resource
unit (pmrsc.conf file)".

For cases where a job requires excessive memory resources, you can select between a memory allocation failure for the job and forcible
end of the job. Make this setting in the parsc.conf file.

 Note

If you set the percentage of the amount of memory for jobs to a value exceeding 90%, the likelihood of an OS hang-up will increase.

2.6.2 Job Resource management exit function
The job resource management function makes it possible to perform unique processing (a script) specified by the job operation
administrator, for example, before the allocation of job resources or after the release of job resources. This is called the resource
management exit function. Using the job resource manager exit function, the administrator can execute an original process with an
awareness of the resource allocation and release timing before and after the execution of a single job.

 See

The job resource manager exit function is one of the mechanisms called "hooks" in the job operation management function. For details, see
"Job Operation Software Administrator's Guide for Job Operation Manager Hook."

2.6.3 Periodic collection of job statistical information
The Job Operation Software allows the administrator to periodically collect and accumulate job statistical information of running jobs as
time-series information to find out the job operation status and performance in the system.

The collected information is output to the following file on the compute cluster management node.

/var/opt/FJSVtcs/prm/jobrscusage

 Note

The file system requires sufficient free space because a lot of information is output. For details on how to periodically back up (rotate) the
jobrscusage file and guidelines on the file size, see "3.6 Setting Log Rotation."

The output format of the information is the CSV format shown below.

Time,JOBID,BulkNumber,StepNumber,RetryCount,JobSubmissionTime,InformationTag,InformationBody

- 54 -

Table 2.11 Job statistical information periodically collected by the job resource manager
Item Description

Time Acquisition time of information: YYYYMMDD.hhmmss
YYYY: year, MM: month, DD: day, hh: hour, mm: minute, ss: second

JOBID Job ID

Bulk Number Bulk number
For jobs other than bulk jobs, this item is blank.

Step Number Step number
For jobs other than step jobs, this item is blank.

Retry count Job retry count

Job submission time Submission time of the job: YYYYMMDD.hhmmss

Information tag JIS: Indicates a snapshot of information by job.
JNS: Indicates a snapshot of information by node used by 1 job.

Information body Information is output in the order shown in the following table.

Table 2.12 Job statistical information periodically collected by the job resource manager (information body)

Information Corresponding information name displayed by pjstat -s/-S (*1)

Node ID NODE ID

Virtual node ID (*2) VNODE ID

Number of used CPUs CPU NUM (USE)

CPU time used by user USER CPU TIME (USE)

CPU time used by system SYSTEM CPU TIME (USE)

Maximum memory usage MAX MEMORY SIZE (USE)

Number of Fujitsu profiler use times FJ PROFILER

Number of starts of a program using the sector cache SECTOR CACHE

Number of starts of a program using the inter-core
hardware barrier

INTRA NODE BARRIER

Power information acquisition status POWER CONSUMPTION STATE

Average node power consumption (Estimate) AVG POWER CONSUMPTION OF NODE (IDEAL)

Maximum node power consumption (Estimate) MAX POWER CONSUMPTION OF NODE (IDEAL)

Minimum node power consumption (Estimate) MIN POWER CONSUMPTION OF NODE (IDEAL)

Node power consumption (Estimate) ENERGY CONSUMPTION OF NODE (IDEAL)

Average node power consumption (actual
measurement)

AVG POWER CONSUMPTION OF NODE (MEASURED)

Maximum node power consumption (actual
measurement)

MAX POWER CONSUMPTION OF NODE (MEASURED)

Minimum node power consumption (actual
measurement)

MIN POWER CONSUMPTION OF NODE (MEASURED)

Node power consumption (actual measurement) ENERGY CONSUMPTION OF NODE (MEASURED)

Power knob usage information UTILIZATION INFO OF POWER API

Number of processes (*2) PROC NUM

Number of execution cycles (*2) PERF COUNT 1

Number of floating-point instruction operations 1
(*2)

PERF COUNT 2

- 55 -

Information Corresponding information name displayed by pjstat -s/-S (*1)

Number of floating-point instruction operations 2
(*2)

PERF COUNT 3

Number of memory read requests (*2) PERF COUNT 4

Number of memory write requests (*2) PERF COUNT 5

Sleep cycle (*2) PERF COUNT 6

Reserved item for future expansion (*2) PERF COUNT 7

Reserved item for future expansion (*2) PERF COUNT 8

Reserved item for future expansion (*2) PERF COUNT 9

(*1) The output information corresponds to the information items displayed by the -s/-S option of the pjstat command.

(*2) If the information tag is JIS, this field is blank.

 See

Settings for periodically collecting job statistical information are set in the parsc.conf ("3.4.3 Settings for job resource management function
in a cluster (parsc.conf file)") or pmrsc.conf file ("3.5.2 Job resource management function settings in a resource unit (pmrsc.conf file)".)

2.7 Parallel Execution Environment
In the parallel execution environment, in accordance with requests issued by the process parallel processing program, parallel processes in
units called tasks are created and controlled. The number of parallel processes that can be created at one time is restricted to 128, which is
the maximum number of tasks that can be created for one job. For this reason, the number of MPI programs (mpiexec command) that can
be simultaneously executed is limited to 128. Similarly, the number of sequential programs (pjexe command) that can be simultaneously
executed on multiple virtual nodes is limited to 128.

2.8 Job Execution Environment Customization Function
The Job Operation Software has the job execution environment customization function, which switches the software environment for
executing job programs (job execution environment) according to user specifications. With this function, users can select a suitable
environment for executing their own jobs. From the job execution environments deployed on the system, they can use a specialized
environment for the jobs. They can also use execution environments prepared by the users themselves.

 See

For details on the mechanism and operation of the job execution environment and how to submit a job using the job execution environment,
see "Job Operation Software End-user's Guide."

For details on how to build and configure a job execution environment, see "3.5.7 Configuring a Job Execution Environment."

2.9 Command API
The user interface required for job operations varies depending on the operating system. To support users creating commands that have the
user interfaces they want, the job operation management function provides interfaces for calling functions (job operation and information
acquisition) equivalent to these commands from programs. These interfaces are called command APIs (Application Programming
Interfaces).

The command APIs provide the following functions.

- 56 -

Table 2.13 Functions provided by the command APIs
Target user Classification API type

End user and
administrator

Job operation API Job submission (equivalent to pjsub command)

Job deletion (equivalent to pjdel command)

Job hold (equivalent to pjhold command)

Job release (equivalent to pjrls command)

Signal sending to job (equivalent to pjsig command)

Job end wait (equivalent to pjwait command)

Job parameter change (equivalent to pjalter command)

Information acquisition API Job information acquisition (equivalent to -s/-S option in pjstat and
pjstat commands)

Resource information acquisition (equivalent to --rsc option in pjstat
command)

Limit value information acquisition (equivalent to --limit option in
pjstat command)

Job ACL information acquisition (equivalent to pjacl command)

Resource status acquisition (equivalent to pjshowrsc command)

Administrator System operation API Job submission and execution permission change

(equivalent to --set-rsc-ug and --show-rsc-u options in pmpjmopt
command)

Job operation API Job parameter change (equivalent to pmalter command)

For details on the command APIs, see "Job Operation Software API user's Guide for Command API."

2.10 Job Information Notification API
The job manager function of the job operation management function provides an interface for job-related information notification of the
programs used for processing specific to job operations. Examples include charge processing and job trace processing created by the job
operation administrator. The programs are notified at the timing of job state transition. This interface is called the job information
notification API.

For details on the job information notification API below, see "Job Operation Software API user's Guide for Job Information Notification
API."

2.11 Scheduler Plugin Function
The Job Operation Software has a function that incorporates an original scheduling algorithm created by the job operation administrator into
the job scheduler to replace the scheduling algorithm of the job operation management function. This function is called the scheduler plugin
function. Using the scheduler plugin function, you can apply the optimal scheduling algorithm to job operations.

The incorporation of an original scheduling algorithm is achieved by replacing processing units composing the job scheduler with a module
(shared library) created by the job operation administrator. The following figure shows the internal structure of the job scheduler and the
relationship with related (job manager and command) modules.

- 57 -

Figure 2.52 Internal structure of the job scheduler and areas that can be replaced with a plugin

The job scheduler is a module that allocates resources to jobs in descending order of priority and determines the job execution order (planned
execution start times of jobs). The scheduler operates together with the job manager, which has an interface with commands. The job
scheduler consists of the following processing units.

Data receiver

This processing unit receives data sent from the job manager. The types of received data include job submission, node state change, and
system setting change data. It hands over the received data to the overall controller.

Overall controller

This processing unit controls the start and end of job scheduling. When triggered by data received from other processing units, this unit
interrupts scheduling in progress and starts new scheduling. When scheduling in progress is interrupted, each processing unit takes back
jobs being processed.

Job selection processing unit

This processing unit prioritizes submitted jobs according to the job selection policy and sorts them in descending order of priority. It
hands over jobs to the resource selection processing unit in descending order of priority. The job scheduler function is made from this
processing unit working together with the resource selection processing unit.

Resource processing unit

This processing unit allocates job-dedicated resources (compute nodes, custom resources, etc.) to jobs in descending order of priority,
determined by the job selection processing unit, with consideration of the number of requested nodes, elapsed time limits, etc. Then, it
determines the planned execution start times of the jobs. It hands over the jobs for the selected resources to the job execution request
processing unit. The job scheduler function is made from this processing unit working together with the job selection processing unit.

Job execution request processing unit

This processing unit requests the job manager to execute a job when the planned execution start time of the job arrives. The time is
determined by the resource selection processing unit.

The scheduler plugin function provides an API to replace the job selection processing units, which are in these processing units, with an
original scheduling algorithm. This API called the scheduler API.

The job operation administrator uses this API to implement an original scheduling algorithm as a shared library and incorporate the library
into the job scheduler. This shared library is called "plugin library" or "scheduler plugin."

- 58 -

For details on the scheduler plugin function, see "Job Operation Software API user's Guide for Scheduler API."

- 59 -

Chapter 3 Job Operation Management Function Settings
This chapter describes the settings of the job operation management function.

The following tables list the configuration files and related commands for the job operation management function. The tables are divided
into settings by the cluster administrator and settings by the job operation administrator. The cluster administrator manages job operations
for a cluster, and the job operation administrator manages job operations for resource units.

Table 3.1 Files set by the cluster administrator and related commands

Setting contents Related command Configuration file
name

Node and path where created

Work environment definitions
relating to the job operations of an
entire cluster

papjmadm command papjm.conf System management node
/etc/opt/FJSVtcs/

Work environment definitions such
as computer resource allocation
amounts for the jobs of an entire
cluster

parscadm command parsc.conf System management node
/etc/opt/FJSVtcs/

Job ACL function settings of an
entire cluster

pmjacladm command Optional System management node or
compute cluster management node

Job statistical information settings
of an entire cluster

papjmstatsadm command papjmstats.conf System management node
/etc/opt/FJSVtcs/

Advanced job scheduling settings
of an entire cluster

None pjs.conf Active compute cluster
management node
/var/opt/FJSVtcs/shared_disk/
pjm/.private/

Table 3.2 Files set by the job operation administrator and related commands

Setting contents Related command Configuration file
name

Node and path where created

Work environment definitions
relating to job operations by
resource unit

pmpjmadm command pmpjm.conf System management node
/etc/opt/FJSVpnavi/Rscunit.d/
resource-unit-name/

Work environment definitions such
as computer resource allocation
amounts for jobs by resource unit

pmrscadm command pmrsc.conf System management node
/etc/opt/FJSVpnavi/Rscunit.d/
resource-unit-name/

Job ACL function settings by
resource unit

pmjacladm command Optional System management node or
compute cluster management
node

 Note

The job operation management function needs to be set only during initial installation of the Job Operation Software and when changing
operations. The job resource management function needs to be set too when adding a new compute node because the function has settings
(parsc.conf and pmrsc.conf files) configured for each compute node. For details on how to have only particular compute nodes reflect the
job resource management function settings, see "Information" in "3.4.3.2 Reflecting and referencing the parsc.conf file" and "3.5.2.2
Reflecting and referencing the pmrsc.conf file."

3.1 Checking the System Configuration
To set the job operation management function, the administrator needs to know the system configuration. Such information includes the
cluster name, resource unit names, and the number of nodes.

- 60 -

System configuration information relating to job operations is managed for each resource unit. You can check that information by using the
pashowclst command.

The following operation examples check the configuration information by using the pashowclst command.

Displaying information on a specific cluster

To check cluster information, specify a cluster name in the -c option of the pashowclst command.

[System management node]

pashowclst -c cluster1 --rscunit

[CLST: cluster1]

RSCUNIT RUNNING STOPPED ERROR DISABLE

unit1 393 10 2 3

unit2 816 0 0 0

You can omit specifying the -c option by specifying the cluster name in the environment variable PXMYCLST.

Displaying information on a specific resource unit

To check resource unit information, specify a resource unit name in the --rscunit option of the pashowclst command.

[System management node]

pashowclst -c cluster1 --rscunit unit1

[CLST: cluster1]

[RSCUNIT: unit1]

RSCUNIT RUNNING STOPPED ERROR DISABLE

unit1 393 10 2 3

Displaying a list by node type

To display the number of nodes by node type, specify the -l option in the pashowclst command.

[System management node]

pashowclst -c cluster1 --rscunit -l

[CLST: cluster1]

RSCUNIT TOTAL SMM CCM LN CCS BIO SIO GIO CN SCM MGS MDS OSS

unit1 408 - - - - 8 12 4 384 - - - -

unit2 816 - - - - 16 24 8 768 - - - -

pashowclst -c cluster1 --rscunit unit1 -l

[CLST: cluster1]

[RSCUNIT: unit1]

RSCUNIT TOTAL SMM CCM LN CCS BIO SIO GIO CN SCM MGS MDS OSS

unit1 408 - - - - 8 12 4 384 - - - -

 See

For details on using the pashowclst command to check the system configuration, also see "Displaying System Configuration Information"
in "Chapter 3 Details of the System Management Function" in "Job Operation Software Administrator's Guide for System Management."

3.2 How to Code a Configuration File
The configuration files for the job operation management function have the following basic structure of coding.

section name {

 item1 = value

 item2 = value

 subsection name {

 item3 = value

 item4 = value

- 61 -

 }

}

The section name is a keyword indicating what is covered by the structure definition, which is the part enclosed by curly brackets ("{ }").
The name is determined according to the definition contents. Some defined items contain subsections in their sections.

3.3 MariaDB Settings
The job manager function has an internal database for managing jobs. MariaDB must be configured in preparation for this database. Perform
the following work during installation only once.

 See

MariaDB must be installed on the compute cluster management node in advance.
For the procedure to install MariaDB, see "Performing MariaDB-related Work for Job Operations" in "Chapter 2 New System Installation"
in "Job Operation Software Setup Guide."

1. Work on the active compute cluster management node

Confirm in advance that /var/opt/FJSVtcs/shared_disk is mounted. Then, perform the following work.

1. Creating a database

Create a database for the job manager function. The database name is pjmdb.

mysql -u root -p

Enter password: password of root

MariaDB [(none)]> create database pjmdb;

MariaDB [(none)]> exit

Bye

mysql -u root -p pjmdb < /var/opt/FJSVtcs/shared_disk/pjm/.private/pjmdb.sql

Enter password: password of root

2. Creating a user for accessing the database

Create a user for accessing the pjmdb database.
In the following example, the user name is pjmdbadmin and the password is password.

mysql -u root -p

Enter password: password of root

MariaDB [(none)]> grant all on pjmdb.* to pjmdbadmin identified by 'password';

MariaDB [(none)]> exit

Bye

2. Work on the nodes used to execute the pjstat command (system management, compute cluster management, and login nodes)

Create a new /root/.odbc.ini file as the ODBC environment settings, and code the following contents.

vi /root/.odbc.ini

[pjmdb]

Driver=ODBC_Driver <- Specify MySQL for RHEL 7 and MariaDB for RHEL 8

Description=pjm DB.

SERVER=IP_Address <- Representative IP address of compute cluster management node

USER=UserName <- Name of user created in step 1-2 (pjmdbadmin in above example)

Password=password <- Password of user created in step 1-2 (password in above example)

Database=pjmdb <- Job manager database name

OPTION=1048576

- 62 -

 Note

Since passwords are written in plain text in the /root/.odbc.ini file, set the permissions of the file to the owner root, the group root,
and mode 0600 to prevent unauthorized users from viewing the file.

3.4 Settings for the Cluster Administrator
This section describes the contents of settings by the cluster administrator, among the settings of the job operation management function.

The cluster administrator handles the following settings:

- Settings for job operations in a cluster

- Settings for job statistical information in a cluster

- Settings for job resource management in a cluster

- Job ACL function settings in a cluster

- Advanced job scheduling settings

 Information

- The setting and operation work of the job operation management function requires cluster administrator privileges or higher.

- The examples in this section contain commands specifying a cluster name in the -c option for operation on the system management
node. Write the name in this way. However, if the environment variable PXMYCLST specifies the cluster name, you can omit
specification of the cluster name in the -c option during actual operation.

3.4.1 Settings for job operation management function in a cluster
(papjm.conf file)

The cluster administrator can make the following settings in the papjm.conf file (system management node: /etc/opt/FJSVtcs/papjm.conf)
by cluster:

- Job manager function settings

- Log output level setting for the job manager function

- Start and stop settings for job statistical information output

- Setting of whether to save information on jobs that were submitted and rejected

- Setting of the job state storage period

- Ended job script file storage setting

- Setting of jobs to be limited on the total number of CPU cores used per job multiplied by the total CPU core time used per job.

- Setting of whether to allow changes of the elapsed time limit value of a running job

- Setting that suppresses the output of the job information to the history information which is output with the -H option of the pjstat
command for QUEUED jobs when they are deleted.

- Setting that suppresses the output of the job statistics file (.stats file) for QUEUED jobs when they are deleted.

- Default value settings for resource units

- Log output level setting for the job scheduler function

- Setting for enabling/disabling the backfill function

- Setting the target range of the backfill function (executing lower-priority jobs ahead of higher-priority jobs)

- Buffer time setting for the job execution interval

- 63 -

- Rescheduling grace time setting

- Setting of the grace time before the forced termination of a job that continued running after exceeding the minimum elapsed time
limit value

- Interval setting for job resource map creation

- Scheduling period setting

- Setting of a dynamic scheduling period

- Settings of whether job models (normal, step, and bulk job) automatic re-execution

- E-mail transfer function setting

- Setting of whether to subtract the fair share value when job execution starts

- Setting of the fair share recovery value

- Setting the jobs to be limited on the number of CPU cores used simultaneously

- Setting for guarantee of planned execution start times

- Interpretation of the submission time when scheduling a held job that was released

- Setting of the maximum number of jobs to schedule

- Setting of the method for limiting the jobs to schedule

- Job selection policy settings

- Setting of the job selection policy name

- Priority setting for the job submission time

- Priority setting for the number of required nodes

- Group priority setting

- User priority setting

- Priority setting for the users in a group

- Job priority setting

- Priority setting for the fair share value for groups

- Priority setting for the fair share value for the users in a group

- Priority setting of the fair share value for users

- Priority setting for the elapsed time limit value

- Priority setting for the node time product

- Priority setting for the job evaluation point

- Priority setting for execution start time specification

- Priority setting for interactive job specification

The following example shows settings of the papjm.conf file.

[System management node]

cat /etc/opt/FJSVtcs/papjm.conf

Cluster {

 ClusterName = clusterA

 LogLevel = 1

 JstiOutData = yes

 JstiRejectData = no

 KeepJobData = 10

 SaveScript = off

 RunJobAlterElapse = off

- 64 -

 PjdelNoHistory = no

 PjdelNoStats = no

 ResourceUnit {

 LogLevel = 1

 Backfill = yes

 BackfillTarget = rscgrp

 DecidedGap = 00:01:00

 Grace = 00:02:00

 CreateRscMap = "01:00:00, 00:10:00"

 CreateRscMap = "24:00:00, 01:00:00"

 CreateRscMap = "*, 24:00:00"

 SchedulePeriod = 25:00:00

 DynamicSchedulePeriod = 2,24:00:00

 MailSend = yes

 Fairshare = off

 FshareRecoveryValue = 236

 StartTimeGuarantee = on

 HoldAcceptDate = release

 JobSchedulingTargetLimit = 10000

 JobSchedulingTargetMode = jobselectpolicy

 }

 # default Job Select Policy

 JobSelectPolicy {

 job_aprio = 2,desc

group_fairshare = 3,desc

user_fairshare = 4,desc

group_prio = 5,desc

usr_in_grp_prio = 6,desc

usr_in_grp_fairshare = 7,desc

interact = 8,true

node_times_elapse = 9,asc

node = 10,asc

elapse_limit = 11,asc

user_prio = 12,desc

job_prio = 13,desc

at = 14,true

 fcfs = 256,asc

 }

Job Select Policy 1

 JobSelectPolicy {

 name = policy1

 group_fairshare = 3,desc

 fcfs = 256,asc

 }

 # Job Select Policy 2

 JobSelectPolicy {

 name = policy2

 fcfs = 256,asc

 job_aprio = 2,desc

 }

Job Select Policy 3

 JobSelectPolicy {

 name = policy3

 group_fairshare = 3,desc

 group_prio = 4,desc

 usr_in_grp_fairshare = 5,desc

 fcfs = 256,asc

 }

Job Select Policy 4

 JobSelectPolicy {

 name = policy4

 job_epoint = 1,desc

 fcfs = 255,asc

- 65 -

 }

 JobEvaluation {

 name = jobeval1

 waittime = 1,1800@1:*@2

 }

}

For details on the settings, see the man page for the papjm.conf file.

 Information

The papjm.conf file is installed on the system management node. If you want to change the default settings, edit the file.

 Note

- You cannot change settings related to job operations simply by creating or editing the papjm.conf file. As described below, the
papjmadm command reflects the contents of the papjm.conf file in job operations.

- The maximum length of a single line in the papjm.conf file is 511 characters.

3.4.1.1 Job manager function settings
The following table lists the items set in the Cluster section.

Table 3.3 Setting items of the job manager function (Cluster section)

Item name Definition contents Specifiable value Default value

ClusterName Cluster name Character string with 1 to 63
characters, consisting of single-
byte alphanumeric characters,
hyphen, and underscore

Not omissible

LogLevel Log output level (Normally, 1 is used for
operation.)
1: Normal log level
2: Detailed level for debugging
3: More detailed level for debugging

1-3 1

JstiOutData Specifying job statistical information output yes/no
yes: Output
no: Do not output

yes

JstiRejectData Setting of whether to save information on
jobs that were submitted and rejected

yes/no
yes: Save
no: Do not save

no

KeepJobData Job information retention period (unit: day)
for jobs in the EXIT, CANCEL, or REJECT
state

0-365 10

SaveScript Save ended job script files on/off
on: Save
off: Do not save

off

TotalCoresUpper Setting the target range of the job that limits
the following job ACL setting item.
The target range of the job that limits the
following items specify "only Virtual node
allocated job (vnode)" or "all jobs (all)."
- joblimit total-cores
- joblimit interact-total-cores

vnode: virtual node allocated
jobs.
all: all jobs (*)

all

- 66 -

Item name Definition contents Specifiable value Default value

- joblimit total-cores-elapse
- joblimit interact-total-cores-elapse

RunJobAlterElapse Setting of whether to allow changes of the
elapsed time limit value of a running job

on/off
on: Allow changes
off: Do not allow changes

off

PjdelNoHistory Setting that suppresses the output of the job
information to the history information which
is output with the -H option of the pjstat
command for QUEUED jobs when they are
deleted.

yes/no
yes : Suppress
no : Do not suppress. However,
it is suppressed if the --no-
history option of the pjdel
command is specified.

no

PjdelNoStats Setting that suppresses the output of the job
statistics file (.stats file) for QUEUED jobs
when they are deleted.

yes/no
yes : Suppress
no : Do not suppress. However,
it is suppressed if the --no-stats
option of the pjdel command is
specified.

no

(*) The total number of CPU cores used for node allocated jobs is a value obtained by multiplying the number of CPU cores on a node by
the number of request nodes.

3.4.1.2 Default value settings for resource units
The following table lists the items set in the ResourceUnit section.

Table 3.4 Default value setting items for resource units

Item name Definition contents Specifiable value Default value

LogLevel Log output level (Normally, 1 is used for
operation.)
1: Normal log level
2: Detailed level for debugging
3: More detailed level for debugging

1-3 1

Backfill Backfill function yes/no
yes: Enabled
no: Disabled

yes

BackfillTarget Setting the target range of the backfill
function (execution of lower-priority
jobs ahead of higher-priority jobs)

rscunit: All jobs in a resource
unit
rscgrp: All jobs in the resource
group where the job belongs

rscgrp

DecidedGap Buffer time setting Hour:minute:second
00:00:00 to 99:59:59

00:01:00

Grace Grace time setting Hour:minute:second
00:00:00 to 99:59:59

00:02:00

AdaptiveElapsedTimeJobTer
minateGrace

Setting of the grace time before the
forced termination of a job

Jobs that continue running after
exceeding the minimum elapsed time
limit value receive the SIGTERM signal,
and then are forcibly terminated after a
certain time has elapsed. The signal is
sent at the start of execution of a
subsequent job, This item sets the period

Hour:minute:second
00:00:00 to 99:59:59

00:00:10

- 67 -

Item name Definition contents Specifiable value Default value

from the signal sending to the forced
termination.

CreateRscMap Time zone and time interval setting for
job resource map creation
The format is "time_zone,
time_interval".
(Resource map making interval can be
specified in several numbers. If it is
specified multiple, it must begin from the
closest time zone apart from now.)

time_zone:
Hour:minute:second
00:01:00 to 9999:59:59,*
(* will be set in the last line)

time_interval:
Hour:minute:second 00:01:00
to 9999:59:59

(It is set as the
following 4 lines)
01:00:00,00:10:00
24:00:00,00:30:00
240:00:00,01:00:00
*,24:00:00

SchedulePeriod Scheduling period setting
The time in the future which is later than
current time added with this period will
not be assigned.

Hour:minute:second
00:01:00 to 9999:59:59

240:00:00

DynamicSchedulePeriod Setting of a dynamic scheduling period

The job scheduling period is determined
based on the maximum elapsed time
limit value of the submitted job, not the
fixed value shown in the SchedulePeriod
item. (*1)

multiplicative factor,minimum
scheduling period

Multiplicative factor: 1 to
2147484347

Minimum scheduling period:
Hour:minute:second (*1)

2,24:00:00

RestartNormal Setting of whether a normal job
automatic re-execution

yes: Automatic re-execution is
enabled.
no: Automatic re-execution is
disabled.

yes

RestartStep Setting of whether a step job automatic
re-execution

yes: Automatic re-execution is
enabled.
no: Automatic re-execution is
disabled.

yes

RestartBulk Setting of whether a bulk job automatic
re-execution

yes: Automatic re-execution is
enabled.
no: Automatic re-execution is
disabled.

no

MailSend E-mail transfer setting
All related mails can be sent to jobs in the
current resource unit is set.

yes: Send
no: Do not send

yes

Fairshare Setting of whether to subtract the fair
share value when job execution starts

on: Subtract
off: Do not subtract

off

FshareRecoveryValue Fair share recovery value

Job using resource (the number of nodes
when referring to FX servers, or the
number of CPU cores when referring to
PRIMERGY servers) which is treated as
fair share * elapse
time is recovery quantity in the period.
In the operation, after assuming scale job
has been executed, the period which lasts
until execution priority having
completely recovered will be took as
standard.
This item is valid for all the fair share sets
in the resource unit range.

0-18446744073709551615 236 (*2)

- 68 -

Item name Definition contents Specifiable value Default value

UseCoreLimit Setting of the jobs subject to the limit on
the number of concurrently used CPU
cores

Specify the jobs to be limited by the
following items in the job ACL:

ru-use-core
rg-use-core
ru-interact-use-core
rg-interact-use-core

vnode: Targets only a virtual
node allocated job.
all: Targets all jobs. (*3)

vnode

StartTimeGuarantee Setting for guarantee of planned
execution start times

on: planned execution start
times are guaranteed.
off: planned execution start
times may change due to
rescheduling.

off

HoldAcceptDate How to interpret the submission time in
job scheduling when a job is released
from hold status.

release: Schedule the job based
on when it was released.

accept: Schedule the job based
on the time it was submitted.

release

JobSchedulingTargetLimit Setting of the maximum number of jobs
to schedule

However, regardless of this setting, all
interactive jobs have to be scheduled. In
step and bulk jobs, the number of sub
jobs is counted as the number of jobs.

0: Do not limit

1 to 2147483647: Maximum
number of jobs to schedule

10000

JobSchedulingTargetMode Method for limiting the jobs to schedule aprio: Sort the jobs in a
resource unit by priority and by
submission time. Select the
target jobs in ascending order.

jobselectpolicy: Sort jobs by
using the JobSelectPolicy
specified for each resource
group/resource unit. (*4)

jobselectpolicy

(*1) The scheduling period is calculated with the following formula. Jobs are not scheduled at or after the time at "current time + scheduling
period."

Scheduling period = maximum elapsed time limit value of submitted job x multiplicative factor

If the calculated scheduling period is shorter than the minimum scheduling period, the scheduling period is the minimum scheduling period.
If the calculated scheduling period is longer than the value specified by the SchedulePeriod item, the scheduling period is the value of the
SchedulePeriod item. If you do not want the scheduling period to change dynamically, set the minimum scheduling period to a greater value
than the value of the SchedulePeriod item.
If the minimum scheduling period is omitted as shown below, the applied minimum scheduling period is 24:00:00.

DynamicSchedulePeriod=multiplicative factor

If the multiplicative factor is omitted as shown below, the applied multiplicative factor is 2.

DynamicSchedulePeriod=,minimum scheduling period

(*2) The default value of 236 assumes the following:

- 69 -

- This value assumes that the requested number of nodes for the job is 165888 and the elapsed time limit for the job is 24 hours. Under
these circumstances, the fair share value that is reduced at the job start time recovers in a period of one week at the recovery factor of
100.

(165888 x 24 hours x 3600 seconds) / (7 days x 24 hours x 3600 seconds) / recovery factor of 100 =

236

You can define the recovery factor for each user and group by using the define fshare-recovery setting item of the job ACL function (see
"3.4.4.2 Defined items of the job ACL function").

(*3) The number of CPU cores that can be used concurrently by a node allocated job is the number of mounted CPU cores in a single node
multiplied by the requested number of nodes.

(*4) The following JobSelectPolicy setting items (see "3.4.1.3 Job selection policy settings") are not used to determine the target jobs:

usr_in_grp_prio, job_prio, group_fairshare, user_fairshare, usr_in_grp_fairshare

3.4.1.3 Job selection policy settings
You can set the job selection policy for a cluster by using the JobSelectPolicy subsection in the Cluster section.

Table 3.5 Setting items of a job selection policy (JobSelectPolicy subsection)

Item name Definition contents Specifiable value Default value

name Job selection policy name Character string with 1 to 15
characters, consisting of single-
byte alphanumeric characters,
hyphen, and underscore

The subsection is
used as the default
setting for the job
selection policy.

fcfs Job submission time order[,asc|,desc]|off

order: (1 to 256)
Evaluated in the order of order
asc: Ascending order
desc: Descending order
off: Not evaluated

asc

node Number of required nodes [FX] asc

group_prio Group priority desc

user_prio User priority desc

usr_in_grp_prio (*1) Priority of the users in a group desc

job_prio (*2) Job priority desc

job_aprio Job priority within a resource unit desc

rscgrp_prio Resource group priority desc

elapse_limit Elapsed time limit value asc

node_times_elapse Node time product [FX] asc

job_epoint Job evaluation point desc

group_fairshare Fair share value for groups desc

usr_in_grp_fairshare (*1) Fair share value for the users in a group desc

user_fairshare Fair share value for users desc

at Execution start time specification order[,true|,false]|off

order: (1 to 256)
Evaluated in the order of order
true: has a preference for interact
jobs(default)
false: has a preference for non-
interact jobs
off: Not evaluated

true

interact Interactive job specification true

(*1)
Be sure to set group_prio as the policy to be evaluated before the evaluation order set in usr_in_grp_prio. For example, if the evaluation order
of usr_in_grp_prio is 5, set the evaluation order of group_prio to 4.

- 70 -

Likewise for usr_in_grp_fairshare, set group_prio as the policy to be evaluated before the evaluation order set in usr_in_grp_fairshare.
When setting usr_in_grp_prio and usr_in_grp_faishare, be sure to evaluate usr_in_grp_prio and usr_in_grp_faishare consecutively, and be
sure to set group_prio as the policy to be evaluated before the previous one. For example, set the evaluation order of usr_in_grp_prio and
usr_in_grp_faishare to 5 and 6, and set the evaluation order of group_prio to 4.
For all groups that run the job, set a different value for the group priority within the resource unit (define pri-g) of the job ACL function.

(*2)
Be sure to set user_prio as the policy to be evaluated before the evaluation order set in job_prio. For example, if the evaluation order of
job_prio is 5, set the evaluation order of user_prio to 4.
For all users that run the job, set a different value for the user priority within the resource unit (define pri) of the job ACL function.

 Information

In the job selection policy, fcfs is not defined, and when the job execution order is not determined in the defined items, the jobs are executed
in the order of submission.

As shown below, write a job evaluation definition as the subsection JobEvaluation for determining a job evaluation point (job_epoint).

Cluster {

 ...

 JobEvaluation {

 [name = job evaluation definition name]

 waittime = Weight[,Value1@Point1:Value2@Point2:...:ValueN@PointN]

 ...

 }

 ...

}

The following table describes details of the coding.

Table 3.6 Format of job evaluation definition coding

Item Description

JobEvaluation { ... } This indicates one job evaluation definition.
You can write up to 32 job evaluation definitions in the papjm.conf file.

name= job evaluation definition
name

This is the name assigned to a job evaluation definition.
The job evaluation definition name must have a length ranging from 1 to 127 characters. The
name must also be unique within the cluster.
Only one job evaluation definition without the setting of a job evaluation definition name
can be set in the papjm.conf file. This definition is applied as a common definition within
the cluster.
The papjm.conf file defines the job evaluation definitions having names. A job evaluation
definition can be used when its name is specified in the pmpjm.conf file, which is configured
for each resource unit.

waittime This indicates that the point is based on the time (in seconds) from job acceptance to the start
of job scheduling or rescheduling.

Weight You can specify a value from -2147483648 to 2147483647. Normally, specify 1.

Value1@Point1:Value2@Point2:
...:ValueN@PointN

This defines a point based on the job execution wait time (point definition).
Write the point definition in the "value@point" format. When writing multiple point
definitions, separate them with a colon (:). You can specify up to 64 point definitions.
The point is determined as follows:

Minimum value of item <= Value <= Value1 ... Point1

Value1 < Value <= Value2 ... Point2

...

ValueN-1 < Value <= ValueN ... PointN

You can specify a value from 1 to 2147483647 as the job execution wait time.
You can specify a value from 1 to 1024 as a point.

- 71 -

Item Description

When writing multiple point definitions, enumerate them in order such that "value n-1 <
value n" holds true.
The multiple point definitions must each be a unique value.
The "*" (asterisk) specified as a value means a value greater than value n-1.
[Example] 10@1:20@2:*@3
If the value is greater than 20, the point is 3.

The job evaluation point is the sum of individual points multiplied by Weight.
In the process of calculating the job evaluation point, the calculated value may be smaller than the lower limit value,
-9223372036854775807, or larger than the upper limit value, 9223372036854775807. If so, the job evaluation point is set to the lower limit
value or upper limit value, respectively.

The following example shows job evaluation definition coding in the papjm.conf file.

cat /etc/opt/FJSVtcs/papjm.conf

Cluster {

 LogLevel = 1

 ...

 JobSelectPolicy {

 job_epoint = 1,desc

 fcfs = 255,asc

 }

 JobEvaluation {

 waittime = 1

 }

 JobEvaluation {

 name = jobeval1

 waittime = 1,1800@1:*@2

 }

}

The job evaluation definition with the defined name (jobeval1 in the above example) can be used in the pmpjm.conf file used by the job
operation administrator to configure a resource unit. For examples of coding in the pmpjm.conf file, see "3.5.1.4 Job selection policy
settings."

3.4.1.4 Settings for the fair share function
To control job execution priorities with fair share values within a single resource unit, configure the papjm.conf file as follows.

1. Configure the fair share function.

Set the Fairshare item in the papjm.conf file to on so that the fair share value is subtracted when job execution starts.

2. Configure the job section policy.

To use fair share values as the job selection policy, add policies as follows to the job selection policy JobSelectPolicy in the
papjm.conf file.

- To include user fair share values in priority control, add user_fairshare.

- To include group fair share values in priority control, add group_fairshare.

- To include the fair share values of users in a group in priority control, add usr_in_grp_fairshare.

In addition to the above settings, change the setting of the fair share value, initial fair share value, fair share recovery value, or recovery factor
as required. For details on the setting method, see "4.2.5 Monitoring and changing a fair share value and initial fair share value ."

3.4.1.5 Reflecting and referencing the papjm.conf file
After setting the papjm.conf file, you need to execute the papjmadm command on the system management node so that the system reflects
the setting contents.

- 72 -

[System management node]

papjmadm -c clstname --set

The above operation incorporates settings immediately to reflect them in operation. Neither a node restart nor a complete system restart is
required. To display the current settings, use the papjmadm command with the --show option.

[System management node]

papjmadm -c clusterA --show

Cluster {

 ClusterName = clusterA

 LogLevel = 1

 JstiOutData = yes

 KeepJobData = 10

 SaveScript = off

 TotalCoresUpper = all

 JstiRejectData = no

 RunJobAlterElapse = off

 PjdelNoHistory = no

 PjdelNoStats = no

 ResourceUnit {

 LogLevel = 1

 Backfill = yes

 DecidedGap = 00:01:00

 Grace = 00:00:10

 CreateRscMap = 01:00:00, 00:10:00

 CreateRscMap = 24:00:00, 00:30:00

 CreateRscMap = 240:00:00, 01:00:00

 CreateRscMap = *, 24:00:00

 SchedulePeriod = 240:00:00

 RestartNormal = yes

 RestartStep = yes

 RestartBulk = no

 MailSend = yes

 Fairshare = off

 FshareRecoveryValue = 236

 UseCoreLimit = vnode

 BackfillTarget = rscgrp

 StartTimeGuarantee = on

 HoldAcceptDate = release

 AdaptiveElapsedTimeJobTerminateGrace = 00:00:10

 DynamicSchedulePeriod = 2,24:00:00

 JobSchedulingTargetLimit = 10000

 JobSchedulingTargetMode = jobselectpolicy

 }

 JobSelectPolicy {

 fcfs = 256,asc

 job_aprio = 2,desc

 }

 JobSelectPolicy {

 name = policy1

 fcfs = 256,asc

 group_fairshare = 3,desc

 }

 JobSelectPolicy {

 name = policy2

 fcfs = 256,asc

 job_aprio = 2,desc

 }

 JobSelectPolicy {

 name = policy3

 fcfs = 256,asc

 group_prio = 4,desc

 group_fairshare = 3,desc

- 73 -

 usr_in_grp_fairshare = 5,desc

 }

 JobSelectPolicy {

 name = policy4

 fcfs = 255,asc

 job_epoint = 1,desc

 }

 JobEvaluation {

 name = jobeval1

 waittime = 1,1800@1:*@2

 }

}

3.4.2 Settings for job statistical information in a cluster (papjmstats.conf
file)

The cluster administrator can make settings related to the following job statistical information in the papjmstats.conf file (system
management node: /etc/opt/FJSVtcs/papjmstats.conf):

- Administrator-defined items in job statistical information

- Definitions of output items in job statistical information

- Path to a job statistical information file

The following example shows settings in the papjmstats.conf file.

Cluster {

 Item { <- Defines ITEM_A, administrator-defined item in job statistical information

 ItemName = ITEM_A

 RecordNameList = JI,JN

 }

 Item { <- Defines ITEM_B, administrator-defined item in job statistical information

 ItemName = ITEM_B

 RecordNameList = JI

 }

 Record { <- Defines what is output to job statistical information file

 PATH = /xxxx/xxxxx/jobinfo_acct

 JI {

 ITEM = jid,jnam,elpl,nnuma

 ITEM = elp,mmszu

 }

 }

 File { <- Defines what is output to .stats file

 JI {

 ITEM = jid,jnam,elpl,nnuma

 }

 }

 Command { <- Defines what is output for display by pjstat command

 JI {

 ITEM = jid,jnam,elpl,nnuma

 }

 }

}

Set job statistical information in subsections in the Cluster section. This section describes the setting items in each subsection.

3.4.2.1 Settings of administrator-defined items in job statistical information
The Item subsection defines administrator-defined items in job statistical information.

Cluster {

 Item {

- 74 -

 ItemName=Value

 }

}

Table 3.7 Job statistical information settings

Item name Description Specifiable value Default value

ItemName Administrator-defined item
name (identifier)

This item is used to specify the
item name for the set value of an
administrator-defined item by
the job manager exit function and
for a set output item in job
statistical information.

Character string with up to 79
characters

The available characters are
single-byte alphanumeric
characters and a hyphen or
underscore. The string cannot
begin with a hyphen.

Names beginning with "CR-" or
"pjm-" are reserved words, so
they cannot be used as
administrator-defined item
names.

The same name as a job statistical
information item name defined
by the Job Operation Software
can be used for ItemName. In this
case, when output items in job
statistical information are
defined (see "3.4.2.2 Definitions
of output items in job statistical
information"), "pjm-" must be
prefixed to the item name to
distinguish the job statistical
information item defined by the
Job Operation Software from the
administrator-defined item.

For the names defined by the Job
Operation Software, see "Item
names" in the man page for
pjstatsinfo(7).

Not omissible

ItemNameDisp Display name for job statistical
information that is output to
the .stats file or output when the -
s/-S option of the pjstat command
is specified

Character string with up to 79
characters

The available characters are
single-byte alphanumeric
characters and a hyphen or
underscore.

Character string specified for
ItemName

RecordNameList Record type of a defined item

A record is the unit of output of
items. Records can also be
defined by the administrator as
described in "3.4.2.2 Definitions
of output items in job statistical
information." This setting
specifies which record includes
the item by default.

JI: Job statistical information
record

JN: Node statistical information
record

You can specify multiple values
by delimiting them with a
comma.
For node statistical information,
information by virtual node is
output in cases where jobs have
virtual nodes allocated.

JI, JN

- 75 -

Item name Description Specifiable value Default value

DataType Type of item value Select a value from "Table 3.8
Specifiable values for DataType"
according to the type.

PJMX_DATATYPE_UINT64

DispFormat Display format for the item value

This setting specifies the format
for values that are output to
the .stats file or output when the -
s/-S option in the pjstat command
is specified.

Select a value from "Table 3.9
Specifiable values for
DispFormat."

Default format according to
DataType

DispFormatOption Character string appended to the
displayed value

Specify this item to append a unit
such as B (bytes) or W (watts).

However, the setting is valid only
when DispFormat is one of the
following:
dec, prefix_kilo, prefix_kibi,
prefix_mega, prefix_mebi,
prefix_giga, prefix_gibi,
prefix_tera, prefix_tebi

Character string with up to 15
characters

No unit is appended.

 Note

- Multiple definitions of the same item cause an error when the settings are reflected.

- The administrator needs to set values for the administrator-defined items by using the job manager exit function or job resource manager
exit function. For details, see "Chapter 2 Creating and Incorporating Hooks" in "Job Operation Software Administrator's Guide for Job
Operation Manager Hook.".

Table 3.8 Specifiable values for DataType

Value Type Remarks

PJMX_DATATYPE_CHAR char Displays the specified character. DispFormat will be invalid.

PJMX_DATATYPE_INT8 int8 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_UINT8 uint8 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_INT16 int16 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_UINT16 uint16 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_INT32 int32 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_UINT32 uint32 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_INT64 int64 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_UINT64 uint64 Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

- 76 -

Value Type Remarks

PJMX_DATATYPE_FLOAT float Displays a value up to 6 decimal places if DispFormat is not specified
when the pmdumpjobinfo command is used.

PJMX_DATATYPE_DOUBLE double Displays a value up to 6 decimal places if DispFormat is not specified
when the pmdumpjobinfo command is used.

PJMX_DATATYPE_TIMESPEC struct timespec Displays a value in nanoseconds if DispFormat is not specified when
the pmdumpjobinfo command is used.

PJMX_DATATYPE_TIME time_t Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_SIZE size_t Displays a decimal number if DispFormat is not specified when the
pmdumpjobinfo command is used.

PJMX_DATATYPE_STRING char * Displays the specified character string. DispFormat will be invalid.

Table 3.9 Specifiable values for DispFormat

Value Display format Remarks

dec Decimal Valid only when the DataType value is one of the following:

PJMX_DATATYPE_INT8
PJMX_DATATYPE_UINT8
PJMX_DATATYPE_INT16
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_INT32
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_INT64
PJMX_DATATYPE_UINT64
PJMX_DATATYPE_FLOAT
PJMX_DATATYPE_DOUBLE
PJMX_DATATYPE_TIME
PJMX_DATATYPE_SIZE

bin Binary (without padding of
high-order digits)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

Do not pad high-order digits with zero.

bin_padding Binary (with padding of high-
order digits)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

High-order digits are padded with 0 according to the bit length of the value
when displayed.

Example: To display the value of 255

8bits: 11111111

16bits: 0000000011111111

32bits: 00000000000000000000000011111111

64bits:

00

11111111

- 77 -

Value Display format Remarks

oct Octal (without padding of high-
order digits)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

Do not pad high-order digits with zero.

oct_padding Octal (with padding of high-
order digits)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

High-order digits are padded with 0 according to the bit length of the value
when displayed.

Example: To display the value of 255

8bits: 0377

16bits: 0000377

32bits: 000000000377

64bits: 00000000000000377

hex Hexadecimal (without padding
of high-order digits)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

Do not pad high-order digits with zero.

hex_padding Hexadecimal (with padding of
high-order digits)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

High-order digits are padded with 0 according to the bit length of the value
when displayed.

Example: To display the value of 255

8bits: 0xFF

16bits: 0x00FF

32bits: 0x000000FF

64bits: 0x00000000000000FF

prefix_kilo m K (n) m: Displays a value in units of kilo (K)
n: Value

The displayed value is rounded up to the nearest tenth.

Example: To display the value of 1024

1.1 K (1024)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

- 78 -

Value Display format Remarks

prefix_kibi m Ki (n) m: Displays a value in units of kibi (Ki)
n: Value

The displayed value is rounded up to the nearest tenth.

Example: To display the value of 1024

1.0 Ki (1024)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

prefix_mega m M (n) m: Displays a value in units of mega (M)
n: Value

The displayed value is rounded up to the nearest tenth.

Example: To display the value of 1048576

1.1 M (1048576)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

prefix_mebi m Mi (n) m: Displays a value in units of mebi (Mi)
n: Value

The displayed value is rounded up to the nearest tenth.

Example: To display the value of 1048576

1.0 Mi (1048576)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

prefix_giga m G (n) m: Displays a value in units of giga (G)
n: Value

The displayed value is rounded up to the nearest tenth.

Example: To display the value of 1073741824

1.1 G (1073741824)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

prefix_gibi m Gi (n) m: Displays a value in units of gibi (Gi)
n: Value

The displayed value is rounded up to the nearest tenth.

- 79 -

Value Display format Remarks

Example: To display the value of 1073741824

1.0 Gi (1073741824)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

prefix_tera m T (n) m: Displays a value in units of tera (T)
n: Value

The displayed value is rounded up to the nearest tenth.

Example: To display the value of 1099511627776

1.1 T (1099511627776)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

prefix_tebi m Ti (n) m: Displays a value in units of tebi (Ti)
n: Value

The displayed value is rounded up to the nearest tenth.

Example: To display the value of 1099511627776

1.0 Ti (1099511627776)

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

date YYYY/MM/DD hh:mm:ss Displays the date and time.

YYYY:Year, MM:Month, DD:Day, hh:Hour, mm:Minute, ss:Second

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_TIMESPEC
PJMX_DATATYPE_TIME

time [DD] hh:mm:ss Displays the time. DD is displayed for values greater than 24 hours.

DD:Day, hh:Hour, mm:Minute, ss:Second

Values less than one second are rounded up.

Example: Value of tv_sec=86400, tv_nsec=1

01 00:00:01

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_TIMESPEC
PJMX_DATATYPE_TIME

time_nsec [DD] hh:mm:ss.nnnnnnnnn Displays the time. DD is displayed for values greater than 24 hours.

DD:Day, hh:Hour, mm:Minute, ss:Second, nnnnnnnnn:Nanosecond

- 80 -

Value Display format Remarks

Example: Value (struct timespec val) of val.tv_sec=86400 (seconds),
val.tv_nsec=1 (nanosecond)

01 00:00:00.000000001

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_TIMESPEC

sec n sec Displays the time in seconds.

Example: Value of 2

2 sec

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

msec n msec Displays the time in milliseconds.

Example: Value of 100

100 msec

Valid only when the DataType value is one of the following:

PJMX_DATATYPE_UINT8
PJMX_DATATYPE_UINT16
PJMX_DATATYPE_UINT32
PJMX_DATATYPE_UINT64

3.4.2.2 Definitions of output items in job statistical information
The cluster administrator can define which items are output according to the output destination of job statistical information.

The following output destinations are available for job statistical information:

- Job statistical information file (file displayed by the pmdumpjobinfo command)

- .stats file (output file when the -s/-S option in the pjsub command is specified)

- Display when the -s/-S option in the pjstat command is specified

The Record, File, and Command subsections define the output items for each of the output destinations.

Cluster {

 Record {

 RecordType {

 DefinitionName=ItemName,ItemName,...

 }

 }

 File {

 RecordType {

 DefinitionName=ItemName,ItemName,...

 }

 }

 Command {

 RecordType {

 DefinitionName=ItemName,ItemName,...

 }

 }

}

- 81 -

The Record subsection defines items for output to the job statistical information file. The File subsection defines items for output to the .stats
file that is output when the -s or -S option in the pjsub command is specified. The Command subsection defines items for display when the
-s/-S option in the pjstat command is specified.

What is defined in the "RecordType" subsection is called a record. Data is output in units of records.
The two types of records are job statistical information records and node statistical information records. Their respective character strings
for "RecordType" are as follows.

Table 3.10 Record types

Record type Description

JI Definition of a job statistical information record

One record is output per job.

JN Definition of a node statistical information record

As many records as the number of nodes used by one job are output. In cases where jobs have virtual nodes
allocated, as many records as the number of virtual nodes are output.

The "RecordType" subsection lists items that are output or are not output to one record. The respective definition names are as follows.

Table 3.11 Definitions of output items for a record

Definition name Value

ITEM Item name for job statistical information that is output

You can specify the item name of an item defined by the Job Operation Software (see pjstatsinfo(7)) or
administrator-defined item (see "ItemName" in "3.4.2.1 Settings of administrator-defined items in job
statistical information"). However, items defined by the Job Operation Software may or may not be
output, depending on the output destination (see pjstatsinfo(7)). If the specified item cannot be output,
it is ignored.

To specify multiple items, delimit them with a comma. Their order of output is the order that they are
specified in ITEM.

NOT_SAVE_ITEM Item name for job statistical information that is not output

Out of the items defined by the Job Operation Software and the administrator-defined items, only the
item specified here is not output. To specify multiple items, delimit them with a comma.

 Note

An administrator-defined item may have the same name as an item name for job statistical information defined by the Job Operation
Software (see "3.4.2.1 Settings of administrator-defined items in job statistical information"). To use both items, prefix "pjm-" to the item
name defined by the Job Operation Software to distinguish between them.

[Setting example]

Cluster {

 Record { <- Defines item for output to job statistical information file

 JI { <- Defines job statistical information record

 ITEM=jid,jnam,elpl,nnuma,.... <- Defines item that is output

 }

 JN { <- Defines node statistical information record

 NOT_SAVE_ITEM=vnid,... <- Defines item that is not output

 }

 }

 File { <- Defines item for output to .stats file

 JI {

 ITEM=jid,jnam,elpl,nnuma,...

 }

 JN {

 ITEM=nid,....

- 82 -

 }

 }

 Command { <- Defines item for output by -s or -S option of pjstat command

 JI {

 ITEM=jid,jnam,elpl,nnuma,...

 }

 JN {

 ITEM=nid,....

 }

 }

}

 Note

- You can write either ITEM or NOT_SAVE_ITEM but not both in a single record definition.

- If there are many items to write, you can divide and write ITEM or NOT_SAVE_ITEM across several lines within the definition of one
record.

Cluster {

 Record {

 JI {

 ITEM = jid,jnam,elpl,nnuma

 ITEM = elp,mmszu

 }

 }

 ...

}

- If the same item of job statistical information is specified multiple times in the definition of one record, an error occurs when the settings
are reflected.

- For details on custom resource item names, see "3.4.2.4 Custom resource item name."

- The following job statistical information that output to the .stats file or output by the pjstat command are generated from multiple items.
To output these job statistics correctly, define the records so that all required items are output.

Table 3.12 Items required to output job statistical information

Job statistical information Required items

JOB ID jid,stepno,bulkno

NODE NUM (REQUIRE) nnumr,nnumr_x,nnumr_y,nnumr_z,alloctype,nalimit

NODE NUM (ALLOC) nnuma,nnuma_x,nnuma_y,nnuma_z,alloctype,nalimit

JOB START DATE sdt,backfill,specifiedsdt
(*) For the .stats file, only sdt is required.

ELAPSE TIME (LIMIT) elpl,maxelpl,minelpl

SUB JOB NUM snum,esnum
(*) For the .stats file, only snum is required.

AVG POWER CONSUMPTION OF CORES/CMG(num)
(IDEAL)

cmgno,avgpcocc

MAX POWER CONSUMPTION OF CORES/CMG(num)
(IDEAL)

cmgno,maxpcocc

MIN POWER CONSUMPTION OF CORES/CMG(num)
(IDEAL)

cmgno,minpcocc

ENERGY CONSUMPTION OF CORES/CMG(num)
(IDEAL)

cmgno,ecocc

- 83 -

Job statistical information Required items

AVG POWER CONSUMPTION OF L2CACHE/
CMG(num) (IDEAL)

cmgno,avgpcolc

MAX POWER CONSUMPTION OF L2CACHE/
CMG(num) (IDEAL)

cmgno,maxpcolc

MIN POWER CONSUMPTION OF L2CACHE/
CMG(num) (IDEAL)

cmgno,minpcolc

ENERGY CONSUMPTION OF L2CACHE/CMG(num)
(IDEAL)

cmgno,ecolc

AVG POWER CONSUMPTION OF MEM/CMG(num)
(IDEAL)

cmgno,avgpcomc

MAX POWER CONSUMPTION OF MEM/CMG(num)
(IDEAL)

cmgno,maxpcomc

MIN POWER CONSUMPTION OF MEM/CMG(num)
(IDEAL)

cmgno,minpcomc

ENERGY CONSUMPTION OF MEM/CMG(num)
(IDEAL)

cmgno,ecomc

AVG POWER CONSUMPTION OF CPU/PKG(num) pkgno,avgpcocpkg

MAX POWER CONSUMPTION OF CPC/PKG(num) pkgno,maxpcocpkg

MIN POWER CONSUMPTION OF CPU/PKG(num) pkgno,minpcocpkg

ENERGY CONSUMPTION OF CPU/PKG(num) pkgno,ecocpkg

AVG POWER CONSUMPTION OF MEM/PKG(num) pkgno,avgpcompkg

MAX POWER CONSUMPTION OF MEM/PKG(num) pkgno,maxpcompkg

MIN POWER CONSUMPTION OF MEM/PKG(num) pkgno,minpcompkg

ENERGY CONSUMPTION OF MEM/PKG(num) pkgno,ecompkg

AVG POWER CONSUMPTION OF PP0/PKG(num) pkgno,avgpcop0pkg

MAX POWER CONSUMPTION OF PP0/PKG(num) pkgno,maxpcop0pkg

MIN POWER CONSUMPTION OF PP0/PKG(num) pkgno,minpcop0pkg

ENERGY CONSUMPTION OF PP0/PKG(num) pkgno,ecop0pkg

TOFU COORDINATE tofu_x,tofu_y,tofu_z

NODE COORDINATE node_x,node_y,node_z

3.4.2.3 Path to a job statistical information file
You can specify the path to a job statistical information file in the Record subsection. In addition, different records can be output to multiple
job statistical information files when multiple Record subsections are defined.

The following example outputs a job ID and job name to the job statistical information file jobinfo_acct_summary. The limit value on the
elapsed execution time, number of nodes used, elapsed execution time, and memory usage by the job statistical information file
jobinfo_acct_detail are also output.

Cluster {

 Record {

 PATH=/xxxx/xxxxx/jobinfo_acct_summary

 JI {

 ITEM = jid,jnam

 }

 }

 Record {

- 84 -

 PATH=/xxxx/xxxxx/jobinfo_acct_detail

 JI {

 ITEM = elpl,nnuma,elp,mmszu

 }

 }

}

Table 3.13 Specification of the path to a job statistical information file

Item name Description

PATH Path to a job statistical information file

If one already exists, this is added to it. In cases of output to multiple files, the same file name cannot be
specified.
If the path to a job statistical information file is changed to a path other than the default path (/var/opt/
FJSVtcs/shared_disk/pjm/jsti/jobinfo) or if a new path is added for the file, the file is excluded from log
rotation files. To include a job statistical information file in log rotation files, see "3.6 Setting Log
Rotation."

3.4.2.4 Custom resource item name
Output job statistical information can also include information on a custom resource. When you define a custom resource, it is automatically
given an item name as follows and output in job statistical information by default. However, if the output job statistical information is
specified by the papjmstats.conf file, it is output accordingly.

Table 3.14 Custom resource item names for job statistical information

Custom resource information Item name

Requested amount CR-STR-CustomRscName-req (String type)

CR-NUM-CustomRscName-req (Numeric type)

Quota CR-STR-CustomRscName-alloc (String type)

CR-NUM-CustomRscName-alloc (Numeric type)

Usage CR-STR-CustomRscName-use (String type)

CR-NUM-CustomRscName-use (Numeric type)

3.4.2.5 Reflecting and viewing the papjmstats.conf file
After configuring the papjmstats.conf file, you will need to execute the papjmstatsadm command from the system management node so that
the system reflects the settings in the file.

[System management node]

papjmstatsadm -c clstname --set

Immediately after the above operation, the settings are reflected in operation. Restarting a node or the entire system is not necessary.

 Note

If you modify the Command or Item subsection that affect what pjstat commands display, jobs previously in the EXIT/CANCEL/REJECT
state are deleted from the list of jobs output by the -H option of the pjstat command. The information output by the pmdumpjobinfo
command is not affected.

To display the current settings, use the --show option of the papjmstatsadm command.

[System management node]

papjmstatsadm -c clstname --show

To return settings to their initial state, configure the papjmstats.conf file as follows, and apply the file.
This sets the PATH item to the initial value. It is set to the initial value because no record definition (JI/JN subsection) is written.

- 85 -

Cluster {

 Record {

 PATH=/var/opt/FJSVtcs/shared_disk/pjm/jsti/jobinfo

 }

}

3.4.2.6 Example of job statistical information settings
The following example shows settings in the papjmstats.conf file.

Cluster {

 Item {

 ItemName=MyItem

 ItemNameDisp=MY_ITEM

 RecordNameList=JI,JN

 }

 Record {

 PATH = /xxxx/xxxxx/jobinfo_acct

 JI {

 ITEM = jid,jnam,elpl,nnuma

 ITEM = elp,mmszu,MyItem

 }

 }

 File {

 JI {

 ITEM = jid,jnam,elpl,nnuma,MyItem

 }

 }

 Command {

 JI {

 ITEM = jid,jnam,elpl,nnuma

 }

 }

}

The output of job statistical information with the above settings looks like the following.

Display by the pmdumpjobinfo command

The output job statistical information records (seven items) are defined in the Record subsection.

pmdumpjobinfo /xxxx/xxxxx/jobinfo_acct

1,job1,3600,20,120,10,MyVal1

2,job2,7200,10,200,20,MyVal2l

Output to the .stats file

The output job statistical information record (five items) is defined in the File subsection.

Job Statistical Information

 JOB ID : 1

 JOB NAME : job1

 ELAPSE TIME (LIMIT) : 00:01:00 (3600)

 NODE NUM (ALLOC) : 20

 MY_ITEM : MyVal1

Display by the -s option of the pjstat command

The output job statistical information records (four items) are defined in the Command subsection.

$ pjstat -s

- 86 -

JOB ID : 1

JOB NAME : job1

ELAPSE TIME (USE) : 00:01:00 (3600)

NODE NUM (ALLOC) : 20

JOB ID : 2

JOB NAME : job2

ELAPSE TIME (USE) : 00:03:00 (7200)

NODE NUM (ALLOC) : 10

3.4.3 Settings for job resource management function in a cluster (parsc.conf
file)

The cluster administrator can make the following settings in the parsc.conf file (system management node: /etc/opt/FJSVtcs/parsc.conf) by
cluster:

- Setting of a percentage of memory for jobs

- Log output level setting for the job resource management function

- Setting for periodically collecting interval of the job statistical information

- Setting to forcibly terminate jobs when the allocated memory exceeds the limit or when OOM-Killer is run

- Setting of whether to periodically collect job statistical information

The following example shows settings of the parsc.conf file.

[System management node]

cat /etc/opt/FJSVtcs/parsc.conf

Cluster {

 ClusterName = clusterA <- (1)

 LogLevel = 1 <- (2)

 JobMem = 90 <- (3)

 RscWatchInterval = 10 <- (4)

 MemFailJobDel = on <- (5)

}

(1) To set the cluster name

(2) To set the log level of the job resource management function to 1

(3) To set the percentage of memory for jobs to 90%

(4) To set the periodically collecting interval of job statistical information to 10 minutes

(5) Setting to forcibly terminate jobs when the allocated memory exceeds the limit or when OOM-Killer is run

For details on the settings, see the man page for the parsc.conf file.

 Note

You cannot change settings related to job operations simply by creating or editing the parsc.conf file. As described below, the parscadm
command reflects the contents of the parsc.conf file in job operations.

 Information

There is no parsc.conf file when the Job Operation Software is installed. If you want to change the default settings, create a new file or copy
and edit the sample file (/etc/opt/FJSVtcs/sample/parsc.conf), and place the file in the above path.

- 87 -

3.4.3.1 Settings for job resource management function in a cluster
The following table lists the items set in the Cluster section.

Table 3.15 Setting items of the job resource management function (Cluster section)

Item name Definition contents Specifiable value Default value

ClusterName Cluster name Character string with 1 to 63 characters,
consisting of single-byte alphanumeric
characters, hyphen, and underscore

Not omissible

LogLevel Log output level of the job resource
management function (Normally, 1 is used
for operation.)
1: Normal log level
2: Detailed level for debugging
3: More detailed level for debugging

1-3 1

JobMem Setting of the percentage of memory for jobs
that is available to compute nodes (%)

1-100 (Can be specified to the first
decimal place.)
The OS may hang up if the JobMem value
is greater than 90.

90

RscWatchInterval The periodically collecting interval (unit:
minutes) of the job statistical information

The time of collection is on a per-job basis,
and not all jobs are collected at the same
time.

0-1440

(If it is 0, do not collect.)

10

MemFailJobDel Setting to forcibly terminate jobs when the
memory used by jobs (include prologue and
epilogue process) exceeds the limit value or
when OOM-Killer is run

on: Forcibly terminate
off: Continue execution

off

JobRscUsage Setting of whether to periodically collect
job statistical information

on: Collect
off: Do not collect

off

 Note

- If the value of the JobMem item is too large, the setting may fail. In this case, jobs cannot be executed until a value could be set normally,
so job operations are affected. Exercise caution when changing this value. Normally, the JobMem item does not need to be changed.

- It is not usually necessary to change the value of the JobMem and RscWatchInterval. Consult with a Fujitsu systems engineer (SE) or
Fujitsu Support Desk to tune up job employment according to the use situation of a system.

- If RscWatchInterval, the periodically collecting interval of the job statistical information is shortened, the load accompanying
collection may increase and it may affect job execution.

- If the MemFailJobDel item is off, jobs continue even after reaching the upper limit on memory usage. However, the OS forcibly
terminates processes in the jobs.

- If the MemFailJobDel item is on and OOM-Killer starts operating due to OS memory depletion caused by a job, the OS forcibly
terminates all the jobs that have the same user ID as the depletion-causing job.
Jobs whose user ID is 0 (root) are not forcibly terminated even when the MemFailJobDel item is on. For example, suppose that settings
are made so that prologue and epilogue processing is executed with root privileges. Then, neither the prologue and epilogue processing
nor jobs are forcibly terminated even when memory usage exceeds the limit during the processing or when OOM-Killer starts operating.

- If the JobRscUsage item is on, the size of the file output to the compute cluster management node increases, so the file system must have
sufficient free space. For size guidelines, see "3.6 Setting Log Rotation."

- 88 -

- The Job Operation Software sets an upper limit on memory usage, but usage exceeding that limit by any job executed in KVM mode
in the job execution environment will not be detected. The behavior when excessive memory is used in a virtual machine depends on
the settings of the virtual machine image file used.

3.4.3.2 Reflecting and referencing the parsc.conf file
After setting the parsc.conf file, you need to execute the parscadm command on the system management node so that the system reflects
the setting contents.

 Note

When changing the setting of the JobMem or MemFailJobDel item, be sure to perform the following operations before reflection by the
parscadm command, so that no jobs are running in the target cluster of the settings:

- Stopping the job schedulers and executing the jobs by pmpjmiot command.

- Deleting a job by pjdel command or holding a job on hold by pjhold command.

[System management node]

parscadm --set

The above operation incorporates settings immediately to reflect them in operation. Neither a node restart nor a complete system restart is
required (except the changes of the JobMem).
If the JobMem item has changed, execute the parscadm command. Then, restart the compute cluster management nodes, and all compute
nodes in the target cluster of the settings. Each node then reflects the value of the JobMem item.

 Information

If some compute nodes fail to reflect the settings or if new compute nodes are added, you can apply the settings again to only these compute
nodes by specifying them in the -f option of the parscadm command. However, all the compute nodes in a cluster must have the same
settings, so do not use the -f option to set different values for individual compute nodes.
When changing the setting of the JobMem item with the -f option in the parscadm command, you will need to restart only the target compute
nodes.

To display the current settings, use the parscadm command with the --show option.

[System management node]

parscadm --show

Cluster {

 ClusterName = "clusterA"

 JobMem = "90"

 LogLevel = "1"

 RscWatchInterval = "10"

 MemFailJobDel = "on"

}

3.4.4 Job ACL function settings in a cluster
The cluster administrator and job operation administrator make job ACL function settings by using pmjacladm command.

 Information

- The configuration of the job ACL function is set on the system management node or the compute cluster manegement node. To reflect
the contents of the configuration, specify the configuration file or the contents directly to the pmjacladm command as its arguments.

- 89 -

- If you do not set the job ACL function, the initial values set when the job operation management function was installed are applied. For
information about the initial values of the job ACL feature, see "Appendix F Defined items of the job ACL function."

The application ranges of the job ACL function are clusters, resource units, and resource groups. You can set the function for each of the
following definition targets:

- User

- Group

- Entire range

In this section, a definition for each group means a definition of limits for the entire group. For example, if the limit value of a certain resource
is defined for a group, the value is the limit value for the resource used by the entire group. Therefore, even if the amount of resources used
by individual users is under the limit value for each user, the group as a whole may in some cases reach the limit value.

Similarly, a definition for an entire range means a definition of a limit value for all resource units or resource groups. Even if individual users
or groups do not reach the limit value, all of them as a whole may in some cases reach the limit value.

 Note

- Normally, the settings for resource units and resource groups are made by the job operation administrator who manages the units and
groups.
Therefore, when making settings for resource units and resource groups, the cluster administrator needs to confirm the settings
beforehand so that they do not conflict with the settings made by the job operation administrator.

- If the resource limit value is not set at the job submission time, the default value in the job ACL function definitions applies. Any users
who are not aware of the resource limit value when they submit jobs may not know that the default value is applied. Consequently, they
may end up consulting the administrator to determine the cause of operation due to the resource limit value being reached. Therefore,
we recommend paying attention to the selection of the default value as the resource limit value and disseminating the default value to
all users.

The following example shows job ACL function settings.

USER: CL { <- User definitions in a cluster

 user=<def> { <- Default user definitions

 define rscunit rscunit1

 define rscgroup rscgroup1

 limit ru-accept unlimited

 limit ru-run-job unlimited

 limit ru-use-node unlimited

 joblimit elapse 1:00:00 24:00:00 24:00:00

 joblimit node 1 2147483647 1

 execute pjsub enable

 execute pjstat enable

 execute pjdel enable

 execute pjhold disable

 execute pjacl enable

 permit pjsub allow own

 permit pjstat allow own

 permit pjdel allow own

 permit pjhold deny all

 permit pjacl allow own

 }

}

GROUP: CL { <- Group definitions in a cluster

 group=<def> { <- Default group unit definitions

 limit ru-accept unlimited

- 90 -

 limit ru-run-job unlimited

 limit ru-use-node unlimited

 define pri-g 128

 define fshare-init-g 100

 define fshare-recovery-g 100

 }

 group=group1 { <- Group unit definitions for the target group group1

 define pri-g 130

 define fshare-init-g 200

 define fshare-recovery-g 100

 }

}

ALL: CL { <- Cluster unit definition

 limit ru-accept unlimited

}

3.4.4.1 Format of job ACL function definitions
Job ACL function settings are written in a file on the system management node or compute cluster management node. Its path name is an
arbitrary name.

Use the following format for the coding in the configuration file according to the definition target, which is a user, a group, or the entire
range.

Definitions by user (USER definitions)

USER: application_range {

 definition_target {

 defined_item_name value

 }

}

Definitions by group (GROUP definitions)

GROUP: application_range {

 definition_target {

 defined_item_name value

 }

}

Definitions for the entire range (ALL definitions)

ALL: application_range {

 defined_item_name value

}

In the above format, the application range is a cluster, resource unit, or resource group, and it is coded as follows according to the range.

Table 3.16 Application range format

Format Description

CL The application range is a cluster.

CL, RU=runame The application range is the resource unit runame.

CL, RU=runame, RG=rgname The application range is the resource group rgname in the resource unit runame.

 Information

The coding of the application range does not include a cluster name. Instead, specify the target cluster name when reflecting job ACL
function settings with the pmjacladm command.

- 91 -

For a definition target name, write the user or group that is the definition target in the following format.

Table 3.17 Definition target format in the USER definitions

Format Description

user=<def> This indicates the default definition for all users.

user=<def>:gname This indicates the default definition for the user whose group is gname.

user=uname This indicates the definition for the user uname.

user=uname:gname This indicates the definition for the user uname whose group is gname.

Table 3.18 Definition target format in the GROUP definitions

Format Description

group=<def> This indicates the default definition for all groups.

group=gname This indicates the definition for the group gname.

The next section describes the defined items.

 See

For details on the definition formats of the job ACL function, see the man page for pmjacladm(8).

3.4.4.2 Defined items of the job ACL function
You can define the following as defined items of the job ACL function.

Table 3.19 Defined items of the job ACL function

Definition type Description

limit This item limits the numbers of submitted jobs, executed jobs, custom resources, etc.

joblimit This item defines the upper limit values, lower limit values, and default values for limits on resources (CPU
resources, memory resources, custom resources, etc.) that can be specified at job submission.

define This item defines various setting values used for job control.

execute This item defines whether job-related commands can be executed.

permit This item defines permission for operation with job-related commands.

select This item defines the types of custom resources that can be specified at job submission.

 Note

The permit and execute items define permissions for command execution and operation. The permissions apply to the user and group
privileges at the command execution time. Command execution may consequently encounter an error in cases like the following. Keeping
this in mind, set the items appropriately.

Suppose that the primary group group1 and secondary group group2 are set for the user userA. In the following example, permission for
execution and operation are set for the secondary group of this user.

user=<def> { # pjsub command execution is not permitted by default.

 execute pjsub disable

 permit pjsub deny all

}

user=userA:group2 { # Permission is granted to the user userA and group group2.

 execute pjsub enable

 permit pjsub allow own

}

- 92 -

With the above permission settings, an error occurs when the user userA submits a job as shown below.

$ id

uid=10001(userA) gid=20001(group1) groups=20001(group1),20002(group2)

$ pjsub job.sh

[ERR.] PJM 0070 pjsub No execute permission.

The primary group group1 executed the pjsub command with its group privileges, so pjsub command execution was denied.

Similarly, the error occurs even when the secondary group group2 is specified in the -g option of the pjsub command.

$ pjsub -g group2 job.sh

[ERR.] PJM 0070 pjsub No execute permission.

This does not mean that the secondary group group2 specified in the -g option was denied. Rather, pjsub command execution was denied
because the primary group group1 executed the pjsub command with its privileges.

To prevent the above error, grant pjsub command execution permission to the group group1 at the execution time.

user=userA:group1 { # Permission is granted to the user userA and group group1.

 execute pjsub enable

 permit pjsub allow own

}

 See

For details on the definition items of the job ACL function, see "Appendix F Defined items of the job ACL function" or the man page
pmjacladm(8).

3.4.4.3 Priority control of allocated nodes [PG]
Priority control of allocated nodes is a method of selecting nodes according to the priority set for the nodes. It is specified in job ACL
function.

A node priority is set up according to node ID. It means that 31 was set up as for the node that has not been set up.

A specification format is shown below.

define node-priority priority: nodeID[,nodeID,...]

Table 3.20 Setting items of priority control of allocated nodes

Item name Definition contents

Priority Specify the priority number (0 -63)

node ID Specify the node IDs. Delimit multiple node IDs with ",". You can specify a range for multiple node IDs. Specify
"-" to indicate a range.

511 characters can be described to a one sentence(include item name).

The following is equivalent to specifying the node ID as 0x41FF0020, 0x41FF0021, 0x41FF0022.

define node-priority 16 : 0x41FF0020-0x41FF0022

Selection order of compute node

A compute node is chosen in following order by definition.

- For a node allocated job

1. Exclude the compute nodes used by other jobs.

2. Sort the compute nodes excluded in step "1" by allocated node priority.

- 93 -

3. Sort the nodes sorted in step "2" by node ID.

4. Add a rank map in the sorted order.

- For a virtual node allocated jobs

1. An execution mode policy excepts the compute node which the job which is SIMPLEX is performing.

2. While Excepting by "1.", Assign [from] and Sort compute Node with Node Priority.

3. If Priority of "2." is the Same compute Node, Sort compute Node with Node Alternative Form.

4. By being Vacant in "3.", if Situation is the Same compute Node, Sort compute Node by Node ID.

5. In order of the sorted compute node, according to a virtual node arrangement policy, choose a compute node and arrange a virtual
node.

6. Give virtual node ID of the arranged virtual node according to a rank map.

3.4.4.4 How to define a fair share set
By specifying a fair share set, you can define the initial fair share value and recovery factor for each fair share set by specifying
"@fair_share_set_name" at the end of the setting value.

The following rules apply to how an initial fair share value and a recovery factor are defined when a fair share set is specified.

- When defining multiple setting values, delimit them with a comma (",").

- To indicate a setting value that is for all the fair share sets, mark it with an asterisk ("*").

- You can define multiple values for the same fair share set. However, in that case, the setting value written in the last position is valid.

- You can omit specifying "@fair_share_set_name" at the end of the setting value. In that case, "@def_fs" is assumed specified.

The following examples show coding.

Example 1: Defines the initial user fair share values for the fair share sets fs1 and fs2.

define fshare-init 120@fs1,90@fs2

Initial user fair share value for fair share set fs1: 120
Initial user fair share value for fair share set fs2: 90

Example 2: Uses an asterisk ("*") to define the initial user fair share value for the fair share sets def_fs, fs1, and fs2.

define fshare-init 120@*

Initial user fair share value for fair share set def_fs: 120
Initial user fair share value for fair share set fs1: 120
Initial user fair share value for fair share set fs2: 120

Example 3: Changes the initial user fair share value for the fair share set fs1 from the definition in example 2.

define fshare-init 120@*,90@fs1

Initial user fair share value for fair share set def_fs: 120
Initial user fair share value for fair share set fs1: 90
Initial user fair share value for fair share set fs2: 120

3.4.4.5 Changing the display format of planned job execution start times
Using the job ACL function settings, the administrator can change the display format of planned job execution start times displayed by the
pjstat command. The administrator can also change the precision for displaying planned execution start times and the scheduling symbols
appended to the displayed times (underlined parts in the following example).

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

50 job.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

57 job.sh NM QUE user1 (12/08 08:50)< 0000:02:00 12

- 94 -

58 job.sh NM QUE user1 (12/10 00:00) 0000:02:00 12

59 job.sh NM QUE user1 (12/15 00:00)# 0000:02:00 12

The method of setting the precision for displaying planned execution start times is as follows.

define pjstat-sdt-format <DisplayFormat>

The following two types of display formats can be specified.

Table 3.21 Display formats of planned job execution start times

Display format Description

fine Displays the planned job execution start time in minutes.

custom=<time_zone>,<time_interval> Allows the precision of time displayed to be specified according to planned
execution start time.

To specify multiple formats, delimit them with a semicolon (";"). However, when
specifying them, set them in order from the time zone closest to the current time.
Example: custom=01:00:00,00:10;08:00:00,01:00;*,24:00

Specify <time_zone> and <time_interval> as follows.

<time_zone>

Specify a time from the current time as the time zone covered by this setting. You can specify a range of values from 00:01:00 to
9999:59:59.
If "*" is specified, all the time zones after the time covered by this setting are assumed specified.
If "over" is specified, this setting covers the time zones beyond the scheduling period.

<time_interval>

Specify the precision for displaying any planned execution start time that falls into <time_zone>. Specify the precision in any of the
following formats.

Table 3.22 Specifying the precision for displaying a planned execution start time

Format Description

hh:mm Displays the planned execution start time by rounding up to nearest hour (hh) and minute (mm).

DD Displays the time by rounding up to nearest day (DD).

"String" Displays the specified character string instead of the time.

The character string has up to 7 characters, consisting of single-byte alphanumeric characters, a single-
byte space, and the symbols shown in the table below.
To include a single-byte space in the character string, enclose the character string in double quotation
marks escaped by a backslash, and further enclose <display format> in double quotation marks (e.g.,
"custom=*,\"A B\"")

! " # $ % & () * + , - . /

: < = > ? @ [] ^ _ ` { | ~

The following examples show settings and the display.

Example 1: Display format is fine

define pjstat-sdt-format fine

This format displays planned execution start times in minutes. The following example displays the planned execution start times of jobs
57, 58, 68, and 79 in minutes.

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

50 job.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

- 95 -

57 job.sh NM QUE user1 (12/08 09:10)< 0000:02:00 12

58 job.sh NM QUE user1 (12/08 09:20)< 0000:02:00 12

68 job.sh NM QUE user1 (12/08 10:20) 0000:02:00 12

79 job.sh NM QUE user1 (12/09 09:10) 0000:02:00 12

$ pjstat -s --choose jid,std * Displays only job IDs and planned execution start times

JOB ID : 50

JOB START DATE : 2018/12/08 08:31:22

JOB ID : 57

JOB START DATE : (2018/12/08 09:10:00)<

JOB ID : 58

JOB START DATE : (2018/12/08 09:20:00)<

JOB ID : 68

JOB START DATE : (2018/12/08 10:20:00)

JOB ID : 79

JOB START DATE : (2018/12/09 09:10:00)

Example 2: Display format is custom

define pjstat-sdt-format custom=01:00:00,00:10;08:00:00,01:00;*,24:00

This format displays planned job execution start times in units of 10 minutes for times up to 1 hour later, in units of hours for times up
to 8 hours later, and in units of 24 hours for even later times. The displayed times for jobs 68 and 79 are different from those in example
1.

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

50 job.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

57 job.sh NM QUE user1 (12/08 09:10)< 0000:02:00 12

58 job.sh NM QUE user1 (12/08 09:20)< 0000:02:00 12

68 job.sh NM QUE user1 (12/08 11:00) 0000:02:00 12

79 job.sh NM QUE user1 (12/10 00:00) 0000:02:00 12

$ pjstat -s --choose jid,sdt

JOB ID : 50

JOB START DATE : 2018/12/08 08:31:22

JOB ID : 57

JOB START DATE : (12/08 09:10)<

JOB ID : 58

JOB START DATE : (12/08 09:20)<

JOB ID : 68

JOB START DATE : (12/08 11:00)

JOB ID : 79

JOB START DATE : (12/10 00:00)

Example 3: Display when the scheduling period is exceeded

The display format fine appends the # symbol to the planned execution start times of jobs that have exceeded the scheduling period.

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

50 job.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

57 job.sh NM QUE user1 (12/08 08:50)< 0000:02:00 12

58 job.sh NM QUE user1 (12/10 00:00) 0000:02:00 12

59 job.sh NM QUE user1 (12/15 00:00)# 0000:02:00 12

By using the display format custom, you can display an arbitrary character string instead of the time of a job that has exceeded the
scheduling period.

define pjstat-sdt-format custom=over,"(-)" * Displays character string "(-)"

With the above setting, the command displays the planned execution start time of job 59 as follows.

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

- 96 -

50 hoge.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

57 hoge.sh NM QUE user1 (12/08 08:50)< 0000:02:00 12

58 hoge.sh NM QUE user1 (12/10 00:00) 0000:02:00 12

59 hoge.sh NM QUE user1 (-)# 0000:02:00 12

The method of changing the scheduling symbol appended to the displayed planned execution start time is as follows.

define pjstat-sdt-mark <form>

You can specify the following values in <form>.

Table 3.23 Value that can be specified in <form>

<form> Description

@ Displays "@" for jobs with a specified start time.

< Displays "<" for jobs that are backfill scheduled.

Displays # for jobs that have exceeded the scheduling period.

all Same as specifying "@","<", and "#" altogether

nothing Same as specifying none of "@", "<", and "#". Therefore, specify this value when you do not want
to display any scheduling symbol.

Specify @, <, and # by delimiting them with a comma.

Example 1: define pjstat-sdt-mark all

This example displays all the scheduling symbols: @, <, and #.

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

50 job.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

57 job.sh NM QUE user1 (12/08 08:50)< 0000:02:00 12

58 job.sh NM QUE user1 (12/10 00:00)@ 0000:02:00 12

59 job.sh NM QUE user1 (12/15 00:00)# 0000:02:00 12

Example 2: define pjstat-sdt-mark @,<

This example displays only the scheduling symbols @ and <. Unlike example 1, # is not displayed after the planned execution start time
of job 59.

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

50 job.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

57 job.sh NM QUE user1 (12/08 08:50)< 0000:02:00 12

58 job.sh NM QUE user1 (12/10 00:00)@ 0000:02:00 12

59 job.sh NM QUE user1 (12/15 00:00) 0000:02:00 12

Example 3: define pjstat-sdt-mark nothing

This example displays none of the scheduling symbols.

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

50 job.sh NM RUN user1 12/08 08:31:22 0000:02:00 12

57 job.sh NM QUE user1 (12/08 08:50) 0000:02:00 12

58 job.sh NM QUE user1 (12/10 00:00) 0000:02:00 12

59 job.sh NM QUE user1 (12/15 00:00) 0000:02:00 12

3.4.4.6 Settings for limiting access to job information
The pjstat command displays job information. When the -A option is specified in the command, other users' job information is also
displayed. However, you may want to prevent unauthorized users from viewing the job information.

- 97 -

With the job ACL function, you can set access privileges in the permit pjstat parameter to determine whether a user or group can view other
users' or groups' job information with the pjstat command.

Furthermore, you can set a display mode in the define pjstat-display-mode parameter of the job ACL function to determine how jobs are
displayed by the pjstat command without access privileges.

The following table shows the three types of display modes for the pjstat command. You can set them in the define pjstat-display-mode
parameter of the job ACL function.

Table 3.24 Job information display modes for the pjstat command (define pjstat-display-mode)

Display mode Description

anonymous The -A option of the pjstat command allows a user to display other users' job information, even without
viewing privileges.
However, job, submitter, and group names are masked with the "*"character in the job information
displayed without viewing privileges.

nothing The -A option of the pjstat command does not display other users' job information without viewing
privileges.
Without viewing privileges, the pjstat command with the --with-summary or --summary option
specified also does not include these jobs in summary information on the displayed number of jobs.

summary The -A option of the pjstat command does not display other users' job information without viewing
privileges.
However, even without viewing privileges, the pjstat command with the --with-summary or --summary
option specified includes these jobs in summary information on the displayed number of jobs.

The following examples show differences in display among the display modes.

anonymous

$ pjstat -Av --with-summary

 ACCEPT QUEUED RUNING RUNOUT HOLD ERROR REJECT EXIT CANCEL TOTAL

 0 0 4 0 0 0 0 0 0 4

s 0 0 4 0 0 0 0 0 0 4

JOB_ID JOB_NAME MD ST USER GROUP START_DATE ELAPSE_TIM ELAPSE_LIM ...

238 job1.sh NM RUN user1 group1 11/17 09:01:41 0000:09:11 0001:00:00 ...

239 job2.sh NM RUN user1 group1 11/17 09:05:01 - 0001:00:00 ...

240 job3.sh NM RUN user1 group1 11/17 09:08:33 - - ...

241 ********** NM RUN ******** ******** 11/17 10:03:21 0000:09:10 0001:00:00 ...

In this example, the user does not have viewing privileges for the job with job ID 241, so job, user, and group names are masked with
the "*" character.

nothing

$ pjstat -Av --with-summary

 ACCEPT QUEUED RUNING RUNOUT HOLD ERROR REJECT EXIT CANCEL TOTAL

 0 0 3 0 0 0 0 0 0 3

s 0 0 3 0 0 0 0 0 0 3

JOB_ID JOB_NAME MD ST USER GROUP START_DATE ELAPSE_TIM ELAPSE_LIM ...

238 job1.sh NM RUN user1 group1 11/17 09:01:41 0000:09:11 0001:00:00 ...

239 job2.sh NM RUN user1 group1 11/17 09:05:01 - 0001:00:00 ...

240 job3.sh NM RUN user1 group1 11/17 09:08:33 - - ...

In this example, the display mode is nothing, and the user does not have viewing privileges for job ID 241. The job is not included in
the summary on the number of jobs and job information.

summary

$ pjstat -Av --with-summary

- 98 -

 ACCEPT QUEUED RUNING RUNOUT HOLD ERROR REJECT EXIT CANCEL TOTAL

 0 0 4 0 0 0 0 0 0 4

s 0 0 4 0 0 0 0 0 0 4

JOB_ID JOB_NAME MD ST USER GROUP START_DATE ELAPSE_TIM ELAPSE_LIM ...

238 job1.sh NM RUN user1 group1 11/17 09:01:41 0000:09:11 0001:00:00 ...

239 job2.sh NM RUN user1 group1 11/17 09:05:01 - 0001:00:00 ...

240 job3.sh NM RUN user1 group1 11/17 09:08:33 - - ...

In this example, the display mode is summary, and the user does not have viewing privileges for job ID 241. The job is included in the
summary on the number of jobs but is not displayed in job information.

 Note

The pjstat command displays two types of step job information: information on the job as a whole (summary job), and information on each
sub job.

Summary job information on step jobs is displayed according to the display mode of the resource groups where sub jobs are running.

For example, if the display mode of only some resource groups is nothing, summary job information may or may not be displayed depending
on the running sub job.

Such display may confuse users. Therefore, in a system where users can submit the sub jobs of a single step job to different resource groups,
we recommend setting the same job information display mode for the resource groups.

The pjshowrsc command displays resource states. With the -v option, the command can display the jobs that use compute nodes.

$ pjshowrsc -v 1

[CLST: clst000]

[RSCUNIT: unit1]

[NODE: 0x01FF0001]

 RSC TOTAL FREE ALLOC

 cpu 2 1 1

 mem 499Mi 499Mi 0

RUNNING_JOBS:4243 <- Job using node 0x01FF0001

For this information too, you can set the permit pjshowrsc parameter of the job ACL function to prevent unauthorized users from displaying
job information.

3.4.4.7 Application rules for job ACL function definitions
The following USER definition and GROUP definition tables list the order of priority for application of the contents of multiple definitions.

Table 3.25 USER definitions

Priority order Definition target

1 user=uname:gname

2 user=uname

3 user=<def>:gname

4 user=<def>

Table 3.26 GROUP definitions

Priority order Definition target

1 group=gname

2 group=<def>

If there are multiple application ranges, the following order of priority applies to each defined item.

- 99 -

Table 3.27 Application rules between definition type layers
Defined item Description

limit Application priority is in the order of resource group, resource unit, cluster, and default value.

define Application priority is in the order of resource group, resource unit, cluster, and default value.

joblimit Application priority is in the order of resource group, resource unit, cluster, and default value.

execute With the pjsub command, application priority is in the order of resource group, resource unit, cluster, and
default value.

With other commands, there is no concept of resource units and resource groups, so no definition can be made
for these ranges. Therefore, the definition for the cluster applies.
If the definition item execute is not defined for the root user, the default value is 'enable', regardless of what
the pmjacladm or pjacl command displays.

permit Application priority is in the order of resource group, resource unit, cluster, and default value.
If the definition item permit is not defined for the root user, the default value is 'allow all', regardless of what
the pmjacladm or pjacl command displays.

select Application priority is in the order of resource group, resource unit, cluster, and default value.

3.4.4.8 Examples of job ACL function settings
The following examples show job ACL function settings.

- For the elapsed time limit value of userD in the USER definition, change the lower limit to 1 second, the upper limit to 3600 seconds
and the default value to 1800 seconds. Also, change the limit on the number of concurrent execution of jobs to undefine in resource unit
rscunit1.

[System management node or compute cluster management node]

pmjacladm -c clstname --set \

'USER: CL, RU=rscunit1 { user=userD { joblimit elapse 1 3600 1800; limit ru-run-job <undef> } }'

- Add a new entry for newuserB to the USER definition of the resource unit rscunit1. After the addition, job ACL control remains
unchanged since the defined items are all undefined.

[System management node or compute cluster management node]

pmjacladm -c clstname --set 'USER: CL, RU=rscunit1 { user=newuserB }'

- The cluster administrator or job operation administrator who has the required privileges for the resource unit rscunit1 in the cluster edits
the USER definition of the resource unit and then reflects the change to the job ACL database.

[System management node or compute cluster management node]

pmjacladm -c clstname --show -o jobacl.txt 'USER: CL, RU=rscunit1' <- (*1)

vi jobacl.txt

 (Editing of defined items as required)

pmjacladm -c clstname --set -f jobacl.txt <- (*2)

(*1) To save to the jobacl.txt file
(*2) To reflect the edited data

- Delete the contents of all definitions in the USER section.

[System management node or compute cluster management node]

pmjacladm -c clstname --del 'USER: *'

- Delete data for all resource units in the USER section. Doing so also deletes the data of all resource groups under the resource units.

[System management node or compute cluster management node]

pmjacladm -c clstname --del 'USER: CL, RU=*'

- 100 -

- Delete only the default user section within the cluster data in the USER section.

[System management node or compute cluster management node]

pmjacladm -c clstname --del 'USER: CL { user=<def> }'

- Delete (initialize) the value of the defined item joblimit node-mem of the user user1 in the resource group rscgroup in the resource unit
rscunit in the USER section.

[System management node or compute cluster management node]

pmjacladm -c clstname \

--del 'USER: CL, RU=rscunit, RG=rscgroup { user=user1 { joblimit node-mem } }'

- Delete the contents of all definitions.

[System management node or compute cluster management node]

pmjacladm -c clstname --del '*'

- Delete (initialize) the value of the defined item with pmjacladm command and -clear option to initialize all definitions and specified
empty file(/dev/null)

[System management node or compute cluster management node]

pmjacladm -c clstname --set --clear -f /dev/null.

 Note

When deleting a user or group from a naming service like LDAP, /etc/passwd, or /etc/group, also delete information on the user or group
from job ACL definitions. However, if the user or group is first deleted from the name service, /etc/passwd, or /etc/group, the job ACL
function cannot recognize the user or group name. For this reason, delete it by specifying the user or group ID.

- Save the contents of job ACL settings.

[System management node or compute cluster management node]

pmjacladm -c clstname --show -o jobaclbackup.data '*'

- Restore the contents of job ACL settings.

[System management node or compute cluster management node]

pmjacladm -c clstname --set --clear -f jobaclbackup.data

 Information

When executing the pmjacladm command on a compute cluster management node, you can omit specification of a cluster name in the -c
option.

3.4.4.9 Precautions when applying the limit value of the job ACL function (definition item
limit)

When the limit value (limit definition item) of the job ACL function is applied, the method of counting resource usage varies depending on
the job model or type.
The following table lists the method of counting resource usage based on the job model or type. The limit value of the job ACL function
is limited by the count values indicated in the table.

- 101 -

Table 3.28 A method to count the resource usage amount per job model or type when applying the limit definition
item

Definition item Batch job Interactive job

Normal job Bulk job Step job

limit ru-accept
or
limit rg-accept

Counted up (+1) per job
ID

Counted up (+1) per
bulk job (job ID)
Not counted up per
sub job ID

Counted up (+1) per
step job (job ID)
Not counted up per
sub job ID

-

limit ru-run-job
or
limit rg-run-job

Counted up (+1) per job
in the following states:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E

Counted up (+1) per
bulk job (job ID) in the
following states:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E
The sub jobs of a bulk
job are not counted up.

Counted up (+1) per
step job (job ID) in the
following states:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E

-

limit ru-run-bulksubjob
or
limit rg-run-bulksubjob

- Counted up (+1) per
sub job in the
following states in a
bulk job:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E

- -

limit ru-use-node
or
limit rg-use-node

Counted up by the
number of requested
nodes per node
allocated job in the
following states:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E

Counted up by the
number of requested
nodes for sub jobs in
the following states in
a node allocated job:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E

Counted up by the
number of requested
nodes for sub jobs in
the following states in
a node allocated job:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E

-

limit ru-use-core
or
limit rg-use-core

Counted up by the
number of requested
CPU cores per virtual
node allocated job in
the following states:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E
(*)

Counted up by the
number of requested
CPU cores for sub
jobs in the following
states in a virtual node
allocated job:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E
(*)

Counted up by the
number of requested
CPU cores for sub
jobs in the following
states in a virtual node
allocated job:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E
(*)

-

limit ru-interact-accept
or
limit rg-interact-accept

- - - Counted up (+1) per
job ID

limit ru-interact-run-job
or
limit rg-interact-run-job

- - - Counted up (+1) per
job in the following
states:
- RUNNING
- RUNNING-A

- 102 -

Definition item Batch job Interactive job

Normal job Bulk job Step job

- RUNNING-P
- RUNNING-E

limit ru-interact-use-node
or
limit rg-interact-use-node

- - - Counted up by the
number of requested
nodes per job
allocated node in the
following states:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E

limit ru-interact-use-core
or
limit rg-interact-use-core

- - - Counted up by the
number of requested
CPU cores per virtual
node allocated job in
the following states:
- RUNNING
- RUNNING-A
- RUNNING-P
- RUNNING-E
(*)

-: Exception
(*) For virtual node allocated jobs or all jobs, the target of the limit on the number of CPU cores used simultaneously can be specified with
the UseCoreLimit item in the papjm.conf file. If all jobs are subject to the limit, the number of CPU cores used by the node allocated jobs
is a value obtained by multiplying the number of CPUs per node by the number of request nodes.

3.4.5 Settings for advanced job scheduling
The cluster administrator can configure advanced job scheduling as follows in the pjs.conf file (/var/opt/FJSVtcs/shared_disk/pjm/.private/
pjs.conf on the active compute cluster management node):

- Settings related to fair share values

- Setting of the unit of calculation for fair share values on FX servers (FshareUnit)

- Disabling of fair share value recovery when a job ends before reaching the elapsed time limit value (FshareReturn)

For details on these settings, see "2.5.2.2 Fair share function."

- Interpretation of submission times when scheduling sub jobs of a step job (StepJobSchedUnit)

For details on this setting, see "2.5.4.3 Scheduling of sub jobs of a step job."

- Parameter for tuning the job rescheduling start wait time
(NewJobBatchReschedAggregateTime, NewJobInterReschedAggregateTime, AggregateReschedNewJobFactor,
GraceOverReschedAggregateTime, AggregateReschedGapFactor, PmpjmAlterReschedAggregateTime)

For details on these settings, see "2.5.4.2 Job scheduling parameters."

- Setting for the guarantee period of planned execution start times (NotReschedPeriod)

For details on this setting, see "2.5.4.4 Guarantee of planned job execution start time (setting that prevents a delay in the job execution
start time)."

- Time setting that extends a scheduling trigger (ExtendSchedPeriod)

For details on this setting, see "2.5.4.2 Job scheduling parameters."

These settings are common within the cluster.

- 103 -

 Note

The pjs.conf file is installed on the active compute cluster management node. Edit it there.

The following example shows settings of the pjs.conf file.

[Active compute cluster management node]

cat /var/opt/FJSVtcs/shared_disk/pjm/.private/pjs.conf

ResourceUnit {

 FshareUnit = 1 (*1)

 FshareReturn = 0 (*2)

 StepJobAcceptDate = 1 (*3)

 StepJobSchedUnit = 1 (*4)

 NotReschedPeriod = 2147483647 (*5)

 NewJobBatchReschedAggregateTime = 30 (*6)

 NewJobInterReschedAggregateTime = 0

 AggregateReschedNewJobFactor = 10

 GraceOverReschedAggregateTime = 60

 AggregateReschedGapFactor = 20

 PmpjmAlterReschedAggregateTime = 30

 ExtendSchedPeriod = 3600 (*7)

}

(*1) Sets the number of CPU cores as the unit of calculation for fair share values.
(*2) Disables fair share value recovery at job end.
(*3) Changes the interpretation of submission times when scheduling sub jobs of a step job.
(*4) Changes scheduling unit of sub jobs in step job
(*5) The guarantee period of planned execution start times
(*6) For details on the parameters (NewJobBatchReschedAggregateTime to PmpjmAlterReschedAggregateTime) for tuning the job
rescheduling start wait time, see "Table 3.29 Setting items for advanced job scheduling."
(*7) Sets time to extend scheduling trigger

Write the settings in the ResourceUnit section. You can set the following items.

Table 3.29 Setting items for advanced job scheduling

Item name Description Specifiable value Default
value

FshareUnit
[FX]

Resource unit for calculating
fair share values
(*) This item is ignored for
resource units on PRIMERGY
servers.

0: Calculate based on the
number of nodes.

1: Calculate based on the
number of CPU cores.

0

FshareReturn Whether to recover the fair
share value when a job ends
before reaching the elapsed
time limit value

0: Do not recover the fair share
value.

1: Recover the fair share value.

1

StepJobAcceptDate Interpretation of submission
times when scheduling sub jobs
of a step job

0: Actual sub job submission
time

1: Scheduled time of a sub job.
However, if 0 is specified for
StepJobSchedUnit, the sub jobs
other than the first one of the
submitted sub jobs in the same
resource unit are the expected
end times of the previous sub
jobs.

1

- 104 -

Item name Description Specifiable value Default
value

StepJobSchedUnit Scheduling unit of sub jobs in a
step job

0: Simultaneously schedule all
sub jobs already submitted to
the same resource unit but not
yet executed.

1: Schedule only the first sub
job already submitted but not
yet executed

0

NotReschedPeriod Guarantee period of planned
execution start times (seconds)
(*1)
If a value larger than or equal to
the value of the scheduling
period (setting of the
SchedulePeriod and
DynamicSchedulePeriod item
in papjm.conf) is set, the
guarantee period of planned
execution start times is the same
as the scheduling period. If 0 is
set as the value, planned
execution start times are not
guaranteed.

0 - 2147483647 (seconds) 2147483647

NewJobBatchReschedAggregateTime Maximum wait time until
rescheduling starts when a new
batch job is submitted (seconds)

0 - 2147483647 (seconds) 30

NewJobInterReschedAggregateTime Maximum wait time until
rescheduling starts when a new
interactive job is submitted
(seconds) (*2)

0 - 2147483647 (seconds) 0

AggregateReschedNewJobFactor Coefficient for determining the
rescheduling start wait time
when a new batch job or
interactive job is submitted
(milliseconds)
The wait time is the value
obtained by multiplying the
time by the number of queued
jobs. (*2)(*3)

0 - 2000 (milliseconds) 10

GraceOverReschedAggregateTime Maximum wait time until
rescheduling starts when a job
ends earlier than the upper limit
of the elapsed execution time
(seconds) (*2)

0 - 2147483647 (seconds) 60

AggregateReschedGapFactor Coefficient for determining the
rescheduling start wait time
when a job ends earlier than the
upper limit of the elapsed
execution time (milliseconds)
The wait time is the value
obtained by multiplying the
time by the number of queued
jobs. (*2)(*4)

0 - 2000 (milliseconds) 20

- 105 -

Item name Description Specifiable value Default
value

PmpjmAlterReschedAggregateTime Rescheduling start wait time
(seconds) when a job parameter
is changed by the pjalter or
pmalter command (*2)

0 - 2147483647 (seconds) 30

ExtendSchedPeriod Extended period when
scheduling continues
uninterrupted even if new
scheduling occurs during
scheduling processing
(seconds) (*5)

0 - 2147483647 (seconds) 0

(*1)
For notes on the NotReschedPeriod item setting, see "2.5.4.4 Guarantee of planned job execution start time (setting that prevents a delay
in the job execution start time)."
(*2)
Normally, it is not necessary to change this setting.
If the number of jobs is large, lower-priority jobs waiting for execution are not scheduled and the planned execution start time may not be
displayed. In this case, the lower-priority jobs waiting for execution can be scheduled with an adjustment of the "rescheduling start wait time
setting." Consult a Fujitsu systems engineer (SE) or the Fujitsu Support Desk to adjust the setting. For details on the setting, see "2.5.4.2
Job scheduling parameters."
(*3)
When a batch job is submitted, NewJobBatchReschedAggregateTime (seconds) is compared with the value obtained by multiplying
AggregateReschedNewJobFactor (milliseconds) by the number of queued jobs, and the smaller value is selected as the wait time.
When an interactive job is submitted, NewJobInterReschedAggregateTime (seconds) is compared with the value obtained by multiplying
AggregateReschedNewJobFactor (milliseconds) by the number of queued jobs, and the smaller value is selected.
(*4)
GraceOverReschedAggregateTime (seconds) is compared with the value obtained by multiplying AggregateReschedGapFactor
(milliseconds) by the number of queued jobs, and the smaller value is selected.
(*5)
In a situation where many jobs are submitted, frequent rescheduling may cause scheduling delays. ExtendSchedPeriod is a setting that
allows scheduling to continue for a certain period of time, even if new scheduling occurs, in order for the scheduling in progress to complete.

 Note

To reflect the pjs.conf file contents, you need to restart the active compute cluster management node.
If the system with a single node serving as all of the system management node, compute cluster management node, and login node, restart
the node with no jobs running on all compute nodes. Also, you need to restart the Job Operation Software services on all compute nodes.
For details on this procedure, see "How to Restart the Node Serving as All of System Management Node, Compute Cluster Management
Node, and Login Node" in "Chapter 3 Maintenance Work Problems" of the manual "Job Operation Software Troubleshooting".

3.4.6 Settings for other
Job operation management function has a function that notifies details by e-mail to a job submission user at the time of the execution start
and end of a job, or an error. E-mail is transmitted to the user account of a compute cluster management node.

Build according to a system about the structure of the e-mail delivery to each user from a compute cluster management node.

3.5 Settings for the Job Operation Administrator
This section describes the contents of settings by the job operation administrator, among the settings of the job operation management
function.

- 106 -

 Information

- The setting and operation work of the job operation management function requires job operation administrator privileges or higher.

- The examples in this section contain commands specifying a cluster name in the -c option for operation on the system management
node. Write the name in this way. However, if the environment variable PXMYCLST specifies the cluster name, you can omit
specification of the cluster name in the -c option during actual operation.

3.5.1 Job operation management function settings in a resource unit
(pmpjm.conf file)

The job operation administrator can make the following settings for the job operation management function in the pmpjm.conf file (system
management node: /etc/opt/FJSVtcs/Rscunit.d/rscunitname/pmpjm.conf) by resource unit:

- Log output level setting for the job scheduler function

- Setting for enabling/disabling the backfill function

- Setting the target range of the backfill function (executing lower-priority jobs ahead of higher-priority jobs)

- Buffer time setting for the job execution interval

- Rescheduling grace time setting

- Setting of the grace time before the forced termination of a job that continued running after exceeding the minimum elapsed time limit
value

- Interval setting for job resource map creation

- Scheduling period setting

- Setting of a dynamic scheduling period

- Settings of whether job models (normal, step, and bulk job) automatic re-execution

- E-mail transfer function setting

- Setting of whether to subtract the fair share value when job execution starts

- Setting of the fair share recovery value

- Resource unit type

- Setting for guarantee of planned execution start times

- Setting of the function for outputting a job runtime error to the standard error output

- Interpretation of the submission time when scheduling a held job that was released

- Setting of the directory path where the plugin libraries are located

- Setting of the maximum number of jobs to schedule

- Setting of the method for limiting the jobs to schedule

- Job selection policy settings for the resource unit

- Prologue and epilogue function settings

- Resource group settings

- Setting of a resource group name

- Setting of the node resources in resource groups

- Setting of the priority of a resource group

- Setting of allocation method for sharing Tofu units by multiple jobs

- Setting of the execution mode policy of a resource group

- 107 -

- Setting for enabling/disabling the backfill function

- Setting for guarantee of planned execution start times

- Setting of the function for outputting a job runtime error to the standard error output

- Setting of whether to subtract the fair share value when job execution starts

- Interpretation of the submission time when scheduling a held job that was released

- Job selection policy settings for the resource group

- Setting of custom resources in a resource group

- Setting for the job manager exit function for a resource group

- Setting for the job scheduler exit function for a resource group

- Setting of custom resources in a resource unit

- Job manager exit settings for a resource unit

- Job scheduler exit settings for a resource unit

- Settings for job scheduler function

The following example shows settings of the pmpjm.conf file.

[System management node]

cat /etc/opt/FJSVtcs/Rscunit.d/unit1/pmpjm.conf

ResourceUnit {

 ResourceUnitName = unit1

 LogLevel = 1

 Backfill = yes

 BackfillTarget = rscgrp

 DecidedGap = 00:01:00

 Grace = 00:02:00

 CreateRscMap = "01:00:00, 00:10:00"

 CreateRscMap = "24:00:00, 01:00:00"

 CreateRscMap = "*, 24:00:00"

 SchedulePeriod = 25:00:00

 DynamicSchedulePeriod = 2,24:00:00

 RestartNormal = yes

 RestartStep = yes

 RestartBulk = no

 MailSend = yes

 Fairshare = off

 FshareRecoveryValue = 236

 StartTimeGuarantee = on

 JobStderrMsgLevel = 0

 HoldAcceptDate = release

 SchedulerPluginLoadPath = "/etc/opt/FJSVtcs/plugin/pjm/pjsd/normal_mode/"

 JobSchedulingTargetLimit = 10000

 JobSchedulingTargetMode = jobselectpolicy

 JobSelectPolicy {

 name = policy2

 }

ResourceGroup {

ResourceGroupName =

ResourceGroupNode =

Backfill =

StartTimeGuarantee =

ResourceGroupFairshare =

JobSelectPolicy {

name =

}

- 108 -

JobEvaluation {

name =

}

CustomResource {

Name =

ValueType =

Value =

}

ExitFunc {

ExitFuncLib =

ExitFuncPri =

ExitFuncType =

}

}

Scheduler {

Name =

Plugins =

}

}

For details on pmpjm.conf file settings, see the man page for the pmpjm.conf file.

 Information

There is no pmpjm.conf file when the Job Operation Software is installed. If you want to change the default settings, create a new file or
copy and edit the sample file (/etc/opt/FJSVtcs/sample/pmpjm.conf), and place the file in the above path.

 Note

- You cannot change settings related to job operations simply by creating or editing the pmpjm.conf file. As described below, the
pmpjmadm command reflects the contents of the pmpjm.conf file in job operations.

- The maximum length of a single line in the pmpjm.conf file is 511 characters.

3.5.1.1 Resource unit settings
The ResourceUnit section of the pmpjm.conf file enables you to configure the following for a specific resource unit:

Table 3.30 Resource Unit Settings (ResourceUnit Section)

Item name Definition contents Specifiable value Default value

ResourceUnitName Resource unit name (*1) Not omissible

Items that can be set in the
ResourceUnit section of the
papjm.conf file.

(except UseCoreLimit)

For the detail of items, refer "3.4.1.2 Default value settings for resource units".

AllocType Resource unit type

Set node or vnode, depending
on the model of the compute
nodes in the resource unit.

node: For the compute nodes of FX
server

vnode: For the compute nodes of
PRIMERGY server

node

JobStderrMsgLevel Setting of the function for
outputting a job runtime error
to the standard error output
(*2)

0: Do not output.
1: Output only ERROR message.
2: Output ERROR and WARNING
messages.
3: Output WARNING and INFO
messages

0

- 109 -

Item name Definition contents Specifiable value Default value

SchedulerPluginLoadPath Absolute path of the directory
where the plugin library is
located in normal mode.

For more information, refer to
"Job Operation Software API
user's Guide for Scheduler
API."

List of directory names /etc/opt/FJSVtcs/
plugin/pjm/pjsd/
normal_mode/

(*1) Specifies the resource unit name identified in the following command.

pashowclst -c clstname --rscunit

(*2) The job runtime error is an error message corresponding to the job end code. For details on the error message, see "Job management
function" in "Messages in job outputs" in "Chapter 3 Command Reference for End-users" of "Job Operation Software Command
Reference." However, an interactive job are excluded.

Fairshare item

For the Fairshare setting item relating to subtraction of the fair share value, you can also define a setting for each fair share set in the
pmpjm.conf file as follows. This definition cannot be specified by the item Fairshare in the papjm.conf file.

Fairshare=on@FairshareSetName (Example: Fairshare=on@fs_rs)

You can specify a fair share set name consisting of the following:

- 1 to 15 characters

- Single-byte alphanumeric characters

- Hyphen

- Underscore

If "@fair share set name" is omitted when Fairshare=off is set, def_fs is applied as the fair share set name.

3.5.1.2 Resource group settings
You can configure specific resource groups by placing the ResourceGroup section within the ResourceUnit section of the pmpjm.conf file.

Table 3.31 Setting items of a resource group (ResourceGroup section)

Item name Definition contents Specifiable value Default value

ResourceGroupName Resource group name Character string with 1 to 63 characters,
consisting of single-byte alphanumeric
characters, hyphen, and underscore

Not omissible

ResourceGroupNode Node resources of the
resource group

[FX]
Specify the node number, node rate, or
node shape.
There can be a mixture within a single
resource unit.

- For the number of nodes, specify a
numerical value (e.g., 10). (*1)

- For the rate, specify a percentage
(e.g., 100%). (*1)

- For the shape, specify the minimum
coordinates and maximum
coordinates of a Tofu unit. Specify
the unit is pointed unit in an entire

100%

- 110 -

Item name Definition contents Specifiable value Default value

cluster.
Example: For the minimal
coordinates (0, 0, 1) and the
maximum coordinates (0, 0, 5),
write "0, 0, 1-0, 0, 5".

[PG]
Specify node IDs in the following
format.

- Delimit multiple node IDs with ",".

- You can specify a range of node IDs
with a hyphen "-". You can specify
multiple ranges separated by
commas ",".
(Example: nodeid1-nodeid2,
nodeid3-nodeid4)
However, one range must be in the
same node group.

This item may appear more than once in
the same ResourceGroup section.

All nodes within
resource unit

ResourceGroupPrio Priority of the resource group 0 (low priority) to 255 (high priority)
It is valid when rscgrp_prio of the job
selection policy is set.

127

ResourceGroupTsha
[FX]

Assignment method for
sharing Tofu units by
multiple jobs

1: Only 1 node job can be shared.
2: 1 to 11 node jobs can be shared.

However, this is effective only in Torus
mode.

1

ResourceGroupExecPolicy
[FX]

Execution mode policy of the
resource group

share
simplex

However, the setting is valid only for a
shape-specified resource group.

share

Backfill Backfill function yes: Enabled
no: Disabled

Follow the
ResourceUnit
section setting.

StartTimeGuarantee Setting for guarantee of
planned execution start times

on: Planned execution start times are
guaranteed.
off: Planned execution start times may
change at rescheduling.

Follow the
ResourceUnit
section setting.

JobStderrMsgLevel Setting of the function for
outputting a job runtime
error to the standard error
output (*2)

0: Do not output.
1: Output only ERROR message.
2: Output ERROR and WARNING
messages.
3: Output WARNING and INFO
messages.

0

ResourceGroupFairshare Setting of whether to subtract
the fair share value when job
execution starts

on: Subtract
off: Do not subtract
(*3)

off

HoldAcceptDate Interpretation of the
submission time when
scheduling a held job that
was released

release: Schedule this job at its release
time

release

- 111 -

Item name Definition contents Specifiable value Default value

accept: Schedule this job at its
submission time

(*1) For FX servers, even when the compute nodes to be allocated to a resource group are specified as a number of nodes or percentage for
the setting of the ResourceGroupNode item, the value is rounded up to the nearest Tofu unit (12 nodes).
(*2) The job runtime error is an error message corresponding to the job end code. For details on the error message, see "Job management
function" in "Messages in job outputs" in "Chapter 3 Command Reference for End-users" of "Job Operation Software Command reference"
manual. However, an interactive job are excluded.
(*3) If the Fairshare setting item for the resource unit is on, the fair share value is subtracted when job execution starts, even when the
ResourceGroupFairshare item is off.
To define and use a fair share set for the relevant resource group, specify the following:

on@fair_share_set_name (example: ResourceGroupFairshare=on@fs_rs)

You can specify a "fair_share_set_name" value consisting of the following:

- 1 to 15 characters

- Single-byte alphanumeric

- Hyphen

- Underscore

If "@fair_share_set_name" is omitted when off is set, def_fs is the applied fair share set name.

 Information

FX servers allow a single resource unit to be a mix of resource groups in ranges specified by different methods (specified by shape, number
of nodes, or node rate).

Suppose that the execution mode policy of a shape-specified resource group has the share setting in the ResourceGroupExecPolicy item.
In this case, the nodes are shared with resource groups of the specified number of nodes or node rate.
If the execution mode policy of the resource group has the simplex setting, the nodes are not shared with resource groups of the specified
number of nodes or node rate.

Figure 3.1 Relationship between the following resource groups with a set execution mode policy: resource group
of the specified shape, and resource group of the specified number of nodes or node rate

Suppose that a resource unit contains a resource group of the specified number of nodes or node rate. Also suppose that a shape-specified
resource group that is set to simplex mode is added to the resource unit. Then, the number of nodes in the resource group of the specified
number of nodes or node rate changes dynamically.
The following figure shows such a case.

- 112 -

Figure 3.2 Dynamic change of a resource group (when a shape-specified resource group (in simplex mode) is
dynamically added)

If a single resource unit contains multiple shape-specified resource groups, the nodes are shared regardless of whether the execution mode
policies of the resource groups have the share or simplex setting. Also, the jobs operate within the specified range.

Figure 3.3 Relationship between shape-specified resource groups where one is set to simplex mode and the other
is set to share mode

These settings enable operation with a mixture of the following compute node groups. One compute node group (shape-specified resource
group that is set to simplex mode) permits specific users and user groups who run large-scale jobs to borrow and exclusively use specific
nodes. The other compute node group (resource group of the specified number of nodes or node rate) is used jointly by indefinite users.
The following example shows such a case.

- 113 -

Figure 3.4 Job operation example of resource groups that is set within a single resource unit

3.5.1.3 Prologue and epilogue function settings
To use the prologue and epilogue function, prologue and epilogue scripts must be created and incorporated into the job operation
management function. For details, see "Prologue and Epilogue Function " in "Chapter 2 Creating and Incorporating Hooks " in "Job
Operation Software Administrator's Guide for Job Operation Manager Hook."

3.5.1.4 Job selection policy settings
You can make job selection policy settings in the pmpjm.conf file.

The job selection policy is set in the ResourceUnit section or ResourceGroup section in the same way as when configuring the job operation
management settings in a cluster (papjm.conf file). The settings for a resource group have priority over the settings for a resource unit. If
the settings for a resource group are omitted, the settings for the resource unit are applied.

For details on the setting method, see "3.4.1.3 Job selection policy settings".

 Note

Note the following about the job selection policy settings in the pmpjm.conf file.

- When using the job evaluation point job_epoint, which is one of job selection policy elements, you can select a job evaluation definition
within the cluster. From the job evaluation definitions set in the papjm.conf file by the cluster administrator, choose one appropriate to
resource unit operations.
For example, if the settings in the papjm.conf file described in "3.4.1.3 Job selection policy settings" apply to the cluster, you can apply
the job evaluation definition jobeval1 to the resource unit.

cat /etc/opt/FJSVtcs/Rscunit.d/unit1/pmpjm.conf

ResourceUnit {

 ResourceUnitName = unit1

 LogLevel = 1

 ...

 JobEvaluation {

 name = jobeval1 <- Job evaluation definition name applied

 }

 ...

When specifying an already defined job evaluation definition name in the pmpjm.conf file, you cannot change the definition contents.

- 114 -

- Without using an already defined job evaluation definition, you can even write a job evaluation definition specific to a resource unit.

cat /etc/opt/FJSVtcs/Rscunit.d/unit2/pmpjm.conf

ResourceUnit {

 ResourceUnitName = unit2

 LogLevel = 1

 ...

 JobEvaluation {

 waittime = 100 <- Job evaluation definition specific to resource unit

 }

 ...

- Only one job evaluation definition can be written in the pmpjm.conf file. In pmpjm.conf, a name for job evaluation definition cannot
be set.

- To prioritize the execution of a job based on the fair share value of a fair share set using the group_fairshare, usr_in_grp_fairshare, and
user_fairshare items, specify the fair share set as follows.

 ItemName@FairshareSetName=Value (Example: user_fairshare@fs_rg=1,desc)

You can specify a fair share set name consisting of the following:

- 1 to 15 characters

- Single-byte alphanumeric characters

- Hyphen

- Underscore

Though you can set these items in the papjm.conf file too, fair share sets can be specified only in the pmpjm.conf file.

3.5.1.5 Settings for the fair share function
To control job execution priorities with the fair share values in a single resource unit, set the fair share function and job selection policy in
the pmpjm.conf file. The setting method is the same as the papjm.conf file. For details on the setting method, see "3.4.1.4 Settings for the
fair share function ."

To control job execution priorities with fair share values in a single resource group, configure the pmpjm.conf file as follows.

1. Set the fair share function.
To subtract the fair share value when job execution starts, set the ResourceGroupFairshare item in the pmpjm.conf file to on. Also,
to define and use a fair share set for the relevant resource group, define "on@fair_share_set_name."

 Note

If the Fairshare setting item for the resource unit is on, the fair share value is subtracted when job execution starts, even when the
ResourceGroupFairshare item is off.

2. Set a job selection policy.

To use fair share values as the job selection policy, add policies as follows to the job selection policy JobSelectPolicy in the
pmpjm.conf file.

- To include user fair share values in priority control, add user_fairshare.

- To include group fair share values in priority control, add group_fairshare.

- To include the fair share values of users in a group in priority control, add usr_in_grp_fairshare.

To specify a fair share set and assign job execution priorities from fair share values, define "policy_name@fair_share_set_name."

In addition to the above settings, change the following settings as required: fair share value, initial fair share value, fair share recovery value,
or recovery factor. For details on how to set these values, see "4.2.5 Monitoring and changing a fair share value and initial fair share value ."

- 115 -

3.5.1.6 Custom resource settings
You can make settings for custom resources in the pmpjm.conf file.

Custom resources are set in the CustomResource subsection in the ResourceUnit or ResourceGroup section. Settings for a resource group
have priority over those for a resource unit. If settings for a resource group are omitted, those for a resource unit are applied.

Table 3.32 Setting items of custom resources (CustomResource subsection)

Item name Definition contents Specifiable value Default value

Name Custom resource name
(*1)(*2)

Character string with 1 to 63 characters,
consisting of single-byte alphanumeric
characters (lowercase), hyphen, and
underscore.
The first character must be a single-byte
alphanumeric character.

Not omissible

ValueType Custom resource management pattern numeric: Manage custom resources with a
numerical value.
string: Get a selection from several
resources.

Not omissible

Value If ValueType is set to numeric: Quantity
of custom resources (*3)
For custom resources per node (when a
node ID is specified), this definition
specifies the quantity of resources per
node.
For custom resources per resource unit or
resource group (when no node ID is
specified), this definition specifies the
quantity of resources per resource unit or
resource group.

Value from 1 to 999999999999, or
"unlimited"

Not omissible

If ValueType is set to string: Type of
custom resources

Character string consisting of single-byte
alphanumeric characters, hyphen, and
underscore
You can specify multiple strings by
delimiting them with a comma (",").
The length of one item ranges from 1 to 63
characters. In the entire item, you can
specify up to 511 characters (including
commas and space characters). Cannot
contain only 1 hyphen character "-".
You can insert a space character only before
and after a comma.

NodeID Node ID (*2)
Define this item when defining custom
resources per node.

Specify node IDs in the following format.

- Delimit multiple node IDs with ",".

- You can specify a range of node IDs
with a hyphen "-". You can specify
multiple ranges separated by commas
",".
(Example: nodeid1-nodeid2, nodeid3-
nodeid4)
However, one range must be in the same
boot group for FX server or node group
for PRIMERGY server.

This item may appear more than once in the
same CustomResource subsection.

Omissible
(*4)

- 116 -

(*1)
Up to 64 custom resource names can be specified. Each must be unique in the pmpjm.conf configuration file.
The custom resource name "sys-power" is a reserved word. System power consumption is predefined as the custom resource sys-power in
order to use the power cap scheduling function. This resource name cannot be used as the name of another custom resource.

(*2)
In cases with custom resources per node (that is, custom resources are defined for every node with the NodeID item), we recommend
defining custom resource names in the "CustomResourceName-per-node" format. This helps determine whether a specific custom resource
is a custom resource per node, based on the custom resource name.
Also, if this item is not defined, the resource is a custom resource per resource unit or resource group.

(*3)
When defining system power consumption as a custom resource to use the power cap scheduling function, set the value defined in the value
item as the upper limit value on power consumption increasing due to job execution. You can calculate this value with the following formula.

Upper limit value on power consumption increasing due to job execution =

allowable power for all compute nodes in resource unit - idle power for a compute nodes(BasePowerIdle)

x number of compute nodes in resource unit

Idle power (BasePowerIdle) of a compute node is the power consumption of the compute node when no job is running. Use the value
recorded in the /etc/opt/FJSVtcs/pwrm/base.resource unit name file on the system management node.
This file is created when the power management function is configured (when the papwrmgradm command is executed). It records the
minimum idle power of compute nodes in a resource unit. For details, see "Power Cap Scheduling Function" in "Chapter 2 Details of the
Power Management Function" in "Job Operation Software Administrator's Guide for PowerAPI."

(*4)
If the setting of item NodeID is omitted, it becomes a custom resource on a per-resource unit or per-resource group basis.

3.5.1.7 Settings for the job manager exit function and the job scheduler exit function
You can set the job manager exit function and job scheduler exit function in the pmpjm.conf file. For details on the settings, see "Job manager
exit function and Job scheduler exit function" in "Chapter 2 Creating and Incorporating Hooks" in "Job Operation Software Administrator's
Guide for Job Operation Manager Hook."

3.5.1.8 Settings for Scheduler Plug-in
You can set the scheduler plug-in in the pmpjm.conf file. For details on the settings, see "Chapter 2 Use of Scheduler Plugin Functions" in
"Job Operation Software API user's Guide for Scheduler API."

3.5.1.9 Reflecting and referencing the pmpjm.conf file
After setting the pmpjm.conf file, you need to execute the pmpjmadm command on the system management node so that the system reflects
the setting contents.

[System management node]

pmpjmadm -c clstname --set --rscunit unit1

The above operation incorporates settings immediately to reflect them in operation. Neither a node restart nor a complete system restart is
required.

 Note

If the pjstat command display items are changed by the custom resource setting, jobs previously in the EXIT/CANCEL/REJECT state are
deleted from the list of jobs output by the -H option of the pjstat command. The information output by the pmdumpjobinfo command is not
affected. For details on the settings, see "3.4.2.4 Custom resource item name."

To display the current settings, use the pmpjmadm command with the --show option.

[System management node]

pmpjmadm -c clusterA --show --rscunit unit1

ResourceUnit {

- 117 -

 ResourceUnitName = unit1

 LogLevel = 1

 Backfill = yes

 DecidedGap = 00:01:00

 Grace = 00:00:10

 CreateRscMap = 01:00:00, 00:10:00

 CreateRscMap = 24:00:00, 00:30:00

 CreateRscMap = 240:00:00, 01:00:00

 CreateRscMap = *, 24:00:00

 SchedulePeriod = 240:00:00

 RestartNormal = yes

 RestartStep = yes

 RestartBulk = no

 MailSend = yes

 Fairshare = off

 FshareRecoveryValue = 236

 AllocType = node

 BackfillTarget = rscgrp

 StartTimeGuarantee = on

 JobStderrMsgLevel = 0

 HoldAcceptDate = release

 AdaptiveElapsedTimeJobTerminateGrace = 00:00:10

 SchedulerPluginLoadPath = /etc/opt/FJSVtcs/plugin/pjm/pjsd/normal_mode/

 DynamicSchedulePeriod = 2,24:00:00

 JobSchedulingTargetLimit = 10000

 JobSchedulingTargetMode = jobselectpolicy

 ResourceGroup {

 ResourceGroupName = group1

 ResourceGroupNode = 100

 ResourceGroupPrio = 127

 ResourceGroupTsha = 2

 ResourceGroupExecPolicy = simplex

 Backfill = yes

 StartTimeGuarantee = on

 JobStderrMsgLevel = 2

 JobSelectPolicy {

 name = policy2

 }

 }

 PrologueEpilogue {

 ShellName = /bin/sh

 ExecUser = ROOT

 PrologueName = /work/prologue

 EpilogueName = /work/epilogue

 PrologueTime = 300

 EpilogueTime = 180

 ContainElapse = no

 }

 JobSelectPolicy {

 name = policy1

 }

}

3.5.2 Job resource management function settings in a resource unit
(pmrsc.conf file)

The job operation administrator can make the following settings for the job operation management function in the pmrsc.conf file (System
management node: /etc/opt/FJSVtcs/Rscunit.d/rscuname/pmrsc.conf) by resource unit:

- Maximum time to wait for a response in communication between nodes of the job resource manager

- The percentage of memory for jobs in a compute node

- 118 -

- Setting for periodically collecting interval of the job statistical information

- Settings for the job resource manager exit function (can be set for each resource unit and resource group)

The following example shows settings of the pmrsc.conf file.

[System management node]

cat /etc/opt/FJSVtcs/Rscunit.d/unit1/pmrsc.conf

Cluster {

 ClusterName = clusterA <- Cluster name

 ResourceUnit {

 ResourceUnitName = unit1

 RespWaitTime = 180

 JobMem = 85

 RscWatchInterval = 15

 ExitFunc {

 ExitFuncTimer = 10

 ExitFuncScriptDir = /work/hook1

 ExitFuncPri = 100

 }

 ResourceGroup {

 ResourceGroupName = groupA

 ExitFunc {

 ExitFuncTimer = 30

 ExitFuncScriptDir = /work/hook2

 ExitFuncPri = 120

 }

 }

 }

}

For details, see the man page for the pmrsc.conf file.

 Note

You cannot change settings related to job operations simply by creating or editing the pmrsc.conf file. As described below, the pmrscadm
command reflects the contents of the pmrsc.conf file in job operations.

 Information

There is no pmrsc.conf file when the Job Operation Software is installed. If you want to change the default settings, create a new file or copy
and edit the sample file (/etc/opt/FJSVtcs/sample/pmrsc.conf), and place the file in the above path.

3.5.2.1 Settings for job resource management function in a resource unit
You can make the following settings for the job resource management function in the pmrsc.conf file.

Table 3.33 Job resource manager setting (Cluster section)

Item name Definition contents Specifiable value Default value

ClusterName Setting of a target cluster name Character string All cluster names are targets.

The job resource management function settings in a resource unit are written in the ResourceUnit subsection of the Cluster section.

Table 3.34 Job resource manager setting (ResourceUnit subsection)

Item name Definition contents Specifiable value Default value

ResourceUnitName Target resource unit name (*) Not omissible

- 119 -

Item name Definition contents Specifiable value Default value

JobMem Setting of the percentage of memory for
jobs that is available to compute nodes
(%)

1-100 (Can be specified to the first
decimal place.)
The OS may hang up if the JobMem value
is greater than 90.

90

RscWatchInterval The periodically collecting interval
(unit: minutes) of the job statistical
information

The time of collection is on a per-job
basis, and not all jobs are collected at the
same time.

0-1440

(If it is 0, do not collect.)

10

RespWaitTime Setting of the maximum time (unit:
minutes) during which the job resource
management function waits for an inter-
node communication response

120 - 1440 120

(*) Specifies the resource unit name identified in the following command.

pashowclst -c clstname --rscunit

The job resource manager settings in a resource group are written in the ResourceGroup subsection. Currently, the only resource group-
related setting is that for the resource manager exit function, which is described below.

Table 3.35 Job resource manager setting (ResourceGroup subsection)

Item name Definition contents Specifiable value Default value

ResourceGroupName Target resource group name Character string with 1 to 63 characters,
consisting of alphanumeric characters,
hyphen, and underscore

Not omissible

To use the job resource manager exit function, it must be set in the ExitFunc subsection in the ResourceUnit or ResourceGroup subsection.
For details, see "Job resource management exit function" in "Chapter 2 Creating and Incorporating Hooks" in "Job Operation Software
Administrator's Guide for Job Operation Manager Hook."

 Note

- If the value of the JobMem item is too large, the setting may fail. In this case, jobs cannot be executed until a value could be set normally,
so job operations are affected. Exercise caution when changing this value. Normally, the JobMem item does not need to be changed.
Consult with a Fujitsu systems engineer (SE) or Fujitsu Support Desk to tune up job employment according to the use situation of a
system.

- If a node does not return a response even when the time set for the item RespWaitTime elapses, the node is isolated from operation.

- When using the job resource manager exit function (exit script), you need to pay attention to the value of the RespWaitTime item and
the exit script processing time. For details, see "Job resource management exit function" in "Chapter 2 Creating and Incorporating
Hooks" in "Job Operation Software Administrator's Guide for Job Operation Manager Hook."

3.5.2.2 Reflecting and referencing the pmrsc.conf file
After setting the pmrsc.conf file, you need to execute the pmrscadm command on the system management node so that the system reflects
the setting contents.

[System management node]

pmrscadm --set --rscunit unit1

The above operation incorporates settings immediately to reflect them in operation. Neither a node restart nor a complete system restart is
required (except the changes of the JobMem).

- 120 -

When the JobMem item is changed, restart the compute cluster management node, and all compute nodes of the cluster to which the resource
unit belongs after executing the pmrscadm command. Then the value of the JobMem item is applied to each node.

 Information

If it is failed to apply the setting to some compute nodes or if new compute nodes are added, the setting can be applied again by specifying
only such compute nodes using the -f option of the pmrscadm command. In this case, all compute nodes in a cluster must have the same
settings without specifying a different setting to each compute node using the -f option.
When changing the setting of the JobMem item with the -f option of the pmrscadm command, only the target compute nodes need to be
restarted.

To display the current settings, use the pmrscadm command with the --show option.

[System management node]

pmrscadm --show --rscunit unit1

Cluster {

 ClusterName = clusterA

 ResourceUnit {

 ResourceUnitName = unit1

 RespWaitTime = 180

 JobMem = 85

 RscWatchInterval = 15

 ExitFunc {

 ExitFuncTimer = 10

 ExitFuncScriptDir = /work/hook1

 ExitFuncPri = 100

 }

 ResourceGroup {

 ResourceGroupName = groupA

 ExitFunc {

 ExitFuncTimer = 30

 ExitFuncScriptDir = /work/hook2

 ExitFuncPri = 120

 }

 }

 }

}

3.5.3 Job ACL function settings in a resource unit
The job operation administrator makes job ACL function settings in the resource unit that is a management target.

For details on how to make the settings, see "3.4.4 Job ACL function settings in a cluster".

 Note

The cluster administrator may have made settings for some resource units and resource groups. Confirm the settings beforehand so that the
cluster administrator's settings do not conflict with the job operation administrator's settings.

 Information

If you do not set the job ACL function, the initial values set when the job operation management function was installed are applied. For
information about the initial values of the job ACL feature, see "Appendix F Defined items of the job ACL function."

The following example shows job ACL function settings.

USER: CL, RU=rscunit1 {

 user=<def> { <- (1)

- 121 -

 define rscgroup rscgroup1

 limit ru-accept 10

 limit ru-run-job 10

 limit rg-custom-customrscname1 6

 joblimit elapse 1:00:00 24:00:00 10:00:00

 joblimit node 1 5000 1

 joblimit customrscname2 100000 5000000 100000

 select customrscname3 a,b a

 }

 user=<def>:group2 { <- (2)

 define rscgroup rscgroup2

 }

 user=user1 { <- (3)

 permit pjstat allow all

 permit pjdel allow all

 permit pjhold allow all

 permit pjacl allow all

 }

 user=user1:group3 { <- (4)

 define rscgroup rscgroup3

 }

}

GROUP: CL, RU=rscunit1 {

 group=<def> { <- (5)

 limit ru-use-node 50

 }

 group=group1 { <- (6)

 define pri-g 160

 }

}

ALL: CL, RU=rscunit1 {

 limit ru-accept 500

}

USER: CL, RU=rscunit1, RG=rscgroup1 {

 user=<def> { <- (7)

 permit pjstat allow all

 }

 user=<def>:group1 { <- (8)

 permit pjstat allow g(group1)

 }

 user=user2 { <- (9)

 permit pjstat allow all

 permit pjdel allow all

 permit pjhold allow all

 permit pjacl allow all

 }

}

GROUP: CL, RU=rscunit1, RG=rscgroup1 {

 group=<def> { <- (10)

 define pri-g 200

 }

 group=group3 { <- (11)

 define pri-g 64

 }

}

ALL: CL, RU=rscunit1, RG=rscgroup1 {

 limit ru-accept 200

}

- 122 -

(1) Default user definitions
(2) Default user definitions for the group group2
(3) Specific definitions for the user user1
(4) Specific definitions only if the target group of the user user1 is group3
(5) Default group definitions
(6) Group-specific definitions for the target group group1
(7) Default user definitions
(8) Default user definitions for the target group group1
(9) Specific definitions for the user user2
(10) Default group definitions
(11) Group-specific definitions for the target group group3

(*) The names of defined custom resources are displayed at customrscname1 to customrscname3.

Make job ACL function settings in a resource group in the same way as for job ACL function settings in a cluster. For details, see "3.4.4
Job ACL function settings in a cluster".

3.5.4 Incorporating the job manager exit function and job scheduler exit
function

To use the job manager exit function and the job scheduler exit function, an exit function library must be created and incorporated into the
job operation management function. For details, see "Job manager exit function and Job scheduler exit function" in "Chapter 2 Creating and
Incorporating Hooks" in "Job Operation Software Administrator's Guide for Job Operation Manager Hook."

3.5.5 Incorporating the job resource manager exit function
To use the job resource manager exit function, an exit script must be created and incorporated into the job operation management function.
For details, see "Job resource management exit function" in "Chapter 2 Creating and Incorporating Hooks" in "Job Operation Software
Administrator's Guide for Job Operation Manager Hook."

3.5.6 Customizing the display by the pjstat command
The administrator can set whether to display just some of the items displayed by the pjstat command according to the job operation.

Job information list displayed by pjstat and pjstat -v

The administrator can set whether to display the following virtual node allocation-related items.

VNODE, CORE, V_MEM, V_POL, E_POL, RANK

They are displayed by default. However, these items can be set to not be displayed for job operations that do not use virtual nodes.

[Displayed]

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE VNODE CORE V_MEM

238 job.sh NM RUN user1 11/17 09:01:41 0001:00:00 12:2x3x2 - - -

239 bulk.sh BU RUN user1 11/17 09:01:42 0001:00:00 12:2x3x2 - - -

240 step.sh ST RUN user1 11/17 09:01:42 - - - - -

241 job2.sh NM RUN user1 11/17 09:01:42 0001:00:00 2 - - -

[Not displayed]

$ pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE

238 job.sh NM RUN user1 11/17 09:01:41 0001:00:00 12:2x3x2

239 bulk.sh BU RUN user1 11/17 09:01:42 0001:00:00 12:2x3x2

240 step.sh ST RUN user1 11/17 09:01:42 - -

241 job2.sh NM RUN user1 11/17 09:01:42 0001:00:00 2

- 123 -

This setting has no effect on what is displayed by the -s or -S option of the pjstat command or the contents of the .stats file output by the -
s or -S option of the pjsub command. This information is output according to the job statistical information settings (see "3.4.2 Settings for
job statistical information in a cluster (papjmstats.conf file)").

 See

This function is set with the JOBINFO_PRINT_VNODE_ITEMS item in the command API configuration file pmpjcmd.conf. For details,
see "3.5.8 Command API settings."

Display by the -s or -S option of the pjstat command

The administrator can select which job statistical information items are displayed by the -s or -S option of the pjstat command.

 See

This function is defined in the Command subsection in the papjmstats.conf configuration file of job statistical information. For details, see
"3.4.2.2 Definitions of output items in job statistical information."

3.5.7 Configuring a Job Execution Environment
The following settings are necessary for using a job execution environment: After setting, notify the user of the operation information such
as resource name of the job execution environment and whether SDI/UDI specification is used or not if necessary.

- Preparing an image file

- Registering an image file

- Creating a job execution environment information file

- Creating a container startup configuration file (Docker mode only)

- Setting custom resources

- Setting the job ACL function

- Configuring UDI specifications

- Setting the job manager exit function

 Note

KVM mode is not available on the systems with a single node serving as all of the system management node, compute cluster management
node, and login node.

This section describes these settings.

3.5.7.1 Preparing an image file
To build a job execution environment, an image file appropriate to the job execution environment must be prepared. For the procedure to
build a job execution environment, see "Creating an Image File for a Job Execution Environment" in Appendix "Using Job Execution
Environment" in "Job Operation Software End-user's Guide."

 Note

When you use the Docker mode, make sure enough disk space to store all of the container image is available. The container image must be
stored in disk space where each compute node can access, by default the system volume (/var/lib/docker) of each compute node.
When building the system, determine the size of the system volume so that it has enough space to store all of the container images, or set
a different disk space for the container image.

- 124 -

In particular, when using UDI specification, the container image specified by the end user is generated in conjunction with job execution.
To avoid tightness of the system volume capacity, it is recommened that the container image be stored in a dedicated disk space that is
separate from the system volume.

3.5.7.2 Registering an image file
Docker mode

SDI specifications require that the container image be previously registered with each compute node, such as with docker import
command.
UDI specifications do not require prior registration of the container image. Container images are manipulated by the job resource
manager exit function. For configuring of UDI specifications, see "3.5.7.7 Configuring the job resource manager exit scripts (Docker
mode only)."

KVM mode [PG]

For the SDI specification, put the virtual machine image file on the shared file system used for job execution.
The UDI specification does not require a prior placement of the virtual machine image.

3.5.7.3 Creating a job execution environment information file
Create a job execution environment information file containing information on the job execution environment to be used, and apply it to
the system. The administrator is requested to make the following settings on the active system management node.

1. Creating a job execution environment information file

Create a file named jobenv.conf as the job execution environment information file, and write the information necessary for starting
the job execution environment. In the job execution environment information file, write job execution environment entries that the
job execution user can select. Write the file in JSON format (JavaScript Object Notation). Write the following items as objects in this
file.

 Information

On FX servers, the jobenv.conf file is installed as /etc/opt/FJSVtcs/krm/jobenv.conf when the Job Operation Software is installed.
For the following settings, copy the jobenv.conf file from any FX server to the active system management node, and edit it there.

Table 3.36 Setting items in the job execution environment information file

Item name/key Key Description Default Value

Job execution
environment name

Name Name representing the job execution environment

A character string with 1 to 63 characters consisting of
single-byte alphanumeric characters (lowercase),
hyphen, and underscore can be specified.

However, the first character must be a single-byte
alphanumeric character. The specified name cannot be
a duplicate of any other entry.

Not omissible

Job execution
environment type

Type Type of job execution environment

Specify one of the following character strings
according to the job execution environment:
Normal mode: "docker"
Docker mode: "docker"
KVM mode: "kvm"

KVM mode is available on systems where the user's
home directory is shared between the login and
compute nodes.
However, KVM mode is not available on systems with
a single node serving as all of the system management

Not omissible

- 125 -

Item name/key Key Description Default Value

node, compute cluster management node, and login
node.

Image specification Image Container image used

Normal mode: Specify "tcs-bare".

Docker mode: Specify the container image registered
with Docker on the compute node (for example, with
docker import) in the following format:
[REGISTRY_HOST[:REGISTRY_PORT]/]NAME
[:TAG]
If NeedCustomImage is specified as true, specify “tcs-
bare”

KVM mode: Specifies the absolute path name of the
virtual machine image file placed on the shared file
system used for job execution.

Not omissible

Whether to use
UDI pecifications

NeedCustomImage Whether to use UDI specifications

true: Use the job execution environment image
specified in the pjsub command at the job submission
time (*1)

false: Use the container image specified in Image

false

Startup
configuration file

Conf Absolute path to the configuration file containing
startup options for the job execution environment (*2)

This item is supported only in Docker mode.

(*3)

Startup
timeout time

Timeout Timeout time for startup processing of the job
execution environment

Specify a decimal number in seconds.

In normal or Docker mode, this item is invalid.

146

Comment Comment Comment on the entry None

(*1)
For details on how to specify this in the pjsub command, see "Specifying a job execution environment" in "Chapter 2 Job Operation
Procedures" in "Job Operation Software End-user's Guide."

(*2)
For the detailed format of this configuration file, see "3.5.7.4 Creating a container startup configuration file (Docker mode only)."
It is the administrator's own responsibility to fully understand the specifications of each job execution environment and to make this
setting. After setting, distribute this configuration file to each compute node.

(*3)
If this item is omitted, the default configuration file (/etc/opt/FJSVtcs/krm/docker-image.conf) is applied.

The JSON format is a standard format that is commonly used. Tools for format checks are published as free software (e.g., https://
jsonlint.com/). We recommend performing a format check in advance with these tools.

The following example shows settings.

[System management node]

cat jobenv.conf

[

 {

 "Name" : "docker1", <- Docker mode settings

 "Type" : "docker",

 "Image" : "image1"

 },

 {

- 126 -

https://jsonlint.com/
https://jsonlint.com/

 "Name" : "kvm1", <- KVM mode settings

 "Type" : "kvm",

 "Image" : "/var/images/kvm.img"

 },

 {

 "Name" : "UDI1", <- UDI specification settings

 "Type" : "docker", in Docker mode

 "NeedCustomImage" : true,

 "Image" : "tcs-bare"

 }

]

2. Setting permissions for the job execution environment information file

Set permissions for the job execution environment information file as follows.

[System management node]

chmod 0600 jobenv.conf

3. Distributing the job execution environment information file

Distribute the job execution environment information file to the target compute nodes.

[System management node]

pmscatter -c cluster -p -n NodeID jobenv.conf /etc/opt/FJSVtcs/krm/jobenv.conf

4. Reflecting the job execution environment information file

Restart the compute nodes that were the target in the previous step.

1. Isolate the compute nodes.

[System management node]

paclstmgr -c cluster scope --disable

(*) scope : scope option

2. Check the status.

Confirm state transitions by the target nodes to "Disable" in the STATUS field and "Manual" in the REASON field.

[System management node]

pashowclst -c cluster -v scope

(*) scope : scope option

3. Transition the compute nodes to software maintenance mode.

[System management node]

paclstmgr --soft-mainte -c cluster scope

(*) scope: scope option

4. Check the status.

Confirm state transitions by the target nodes to "Disable" in the STATUS field and "SoftMaintenance" in the REASON field.

[System management node]

pashowclst -c cluster -v scope

(*) scope: scope option

5. Recover the compute nodes.

Because the job execution environment information file has been distributed, recover the compute nodes by updating the
settings through a cold reboot.

[System management node]

paclstmgr -c cluster scope --recover --cold-reboot

(*) scope: scope option

- 127 -

6. Incorporate the compute node into operation.

[System management node]

paclstmgr -c cluster scope --enable

(*) scope : scope option

3.5.7.4 Creating a container startup configuration file (Docker mode only)
Docker mode requires a startup configuration file (The file indicated by the item Conf in the job execution environment information file
jobenv.conf). The following describes the necessary modifications to the default startup configuration file, docker-image.conf, and how to
create a new startup configuration file.

[Modifying the default startup configuration file, docker-image.conf]

The default startup configuration file is installed on each compute node as /etc/opt/FJSVtcs/krm/docker-image.conf. Administrator must
first add the following mount point to the "HostConfig" item Bindings in the startup configuration file docker-image.conf. Otherwise, the
job will not run correctly in the Docker mode.

- For FX servers

"HostConfig" : {

 "Binds" : [

 "/opt/FJSVxtclanga:/opt/FJSVxtclanga",

 "/dev/shm:/dev/shm",

 "/etc/opt/FJSVtcs/ple:/etc/opt/FJSVtcs/ple",

 "/usr/bin/pjrsh:/usr/bin/pjrsh",

 "/usr/bin/pjshowip:/usr/bin/pjshowip",

 "/usr/bin/plestat:/usr/bin/plestat",

 "/usr/bin/plexec:/usr/bin/plexec",

 "/usr/lib/FJSVtcs/ple:/usr/lib/FJSVtcs/ple",

 "/usr/lib64/libjrm.so.1:/usr/lib64/libjrm.so.1",

 "/usr/lib64/libpel.so.1:/usr/lib64/libpel.so.1",

 "/usr/lib64/libpmix.so:/usr/lib64/libpmix.so",

 "/usr/lib64/libpmix.so.2:/usr/lib64/libpmix.so.2",

 "/usr/lib64/libpmix.so.2.1.14:/usr/lib64/libpmix.so.2.1.14",

 "/usr/sbin/pleio:/usr/sbin/pleio",

 "/usr/sbin/plepmix:/usr/sbin/plepmix",

 "/var/opt/FJSVtcs/ple:/var/opt/FJSVtcs/ple",

 "/var/log/FJSVtcs/ple:/var/log/FJSVtcs/ple",

 "userdir:userdir"

],

 ...

 }

userdir : User area on the host OS (job execution directory for users) (ex. /home)

- For PRIMERGY servers

"HostConfig" : {

 "Binds" : [

 "/dev/shm:/dev/shm",

 "/etc/opt/FJSVtcs/ple:/etc/opt/FJSVtcs/ple",

 "/usr/bin/mpiexec.tcs_intel:/usr/bin/mpiexec.tcs_intel",

 "/usr/bin/pjexe:/usr/bin/pjexe",

 "/usr/bin/pjpbind:/usr/bin/pjpbind",

 "/usr/bin/pjrsh:/usr/bin/pjrsh",

 "/usr/bin/pjshowip:/usr/bin/pjshowip",

 "/usr/bin/plestat:/usr/bin/plestat",

 "/usr/bin/plexec:/usr/bin/plexec",

 "/usr/lib64/libjrm.so.1:/usr/lib64/libjrm.so.1",

 "/usr/lib64/libpel.so.1:/usr/lib64/libpel.so.1",

 "/usr/sbin/pleio:/usr/sbin/pleio",

 "/var/opt/FJSVtcs/ple:/var/opt/FJSVtcs/ple",

- 128 -

 "/var/log/FJSVtcs/ple:/var/log/FJSVtcs/ple",

 "userdir:userdir"

],

 ...

 }

userdir : User area on the host OS (job execution directory for users) (ex. /home)

Copy the startup configuration file docker-image.conf for any compute node to the working directory of the system management node,
modify it, and distribute it on each compute node.

 Note

Do not modify the startup configuration file docker-image.conf on compute nodes except for the above.

[Creating new startup configuration file]

If you create a new startup configuration file, copy and modify the default startup configuration file, docker-image.conf.

1. Copy a default startup configuration file docker-image.conf

Copy a default startup configuration file (/ etc/opt/FJSVtcs/krm/docker-image.conf) from a compute node to any working directory
on the system management node with a different name.

2. Add the mount points

Add the mount points that need to be referenced from within the container to the copied startup configuration file. Add the necessary
mount points to the list of mount points written in "Binds."
By default, directories on the host OS cannot be referenced. Therefore, the following mount points must be set;

- Device files (under /dev) and other files that need to be referenced according to the job

Also, perform the configuration shown in [Modifying the default startup configuration file, docker-image.conf] above.

The following example sets all device files so that they can be referenced.

"HostConfig" : {

 "Binds" : [

 ...

 "/dev:/dev"

],

 ...

 }

 See

The format of the container startup configuration file is the same as in the API specifications for a Docker API create request. For the
detailed format, see https://docs.docker.com/develop/sdk/, for example.

3. Set device file permissions

Permissions must be set for device files. Add specifications to "Devices" as follows. In this example, /dev/sda1 can be referenced
from within the container.

"Devices" : [{

 "PathOnHost" : "/dev/sda1",

 "PathInContainer" : "/dev/sda1",

 "CgroupPermissions" : "mrw"

 }],

Make settings as follows so as not to restrict permissions on the device files but to allow access to all devices.

- 129 -

https://docs.docker.com/develop/sdk/

"Devices" : [{

 "PathOnHost" : "/dev",

 "PathInContainer" : "/dev",

 "CgroupPermissions" : "mrw"

 }],

 Note

Ensure that the path specified for the PathOnHost item exists on the compute node. If a path that does not exist on the compute node
is specified, the job fails and cannot run successfully.

4. Deploy the startup configuration file to the compute nodes

Deploy the modified startup configuration file to each compute node. The destination path is the path set to the Conf item in the
jobenv.conf job execution environment information file.

[About configuring mount points for PRIMERGY servers]

For PRIMERGY servers, by using the "{{ keyword }}" format for a mount point instead of a fixed character string, you can apply values
(dynamic parameters) appropriate to the environment at the job runtime.

The current directory "{{ PJM_JOBDIR }}" at the start of job script execution and the group name "/fefs/{{ PJM_GROUP }}" of the job
execution user are set as a mount point in the following example.

...

"HostConfig" : {

 "Binds" : [

 "{{ PJM_JOBDIR }}:{{ PJM_JOBDIR }}",

 "/fefs/{{ PJM_GROUP }}:/fefs/{{ PJM_GROUP }}"

],

 ...

}

...

For the above setting, the keywords are replaced as follows at container startup.

...

"HostConfig" : {

 "Binds" : [

 "/fefs/user1:/fefs/user1",

 "/fefs/group1:/fefs/group1"

],

}

...

The following table lists available keywords.

Table 3.37 Keywords that can be specified for the Binds setting item

Keyword Description Example of replacement

PJM_JOBNAME Job name job.sh

PJM_JOBDIR Path to the current directory when job
script execution begins

/fefs/user1/

PJM_O_HOME Environment variable HOME of the user
executing the pjsub command

/home/user1/

PJM_O_NODEINF Path to the allocated node list file /fefs/user1/d0000000100_nodeinfo

PJM_RSCGRP Resource group name specified in the -L
rscgrp (or -L rg) option of the pjsub
command

group_a

- 130 -

Keyword Description Example of replacement

PJM_RSCUNIT Resource unit name specified in the -L
rscunit (or -L ru) option of the pjsub
command

rscunit_pg01

PJM_UID User ID of the job execution user 1000

PJM_USER User name of the job execution user user1

PJM_GID Group ID of the job execution user 1000

PJM_GROUP Group name of the job execution user user1

PJM_APPNAME Character string specified in the --
appname option of the pjsub command
However, if ".." is specified, which
indicates the directory that is one level
higher, an error occurs.

app1

PJM_FSNAME Character string specified in the --fs
option of the pjsub command

However, if ".." is specified, which
indicates the directory that is one level
higher, an error occurs.

fs1

PJM_CUSTOM_RESOURCES.jobenv Value of the jobenv custom resource
specified in the -L option of the pjsub
command

docker

PJM_JOBENV_DOCKER_IMAGE Container image name specified by a
user

centos

 Note

This specification method that uses dynamic parameters is not available by default. To use it, configure settings as described in "Appendix E
How to Use Dynamic Parameters in Startup Configuration Files (Docker Mode) [PG]."

3.5.7.5 Setting custom resources
Define the job execution environment name defined in the job execution environment information file as a custom resource (custom
resource name: jobenv). For details on custom resources, see "2.5.5 Job scheduling function using custom resources" and "3.5.1.6 Custom
resource settings."

1. Editing the pmpjm.conf file

Specify the following as definition items in the CustomResource subsection.

Item name Specification

Name jobenv

ValueType string

Value Job execution environment name defined in the job execution environment information file
(jobenv.conf)

The following example shows settings.

[System management node]

vi /etc/opt/FJSVtcs/Rscunit.d/resourceunit/pmpjm.conf

ResourceUnit {

 ResourceUnitName = resourceunit

 ...

- 131 -

 CustomResource {

 Name = jobenv

 ValueType = string

 Value = linux,docker1,kvm1,UDI1

 }

 ...

}

2. Reflecting the pmpjm.conf file

Execute the following command.

[System management node]

pmpjmadm -c cluster --set --rscunit resourceunit

3.5.7.6 Setting the job ACL function
The job ACL function can restrict specification of a job execution environment name defined as a custom resource and set default values.
For details on the job ACL function, see "2.4.1.2 Job ACL function,""3.4.4 Job ACL function settings in a cluster," and "3.5.3 Job ACL
function settings in a resource unit."

1. Editing the configuration file of the job ACL function

Set specifiable types and default values for the job execution environment in the "select custom-jobenv" definition item.

The following example shows settings.

[System management node or Compute cluster management node]

vi jobacl.txt

USER: CL, RU=resourceunit, RG=resourcegroup {

 user=<def> {

 select custom-jobenv linux,docker1,kvm1,UDI1 linux

 }

}

2. Reflecting job ACL definitions

Execute the following command.

[System management node or Compute cluster management node]

pmjacladm -c cluster --set -f jobacl.txt

3.5.7.7 Configuring the job resource manager exit scripts (Docker mode only)
In addition to setting the item NeedCustomImage to true in the jobenv.conf file, you must set the job resource manager exit scripts to take
advantage of UDI specification in Docker mode. The administrator must perform the following tasks on the active system management
node.
For KVM mode, configuring the job resource manager exit scripts is not necessary.

 Note

Note the following for the configuring:

- This setting uses the job resource manager exit function (prealloc and postfree scripts). In UDI specifications, the job resource manager
exit function operates container images. For details on the job resource manager exit function, see "Job Operation Software
Administrator's Guide for Job Operation Manager Hook."

- Before using UDI specifications, be sure to thoroughly read the notes written in "4.3.2 Job Execution Environment Customization
Function."

- If the environment variable PJM_JOBENV_DOCKER_IMAGE is specified outside of the UDI specifications after these settings are
made, jobs end with job end code (PJM code) 27 and then transition to the ERROR state.

- 132 -

- Only one job resource manager exit script for UDI specification can be registered per resource unit. If you registered more than one exit
script, the job ends with job end code (PJM Code) 27 and transitions to the ERROR state.

Creating job resource manager exit scripts to be used when specifying UDI

When UDI is specified, in Docker mode, the job resource manager exit script performs the necessary operations.

Be sure to use the prealloc and postfree scripts to register with the job resource manager exit function by copying the sample files
prealloc.docker-udi and postfree.docker-udi under /etc/opt/FJSVtcs/krm/sample/, respectively. Also, do not modify these sample scripts
except for the path settings of the commands described in the note below and the settings listed below.

 Note

The sample script shows the paths of the commands to use in the script. Ensure that these commands are available on the compute node.
If the path of the command is different from the path used on the compute node, change the following path specification in the script as
appropriate.

PYTHON='/usr/bin/python'

DOCKER='/usr/bin/docker'

SYSTEMCTL='/usr/bin/systemctl'

CAT='/usr/bin/cat'

TIMEOUT='/usr/bin/timeout'

FILE='/usr/bin/file'

PRINTF='/usr/bin/printf'

CURL='/usr/bin/curl'

In the prealloc script, the following settings are available.

Selecting a container specification method

Set "IMAGE_TYPE_NUM" in the prealloc script as follows according to the container specification method selected at the job
submission time.

- Exported tar file specified

IMAGE_TYPE_NUM=0

Specify the absolute path to an image in the file format generated by the docker export command, etc. at the job submission time.

- Repository specified

IMAGE_TYPE_NUM=1

Specify the repository registered in advance with the repository containing jobs at the job submission time.
For the repository specified, add authentication settings (docker login command, etc.) according to the authentication settings of the
prepared repository after the following code in the prealloc script.

###

Add Authentication Settings here if needed.

###

Setting of the Image Operation Timeout

The prealloc script you edit in above already contains a timeout value (Units: Seconds) for the docker command's image operations.

DOCKER_IMPORT_TIMEOUT_SEC=600

DOCKER_PULL_TIMEOUT_SEC=600

DOCKER_TAG_TIMEOUT_SEC=600

DOCKER_RMI_TIMEOUT_SEC=600

The variable "DOCKER_XXXX_TIMEOUT_SEC" refers to the timeout value of the image operation "docker XXXX" in the docker
command.
If the image you are using is large and the prealloc script processing causes a timeout for the docker image operation, change the settings

- 133 -

for DOCKER_IMPORT_TIMEOUT_SEC and DOCKER_PULL_TIMEOUT_SEC as necessary.
The timeout value (the item ExitFuncTimer in the pmrsc.conf file) for the execution time of the prealloc script must be greater than the
setting of DOCKER_IMPORT_TIMEOUT_SEC and DOCKER_PULL_TIMEOUT_SEC.
The followings are recommended settings.

Table 3.38 The recommended timeout values for the image operation with the docker command

Image Size Settings for DOCKER_IMPORT_TIMEOUT_SEC,
DOCKER_PULL_TIMEOUT_SEC

Setting for ExitFuncTimer

1GiB or less 600 seconds (Default value) 610 seconds

2GiB or less 1200 seconds 1210 seconds

More 1790 seconds 1800 seconds (*)

(*) The maximum value for ExitFuncTimer is 1800 seconds.

Registering the job resource manager exit script

Register the job resource manager exit scripts for Docker mode (prealloc and postfree script) edited in the above to the job resource manager
exit function.
For details on the job resource manager exit function, see "Job Operation Software Administrator's Guide for Job Operation Manager
Hook."
The job ACL function can restrict specification of a job execution environment name defined as a custom resource and set default values.
For details on the job ACL function, see "3.4.4 Job ACL function settings in a cluster" and "3.5.3 Job ACL function settings in a resource
unit."

1. Placing the exit script

Place the exit script in any directory on the active system management node.

2. Setting the job resource manager exit function in the pmrsc.conf file

Set the function by writing settings in the ExitFunc subsection in the pmrsc.conf configuration file of the job resource manager. If
multiple ExitFunc subsections are set, give the highest priority to the exit script so that it will definitely be executed regardless of the
results of the subsections.

The following example shows settings in the pmrsc.conf file.

[System management node]

cat /etc/opt/FJSVtcs/Rscunit.d/resourceunit/pmrsc.conf

Cluster {

 ClusterName = cluster

 ResourceUnit {

 ResourceUnitName = resourceunit

 ExitFunc {

 ExitFuncTimer = 60 <- Timeout value

 ExitFuncScriptDir = /work/udi <- Directory where exit script is placed

 ExitFuncPri = 100 <- Priority of exit script

 }

 }

}

 See

For details on how to set the job resource manager exit function in the pmrsc.conf file, see "Job Operation Software Administrator's
Guide for Job Operation Manager Hook."

3. Incorporating into job operations

Reflect the set contents of the pmrsc.conf file in the system with the pmrscadm command. Perform this work from the system
management node.

- 134 -

[System management node]

pmrscadm --set --rscunit resourceunit

3.5.7.8 Setting the job manager exit function
The pjmx_quejob() exit function of the job manager exit function can check end-user specified environment variables
(PJM_JOBENV_DOCKER_IMAGE and PJM_JOBENV_KVM_IMAGE) to determine whether to permit acceptance of a job.

To check the environment variables, the administrator is requested to create and register an exit function as necessary by following the
procedure below.

 See

For details on the job manager exit function, see "Job Operation Software Administrator's Guide for Job Operation Manager Hook."

1. Creating the source file of the pjmx_quejob() exit function

Modify the source file (/usr/src/FJSVtcs/pjm/hook/pjmx/pjmx_quejob.c) of the pjmx_quejob() exit function to create a process for
checking environment variables.

Environment variables can be referenced with the job information acquisition function pjmx_getinfo_envdata(). In addition, upon
detection of an error, the job information setting function pjmsx_setinfo_reason() can set a reason for the error.

2. Installing an exit function library

Create and install an exit function library on the active compute cluster management node.

The following example shows the steps.

1. Create a Makefile.

Using the sample Makefile as a reference, specify the pjmx_quejob.o object file corresponding to the source file created in
PJMXLIBOBJS, and specify an exit function library name in PJMXLIBNAME. In the following example, the exit function
library name is libpjmx-jobenv.so.

PJMXLIBOBJS = \

 pjmx_quejob.o

PJMXLIBNAME = pjmx-jobenv (*) File name for created exit library: libpjmx-jobenv.so

 Note

Give a unique name to the exit function library to avoid duplication with other exit library names.

2. Install the exit function library.

Create the exit function library as follows. Perform this work with root privileges.

[Active compute cluster management node]

make install

3. Incorporating the exit function library into job operation

To incorporate the installed exit function library into job operation, configure the pmpjm.conf file and execute the pmpjmadm
command on the system management node.

1. Set the job manager exit function in the pmpjm.conf file.

Set the function by writing settings in the ExitFunc subsection in pmpjm.conf. The following example shows settings.

[System management node]

cat /etc/opt/FJSVtcs/Rscunit.d/resourceunit/pmpjm.conf

ResourceUnit {

 ResourceUnitName = resourceunit

 ExitFunc {

- 135 -

 ExitFuncLib = libpjmx-jobenv.so <- Specifies exit function library

 ExitFuncPri = 127 <- Execution priority of exit function

 ExitFuncType = pjm <- Type of exit function

 }

}

 Note

Specify pjm in the ExitFuncType type of the exit function.
For details on how to set the exit function in the pmpjm.conf file, see "Job Operation Software Administrator's Guide for Job
Operation Manager Hook."

2. Incorporate it into job operations.

Incorporate the installed exit function library into job operations by using the pmpjmadm command to reflect the contents of
the pmpjm.conf file to the system.

[System management node]

pmpjmadm -c clstname --set --rscunit unit1

3.5.7.9 Note on the setting time
Compute nodes must be restarted to reflect updates of the job execution environment information file jobenv.conf.

3.5.7.10 Use of Singularity [PG]
Singularity is container virtualization software for HPC. The Job Operation Software can execute Singularity in Docker mode in a job
execution environment (only for PRIMERGY server). To do so, the job execution environment and custom resources must be configured.
For details, see "Appendix D Settings for Using Singularity [PG]."

3.5.8 Command API settings
The following settings relate to using the command API:

- Authority for using the command API

- Parameters relating to command API operations

The execute command-api definition item of the job ACL function controls whether to permit use of the command API. For details on the
setting method, see "3.4.4 Job ACL function settings in a cluster."

If you want to change parameters relating to command API operations, edit the pmpjcmd.conf files on the login, compute cluster
management, and system management nodes that can use the command API.

/etc/opt/FJSVtcs/pjm/pmpjcmd.conf

 Information

There is no pmpjcmd.conf file when the Job Operation Software is installed. If you want to change the default settings, create a new file or
copy and edit the sample file (/etc/opt/FJSVtcs/sample/pmpjcmd.conf), and place the file in the above path on the node where the settings
should be applied.

The contents of the pmpjcmd.conf file are updated every time a command that uses a command API function is executed. The command
API loads configuration files from the called nodes, so if you want each node to have the same set values, make sure that configuration files
on the respective nodes have the same contents.

Set the pmpjcmd.conf file permissions as follows:

- Owner/group: root/root

- File mode: 0644

- 136 -

The format of the pmpjcmd.conf file is as follows.

OwnNode {

 Parameter=Value

 ...

}

You can set the following parameters.

Table 3.39 Parameters specifying command API operations

Parameter Description

EXECUTE_INTERVAL Minimum time interval between operation requests from the command API to the
job operation management function (milliseconds)

If the parameter is not set, the value of the compute cluster management node is
applied. If no value is set for the compute cluster management node too, the default
value of 100 milliseconds is applied.

The administrator sets this parameter to restrict the time interval between calls to
prevent numerous operation requests from being issued to the job operation
management function in a short time.
If the time specified in this parameter has not elapsed since the the command API
function pjcmd_operation_execute() was last called to issue an operation request to
the job operation management function, requests sleep within the function until the
time has elapsed.
This parameter does not restrict the interval between calls from other than the
pjcmd_operation_execute() function.
The upper limit is 1,000 (milliseconds). If 0 is specified, operation requests are
issued without waiting.

MAX_JOB_RESULT_NUM Upper limit on the number of jobs included in job operation results

If the parameter is not set, the value of the compute cluster management node is
applied. If no value is set for the compute cluster management node too, the default
value of 100,000 jobs is applied.

The job operation API (submit, delete, hold, release, send signal, wait for
completion, and change job parameter) returns the results of individual jobs.
The command API can instruct that the results of jobs, including non-existing jobs,
be returned when a range of job IDs is specified as an operation target.
In these cases, the amount of information increases, and traffic with the job
operation management function may increase. The administrator sets this
parameter to restrict the amount of operation result data.
If jobs beyond this value are included as operation targets, the operations are
performed but the results of extra jobs are not returned.
The operation results of jobs are returned in order from the smallest job ID until the
number of jobs reaches the maximum MAX_JOB_RESULT_NUM value.

JOBINFO_PRINT_VNODE_ITEMS Specifies whether to display virtual node allocation-related items (*) when the job
information level is 0 or 1 in the job information acquisition function
pjcmd_jobinfo_print_resp().

Use this parameter when you do not want to display unnecessary items in systems
that do not use virtual node allocation.

yes: Display (Default)
no: Do not display

(*) VNODE, CORE, V_MEM, V_POL, E_POL, RANK

- 137 -

3.6 Setting Log Rotation
The log rotation function (logrotate) of the OS backs up the log files and job statistic information files that are output while the job operation
management function operates because the size of the files increases as time elapses.

If you need to change the amount of logs saved for a long period of time to investigate errors, edit the following configuration files. The
setting can be changed during operation. For details on how to write a configuration file, see the logrotate command manual of the OS.

pjmd log file (/var/log/FJSVtcs/pjm/pjmd.log)

The pjmd log file is a log file output by the daemon (pjmd) of the job manager function.
This file is checked once every hour. If the size exceeds 50 MB, the file is backed up. The files for a maximum of 10 generations are
stored in the /var/opt/FJSVtcs/pjm directory.
To change backup settings, edit the /etc/opt/FJSVtcs/logrotate.d/pjmlogd file on the compute cluster management node.

pjsd log file (/var/log/FJSVtcs/pjm/pjsd*.log)

The pjsd log file is a log file output by the daemon (pjsd) of the job scheduler function.
This file is checked once every hour. If the size exceeds 20 MB, the file is backed up. The files for a maximum of 10 generations are
stored in the /var/opt/FJSVtcs/pjm directory.
To change backup settings, edit the /etc/opt/FJSVtcs/logrotate.d/pjslogd file on the compute cluster management node.

Job statistic information file (/var/opt/FJSVtcs/shared_disk/pjm/jsti/jobinfo)

This file contains information, including resource usage by jobs and various limit values.
The file is backed up once a day, and the /var/opt/FJSVtcs/shared_disk/pjm/jsti directory on the compute cluster management node
stores the files from the past 31 days.

To change backup settings, edit the /etc/opt/FJSVtcs/logrotate.d/pjmd file on the compute cluster management node. Edit the file so that
it is inclded in the rotation when the path of the job statistical information file was changed or added (See "3.4.2.3 Path to a job statistical
information file").

jobrscusage file (/var/opt/FJSVtcs/prm/jobrscusage)

This file contains job statistical information collected periodically by the job resource manager.
The file is checked once a day, and it is backed up if the size exceeds 100 MB. The /var/opt/FJSVtcs/prm directory stores up to 10
generations of files.
To change backup settings, edit the /etc/opt/FJSVtcs/logrotate.d/jobrscusage file on the compute cluster management node.

 Note

Do not change the location of any log files other than the job statistics information file.

The following table shows the rate of increase in the file size. Refer to the table when estimating the check interval of the log size or the
number of stored generations.

Table 3.40 Increase rate of a log file

File Node Increase rate

pjmd log file
pjsd log file

Compute cluster
management node

The rate of increase in the log file size varies depending on the job operation
status and the set log level (Item 'LogLevel') in the papjm.conf and
pmpjm.conf files.
Assuming that the number of jobs submitted per hour is n, the rate of
increase in the log file size per hour is as follows:

- Log level 1: 0.03*n MB

- Log level 2: 0.14*n MB

- Log level 3: 0.49*n MB

Job statistic information
file

Compute cluster
management node

Assuming that the number of jobs submitted per day is n, and an average of
y compute nodes is used per job, then the rate of increase in the job statistic
information file size per day is (6.4+1.6*y)*n (KB).

- 138 -

File Node Increase rate

jobrscusage file Compute cluster
management node

Assuming that the value of the RscWatchInterval item in the mrsc.conf
configuration file of the job resource manager is t, the number of jobs
executed per hour is n, and the average number of compute nodes used per
job is y, then the rate of increase in the jobrscusage file size per hour is:

{(280*n)+(420*n*y)}*60/t Bytes

 Note

If the setting is changed to increase the amount of logs that can be stored, it may exceed the disk capacity stated in the Software Description.
The Job Operation Software may not operate normally when the disk space is insufficient.

3.7 Procedure for avoiding disturbance to job execution
performance

This section describes how to avoid disturbances that affect job performance.

Disturbance due to periodic collection of job statistical information by the job resource management
function

The periodic collection of job statistical information by the job resource management function can affect the execution performance of a
job.

To prevent this, set the RscWatchInterval in the parsc.conf and pmrsc.conf to 0 to stop the periodic collection of job statistical information
for running jobs. See "3.4.3.1 Settings for job resource management function in a cluster","3.5.2.1 Settings for job resource management
function in a resource unit" for more information.

Note that with this setting, some of the job statistical information (CPU time, memory usage, number of execution cycles, etc.) will not be
available to the pjstat -s/-S command until the end of the desired job.

Disturbance due to OS memory recovery processing

If the OS memory recovery process occurs during the execution of a job, it may cause disturbance to the execution performance of the job.
To prevent this, you can use the job resource management exit function to free the memory cache. For details, refer to "Creating exit scripts"
in the chapter " Creating and Incorporating Hooks" of the manual "Job Operation Software Administrator's Guide for Job Operation
Manager Hook."

- 139 -

Chapter 4 Operation with the Job Operation Management
Function

This chapter describes job operations with the job operation management function.

Basically, the job operation administrator performs job operations, though only the cluster administrator can perform some parts of job
operations.

Each of these administrators performs the following work related to job operations.

Cluster administrator

- Cluster state monitoring

- Cluster deadline scheduling management

- Changing job ACL function settings for a cluster

- Saving ended job script files

Job operation administrator

- Resource unit state monitoring

- Job state monitoring

- Job operations

- Job resource monitoring

- Submitting jobs and suppressing and canceling job execution

- Monitoring and changing fair share values

- Changing job ACL function settings for a resource group

- Changing the job submission range and job execution range

- Displaying job statistical information

The following sections describe the procedures for this work.

4.1 Operational Work of the Cluster Administrator
This section describes work of the cluster administrator.

The cluster administrator mainly performs the following work:

- Cluster state monitoring

- Cluster deadline scheduling management

- Changing job ACL function settings for a cluster

- Saving ended job script files

 Information

The examples in this section contain commands specifying a cluster name in the -c option for operation on the system management node.
Write the name in this way. However, if the environment variable PXMYCLST specifies the cluster name, you can omit specification of
the cluster name in the -c option during actual operation.

4.1.1 Cluster state monitoring
You can check the states of nodes and services for cluster state monitoring by using the pashowclst command.

- 140 -

For details, see "Displaying System Configuration Information" in "Chapter 3 Details of the System Management Function" in "Job
Operation Software Administrator's Guide for System Management."

4.1.2 Cluster deadline scheduling management
Use the padeadline command on the system management node or the compute cluster management node to set and check deadline
schedules.

For details, see the man page for the padeadline command.

Setting a deadline schedule

When an FX server and a PRIMERGY server are included in the same cluster, it is necessary to specify by option which of the FX server,
or PRIMERGY server is to be the target.

Specify one of the following options:

- Option for FX server: --ph

- Option for PRIMERGY server: --pg

The necessity to specify one of these options depends on the cluster configuration as follows.

Cluster configuration FX server PRIMERGY server Specification of

--ph or --pg option

One cluster Included Included Required

Included Not included Not required

Not included Included Not required

Multiple clusters Included Included Not required (*)

Included Not included Not required

Not included Included Not required

(*)In cases where there are multiple clusters (in an environment consisting of two clusters, one being an cluster of FX servers, and the other
one being a cluster of PRIMERGY servers), there is no need to specify the --ph or --pg option.

 Note

- A deadline schedule cannot be set for a resource group (*) with node resources defined based on the number of nodes or a ratio of the
number of nodes. If a deadline schedule needs to be set for the resource group, set the deadline schedule for the resource unit to which
the resource group belongs.
(*) ResourceGroupNode item in the pmpjm.conf file (See "3.5.1.2 Resource group settings.")

- The compute nodes contained in a resource group defined when the padeadline command is executed are subject to the deadline
schedule even if the resource group range is changed after the deadline schedule is set. After changing the range of a resource group,
delete the set deadline schedule from the resource group, and set the deadline schedule again.

- Jobs in the following state are forcibly terminated after the start of the deadline schedule:
RUNNING-A, RUNNING, RUNNING-E, RUNNING-P, RUNOUT.

The following is an example of setting a deadline schedule for cases where the FX server and PRIMERGY server are both included in one
cluster.

[For FX server]

This setting excludes the resources in the entire range of the x- and y-axes (this always includes the entire z-axis) from the job resources
that can be selected from 00:00:00 on August 20, 2019 to 23:59:59 on August 21, 2019.
Specify --ph as an option of the padeadline command.

- 141 -

[System management node or Compute cluster management node]

padeadline -c clstname --ph --coord all,all --period 'start=20190820,end=20190821'

 Note

- If the --cmu option is specified when the padeadline command is executed, it sets the deadline schedule for all the compute nodes
included in the CMU of the specified node.
For details on the options that specify the setting range for other deadline schedules, see the man manual of the padeadline command.

- For resource groups that can use jobs that are allocated in node units in Mesh mode, when the deadline schedule is set by specifying
nodes, the jobs allocated in node units in Mesh mode may be affected if the specified nodes stop. In this case, set the deadline
schedule for all nodes in Tofu units including the stopped nodes.

- Note the following during hardware maintenance of FX servers belonging to a resource unit that allows the submission of non-
contiguously allocated jobs: To set a deadline schedule for the compute nodes to be maintained, you need to execute the padeadline
command with the --ic option specified. This option prevents the allocation of new jobs that are using the interconnect installed on
any of the compute nodes to be maintained as a communication path.

- Enabling the setting that dynamically changes a Tofu interconnect communication path extends the range of nodes that can be used
as a communication path. Therefore, even when deadline scheduling is set so that a node should not be the communication path of
a job (padeadline --ic), the node may fall in the range of nodes for a running job.
In that case, the padeadline command causes an error, and the deadline schedule cannot be set. If the error occurs, use the -v 3 option
of the pjshowrsc command to check the node used as the communication path of the running job. Also, review the nodes covered
by the deadline schedule. Note that the -v 3 option of the pjshowrsc command also displays nodes that can be used as alternative
routes.

[For PRIMERGY server]

This setting excludes the node IDs 0x41FF0000 to 0x41FF0009 and 0x41FF0020 to 0x41FF0029 from the job resources that can be
selected from 00:00:00 on August 20, 2019 to 23:59:59 on August 21, 2019.
Specify --pg as an option of the padeadline command.

[System management node or Compute cluster management node]

padeadline -c clstname --pg --n 0x41FF0000-0x41FF0009,0x41FF0020-0x41FF0029 \

 --period 'start=20190820,end=20190821'

Displaying the set deadline schedules

[System management node or Compute cluster management node]

padeadline -c clstname --show

NO. TYPE START END TARGET

3 ru 2019-08-06 00:00:00 2019-08-06 23:59:59 unit0

5 f 2019-08-20 00:00:00 unlimited nodelist1

2 n 2019-08-27 00:00:00 2019-08-27 23:59:59 InterConnect 0x01010010

1 bg 2019-09-06 00:00:00 2019-09-06 23:59:59 0x0103

The following table lists each item and its meaning.

Item Description

NO. Deadline schedule-specific number given when the deadline schedule is set

TYPE Type of the target resource specified when the deadline schedule is set.
The meaning of the output character string is listed below.

Output character string Target resource specification method

a -a

ng --nodegrp

bg [FX] --bootgrp

- 142 -

Item Description

ru --rscunit or --ru

rg --rscgrp or --rg

cmu [FX] --cmu

n -n

f -f

TARGET Whether the use of the resource specified by TYPE and the use of the interconnect are suppressed
(If the use of the interconnect installed on the resource specified by TYPE is also suppressed, "InterConnect" is
displayed in addition to the resource information.)

START Start date and time of the target period of the deadline schedule

END End date and time of the target period of the deadline schedule

Deleting a set deadline schedule

The deadline schedule number 2 is canceled.

[System management node or Compute cluster management node]

padeadline -c clstname --cancel 2

Changing a set deadline schedule

To change a resource or time in a set deadline schedule, delete the set deadline schedule once and then set a new deadline schedule.

4.1.3 Changing job ACL function settings for a cluster
Use the pmjacladm command on the system management node or the compute cluster management node to check and change job ACL
function settings.

For details, see the man page for the pmjacladm command.

To display all the definition sections and job ACL configuration definitions registered in the job ACL, specify the --show option in the
pmjacladm command, and execute the command with cluster administrator privileges. An example is shown below.

[System management node or Compute cluster management node]

pmjacladm -c clstname --show '*'

#

JOBACL definition - clst1

[*]

#

USER: CL {

 user=<def> { # last update 2019-03-01 19:26:33

 define rscunit rscunit1

 define rscgroup rscgroup1

 }

}

USER: CL, RU=rscunit1 {

 user=<def> { # last update 2019-03-01 19:26:33

 limit ru-accept unlimited

 limit ru-run-job unlimited

 joblimit node-cpu - unlimited unlimited

 joblimit elapse 1 24:00:00 24:00:00

 joblimit node 1 80000 1

 joblimit node-mem 1M 10G 2G

 }

 user=<def>:group2 { # last update 2011-03-01 19:26:33

 define rscgroup rscgroup2

- 143 -

 }

 user=user1 { # last update 2019-03-01 19:26:33

 permit pjstat allow own

 permit pjstat + allow g(group1)

 permit pjdel allow own

 permit pjdel + allow g(group1)

 }

}

USER: CL, RU=rscunit1, RG=rscgroup2 {

 user=user2 { # last update 2019-03-01 19:26:33

 execute pjsub disable

 }

 user=user3 { # last update 2019-03-01 19:26:33

 permit pjhold allow own

 permit pjrls allow own

 }

 user=user3:group2 { # last update 2019-03-01 19:26:33

 define ingroup-pri 128

 }

}

GROUP: CL, RU=rscunit1 {

 group=group2 { # last update 2019-03-01 19:26:33

 define pri-g 160

 }

}

To display the job ACL values that have been actually applied, use the pmjacladm command with the --show option and --apply option. For
the --apply option, you need to specify a resource unit, resource group, user, and group.

 Note

The actual display of definitions is different in the following points. To use the displayed content as definitions, you need to do some editing
such as by adding appropriate sections.

- For the application range, resource units and resource groups are displayed. Exclusive defined items of the cluster and exclusive
resource unit items are also output.

- For the user definition targets, user=uname:gname is displayed, and the items for which group-related specification
(user=<def>:gname, user=uname:gname) is not allowed are also displayed.

 Information

When executing the pmjacladm command on a compute cluster management node, you can omit specification of a cluster name in the -c
option.

The following example displays the values applied to the user user1 and the group group1.

[System management node or Compute cluster management node]

pmjacladm -c clstname --show \

--apply 'USER: CL, RU=rscunit1, RG=rscgroup1 { user=user1:group1 }'

#

JOBACL applied result - clst1

[USER: CL, RU=rscunit1, RG=rscgroup1 { user=user1:group1 }]

#

- 144 -

USER: CL, RU=rscunit1, RG=rscgroup1 {

 user=user1:group1 {

 limit ru-accept <RU-> unlimited

 limit ru-run-job <RU-> unlimited

 limit ru-use-node <---> unlimited

 limit ru-interact-accept <---> unlimited

 limit ru-interact-run-job <---> unlimited

 limit ru-interact-use-node <---> unlimited

 limit ru-use-core <---> unlimited

 limit ru-interact-use-core <---> unlimited

 limit rg-accept <---> unlimited

 limit rg-run-job <---> unlimited

 limit rg-use-node <---> unlimited

 limit rg-interact-accept <---> unlimited

 limit rg-interact-run-job <---> unlimited

 limit rg-interact-use-node <---> unlimited

 limit rg-use-core <---> unlimited

 limit rg-interact-use-core <---> unlimited

 limit ru-accept-allsubjob <---> unlimited

 limit ru-accept-bulksubjob <---> unlimited

 limit ru-accept-stepsubjob <---> unlimited

 limit ru-run-bulksubjob <---> unlimited

 limit rg-accept-allsubjob <---> unlimited

 limit rg-accept-bulksubjob <---> unlimited

 limit rg-accept-stepsubjob <---> unlimited

 limit rg-run-bulksubjob <---> unlimited

 define rscunit <CL-> rscunit1

 define rscgroup <CL-> rscgroup1

 define pri <RUu> 128

 define ingroup-pri <RGug> 100

 (--omitted--)

 }

}

An item application indicator is added between the defined item name and value. The following table lists the displayed content.

Table 4.1 Item application indicators in the user-specific definition section (USER:)

Item application
indicator

Description

<---> Application of a system default value (*)

<CL-> Application from the definition of user=<def> in the cluster definition section

<CL-g> Application from the definition of user=<def>:gname in the cluster definition section

<CLu> Application from the definition of user=uname in the cluster definition section

<CLug> Application from the definition of user=uname:gname in the cluster definition section

<RU-> Application from the definition of user=<def> in the resource unit definition section

<RU-g> Application from the definition of user=<def>:gname in the resource unit definition section

<RUu> Application from the definition of user=uname in the resource unit definition section

<RUug> Application from the definition of user=uname:gname in the resource unit definition section

<RG-> Application from the definition of user=<def> in the resource group definition section

<RG-g> Application from the definition of user=<def>:gname in the resource group definition section

<RGu> Application from the definition of user=uname in the resource group definition section

<RGug> Application from the definition of user=uname:gname in the resource group definition section

(*) The application indicator for the cluster is hidden from users other than the cluster administrator (though the value itself is displayed,
application indicator is displayed "<--->")

- 145 -

Table 4.2 Item application indicators in the group-specific definition section (GROUP:)

Item application
indicator

Description

<---> Application of a system default value (*)

<CL-> Application from the definition of group=<def> in the cluster definition section

<CLg> Application from the definition of group=gname in the cluster definition section

<RU-> Application from the definition of group=<def> in the resource unit definition section

<RUg> Application from the definition of group=gname in the resource unit definition section

<RG-> Application from the definition of group=<def> in the resource group definition section

<RGg> Application from the definition of group=gname in the resource group definition section

(*) The application indicator for the cluster is hidden from users other than the cluster administrator (though the value itself is displayed,
application indicator is displayed "<--->")

Table 4.3 Item application indicators in the All-encompassing definition section (ALL:)

Item application
indicator

Description

<---> Application of a system default value (*)

<CL-> Application from the cluster definition section

<RU-> Application from the resource unit definition section

<RG-> Application from the resource group definition section

(*) The application indicator for the cluster is hidden from users other than the cluster administrator (though the value itself is displayed,
application indicator is displayed "<--->")

To display job ACL settings in a format where the fields are delimited with a delimiter, use the pmjacladm command with the --show option
and --data option. Exercise caution when specifying the delimiter because the list items may contain commas or colons.

The following example displays job ACL function settings with ";" as the delimiter character.

[System management node or Compute cluster management node]

pmjacladm -c clstname --show --data --delimiter ";" '*'

USER:;CL

define;rscunit;rscunit1

USER:;CL;RU=rscunit1

user=<def>

limit;ru-accept;unlimited

limit;ru-run-job;unlimited

joblimit;elapse;1;24:00:00;24:00:00

joblimit;node;1;80000;1

joblimit;node-mem;1M;10G;2G

 (--omitted--)

user=user1

permit;pjstat;allow own

permit;pjstat;+ allow g(group1)

permit;pjdel;allow own

permit;pjdel;+ allow g(group1)

 (--omitted--)

To list the defined items that can be set in the job ACL and display the list in sections, use the pmjacladm command with the --show option
and --items option.

The following example displays, in the form of sections, definition items that can be set by the job ACL function.

[System management node or Compute cluster management node]

pmjacladm -c clstname --show --items

- 146 -

#

JOBACL items list - clst1

#

#USER: CL { <- Exclusive defined items of the cluster

user=<def> {

user=<def>:group {

user=user {

user=user:group {

execute pjstat enable # CL

execute pjdel enable # CL

 (--omitted--)

}

#}

#USER: CL, RU=runame { <- Exclusive defined items of the resource unit

user=<def> {

user=<def>:group {

user=user {

user=user:group {

limit ru-accept unlimited # CLRU nogrp

limit ru-run-job unlimited # CLRU nogrp

limit ru-use-node unlimited # CLRU nogrp

 (--omitted--)

}

#}

#USER: CL, RU=runame, RG=rgname { <-Defined items of the resource group

user=<def> {

user=<def>:group {

user=user {

user=user:group {

define pri 128 # CLRURG nogrp

define ingroup-pri 128 # CLRURG

joblimit subjobnum - unlimited - # CLRURG

joblimit priv-pri - 255 128 # CLRURG

 (--omitted--)

}

#}

#GROUP: CL, RU=runame {

group=<def> {

group=group {

limit ru-accept unlimited # CLRU

limit ru-run-job unlimited # CLRU

 (--omitted--)

}

#}

#ALL: CL, RU=runame {

limit ru-accept unlimited # CLRU

limit ru-run-job unlimited # CLRU

 (--omitted--)

#}

The layers that can be specified are written as a comment at the end of each defined item.

Table 4.4 Layers that can be specified

Definition
name

Description

CL Exclusive defined items of the cluster

CLRU Exclusive defined items of the resource unit (can also be specified as common definition values in a cluster range)

CLRURG Defined items of the resource group (can also be specified as common definition values in a higher layer range)

nogrp Defined items for each user for which group-related specification (user=<def>:group, user=user:group) is not
allowed

- 147 -

4.1.4 Saving ended job script files
When jobs enters the EXIT or CANCEL state, the ended job script file is saved in the following directory on the compute cluster
management node.

[Compute cluster management node]

/var/opt/FJSVtcs/shared_disk/pjm/private/root/save/subdir

 Information

- To be precise, the job script save timing is when the job state transitions to EXIT or CANCEL and then disappears from the display by
the pjstat command.

- If the input in an interactive job is not a script, no job script is saved because there is none.

subdir is a number from 0 to 99, which is the remainder of the division of the job ID by 100. The job script file is saved in the subdir directory.

The file name of a job script file is "d" + (10-digit job ID).

For example, the job script file of job ID 13856 is saved with the following path name.

/var/opt/FJSVtcs/shared_disk/pjm/private/root/save/56/d0000013856

For a step job, the file name of a job script file is "d" + (10-digit job ID) + "_" + (5-digit step number).

For example, the job script file of step job 15927_35 is saved with the following path name.

/var/opt/FJSVtcs/shared_disk/pjm/private/root/save/27/d0000015927_00035

 Note

The job manager function does not delete saved job script files. The cluster administrator is requested to set periodic deletion of job scripts,
such as by using the cron command.

4.2 Operational Work of the Job Operation Administrator
This section describes work of the job operation administrator.

The job operation administrator mainly performs the following work:

- Resource unit state monitoring

- Job state monitoring

- Job resource monitoring

- Submitting jobs, suppressing and canceling job execution, and canceling errors

- Monitoring and changing fair share values

- Changing job ACL function settings for a resource unit

- Changing whether jobs can be submitted or can be executed

- Displaying job statistical information

 Information

The examples in this section contain commands specifying a cluster name in the -c option for operation on the system management node.
Write the name in this way. However, if the environment variable PXMYCLST specifies the cluster name, you can omit specification of
the cluster name in the -c option during actual operation.

- 148 -

4.2.1 Resource unit state monitoring
By using the pashowclst command by cluster, the job operation administrators can check the state of nodes in the resource units that they
themselves manage.

Management of the resource units unit3, unit5 and unit6 by the job operation administrator

[System management node]

pashowclst -c cluster1 --rscunit unit3

[CLST: cluster1]

[RSCUNIT: unit3]

RSCUNIT RUNNING STOPPED ERROR DISABLE

unit3 1632 0 0 0

pashowclst -c cluster2 --rscunit unit5,unit6

[CLST: cluster2]

[RSCUNIT: unit5]

RSCUNIT RUNNING STOPPED ERROR DISABLE

unit5 393 10 2 3

[RSCUNIT: unit6]

RSCUNIT RUNNING STOPPED ERROR DISABLE

unit6 816 0 0 0

Displaying details of abnormal nodes in resource units by specifying the -v and -d options

[System management node]

pashowclst -c cluster1 --rscunit -v -d

[CLST: cluster1]

[RSCUNIT: unit2]

NODE NODETYPE STATUS REASON PWR_STATUS ARCH_STATUS SRV_STATUS

0x02010010 CN Disable Manual off ICC_Disable -

4.2.2 Job state monitoring
Using the pjstat command, the job operation administrator can monitor the states of jobs running on the resource units managed by the
administrator.

[Login node or system management node or compute cluster management node]

pjstat

JOB_ID JOB_NAME MD ST USER START_DATE ELAPSE_LIM NODE_REQUIRE VNODE CORE V_MEM

12345678 jobname1 NM RUN usrname 01/01 00:00:00 0100:00:00 12:2x3x2 - - -

12345679 jobname2 ST RUN usrname 01/01 00:10:00 - - - - -

12345680 jobname3 BU RUN usrname 01/01 01:10:11 0100:00:00 24:2x3x4 - - -

12345681 jobanem4 ST QUE usrname (01/01 12:00) - - - - -

12345682 jobname5 NM QUE usrname (01/05 12:30) 0000:20:00 12:2x3x2 - - -

12345683 jobname8 BU QUE usrname (01/01 15:00) 0100:00:00 24:2x3x4/3 - - -

12345684 jobname9 NM RUN username 01/01 02:00:00 0050:00:00 - 32 8

unlimited

For details on the displayed contents, see "Checking the Job Status" in "Chapter 2 Job Operation Procedures" in "Job Operation Software
End-user's Guide."

4.2.3 Job Operations
The job operation administrator can perform, as required, the following operations for all the jobs of end users:

- Deleting a job (pjdel command)

- Holding a job on hold (pjhold command)

- Canceling the hold on a job (pjrls command)

- Changing job parameters (pmalter command)

- Recovering from a job error state (pmerls command)

- 149 -

This section describes each operation.

Deleting a job

Use the pjdel command to delete a job. This command can be executed on the login node or compute cluster management node.

[Login node or compute cluster management node]

pjdel jobid

The deleted job is aborted. The user who submitted the job receives e-mail notification of the submitting in pjsub command with -m option.
Since the job is deleted, it will not be executed unless it is submitted again.

The following example deletes the job with job ID 453023.

[Login node or compute cluster management node]

pjdel 453023

The pjdel command outputs the following message when the job stop process has been executed normally.

[INFO] PJM 0100 pjdel Accepted job 453023.

If the specified job does not exist, the pjdel command outputs the following message.

[ERR.] PJM 0112 pjdel Job non-existing_job_ID does not exist.

Holding a job on hold

Use the pjhold command to hold a job in the hold state. This command can be executed on the login node or compute cluster management
node.

[Login node or compute cluster management node]

pjhold jobid

The following examples place jobs on hold.

- Example of holding two jobs (job IDs 1 and 2) on hold

[Login node or compute cluster management node]

pjhold 1 2

[INFO] PJM 0300 pjhold Accepted job 1.

[INFO] PJM 0300 pjhold Accepted job 2.

pjstat 1-2

JOB_ID JOB_NAME MD ST USER REASON

 1 jobname1 NM HLD user1 held by user1

 2 jobname2 NM HLD user2 held by user1

- Example where a job (job ID 2) cannot be hold on hold

[Login node or compute cluster management node]

pjhold 1 2 3 4

[INFO] PJM 0300 pjhold Accepted job 1.

[ERR.] PJM 0313 pjhold Job 2 is not in the state that pjhold can be accepted.

[INFO] PJM 0300 pjhold Accepted job 3.

[INFO] PJM 0300 pjhold Accepted job 4.

Canceling the hold on a job

Use the pjrls command to cancel the hold on a job. This command can be executed on the login node or compute cluster management node.

[Login node or compute cluster management node]

pjrls jobid

This reschedules the job to execute it again.
The following example cancels the hold on two jobs (job IDs 1 and 2).

- 150 -

[Login node or compute cluster management node]

pjrls 1 2

[INFO] PJM 0400 pjrls Job 1 released.

[INFO] PJM 0400 pjrls Job 2 released.

 See

For details on deleting jobs, placing jobs on hold, and canceling the hold on jobs, also see "Job Operations" in "Chapter 2 Job Operation
Procedures" in "Job Operation Software End-user's Guide."

Changing job parameters

Use the pmalter command to change job parameters such as the elapsed time limit value and the priority of a running job. This command
can be executed on the system management node or compute cluster management node.

[System management node or compute cluster management node]

pmalter -c clstname options jobid

 Note

- Job parameters can be changed when the job status is QUEUED, HOLD, or ERROR.
If the RunJobAlterElapse item in the papjm.conf file is set to on, the elapsed time limit value of a job can be changed even when the
job status is RUNNING. However, this applies only to jobs on an FX server, and the limit value cannot be changed to a value less than
the time that has already elapsed.

- If you are changing a resource unit or resource group to run a job, the job ACL function must be set to the following (the parentheses
denote the output of the pjacl command) for the user who submitted the job, not the administrator running the pmalter command:

- Job submission is allowed for the destination resource unit or resource group ('execute pjsub' is set to 'enable').

- The options specified at the time of job submission are also allowed in the resource unit or resource group to which it is being
changed ('execute pjsub(opt)' is set to 'enable').

- The resource amount specified at the time of job submission is within the upper and lower limits ('upper' and 'lower' in 'pjsub option
parameters') in the resource unit or resource group to which it is being changed.

- If the job uses custom resources, the resource unit or resource group to which it is being changed must also have the custom
resources defined (The custom resources to be use are displayed in 'pjsub option parameters').

To check the above settings, specify the user submitted a job, and the resource unit or resource group you want to change.in the pjacl
command.

pjacl -u jobuser --rscunit resourceunit

pjacl -u jobuser --rscgrp resourcegroup

- If the sub job ID of the bulk job is specified, it is possible only to change the elapsed time limit value.

 Information

End users use the pjalter command to change the parameters of their jobs.

Recovering from a job error state

Suppose that a submitted job has a temporary error. Use the pmerls command to cancel the job ERROR state of the job, and queue the job
again. This command can be executed on the system management node or compute cluster management node.
The following shows the execution format of the pmerls command.

- 151 -

[System management node or compute cluster management node]

pmerls -c clstname jobid

The following example cancels the ERROR state of the jobs of job IDs 1 to 3, and queues the jobs again. (Job ID 3 does not exist.)

[System management node or compute cluster management node]

pmerls -c clstname 1 2 3

[INFO] PJM 0900 pmerls Job 1 released.

[INFO] PJM 0900 pmerls Job 2 released.

[ERR.] PJM 0912 pmerls Job 3 does not exist.

 Information

When executing the pmalter or pmerls command on a compute cluster management node, you can omit specification of a cluster name in
the -c option.

4.2.4 Job resource monitoring
Use the pjshowrsc command to refer to the total amounts and the usage status of computer resources for jobs.

For examples of pjshowrsc command execution, see "Checking Job-related Information" in "Chapter 2 Job Operation Procedures" in "Job
Operation Software End-user's Guide."

To output system limit values (concurrent job acceptance limit, concurrent job execution limit, and concurrent sub job execution limit), use
the pjstat command with the --limit option.

If the job operation administrator executes the command, the output system limit values are those of the resource units managed by the job
operation administrator.

 Note

If the cluster administrator executes the command, the system limit values of the entire cluster are output. If an end user executes the
command, the system limit values for the end user are output.

An execution example on the cluster of FX servers is shown below.

[Login node, system management node, or compute cluster management node]

pjstat --limit

 System Resource Information:

 RSCUNIT: runit1

 USER: user1

 LIMIT-NAME LIMIT ALLOC

 ru-accept unlimited 5

 ru-accept-allsubjob unlimited 0

 ru-accept-bulksubjob unlimited 0

 ru-accept-stepsubjob unlimited 0

 ru-run-job unlimited 3

 ru-run-bulksubjob unlimited 0

 ru-use-node unlimited 1011

 ru-interact-accept unlimited 0

 ru-interact-run-job unlimited 0

 ru-interact-use-node unlimited 0

 ru-use-core unlimited 30

 ru-interact-use-core unlimited 0

 ru-custom-customresourcename 10 1

 ru-interact-custom-customresourcename 5 1

 GROUP: group1

 LIMIT-NAME LIMIT ALLOC

 ru-accept unlimited 5

- 152 -

 ru-accept-allsubjob unlimited 0

 ru-accept-bulksubjob unlimited 0

 ru-accept-stepsubjob unlimited 0

 ru-run-job unlimited 3

 ru-run-bulksubjob unlimited 0

 ru-use-node unlimited 1011

 ru-interact-accept unlimited 0

 ru-interact-run-job unlimited 0

 ru-interact-use-node unlimited 0

 ru-use-core unlimited 30

 ru-interact-use-core unlimited 0

 ALL:

 LIMIT-NAME LIMIT ALLOC

 ru-accept unlimited 5

 ru-accept-allsubjob unlimited 0

 ru-accept-bulksubjob unlimited 0

 ru-accept-stepsubjob unlimited 0

 ru-run-job unlimited 3

 ru-run-bulksubjob unlimited 0

 ru-use-node unlimited 1011

 ru-interact-accept unlimited 0

 ru-interact-run-job unlimited 0

 ru-interact-use-node unlimited 0

 ru-use-core unlimited 30

 ru-interact-use-core unlimited 0

The following tables describe output item of --limit option in pjstat command.

Table 4.5 Output item of --limit option in pjstat command

Item Description

LIMIT-NAME Limit value name

RSCUNIT Resource unit name

GROUP Group name in the operating system

LIMIT Limit value

ALLOC Current allocation value

4.2.5 Monitoring and changing a fair share value and initial fair share value
Use the pmpjmopt command on the system management node to change the fair share value or initial fair share value of a job.

For details, see the man page for the pmpjmopt command.

The following shows the execution format.

pmpjmopt -c clstname --set-fairshare {--rscunit | --ru rscuname} {--rscgroup | --rg rscgname}

 [--all-fairshares | --fairshare fairshareset]

 { --value newvalue| --reset-value}

 {{-g group[,...] | -u user[,...] | --gu group:user[,...]}

 | {--all-groups | --all-users | --all-gu}}

pmpjmopt -c clstname --show-fairshare {--rscunit | --ru rscuname}{--rscgroup | --rg rscgname}

 [--all-fairshares | --fairshare fairshareset]

 {{-g group[,...] | -u user[,...] | --gu group:user[,...]}

 | {--all-groups | --all-users | --all-gu}}

If the --set-fairshare option is specified, a fair share value is set.

If the --set-fairshare option is specified with the --reset-value option, the fair share value returns to the initial value.

If the --show-fairshare option is specified, the fair share value is displayed.

The following shows setting examples.

- 153 -

Set and display fair share values

- Returning the user fair share value of the fair share set def_fs to the initial value

[System management node]

pmpjmopt --set-fairshare -c cluster1 --rscunit unit0 --fairshare def_fs \

--reset-value --all-users

[INFO]PJM 6100 pmpjmopt Operation completed.

- Changing the user fair share value of the users user1 and user2 of the fair share set def_fs to 1500

[System management node]

pmpjmopt --set-fairshare -c cluster1 --rscunit unit0 --fairshare def_fs \

--value 1500 -u user1,user2

[INFO]PJM 6100 pmpjmopt Operation completed.

- Displaying the user fair share values of all the users of the fair share set def_fs

[System management node]

pmpjmopt --show-fairshare -c cluster1 --rscunit unit0 --fairshare def_fs \

--all-users

ClusterName = cluster1

ResourceUnitName = unit0

Now 2018/12/20 15:25:48

FairShareSet=def_fs

NO TYPE GROUP USER CURRENT INIT RECOVERY

1 U -- user1 1500 0 100

2 U -- user2 1500 0 100

3 U -- root 0 0 100

The following tables describe output item.

Item Description

TYPE U: User
G: Group
G/U: In-group user

GROUP Group name

USER User name

CURRENT Current fair share value

INIT Default user fair share value

RECOVERY fair share recovery ratio

Set and display in-group fair share values

- Returning the group fair share values of all the fair share sets to the initial values

[System management node]

pmpjmopt --set-fairshare -c cluster1 --rscunit unit0 --all-fairshare \

--reset-value --all-groups

[INFO]PJM 6100 pmpjmopt Operation completed.

- Changing the group fair share value of the group group1 of the fair share set grp_fs1 to 1200

[System management node]

pmpjmopt --set-fairshare -c cluster1 --rscunit unit0 --fairshare grp_fs1 \

--value 1200 -g group1

[INFO]PJM 6100 pmpjmopt Operation completed.

- 154 -

- Displaying the group fair share values of all the groups of all the fair share sets

[System management node]

pmpjmopt -c cluster1 --show-fairshare --rscunit unit0 --all-fairshare \

--all-groups

ClusterName = cluster1

ResourceUnitName = unit0

Now 2018/12/20 15:26:12

FairShareSet=def_fs

NO TYPE GROUP USER CURRENT INIT RECOVERY

1 G root -- 0 0 100

2 G group1 -- 1200 0 100

FairShareSet=grp_fs1

NO TYPE GROUP USER CURRENT INIT RECOVERY

1 G root -- 0 0 100

2 G group1 -- 1200 0 100

Set and display in-group user fair share values

- Returning the user fair share values to the initial values in all the groups of the fair share set def_fs

[System management node]

pmpjmopt --set-fairshare -c cluster1 --rscunit unit0 --fairshare def_fs \

--reset-value --all-gu

[INFO]PJM 6100 pmpjmopt Operation completed.

- Changing the user fair share value of the group group1 of all the fair share sets to 1000

[System management node]

pmpjmopt --set-fairshare -c cluster1 --rscunit unit0 --all-fairshare --value 1000 \

--gu group1:user1

[INFO]PJM 6100 pmpjmopt Operation completed.

- Displaying the user fair share values in all the groups of all the fair share sets

[System management node]

pmpjmopt -c cluster1 --show-fairshare --rscunit unit0 --all-fairshare --all-gu

ClusterName = cluster1

ResourceUnitName = unit0

Now 2018/12/20 15:26:21

FairShareSet=def_fs

NO TYPE GROUP USER CURRENT INIT RECOVERY

1 G/U root root 0 0 100

2 G/U group1 user1 1000 0 100

3 G/U group1 user2 0 0 100

FairShareSet=grp_fs1

NO TYPE GROUP USER CURRENT INIT RECOVERY

1 G/U root root 1100 0 100

2 G/U group1 user1 1000 0 100

3 G/U group1 user2 1200 0 100

- 155 -

Set the initial fair share value

The initial fair share value is set in the job ACL function.

- This example changes the initial user fair share value to 10 in the resource unit unit1

[System management node]

pmjacladm -c cluster1 --set 'USER: CL, RU=unit1 {user=<def> { define fshare-init 10 }}'

- Changing the initial user fair share value of the fair share set grp_fs1 to 20 in the resource unit unit1

[System management node]

pmjacladm -c cluster1 --set 'USER: CL, RU=unit1 \

{user=<def> { define fshare-init 20@grp_fs1 }}'

The above example changes the initial fair share value of a user. Use the following items to set the initial fair share value of a group or a
user in a group:

- Group: define fshare-init-g

- User in a group: define ingroup-fshare-init

For more information about job ACL function settings, see "Appendix F Defined items of the job ACL function" or man page pmjacladm(8).

 Note

Even if you change the initial fair share value (an upper limit of fair share value) partway through job operation, the fair share value does
not change at that point in time. Changing the initial fair share value to a smaller value may cause the fair share value to be larger than the
initial fair share value. The fair share value recovers only when it is smaller than the initial fair share value. So if your change may result
in the above situation, also change the fair share value to an initial value as required.

Display the initial user fair share value

The method of displaying the initial fair share value is the same method shown as "Displaying the user fair share values of all the users of
the fair share set def_fs" in the above "Set and display fair share values." The INIT column shows the initial fair share value.

4.2.6 Changing job ACL function settings for a resource unit
Check job ACL function settings in a resource unit in the same way as for job ACL function settings in a cluster. For details, see "4.1.3
Changing job ACL function settings for a cluster".

4.2.7 Changing whether jobs can be submitted or can be executed
Use the pmpjmopt command on the system management node to change whether jobs can be submitted or can be executed. For details, see
the man page for the pmpjmopt command.

The following table lists combinations to allow or deny job submission and execution.

Table 4.6 Combinations to allow or deny job submission and execution

Allow/deny
submission

Allow/deny
execution

Job operation in resource unit

enable start Jobs can be both submitted and executed.

enable stop Jobs can be submitted but cannot be executed.(Execution of running jobs continues. Submitted
jobs remain QUEUED.)

disable start Jobs cannot be submitted but already submitted jobs can be executed.

disable stop Jobs can be neither submitted nor executed.(Execution of running jobs continues. Submitted
jobs remain QUEUED.)

- 156 -

Execution examples are shown below.

This example allows submission of jobs and denies execution of jobs for the resource unit unit1.

[System management node]

pmpjmopt -c clstname --set-rsc-ug --rscunit unit1 enable,stop --rscgrp group1

[INFO] PJM 6100 pmpjmopt Operation completed.

This example allows submission of jobs and denies execution of jobs for the resource group group1.

[System management node]

pmpjmopt -c clstname --set-rsc-ug --rscunit unit1 enable,stop --rscgrp group1

[INFO] PJM 6100 pmpjmopt Operation completed.

This example checks the state of the resource unit unit1.

[System management node]

pmpjmopt -c clstname --show-rsc-ug --rscunit unit1

ResourceUnitName = unit1

Apply Value : ENABLE,STOP

This example checks the state of the resource group group1.

[System management node]

pmpjmopt -c clstname --show-rsc-ug --rscunit unit1 --rscgrp group1

ResourceGroupName = group1

Apply Value : ENABLE,STOP

4.2.8 Displaying job statistical information
The following methods are methods for checking job statistical information:

- By displaying job output results (-s/-S of the pjsub command)

- By obtaining job state check results (-s/-S of the pjstat command)

- By referring to the job statistical information file (pmdumpjobinfo command)

This section describes how to refer to the job statistical information file with the pmdumpjobinfo command. For details on how to obtain
its data with the pjsub command or pjstat command, see "Submitting a Job" and "Confirming Job Results" in "Chapter 2 Job Operation
Procedures" in "Job Operation Software End-user's Guide."

To refer to the contents of the job statistical information file, use the pmdumpjobinfo command on the system management node or compute
cluster management node.

[System management node or compute cluster management node]

pmdumpjobinfo -c clstname

The pmdumpjobinfo command displays the contents of the job statistical information file in a format suited for program.
For details, see the man page for the pmdumpjobinfo command.

 Information

When executing the pmdumpjobinfo command on a compute cluster management node, you can omit specification of a cluster name in the
-c option.

4.3 Notes for Job Operation
This section describes the notes for job operation.

- 157 -

4.3.1 Job Scheduler Function
Compute cluster management nodes may continue to experience high CPU utilization with the pjsd daemon for the job scheduler function.
This is normal because the job is being scheduled.

4.3.2 Job Execution Environment Customization Function
This subsection provides notes on operating the job execution environment customization function.

[Considerations for the startup processing of the job execution environment]

In the following parameters, set a longer time than the time taken by the startup processing of the job execution environment:

- DecidedGap item in the pmpjm.conf file

- RespWaitTime item in the pmrsc.conf file

The time taken by the startup processing depends on the image of the job execution environment. Adjust the above parameters by taking
into account the job execution environment images (SDI specifications and UDI specifications) that can be used in the system.

 Information

There is no way to calculate in advance the time taken by the startup processing for the job execution environment image. Execute in advance
a job using the job execution environment. Obtain the accumulated time of the RUNNING-A state from job statistical information and use
it as a reference. (For details on the accumulated time, see the item named "tratm" in the man page for pjstatsinfo(7).)

Resource allocation to interactive jobs may time out when the start time of the job execution environment is longer. If this event occurs,
instruct end users to adjust the wait time (the --wait-time option of the pjsub command).

[Notes on Docker mode]

Note the following when using Docker mode.

On SDI specifications

- As a security measure, it is prohibited to execute a binary file with setuid or setgid in a job. Commands such as su cannot be used
either.

- The uids are the same as on the host, but Technical Computing Suite does not map uids and user names. To use a user name in a job
program, bind-mount /etc/passwd of the host OS, or prepare a user name for use in the container.

- Technical Computing Suite uses the following directories as mount points. Therefore, these directories cannot be used as mount
points in the container.

- /etc/opt/FJSVtcs

- /var/opt/FJSVtcs

- /usr/libexec/FJSVtcs/krm

- /var/opt/FJSVtcs/krm/sys/fs/cgroup

- /run/systemd/journal

- /dev/log

- Basically, settings can be specified as create requests of the Docker API in the container startup configuration file. However,
Technical Computing Suite guarantees operation only when the startup configuration file docker-image.conf is changed as shown in
Table 3.36 Setting items in the job execution environment information file within the range described in "3.5.7.4 Creating a
container startup configuration file (Docker mode only)," that is, the coding of "Binds" and "Devices."
Other coding is changed at the discretion and responsibility of the administrator.
Note the following points when changing the contents of the startup configuration file docker-image.conf:

- Cmd
Do not change because that would make it impossible to start as a job.

- 158 -

- HostConfig, Memory, MemorySwap, MemoryReservation, CpusetCpus, and CpusetMems
Do not change these settings because they are related to job resource management.

On UDI specifications

- Since this function uses the job resource manager exit function (prealloc and postfree) to generate and delete a container image,
prealloc and postfree script processing may take a relatively long time. For this reason, note the following points.

- Control over all jobs on the relevant node has to wait until the end of processes in the prealloc and postfree scripts. Consequently,
processing to allocate job resources, release job resources, interrupt a job, etc. may take a while when an interrupt command
(pjdel, pjhold, or pjsig) is executed. Especially container operations of the prealloc and postfree scripts may take a while when,
for example, a huge container image is specified. That may reduce the throughput of this node. Therefore, take sufficient care
when using this function.

- Resources are allocated during the period of the RUNNING-A state, and this period includes the processing time of the prealloc
script. For this reason, the resource allocation wait in an interactive job may time out and the job may be canceled when the
processing time of the prealloc script is extended. To prevent this, instruct users to specify an appropriate value (equal to or
greater than the time taken by prealloc script processing) in the --sparam "wait-time=time" option of the pjsub command before
submitting an interactive job.

- If a job fails to start because the user specified an invalid image, such as one without glibc, job execution is retried in the same way
as with a normal job execution failure. However, the job may be repeatedly re-executed in some cases (such as after 5 failures within
60 seconds). Therefore, specify a POSIX-compatible container image.

- If a container image is specified in the environment variable PJM_JOBENV_DOCKER_IMAGE at the job submission time, the
load time (time required for docker import or docker pull) increases according to the container image size. This may cause the
RUNNING-A state to continue.
Container image load processing times out in 60 seconds, which is enough time for normal applications. However, if a timeout
occurs, the job transitions to the ERROR state with job end code (PJM code) 27. If such an error occurs, either provide the end user
with the appropriate instructions, such as reducing the size of the container image, or refer to "Creating job resource manager exit
scripts to be used when specifying UDI" in "3.5.7.7 Configuring the job resource manager exit scripts (Docker mode only)", "Setting
the Image Operation Timeout" to set the docker image operation timeout value appropriately.

[Notes on KVM mode]

The Job Operation Software sets an upper limit on memory usage, but usage exceeding that limit by any job executed in KVM mode in the
Job execution environment will not be detected. The behavior when excessive memory is used in a virtual machine depends on the settings
of the virtual machine image file used.

- 159 -

Appendix A Invalid Values for Job Statistical Information
at State Transition

As stated in "Table 2.6 Job information record output conditions" in "2.4.2.4 Job statistical information function," some of the output values
of job statistical information in job information records may be invalid values, depending on the job information record output condition.
Specifically, the job statistical information listed in the following table has invalid values in the job information records output during a job
state transition from QUEUED, HOLD, or ERROR to CANCEL.
For the meaning of each job statistical information item, see the man page for the pjstatsinfo(7).

Table A.1 Invalid values for job statistical information at state transition

Job statistical information Item name

Job script exit code ec

Signal number when the job script ended with the receipt of a signal sn

Job end code (PJM code) pc

Job execution start time sdt

Job execution end time edt

Elapsed time from job execution start to end elp

Number of unavailable nodes nnumv

Number of nodes used nnumu

Number of virtual nodes used vnnumu

Node ID list of nodes used nidlu

Tofu coordinate list of nodes used tofulu

Node IDs of allocated nodes, and their corresponding rank numbers rank

Maximum physical memory usage mmszu

Total user CPU time spent on job execution uctmut

Total system CPU time spent on job execution sctmut

Total user CPU time and system CPU time usctmut

Time when the job resource manager exit function collected data from each node prmdt

Prologue execution start time psdt

Prologue execution end time pedt

Prologue script exit code pec

Prologue execution start time esdt

Epilogue execution end time eedt

Epilogue script exit code eec

Maximum physical memory usage for each virtual node vmszu

Number of assistant cores used by the job acnumut

Total user CPU time for assistant cores auctmut

Total system CPU time (milliseconds) for assistant cores asctmut

Node ID affected the job results affectednid

Whether the job resource manager exit script prealloc was executed prealloctrigger

Execution trigger of the job resource manager exit script prealloc predeltrigger

Execution trigger of the job resource manager exit script postfree postfreetrigger

- 160 -

Job statistical information Item name

Exit code of the job resource manager exit script prealloc preallocec

Exit code of the job resource manager exit script predel predelec

Exit code of the job resource manager exit script postfree postfreeec

Start time of the job resource manager exit script prealloc preallocsdt

End time of the job resource manager exit script prealloc preallocedt

Start time of the job resource manager exit script predel predelsdt

End time of the job resource manager exit script predel predeledt

Start time of the job resource manager exit script postfree postfreesdt

End time of the job resource manager exit script post free postfreeedt

Starting time of the job execution environment jebt

Ending time of the job execution environment jest

Number of CPU cores actually used by the job cnumut

Receive data size for Tofu user communication tucrb

Send data size for Tofu user communication tucsb

Receive data size for Tofu system communication tscrb

Send data size for Tofu system communication tscsb

Number of Fujitsu profiler use times fjprofiler

Number of starts of a program using the sector cache sectorcache

Number of starts of a program using the inter-core hardware barrier intranodebarrier

Average power consumption of the compute core group for each CMG (Estimate) avgpcocc

Maximum power consumption of the compute core group for each CMG (Estimate) maxpcocc

Minimum power consumption of the compute core group for each CMG (Estimate) minpcocc

Power consumption of the compute core group for each CMG (Estimate) ecocc

Average power consumption of the L2 cache for each CMG (Estimate) avgpcolc

Maximum power consumption of the L2 cache for each CMG (Estimate) maxpcolc

Minimum power consumption of the L2 cache for each CMG (Estimate) minpcolc

Power consumption of the L2 cache for each CMG (Estimate) ecolc

Average power consumption of the memory for each CMG (Estimate) avgpcomc

Maximum power consumption of the memory for each CMG (Estimate) maxpcomc

Minimum power consumption of the memory for each CMG (Estimate) minpcomc

Memory power consumption for each CMG (Estimate) ecomc

Average Tofu power consumption (Estimate) avgpcot

Maximum Tofu power consumption (Estimate) maxpcot

Minimum Tofu power consumption (Estimate) minpcot

Tofu power consumption (Estimate) ecot

Average power consumption at the periphery inside the CPU (Estimate) avgpcocp

Maximum power consumption at the periphery inside the CPU (Estimate) maxpcocp

Minimum power consumption at the periphery inside the CPU (Estimate) minpcocp

Power consumption at the periphery inside the CPU (Estimate) ecocp

- 161 -

Job statistical information Item name

Average power consumption of the optical module (Estimate) avgpcoom

Maximum power consumption of the optical module (Estimate) maxpcoom

Minimum power consumption of the optical module (Estimate) minpcoom

Power consumption of the optical module (Estimate) ecoom

Average PCI-E power consumption (Estimate) avgpcop

Maximum PCI-E power consumption (Estimate) maxpcop

Minimum PCI-E power consumption (Estimate) minpcop

PCI-E power consumption (Estimate) ecop

Average node power consumption (Estimate) avgpcon

Maximum node power consumption (Estimate) maxpcon

Minimum node power consumption (Estimate) minpcon

Node power consumption (Estimate) econ

Average node power consumption (actual measurement) avgpconm

Maximum node power consumption (actual measurement) maxpconm

Minimum node power consumption (actual measurement) minpconm

Node power consumption (actual measurement) econm

Power knob usage information uiopa

All of node statistical information -

- 162 -

Appendix B Settings Related to Execution in MPI
Processing Systems Other Than Development
Studio

B.1 Settings Related to Environment Variables
The job operation administrator can set the default values of the following environment variables in the ple_env_file file (compute node: /
etc/opt/FJSVtcs/ple/ple_env_file) for execution in MPI processing systems other than Development Studio:

- Environment variable: PLE_MPI_PIN_DOMAIN

- Environment variable: PLE_MPI_PIN_CELL

- Environment variable: PLE_MPI_PIN_ORDER

- Environment variable: PLE_I_MPI_PJPBIND

- Environment variable: PLE_I_MPI_PJPBIND_OPT

- Environment variable: PLE_I_MPI_INTEL_OPTIONS

- Environment variable: PLE_MEMORY_ALLOCATION_POLICY

For details on each environment variable, see this chapter and "Appendix C Executing programs of MPI processing system other than
Development Studio" in "Job Operation Software End-user's Guide."

1. Edit the ple_env_file file with the job operation administrator privileges to set the following.

[System management node]

vi ./ple_env_file

PLE_MPI_PIN_DOMAIN=omp

PLE_MPI_PIN_CELL=unit

PLE_I_MPI_PJPBIND=disable

...

2. Set the permission of the ple_env_file file as follows.

[System management node]

chmod 0600 ./ple_env_file

 Note

Set the permission securely to prevent modification by unauthorized users.

3. Distribute the edited ple_env_file file to all compute nodes executing programs of MPI processing systems other than Development
Studio.

[System management node]

pmscatter -c clstname --nodetype CN ./ple_env_file /etc/opt/FJSVtcs/ple/ple_env_file

4. Restart the compute nodes to which the ple_env_file file was distributed. This operation must be performed with cluster administrator
privileges or higher.

a. Stop the compute nodes.
In this step shown below, specify the -w option in the papwrctl command in order to wait until the stop process of the compute
nodes ends. This step covers all the compute nodes in a cluster.

[System management node]

papwrctl -c clstname --nodetype CN -w -a off

- 163 -

b. Start the compute nodes.

papwrctl -c clstname --nodetype CN -a on

B.2 Settings Related to the Wrapper Command mpiexec.tcs_intel
The parallel execution environment provides the wrapper command mpiexec.tcs_intel of the mpiexec.hydra commands of Intel MPI so that
Intel MPI has the same execution view as Development Studio MPI, as described in Appendix "Executing programs of MPI processing
system other than Development Studio" in "Job Operation Software End-user's Guide."

An option specified in the mpiexec.tcs_intel command has been changed to an mpiexec.hydra command option of Intel MPI based on the
file for option analysis specified in the PLE_I_MPI_INTEL_OPTIONS environment variable. Specify the PLE_I_MPI_INTEL_OPTIONS
environment variable with an absolute path that includes the file name.

The administrator can create a file for option analysis based on the specifications of options of the mpiexec.hydra command executed. Set
the absolute path for the PLE_I_MPI_INTEL_OPTIONS environment variable when creating a file for option analysis.

The following procedure shows how to create a file for option analysis. This example uses mpiexec.hydra_options.conf.alt as the file name.

1. Create the mpiexec.hydra_options.conf.alt file as follows with job administrator privileges.

[System management node]

cd <work directory>

vi ./mpiexec.hydra_options.conf.alt

-n 1

-np 1

-perhost 1

-hostfile 1

-f 1

-machinefile 1

-machine 1

-genv 2

-genvall 0

-rr 0

-tune 0,1

-binding 1

...

* The content of the above-mentioned description is an example.

Write one option per line in the following format.

<option name> <value>

<value> represents the number of arguments that can be specified in the option. If there are multiple available arguments, specify the
range with values delimited by a comma (",") or hyphen ("-"). To set no upper limit on the number of arguments, specify the character
"n".

[Example]

-A 1,3 <- The number of arguments for the option -A is one or three.

-B 1-3 <- The number of arguments for the option -B is one to three.

-C n <- No upper limit is placed on the number of arguments for the option -C.

2. Set the permission of the mpiexec.hydra_options.conf.alt file as follows.

[System management node]

chmod 0644 ./mpiexec.hydra_options.conf.alt

 Note

Set the permission securely to prevent modification by unauthorized users.

- 164 -

3. Distribute the mpiexec.hydra_options.conf.alt file to all compute nodes executing programs of MPI processing systems other than
Development Studio. The mpiexec.hydra_options.conf.alt file can be placed on any directory on a compute node. The following
example distributes the file to the /etc/opt/FJSVtcs/ple/mpiexec.tcs_intel directory.

[System management node]

pmscatter -c clstname --nodetype CN ./mpiexec.hydra_options.conf.alt \

/etc/opt/FJSVtcs/ple/mpiexec.tcs_intel/mpiexec.hydra_options.conf.alt

4. Create the ple_env_file file, and set the absolute path of the mpiexec.hydra_options.conf.alt file
in the PLE_I_MPI_INTEL_OPTIONS environment variable.
This absolute path is the path used to place the mpiexec.hydra_options.conf.alt file on a compute node.

[System management node]

vi ./ple_env_file

PLE_I_MPI_INTEL_OPTIONS=/etc/opt/FJSVtcs/ple/mpiexec.tcs_intel/mpiexec.hydra_options.conf.alt

5. Set the permission of the ple_env_file file as follows.

[System management node]

chmod 0600 ./ple_env_file

 Note

Set the permission securely to prevent modification by unauthorized users.

6. Distribute the ple_env_file file to the /etc/opt/FJSVtcs/ple directory on all compute nodes executing programs of MPI processing
systems other than Development Studio.

[System management node]

pmscatter -c clstname --nodetype CN ./ple_env_file /etc/opt/FJSVtcs/ple/ple_env_file

7. Restart the compute nodes to which the ple_env_file file was distributed. This operation must be performed with cluster administrator
privileges or higher.

a. Stop the compute nodes.
In this step shown below, specify the -w option in the papwrctl command in order to wait until the stop process of the compute
nodes ends. This step covers all the compute nodes in a cluster.

[System management node]

papwrctl -c clstname --nodetype CN -w -a off

b. Start the compute nodes.

[System management node]

papwrctl -c clstname --nodetype CN -a on

B.3 Settings Related to the mpiexec.tcs_intel Command
If you want to define an arbitrary environment variable for all jobs, create the /etc/opt/FJSVtcs/ple/mpiexec.tcs_intel/intel.sh file and place
it on compute nodes. If the file exists on a compute node, the mpiexec.tcs_intel command, when executed, reads the intel.sh file as the source
command in a shell.

A job operation administrator performs this operation.

1. Create the intel.sh file.
The following example executes the compilervar.sh and mpivars.sh scripts.

[System management node]

vi ./intel.sh

/opt/intel/bin/compilervars.sh intel64

/opt/intel/impi_latest/bin64/mpivars.sh

- 165 -

2. Set the permission of the intel.sh file as follows.

[System management node]

chmod 0644 ./intel.sh

 Note

Set the permission securely to prevent modification by unauthorized users.

3. Distribute the intel.sh file to all compute nodes executing programs of MPI processing systems other than Development Studio.

[System management node]

pmscatter -c clstname --nodetype CN ./intel.sh

/etc/opt/FJSVtcs/ple/mpiexec.tcs_intel/intel.sh

B.4 Settings when Using the Intel MPI 2019
When using Intel MPI 2019, set up the OS environment so that the host names of other compute nodes can be resolved on each compute
node.

- 166 -

Appendix C Settings for Using GPUs [PG]
This appendix describes settings for job execution using GPUs in PRIMERGY compute nodes. The GPUs covered here are the NVIDIA
V100, A100 or H100. Below, the term "GPU" refers to the NVIDIA V100, A100 or H100.

The Job Operation Software treats one GPU as one custom resource to implement the following in combination with the hooks of the job
operation management function (job manager exit function and job resource manager exit function):

- Job allocation to GPU-equipped nodes

Jobs can be scheduled and allocated with consideration of GPU-equipped nodes.

- Job allocation to GPUs (exclusive/shared)

- A GPU can be exclusive to each job. This prevents performance from deteriorating due to contention.

- A GPU can be shared by multiple jobs. If so, contention from other jobs affects job execution performance, but many users can use
the GPU.

- Use of the NVIDIA Container Toolkit

The NVIDIA Container Toolkit has tools for using GPUs from a Docker container. The toolkit can be used from a job.

- Use of the GPU MPS (Multi-Process Service) function

The MPS function is also treated as a custom resource.

- Acquisition of GPU statistical information

GPU statistical information (GPU utilization rate, GPU memory utilization rate, GPU power, etc.) can be acquired as job statistical
information.

 See

- For details on the NVIDIA Container Toolkit, see https://github.com/nvidia/nvidia-docker or other sites.

- For details on MPS, see https://docs.nvidia.com/deploy/mps/index.html or other sites.

 Note

Jobs executed in normal mode or Docker mode in the job execution environment can use GPUs.

The following section describes the procedure for settings for job execution using GPUs.

C.1 Configuring Custom Resources and the Job Manager Exit
Function

Configure GPUs as custom resources in order to allocate jobs to GPU-equipped nodes. This manual refers to these custom resources as
"GPU custom resources."
Also, the Job Operation Software provides an exit function library. Configure the exit function library as the job manager exit function in
order to acquire GPU statistical information as job statistical information.

The administrator configures custom resources and the job manager exit function in the pmpjm.conf file (system management node: /etc/
opt/FJSVtcs/Rscunit.d/ResourceUnit/pmpjm.conf) for each resource unit.

GPU custom resources are classified as follows according to the type of GPU use.

- 167 -

https://github.com/nvidia/nvidia-docker
https://docs.nvidia.com/deploy/mps/index.html

Table C.1 Classification of GPU custom resources
Classification Description

GPU exclusive allocation 1 GPU corresponds to 1 GPU custom resource. The GPU custom resource is allocated to
a job, and the job has exclusive use of the corresponding GPU. This prevents contention
from other jobs.

Also, defining the MPS function for GPUs as a custom resource (MPS custom resource)
and allocating the MPS custom resource will enable the MPS function to be used from a
job.
The MPS function allows programs that use GPUs in multiple processes, such as MPI
programs, to use the GPUs effectively.

GPU shared allocation Multiple jobs can share a GPU allocated to them. 1 GPU belongs to 1 or more GPU
custom resources. So when any of these GPU custom resources is allocated to multiple
jobs, the jobs can share the same GPU.
Many users can execute jobs using the GPU, although they will be affected by contention
from other jobs.
The MPS function cannot be used with GPU shared allocation.

 Note

GPU exclusive allocation and GPU shared allocation cannot both be used on the same node.

The MPS function for GPUs is only available as the node-exclusive job on GPU exclusive allocation nodes.

The following sections describe settings for each of these classifications.

C.1.1 GPU exclusive allocation
This section describes settings for exclusive use of a GPU by a job.

The following example has GPU custom resource settings (CustomResource section) and job manager exit function settings (ExitFunc
section) for a compute node (node ID: 0xFFFF0004) equipped with four GPUs in the group_a resource group under the rscunit_pg01
resource unit.

[pmpjm.conf file]

ResourceUnit {

 ResourceUnitName = rscunit_pg01

 AllocType = vnode

 ResourceGroup {

 ResourceGroupName = group_a

 ResourceGroupNode = 0xFFFF0004

 CustomResource {

 Name = gpu

 ValueType = numeric

 Value = 4

 NodeID = 0xFFFF0004

 }

 ExitFunc {

 ExitFuncLib = libdevice.so

 ExitFuncType = pjm

 ExitFuncPri = 150

 }

 }

}

- 168 -

Table C.2 GPU custom resource definitions (CustomResource section)
Item name Definition Specified value

Name Custom resource name Specify "gpu" as the prefix. After "gpu", you can set any character string.

ValueType Custom resource management
type

Specify "numeric".

Value Number of custom resources Specify the number of mounted GPUs on the compute node.

NodeID Node ID Specify the node ID of the compute node equipped with the GPUs.

Table C.3 Job manager exit function settings for acquiring GPU statistical information (ExitFunc section)

Item name Definition Specified value

ExitFuncLib File name of the exit function library Specify "libdevice.so".

ExitFuncType Exit function library type Specify "pjm".

ExitFucPri Execution priority of the exit function
library

Specify a numerical value greater than 127.

To use the MPS function for GPUs, also define an MPS custom resource.

[pmpjm.conf file]

ResourceUnit {

 ResourceUnitName = rscunit_pg01

 AllocType = vnode

 ResourceGroup {

 ResourceGroupName = group_a

 ResourceGroupNode = 0xFFFF0004

 CustomResource {

 Name = gpu

 ValueType = numeric

 Value = 4

 NodeID = 0xFFFF0004

 }

 CustomResource {

 Name = mps

 ValueType = numeric

 Value = 1

 NodeID = 0xFFFF0004

 }

 ExitFunc {

 ExitFuncLib = libdevice.so

 ExitFuncType = pjm

 ExitFuncPri = 150

 }

 }

}

Table C.4 MPS custom resource definitions (CustomResource section)

Item name Define Specified value

Name Custom resource name Specify "mps".

ValueType Custom resource management
type

Specify "numeric".

Value Number of custom resources Specify 1.
Only 1 job per node can use the MPS function.

NodeID Node ID Specify the node ID of a compute node that is equipped with a GPU and can
use the MPS function.

- 169 -

 Information

- There is no pmpjm.conf file when the Job Operation Software is installed. If you want to change the default settings, create a new file
or copy and edit the sample file (/etc/opt/FJSVtcs/sample/pmpjm.device.conf), and place the file in the above path.

- If the system contains compute nodes equipped with varying quantities or different types of GPU, you can manage them separately by
writing multiple custom resource definitions.

- For details on how to configure custom resources (CustomResource section), see "3.5.1.6 Custom resource settings." For details on how
to configure the job manager exit function (ExitFunc section), see "Job manager exit function and Job scheduler exit function" in
"Chapter 2 Creating and Incorporating Hooks" in the "Job Operation Software Administrator's Guide for Job Operation Manager
Hook."

C.1.2 GPU shared allocation
This section describes settings for sharing of a GPU by multiple jobs.
To share one GPU among multiple GPU custom resources, configure more GPU custom resources than the number of mounted GPUs.

The following example has GPU custom resource settings (CustomResource section) and job manager exit function settings (ExitFunc
section) for a compute node (node ID: 0xFFFF0004) equipped with four GPUs in the group_a resource group under the rscunit_pg01
resource unit. This example defines 12 custom resources (gpu-share) for 4 GPUs mounted on the compute node.

[pmpjm.conf file]

ResourceUnit {

 ResourceUnitName = rscunit_pg01

 AllocType = vnode

 ResourceGroup {

 ResourceGroupName = group_a

 ResourceGroupNode = 0xFFFF0004

 CustomResource {

 Name = gpu-share

 ValueType = numeric

 Value = 12

 NodeID = 0xFFFF0004

 }

 ExitFunc {

 ExitFuncLib = libdevice.so

 ExitFuncType = pjm

 ExitFuncPri = 150

 }

 }

}

Table C.5 gpu-share custom resource definitions (CustomResource section)

Item name Definition Specified value

Name Custom resource name Specify "gpu-share" as the prefix. After "gpu-share", you can specify any
character string consisting of single-byte alphanumeric characters
(lowercase letters), hyphens, and underscores. A custom resource name can
contain up to 63 characters.

ValueType Custom resource management
type

Specify "numeric".

Value Number of custom resources Specify the number of GPUs to share. You can specify a number greater than
the number of GPUs mounted on the compute node. In that case, 1 GPU is
shared among multiple GPU custom resources.
If a job shares a GPU with another job, that job will be disturbed by other
jobs. For this reason, it is recommended that you specify a relatively small

- 170 -

Item name Definition Specified value

number of custom resources (Example: 2x the installed capacity). The
maximum number you can specify is 88.

NodeID Node ID Specify the node ID of the compute node equipped with the GPUs.

 Information

The prepared sample file is /etc/opt/FJSVtcs/sample/pmpjm.device-share.conf.

 Note

Even in GPU shared allocation, the maximum number of GPUs available to a single job is the number of mounted GPUs. When submitting
a job, a user may request GPU custom resources exceeding the number of mounted GPUs. If so, the job enters the ERROR state after the
submission is accepted.
For details on the error, see "Jobs in ERROR State" in the "Job Operation Software Troubleshooting."

C.2 Reflecting Job Operation Settings
Use the pmpjmadm command to apply the contents of the pmpjm.conf file to the system. The following example applies settings to the
rscunit_pg01 resource unit under the compute cluster.

[System management node]

pmpjmadm -c compute --set --rscunit rscunit_pg01

C.3 Configuring the Job Resource Manager Exit Function
To allocate GPUs to jobs, configure the prealloc and postfree exit scripts of the job resource manager exit function. Use these exit scripts
provided by the Job Operation Software to use GPUs.

The administrator configures the exit scripts in the pmrsc.conf file (system management node: /etc/opt/FJSVtcs/Rscunit.d/
ResourceUnitName/pmrsc.conf) for each resource unit.

The following example of the pmrsc.conf file specifies a job resource manager exit (device-hook) for exclusive use of a GPU by the group_a
resource group under the rscunit_pg01 resource unit.

Cluster {

 ClusterName = compute

 ResourceUnit {

 ResourceUnitName = rscunit_pg01

 ResourceGroup {

 ResourceGroupName = group_a

 ExitFunc {

 ExitFuncScriptDir = /etc/opt/FJSVtcs/plugin/krm/device-hook/

 ExitFuncTimer = 300

 }

 }

 }

}

Table C.6 Job resource manager exit function settings for GPU exclusive allocation

Item name Definition Specified value

ExitFuncScriptDir Directory for placing exit scripts Specify /etc/opt/FJSVtcs/plugin/krm/device-hook/.

ExitFuncTimer Timeout value for the exit script
execution time

Specify 300.

- 171 -

Modify the following files in system management node:

/etc/opt/FJSVtcs/plugin/krm/device-hook/prealloc

The change is 3 lines with **

nvidia-docker <*****>

rpm -qa | grep nvidia-container-runtime > /dev/null 2>&1 ** delete

if ["$?" = 0]; then ** delete

if [-e "/usr/bin/nvidia-container-runtime"]; then ** add

 OPT="nvidia-docker"

else

<*****> : This part is garbled because it has a Japanese comment.

After the change, set the job resource management exit function.

 See

For details on configuring the job resource manager exit function, see "Job resource management exit function" in "Chapter 2 Creating and
Incorporating Hooks" in the "Job Operation Software Administrator's Guide for Job Operation Manager Hook."

Use the pmrscadm command to apply the contents of the pmrsc.conf file to the system. The following example applies settings to the
rscunit_pg01 resource unit.

[System management node]

pmrscadm --set --rscunit rscunit_pg01

C.4 Changing Startup Options for the Job Execution Environment

C.4.1 Using the GPUs in normal mode
When jobs are executed in normal mode in the job execution environment, all of the jobs can access GPUs because all devices are available
by default. Therefore, in the startup configuration file /etc/opt/FJSVtcs/krm/tcs-bare.conf for normal mode installed on the compute node,
set only the necessary devices other than GPU to item Devices in the following procedure. As a result, jobs cannot access GPUs by default.
When you want to use a GPU, allocate GPU custom resources to a job and execute the job.

 Note

Do not modify the startup configuration file tcs-bare.conf for normal mode except for the item Devices. Operation cannot be guaranteed if
any item other than Devices is changed.

In the example shown below, a compute node (node ID: 0xFFFF0004) in the compute cluster named "compute" can access only /dev/sda1
from the container.

1. Preparing for software maintenance

Make preparations to change startup options for the job execution environment.

For the preparation procedure, see "Preparation for Software Maintenance" in the "Job Operation Software Administrator's Guide for
Maintenance."

2. Transferring tcs-bare.conf

Transfer /etc/opt/FJSVtcs/krm/tcs-bare.conf from the compute node to the system management node as follows.

[System management node]

pmgather -c compute -n 0xFFFF0004 /etc/opt/FJSVtcs/krm/tcs-bare.conf ./

- 172 -

3. Editing tcs-bare.conf

The Devices item in the transferred tcs-bare.conf file looks like the following.

...

 "Devices" : [{

 "PathOnHost" : "/dev ",

 "PathInContainer" : "/dev ",

 "CgroupPermissions" : "mrw"

 }],

...

4. Edit the tcs-bare.conf file as follows.

...

 "Devices" : [{

 "PathOnHost" : "/dev/sda1",

 "PathInContainer" : "/dev/sda1",

 "CgroupPermissions" : "mrw"

 }],

...

5. Setting the permission for the tcs-bare.conf file

Set the permission for the tcs-bare.conf file as follows.

[System management node]

chmod 0600 tcs-bare.conf

6. Distributing the tcs-bare.conf file

Distribute the tcs-bare.conf file to the target compute node as follows.

[System management node]

pmscatter -c compute -p -n 0xFFFF0004 tcs-bare.conf /etc/opt/FJSVtcs/krm/tcs-bare.conf

7. Incorporating into operation after software maintenance

Incorporate the node with the changed settings into operation.
For the procedure for incorporating into operation, see "Incorporating Into Operation After Software Maintenance" in the "Job
Operation Software Administrator's Guide for Maintenance."

 Note

If you want to use GPUs in Docker mode, similar settings are required in the startup configuration file used.

C.4.2 Using the MPS function in docker mode
When using the GPU MPS feature in Docker mode, Docker containers access /tmp on the host.

Therefore, the definition must be added to "Binds" in the startup configuration file of the job execution environment to allow access to /tmp.
Here is an example of adding the definition for /tmp to "Binds".

...

"HostConfig" : {

 "Binds" : [

 ... ,

 "/tmp:/tmp"

],

...

- 173 -

 See

See "3.5.7.4 Creating a container startup configuration file (Docker mode only)" for more information about the container startup
configuration file.

C.5 Configuring Job Statistical Information
Configure job statistical information so that GPU statistical information can be output as job statistical information.

The administrator defines GPU statistical information as job statistical information items in the papjmstats.conf file (system management
node: /etc/opt/FJSVtcs/papjmstats.conf). The following GPU statistical information can be defined.

Table C.7 GPU statistical information that can be defined

Item name Description RecordNameList DataType Example

gpuids ID list of GPUs used by
jobs

JN PJMX_DATATYPE_STRING 0,1,2,3

gpu_driver_version Version of the GPU
driver

JN PJMX_DATATYPE_STRING 48.67

gpu_cuda_version Version of CUDA JN PJMX_DATATYPE_STRING 10.1

gpu_name_n Name of a GPU (ID: n) JN PJMX_DATATYPE_STRING Tesla V100-
PCIE-32GB

gpu_busid_n Bus ID of a GPU (ID: n) JN PJMX_DATATYPE_STRING 00000000:3E:
00.0

gpu_perf_n Performance status of a
GPU (ID: n)

JN PJMX_DATATYPE_STRING P0

gpu_persistence_n Persistence mode status
of a GPU (ID: n)

JN PJMX_DATATYPE_STRING Disabled

gpu_display_n Display mode status of a
GPU (ID: n)

JN PJMX_DATATYPE_STRING Disabled

gpu_compute_n Compute mode status of a
GPU (ID: n)

JN PJMX_DATATYPE_STRING Default

gpu_ave_util_n Average utilization rate
(%) of a GPU (ID: n) in
the job execution time

JN PJMX_DATATYPE_STRING 60%

gpu_max_util_n Maximum utilization rate
(%) of a GPU (ID: n) in
the job execution time

JN PJMX_DATATYPE_STRING 90%

gpu_total_mem_n Total memory amount
(MiB) of a GPU (ID: n)

JN PJMX_DATATYPE_STRING 16130 MiB

gpu_ave_mem_n Average memory usage
(MiB) of a GPU (ID: n) in
the job execution time

JN PJMX_DATATYPE_STRING 7000 MiB

gpu_max_mem_n Maximum memory usage
(MiB) of a GPU (ID: n) in
the job execution time

JN PJMX_DATATYPE_STRING 14679 MiB

gpu_power_cap_n Upper limit on the power
consumption (W) of a
GPU (ID: n)

JN PJMX_DATATYPE_STRING 300.00 W

gpu_ave_pwr_n Average power
consumption (W) of a

JN PJMX_DATATYPE_STRING 56.00 W

- 174 -

Item name Description RecordNameList DataType Example

GPU (ID: n) in the job
execution time

gpu_max_pwr_n Maximum power
consumption (W) of a
GPU (ID: n) in the job
execution time

JN PJMX_DATATYPE_STRING 218.00 W

gpu_ave_temp_n Average temperature
(Celsius) of a GPU (ID:
n) in the job execution
time

JN PJMX_DATATYPE_STRING 38 C

gpu_max_temp_n Maximum temperature
(Celsius) of a GPU (ID:
n) in the job execution
time

JN PJMX_DATATYPE_STRING 43 C

gpu_volatile_ecc_n Memory error correction
count of a GPU (ID: n) in
the job execution time

JN PJMX_DATATYPE_STRING 0

gpu_ave_util Average value (%) of
gpu_ave_util_n

JI PJMX_DATATYPE_STRING 60%

gpu_max_util Maximum value (%) of
gpu_max_util_n

JI PJMX_DATATYPE_STRING 90%

gpu_ave_mem Average value (MiB) of
gpu_ave_mem_n

JI PJMX_DATATYPE_STRING 700 MiB

gpu_max_mem Maximum value (MiB) of
gpu_max_mem_n

JI PJMX_DATATYPE_STRING 14679 MiB

gpu_ave_pwr Average value (W) of
gpu_ave_pwr_n

JI PJMX_DATATYPE_STRING 56.64 W

gpu_max_pwr Maximum value (W) of
gpu_max_pwr_n

JI PJMX_DATATYPE_STRING 218.00 W

gpu_ave_temp Average value (Celsius)
of gpu_ave_temp_n

JI PJMX_DATATYPE_STRING 38 C

gpu_max_temp Maximum value
(Celsius) of
gpu_max_temp_n

JI PJMX_DATATYPE_STRING 43 C

The following example of the papjmstats.conf file adds the GPU IDs of the GPUs used by a job and the GPU names of two GPUs to job
statistical information.

Cluster {

 Item {

 ItemName = gpuids

 RecordNameList = JN

 DataType = PJMX_DATATYPE_STRING

 }

 Item {

 ItemName = gpu_name_0

 RecordNameList = JN

 DataType = PJMX_DATATYPE_STRING

 }

 Item {

 ItemName = gpu_name_1

 RecordNameList = JN

 DataType = PJMX_DATATYPE_STRING

- 175 -

 }

 ...

}

Use the papjmstatsadm command to apply the contents of the papjmstats.conf file. The following example applies settings to the compute
cluster.

[System management node]

papjmstatsadm -c compute --set

 Information

The prepared sample file is /etc/opt/FJSVtcs/sample/papjmstats.device.conf.

 See

- For details on how to define job statistical information, see "3.4.2 Settings for job statistical information in a cluster (papjmstats.conf
file)."

- For details on GPU statistical information, see https://developer.nvidia.com/nvidia-system-management-interface.

 Note

- For a system containing a compute node equipped with multiple GPUs, as many statistical information definitions as the number of
GPUs must be defined.

- When a GPU is shared among multiple jobs, the GPU load, memory usage, etc. by the jobs using the same GPU are information that
may be included.

C.6 Job Submission Options
This section describes how to submit a job that uses a GPU defined as a custom resource. The definition of custom resource varies from
system to system. Provide end-users with guidance appropriate to the system.

C.6.1 Specifying GPU custom resources
To allocate a GPU defined as the gpu custom resource to one job (job.sh), submit the job as follows.

$ pjsub -L gpu=1 job.sh

A job that uses the MPS function of the GPUs requires node resource (n: number of nodes) to run as a node-exclusive job and the custom
resource mps, submit the job as follows.

$ pjsub -L "node=n, mps=1, gpu=1" job.sh

 Information

Before the job starts, Technical Computing Suite changes the calculation mode of the GPU and starts the MPS daemon/MPS service on the
assigned GPU of the assigned node. End users do not need to perform these operations in the job.

After the job ends, Technical Computing Suite changes the calculation mode of the GPU and stops the MPS daemon/MPS service on the
assigned GPU of the assigned node.

- 176 -

https://developer.nvidia.com/nvidia-system-management-interface

 Note

To run a job using the MPS function for GPUs, please inform end users to submit job as a node-exclusive job.

Please inform the end users not to change the calculation mode of the GPU and not to start the MPS daemon/MPS service for the job that
did not request the custom resource mps.

Because of NVIDIA's command specifications (permissions), it is not possible to restrict these actions by the end users.

C.6.2 Environment variable for the NVIDIA Container Toolkit
For the NVIDIA Container Toolkit, you can specify an environment variable for changing the operation of containers when submitting a
job. To do so, use the -x option of the pjsub command.
For details on the environment variable for the NVIDIA Container Toolkit, see https://github.com/NVIDIA/nvidia-container-runtime. Add
"PJM_" to the beginning of the environment variable name when specifying the environment variable in the -x option of the pjsub command.

The following example submits the job.sh job, which uses one gpu custom resource, and specifies "cuda>=8.0" in the environment variable
PJM_NVIDIA_REQUIRE_CUDA.

$ pjsub -x PJM_NVIDIA_REQUIRE_CUDA="cuda>=8.0" -L gpu=1 job.sh

Table C.8 Example of an environment variable for the NVIDIA Container Toolkit

Environment variable name Definition Specification
example

PJM_NVIDIA_REQUIRE_CUDA Specify the version of the CUDA toolkit used in the container.
After the submission of a job is accepted, the job enters the ERROR
state if it cannot use the specified version.

cuda>=8.0

C.6.3 Environment variable for GPU statistical information
GPU time-series statistical information can be output as a statistical information file when a job ends. If you want to output the statistical
information file, specify the environment variable PJM_STATS_DIR, which specifies the file output directory, by using the -x option of
the pjsub command when submitting a job.

The following example specifies the nvidia_stats directory so that GPU time-series statistical information is output there.

$ pjsub -x PJM_STATS_DIR="nvidia_stats" -L gpu=1 job.sh

Table C.9 Environment variable for GPU statistical information

Environment variable name Definition Specification example

PJM_STATS_DIR Specify the statistical information file output directory as a relative path
from the current directory at the job submission time.
After the submission of a job is accepted, the job enters the ERROR state
if it does not have access permission for the specified path.

nvidia_stats

nvidiad_job ID_node ID.out is the file name of the statistical information file. In the following example, the job ID is 1024 and the node
ID is 0xFFFF0003.

$ ls nvidia_stats

nvidiad_1024_0xFFFF0003.out

- 177 -

https://github.com/NVIDIA/nvidia-container-runtime

Appendix D Settings for Using Singularity [PG]
Singularity is container virtualization software for HPC.
The Job Operation Software can execute Singularity as a job in Docker mode in the job execution environment when the following settings
have been completed:

1. Job execution environment settings

2. Startup configuration file settings

3. Custom resource settings

 See

For details on Singularity, see https://sylabs.io/singularity/ or other sites.

 Note

Jobs that execute Singularity cannot be executed with root privileges.

D.1 Job Execution Environment Settings
For Singularity, create a jobenv.conf information file for the job execution environment.

In the definitions for Singularity, specify /etc/opt/FJSVtcs/krm/singularity.conf in the Conf item in the startup configuration file. The
following example shows definitions for Singularity.

[

 ...

 {

 "Name" : "singularity",

 "Type" : "docker",

 "Image" : "tcs-bare",

 "Conf" : "/etc/opt/FJSVtcs/krm/singularity.conf"

 }

 ...

]

Table D.1 Job execution environment setting items for Singularity

Item name Definition Specified value

Name Job execution environment name Specify a name identifying the job execution environment.

You can specify any character string consisting of 1 to 63 characters, including
single-byte alphanumeric characters (lowercase letters), hyphens, and
underscores. However, the first character must be a single-byte alphanumeric
character. The specified name cannot be a duplicate of another entry.

Type Job execution environment type Specify "docker".

Image Container image used Specify "tcs-bare".

Conf Specify the startup configuration file /etc/opt/FJSVtcs/krm/singularity.conf.

 Information

The startup configuration file /etc/opt/FJSVtcs/krm/singularity.conf specified in the Conf item is placed when the Job Operation Software
is installed.

- 178 -

https://sylabs.io/singularity/

D.2 Startup Configuration File Settings
Follow these steps to configure the /etc/opt/FJSVtcs/krm/singularity.conf file on the system management node and then distribute it to each
Compute node.

1. loop device setting

Singularity must be able to access loop devices (such as /dev/loop0). When editing the Devices item in the startup configuration file /
etc/opt/FJSVtcs/krm/singularity.conf for Singularity, make loop devices accessible as shown below. The following example makes /
dev/loop0 and /dev/loop1 accessible.

...

 "Devices" : [{

 "PathOnHost" : "/dev/loop0 ",

 "PathInContainer" : "/dev/loop0",

 "CgroupPermissions" : "mrw"

 },

 {

 "PathOnHost" : "/dev/loop1 ",

 "PathInContainer" : "/dev/loop1",

 "CgroupPermissions" : "mrw"

 }

],

...

Since at least one loop device is required per Singularity process, define multiple loop devices existing on compute nodes.

2. When using docker 19.03 and Singularity 3.7.2 or later

To grant permission to run jobs on Singularity, set the following:

a. Settings IpcMode

Add the "IpcMode" setting to the "HostConfig" section on the system management node. Below are additional examples, put
** at the add part.

 {

 "Hostname" : "",

 (snip)

 "HostConfig" : {

 "Binds" : [],

 (snip)

 "NetworkMode" : "host",

 "IpcMode" : "shareable", ** Add **

 "Devices" : [{

b. Settings CapAdd and CapDrop

In the "CapDrop" section of the "HostConfig" section, move "DAC_READ_SEARCH" and "SYS_PTRACE" to the
"CapAdd" section. Below are description of "CapAdd", "CapDrop" section after moved.

The part marked with ** in the following description is the changed part.

 "CapAdd" : [

 "CHOWN",

 "DAC_OVERRIDE",

 "FSETID",

 "FOWNER",

 "MKNOD",

 "NET_RAW",

 "SETGID",

 "SETUID",

 "SETFCAP",

 "SETPCAP",

 "NET_BIND_SERVICE",

 "SYS_CHROOT",

- 179 -

 "KILL",

 "AUDIT_WRITE",

 "SYS_ADMIN",

 "SYS_NICE",

 "DAC_READ_SEARCH", ** Move from "CapDrop" section **

 "SYS_PTRACE", ** Move from "CapDrop" section **

 "SYS_RESOURCE"

],

 "CapDrop" : [

 "AUDIT_CONTROL",

 "BLOCK_SUSPEND",

 "IPC_LOCK",

 "IPC_OWNER",

 "LEASE",

 "LINUX_IMMUTABLE",

 "MAC_ADMIN",

 "MAC_OVERRIDE",

 "NET_ADMIN",

 "NET_BROADCAST",

 "SYS_BOOT",

 "SYS_MODULE",

 "SYS_PACCT",

 "SYS_RAWIO",

 "SYS_TIME",

 "SYS_TTY_CONFIG",

 "SYSLOG",

 "WAKE_ALARM"

],

 See

For details on how to configure a job execution environment, see "3.5.7 Configuring a Job Execution Environment."

D.3 Custom Resource Settings
The jobenv.conf information file defines a job execution environment. Define the job execution environment as the jobenv custom resource.

1. Correcting the pmpjm.conf file

Specify the following as definition items in the CustomResource subsection.

Item name Specification

Name Specify "jobenv".

ValueType Specify "string".

Value Specify the job execution environment name.

The following example configures the job execution environment "singularity" as the custom resource "jobenv" for the resource unit
"rscunit_pg01".

[System management node]

vi /etc/opt/FJSVtcs/Rscunit.d/rscunit_pg01/pmpjm.conf

ResourceUnit {

 ResourceUnitName = group_pg01

 ...

 CustomResource {

 Name = jobenv

 ValueType = string

 Value = singularity

 }

- 180 -

...

}

 Information

The prepared sample file is /etc/opt/FJSVtcs/sample/pmpjm.singularity.conf.

2. Reflecting the pmpjm.conf file

Use the pmpjmadm command to apply the contents of the pmpjm.conf file to the system. The following example applies settings to
the rscunit_pg01 resource unit under the compute cluster.

[System management node]

pmpjmadm -c compute --set --rscunit rscunit_pg01

- 181 -

Appendix E How to Use Dynamic Parameters in Startup
Configuration Files (Docker Mode) [PG]

The Binds item in the startup configuration file of a job execution environment specifies a mount point. Instead of a fixed character string
as the specified mount point, an alternative method applies values (dynamic parameters) appropriate to the environment at the job runtime
(Docker mode). (See "3.5.7.4 Creating a container startup configuration file (Docker mode only).")
However, this specification method that uses dynamic parameters is not available by default. This appendix describes settings for using
dynamic parameters.

The dynamic parameter settings are implemented using the job resource manager exit function. Therefore, to use dynamic parameters, the
job resource manager exit function must be configured.
As the administrator, configure the job resource manager exit function in the pmrsc.conf file (system management node: /etc/opt/FJSVtcs/
Rscunit.d/resource unit name/pmrsc.conf) for each resource unit.

In the following example, the pmrsc.conf file specifies an exit script (under docker-hook) for the job resource manager exit function to
exclusively allocate a GPU to the group_a resource group under the rscunit_pg01 resource unit.

Cluster {

 ClusterName = compute

 ResourceUnit {

 ResourceUnitName = rscunit_pg01

 ResourceGroup {

 ResourceGroupName = group_a

 ExitFunc {

 ExitFuncScriptDir = /etc/opt/FJSVtcs/plugin/krm/docker-hook/

 ExitFuncPri = 150

 }

 }

 }

}

Table E.1 Job resource manager exit function settings for using dynamic parameters

Item name Definition Specified value

ExitFuncScriptDir Directory for placing exit scripts Specify /etc/opt/FJSVtcs/plugin/krm/docker-hook/.

ExitFuncPri Priority of an executed exit script Specify a numerical value greater than 127.

 Information

- The prepared sample file is /etc/opt/FJSVtcs/sample/pmrsc.docker.conf.

- Exit scripts are placed in the /etc/opt/FJSVtcs/plugin/krm/docker-hook directory when the Job Operation Software is installed.

 Note

When the number of OS version of PRIMERGY Compute node is RHEL8 series

When running a job using Docker mode on a PRIMERGY compute node with an OS version of RHEL8, change the function
__render_string in the /etc/opt/FJSVtcs/plugin/krm/docker-hook/prealloc file located on the system management node to the following and
then configure the job resource manager exit function.

Two additional lines and three changed lines with ** in the following description.

def __render_string(datalist, envdict):

 """<*****>"""

 try:

 # datalist : <*****>

 # envdict : <*****>

- 182 -

 env = jinja2.Environment(loader=jinja2.BaseLoader(),

 undefined=jinja2.StrictUndefined,

 keep_trailing_newline=True)

 envdata = os.environ.copy()

 # <*****>

 # PJM_USER, PJM_GROUP

 envdata["PJM_USER"] = __get_username()

 envdata["PJM_GROUP"] = __get_groupname()

 envdata.update(envdict)

 # <*****>

 newenvdata={} # ** Add **

 for key, val in envdata.items():

 # <*****>

 if not key.startswith("PJM"):

 continue # ** Change del envdata[key] **

 # <*****>

 elif not val:

 continue # ** Change del envdata[key] **

 # <*****>

 elif key == "PJM_APPNAME":

 # <*****>

 if "/.." in val or "../" in val or val == "..":

 err_msg = ("[ERR.] KRM 1002 {command} INVALID OPTION.(PJM_APPNAME=" + val + ")")

 raise devutil.common.EnvInvalidError(err_msg)

 elif key == "PJM_FSNAME":

 # <*****>

 if "/.." in val or "../" in val or val == "..":

 err_msg = ("[ERR.] KRM 1002 {command} INVALID OPTION.(PJM_FSNAME=" + val + ")")

 raise devutil.common.EnvInvalidError(err_msg)

 newenvdata[key]=val # ** Add **

 try:

 # list to str

 string = json.dumps(datalist)

 except TypeError:

 err_msg = ("[ERR.] KRM 1303 {command} INVALID FORMAT {conffile} ")

 err_msg += ("(FAILED : type conversion from list to str)")

 raise devutil.common.InvalidContainerFormat(err_msg)

 # <*****>

 template = env.from_string(string)

 newdata = template.render(**newenvdata) # ** Change newdata = template.render(**envdata) **

 try:

 # str to list

 datalist = json.loads(newdata)

 except ValueError:

 err_msg = ("[ERR.] KRM 1303 {command} INVALID FORMAT {conffile} ")

 err_msg += ("(FAILED : type conversion from str to list)")

 raise devutil.common.InvalidContainerFormat(err_msg)

 return datalist

 except (jinja2.exceptions.TemplateSyntaxError, jinja2.exceptions.UndefinedError) as ex:

 msg = str(ex)

 err_msg = ("[ERR.] KRM 1304 {command} INVALID VARIABLE {conffile} (" + msg + ")")

 raise devutil.common.InvalidVariable(err_msg)

<*****> : This part is garbled because it has a Japanese comment.

- 183 -

The pmrscadm command applies the contents of the pmrsc.conf file to the system. The following example applies settings to the
rscunit_pg01 resource unit.

[System management node]

pmrscadm --set --rscunit rscunit_pg01

- 184 -

Appendix F Defined items of the job ACL function
This appendix describes the defined items of the job ACL function.

The items that can be defined vary depending on the definition target. The following tables list the defined items available for each of the
USER definitions, GROUP definitions, and ALL definitions.

CL, RU, and RG indicate whether a defined item can be specified in a cluster range, resource unit range, and resource group range,
respectively.
"E" indicates an exclusive defined item, "C" indicates a definition value common in the target range, and "x" indicates an item that cannot
be specified for this range.

 Note

- In PRIMERGY server, specified setting items for FX server are ignored.

- In FX server, specified setting items for PRIMERGY are ignored.

Table F.1 Defined items available in the USER definitions (1)

Definition name Description Default value Specifiable layer

CL RU RG

limit ru-accept Concurrent job acceptance limit within a
resource unit (*1)

unlimited C E x

limit ru-accept-allsubjob Concurrent sub job acceptance limit within
a resource unit (*1)
A normal job of batch job is counted as one
sub job.

unlimited C E x

limit ru-accept-bulksubjob Concurrent bulk sub job acceptance limit
within a resource unit (*1)

unlimited C E x

limit ru-accept-stepsubjob Concurrent step sub job acceptance limit
within a resource unit (*1)

unlimited C E x

limit ru-run-job Concurrent job execution limit within a
resource unit (*1)

unlimited C E x

limit ru-run-bulksubjob Concurrent bulk sub job execution limit
within a resource unit (*1)(*2)

unlimited C E x

limit ru-use-node Concurrent node usage limit within a
resource unit (*1)(*3)(*12)

unlimited C E x

limit ru-use-core Concurrent CPU core usage limit within a
resource unit (*1)(*4)(*13)

unlimited C E x

limit ru-custom-CustomResourceName Limit on the number of custom resources
(defined in CustomResourceName) that can
be used concurrently within a resource unit

unlimited C E x

limit ru-interact-accept Concurrent job acceptance limit (interactive
jobs) within a resource unit (*1)

unlimited C E x

limit ru-interact-run-job Concurrent job execution limit (interactive
jobs) within a resource unit (*1)

unlimited C E x

limit ru-interact-use-node Concurrent node usage limit (interactive
jobs) within a resource unit (*1)(*3)(*12)

unlimited C E x

limit ru-interact-use-core Concurrent CPU core usage limit
(interactive jobs) within a resource unit (*1)
(*4)(*13)

unlimited C E x

- 185 -

Definition name Description Default value Specifiable layer

CL RU RG

limit ru-interact-custom-

CustomResourceName

Limit on the number of custom resources
(defined in CustomResourceName) that can
be used concurrently (by interactive jobs)
within a resource unit

unlimited C E x

limit rg-accept Concurrent job acceptance limit within a
resource group (*1)

unlimited C C E

limit rg-accept-allsubjob Concurrent sub job acceptance limit within
a resource group(*1)
A normal job of batch job is counted as one
sub job.

unlimited C C E

limit rg-accept-bulksubjob Concurrent bulk sub job acceptance limit
within a resource group (*1)

unlimited C C E

limit rg-accept-stepsubjob Concurrent step sub job acceptance limit
within a resource group (*1)

unlimited C C E

limit rg-run-job Concurrent job execution limit within a
resource group (*1)

unlimited C C E

limit rg-run-bulksubjob Concurrent bulk sub job execution limit
within a resource group (*1)(*12)

unlimited C C E

limit rg-use-node Concurrent node usage limit within a
resource group (*1)(*3)(*12)

unlimited C C E

limit rg-use-core Concurrent CPU core usage limit within a
resource group (*1)(*4)(*13)

unlimited C C E

limit rg-custom-CustomResourceName Limit on the number of custom resources
(defined in CustomResourceName) that can
be used concurrently within a resource
group

unlimited C C E

limit rg-interact-accept Concurrent job acceptance limit (interactive
jobs) within a resource group (*1)

unlimited C C E

limit rg-interact-run-job Concurrent job execution limit (interactive
jobs) within a resource group (*1)

unlimited C C E

limit rg-interact-use-node Concurrent node usage limit (interactive
jobs) within a resource group (*1)(*3)(*12)

unlimited C C E

limit rg-interact-use-core Concurrent CPU core usage limit
(interactive jobs) within a resource group
(*1)(*4)(*13)

unlimited C C E

limit rg-interact-custom-

CustomResourceName

Limit on the number of custom resources
(defined in CustomResourceName) that can
be used concurrently (by interactive jobs)
within a resource group

unlimited C C E

define rscunit Default name for a submitting resource unit rscunit000 E x x

define rscgroup Default name for a submitting resource
group

def_grp C E x

define interact-rscunit Default name for a submitting resource unit
(interactive job)

rscunit000 E x x

define interact-rscgroup Default name for a submitting resource
group (interactive job)

def_grp C E x

- 186 -

Definition name Description Default value Specifiable layer

CL RU RG

define pri User priority within a resource unit. (*1)
It is valid when user_prio of the job
selection policy is set.

127 C C E

define ingroup-pri User priority in the same group within a
resource unit.
It is valid when usr_in_grp_prio of the job
selection policy is set.

127 C C E

define fshare-init Default user fair share value within a
resource unit. (*1)
It is valid when user_fairshare of the job
selection policy is set. (*5)
For details on how to specify a fair share set
to define initial fair share values, see
"3.4.4.4 How to define a fair share set."

0 C E x

define fshare-recovery Fair share recovery factor for users within a
resource unit (*1)
It is valid when user_fairshare of the job
selection policy is set. (*5)
For details on how to specify a fair share set
to define initial fair share values, see
"3.4.4.4 How to define a fair share set."

100 C E x

define ingroup-fshare-init Default user fair share value in the same
group within a resource unit.
It is valid when usr_in_grp_fairshare of the
job selection policy is set. (*5)
For details on how to specify a fair share set
to define initial fair share values, see
"3.4.4.4 How to define a fair share set."

0 C E x

define ingroup-fshare-recovery Fair share recovery factor for users in the
same group within a resource unit.
It is valid when usr_in_grp_fairshare of the
job selection policy is set. (*5)
For details on how to specify a fair share set
to define initial fair share values, see
"3.4.4.4 How to define a fair share set."

100 C E x

define allocation-mode
[FX]

Node allocation mode for node allocated
jobs. The specifiable values include torus
(torus mode), mesh (mesh mode), and
noncont (non-contiguous mode). (*10)

torus C C E

define numa-policy NUMA allocation policy : pack, unpack pack C C E

define load-policy
[PG]

Method of selecting nodes.
balancing (Distribution), concentration
(concentration) (*6)

balancing C C E

define vn-policy
[PG]

Virtual node placement policy
abs_pack, pack, abs_unpack[=n],
unpack[=n] (*6)

pack C C E

define exec-policy
[PG]

Execution mode
simplex (node occupation), share (share)
(*6)

share C C E

- 187 -

Definition name Description Default value Specifiable layer

CL RU RG

define node-priority
[PG]

Priority control of allocated nodes (0 - 63)
(*6)

31 C C E

define alloc-granularity Granularity in node resource allocation
node (node), vnode (virtual node)

The node allocated job or virtual node
allocated job is determined based on this
setting unless both the -L node and -L vnode
options are specified when a job is
submitted with the pjsub command.

node: node allocated jobs
The default values of the joblimit node and
joblimit interact-node items are used as the
number of nodes.

vnode: virtual node allocated jobs
The default values of the joblimit vnode and
joblimit interact-vnode items are used as the
number of virtual nodes.

node C C E

define assign-logical-cpu
[PG]

Range types for the logical CPUs that can be
used for job processes: job, all (*15)

job
Job processes can use only the logical CPUs
for the job in the allocated CPU core.

all
Job processes can use all the logical CPUs in
the allocated CPU core.

For details on the logical CPUs for a job, see
"Setting the Range of CPU Resources
Available to a Job" in "Executing programs
of MPI processing system other than
Development Studio" in "Job Operation
Software End-user's Guide."

job C C E

define pjstat-display-mode Mode for the pjstat command displaying
other users' jobs without access privileges

anonymous
Display a list of jobs and also include the
jobs in summary information. However,
mask some information, such as user names,
so that is not known.

nothing
Neither display a list of jobs nor include the
jobs in summary information

summary
Do not display a list of jobs, but include the
jobs in summary information

anonymous C C E

define elapsed-time-mode Method of specifying the elapsed time limit
of a job

- fixed: Specify only a maximum value

fixed C C E

- 188 -

Definition name Description Default value Specifiable layer

CL RU RG

- adaptive: Specify minimum and
maximum values [FX]

define pjstat-sdt-format Display format for planned job execution
start times of the pjstat command

fine

custom=<format>

For details on how to specify the format, see
"3.4.4.5 Changing the display format of
planned job execution start times."

fine C C E

define pjstat-sdt-mark Display of scheduling symbols for planned
job execution start times displayed by the
pjstat command

@
Display the @ symbol for jobs with a
specified start time

<
Display the < symbol for jobs that are
backfill scheduled

#
Display the # symbol when the scheduling
period is exceeded

all
Display all the symbols (@, <, and #)

nothing
Display none of the symbols (@, <, and #)

For details on how to specify it, see "3.4.4.5
Changing the display format of planned job
execution start times."

all C C E

define strict-mode
[FX]

Default settings for the strict, strict-io
parameters of the pjsub command.

nostrict : Neighther strict nor strict-io is
specified.

strict : strict is specified

strict-io : strcit-io is specified

nostrict C C E

define net-route
[FX]

Whether to dynamically change the
communication path when a Tofu
interconnect link goes down during job
execution

dynamic: Dynamically change the
communication path.

static: Do not change the communication
path.

This item is invalid for jobs executed on a
PRIMERGY server.

static C C E

- 189 -

Definition name Description Default value Specifiable layer

CL RU RG

define mpiexec-stdouterr-unit
[FX]

Output units for the standard output/
standard error output of the mpiexec
command.

- mpiexec
For each mpiexec command.

- proc
For each process (rank)

mpiexec C C E

define mpiexec-stdout
[FX]

The default output destination for the
standard output of the mpiexec command in
a batch job. (*20)

%o C C E

define mpiexec-stderr
[FX]

The default output destination for the
standard error output of the mpiexec
command in a batch job. (*20)

%e C C E

define interact-mpiexec-stdout
[FX]

The default output destination for the
standard output of the mpiexec command in
an interactive job. (*20)

noset C C E

define interact-mpiexec-stderr
[FX]

The default output destination for the
standard error output of the mpiexec
command in an interactive job. (*20)

noset C C E

define mpiexec-std-emptyfile
[FX]

Whether to create an empty file if there is no
standard output/standard error output for the
mpiexec command.

- on : Creates

- off : Do not create.

- force-on : Creates regardless of user
specification.

- force-off : Do not creates regardless of
user specification.

on C C E

execute pjsub Authority for execution of the pjsub
command

enable C C E

execute pjsub-interact Authority for submitting interactive jobs enable C C E

execute pjsub-step Authority for submitting step jobs enable C C E

execute pjsub-bulk Authority for submitting bulk jobs enable C C E

execute pjsub-fixed-elapsed-time
[FX]

Authority for executing jobs specifying
only an upper limit for the elapsed time limit
value for a job
(pjsub -L elapse=limit)

enable C C E

execute pjsub-adaptive-elapsed-time
[FX]

Authority for executing jobs specifying a
range of elapsed time limit values for a job
(extra time specified)
(pjsub -L elapse=min_limit-max_limit)

disable C C E

execute pjstat Authority for executing the pjstat command enable E x x

execute pjdel Authority for executing the pjdel command enable E x x

execute pjhold Authority for executing the pjhold
command

enable E x x

- 190 -

Definition name Description Default value Specifiable layer

CL RU RG

execute pjrls Authority for executing the pjrls command enable E x x

execute pjwait Authority for executing the pjwait
command

enable E x x

execute pjalter Authority for executing the pjalter
command

enable E x x

execute pjsig Authority for executing the pjsig command enable E x x

execute pjacl Authority for executing the pjacl command enable E x x

execute mpiexec-std Authority for using the -of/-std option of the
mpiexec command to change the standard
output and standard error output
destinations of parallel processes for batch
jobs

If disable is set, the -of/-std option of the
mpiexec command is ignored.

enable C C E

execute mpiexec-stdout Authority for using the -ofout/-stdout option
of the mpiexec command to change the
standard output destination of parallel
processes for batch jobs

If disable is set, the -ofout/-stdout option of
the mpiexec command is ignored.

enable C C E

execute mpiexec-stderr Authority for using the -oferr/-stderr option
of the mpiexec command to change the
standard error output destination of parallel
processes for batch jobs

If disable is set, the -oferr/-stderr option of
the mpiexec command is ignored.

enable C C E

execute interact-mpiexec-std Authority for using the -of/-std option of the
mpiexec command to change the standard
output and standard error output
destinations of parallel processes for
interactive jobs

If disable is set, the -of/-std option of the
mpiexec command is ignored.

enable C C E

execute interact-mpiexec-stdout Authority for using the -ofout/-stdout option
of the mpiexec command to change the
standard output destination of parallel
processes for interactive jobs

If disable is set, the -ofout/-stdout option of
the mpiexec command is ignored.

enable C C E

execute interact-mpiexec-stderr Authority for using the -oferr/-stderr option
of the mpiexec command to change the
standard error output destination of parallel
processes for interactive jobs

If disable is set, the -oferr/-stderr of the
mpiexec command is ignored.

enable C C E

execute command-api Authority for using the command API disable E x x

- 191 -

Definition name Description Default value Specifiable layer

CL RU RG

execute pjsub-P-exec-policy
[PG]

Authority for executing the -P exec-policy
option of the pjsub command.

enable C C E

execute pjsub-P-vn-policy
[PG]

Authority for executing the -P vn-policy
option of the pjsub command.

enable C C E

execute pjsub-torus
[FX]

Authority for submitting jobs with torus
mode (":torus") specified (*10)

enable C C E

execute pjsub-mesh
[FX]

Authority for submitting jobs with mesh
mode (":mesh") specified (*10)

enable C C E

execute pjsub-noncont
[FX]

Authority for submitting jobs with non-
contiguous mode (":noncont") specified
(*10)

enable C C E

execute pjdel-enforce Authority for using the option for canceling
prologue and epilogue scripts in the pjdel
command

disable
(*21)

C C E

execute pjdel-no-history Authority to suppress output of job
information to job history information when
deleting jobs.

disable C C E

execute pjhold-enforce Authority for using the option for canceling
prologue and epilogue scripts in the pjhold
command

disable
(*21)

C C E

execute pjsub-batch Authority for submitting batch jobs enable C C E

execute pjsub-normal Authority for submitting normal jobs enable C C E

execute pjsub-node Authority for submitting node allocated
jobs

enable C C E

execute pjsub-vnode Authority for submitting virtual node
allocated jobs

enable C C E

execute pjsub-nostrict
[FX]

Authority for submitting jobs with neither
strict nor strict-io specified

enable C C E

execute pjsub-strict
[FX]

Authority for submitting jobs with strict
specified

enable C C E

execute pjsub-strict-io
[FX]

Authority for submitting jobs with strict-io
specified

disable C C E

execute pjsub-at Authority for specifying the execution start
time

enable C C E

execute pjsub-net-route
[FX]

Authority for submitting jobs with the
--net-route option specified in the pjsub
command

disable
(*21)

C C E

permit pjsub Permission to be able to specify groups with
pjsub -g (executable group).
This includes permission for the current
group without specifying the -g option.

allow own C C E

permit pjstat Permission to be able to display target jobs
with pjstat (*11)

allow own C C E

permit pjdel Permission to be able to execute target jobs
with pjdel (*11)

allow own C C E

- 192 -

Definition name Description Default value Specifiable layer

CL RU RG

permit pjhold Permission to be able to execute target jobs
with pjhold (*11)

allow own C C E

permit pjrls Permission to be able to execute target jobs
with pjrls (*11)

allow own C C E

permit pjwait Permission to be able to execute target jobs
with pjwait (*11)

allow own C C E

permit pjalter Permission to be able to execute target jobs
with pjalter (*11)

allow own C C E

permit pjsig Permission to be able to execute target jobs
with pjsig (*11)

allow own C C E

permit pjacl Permission to be able to display target users/
groups with pjacl

allow own C C E

permit pmerls Permission to be able to execute target jobs
with pmerls (*11)

deny all C C E

permit pmalter Permission to be able to execute target jobs
with pmalter (*11)

deny all C C E

permit pjshowrsc Permission to display job information by
using pjshowrs, or the users and groups
denied this permission

allow all C C E

select custom-CustomResourceName Specifiable type of custom resource
(defined in CustomResourceName)

none C C E

Table F.2 Defined items available in the USER definitions (2)

Definition name Description Default value Specifiable layer

Lower
limit

Upper
limit

Default
value

CL RU RG

joblimit subjobnum Limit on the number of sub jobs for
each bulk job

none unlimited none C C E

joblimit priv-pri Priority among users for each job
within a resource unit.
It is valid when job_prio of the job
selection policy is set.

none 255 127 C C E

joblimit elapse Elapsed time limit for each job
(batch jobs)

1 24:00:00 01:00:00 C C E

joblimit adaptive-elapsed-
time-min
[FX]

Minimum elapsed time limit value
for a job (batch job)

1 24:00:00 01:00:00 C C E

joblimit adaptive-elapsed-
time-max
[FX]

Maximum elapsed time limit value
for a job
(batch job)

2 48:00:00 2:00:00 C C E

joblimit node Node number limit for each job
(batch jobs)

1 2147483647 2 (*14) C C E

joblimit node-mem Memory usage limit for each node
(batch jobs)

1 unlimited unlimited C C E

joblimit proc-core Core file size limit for each process
(batch jobs)

none unlimited 0 C C E

- 193 -

Definition name Description Default value Specifiable layer

Lower
limit

Upper
limit

Default
value

CL RU RG

joblimit proc-cpu CPU time limit for each process
(batch jobs)

none unlimited unlimited C C E

joblimit proc-crproc Limit on the number of user
processes created for each process
(batch jobs)

none 512 512 C C E

joblimit proc-data Data segment size limit for each
process (batch jobs) (*7)

none unlimited unlimited C C E

joblimit proc-lockm Lock memory size limit for each
process (batch jobs) (*7)

none unlimited unlimited C C E

joblimit proc-msgq Message queue size limit for each
process (batch jobs)

none unlimited unlimited C C E

joblimit proc-openfd Limit on the number of file
descriptors for each process (batch
jobs)

none unlimited 1024 C C E

joblimit proc-psig Limit on the number of pending
signals for each process (batch jobs)

none unlimited unlimited C C E

joblimit proc-filesz File size limit for each process
(batch jobs)

none unlimited unlimited C C E

joblimit proc-stack Stack size limit for each process
(batch jobs) (*7)(*8)

none unlimited unlimited C C E

joblimit proc-vmem Virtual memory limit for each
process (batch jobs) (*7)(*8)

none unlimited unlimited C C E

joblimit vnode-core Number of CPU cores per virtual
node, for virtual node allocated jobs
(batch jobs)

1 2147483647 1 C C E

joblimit vnode-mem Limit on memory usage per virtual
node for virtual node allocated jobs
(limit on memory usage based on the
value obtained by multiplying the
number of CPU cores per virtual
node by memory usage per CPU
core) (batch jobs) (*8)(*9)

1 unlimited unlimited C C E

joblimit vnode Virtual node number limit for each
job (batch jobs)

1 2147483647 1 (*14) C C E

joblimit total-cores Limit on the total number of CPU
cores used per job (batch jobs)

1 unlimited none C C E

joblimit node-elapse Limit on the node time spent (Limit
based on the value obtained by
multiplying the number of request
nodes for a batch job by the elapsed
time limit value)

1 unlimited none C C E

joblimit adaptive-node-
elapse-min
[FX]

Limit on the node time spent (Limit
based on the value obtained by
multiplying the number of requested
nodes for a batch job by the
minimum elapsed time limit value)

1 unlimited none C C E

- 194 -

Definition name Description Default value Specifiable layer

Lower
limit

Upper
limit

Default
value

CL RU RG

joblimit adaptive-node-
elapse-max
[FX]

Limit on the node time spent (Limit
based on the value obtained by
multiplying the number of requested
nodes for a batch job by the
maximum elapsed time limit value)

2 unlimited none C C E

joblimit total-cores-elapse Limit on the CPU core time spent
(Limit based on the value obtained
by multiplying the number of CPU
cores used for a batch job by the
elapsed time limit value)

1 unlimited none C C E

joblimit custom-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (*16)

0 unlimited 0 C C E

joblimit custom-total-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (*17)

0 unlimited 0 C C E

joblimit custom-node-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (*18)

0 unlimited 0 C C E

joblimit custom-vnode-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (*19)

0 unlimited 0 C C E

joblimit interact-elapse Elapsed time limit for each job
(interactive jobs)

1 24:00:00 01:00:00 C C E

joblimit interact-adaptive-
elapsed-time-min
[FX]

Minimum elapsed time limit value
for a job (interactive job)

1 24:00:00 01:00:00 C C E

joblimit interact-adaptive-
elapsed-time-max
[FX]

Maximum elapsed time limit value
for a job
(interactive job)

2 48:00:00 2:00:00 C C E

joblimit interact-node Node number limit for each job
(interactive jobs)

1 2147483647 1 (*14) C C E

joblimit interact-node-
mem

Memory usage limit for each node
(interactive jobs)

1 unlimited unlimited C C E

joblimit interact-proc-core Core file size limit for each process
(interactive jobs)

none unlimited 0 C C E

joblimit interact-proc-cpu CPU time limit for each process
(interactive jobs)

none unlimited unlimited C C E

joblimit interact-proc-
crproc

Limit on the number of user
processes created for each process
(interactive jobs)

none 512 512 C C E

joblimit interact-proc-data Data segment size limit for each
process (interactive jobs)

none unlimited unlimited C C E

joblimit interact-proc-
lockm

Lock memory size limit for each
process (interactive jobs)

none unlimited unlimited C C E

joblimit interact-proc-
msgq

Message queue size limit for each
process (interactive jobs)

none unlimited unlimited C C E

- 195 -

Definition name Description Default value Specifiable layer

Lower
limit

Upper
limit

Default
value

CL RU RG

joblimit interact-proc-
openfd

Limit on the number of file
descriptors for each process
(interactive jobs)

none unlimited 1024 C C E

joblimit interact-proc-psig Limit on the number of pending
signals for each process (interactive
jobs)

none unlimited unlimited C C E

joblimit interact-proc-
filesz

File size limit for each process
(interactive jobs)

none unlimited unlimited C C E

joblimit interact-proc-
stack

Stack size limit for each process
(interactive jobs)

none unlimited unlimited C C E

joblimit interact-proc-
vmem

Virtual memory limit for each
process (interactive jobs)

none unlimited unlimited C C E

joblimit interact-vnode-
core

Number of CPU cores per virtual
node, for virtual node allocated jobs
(interactive jobs)

1 2147483647 1 C C E

joblimit interact-vnode-
mem

Limit on memory usage per virtual
node for virtual node allocated jobs
(limit on memory usage based on the
value obtained by multiplying the
number of CPU cores per virtual
node by memory usage per CPU
core) (interactive jobs) (*8)(*9)

1 unlimited unlimited C C E

joblimit interact-vnode Virtual node number limit for each
job (interactive jobs)

1 2147483647 1 (*14) C C E

joblimit interact-total-
cores

Limit on the total number of CPU
cores used per job (interactive jobs)

1 unlimited none C C E

joblimit interact-node-
elapse

Limit on the node time spent (Limit
based on the value obtained by
multiplying the number of request
nodes for an interactive job by the
elapsed time limit value)
(interactive jobs)

1 unlimited none C C E

joblimit interact-adaptive-
node-elapse-min
[FX]

Limit on the node time spent (Limit
based on the value obtained by
multiplying the number of requested
nodes for an interactive job by the
minimum elapsed time limit value)

1 unlimited none C C E

joblimit interact-adaptive-
node-elapse-max
[FX]

Limit on the node time spent (Limit
based on the value obtained by
multiplying the number of requested
nodes for an interactive job by the
maximum elapsed time limit value)

2 unlimited none C C E

joblimit
interact-total-cores-elapse

Limit on the CPU core time spent
(Limit based on the value obtained
by multiplying the number of CPU
cores used for an interactive job by
the elapsed time limit value)

1 unlimited none C C E

- 196 -

Definition name Description Default value Specifiable layer

Lower
limit

Upper
limit

Default
value

CL RU RG

joblimit interact-custom-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (by
interactive jobs) (*16)

0 unlimited 0 C C E

joblimit interact-custom-
total-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (by
interactive jobs) (*17)

0 unlimited 0 C C E

joblimit interact-custom-
node-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (by
interactive jobs) (*18)

0 unlimited 0 C C E

joblimit interact-custom-
vnode-
CustomResourceName

Limit on the number of custom
resources (defined in
CustomResourceName) used (by
interactive jobs) (*19)

0 unlimited 0 C C E

(*1)

These items cannot have a group specification (user=<def>:gname, user=uname:gname) for a definition target.

(*2)

The concurrent execution limit of bulk sub jobs is the total value for the sub jobs in all the running target bulk jobs.

(*3)

This is limited to the total excluding virtual node allocated jobs.

(*4)

This is limited to the total of only virtual node allocated jobs in FX server.

(*5)

The fair share-related definition item is always used when subtraction of the fair share value is valid in the job operation configuration
file (papjm.conf or pmpjm.conf), regardless of the job selection policy settings.

(*6)

For details, see "3.4.4.3 Priority control of allocated nodes [PG] " .

(*7)

If a process in a job uses an amount of memory exceeding this upper limit, the system may forcibly terminate the process. Do not set
these values too small.

(*8)

Suppose that a limit value is specified for memory usage per CPU core when a job is submitted. Then, the limit value for memory usage
per virtual node is assumed to be the specified value multiplied by the number of CPU cores in the virtual node.

(*9)

If the nodes are allowed to be shared with other jobs, set values other than "unlimited" for the limits on memory usage per virtual node
(joblimit vnode-mem and joblimit interact-vnode-mem). If you specify "unlimited" for the limit value on the memory usage for a job
and when a job whose limit value on the memory usage is other than "unlimited" exists on the same node, there is a possibility that the
job cannot use the amount of memory of the upper limit.

(*10)

Suppose that you disable all of the following definition items that define the authority for submitting jobs with a node allocation method
specified: execute pjsub-torus (torus mode), execute pjsub-mesh (mesh mode), and execute pjsub-noncont (non-contiguous mode). You

- 197 -

are now unable to specify a node allocation method when submitting a node allocated job. In this case, nodes are allocated in the mode
set with define allocation-mode.

(*11)

The permission for target jobs is specified together with the users or groups executing the jobs.

(*12)

If the item UseCoreLimit in the papjm.conf file is set to all (see "3.4.1.2 Default value settings for resource units"), do not specify a limit
on the number of nodes used concurrently.

(*13)

In the item UseCoreLimit in the papjm.conf file, you can specify whether all jobs or only the jobs to which virtual nodes are allocated
are subject to the limit on the number of CPU cores used concurrently. If all jobs are targeted, the number of CPU cores used by a node
allocated job is the number of mounted CPUs in one node multiplied by the requested number of nodes.

(*14)

The default values of joblimit node and joblimit interact-node are valid only when define alloc-granularity is node. On the other hand,
the default values of joblimit vnode and joblimit interact-vnode are valid only when define alloc-granularity is vnode. The pjsub
command allows only the value 1 as the number of virtual nodes for the FX server. Therefore, unless 1 is specified for the upper limit
value, lower limit value, or standard value of joblimit vnode, the specified value does not have meaning.

(*15)

This setting is valid for the PRIMERGY servers with valid Intel(R) Hyper-Threading Technology and job processes other than those
of "C/C++/Fortran programs created in Development Studio." Set a logical CPU usage range with the FLIB_BINDSMT environment
variable that is set at runtime, for "C/C++/Fortran programs created in Development Studio." For details, see the manuals provided with
Development Studio.

(*16)

Use the items joblimit custom-CustomResourceName and joblimit interact-custom-CustomResourceName with custom resources per
resource unit or resource group.

(*17)

Use the items joblimit custom-total-CustomResourceName and joblimit interact-custom-total-CustomResourceName with custom
resources per node. Set a limited number of uses per job as a setting value.

(*18)

Use the items joblimit custom-node-CustomResourceName and joblimit interact-custom-node-CustomResourceName with custom
resources per node. Set a limited number of uses per node within one job as a setting value.

(*19)

Use the items joblimit custom-vnode-CustomResourceName and joblimit interact-custom-vnode-CustomResourceName with custom
resources per node. Set a limited number of uses per virtual node within one job as a setting value.

(*20)

Outputs in units of mpiexec command or rank according to the setting value of "define mpiexec-stdouterr-unit". The following
metacharacters can be specified.

Metacharacter Description

%j Job ID

%J Subjob ID

%b Bulk number
For other than bulk job, this is replaced with empty.

%s Step number
For other than step job, this is replaced with empty.

%n Job name

- 198 -

Metacharacter Description

%o The standard output file name for the job
For an interactive job, the file name is "./%n.%J.out".

%e The standard error output file name for the job
For an interactive job, the file name is "./%n.%J.err".

%m Number of times the mpiexec command runs in the job

%r Rank number and spawn number
For static process: rank number
For dynamic process: rank number@spawn number
If the destination is for each mpiexec command, this is replaced with empty.

%R Rank number
If the destination is for each mpiexec command, this is replaced with empty.

%S spawn number
For static process: 0
For dynamic process: spawn number
If the destination is for each mpiexec command, this is replaced with empty.

For %r, %R, and %S, the following formats can also be used.

Format Description

%0Nr
%0NR
%0NS

If the display string of the rank or spawn number is less than the minimum field width N, it is padded with
0.

%/Nr
%/NR
%/NS

Rounds a rank or spawn number down to the nearest N.

%0M/Nr
%0M/NR
%0M/NS

Rounds a rank or spawn number down to the nearest N. If the display string of the rounded value is less
than the minimum field width M, it is padded with 0.

(*21)

"disable" is the default value when an end-user executes the command. "enable" is the default value when the administrator executes
the command.

Table F.3 Defined items available in the GROUP definitions

Definition name Description Default
value

Specifiable layer

CL RU RG

limit ru-accept Concurrent job acceptance limit within a
resource unit

unlimited C E x

limit ru-accept-allsubjob Concurrent sub job acceptance limit within
a resource unit
A normal job of batch job is counted as one
sub job.

unlimited C E x

limit ru-accept-bulksubjob Concurrent bulk sub job acceptance limit
within a resource unit

unlimited C E x

limit ru-accept-stepsubjob Concurrent step sub job acceptance limit
within a resource unit

unlimited C E x

limit ru-run-job Concurrent job execution limit within a
resource unit

unlimited C E x

- 199 -

Definition name Description Default
value

Specifiable layer

CL RU RG

limit ru-run-bulksubjob Concurrent bulk sub job execution limit
within a resource unit

unlimited C E x

limit ru-use-node Concurrent node usage limit within a
resource unit (*1)(*4)

unlimited C E x

limit ru-use-core Concurrent CPU core usage limit within a
resource unit (*2)(*5)

unlimited C E x

limit ru-custom-CustomResourceName Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently within a resource
unit

unlimited C E x

limit ru-interact-accept Concurrent job acceptance limit
(interactive jobs) within a resource unit

unlimited C E x

limit ru-interact-run-job Concurrent job execution limit (interactive
jobs) within a resource unit

unlimited C E x

limit ru-interact-use-node Concurrent node usage limit (interactive
jobs) within a resource unit (*1)(*4)

unlimited C E x

limit ru-interact-use-core Concurrent CPU core usage limit
(interactive jobs) within a resource unit
(*2)(*5)

unlimited C E x

limit

ru-interact-custom-CustomResourceName

Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently (by interactive
jobs) within a resource unit

unlimited C E x

limit rg-accept Concurrent job acceptance limit within a
resource group

unlimited C C E

limit rg-accept-allsubjob Concurrent sub job acceptance limit within
a resource group
A normal job of batch job is counted as one
sub job.

unlimited C C E

limit rg-accept-bulksubjob Concurrent bulk sub job acceptance limit
within a resource group

unlimited C C E

limit rg-accept-stepsubjob Concurrent step sub job acceptance limit
within a resource group

unlimited C C E

limit rg-run-job Concurrent job execution limit within a
resource group

unlimited C C E

limit rg-run-bulksubjob Concurrent bulk sub job execution limit
within a resource group

unlimited C C E

limit rg-use-node Concurrent node usage limit within a
resource group (*1)(*4)

unlimited C C E

limit rg-use-core Concurrent CPU core usage limit within a
resource group (*2)(*5)

unlimited C C E

limit rg-custom-CustomResourceName Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently within a resource
group

unlimited C C E

limit rg-interact-accept Concurrent job acceptance limit
(interactive jobs) within a resource group

unlimited C C E

- 200 -

Definition name Description Default
value

Specifiable layer

CL RU RG

limit rg-interact-run-job Concurrent job execution limit (interactive
jobs) within a resource group

unlimited C C E

limit rg-interact-use-node Concurrent node usage limit (interactive
jobs) within a resource group (*1)(*4)

unlimited C C E

limit rg-interact-use-core Concurrent CPU core usage limit
(interactive jobs) within a resource group
(*2)(*5)

unlimited C C E

limit rg-interact-custom-CustomResourceName Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently (by interactive
jobs) within a resource group

unlimited C C E

define pri-g Group priority within a resource unit.
It is valid when group_prio of the job
selection policy is set. (*3)

127 C C E

define fshare-init-g Default group fair share value within a
resource unit.
It is valid when group_fairshare of the job
selection policy is set. (*3)
For details on how to specify a fair share
set to define initial fair share values, see
"3.4.4.4 How to define a fair share set."

0 C E x

define fshare-recovery-g Fair share recovery factor for group within
a resource unit.
It is valid when group_fairshare of the job
selection policy is set. (*3)
For details on how to specify a fair share
set to define initial fair share values, see
"3.4.4.4 How to define a fair share set."

100 C E x

(*1)

This is limited to the total excluding node allocated jobs.

(*2)

This is limited to the total of only virtual node allocated jobs in FX server.

(*3)

The fair share-related definition item is always used when subtraction of the fair share value at job execution start is valid in the job
operation configuration file (papjm.conf or pmpjm.conf), regardless of the job selection policy settings.

(*4)

If the item UseCoreLimit in the papjm.conf file is set to all (see "3.4.1.2 Default value settings for resource units"), do not specify a limit
on the number of nodes used concurrently.

(*5)

In the item UseCoreLimit in the papjm.conf file, you can specify whether all jobs or only the jobs to which virtual nodes are allocated
are subject to the limit on the number of CPU cores used concurrently. If all jobs are targeted, the number of CPU cores used by a node
allocated job is the number of mounted CPUs in one node multiplied by the requested number of nodes.

- 201 -

Table F.4 Defined items available in the ALL definitions
Definition name Description Default

value
Specifiable layer

CL RU RG

limit ru-accept Concurrent job acceptance limit within a
resource unit

unlimited C E x

limit ru-accept-allsubjob Concurrent sub job acceptance limit
within a resource unit
A normal job of batch job is counted as
one sub job.

unlimited C E x

limit ru-accept-bulksubjob Concurrent bulk sub job acceptance limit
within a resource unit

unlimited C E x

limit ru-accept-stepsubjob Concurrent step sub job acceptance limit
within a resource unit

unlimited C E x

limit ru-run-job Concurrent job execution limit within a
resource unit

unlimited C E x

limit ru-run-bulksubjob Concurrent bulk sub job execution limit
within a resource unit

unlimited C E x

limit ru-use-node Concurrent node usage limit within a
resource unit (*1)(*3)

unlimited C E x

limit ru-use-core Concurrent CPU core usage limit within
a resource unit (*2)(*4)

unlimited C E x

limit ru-custom-CustomResourceName Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently within a
resource unit

unlimited C E x

limit ru-interact-accept Concurrent job acceptance limit
(interactive jobs) within a resource unit

unlimited C E x

limit ru-interact-run-job Concurrent job execution limit
(interactive jobs) within a resource unit

unlimited C E x

limit ru-interact-use-node Concurrent node usage limit (interactive
jobs) within a resource unit (*1)(*3)

unlimited C E x

limit ru-interact-use-core Concurrent CPU core usage limit
(interactive jobs) within a resource unit
(*2)(*4)

unlimited C E x

limit
ru-interact-custom-CustomResourceName

Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently (by interactive
jobs) within a resource unit

unlimited C E x

limit rg-accept Concurrent job acceptance limit within a
resource group

unlimited C C E

limit rg-accept-allsubjob Concurrent sub job acceptance limit
within a resource group
A normal job of batch job is counted as
one sub job.

unlimited C C E

limit rg-accept-bulksubjob Concurrent bulk sub job acceptance limit
within a resource group

unlimited C C E

limit rg-accept-stepsubjob Concurrent step sub job acceptance limit
within a resource group

unlimited C C E

- 202 -

Definition name Description Default
value

Specifiable layer

CL RU RG

limit rg-run-job Concurrent job execution limit within a
resource group

unlimited C C E

limit rg-run-bulksubjob Concurrent bulk sub job execution limit
within a resource group

unlimited C C E

limit rg-use-node Concurrent node usage limit within a
resource group (*1)(*3)

unlimited C C E

limit rg-use-core Concurrent CPU core usage limit within
a resource group (*2)(*4)

unlimited C C E

limit rg-custom-CustomResourceName Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently within a
resource group

unlimited C C E

limit rg-interact-accept Concurrent job acceptance limit
(interactive jobs) within a resource group

unlimited C C E

limit rg-interact-run-job Concurrent job execution limit
(interactive jobs) within a resource group

unlimited C C E

limit rg-interact-use-node Concurrent node usage limit (interactive
jobs) within a resource group (*1)(*3)

unlimited C C E

limit rg-interact-use-core Concurrent CPU core usage limit
(interactive jobs) within a resource group
(*2)(*4)

unlimited C C E

limit
rg-interact-custom-CustomResourceName

Limit on the number of custom resources
(defined in CustomResourceName) that
can be used concurrently (by interactive
jobs) within a resource group

unlimited C C E

(*1)

This is limited to the total excluding virtual node allocated jobs.

(*2)

This is limited to the total of only virtual node allocated jobs in FX server.

(*3)

If the item UseCoreLimit in the papjm.conf file is set to all (see "3.4.1.2 Default value settings for resource units"), do not specify a limit
on the number of nodes used concurrently.

(*4)

In the item UseCoreLimit in the papjm.conf file, you can specify whether all jobs or only the jobs to which virtual nodes are allocated
are subject to the limit on the number of CPU cores used concurrently. If all jobs are targeted, the number of CPU cores used by a node
allocated job is the number of mounted CPUs in one node multiplied by the requested number of nodes.

- 203 -

	Title Page
	Preface
	Update history
	Contents
	Chapter 1 Overview of the Job Operation Management Function
	Chapter 2 Details of the Job Operation Management Function
	2.1 Jobs
	2.2 Resource Units and Resource Groups
	2.3 Roles of Users with Operation Administrator Privileges
	2.4 Job Manager Function
	2.4.1 Job execution control
	2.4.1.1 Job states and operations
	2.4.1.2 Job ACL function

	2.4.2 Job operation support
	2.4.2.1 Saving ended job script files
	2.4.2.2 Prologue and epilogue function
	2.4.2.3 Job Manager Exit Function
	2.4.2.4 Job statistical information function

	2.4.3 High availability of job operations

	2.5 Job Scheduler Function
	2.5.1 Job resource selection function
	2.5.1.1 Allocation in units of nodes
	2.5.1.2 Allocation in units of virtual nodes
	2.5.1.3 NUMA allocation policy

	2.5.2 Job execution selection function
	2.5.2.1 Job selection policy
	2.5.2.2 Fair share function

	2.5.3 Deadline scheduling function
	2.5.4 Job scheduling function
	2.5.4.1 Backfill function
	2.5.4.2 Job scheduling parameters
	2.5.4.3 Scheduling of sub jobs of a step job
	2.5.4.4 Guarantee of planned job execution start time (setting that prevents a delay in the job execution start time)
	2.5.4.5 Limit on the number of jobs to schedule
	2.5.4.6 Elapsed time limit for a job

	2.5.5 Job scheduling function using custom resources
	2.5.5.1 Power cap scheduling function

	2.5.6 Job scheduler exit function

	2.6 Job Resource Management Function
	2.6.1 Job Resource Management
	2.6.2 Job Resource management exit function
	2.6.3 Periodic collection of job statistical information

	2.7 Parallel Execution Environment
	2.8 Job Execution Environment Customization Function
	2.9 Command API
	2.10 Job Information Notification API
	2.11 Scheduler Plugin Function

	Chapter 3 Job Operation Management Function Settings
	3.1 Checking the System Configuration
	3.2 How to Code a Configuration File
	3.3 MariaDB Settings
	3.4 Settings for the Cluster Administrator
	3.4.1 Settings for job operation management function in a cluster (papjm.conf file)
	3.4.1.1 Job manager function settings
	3.4.1.2 Default value settings for resource units
	3.4.1.3 Job selection policy settings
	3.4.1.4 Settings for the fair share function
	3.4.1.5 Reflecting and referencing the papjm.conf file

	3.4.2 Settings for job statistical information in a cluster (papjmstats.conf file)
	3.4.2.1 Settings of administrator-defined items in job statistical information
	3.4.2.2 Definitions of output items in job statistical information
	3.4.2.3 Path to a job statistical information file
	3.4.2.4 Custom resource item name
	3.4.2.5 Reflecting and viewing the papjmstats.conf file
	3.4.2.6 Example of job statistical information settings

	3.4.3 Settings for job resource management function in a cluster (parsc.conf file)
	3.4.3.1 Settings for job resource management function in a cluster
	3.4.3.2 Reflecting and referencing the parsc.conf file

	3.4.4 Job ACL function settings in a cluster
	3.4.4.1 Format of job ACL function definitions
	3.4.4.2 Defined items of the job ACL function
	3.4.4.3 Priority control of allocated nodes [PG]
	3.4.4.4 How to define a fair share set
	3.4.4.5 Changing the display format of planned job execution start times
	3.4.4.6 Settings for limiting access to job information
	3.4.4.7 Application rules for job ACL function definitions
	3.4.4.8 Examples of job ACL function settings
	3.4.4.9 Precautions when applying the limit value of the job ACL function (definition item limit)

	3.4.5 Settings for advanced job scheduling
	3.4.6 Settings for other

	3.5 Settings for the Job Operation Administrator
	3.5.1 Job operation management function settings in a resource unit (pmpjm.conf file)
	3.5.1.1 Resource unit settings
	3.5.1.2 Resource group settings
	3.5.1.3 Prologue and epilogue function settings
	3.5.1.4 Job selection policy settings
	3.5.1.5 Settings for the fair share function
	3.5.1.6 Custom resource settings
	3.5.1.7 Settings for the job manager exit function and the job scheduler exit function
	3.5.1.8 Settings for Scheduler Plug-in
	3.5.1.9 Reflecting and referencing the pmpjm.conf file

	3.5.2 Job resource management function settings in a resource unit (pmrsc.conf file)
	3.5.2.1 Settings for job resource management function in a resource unit
	3.5.2.2 Reflecting and referencing the pmrsc.conf file

	3.5.3 Job ACL function settings in a resource unit
	3.5.4 Incorporating the job manager exit function and job scheduler exit function
	3.5.5 Incorporating the job resource manager exit function
	3.5.6 Customizing the display by the pjstat command
	3.5.7 Configuring a Job Execution Environment
	3.5.7.1 Preparing an image file
	3.5.7.2 Registering an image file
	3.5.7.3 Creating a job execution environment information file
	3.5.7.4 Creating a container startup configuration file (Docker mode only)
	3.5.7.5 Setting custom resources
	3.5.7.6 Setting the job ACL function
	3.5.7.7 Configuring the job resource manager exit scripts (Docker mode only)
	3.5.7.8 Setting the job manager exit function
	3.5.7.9 Note on the setting time
	3.5.7.10 Use of Singularity [PG]

	3.5.8 Command API settings

	3.6 Setting Log Rotation
	3.7 Procedure for avoiding disturbance to job execution performance

	Chapter 4 Operation with the Job Operation Management Function
	4.1 Operational Work of the Cluster Administrator
	4.1.1 Cluster state monitoring
	4.1.2 Cluster deadline scheduling management
	4.1.3 Changing job ACL function settings for a cluster
	4.1.4 Saving ended job script files

	4.2 Operational Work of the Job Operation Administrator
	4.2.1 Resource unit state monitoring
	4.2.2 Job state monitoring
	4.2.3 Job Operations
	4.2.4 Job resource monitoring
	4.2.5 Monitoring and changing a fair share value and initial fair share value
	4.2.6 Changing job ACL function settings for a resource unit
	4.2.7 Changing whether jobs can be submitted or can be executed
	4.2.8 Displaying job statistical information

	4.3 Notes for Job Operation
	4.3.1 Job Scheduler Function
	4.3.2 Job Execution Environment Customization Function

	Appendix A Invalid Values for Job Statistical Information at State Transition
	Appendix B Settings Related to Execution in MPI Processing Systems Other Than Development Studio
	B.1 Settings Related to Environment Variables
	B.2 Settings Related to the Wrapper Command mpiexec.tcs_intel
	B.3 Settings Related to the mpiexec.tcs_intel Command
	B.4 Settings when Using the Intel MPI 2019

	Appendix C Settings for Using GPUs [PG]
	C.1 Configuring Custom Resources and the Job Manager Exit Function
	C.1.1 GPU exclusive allocation
	C.1.2 GPU shared allocation

	C.2 Reflecting Job Operation Settings
	C.3 Configuring the Job Resource Manager Exit Function
	C.4 Changing Startup Options for the Job Execution Environment
	C.4.1 Using the GPUs in normal mode
	C.4.2 Using the MPS function in docker mode

	C.5 Configuring Job Statistical Information
	C.6 Job Submission Options
	C.6.1 Specifying GPU custom resources
	C.6.2 Environment variable for the NVIDIA Container Toolkit
	C.6.3 Environment variable for GPU statistical information

	Appendix D Settings for Using Singularity [PG]
	D.1 Job Execution Environment Settings
	D.2 Startup Configuration File Settings
	D.3 Custom Resource Settings

	Appendix E How to Use Dynamic Parameters in Startup Configuration Files (Docker Mode) [PG]
	Appendix F Defined items of the job ACL function

