
J2UL-2483-02ENZ0(13)
March 2024

Fujitsu Software
Technical Computing Suite V4.0L20

Development Studio
Profiler User's Guide

Preface

Purpose of This Manual

This guide describes the features and the usage of the Profiler function for the system that has the Fujitsu CPU A64FX installed.

Intended Readers

This document is intended for those who tune applications with the Profiler. It assumes the following knowledge:

- Knowledge of program development work on a Linux(R) operating system and associated basic command operations on a Linux
operating system

- Knowledge of Microsoft(R) Excel(R)

Organization of This Manual

This manual consists of the following sections.

Chapter 1 Overview of the Profiler

This chapter provides an overview of the Profiler.

Chapter 2 Instant Performance Profiler

Explains the Instant Performance Profiler.

Chapter 3 Advanced Performance Profiler

Explains the Advanced Performance Profiler.

Chapter 4 CPU Performance Analysis Report

Explains the CPU Performance Analysis Report.

Chapter 5 Notes

This chapter provides notes on using the Profiler.

Appendix A Troubleshooting

This appendix describes troubleshooting for the Profiler.

Appendix B List of Messages

This appendix describes typical messages output by the Profiler.

Related Manuals

This book relates to the following manuals. If necessary, refer also to these manuals.

- "Fortran Language Reference"

- "Fortran User's Guide"

- "Fortran User's Guide Additional Volume COARRAY"

- "Fortran Compiler Messages"

- "C User's Guide"

- "C++ User's Guide"

- "C/C++ Compiler Optimization Messages"

- "Fortran/C/C++ Runtime Messages"

- "MPI User's Guide"

Also, refer to the manuals provided with the following related software:

- "Job Operation Software"

- i -

- "FEFS"

Syntax Description Symbols

A syntax description symbol is a symbol that has specific meaning in syntax. The following symbols are used in this guide.

Symbol name Symbol Description

Selection symbols { } Indicates that only one of the enclosed items can be selected

| Indicates that it is used as a delimiter in a list of items

Optional symbol [] Indicates that the enclosed item can be omitted

The { } (braces selection symbols) and [] (brackets optional symbol) have the same meaning.

Repeat symbol ... Indicates that the item just before this can be specified repeatedly

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks

- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- OpenMP is a trademark of OpenMP Architecture Review Board.

- Microsoft, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

- Mac is registered trademarks of Apple Inc.

- Screenshots are used in accordance with Microsoft Corporation guidelines.

- Arm is trademark or registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

- All other trademarks are the property of their respective owners.

- The trademark notice symbol (TM,(R)) is not necessarily added in the system name and the product name, etc. published in this material.

Date of Publication and Version

Version Manual code

March 2024, Version 2.13 J2UL-2483-02ENZ0(13)

March 2023, Version 2.12 J2UL-2483-02ENZ0(12)

September 2022, Version 2.11 J2UL-2483-02ENZ0(11)

March 2022, Version 2.10 J2UL-2483-02ENZ0(10)

November 2021, Version 2.9 J2UL-2483-02ENZ0(09)

July 2021, Version 2.8 J2UL-2483-02ENZ0(08)

March 2021, Version 2.7 J2UL-2483-02ENZ0(07)

January 2021, Version 2.6 J2UL-2483-02ENZ0(06)

December 2020, Version 2.5 J2UL-2483-02ENZ0(05)

November 2020, Version 2.4 J2UL-2483-02ENZ0(04)

September 2020, Version 2.3 J2UL-2483-02ENZ0(03)

June 2020, Version 2.2 J2UL-2483-02ENZ0(02)

April 2020, Version 2.1 J2UL-2483-02ENZ0(01)

- ii -

Version Manual code

March 2020, 2nd Version J2UL-2483-02ENZ0(00)

January 2020, 1st Version J2UL-2483-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020-2024

Update History

Changes Location Version

Changed the note. 3.1.1.1
3.1.1.2

Version 2.13

Removed Windows 8.1 from Basic Software. 1.1 Version 2.12

Added a note. 2.1.2
2.1.3

Added "mpiexec command". 5.1.5

Added a note. 2.1.3.1.2 Version 2.11

Change the explanation about "event". 3.2.3.2.4

Added the explanation. 5.2.1

Added the explanation. 5.2.9

Added the explanation. A.1.5

Removed the explanation about Clang Mode. 2.1.3.1.2 Version 2.10

Changed the note. 4.2.2.3.2

Improved the explanation. 5.2.7
5.2.9

Added the explanation. A.1.1

Added the explanation. A.1.5

Change the output of -Ibalance option. 2.2.2.4.1
2.2.2.4.2

Version 2.9

Change the items and descriptions in the table of output items. 4.2.2.4.1
4.2.2.4.2
4.2.2.4.3
4.2.2.5.1
4.2.2.5.2

Added the troubleshooting for CPU Performance Analysis Report. A.3

Added explanation about CPU Frequency. 3.2.2.1 Version 2.8

Added "Exit Status". 5.1.7

Added "LD_PRELOAD". 5.1.8

Added the following explanation:

- Compiler option -g

- Compiler option -Nline, -ffj-line

5.2.1

Added "Sampling Number". 5.2.13

Added "Signal Interrupt by Sampling". 5.2.14

- iii -

Changes Location Version

Added and Improved messages. Appendix B

Improved the explanation. -

Added execution environment in outputting profile result and obtaining the CPU Performance
Analysis Report file.

1.2
4.1.6

Version 2.7

Added notes. 2.1.1.1

Added the -M option of fipp command. 2.1.4

Added a note. 2.2.2.6

Added notes. 3.1.1.1

Added notes about the -M option. 5.2.12

Added a message. B.1

Change of target for counting up the cost of inlined function in Instant Performance Profiler. 5.2.7 Version 2.6

Change CPU Binding. 5.3.5 Version 2.5

Change Output format of the environment information for measuring profiling data. 3.2.2.1 Version 2.4

Change graph of CPU Performance Analysis Report. 4.2.1
4.2.2.2.1
4.2.2.2.2
4.2.2.3.1
4.2.2.3.2
4.2.2.5.1
4.2.2.5.2

Added notes about CPU Performance Analysis Report. 4.2.2.2.1
4.2.2.2.2
4.2.2.4.1
4.2.2.4.2
4.2.2.4.3

Added points about Compiler Options. 2.1.3.1 Version 2.3

Improved explanation of "Output items of the CPU performance characteristics". 2.2.2.3

Added notes about CPU Performance Analysis Report. 4.2.2.2.1
4.2.2.2.2
4.2.2.4.1
4.2.2.4.2
4.2.2.4.3
4.2.2.7.1
4.2.2.7.2

Added notes about COARRAY. 5.1.1

Added Impact of Compiler Options. 5.1.2

Added Impact of Using the MPI Profiling Interface. 5.1.5

Added Mixed Language Programming for MPI Program. 5.1.6

Added Impact of Compiler Options. 5.2.1

Change Call Graph Information. 5.2.9

Added the -u option of fipp command and fipppx command. 2.1.5
5.2.11

Version 2.2

Added notes about cntfrq. 3.2.3.2.2

Change pictures of Data Transfer CMGs 4.2.2.10

Change CPU Binding 5.3.5

- iv -

Changes Location Version

Improved the explanation. -

Added notes about fjprof_spawn_dir_name. 2.1.3.2 Version 2.1

Added the -b{max|total} options of fipp command and fipppx command. 2.1.5
2.2.2.1
2.2.2.4
2.2.2.4.1
2.2.2.4.2
2.2.2.4.3

Added the -tcsv option of fipp command and fipppx command. 2.1.5

Added "CPU frequency" to environment information for measuring profiling data. 2.2.2.1
2.2.3.2.2

Added "Ratio of the measured value to the theoretical value for memory throughput" to CPU
performance characteristics.

2.2.2.3
2.2.3.2.5

Added notes about frequency. 2.2.3.2.2
3.2.3.2.2

Added notes about measurement region specifying routine. 3.1.1.1
3.1.1.2

Advanced Performance Profiler supported dynamically generated processes.

- Added -W{spawn|nospawn} options of fipp command.

- Added arguments to the -p option of the fapppx command and fapp command.

- Modified profile result (TEXT format) output.

3.1.4
3.2.2.1
3.2.2.2
3.2.2.3

Changed the notes of the -I option of the fapppx and fapp command. 3.1.5

Added CPU performance analysis information to profile result (TEXT format) of the Advanced
Performance Profiler.

- Changed the description of the -I option of fapppx command and fapp command.

- Added CPU performance analysis information to profile result (TEXT format).

3.1.5
3.2.2.4

Advanced Performance Profiler supported profile result (XML format) output.

- Added the -txml option of the fapppx command and fapp command.

- Changed the description of the -p option of the fapppx command and fapp command.

- Added profile result (XML format).

3.1.5
3.2.3
3.2.3.1
3.2.3.2
3.2.3.2.1
3.2.3.2.2
3.2.3.2.3
3.2.3.2.4
3.2.3.2.5

Changed notes about CPU binding. 4.1.6.1
5.3.5

Added messages. B.2
B.3

Improved the explanation. -

Changed macOS required for CPU performance analysis report to Catalina. 1.1 2nd Version

Clang Mode compile supported.

- Added Clang Mode compiler options.

- Removed Clang Mode notes.

- Added Clang Mode " Names of Generated Procedures for Thread Parallel Programs."

2.1.3.1.2
2.2.2.4.1

- v -

Changes Location Version

LLVM OpenMP library supported. Removed "LLVM OpenMP" library notes. -

Instant Performance Profiler supported dynamically generate the processes.

- Added description of info key fjprof_spawn_dir_name.

- Added fipp command -W{spawn|nospawn} options.

- Modified profile result (TEXT format) Output.

2.1.3.2
2.1.4
2.2.2.2
2.2.2.3
2.2.2.4.1
2.2.2.4.2
2.2.2.4.3
2.2.2.5

Instant Performance Profiler supported profile result (XML format) output.

- Added fipppx command -txml option.

- Added profile result (XML format).

2.1.5
2.2.1
2.2.3

Modified fipppx command -p option. 2.1.5

Added caveats about @barrier and @barrier-rate. 2.2.2.4.1
2.2.2.4.2
2.2.2.4.3

Changed to allow the -A option to be specified with the fipp or fapp command. chapter 2
2.1.4
2.1.5
chapter 3
3.1.4
3.1.5

Added fapp command -I{cputime|nocputime} option. 3.1.4
3.2.2.2

Removed notes about the -Hmethod=fast option of the fapp command. 3.1.4

Added precaution for MPI routines belonging to Persistent Collective Communication Request
Routine.

3.2.2.3

Modified the formulas for "MPIX_REDUCE_SCATTER_BLOCK_INIT" and
"MPIX_REDUCE_SCATTER_INIT."

3.2.2.3

Added "Single Report" to the CPU Performance Analysis Report. Chapter 4: All

Modified content of CPU Performance Analysis Report. Chapter 4: All

Moved notes on "Precision of Input Data to the CPU Performance Analysis Report" to "Error and
Warning Messages Output by the CPU Performance Analysis Report."

4.1.6.1
5.4

Moved notes on "Targets of Measurement of Thread Parallelization Information" to "Notes Common
to Profilers."

5.1.4
5.3

Added notes on Cost Information. 5.2.7

Modified notes on Source Code Information. 5.2.8

Added notes on Call Graph Information. 5.2.9

Added notes. 5.2.10
5.3.6

Removed notes on NUMA nodes. 5.4

Added Troubleshooting. A.1.1
A.1.2

Added Messages. B.1
B.3

Changed the look according to product upgrades. -

- vi -

All rights reserved.

The information in this manual is subject to change without notice.

- vii -

Contents
Chapter 1 Overview of the Profiler... 1

1.1 Configuration of the Profiler..1
1.2 Flow of Tuning.. 1

Chapter 2 Instant Performance Profiler..3
2.1 Procedure for Using the Instant Performance Profiler...3

2.1.1 Adding a Measurement Region Specifying Routine.. 4
2.1.1.1 fipp_start / fipp_stop Subroutines (Fortran).. 4
2.1.1.2 fipp_start function / fipp_stop Function (C language and C++)..6

2.1.2 Specifying Environment Variables...7
2.1.3 Compilation.. 7

2.1.3.1 Compiler Options...8
2.1.3.1.1 Fortran...8
2.1.3.1.2 C and C++ Languages...8

2.1.3.2 Info Key fjprof_spawn_dir_name..9
2.1.4 Measuring Profile Data...10
2.1.5 Outputting Profile Result.. 14

2.2 Profile Result... 17
2.2.1 Overview of Profile Result... 17
2.2.2 Details of Profile Result (TEXT Format)... 17

2.2.2.1 Environment Information for Measuring Profiling Data...18
2.2.2.2 Statistics Time Information... 19
2.2.2.3 CPU Performance Characteristics... 20
2.2.2.4 Cost Information.. 22

2.2.2.4.1 Procedure Cost Distribution Information... 22
2.2.2.4.2 Loop Cost Distribution Information... 25
2.2.2.4.3 Line Cost Distribution Information.. 28

2.2.2.5 Call Graph Information..30
2.2.2.6 Source Code Information...31

2.2.3 Details of Profile Result (XML Format)...31
2.2.3.1 Structure of XML format...31
2.2.3.2 Details of XML format output... 32

2.2.3.2.1 Profiling Information <profile>..32
2.2.3.2.2 Environment Information for Measuring Profiling Data <environment>.. 32
2.2.3.2.3 Performance Information <information>..34
2.2.3.2.4 Statistics Time Information <time>..35
2.2.3.2.5 CPU Performance Characteristics <cpupa>... 35
2.2.3.2.6 Cost Information <cost>... 37
2.2.3.2.7 Call Graph Information <call>... 40

Chapter 3 Advanced Performance Profiler...42
3.1 Procedure for Using the Advanced Performance Profiler... 42

3.1.1 Adding a Measurement Region Specifying Routine.. 43
3.1.1.1 fapp_start / fapp_stop Subroutines (Fortran)... 43
3.1.1.2 fapp_start function / fapp_stop Function (C language and C++).. 45

3.1.2 Specifying Environment Variables...47
3.1.3 Compilation.. 47
3.1.4 Measuring Profile Data...48
3.1.5 Outputting Profile Result.. 50

3.2 Profile Result... 52
3.2.1 Overview of Profile Result... 52
3.2.2 Detail of Profile Result (TEXT Format)...53

3.2.2.1 Environment Information for Measurement Profiling Data.. 53
3.2.2.2 Statistical Time Information.. 54
3.2.2.3 MPI Communication Cost Information... 55
3.2.2.4 CPU Performance Analysis Information... 62

- viii -

3.2.3 Detail of Profile Result (XML Format).. 65
3.2.3.1 Structure of XML format...65
3.2.3.2 Details of XML format output... 66

3.2.3.2.1 Profiling Information <profile>..66
3.2.3.2.2 Environment Information for Measuring Profiling Data <environment>.. 66
3.2.3.2.3 Performance Information <information>..68
3.2.3.2.4 CPU Performance Analysis Information <cpupa>... 70
3.2.3.2.5 MPI Communication Cost Information <mpi>.. 70

Chapter 4 CPU Performance Analysis Report... 73
4.1 Procedure for Using the CPU Performance Analysis Report.. 75

4.1.1 Adding a Measurement Region Specifying Routine.. 75
4.1.2 Specifying Environment Variables...75
4.1.3 Compilation.. 75
4.1.4 Measuring Profile Data...76
4.1.5 Outputting Profile Result ... 77
4.1.6 Creating a CPU Performance Analysis Report...78

4.1.6.1 Error and Warning Messages Output by the CPU Performance Analysis Report...81
4.2 CPU Performance Analysis Report Output Result.. 82

4.2.1 Overview of CPU Performance Analysis Report Output Result..82
4.2.2 Detail of CPU Performance Analysis Report Output Result..84

4.2.2.1 Information.. 84
4.2.2.2 Statistics... 85

4.2.2.2.1 Statistics (Single Report).. 85
4.2.2.2.2 Statistics (Brief, Standard, and Detail Report)... 88

4.2.2.3 Cycle Accounting.. 91
4.2.2.3.1 Cycle Accounting (Brief Report)..91
4.2.2.3.2 Cycle Accounting (Standard and Detail Reports)...93

4.2.2.4 Busy... 94
4.2.2.4.1 Busy (Brief Report).. 95
4.2.2.4.2 Busy (Standard Report).. 96
4.2.2.4.3 Busy (Detail Report)...98

4.2.2.5 Cache... 99
4.2.2.5.1 Cache (Brief Report)...100
4.2.2.5.2 Cache (Standard and Detail Reports)..102

4.2.2.6 Instruction.. 104
4.2.2.6.1 Instruction (Brief Report)... 104
4.2.2.6.2 Instruction (Standard Report)... 105
4.2.2.6.3 Instruction (Detail Report)..106

4.2.2.7 FLOPS... 107
4.2.2.7.1 FLOPS (Brief Report)...108
4.2.2.7.2 FLOPS (Standard and Detail Reports)..109

4.2.2.8 Extra...110
4.2.2.9 Hardware Prefetch Rate (%) (/Hardware Prefetch)... 110
4.2.2.10 Data Transfer CMGs..111
4.2.2.11 Power Consumption (W)... 112

Chapter 5 Notes... 115
5.1 Notes Common to Profilers... 115

5.1.1 COARRAY...115
5.1.2 Impact of Compiler Options... 115
5.1.3 Node-Sharing Job... 115
5.1.4 Targets of Measurement of Thread Parallelization Information.. 115
5.1.5 mpiexec command.. 115
5.1.6 Impact of Using the MPI Profiling Interface.. 116
5.1.7 Mixed Language Programming for MPI Program..116
5.1.8 Exit Status... 116
5.1.9 LD_PRELOAD...116

- ix -

5.2 Notes on the Instant Performance Profiler...117
5.2.1 Impact of Compiler Options... 117
5.2.2 Prohibition of Catching or Issuing SIGVTALRM Signal.. 117
5.2.3 Sampling Interval at the Time of Profile Data Measurement...117
5.2.4 Profiler Workspace... 118
5.2.5 -pall Option... 118
5.2.6 CPU Performance Characteristics.. 118
5.2.7 Cost Information... 118
5.2.8 Source Code Information..119
5.2.9 Call Graph Information...119
5.2.10 Cost Information for Line Number 0..120
5.2.11 -u option..120
5.2.12 -Minlined option... 121
5.2.13 Sampling Number... 121
5.2.14 Signal Interrupt by Sampling..121

5.3 Notes on the Advanced Performance Profiler... 121
5.3.1 MPI Thread Support... 121
5.3.2 CPU Performance Analysis Information.. 121
5.3.3 -Hevent_raw Option... 121
5.3.4 Elapsed Time Information for MPI Library... 121
5.3.5 CPU Binding...121
5.3.6 Routines that Cannot Measure MPI Communication Cost Information...122

5.4 Notes on the CPU Performance Analysis Report.. 122
5.4.1 CPU Performance Analysis Report File... 122
5.4.2 Dynamically Generated Processes..122

Appendix A Troubleshooting.. 123
A.1 Instant Performance Profiler... 123

A.1.1 Performing profile data measurement results in longer execution time compared with normal execution............................ 123
A.1.2 Memory usage increases when measuring the profile data compared with the normal operation.. 123
A.1.3 A procedure name that does not exist in the source code (such as a library name) appears... 123
A.1.4 Fail to open profile data... 123
A.1.5 The symbol __?unknown is output.. 124

A.2 Advanced Performance Profiler..124
A.2.1 Performing profile data measurement results in longer execution time compared with normal execution............................ 124
A.2.2 Fail to open profile data... 124

A.3 CPU Performance Analysis Report.. 124
A.3.1 Fail to load CSV Format File (File line limit exceeded)... 124

Appendix B List of Messages... 125
B.1 List of Message (fipp command).. 125
B.2 List of Message (fipppx command).. 131
B.3 List of Message (fapp command)..133
B.4 List of Message (fapppx command)..136

- x -

Chapter 1 Overview of the Profiler
The Profiler measures and outputs performance information useful for tuning to improve the execution performance of a program.
Generally, tuning by identifying a region of a program that takes a long execution time (hereinafter referred to as an expensive operation
region) can lead to a reduction in execution time.

1.1 Configuration of the Profiler
The Profiler consists of the three functions: "Instant Performance Profiler", "Advanced Performance Profiler", and "CPU Performance
Analysis Report".

Instant Performance Profiler

The Instant Performance Profiler is a profiler used to grasp trends in the performance of the entire program without recompilation. Even
for a large-scale parallel program, it can measure performance information with low overhead. The Instant Performance Profiler outputs
statistical time information, CPU performance characteristics, cost information, call graph information, and source code information.
For detail, see "Chapter 2 Instant Performance Profiler".

 Note

If a program satisfies specific conditions, the source code may need to be modified or recompiled because the Instant Performance
Profiler cannot perform a correct measurement. For detail, see "5.1 Notes Common to Profilers" and "5.2 Notes on the Instant
Performance Profiler". In addition, the source code also needs to be modified and recompiled when a measurement region is specified.
For details on specifying a measurement region, see "2.1.1 Adding a Measurement Region Specifying Routine".

Advanced Performance Profiler

The Advanced Performance Profiler is a profiler used to grasp detailed performance in a specific region. To use the Advanced
Performance Profiler, the source code needs to be modified and recompiled. The Advanced Performance Profiler outputs statistical time
information, MPI communication cost information, and CPU performance analysis information. For detail, see "Chapter 3 Advanced
Performance Profiler".

CPU Performance Analysis Report

The CPU Performance Analysis Report aggregates CPU performance analysis information measured by the Advanced Performance
Profiler and visualizes it in tables and graphs in an easy-to-understand way. For detail, see "Chapter 4 CPU Performance Analysis
Report".

 Note

To use the CPU Performance Analysis Report, Microsoft Excel and a Basic Software where the software runs are required. The
operation of the CPU Performance Analysis Report has been verified in the following combinations.

Basic Software Microsoft Excel

Microsoft Windows 10 (64bit) Microsoft Excel 2016 for Windows 64bit

macOS Catalina Microsoft Excel 2016 for Mac

1.2 Flow of Tuning
This section describes the flow of basic tuning with the Profiler.

1. Using the Instant Performance Profiler, identify an expensive operation region and grasp trends in the performance of the entire
program.

2. Add a measurement region specifying routine for the Advanced Performance Profiler to the source code for the expensive operation
region identified in step 1, and recompile it.

- 1 -

3. Using the Advanced Performance Profiler or CPU Performance Analysis Report, analyze detailed information on the expensive
operation region. Which function to use depends on the performance information you want to view.

- We recommend using the Advanced Performance Profiler to view statistical time information and MPI-related performance
information.

- We recommend using the CPU Performance Analysis Report to view detailed performance information on CPUs.

The following is a list of operations performed with each function.

Operation Execution

Environment
Chapter 2 Instant

Performance Profiler
Chapter 3 Advanced
Performance Profiler

Chapter 4 CPU
Performance Analysis

Report

Adding a measurement
region specifying routine

(Optional in the case of
Instant Performance
Profiler)

Any machine 2.1.1 Adding a
Measurement Region
Specifying Routine

3.1.1 Adding a Measurement Region Specifying
Routine

Specifying environment
variables

Login node and
compute node

2.1.2 Specifying
Environment Variables

3.1.2 Specifying Environment Variables

Compilation Login node or
compute node

2.1.3 Compilation 3.1.3 Compilation

Measuring profile data Compute node 2.1.4 Measuring Profile
Data

3.1.4 Measuring Profile Data

Outputting profile result Login node and
compute node

2.1.5 Outputting Profile
Result

3.1.5 Outputting Profile Result

Creating a CPU
performance analysis
report

Windows or macOS
machine (*)

None 4.1.6 Creating a CPU
Performance Analysis
Report

*: CPU Performance Analysis Report file is stored in login node.

- 2 -

Chapter 2 Instant Performance Profiler
This chapter describes the Instant Performance Profiler.

The Instant Performance Profiler measures and outputs the statistical information of the entire program through sampling analysis. Since
the Instant Performance Profiler performs sampling analysis, it cannot perform measurement on a program whose execution time is
approximately 1 second or less. The Instant Performance Profiler consists of two commands: the fipp command, which measures profile
data, and the fipppx command, which output profile result from measured data. The Instant Performance Profiler can output the following
statistical information:

Statistical time information

As statistical time information, program elapsed time, user CPU time, and system CPU time are output.

CPU performance characteristics

As CPU performance characteristics, information related to CPU performance characteristics, such as memory throughput, the number
of instructions, and the number of operations, is displayed.

Cost information

As cost information, the number of sampling times during program execution is output as the cost for each procedure, loop, or line.

Call graph information

As call graph information, procedure call traces and the cost for each procedure call trace are output.

Source code information

As source code information, a cost added to each line of the source code is output.

 Note

The fipp command can be used both to measure the profile data and to output the profile results. In this User's Guide, we use this command
to measure the profile data.

For notes on using the Instant Performance Profiler, see "5.1 Notes Common to Profilers" and "5.2 Notes on the Instant Performance
Profiler".

 Point

Although the Instant Performance Profiler normally measures and outputs the statistical information of the entire program, the -Sregion
option enables it to perform measurement only on a specific region. Use the option when, for example, you want to perform measurement
only on the operation processing part by excluding the file input/output part. To use the -Sregion option, however, you need to add a
measurement region specifying routine to the source code. For details on the -Sregion option, see "2.1.4 Measuring Profile Data". For details
on measurement region specifying routines, see "2.1.1 Adding a Measurement Region Specifying Routine".

In an MPI program, when you use the MPI_COMM_SPAWN routine or MPI_COMM_SPAWN_MULTIPLE routine to dynamically
generate the parallel processes, the Job Operation Software allocates the numbers to the generated processes. We call this allocated number
as "spawn number" in this User's Guide. For details, see the "MPI User's Guide".

2.1 Procedure for Using the Instant Performance Profiler
This section provides the procedure for using the Instant Performance Profiler.

- 3 -

Figure 2.1 Procedure for using the Instant Performance Profiler

The following describes each operation in detail.

2.1.1 Adding a Measurement Region Specifying Routine

 Note

When measuring profile data without specifying the -Sregion option with the fipp command, you do not need to add any measurement
region specifying routine. For details on the -Sregion option, see "2.1.4 Measuring Profile Data".

To the source code, add the measurement region specifying routine required for specifying the region (starting and stopping positions of
measurement) from which profile data is measured.

The following describes measurement region specifying routines for the Instant Performance Profiler in detail.

2.1.1.1 fipp_start / fipp_stop Subroutines (Fortran)
Format

CALL fipp_start

CALL fipp_stop

Function Description

These subroutines start or stop profile data measurement by the Instant Performance Profiler. They are enabled only when the -Sregion
option is specified with the fipp command. For -Sregion option, see "2.1.4 Measuring Profile Data".

fipp_start

This subroutine starts profile data measurement by the Instant Performance Profiler.

fipp_stop

This subroutine stops profile data measurement by the Instant Performance Profiler.

- 4 -

 Example

Example of use of measurement region specifying routines

program main

...

do i=1,10000

 ...

 call fipp_start ! Start measurement

 do j=1,10000

 ...

 end do

 call fipp_stop ! Stop measurement

end do

end program main

 Note

- When calling these subroutines multiple times, be sure to call them in the order from fipp_start to fipp_stop. If fipp_start is called again
before fipp_stop is called or fipp_stop is called before fipp_start is called, a warning message is output and the call is ignored. If a
process ends without calling fipp_stop, the profile data of the region is not measured.

- If these subroutines are called multiple times, results from all the specified measurement regions are totaled.

- In the case of a process parallel program, call these subroutines for all processes that you want to make targets of measurement. The
profile data of the processes for which the subroutines are not called is not measured.

 Example

Example for making all processes targets of measurement (starting measurement before calling the mpi_init subroutine)

call fipp_start ! Start measurement

call mpi_init(err)

 ...

call mpi_finalize(err)

call fipp_stop ! Stop measurement

Example for making all processes targets of measurement (starting measurement immediately after calling the mpi_init
subroutine)

call mpi_init(err)

call fipp_start ! Start measurement

 ...

call fipp_stop ! Stop measurement

call mpi_finalize(err)

Example for making only process 0 the target of measurement

call mpi_init(err)

call mpi_comm_rank(mpi_comm_world,rank,err)

if(rank==0) then

 call fipp_start ! Start measurement on process 0 only

end if

 ...

if(rank==0) then

 call fipp_stop ! Stop measurement on process 0 only

end if

call mpi_finalize(err)

- 5 -

- When the compiler option -mldefault=cdecl is valid to compile a Fortran program, change the name of the measurement region
specifying routine as follows.

Before After

fipp_start fipp_start_

fipp_stop fipp_stop_

- When the compiler option -AU is valid, the name of the measurement region specifying routine must be entered in lowercase characters.

2.1.1.2 fipp_start function / fipp_stop Function (C language and C++)
Format

#include "fj_tool/fipp.h"

void fipp_start();
void fipp_stop();

Function Description

These subroutines start or stop profile data measurement by the Instant Performance Profiler. They are enabled only when the -Sregion
option is specified with the fipp command. For -Sregion option, see "2.1.4 Measuring Profile Data".

fipp_start()

This subroutine starts profile data measurement by the Instant Performance Profiler.

fipp_stop()

This subroutine stops profile data measurement by the Instant Performance Profiler.

 Example

Example of use of measurement region specifying routines

#include "fj_tool/fipp.h" // Include the header file

...

int main(void)

{

 int i,j;

 for(i=0;i<10000;i++){

 ...

 fipp_start(); // Start measurement

 for(j=0;j<10000;j++){

 ...

 }

 fipp_stop(); // Stop measurement

 }

 return 0;

}

 Note

- When calling these functions multiple times, be sure to call them in the order from fipp_start to fipp_stop. If fipp_start is called again
before fipp_stop is called or fipp_stop is called before fipp_start is called, a warning message is output and the call is ignored. If a
process ends without calling fipp_stop, the profile data of the region is not measured.

- If these functions are called multiple times, results from all the specified measurement regions are totaled.

- 6 -

- In the case of a process parallel program, call these functions for all processes that you want to make targets of measurement. The profile
data of the processes for which the functions are not called is not measured.

 Example

Example for making all processes targets of measurement (starting measurement before calling the mpi_init function)

fipp_start(); // Start measurement

MPI_Init(&argc, &argv);

 ...

MPI_Finalize();

fipp_stop(); // Stop measurement

Example for making all processes targets of measurement (starting measurement immediately after calling the mpi_init
function)

MPI_Init(&argc, &argv);

fipp_start(); // Start measurement

 ...

fipp_stop();

MPI_Finalize(); // Stop measurement

Example for making only process 0 the target of measurement

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank==0){

 fipp_start(); // Start measurement on process 0 only

}

 ...

if(rank==0){

 fipp_stop(); // Stop measurement on process 0 only

}

MPI_Finalize();

2.1.2 Specifying Environment Variables
Specify environment variables required when using the Profiler.

Environment Variable Value

PATH /installation_path/bin

LD_LIBRARY_PATH /installation_path/lib64

For details on "installation_path", contact the system administrator.

 Note

- Environment variables whose names begin with "FIPP_", "FAPP_", "PROF_", "FJPROF_", or "FPROF_" are used by the Profiler. Do
not specify these environment variables when using the Profiler.

- When you specify mpiexec command's option "-x LD_LIBRARY_PATH=value" and execute program, see "5.1.5 mpiexec
command".

2.1.3 Compilation
Compile a program. The following describes how to compile a program to use the Profiler.

- 7 -

 Note

- If you specify the -rpath option or the environment variable LD_RUN_PATH when compiling a program, be careful not to include "/
installation_path/lib64" in the dynamic section attribute DT_RPATH. If "/installation_path /lib64" is included in DT_RPATH, profile
data measurement fails when the Instant Performance Profiler is used. From the output of the readelf -d command, you can check the
value of DT_RPATH that is specified in the program. See Type "(RPATH)" in the output information. For details on
"installation_path", contact the system administrator.

- Do not use system calls or functions that generate processes in the program, such as "fork", "vfork", "popen" system call, or "system"
functions. If one is used, profile data cannot be measured correctly.

- When using the Profiler, do not use the strip command for the program. When measuring the cost of a user's shared library, do not use
the strip command for the shared library. If a symbol is deleted by using the strip command, profile data cannot be measured correctly.

- When using the Profiler, use the compile commands of the Fujitsu compiler to compile and link your programs. You cannot use the
Profiler when using the compile commands of other compilers, such as the GNU compiler.

2.1.3.1 Compiler Options
To use the Profiler, you need to create a program to which a tool library is linked.
In the frtpx, fccpx, FCCpx, mpifrtpx, mpifccpx, or mpiFCCpx command, specify compiler options that specify the operation of the tools.
For details on how to specify compiler options, see the "Fortran User's Guide", "C User's Guide", "C++ User's Guide", or "MPI User's
Guide".

 Point

- When using the frtpx, fccpx, FCCpx, mpifrtpx, mpifccpx, or mpiFCCpx command, create a program to which a tool library is linked
by default. Therefore, you do not usually need to be conscious of these options. However, since the Profiler hooks MPI functions, you
cannot use the Profiler together with the MPI profiling interface. If you use the MPI profiling interface, use the following compiler
options to prevent the tool library from being linked. For details, see "5.1.6 Impact of Using the MPI Profiling Interface".

- Compiler options for each command include ones that have an impact on the operation of the Profiler. For detail, see "5.1.2 Impact of
Compiler Options".

The following describes compiler options for the Profiler for each language.

2.1.3.1.1 Fortran

This section describes compiler options for the Profiler that are used when compiling a Fortran program.

-N{fjprof|nofjprof}

This option specifies whether to link a tool library. The option is enabled at the linking time. If you do not specify the option, the -Nfjprof
option is enabled.

-Nfjprof

This option links the tool library. The Profiler is available.

-Nnofjprof

This option does not link the tool library. The Profile is unavailable.

2.1.3.1.2 C and C++ Languages

For the C and C++ languages, there are two types of modes: Trad and Clang. For details on the difference between Trad and Clang Modes,
see the "C User's Guide" or "C++ User's Guide". This section describes compiler options for the Profiler that are used when compiling a
program in each mode.

Trad Mode

The following describes compiler options for the Profiler that are used when compiling a C or C++ language program in Trad Mode.

- 8 -

-N{fjprof|nofjprof}

This option specifies whether to link a tool library. The option is enabled at the linking time. If you do not specify the option, the -
Nfjprof option is enabled.

-Nfjprof

This option links the tool library. The Profiler is available.

-Nnofjprof

This option does not link the tool library. The Profile is unavailable.

Clang Mode

The following describes compiler options for the Profiler that are used when compiling a C or C++ language program in Clang Mode.

-f{fj-fjprof|fj-no-fjprof}

This option specifies whether to link a tool library. The option is enabled at the linking time. If you do not specify the option, the -
Nfjprof option is enabled.

-ffj-fjprof

This option links the tool library. The Profiler is available.

-ffj-no-fjprof

This option does not link the tool library. The Profile is unavailable.

 Note

Since the compiler is different in Trad Mode and Clang Mode, you may get meaningfully different profiling results when you compile in
Trad Mode and Clang Mode, even if the program for compilation is the same.

2.1.3.2 Info Key fjprof_spawn_dir_name
When you run the MPI_COMM_SPAWN routine or the MPI_COMM_SPAWN_MULTIPLE routine to dynamically generate the
processes, you can extract the profile data of the specific process generated dynamically to the directory other than one that you specified
with the -d option of the fipp command, by setting the following info key to MPI_Info. For details on the -d option of the fipp command,
see "2.1.4 Measuring Profile Data". For details on dynamically generating processes and on the info key related to dynamically generating
processes, see the "MPI User's Guide".

Table 2.1 Info key "fjprof_spawn_dir_name"

Info key Setting values Description

fjprof_spawn_dir_name Path to the output directory Specify the output directory of the profile data of the dynamic process.

 Example

Info key "fjprof_spawn_dir_name" Usage Example

#include "mpi.h"

#include <stdio.h>

#include <stdlib.h>

#define NUM_SPAWNS 1

int main(int argc, char *argv[])

{

 int np = NUM_SPAWNS;

 int errcodes[NUM_SPAWNS];

 MPI_Comm intercomm;

 MPI_Info info;

 MPI_Init(&argc, &argv);

- 9 -

 MPI_Info_create(&info);

 MPI_Info_set(info, "fjprof_spawn_dir_name", "./spawn_data");

 MPI_Comm_spawn("./spawn.out", MPI_ARGV_NULL, np, info, 0, MPI_COMM_WORLD, &intercomm,

errcodes);

 MPI_Finalize();

 return 0;

}

 Note

- If you specify the relative path to the directory, the profile data is generated in the current directory when the MPI_COMM_SPAWN
routine or the MPI_COMM_SPAWN_MULTIPLE routine is called. Note that the current directory is affected by the info key "wdir".
For details, see the "MPI User's Guide".

- The directory specified in the info key "fjprof_spawn_dir_name" must be different from the directory specified in the -d option of the
fipp command. Results cannot be guaranteed if you specify the same directory.

- If the specified directory exists, it must be an empty directory. If the specified directory does not exist, a new directory is created.

- If the profile data cannot be created in the output directory specified by the info key "fjprof_spawn_dir_name", a segmentation fault or
other error may occur in the process that executed the MPI_COMM_SPAWN routine or the MPI_COMM_SPAWN_MULTIPLE
routine.

- If a program that dynamically generates processes terminates abnormally,Check for any of the following messages.

- The files had already existed in the specified value of fjprof_spawn_dir_name key.

- The specified value of fjprof_spawn_dir_name key is not directory.

- The specified value of fjprof_spawn_dir_name key is permission denied.

2.1.4 Measuring Profile Data
Measure data by using the fipp command. Perform this operation from a compute node.

 Note

- If any of the following is performed on profile data measured by the fipp command, the operation is not guaranteed:

- Editing profile data

- Adding, deleting, or renaming profile data

- If the program is interrupted while profile data is being measured, incomplete profile data may remain.

- When using the fipp command, specify a value that is equivalent to "TRUE" in the environment variable "FLIB_FASTOMP". If do not
specified, the fipp command does not operate correctly. For details on the environment variable "FLIB_FASTOMP", see the "Fortran
User's Guide", "C User's Guide", or "C++ User's Guide".

- You can also specify the -A option for the fipp command. However, if you specify the -A option for the fipp command, it is treated as
a fipppx command of the "2.1.5 Outputting Profile Result". Therefore, you should work with it differently. For details, see "2.1.5
Outputting Profile Result". You cannot specify the -A option together with the -C option for the fipp command. If you specify both
options, an error message is output and the program is aborted.

fipp command syntax

fipp -C -d profile_data [-I{{call|nocall}|{cpupa|nocpupa}|{mpi|nompi}}] [-H[mode={all|user}]]

[-L{shared|noshared}] [-M{inlined|noinlined}] [-P{userfunc|nouserfunc}] [-S{all|region}]

[-W{spawn|nospawn}] [-i interval] [-l limit] [-m memsize] exec-file [exec_option ...]

- 10 -

fipp command options

 Point

If the description of an option contains a restriction such as "you cannot..." or "it must be..." and you violate it, an error message is output
and the program is aborted.

If you specify multiple conflicting options, the last specified option is enabled. For example, if you specify the -L{shared|noshared} option,
which specifies how to measure detailed shared library information, in the order of "-Lshared -Lnoshared", the -Lnoshared option is
enabled.

-C

This option specifies to measure profile data. The option cannot be omitted. If you do not specify the option, an error message is output
and the collecting command is terminated.

-d profile_data

This option specifies the directory where profile data is to be stored. The option cannot be omitted. If you do not specify the option, an
error message is output and the collecting command is terminated.
profile_data cannot be omitted. profile_data specifies a relative or absolute path as the name of the directory where profile data is to be
stored. If the specified directory exists, it must be an empty directory. If the specified directory does not exist, a new directory is created.
To specify a directory name beginning with "-" in profile_data, specify its absolute path or a relative path that contains the current
directory ("./"). To analyze a program that moves the current directory during execution, specify its absolute path in profile_data.

-I{{call|nocall}|{cpupa|nocpupa}|{mpi|nompi}}

This option specifies items to be measured by the Instant Performance Profiler. If the -I{call|nocall} option is omitted, the -Inocall option
is enabled. If the -I{cpupa|nocpupa} option is omitted, the -Icpupa option is enabled. If the -I{mpi|nompi} option is omitted,
specification depends on the type of the program. In the case of an MPI program, the -Impi option is enabled. In the case of a non-MPI
program, the -Inompi option is enabled. If the -Icpupa option is enabled but the -H option is not specified, the -Hmode=all option is
enabled. The -I option allows you to specify multiple suboptions by separating them with commas (,). For example, you can specify like
this: -Icall,nocpupa.

call

This argument specifies to measure call graph information.

nocall

This argument specifies not to measure call graph information.

cpupa

This argument specifies to measure CPU performance characteristics.

nocpupa

This argument specifies not to measure CPU performance characteristics.

mpi

This argument specifies to measure MPI cost information. If you specify the argument for a non-MPI program, an error message is
output and the collecting command is terminated.

nompi

This argument specifies not to measure MPI cost information.

-H[mode={all|user}]

This option specifies how CPU performance characteristics are measured. The suboption mode specifies either all or user. If this option
or the suboption mode={all|user} is omitted, mode=all is enabled. If you specify the -Inocpupa option, a warning message is output and
this option is disabled.

mode=all

This option specifies to measure information in kernel and user modes.

- 11 -

mode=user

This option specifies to measure information in user mode.

-L{shared|noshared}

This option specifies how to measure the shared library generated by specifying the compiler option -Nline or -ffj-line (shared library
with line information). For details on compiler options, see the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide". If this
option is omitted, the -Lnoshared option is enabled.

shared

This argument specifies to measure the following information in the shared library with line information:

- Start line number of the procedure

- End line number of the procedure

- Loop cost distribution information

- Line cost distribution information

noshared

This argument specifies not to measure the following information in the shared library with line information:

- Start line number of the procedure

- End line number of the procedure

- Loop cost distribution information

- Line cost distribution information

-M{inlined|noinlined}

This option specifies where costs of the inlined function are recorded in an inlined program.

If this option is omitted, the -Mnoinlined option is enabled.

inlined

In an inlined program, the cost of the inlined portion is counted as the cost of the inlined callee's procedure.

noinlined

In an inlined program, the cost of the inlined portion is counted as the cost of the caller's procedure.

When this option is used, following line numbers may indicate line numbers of a source code containing the definition of inlined
procedure.

- Loop start line number and loop end line number on loop cost distribution information

- Line number on line cost distribution information

The source code information is displayed as follows.

- The cost of the inlined portion is counted as the cost of the inlined callee's procedure.

-P{userfunc|nouserfunc}

This option specifies how to appropriate the procedure cost. It applies to a mix of an object for which the compiler option -Nline or -
ffj-line is specified (object with line information) and an object for which the compiler option -Nnoline or -ffj-no-line is specified (object
without line information). The standard library and a shared library when -Lnoshared is specified are handled as objects without line
information. For details on compiler options, see the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide". If this option is
omitted, the -Pnouserfunc option is enabled.

userfunc

If a cost is appropriated to a procedure of the object without line information, the procedure that called the procedure of the object
without line information is traced back from call graph information. If a procedure of the object with line information exists, the cost
is appropriated to the procedure. If no procedures of the object with line information exist, the cost is not appropriated. When
specifying the -Puserfunc option, you must specify the -Icall option at the same time. If you do not specify the -Icall option, an error
message is output and the collecting command is terminated.

- 12 -

nouserfunc

If a cost is appropriated to a procedure of the object without line information, the cost is appropriated to the procedure. However,
the procedure start and end lines are not output.

-S{all|region}

This option specifies a profile data measurement region. If this option is omitted, the -Sall option is enabled.

all

This argument specifies to measure data across the entire program.

region

This argument specifies to measure data within the region specified by the measurement region specifying routine. You need to insert
the measurement region specifying routine in the source code.

-W{spawn|nospawn}

This option specifies how to measure the dynamically generated process. Specification when you omit the -W{spawn|nospawn} option
varies depending on the type of the program. When working with the MPI program, the -Wspawn option is enabled. When working with
the non-MPI program, the -Wnospawn option is enabled.

spawn

This argument specifies to measure the statistic information of the dynamically generated process. If you specify the info key
"fjprof_spawn_dir_name" for the specific dynamically generated process, the profile data of the dynamically generated process with
the info key is stored in the directory that you specified for info key "fjprof_spawn_dir_name". If you do not specify the info key
"fjprof_spawn_dir_name", the profile data of the dynamically generated process is stored in the directory which you specified with
the -d option. If you specify this argument to the non-MPI program, an error message is output and the collecting command is
terminated.

nospawn

This argument specifies not to measure the statistic information of the dynamically generated process. However, if you specify the
info key "fjprof_spawn_dir_name" to the specific dynamically generated process, measurement is performed for that process with
the info key, and the measured profile data is stored in the directory which you specified for the info key "fjprof_spawn_dir_name".

-i interval

This option specifies the sampling interval to measure profile data. interval specifies an integer that represents the sampling interval (in
milliseconds). If this option is omitted, the -i 100 option is enabled. interval cannot be omitted. interval specifies an integer from 10 to
3,600,000. If you specify a value outside the range in interval, a warning message is output and the -i 100 option is enabled.

-l limit

This option specifies the number of measurements of procedure information. Procedure information that exceeds the number of outputs
is measured by combining it into "__other__". If this option is omitted, the -l 0 option is enabled. limit cannot be omitted. limit specifies
an integer from 0 to 2,147,483,647. If you specify 0 in limit, all procedure information is measured. If you specify a value outside the
range in limit, a warning message is output and the -l 0 option is enabled.

-m memsize

This option specifies the size of the working memory to be used for measurement. An area of the working memory is secured for each
thread. If this option is omitted, the -m 3000 option is enabled. memsize specifies an integer that represents the working memory size
(in KB). memsize cannot be omitted. memsize specifies an integer from 1 to 2,147,483. If you specify a value outside the range in
memsize, a warning message is output and the -m 3000 option is enabled.

exec-file [exec_option ...]

This option specifies the execution file that is the target of profile data measurement and options for the file. In the case of an MPI
program, make a specification from mpiexec. To specify an execution file that begins with "-" in exec-file, specify its relative path that
contains the current directory ("./") or absolute path. A shell script cannot be specified in exec-file. The character string following the
execution file name (exec_option ...) is considered an option for the execution file.

 Example

Example of measuring CPU performance characteristics and call graph information with the fipp command

- 13 -

fipp -C -d ./tmp -Icall ./a.out

2.1.5 Outputting Profile Result
Output the profile data which is measured using the fipp command. For this operation, use a different command depending on the node to
be used.

When using a login node

Use the fipppx command.

When using a compute node

Use the fipp command.

fipppx command or fipp command syntax

{fipppx|fipp} -A [-I{{balance|nobalance}|{call|nocall}|{cpupa|nocpupa}|{mpi|nompi}|

{src[:path]|nosrc}}] [-Tt_no] [-b{max|total}] [-f func_name] [-l limit]

[-o outfile] [-pp_no] [-t{csv|text|xml}] [-u] [-d] profile_data

fipppx command or fipp command options

 Point

If the description of an option contains a restriction such as "you cannot..." or "it must be..." and you violate it, an error message is output
and the program is aborted.

If you specify multiple conflicting options, the last specified option is enabled. For example, if you specify the -I{call|nocall} option, which
specifies profile result items to be output, in the order of "-Icall,nocall", the -Inocall option is enabled.

-A

This option specifies to output the profile result. The option cannot be omitted. If you do not specify the option, an error message is output
and the analyzing command is terminated.

-I{{balance|nobalance}|{call|nocall}|{cpupa|nocpupa}|{mpi|nompi}|{src[:path]|nosrc}}

This option specifies profile result items to be output. The -I option allows you to specify multiple suboptions by separating them with
commas (,). For example, you can specify like this: -Icall,cpupa. If the -I{balance|nobalance} option is omitted, the -Inobalance option
is enabled. If the -I{call|nocall} option is omitted, the -Inocall option is enabled. If the -I{cpupa|nocpupa} option is omitted, the -Icpupa
option is enabled. If the -I{mpi|nompi} option is omitted, specification depends on the type of the target program for profile data
measurement. In the case of an MPI program, the -Impi option is enabled. In the case of a non-MPI program, the -Inompi option is
enabled. If the -I{src[:path]|nosrc} option is omitted, the -Inosrc option is enabled. To specify the -Icall, cpupa, or mpi option, relevant
items need to have been measured with the fipp command. If you specify to output information that has not been measured, an error
message is output and the analyzing command is terminated.

balance

This argument specifies to output cost balance information (information obtained by comparing the cost between parallel execution
units) in the cost information. However, when you work on a serial program, or when you specify the -tcsv option or the -txml option,
cost balance information will not be output even if you specify the -Ibalance option.

nobalance

This argument specifies not to output cost balance information as cost information.

call

This argument specifies to output call graph information.

nocall

This argument specifies not to output call graph information.

- 14 -

cpupa

This argument specifies to output CPU performance characteristics.

nocpupa

This argument specifies not to output CPU performance characteristics.

mpi

This argument specifies to output MPI cost information as cost information.

nompi

This argument specifies not to output MPI cost information as cost information.

src[:path] ...

This argument specifies to output source code information and per-line costs. The cost that is output when the -Impi option is
specified is not included in the per-line costs. path specifies the directory path where the source code exists. To specify multiple path
values, separate them with colons (:). If path is omitted, the directory path specified at the time of program compilation is referenced.
If you specify the -tcsv option or the -txml option, the source code information will not be output even if you specify the -Isrc option.

nosrc

This argument specifies not to output source code information.

-Tt_no

This option specifies the thread whose profile data is to be output. t_no specifies one or more of N, limit=n, and all. If this option is
omitted, the -Tall option is enabled. t_no cannot be omitted. The -T option allows you to specify multiple t_no values by separating them
with commas (,). For example, you can specify like this: -T3,5,limit=10.

N[,N] ...

This suboption specifies to output, at the beginning, the information of the thread number specified by N. If the information of the
thread specified by N does not exist, the specification is ignored. If multiple N values are specified, information is output in the order
of specification.

limit=n

This suboption specifies to output the information of n threads in the order of cost from highest. If you specify 0 or a value exceeding
the total number of threads in n, the information of all threads is output.

all

This suboption specifies to output the information of all threads. This is the same as when the -Tlimit=0 option is specified. If you
do not specify the suboption limit=n, this option is enabled.

-b{max|total}

Specifies how cost information is output when profiling results in TEXT format. If the -b{max|total} option is omitted, the -btotal option
is enabled. This option is only valid with the -ttext option.

max

Cost information in TEXT format is output in "Max thread cost basis". "Max thread cost basis" outputs the value of the most
expensive thread in the process as cost information for that process. It also outputs the value of the most expensive process in the
program as cost information for that program. When you specify this suboption, CPU performance characteristics and call graph
information will not be output even if you specify the -Icpupa option or -Icall option. And, when you specify this suboption, CPU
frequency will not be output. You cannot specify this option together with the -u option. If you specify both options, an error message
is output and the analyzing command is terminated.

total

Cost information in TEXT format is output in "Total thread cost basis". "Total thread cost basis" outputs the total value of all threads
in a process as cost information for that process. It also outputs the total value of all processes in a program as cost information for
that program.

- 15 -

-f func_name

This function specifies to output a specific procedure. func_name specifies a procedure name used by the program. Even if the cost of
func_name is outside the range of the number of outputs that is specified with the -l option, information about func_name is output.
However, if any of the following applies, specifying -f func_name does not output information:

- Information about the func_name procedure is not measured with the fipp command.

- The procedure cost of func_name is 0.

-l limit

This option specifies the number of outputs for procedure information to be output. If the -l option is omitted, specification depends on
the -t{csv|text|xml} option. If the -ttext option is enabled, -l 10 option is enabled. If the -tcsv option or -txml option is enabled, the -l 0
option is enabled. limit specifies an integer from 0 to 2,147,483,647. If you specify 0 in limit, all are output. If you specify a value outside
the range in limit, the -l 0 option is enabled.

-o outfile

This option specifies the output destination for the profile result. outfile specifies a relative or absolute path as the name of the output
destination file or stdout. If this option is omitted, the -ostdout option is enabled. If you specify stdout in outfile, the profile result is output
to the standard output. To specify a file name beginning with "-" in outfile, specify its absolute path or a relative path that contains the
current directory ("./").

-pp_no

Specify the process to be output to the profile result. For p_no, specify one or more from those of N@M , input=n , limit=m , and all.
If you omit this option, the value taken in varies depending on the specification of the -t{csv|text|xml} option. If the -ttext option is
enabled, the "-pinput=0,limit=16" option is enabled. If the -tcsv option or -txml option is enabled, the -pall option is enabled. p_no
cannot be omitted. For the -p option, you can specify more than one p_no by separating them with a comma (,). For example, you can
specify such as "-p3,5,limit=10".

N[@M] ...

This suboption specifies to output, at the beginning, the information of the process number specified in N. If you specify the process
number N that belongs to the spawn number M, specify in the format like "N@M". If the information of the process number specified
with N[@M] does not exist, ignore the specification. You can specify more than one N[@M]. If you specify more than one N[@M],
the result is output in the order of your specification. [@M] is only valid with the -ttext option.

input=n

This suboption specifies to read the information for the top n processes at cost. Although processing becomes faster because the
number of files to read decreases, the information of processes that is not read, is not included in the denominator to perform ratio
calculation. If you specify 0 or a value exceeding the number of processes in n, the information of all processes is read. If this
suboption is omitted, input=0 is enabled. If you specify input=n and all together, the suboption input=n is enabled, regardless of the
order in which options are specified. The suboptions input=n and limit=m can be specified together.

limit=m

This suboption specifies to output the information for the top m processes at cost. If the -ttext option is enabled, output processes in
the order of cost from highest. The information of processes that is not output is included in the denominator to perform ratio
calculation. If you specify 0 or a value exceeding the number of processes in m, the information of all processes is output. If you omit
this suboption, the value taken in varies depending on the specification of the -t{csv|text|xml} option. If the -ttext option is enabled,
limit=16 is enabled. If the -tcsv option or -txml option is enabled, limit=0 is enabled.

all

This suboption specifies to read and output the information for all processes. If the -ttext option is enabled, output processes in the
order of cost from highest. This is the same as when the -pinput=0,limit=0 option is specified. If you do not specify either the
suboption input=n or limit=m, this suboption is enabled.

-t{csv|text|xml}

This option specifies the output format of the profile result. If this option is omitted, the -ttext option is enabled.

csv

Outputs the profile result in the CSV format.

- 16 -

text

Outputs the profile result in the TEXT format.

xml

Outputs the profile result in the XML format.

-u

This option specifies how to output the generated procedure name of the thread parallel program (refer to "Table 2.6 Names of Generated
Procedures for Thread Parallel Programs" for the generated procedure name). If this option is specified, the cost information of the
procedure and the generated procedure are summed and output as procedure name. If this option is not specified, output procedure's row
and generated procedure's one separately. This option is only valid with the -tcsv option or -ttext option. You cannot specify this option
together with the -bmax option. If you specify both options, an error message is output and the analyzing command is terminated.

-d profile_data

profile_data specifies a relative or absolute path as the name of the directory where profile data is stored. This option cannot be omitted.
However, as long as you specify profile_data at the end of an array of options, "-d" can be omitted. To specify a directory name beginning
with "-" in profile_data, specify its absolute path or relative path that contains the current directory ("./").

 Example

Example of outputting CPU performance characteristics and MPI cost information from the measurement result ./tmp of the fipp command

fipppx -A -Inobalance,cpupa,mpi,nocall,nosrc -d ./tmp

2.2 Profile Result
This section describes the contents of profile result output by the fipppx command or fipp command.

2.2.1 Overview of Profile Result
The profile result consists of the following statistic information. You can control the output of information respectively by specifying the
-I option of the fipppx command or fipp command. For details on the -I option, see "2.1.5 Outputting Profile Result". The following
information is output.

- Environment information for measuring profiling data

- Statistical time information

- CPU performance characteristics

- Cost information(procedure cost distribution information , loop cost distribution information , line cost distribution information)

- Call graph information

- Source code information (TEXT format only)

For details, see "2.2.2 Details of Profile Result (TEXT Format)" or "2.2.3 Details of Profile Result (XML Format)" and their subsections.

 Point

Instant Performance Profiler outputs profile result in units of information total level "Application", "Process" and "Thread", but if the
number of process or thread is 1, it skips outputting the corresponding information total level.

2.2.2 Details of Profile Result (TEXT Format)
If you specify the "2.1.5 Outputting Profile Result" with the -ttext option, the result is output in the TEXT format. The followings are applied
to the TEXT format.

- 17 -

2.2.2.1 Environment Information for Measuring Profiling Data
As environment information for measuring profiling data, environment information as of when the profile data was measured is output.

Output format of the environment information for measuring profiling data

Fujitsu Instant Performance Profiler Version @vl

 Measured time : @date

 CPU frequency : Process @pno @frequency (MHz) @sno

 Type of program : @type

 Average at sampling interval : @interval (ms)

 Measured region : @region

 Virtual coordinate : (@x, @y, @z)

Table 2.2 Output items of the environment information for measuring profiling data

Output Item Meaning of Output Item

@vl Version number of the Profiler

@date Measurement date and time of profile data

@pno Process number

@frequency CPU Frequency

 Note

If any of the following conditions applies, "--" is output as the CPU frequency:

- The -Inocpupa option is specified in "2.1.4 Measuring Profile Data" or "2.1.5 Outputting Profile Result"

- The -Hmode=user option is specified in "2.1.4 Measuring Profile Data"

- The -Sregion option is specified in "2.1.4 Measuring Profile Data" and measurement has never been performed on
the measurement region specified in "2.1.1 Adding a Measurement Region Specifying Routine"

- The -bmax option is specified in "2.1.5 Outputting Profile Result"

@sno Spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set
in the program.

- The process is a dynamically generated process.

@type Program execution format
"SERIAL" : Serial
"Thread (AUTO)" : Automatic parallelization only
"Thread (OpenMP) " : OpenMP only
"Thread (OpenMP & AUTO) " : OpenMP and automatic parallelization
"MPI" : MPI only
"MPI & Thread (AUTO) " : MPI, Automatic parallelization
"MPI & Thread (OpenMP) " : MPI,OpenMP
"MPI & Thread (OpenMP & AUTO) " : MPI, OpenMP, and automatic parallelization

@interval Sampling interval
Outputs the average value of actual sampling intervals.

- 18 -

Output Item Meaning of Output Item

@region Kind of measurement region
All: Entire program
Specified: Specified measurement region

(@x, @y, @z) Logical shape at the time of MPI program execution

 Point

Outputs the result only when the data measurement target is an MPI program.

The logical shape of dynamically generated processes are not outputted.

 Point

If CPU frequency(including dynamically generated process) is different for each process, multiple lines of CPU frequency are output.
However, if there are consecutive processes with the same CPU frequency, or if the -Inocpupa option is specified, CPU frequency is output
as a single line.

CPU frequency : Process @spno - @lpno @frequency (MHz) (Spawn @ssno - @lsno)

For consecutive processes, @spno is the lowest process number and @lpno is the highest process number. @ssno is the lowest spawn
number and @lsno is the highest spawn number. If the -pinput=n option of the fipppx command or fipp command is used to restrict the
process being read, the minimum and maximum process numbers or spawn numbers that are read and with the same CPU frequency in the
range correspond to @spno and @lpno respectively. See "2.1.5 Outputting Profile Result" for the -pinput=n option.

2.2.2.2 Statistics Time Information
As statistical time information, elapsed time of the program is output for each Application, each Process, or each Thread. And user CPU
time, and system CPU time of the program are output for each Application, each Process.

Output format of the statistics time information

Time statistics

 Elapsed(s) User(s) System(s)

 @elapse @user @system @level @pno @sno

 @elapse @user @system @level @pno @sno

Table 2.3 Output items of the statistics time information
Output Item Meaning of Output Item

@elapse Elapsed time (s)

@user User CPU time (s)

If the @type of "2.2.2.1 Environment Information for Measuring Profiling Data" is not "SERIAL" or "MPI", or if the
@level is "Thread", this output item is fixed as "--".

@system System CPU time (s)

If the @type of "2.2.2.1 Environment Information for Measuring Profiling Data" is not "SERIAL" or "MPI", or if the
@level is "Thread", this output item is fixed as "--".

@level Information total level (Application, Process, Thread)

@pno Process or thread number

@sno Spawn number

- 19 -

Output Item Meaning of Output Item

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set in
the program.

- When @level is Process.

- The process is a dynamically generated process.

2.2.2.3 CPU Performance Characteristics
As CPU performance characteristics, information related to CPU performance characteristics, such as memory throughput, number of
instructions, and number of operations, is displayed. This information is output when the -Icpupa option is enabled. CPU performance
characteristics are totaled and output in the following units:

- Application

- Process

- Thread

Output format of the CPU performance characteristics

Performance monitor event : statistics

 @level @pno @sno - performance monitors

 Execution Floating-point Mem throughput Mem throughput

 time(s) GFLOPS peak ratio(%) (GB/s) peak ratio(%)

 --

 @time @value1 @value2 @value3 @value4 @level @pno @sno

 --

 @time @value1 @value2 @value3 @value4 @level @pno @sno

 Effective Floating-point SIMD inst. SVE operation

 instruction operation rate(%) rate(%)

 --

 @value5 @value6 @value7 @value8 @level @pno @sno

 --

 @value5 @value6 @value7 @value8 @level @pno @sno

 IPC GIPS

 --

 @value9 @value10 @level @pno @sno

 --

 @value9 @value10 @level @pno

@sno

Table 2.4 Output items of the CPU performance characteristics
Output Item Meaning of Output Item

@level Information total level (Application, Process, Thread)

@pno Process or thread number

@sno Spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

- 20 -

Output Item Meaning of Output Item

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set in
the program.

- When @level is Process.

- The process is a dynamically generated process.

@time Time taken to execute instructions in the measurement target region (second)

The value on the top shows the maximum execution time of each thread.

@value1 Count of floating-point operations performed per second

Process: The value on the top shows the count of floating-point operations performed per second on the process.

Application: The value on the top shows the count of floating-point operations performed per second on the application.

 Note

The GFLOPS value is calculated by assuming that all elements are active. Therefore, in the case of a program with many
inactive elements, a higher value than the original GFLOPS value is output.

@value2 Ratio of the measured value to the theoretical value for floating-point operation performance (%)

Process: The value on the top shows the ratio of @value1 of the process to the theoretical value for floating-point operation
performance.

Application: The value on the top shows the ratio of @value1 of the application to the theoretical value for floating-point
operation performance.

 Note

The theoretical value for floating-point operation performance is calculated by assuming that double precision operations
are performed. Therefore, in the case of single or half precision, a value 2 to 4 times higher than the actual percentage is
output.

@value3 Memory throughput (GB/s)

Process: The value on the top shows the ratio of the total amount of memory access to @time of the process.

Application: The value on the top shows the ratio of the total amount of memory access to @time of the application.

@value4 Ratio of the measured value to the theoretical value for memory throughput (%)

Process: The value on the top shows the ratio of @value3 of the process to the theoretical value for memory throughput.

Application: The value on the top shows the ratio of @value3 of the application to the theoretical value for memory
throughput.

@value5 Total number of instructions executed

Process: The value on the top shows the total number of instructions executed on the process.

Application: The value on the top shows the total number of instructions executed on the application.

 Note

The total number of instructions executed does not include MOVPRFX instructions.

@value6 Total number of floating-point operations executed

Process: The value on the top shows the total number of floating-point operations executed on the process.

- 21 -

Output Item Meaning of Output Item

Application: The value on the top shows the total number of floating-point operations executed on the application.

@value7 Ratio of the number of SIMD instructions to the total number of instructions executed (%)

Process: The value on the top shows the ratio of the total number of SIMD instructions to @value5 of the process.

Application: The value on the top shows the ratio of the total number of SIMD instructions to @value5 of the application.

@value8 Ratio of the number of SVE operations to the total number of floating-point operations executed (%)

Process: The value on the top shows the ratio of the total number of SVE operations to @value6 of the process.

Application: The value on the top shows the ratio of the total number of SVE operations to @value6 of the application.

@value9 Number of instructions executed per cycle

Process: The value on the top shows the result obtained by dividing @value5 by the total number of cycles of the process.

Application: The value on the top shows the result obtained by dividing @value5 by the total number of cycles of the
application.

@value10 Number of instructions executed per second

Process: The value on the top shows the result obtained by dividing @value5 by @time of the process.

Application: The value on the top shows the result obtained by dividing @value5 by @time of the application.

 Note

The output of @time and each @value is expected to be less than 12 digits. Therefore, if the output exceeds 13 digits, there is a discrepancy
between the heading and the output.

2.2.2.4 Cost Information
The cost information consists of the following information:

- Procedure cost distribution information

- Loop cost distribution information

- Line cost distribution information

In the case of a parallel program, you can output cost balance information as part of procedure cost distribution information and loop cost
distribution information. The -b option of the fipppx command specifies either "total thread cost basis" or "max thread cost basis" as the
output format of Cost information. For details, see "2.1.5 Outputting Profile Result".

2.2.2.4.1 Procedure Cost Distribution Information

As procedure cost distribution information, procedure cost, waiting cost for synchronization between threads, procedure start line number,
procedure end line number, and procedure name are output for each Application, each Process, or each Thread. Procedure cost distribution
information is always output. MPI cost information is output only when the -Impi option is enabled. Cost balance information is output only
when the -Ibalance option is enabled.

Output format of the procedure cost distribution information (Total thread cost basis)

Always output

Procedures profile (Total thread cost basis)

 @level @pno @sno - procedures

 Application and Process outputs the total value of the cost of each thread.

 Procedure outputs the total value of the procedure cost of each thread.

 Cost % Operation (s) Barrier % Start End

- 22 -

--

 @cost @cost-rate @ope @barrier @barrier-rate -- -- @level @pno @sno

--

 @cost @cost-rate @ope @barrier @barrier-rate @start @end @name

Additional output when the -Impi option is enabled

 MPI % Communication (s) Start End

 @mpi @mpi-rate @comm -- -- @level @pno @sno

 @mpi @mpi-rate @comm @start @end @name

Additional output when the -Ibalance option is enabled

 __ __

 __ Parallel balance of cost __

 @name @start - @end

 +-------------------------+-------------------------+

 | | | @balance @cost2 @pno @sno

 +-------------------------+-------------------------+

Output format of the procedure cost distribution information (Max thread cost basis)

Always output

Procedures profile (Max thread cost basis)

 @level @pno @sno - procedures

 Application and Process outputs the max value of the cost of each thread.

 Procedure outputs the max value of the procedure cost of each thread.

Spawn Process Thread Cost % Operation (s) Barrier % Start End

--

-

@spawn @process @thread @cost @cost-rate @ope @barrier @barrier-rate -- --

@level @pno @sno

--

-

@spawn @process @thread @cost @cost-rate @ope @barrier @barrier-rate @start @end

@name

Additional output when the -Impi option is enabled

 Spawn Process Thread MPI % Communication (s) Start End

--

 @spawn @process @thread @mpi @mpi-rate @comm -- -- @level @pno @sno

--

 @spawn @process @thread @mpi @mpi-rate @comm @start @end @name

Additional output when the -Ibalance option is enabled

 __ __

 __ Parallel balance of cost __

 @name @start - @end

 +-------------------------+-------------------------+

 | | | @balance @cost2 @pno @sno

 +-------------------------+-------------------------+

- 23 -

Table 2.5 Output items of the procedure cost distribution information
Output Item Meaning of Output Item

@level Information total level (Application, Process, Thread)

@pno Process or thread number

@sno Spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set
in the program.

- When @level is Process.

- The process is a dynamically generated process.

@spawn Spawn number chosen as max cost

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met. If the condition is not met, only "--" is output for this
item.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set
in the program.

- When @level is Process.

The process is a dynamically generated process.

@process Process number chosen as max cost

@thread Thread number chosen as max cost

@cost Procedure cost (includes @barrier cost)

@cost-rate Proportion of the @level or @name cost in the cost at the information total level (%)

@ope Operation time (s)

@barrier Waiting cost for synchronization between threads

 Note

If it is other than the thread parallel program, only "--" is output for this item.

@barrier-rate Proportion of the waiting cost for synchronization between threads in the cost at the information total level (%)

 Note

If it is other than the thread parallel program, only "--" is output for this item.

@mpi MPI cost

@mpi-rate Proportion of the MPI cost in the cost at the information total level (%)

@comm Communication time (s)

@start Procedure start line number

@end Procedure end line number

@name Procedure name

- 24 -

Output Item Meaning of Output Item

@balance Cost balance between procedure processes or threads (%)

@balance = (@cost2 - (average value of @cost2)) / (average value of @cost2) * 100

@balance can exceed ± 100%

If @balance is 4 digits or more, the display column will shift.

@cost2 Process or thread procedure cost (excluding thread barrier costs)

In the case of a thread parallel program, the parallelized part is output as information on the generated procedure. An identifier
corresponding to the type of the generated procedure is appended to the name of the generated procedure. In the case of the C /C++ language,
the name of the generated procedure varies depending on the mode of the compiler used at the time of compilation. For details, see the
articles about the internal function name in "C User's Guide" or "C++ User's Guide". The table below lists names of generated procedures
for thread parallel programs by generated procedure type.

Table 2.6 Names of Generated Procedures for Thread Parallel Programs

Language Type of created procedure Created procedure name

Fortran Automatic parallelized procedure procedure_name._PRL_number_

OpenMP parallelized procedure procedure_name._OMP_number_

TASK construct procedure_name._TSK_number_

C language/C++
(Trad Mode)

Automatic parallelized procedure procedure_name._PRL_number_

OpenMP parallelized procedure procedure_name._OMP_number_

TASK construct procedure_name._TSK_number_

C language/C++

(Clang Mode)

OpenMP parallelized procedure procedure_name.omp_outlined._debug__number (*1)

TASK construct procedure_name.omp_task_entry.number

*1: In Clang Mode, no automatic parallelized procedure is performed. Add "_debug__" when the compiler option -g is specified.

 Information

You can check TASK construct cost information from procedure cost distribution information at the total level "Application". Also, you
can check the distribution of TASK constructs across a thread from procedure cost distribution information or cost balance information at
the information total level "Thread". However, the Instant Performance Profiler outputs top 10 procedure information items by default, and
may not output TASK construct information where costs are smaller. Therefore, we recommend to change the number of procedure
information items to be output by using the -l option of the "2.1.5 Outputting Profile Result" command to check the costs of TASK
constructs.

2.2.2.4.2 Loop Cost Distribution Information

As loop cost distribution information, loop cost, waiting cost for synchronization between threads, nest level, loop type, loop compilation
type, loop start line number, loop end line number, and name of the procedure to which the loop belongs are output. These are output for
each Application, each Process, or each Thread. Loop cost distribution information is always output. MPI cost information is output only
when the -Impi option is enabled. Cost balance information is output only when the -Ibalance option is enabled.

Output format of the loop cost distribution information (Total thread cost basis)

Always output

Loops profile (Total thread cost basis)

 @level @pno @sno - loops

 Application and Process outputs the total value of the cost of each thread.

 Procedure outputs the total value of the loop cost of each thread.

- 25 -

 Cost % Operation (s) Barrier % Nest Kind Exec Start End

--

@cost @cost-rate @ope @barrier @barrier-rate -- -- -- -- --

@level @pno @sno

--

@cost @cost-rate @ope @barrier @barrier-rate @nest @kind @exec @start @end

@name

Additional output when the -Impi option is enabled

 MPI % Communication (s) Nest Kind Exec Start End

 --

 @mpi @mpi-rate @comm -- -- -- -- -- @level @pno @sno

 --

 @mpi @mpi-rate @comm @nest @kind @exec @start @end @name

Additional output when the -Ibalance option is enabled

 __ __

 __ Parallel balance of cost __

 @name @start - @end

 +-------------------------+-------------------------+

 | | | @balance @cost2 @pno @sno

 +-------------------------+-------------------------+

Output format of the loop cost distribution information (Max thread cost basis)

Always output

Loops profile (Max thread cost basis)

 @level @pno @sno - loops

 Application and Process outputs the max value of the cost of each thread.

 Procedure outputs the max value of the loop cost of each thread.

 Spawn Process Thread Cost % Operation (s) Barrier % Nest Kind Exec

Start End

--

@spawn @process @thread @cost @cost-rate @ope @barrier @barrier-rate -- -- --

-- -- @level @pno @sno

--

@spawn @process @thread @cost @cost-rate @ope @barrier @barrier-rate @nest @kind @exec

@start @end @name

Additional output when the -Impi option is enabled

Spawn Process Thread MPI % Communication (s) Nest Kind Exec Start End

--

@spawn @process @thread @mpi @mpi-rate @comm -- -- -- -- -- @level

@pno @sno

--

@spawn @process @thread @mpi @mpi-rate @comm @nest @kind @exec @start @end @name

Additional output when the -Ibalance option is enabled

__ __

 __ Parallel balance of cost __

 @name @start - @end

- 26 -

 +-------------------------+-------------------------+

 | | | @balance @cost2 @pno @sno

 +-------------------------+-------------------------+

Table 2.7 Output items of the loop cost distribution information

Output Item Meaning of Output Item

@level Information total level (Application/Process/Thread)

@pno Process or thread number

@sno spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the fjprof_spawn_dir_name key is set in the
program.

- When @level is Process.

- The process is a dynamically generated process.

@spawn Spawn number chosen as max cost

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met. If the condition is not met, only "--" is output for this
item.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set
in the program.

- When @level is Process.

The process is a dynamically generated process.

@process Process number chosen as max cost

@thread Thread number chosen as max cost

@cost Loop cost (includes @barrier cost)

@cost-rate Proportion of the @level or @name cost in the cost at the information total level (%)

@ope Operation time (s)

@barrier Waiting cost for synchronization between threads
This item is output only in the case of a thread parallel program.

 Note

If it is other than the thread parallel program, only "--" is output for this item.

@barrier-rate Proportion of the waiting cost for synchronization between threads in the cost at the information total level (%)
This item is output only in the case of a thread parallel program.

 Note

If it is other than the thread parallel program, only "--" is output for this item.

@mpi MPI cost

@mpi-rate Proportion of the MPI cost in the cost at the information total level (%)

- 27 -

Output Item Meaning of Output Item

@comm Communication time (s)

@nest Nest level

@kind Loop type (DO/WHILE/UNTIL/ARRAY/FOR/GOTO/OTHER)

@exec Loop compilation type (SERIAL: serial/OpenMP: OpenMP/AUTO: automatic parallelization)

@start Loop start line number

@end Loop end line number

@name Procedure name

@balance Cost balance between loop processes or threads (%)

@balance = (@cost2 - (average value of @cost2)) / (average value of @cost2) * 100

@balance can exceed ± 100%

If @balance is 4 digits or more, the display column will shift.

@cost2 Process or thread loop cost (excluding thread barrier costs)

2.2.2.4.3 Line Cost Distribution Information

As line cost distribution information, line cost, line number, and name of the procedure to which the line belongs are output for each
Application, each Process, or each Thread. Line cost distribution information is always output. MPI cost information is output only when
the -Impi option is enabled.

Output format of the line cost distribution information (Total thread cost basis)

Always output

Lines profile (Total thread cost basis)

 @level @pno @sno - lines

 Application and Process outputs the total value of the cost of each thread.

 Procedure outputs the total value of the line cost of each thread.

 Cost % Operation (s) Barrier % Line

 @cost @cost-rate @ope @barrier @barrier-rate -- @level @pno @sno

 @cost @cost-rate @ope @barrier @barrier-rate @line @name

Additional output when the -Impi option is enabled

 MPI % Communication (s) Line

 @mpi @mpi-rate @comm -- @level @pno @sno

 @mpi @mpi-rate @comm @line @name

Output format of the line cost distribution information (Max thread cost basis)

Always output

Lines profile (Max thread cost basis)

 @level @pno @sno - lines

 Application and Process outputs the max value of the cost of each thread.

 Procedure outputs the max value of the line cost of each thread.

- 28 -

 Spawn Process Thread Cost % Operation (s) Barrier % Line

--

@spawn @process @thread @cost @cost-rate @ope @barrier @barrier-rate -- @level

@pno @sno

--

@spawn @process @thread @cost @cost-rate @ope @barrier @barrier-rate @line @name

Additional output when the -Impi option is enabled

 MPI % Communication (s) Line

 --

 @mpi @mpi-rate @comm -- @level @pno @sno

 --

 @mpi @mpi-rate @comm @line @name

Table 2.8 Output items of the line cost distribution information

Output Item Meaning of Output Item

@level Information total level (Application, Process, Thread)

@pno Process or thread number

@sno spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the fjprof_spawn_dir_name key is set in the
program.

- When @level is Process.

- The process is a dynamically generated process.

@spawn Spawn number chosen as max cost

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met. If the condition is not met, only "--" is output for this
item.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set
in the program.

- When @level is Process.

The process is a dynamically generated process.

@process Process number chosen as max cost

@thread Thread number chosen as max cost

@cost Line cost

@cost-rate Proportion of the @level or @name cost in the cost at the information total level (%)

@ope Operation time (s)

@barrier Waiting cost for synchronization between threads

 Note

If it is other than the thread parallel program, only "--" is output for this item.

- 29 -

Output Item Meaning of Output Item

@barrier-rate Proportion of the waiting cost for synchronization between threads in the cost at the information total level (%)

 Note

If it is other than the thread parallel program, only "--" is output for this item.

@mpi MPI cost

@mpi-rate Proportion of the MPI cost in the cost at the information total level (%)

@comm Communication time (s)

@line Line number

@name Procedure name

2.2.2.5 Call Graph Information
As call graph information, procedure call trace and the cost of each procedure call trace are output.

This information is output when the -Icall option is enabled.

Output format of the call graph information

Call graph

 Process @pno @sno - Thread @thno

 --------------------+

 | @rate % <@nest> @name [@cost/@accumulation]

Table 2.9 Output items of the call graph information

Output Item Meaning of Output Item

@pno Process number

@sno spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fipp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set
in the program.

- The process is a dynamically generated process.

@thno Thread number

@rate Proportion of the procedure cost in the cost of the entire thread (%)

@nest Procedure call nest level

@name Procedure name

@cost Procedure cost

@accumulation Procedure cost including the cost of the called procedure

 Note

- If an interrupt occurs due to sampling by the Instant Performance Profiler during the execution of input/output statement processing,
call graph information may not be output correctly.

- 30 -

- If "<???>" is output as the nest level in call graph information, it means either of the following:

- The call trace of the procedure is unknown.

- The nest level of procedure calls is 128 or higher.

- Optimization causes call path not to be followed.

2.2.2.6 Source Code Information
Source code information is output with a cost added to each line of the source code. This information is output when the -Isrc option is
enabled.

Output format of the source code information

Sources profile

 -----> @ file-name

 Line Costs

 @line @cost @source-code

Table 2.10 Output items of the source code information

Output Item Meaning of Output Item

@file-name Source code file name

@line Line number

@cost Line cost

@source-code Source code

 Note

When using the -Mnoinlined option, the output of source code information may not display the inlined callee procedures and/or caller
procedures.

2.2.3 Details of Profile Result (XML Format)
If the -txml option is specified in the "2.1.5 Outputting Profile Result", the output is in the XML format. The format of XML is described
in this section.

2.2.3.1 Structure of XML format
The structure of the XML format output is described; the whole output of the XML format is enclosed by the <profile> element, and the
<profile> element consists of the <environment> element and the <information> element.

XML Format

<?xml version="1.0" encoding="utf-8"?> XML declaration

<profile type="@type" version="@vid" output_version="@oid"> Profiling information

 <environment> The environment information for

 measuring profiling data

 </environment>

 <information item="@item"> Performance information

 </information>

 <information item="@item"> Performance information

 </information>

- 31 -

</profile>

Output items

Element Name Overview Description

profile Profiling information This element includes the XML format output of profiler.

environment Environment
information for
measuring profiling data

This element includes the following information of the TEXT format(*). This element is
output once.

- "2.2.2.1 Environment Information for Measuring Profiling Data"

information Performance
information

This element includes the following information of the TEXT format(*). This element is
output multiple times.

- "2.2.2.2 Statistics Time Information"

- "2.2.2.3 CPU Performance Characteristics"

- "2.2.2.4 Cost Information"

- "2.2.2.5 Call Graph Information"

* Some entries do not match the TEXT and XML formats.

2.2.3.2 Details of XML format output
The following sections describe the elements used in the XML format output.

2.2.3.2.1 Profiling Information <profile>

This element includes the XML format output of profiler.

Element Name Description

Profile <profile type="@type" version="@vid" output_version="@oid"> </profile>

This element includes the XML format output of profiler.

@type indicates the kind of profiler, and is fixed to"fipp"

@vid indicates the version number of the profiler.

@oid indicates the version number of output format.

2.2.3.2.2 Environment Information for Measuring Profiling Data <environment>

As environment information for measuring profiling data, environment information as of when the profile data was measured is output.

XML format

<environment>

 <measured_time unit="date">@date</measured_time>

 <type_of_program program="@program"/>

 <measured_region region="@region"/>

 <coordinate x="@x" y="@y" z="@z"/>

 <spawn id="@id">

 <process id="@id">

 <sampling_interval unit="ms">@interval</sampling_interval>

 <frequency unit="MHz">@frequency</frequency>

 </process>

 </spawn>

</environment>

- 32 -

Output items

Element Name Description

environment <environment> </environment>

This element includes the environment information for measuring profiling data.

measured_time <measured_time unit="date"> @date </measured_time>

This element shows the measurement date and time of profile data.

@date shows the measurement data and time in YYYY-MM-DDThh:mm:ss format.

type_of_program <type_of_program program="@program "/>

This element shows the program execution format.

@program is one of the followings:

"SERIAL" : Serial
"Thread(AUTO)" : Automatic parallelization only
"Thread(OpenMP)" : OpenMP only
"Thread(OpenMP+AUTO)" : OpenMP and automatic parallelization
"MPI" : MPI only
"MPI+Thread(AUTO)" : MPI, Automatic parallelization
"MPI+Thread(OpenMP)" : MPI, OpenMP
"MPI+Thread(OpenMP+AUTO)" : MPI, OpenMP, and automatic parallelization

measured_region <measured_region region="@region " />

This element shows the kind of measurement region.

@region is one of the followings:

All: Entire program
Specified: Specified measurement region

coordinate <coordinate x="@x " y="@y " z="@z " />

This element shows the logical shape at the time of MPI program execution.

The value of x-axis, y-axis, and z-axis is shown in @x, @y, and @z.

 Point

Outputs the result only when the data measurement target is an MPI program.

The logical shape of dynamically generated processes are not outputted.

spawn <spawn id="@id"> </spawn>

This element shows the spawn number. This element will be output multiple times when the multiple spawned
processes exist.

@id indicates the spawn number. If this process is not spawned, @id is 0.

process <process id="@id"> </process>

This element shows the process number. This element will be output multiple times when the multiple processes
exist.

@id indicates the process number.

sampling_interval <sampling_interval unit="ms"> @interval </sampling_interval>

This element shows the sampling interval. The unit is millisecond(unit="ms")

@interval indicates the sampling interval.

frequency <frequency unit="MHz"> @frequency </frequency>

- 33 -

Element Name Description

This element shows the CPU frequency. The unit is MHz(unit="MHz")

@frequency indicates the CPU frequency.

 Note

If any of the following conditions applies, "-" is output as the CPU frequency:

- The -Inocpupa option is specified in "2.1.4 Measuring Profile Data"

- The -Hmode=user option is specified in "2.1.4 Measuring Profile Data"

- The -Sregion option is specified in "2.1.4 Measuring Profile Data" and measurement has never been performed
on the measurement region specified in "2.1.1 Adding a Measurement Region Specifying Routine"

- The -bmax option is specified in "2.1.5 Outputting Profile Result"

2.2.3.2.3 Performance Information <information>

As performance information, several types of performance information are output. The output of performance information differs with the
@item attribute. For the detail, refer the description of each <information> element. In this section, the common format in each performance
information is described.

XML format

<information item="@item">

 <spawn id="@id">

 <process id="@id">

 <thread id="@id">

 </thread>

 </process>

 </spawn>

</information>

Output items

Element Name Description

information <information item="@item"> </information>

This element includes the performance information.

For @item, one of the following is output according to the performance information to be output. If there is more than
one performance information to output, outputs the <information> element multiple times. Depending on the value of
@item, different elements are output to the blue portion of "XML format".

time:"2.2.3.2.4 Statistics Time Information <time>"information is output.

cpupa:"2.2.3.2.5 CPU Performance Characteristics <cpupa>" information is output.

cost:"2.2.3.2.6 Cost Information <cost> " information is output.

call:"2.2.3.2.7 Call Graph Information <call>" information is output.

spawn <spawn id="@id"> </spawn>

This element shows the spawn number. This element will be output multiple times when the multiple spawned
processes exist.

@id indicates the spawn number. If this process is not spawned, @id is 0.

process <process id="@id"> </process>

This element shows the process number. This element will be output multiple times when the multiple processes exist.

- 34 -

Element Name Description

@id indicates the process number.

thread <thread id="@id"> </thread>

This element shows the thread number. This element will be output multiple times when the multiple threads exist.

@id indicates the thread number.

2.2.3.2.4 Statistics Time Information <time>

As statistical time information, elapsed time of the program is output. This information is output where the @item attribute of the
<information> element is "time". For the <information> elements, see "2.2.3.2.3 Performance Information <information>". Only the thread
specific information is output and does not output the program specific or the process specific information.

XML format

<time>

 <elapsed unit="s">@elapse</elapsed>

 <user unit="s">@user</user>

 <system unit="s">@system</system>

</time>

Output items

Element
Name

Description

time <time> </time>

This element includes the statistic time information.

elapsed <elapsed unit="s" > @elapse </elapsed>

This element shows the elapsed time of each thread in unit of second (unit="s").

@elapse indicates the elapsed time of each thread.

user <user unit="s"> @user </user>

This element shows the user CPU time of each thread in unit of second (unit="s").

This element appears only if the @program attribute of <type_of_program> element is "SERIAL" or "MPI". For the
<type_of_program> element, refer "2.2.3.2.2 Environment Information for Measuring Profiling Data <environment>".

@user indicates the user CPU time of each thread.

system <system unit="s"> @system </system>

This element shows the system CPU time of each thread in unit of second (unit="s").

This element appears only if the @program attribute of <type_of_program> element is "SERIAL" or "MPI". For the
<type_of_program> element, refer "2.2.3.2.2 Environment Information for Measuring Profiling Data <environment>".

@system indicates the system CPU time of each thread.

2.2.3.2.5 CPU Performance Characteristics <cpupa>

As CPU performance characteristics, information related to CPU performance characteristics, such as memory throughput, number of
instructions, and number of operations, is displayed. This information is output where the @item attribute of the <information> element is
"cpupa". For the <information> elements, see "2.2.3.2.3 Performance Information <information>". Only the thread specific information is
output and does not output the program specific or the process specific information. This information is output when the -Icpupa option is
enabled.

- 35 -

XML format

<cpupa>

 <execution_time unit="s">@execution_time</execution_time>

 <gflops unit="GFLOPS">@gflops</gflops>

 <floating_point_peak_ratio unit="%">@floating_point_peak_ratio</floating_point_peak_ratio>

 <mem_throughput unit="GB/s">@mem_throughput</mem_throughput>

 <mem_throughput_peak_ratio unit="%">@mem_throughput_peak_ratio</mem_throughput_peak_ratio>

 <effective_instruction unit="instructions">@effective_instruction</ffective_instruction>

 <floating_point_operation unit="operations">@floating_point_operation</floating_point_operation>

 <simd_inst_rate unit="%">@simd_inst_rate</simd_inst_rate>

 <sve_operation_rate unit="%">@sve_operation_rate</sve_operation_rate>

 <ipc unit="IPC">@ipc</ipc>

 <gips unit="GIPS">@gips</gips>

</cpupa>

Output items

Element Name Description

cpupa <cpupa> </cpupa>

This element includes the CPU performance characteristics.

execution_time <execution_time unit="s"> @execution_time </execution_time>

This element shows the time taken to execute instructions in the measurement target region in unit of
second (unit="s").

@execution_time indicates the time taken to execute instructions in the measurement target region.

gflops <gflops unit="GFLOPS"> @gflops </gflops>

This element shows the count of floating-point operations performed per second in unit of GFLOPS
(unit="GFLOPS").

@gflops indicates the count of floating-point operations performed per second.

 Note

The GFLOPS value is calculated by assuming that all elements are active. Therefore, in the case of a
program with many inactive elements, a higher value than the original GFLOPS value is output.

floating_point_peak_ratio <floating_point_peak_ratio unit="%"> @floating_point_peak_ratio </floating_point_peak_ratio>

This element shows the ratio of the measured value to the theoretical value for floating-point operation
performance in unit of percentage (unit="%").

@floating_point_peak_ratio indicates the ratio of the measured value to the theoretical value for
floating-point operation performance.

 Note

The theoretical value for floating-point operation performance is calculated by assuming that double
precision operations are performed. Therefore, in the case of single or half precision, a value 2 to 4 times
higher than the actual percentage is output.

mem_throughput <mem_throughput unit="GB/s"> @mem_throughput </mem_throughput>

This element shows the memory throughput in unit of GB per second (GB/s).

@mem_throughput indicates the memory throughput.

mem_throughput_peak_ratio <mem_throughput_peak_ratio unit="%"> @mem_throughput_peak_ratio </
mem_throughput_peak_ratio>

- 36 -

Element Name Description

This element shows the Ratio of the measured value to the theoretical value for memory throughput. The
unit is %(unit="%")

@mem_throughput_peak_ratio indicates the measured value to the theoretical value for memory
throughput.

effective_instruction <effective_instruction unit="instructions"> @effective_instruction </effective_instruction>

This element shows the total number of instructions executed in unit of instructions
(unit="instructions").

@effective_instruction indicates the total number of instructions executed.

 Note

The total number of instructions executed does not include MOVPRFX instructions.

floating_point_operation <floating_point_operation unit="operations"> @floating_point_operation </
floating_point_operation>

This element shows the total number of floating-point operations executed in unit of operations
(unit="operations").

@floating_point_operation indicates the total number of floating-point operations executed.

simd_inst_rate <simd_inst_rate unit="%"> @simd_inst_rate </simd_inst_rate>

This element shows the ratio of the number of SIMD instructions to the total number of instructions
executed in unit of percentage (unit="%").

@simd_inst_rate indicates the ratio of the number of SIMD instructions to the total number of
instructions executed.

sve_operation_rate <sve_operation_rate unit="%"> @sve_operation_rate </sve_operation_rate>

This element shows the ratio of the number of SVE operations to the total number of floating-point
operations executed in unit of percentage (unit="%").

@sve_operation_rate indicates the ratio of the number of SVE operations to the total number of
floating-point operations executed.

ipc <ipc unit="IPC"> @ipc </ipc>

This element shows the number of instructions executed per cycle in unit of IPC (unit="IPC").

@ipc indicates the number of instructions executed per cycle.

gips <gips unit="GIPS"> @gips </gips>

This element shows the number of instructions executed per second in unit of GIPS (unit="GIPS").

@gips indicates the number of instructions executed per second.

2.2.3.2.6 Cost Information <cost>

The cost information consists of the following information:

- Procedure cost distribution information

- Loop cost distribution information

- Line cost distribution information

This information is output where the @item attribute of the <information> element is "cost". For the <information> elements, see "2.2.3.2.3
Performance Information <information> ". Only the thread specific information is output and does not output the program specific or the
process specific information.

- 37 -

XML format

<cost>

 <procedures>

 <procedure func="@func" start="@start" end="@end">

 <procedure_base_cost unit="hits">@procedure_base_cost</procedure_base_cost>

 <procedure_barrier_cost unit="hits">@procedure_barrier_cost</procedure_barrier_cost>

 <procedure_mpi_cost unit="hits">@procedure_mpi_cost</procedure_mpi_cost>

 </procedure>

 </procedures>

 <loops>

 <loop func="@func" start="@start" end="@end" nest="@nest" kind="@kind" exec="@exec">

 <loop_base_cost unit="hits">@loop_base_cost</loop_base_cost>

 <loop_barrier_cost unit="hits">@loop_barrier_cost</loop_barrier_cost>

 <loop_mpi_cost unit="hits">@loop_mpi_cost</loop_mpi_cost>

 </loop>

 </loops>

 <lines>

 <line func="@func" line_number="@line_number">

 <line_base_cost unit="hits">@line_base_cost</line_base_cost>

 <line_barrier_cost unit="hits">@line_barrier_cost</line_barrier_cost>

 <line_mpi_cost unit="hits">@line_mpi_cost</line_mpi_cost>

 </line>

 </lines>

</cost>

Output items

Element Name Description

cost <cost> </cost>

This element includes the cost information.

procedures <procedures> </procedures>

This element includes the group of procedure cost distribution information.

This element and the sibling element will be output only if the procedure cost information exists.

procedure <procedure func="@func" start="@start" end="@end"> </procedure>

This element shows the procedure cost distribution information. If there are multiple procedures to be output,
this element is output multiple times.

@func indicates the procedure name.

@start indicates the procedure start line number. This attribute is output only when the start line number of
the subject procedure is available.

@end indicates the procedure end line number. This attribute is output only when the end line number of the
subject procedure is available.

 See

In the case of a thread parallel program, the parallelized part is output as information on the generated
procedure. An identifier corresponding to the type of the generated procedure is appended to the name of the
generated procedure. Refer "Table 2.6 Names of Generated Procedures for Thread Parallel Programs" for
details.

procedure_base_cost <procedure_base_cost unit="hits"> @procedure_base_cost </procedure_base_cost>

This element shows the procedure cost.

- 38 -

Element Name Description

@procedure_base_cost indicates the procedure cost.

procedure_barrier_cost <procedure_barrier_cost unit="hits"> @procedure_barrier_cost </procedure_barrier_cost>

This element shows the waiting cost of procedure for synchronization between threads. This element is output
only in the case of a thread parallel program.

@procedure_barrier_cost indicates the waiting cost of procedure for synchronization between threads.

procedure_mpi_cost <procedure_mpi_cost unit="hits"> @procedure_mpi_cost </procedure_mpi_cost>

This element shows the MPI cost of procedure. This element is output only when the -Impi option is enabled
to output the profile result.

@procedure_mpi_cost indicates the MPI cost of procedure.

loops <loops> </loops>

This element includes the group of loop cost distribution information.

This element and the sibling element will be output only if the loop cost information exists.

loop <loop func="@func" start="@start" end="@end" nest="@nest" kind="@kind" exec="@exec"> </loop>

This element shows the loop cost distribution information. If there are multiple loops to be output, this element
is output multiple times.

@func indicates the procedure name.

@start indicates the loop start line number.

@end indicates the loop end line number.

@nest indicates the nest level.

@kind indicates the loop type. One of the following types is output:

DO, WHILE, UNTIL, ARRAY, FOR, GOTO, OTHER

@exec indicates the loop compilation type. One of the following types is output:

SERIAL, OpenMP, AUTO

loop_base_cost <loop_base_cost unit="hits"> @loop_base_cost </loop_base_cost>

This element shows the loop cost.

@loop_base_cost indicates the loop cost.

loop_barrier_cost <loop_barrier_cost unit="hits"> @loop_barrier_cost </loop_barrier_cost>

This element shows the waiting cost of loop for synchronization between threads. This element is output only
in the case of a thread parallel program.

@loop_barrier_cost indicates the waiting cost of loop for synchronization between threads.

loop_mpi_cost <loop_mpi_cost unit="hits"> @loop_mpi_cost </loop_mpi_cost>

This element shows the MPI cost of loop. This element is output only when the -Impi option is enabled to
output the profile result.

@loop_mpi_cost indicates the MPI cost of loop.

lines <lines> </lines>

This element includes the group of line cost distribution information.

This element and the sibling element will be output only if the line cost information exists.

line <line func="@func" line_number="@line_number"> </line>

This element shows the line cost distribution information. If there are multiple lines to be output, this element
is output multiple times.

- 39 -

Element Name Description

@func indicates the procedure name.

@line_number indicates the line number.

line_base_cost <line_base_cost unit="hits"> @line_base_cost </line_base_cost>

This element shows the line cost.

@line_base_cost indicates the line cost.

line_barrier_cost <line_barrier_cost unit="hits"> @line_barrier_cost </line_barrier_cost>

This element shows the waiting cost of line for synchronization between threads. This element is output only
in the case of a thread parallel program.

@line_barrier_cost indicates the waiting cost of line for synchronization between threads.

line_mpi_cost <line_mpi_cost unit="hits"> @line_mpi_cost </line_mpi_cost>

This element shows the MPI cost of line. This element is output only when the -Impi option is enabled to
output the profile result.

@line_mpi_cost indicates the MPI cost of line.

2.2.3.2.7 Call Graph Information <call>

As call graph information, procedure call trace and the cost of each procedure call trace are output. This information is output where the
@item attribute of the <information> element is "call". For the <information> elements, see "2.2.3.2.3 Performance Information
<information>". This information is output when the -Icall option is enabled.

XML format

<call>

 <frames>

 <frame func="@func">

 <procedure_cost unit="hits">@procedure_cost</procedure_cost>

 <frame func="@func">

 <procedure_cost unit="hits">@procedure_cost</procedure_cost>

 </frame>

 </frame>

 </frames>

</call>

Output items

Element Name Description

call <call> </call>

This element includes the call graph information.

frames <frames> </frames>

This element includes the group of call graph frame information.

frame <frame func="@func" unknown="true"> </frame>

This element shows the call graph frame. This element will be nested when multiple procedures are nested in the call
graph. This element will be parallel when multiple procedures are parallel in the call graph.

The name at @func is the procedure name.

If the nest level is displayed <???> on the TEXT format output, the unknown="true" attribute is output.

procedure_cost <procedure_cost unit="hits"> @procedure_cost </procedure_cost>

This element shows the procedure cost.

- 40 -

Element Name Description

The number at @procedure_cost is the procedure cost.

- 41 -

Chapter 3 Advanced Performance Profiler
This chapter describes the Advanced Performance Profiler.

The Advanced Performance Profiler measures and outputs the execution performance information of the specified region of an application.
It consists of two commands: the fapp command, which measures profile data, and the fapppx command, which outputs profile result from
measured data. The Advanced Performance Profiler measures and outputs the following information:

Statistical time information

As statistical time information, the number of calls in the measurement target region, elapsed time, user CPU time, system CPU time
breakdown, etc. are output.

MPI communication cost information

As MPI communication cost information, the number of executions of MPI functions in the measurement target region, message length,
and average, maximum, and minimum execution time and waiting time are output.

CPU performance analysis information

As CPU performance analysis information, CPU performance characteristics at the time of application execution in the measurement
target region are output. This information is used for the "Chapter 4 CPU Performance Analysis Report"

 Note

The fapp command can be used both to measure the profile data and to output the profile results. In this User's Guide, we use this command
to measure the profile data.

For notes on using the Advanced Performance Profiler, see "5.1 Notes Common to Profilers" and "5.3 Notes on the Advanced Performance
Profiler".

3.1 Procedure for Using the Advanced Performance Profiler
This section provides the procedure for using the Advanced Performance Profiler.

Figure 3.1 Procedure for using the Advanced Performance Profiler

- 42 -

 Information

The Advanced Performance Profiler is also used to measure and output data for the CPU Performance Analyzer. See "4.1 Procedure for
Using the CPU Performance Analysis Report" for an example of how to run a CPU Performance Analysis report.

The following describes each operation in detail.

3.1.1 Adding a Measurement Region Specifying Routine
To the source code, add the measurement region specifying routine required for specifying the region (starting and stopping positions of
measurement) from which profile data is measured.

The following describes measurement region specifying routines for the Advanced Performance Profiler in detail.

3.1.1.1 fapp_start / fapp_stop Subroutines (Fortran)
Format

CALL fapp_start(name, number, level)

CALL fapp_stop(name, number, level)

Function Description

These subroutines start or stop profile data measurement by the Advanced Performance Profiler.

fapp_start(name, number, level)

This subroutine starts profile data measurement by the Advanced Performance Profiler.
A combination of the argument name (group name) and the argument number (detail number) is used as the measurement region
name. Different measurement region names allow measurement to be done in parallel. The argument level has a meaning to the -
L option of the fapp command. It enables only the region satisfying "-L option argument level" >= "argument level" as a
measurement target. For details on the -L option, see "fapp command options"

fapp_stop(name, number, level)

This subroutine stops profile data measurement by the Advanced Performance Profiler.
A combination of the argument name (group name) and the argument number (detail number) is used as the measurement region
name. Different measurement region names allow measurement to be done in parallel. The argument level has a meaning to the -
L option of the fapp command. It enables only the region satisfying "-L option argument level" >= "argument level" as a
measurement target. For details on the -L option, see "fapp command options"

Argument

name

This argument shows the group name, which is handled as a measurement region name in combination with the argument number
(detail number).

Basic character type scalar. The following characters can be used for the argument name:

- Alphabetical characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

- Numerical characters

0 1 2 3 4 5 6 7 8 9

- Symbol

_ (underscore)

number

This argument shows the detail number, which is handled as a measurement region name in combination with the argument name
(group name).

- 43 -

Four-byte integer type.

level

This argument shows the start level, which is used in the -L option of the fapp command.

Four-byte integer type. However, it must be an integer from 0 to 2,147,483,647. If an incorrect value is specified, a warning message
is output and this routine is ignored.

 Example

Example of use of measurement region specifying routines

program main

...

call fapp_start("foo",1,0) ! Start measurement for the measurement region name"foo1"

do i=1,10000

 ...

 call fapp_start("bar",1,0) ! Start measurement for the measurement region name"bar1"

 do j=1,10000

 ...

 end do

 call fapp_stop("bar",1,0) ! End measurement for the measurement region name "bar1"

end do

call fapp_stop("foo",1,0) ! End measurement for the measurement region name "foo1"

end program main

 Note

- The Advanced Performance Profiler measures profile data for each measurement region name. To call a subroutine with the same
measurement region name multiple times, be sure to call it in the order from fapp_start to fapp_stop. If fapp_start is called again before
fapp_stop is called, or fapp_stop is called before fapp_start is called, a warning message is output and the call is ignored. If measurement
region names are different, there is no problem if fapp_start or fapp_stop is successively called. If the process ends without calling
fapp_stop, the profile data of the region is not measured.

- If measurement is performed multiple times for the same measurement region name, all the measurement results are totaled.

- Specify the same value of the argument level in fapp_start and fapp_stop. If a different value is specified, an unintended result may
occur, depending on the specification by the -L option of the fapp command.

- When measuring a thread parallel program, add the measurement region specifying routines so that the measurement region includes
the entire thread parallel region (including the thread parallel region generated by automatic parallelization) for each thread parallel
interval. Check the compilation information for the state of parallelization. The operation is not guaranteed for out-of-specification use.

- Do not specify the following combination of the measurement region and detail number. This combination is reserved for making the
entire program a target.

 name : "all"

number : 0

However, if the -Hmethod=fast option is specified when measuring with the fapp command, this region is not measured. For about the
-Hmethod=fast option, see "3.1.4 Measuring Profile Data".

- In the case of a process parallel program, call a subroutine with the same measurement region name in all the processes that are targets
of measurement. The profile data of processes where this call is not performed is not measured.

 Example

Example for making all processes targets of measurement (starting measurement before calling the mpi_init subroutine)

call fapp_start("foo",1,0) ! Start measurement

call mpi_init(err)

- 44 -

 ...

call mpi_finalize(err)

call fapp_stop("foo",1,0) ! Stop measurement

Example for making all processes targets of measurement (starting measurement immediately after calling the mpi_init
subroutine)

call mpi_init(err)

call fapp_start("foo",1,0) ! Start measurement

 ...

call fapp_stop("foo",1,0) ! Stop measurement

call mpi_finalize(err)

Example for making only process 0 the target of measurement

call mpi_init(err)

call mpi_comm_rank(mpi_comm_world,rank,err)

if(rank==0) then

 call fapp_start("foo",1,0) ! Start measurement on process 0 only

end if

 ...

if(rank==0) then

 call fapp_stop("foo",1,0) ! Stop measurement on process 0 only

end if

call mpi_finalize(err)

- When the compiler option -mldefault=cdecl is valid to compile a Fortran program, change the name of the measurement region
specifying routine as follows.

Before After

fapp_start fapp_start_

fapp_stop fapp_stop_

- When the compiler option -AU is valid, the name of the measurement region specifying routine must be entered in lowercase characters.

3.1.1.2 fapp_start function / fapp_stop Function (C language and C++)
Format

#include "fj_tool/fapp.h"

void fapp_start(const char *name, int number, int level);
void fapp_stop(const char *name, int number, int level);

Function Description

These subroutines start or stop profile data measurement by the Advanced Performance Profiler.

fapp_start(const char *name, int number, int level)

This subroutine starts profile data measurement by the Advanced Performance Profiler.
A combination of the argument name (group name) and the argument number (detail number) is used as the measurement region
name. Different measurement region names allow measurement to be done in parallel. The argument level has a meaning to the -
L option of the fapp command. It enables only the region satisfying "-L option argument level" >= "argument level" as a
measurement target. For details on the -L option, see "fapp command options"

fapp_stop(const char *name, int number, int level)

This subroutine stops profile data measurement by the Advanced Performance Profiler.
A combination of the argument name (group name) and the argument number (detail number) is used as the measurement region
name. Different measurement region names allow measurement to be done in parallel. The argument level has a meaning to the -
L option of the fapp command. It enables only the region satisfying "-L option argument level" >= "argument level" as a
measurement target. For details on the -L option, see "fapp command options"

- 45 -

Argument

name

This argument shows the group name, which is handled as a measurement region name in combination with the argument number
(detail number).

Basic character type scalar. The following characters can be used for the argument name:

- Alphabetical characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

- Numerical characters

0 1 2 3 4 5 6 7 8 9

- Symbol

_ (underscore)

number

This argument shows the detail number, which is handled as a measurement region name in combination with the argument name
(group name).

int type.

level

This argument shows the start level, which is used in the -L option of the fapp command.

int type. However, it must be an integer from 0 to 2,147,483,647. If an incorrect value is specified, a warning message is output and
this routine is ignored.

 Example

Example of use of measurement region specifying routines

#include "fj_tool/fapp.h" // Include the header file.

...

int main(void)

{

 int i,j;

 fapp_start("foo",1,0); // Start measurement for the measurement region name "foo1"

 for(i=0;i<10000;i++){

 ...

 fapp_start("bar",1,0); // Start measurement for the measurement region name "bar1"

 for(j=0;j<10000;j++){

 ...

 }

 fapp_stop("bar",1,0); // End measurement for the measurement region name "bar1"

 }

 fapp_stop("foo",1,0); // End measurement for the measurement region name "foo1"

 return 0;

}

 Note

- The Advanced Performance Profiler measures profile data for each measurement region name. To call a function with the same
measurement region name multiple times, be sure to call it in the order from fapp_start to fapp_stop. If fapp_start is called again before
fapp_stop is called, or fapp_stop is called before fapp_start is called, a warning message is output and the call is ignored. If measurement
region names are different, there is no problem if fapp_start or fapp_stop is successively called. If the process ends without calling
fapp_stop, the profile data of the region is not measured.

- 46 -

- If measurement is performed multiple times for the same measurement region name, all the measurement results are totaled.

- Specify the same value of the argument level in fapp_start and fapp_stop. If a different value is specified, an unintended result may
occur, depending on the specification by the -L option of the fapp command.

- When measuring a thread parallel program, add the measurement region specifying routines so that the measurement region includes
the entire thread parallel region (including the thread parallel region generated by automatic parallelization) for each thread parallel
interval. Check the compilation information for the state of parallelization. The operation is not guaranteed for out-of-specification use.

- Do not specify the following combination of the measurement region and detail number. This combination is reserved for making the
entire program a target.

 name : "all"

number : 0

However, if the -Hmethod=fast option is specified when measuring with the fapp command, this region is not measured. For about the
-Hmethod=fast option, see "3.1.4 Measuring Profile Data".

- In the case of a process parallel program, call a function with the same measurement region name in all the processes that are targets
of measurement. The profile data of processes where this call is not performed is not measured.

 Example

Example for making all processes targets of measurement (starting measurement before calling the mpi_init subroutine)

fapp_start("foo",1,0); // Start measurement

MPI_Init(&argc, &argv);

 ...

MPI_Finalize();

fapp_stop("foo",1,0); // Stop measurement

Example for making all processes targets of measurement (starting measurement immediately after calling the mpi_init
subroutine)

MPI_Init(&argc, &argv);

fapp_start("foo",1,0); // Start measurement

 ...

fapp_stop("foo",1,0); // Stop measurement

MPI_Finalize();

Example for making only process 0 the target of measurement

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if(rank==0){

 fapp_start("foo",1,0); // Start measurement on process 0 only

}

 ...

if(rank==0){

 fapp_stop("foo",1,0); // Stop measurement on process 0 only

}

MPI_Finalize();

3.1.2 Specifying Environment Variables
Specify environment variables required when using the Profiler. For details, see "2.1.2 Specifying Environment Variables"

3.1.3 Compilation
Compile a program. For detail, see "2.1.3 Compilation".

- 47 -

3.1.4 Measuring Profile Data
Measure data by using the fapp command. Perform this operation from a compute node.

 Note

- If any of the following is performed on profile data measured by the fapp command, the operation is not guaranteed:

- Editing profile data

- Adding, deleting, or renaming profile data

- If the program is interrupted while profile data is being measured, incomplete profile data may remain.

- When using the fapp command, specify a value that is equivalent to "TRUE" in the environment variable "FLIB_FASTOMP". If do not
specified, the fapp command does not operate correctly. For details on the environment variable "FLIB_FASTOMP", see the "Fortran
User's Guide", "C User's Guide", or "C++ User's Guide".

- You can also specify the -A option for the fapp command. However, if you specify the -A option for the fapp command, it is treated
as a fapppx command of the "3.1.5 Outputting Profile Result". Therefore, you should work with it differently. For details, see "3.1.5
Outputting Profile Result". You cannot specify the -A option together with the -C option for the fapp command. If you specify both
options, an error message is output and the program is aborted.

fapp command syntax

fapp -C -d profile_data [-I{{cpupa|nocpupa}|{cputime|nocputime}|{mpi|nompi}}]

[-H{event=event|event_raw=event_raw}[,method={fast|normal},mode={all|user}]]

[-L level] [-W{spawn|nospawn}] exec-file [exec_option ...]

fapp command options

 Point

- If the description of an option contains a restriction such as "you cannot..." or "it must be..." and you violate it, an error message is output
and the execution is terminated.

- If you specify multiple conflicting options, the last specified option is enabled. For example, if you specify the -I{cpupa|nocpupa}
option, which specifies whether to measure CPU performance analysis information, in the order of "-Icpupa -Inocpupa", the -Inocpupa
option is enabled.

- To use the CPU performance analysis function, use the -Icpupa and -Hevent=event options. For details, see "4.1.4 Measuring Profile
Data".

-C

This option specifies to measure profile data. The option cannot be omitted. If you do not specify the option, an error message is output
and the collecting command is terminated.

-d profile_data

This option specifies the directory where profile data is to be stored. The option cannot be omitted. If you do not specify the option, an
error message is output and the collecting command is terminated.
profile_data cannot be omitted. profile_data specifies a relative or absolute path as the name of the directory where profile data is to be
stored. If the specified directory exists, it must be an empty directory. If the specified directory does not exist, a new directory is created.
To specify a directory name beginning with "-" in profile_data, specify its absolute path or a relative path that contains the current
directory ("./"). To analyze a program that moves the current directory during execution, specify its absolute path in profile_data.

-I{{cpupa|nocpupa}|{cputime|nocputiime}|{mpi|nompi}}

This option specifies items to be measured with the Advanced Performance Profiler. You can specify the -I option with multiple sub
options separated with comma (,). For example, you can specify such as "-Inocpupa,mpi". Specification when you omit the -I{cpupa|
nocpupa} option varies depending on the -H option. If the -H option is specified, the -Icpupa option is enabled. If the -H option is not

- 48 -

specified, the -Inocpupa option is enabled. Specification when you omit the -I{cputime|nocputime} option varies depending on the -
I{cpupa|nocpupa} option. If the -Icpupa option is enabled, the -Inocputime option is enabled. If the -Inocpupa option is enabled, the -
Icputime option is enabled. You can specify -Inocputime option only if the -Icpupa option is enabled. When the -Inocpupa option is
enabled and if the -Inocputime option is specified, an error message is output and the collecting command is terminated. The
specification differs depending on the type of the program if the -I{mpi|nompi} option is omitted. When working with an MPI program,
the -Impi option is enabled. When working with a non-MPI program, the -Inompi option is enabled. When the -Icpupa option is enabled
and the -H option is not specified, the -Hevent=statistics,method=normal,mode=all option is enabled.

cpupa

This argument specifies to measure CPU performance analysis information.

nocpupa

This argument specifies not to measure CPU performance analysis information.

cputime

This argument specifies to measure User CPU time and System CPU time.

nocputime

This argument specifies to does not measure CPU time and system CPU time, shortens the time to measure the CPU performance
analysis information.

mpi

This argument specifies to measure MPI communication cost information. If you specify the argument for a non-MPI program, an
error message is output and the collecting command is terminated.

nompi

This argument specifies not to measure MPI communication cost information.

-H{event=event |event_raw=event_raw }[,method={fast|normal},mode={all|user}]

This option specifies items for measurement of CPU performance analysis information. If you specify the Inocpupa option, a warning
message is output and this option is disabled. Be sure to specify either of the suboptions event=event and event_raw=event_raw. If you
specify the suboptions event=event and event_raw=event_raw together, the last specified suboption is enabled. If the suboption mode=
is omitted, mode=all is enabled. If the suboption method= is omitted, method=normal is enabled.

event=event

Measure the information used in the CPU Performance Analysis Report. event cannot be omitted. Specify one of the following in
event. pa1 is equivalent to statistics.

{ pa1 | pa2 | pa3 | pa4 | pa5 | pa6 | pa7 | pa8 | pa9 | pa10 | pa11 | pa12 | pa13 | pa14 | pa15 | pa16 | pa17 | statistics}

event_raw=event_raw

This suboption specifies the event number of PMU event information to measure CPU performance analysis information. event_raw
cannot be omitted. In event_raw, specify an event number corresponding to a CPU in decimal or hexadecimal notation (0x or 0X).
You can specify up to eight event_raw values by separating them with commas (,).

method=fast

This suboption specifies a measurement method for CPU performance analysis information. If you specify this suboption, high
accuracy measurement is performed for CPU performance analysis information by the method of directly measuring hardware
information.

method=normal

This suboption specifies a measurement method for CPU performance analysis information. If you specify this suboption, CPU
performance analysis information is measured by the method of measurement via the OS. If you specify this suboption, you cannot
specify the same event number for -Hevent_raw=event_raw option more than once.

mode=all

This suboption specifies a measurement mode for CPU performance analysis information. If you specify this suboption,
performance is measured in kernel and user modes.

- 49 -

mode=user

This suboption specifies a measurement mode for CPU performance analysis information. If you specify this suboption,
performance is measured in user mode.

-L level

This option specifies the start level for the measurement target. level specifies an integer from 0 to 2,147,483,647. If you specify a value
outside the range in level, a warning message is output and the -L 0 option is enabled. The option has a meaning to the third argument
level of the measurement region specifying routine. It enables only the region satisfying "level" >= "third argument level of
measurement region specifying routine" as a measurement target. If this option is omitted, the -L 0 option is enabled.

-W{spawn|nospawn}

This option specifies how to measure the dynamically generated process. Specification when you omit the -W{spawn|nospawn} option
varies depending on the type of the program. When working with the MPI program, the -Wspawn option is enabled. When working with
the non-MPI program, the -Wnospawn option is enabled.

spawn

This argument specifies to measure the statistic information of the dynamically generated process. If you specify the info key
"fjprof_spawn_dir_name" for the specific dynamically generated process, the profile data of the dynamically generated process with
the info key is stored in the directory that you specified for info key "fjprof_spawn_dir_name". If you do not specify the info key
"fjprof_spawn_dir_name", the profile data of the dynamically generated process is stored in the directory which you specified with
the -d option. If you specify this argument to the non-MPI program, an error message is output and the collecting command is
terminated.

nospawn

This argument specifies not to measure the statistic information of the dynamically generated process. However, if you specify the
info key "fjprof_spawn_dir_name" to the specific dynamically generated process, measurement is performed for that process with
the info key, and the measured profile data is stored in the directory which you specified for the info key "fjprof_spawn_dir_name".

exec-file [exec_option ...]

This option specifies the execution file that is the target of profile data measurement and options for the file. In the case of an MPI
program, make a specification from mpiexec. To specify an execution file that begins with "-" in exec-file, specify its relative path that
contains the current directory ("./") or absolute path. A shell script cannot be specified in exec-file. The character string following the
execution file name (exec_option ...) is considered an option for the execution file.

 Example

Example of measuring CPU performance analysis information (statistics) with the fapp command

fapp -C -d ./tmp -Icpupa -Hevent=statistics ./a.out

3.1.5 Outputting Profile Result
Output the result of profile data measured with the fapp command. You can also output an input file used for the CPU Performance Analysis
Report. For this operation, use a different command depending on the node to be used.

When using a login node

Use the fapppx command.

compute node

Use the fapp command.

fapppx command or fapp command syntax

{fapppx|fapp} -A [-I{{cpupa|nocpupa}|{mpi|nompi}}] [-o outfile] [-pp_no] [-t{csv|text|xml}]

[-d] profile_data

- 50 -

fapppx command or fapp command options

 Point

- If the description of an option contains a restriction such as "you cannot..." or "it must be..." and you violate it, an error message is output
and the program is aborted.

- If you specify multiple conflicting options, the last specified option is enabled. For example, if you specify the -I{cpupa|nocpupa}
option, which specifies profile result items to be output, in the order of "-Icpupa,nocpupa", the -Inocpupa option is enabled.

- To use the CPU performance analysis function, specify the -tcsv option.

-A

This option specifies to output the profile result. The option cannot be omitted. If you do not specify the option, an error message is output
and the analyzing command is terminated.

-I{{cpupa|nocpupa}|{mpi|nompi}}

This option specifies the item(s) to the output as the profile result. You can specify the -I option with multiple sub options separated with
comma (,). For example, you can specify such as "-Inocpupa,mpi". If the -I{cpupa|nocpupa} option is omitted, the -Inocpupa option is
enabled. The specification when the -I{mpi|nompi} option is omitted differs depending on the type of the program of which the profile
data is to be measured. If the measurement target of the profile data is an MPI program, the Impi option is enabled. If the measurement
target of the profile data is a non-MPI program, the -Inompi option is enabled. If you specify the options of -Icpupa,mpi, the relevant
items must be measured by executing the fapp command. If you specify the information to be output which is not measured, the options
specified are ignored.

cpupa

This argument specifies to output CPU performance analysis information. The behavior of specifying this option and the -ttext
option at the same time depends on the measured profile data. Outputs CPU Performance Analysis Information in text format when
you measure profile data with the -Hevent=pa1 or -Hevent=statistics options. Otherwise, CPU Performance Analysis Report will
not be output in text format. If this option and the -tcsv option or -txml option are specified at the same time, CPU Performance
Analysis Information is output regardless of the -H option.

nocpupa

This argument specifies not to output CPU performance analysis information.

mpi

This argument specifies to output MPI communication cost information.

nompi

This argument specifies not to output MPI communication cost information.

-o outfile

This option specifies the output destination for the profile result. outfile specifies a relative or absolute path as the name of the output
destination file or stdout. If this option is omitted, the -ostdout option is enabled. If you specify stdout in outfile, the profile result is output
to the standard output. To specify a file name beginning with "-" in outfile, specify its absolute path or a relative path that contains the
current directory ("./").

-pp_no

Specify the process to be output to the profile result. For p_no, specify one or more from those of N@M , input=n , limit=m , and all.
If you omit this option, the value taken in varies depending on the specification of the -t{csv|text|xml} option. If the -ttext option is
enabled, the "-pinput=0,limit=16" option is enabled. If the -tcsv option or -txml option is enabled, the -pall option is enabled. p_no
cannot be omitted. For the -p option, you can specify more than one p_no by separating them with a comma (,). For example, you can
specify such as "-p3,5,limit=10".

N[@M] ...

This suboption specifies to output, at the beginning, the information of the process number specified in N. If you specify the process
number N that belongs to the spawn number M, specify in the format like "N@M". If the information of the process number specified

- 51 -

with N[@M] does not exist, ignore the specification. You can specify more than one N[@M]. If you specify more than one N[@M],
the result is output in the order of your specification. [@M] is only valid with the -ttext option.

input=n

This suboption specifies to read the information for the top n processes at cost. Although processing becomes faster because the
number of files to read decreases, the information of processes that is not read, is not included in the denominator to perform ratio
calculation. If you specify 0 or a value exceeding the number of processes in n, the information of all processes is read. If this
suboption is omitted, input=0 is enabled. If you specify input=n and all together, the suboption input=n is enabled, regardless of the
order in which options are specified. The suboptions input=n and limit=m can be specified together.

limit=m

This suboption specifies to output the information for the top m processes at cost. If the -ttext option is enabled, output processes in
the order of cost from highest. The information of processes that is not output is included in the denominator to perform ratio
calculation. If you specify 0 or a value exceeding the number of processes in m, the information of all processes is output. If you omit
this suboption, the value taken in varies depending on the specification of the -t{csv|text|xml} option. If the -ttext option is enabled,
limit=16 is enabled. If the -tcsv option or -txml option is enabled, limit=0 is enabled.

all

This suboption specifies to read and output the information for all processes. If the -ttext option is enabled, output processes in the
order of cost from highest. This is the same as when the -pinput=0,limit=0 option is specified. If you do not specify either the
suboption input=n or limit=m, this suboption is enabled.

-t{csv|text|xml}

This option specifies an output format for profile result. If this option is omitted, -ttext is enabled.

csv

This option specifies to output the profile result in CSV format.

text

This option specifies to output the profile result in TEXT format.

xml

This option specifies to output the profile result in XML format.

-d profile_data

profile_data specifies a relative or absolute path as the name of the directory where profile data is stored. This option cannot be omitted.
However, as long as you specify profile_data at the end of an array of options, "-d" can be omitted. To specify a directory name beginning
with "-" in profile_data, specify its absolute path or relative path that contains the current directory ("./").

 Example

Example of outputting profile results in TEXT format

fapppx -A -ttext -o tmp.txt -d ./tmp

3.2 Profile Result
This section describes the contents of profile result output by the fapppx command or fapp command.

3.2.1 Overview of Profile Result
Profile result consists of the following statistical information. You can use the -I option of the fapppx command or fapp command to control
the output of each piece of the information. For details on the -I option, see "3.1.5 Outputting Profile Result" In TEXT format, the
information is output in the following order:

- Environment information for measuring profiling data

- Statistical time information

- 52 -

- MPI communication cost information

- CPU performance analysis information

For details, see "3.2.2 Detail of Profile Result (TEXT Format)" or "3.2.3 Detail of Profile Result (XML Format)" and its subsections.

3.2.2 Detail of Profile Result (TEXT Format)
If you specify the "3.1.5 Outputting Profile Result" with the -ttext option, the result is output in the TEXT format. The followings are applied
to the TEXT format.

3.2.2.1 Environment Information for Measurement Profiling Data
As environment information for measuring profiling data, environment information as of when the profile data was measured is output.

Output format of the environment information for measuring profiling data

Fujitsu Advanced Performance Profiler Version @vl

 Measured time : @date

 CPU frequency : Process @pno @frequency (MHz) @sno

 Type of program : @type

 Virtual coordinate : (@x, @y, @z)

Table 3.1 Output items of the environment information for measuring profiling data

Output Item Meaning of Output Item

@vl Version number of the Profiler

@date Measurement date and time of profile data

@pno Process number

@frequency CPU Frequency

It is the value collected from the following "system CPU frequency file" for each process when the Profiler ends.

/sys/devices/system/cpu/cpuN/cpufreq/scaling_cur_freq (N in cpuN is the core number)

If the "system CPU frequency file" does not exist, it is the value calculated inside the Profiler.

 Note

If any of the following conditions applies, "--" is output as the CPU frequency:

- The -Inocpupa option is enabled in "3.1.4 Measuring Profile Data" or "3.1.5 Outputting Profile Result"

- The -Hmethod=fast option is specified in "3.1.4 Measuring Profile Data" and measurement has never been
performed on the measurement region specified in "3.1.1 Adding a Measurement Region Specifying Routine"

- The -Hmode=user option is specified in "3.1.4 Measuring Profile Data"

@sno Spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fapp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set
in the program.

- The process is a dynamically generated process.

- 53 -

Output Item Meaning of Output Item

@type Program execution format (@thno shows the number of threads.)
"SERIAL" : Serial
"Thread (AUTO) @thno" : Automatic parallelization only
"Thread (OpenMP) @thno" : OpenMP only
"Thread (OpenMP & AUTO) @thno" : OpenMP and automatic parallelization
"MPI" : MPI only
"MPI & Thread (AUTO) @thno" : MPI and automatic parallelization
"MPI & Thread (OpenMP) @thno" : MPI,OpenMP
"MPI & Thread (OpenMP & AUTO) @thno" : MPI,OpenMP, and automatic parallelization

(@x, @y, @z) Logical shape at the time of MPI program execution

 Point

Outputs the result only when the data measurement target is an MPI program.

The logical shape of dynamically generated processes are not outputted.

 Point

If CPU frequency(including dynamically generated process) is different for each process, multiple lines of CPU frequency are output.
However, if there are consecutive processes with the same CPU frequency, or if the -Inocpupa option is specified, CPU frequency is output
as a single line.

CPU frequency : Process @spno - @lpno @frequency (MHz) (Spawn @ssno - @lsno)

For consecutive processes, @spno is the lowest process number and @lpno is the highest process number. @ssno is the lowest spawn
number and @lsno is the highest spawn number. If the -pinput=n option of the fapppx command or fapp command is used to restrict the
process being read, the minimum and maximum process numbers or spawn numbers that are read and with the same CPU frequency in the
range correspond to @spno and @lpno respectively. See "3.1.5 Outputting Profile Result" for the -pinput=n option.

3.2.2.2 Statistical Time Information
As statistical time information, the number of calls, elapsed time, and average, maximum, and minimum user CPU time and system CPU
time for each measurement target region.

Output format of the statistical time information

Basic profile

 Application

 Kind Elapsed(s) User(s) System(s) Call

 --

 AVG @elapse @user @sys @call @name @number @sno

 MAX @elapse @user @sys @call

 MIN @elapse @user @sys @call

 Process @pno @sno

 Elapsed(s) User(s) System(s) Call

 --

 @elapse @user @sys @call @name @number

- 54 -

Table 3.2 Output items of the statistics time information
Output item Meaning of Output Item

@elapse Elapsed time (s)

@user User CPU time (s)

If @type of "3.2.2.1 Environment Information for Measurement Profiling Data" is other than "SERIAL" or "MPI", or if
you specified the -Inocputime option when measuring the profile data, only "--" is output for this item.

@sys System CPU time (s)

If @type of "3.2.2.1 Environment Information for Measurement Profiling Data" is other than "SERIAL" or "MPI", or if
you specified the -Inocputime option when measuring the profile data, only "--" is output for this item.

@call Call count

@name Group name

@number Advanced number

@sno Spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fapp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set in
the program.

- The process is a dynamically generated process.

@pno Process number

3.2.2.3 MPI Communication Cost Information
As MPI communication cost information, the number of MPI function executions, message length, and average, maximum, and minimum
execution time and waiting time are output.

Output format of the MPI communication cost information

MPI profile

 Application

 Kind Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KB-)

--

 @elapse @wait ---- @call @ma @mb @mc @md @name @number @sno

--

 AVG @elapse @wait @byte @call @ma @mb @mc @md @mfunc

 MAX @elapse @wait @byte @call @ma @mb @mc @md

 MIN @elapse @wait @byte @call @ma @mb @mc @md

 Process @pno @sno

 Elapsed(s) Wait(s) Byte Call (0-4K 4K-64K 64K-1024K 1024KB-)

--

 @elapse @wait ---- @call @ma @mb @mc @md @name @number

--

 @elapse @wait @byte @call @ma @mb @mc @md @mfunc

- 55 -

Table 3.3 Output items of the MPI communication cost information
Output Item Meaning of Output Item

@elapse Elapsed time (s)

@wait Waiting time (s)

@byte Average message length (Byte)

@call Number of MPI library calls

@ma Number of MPI library calls when the message length is 0 (inclusive) to 4 KB (not inclusive)

@mb Number of MPI library calls when the message length is 4 KB (inclusive) to 64 KB (not inclusive)

@mc Number of MPI library calls when the message length is 64 KB (inclusive) to 1024 KB (not inclusive)

@md Number of MPI library calls when the message length is 1024 KB or more

@name Group name

@number Advanced number

@sno Spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fapp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set in
the program.

- The process is a dynamically generated process.

@mfunc MPI library name

@pno Process number

 Note

If the MPI routine belongs to the Persistent Collective Communication Request, the output method for the MPI communication cost
information changes. For details on the "Persistent Collective Communication Request" and the list of routines that are treated as a Persistent
Collective Communication Request, see the "MPI User's Guide". The output method when using the MPI_START routine to initiate the
Persistent Collective Communication Request differs from when using the MPI_STARTALL routine to initiate the communication.

1. When using the MPI_START routine to initiate the Persistent Collective Communication Request

Both the Persistent Collective Communication Request routine and the MPI_START routine are output as the MPI communication
cost information. They have the following features.

Persistent Collective Communication Request routine

- As for @mfunc, the name of the Persistent Collective Communication routine is output.

- As for @byte is fixed at 0.

- Outputs other than the above are the same as the normal outputs.

MPI_START routine

- As for @mfunc, the name of the MPI_START routine and the name of the Persistent Collective Communication Request
routine initiated with MPI_START are output. The name of the Persistent Collective Communication Request routine is
output with parentheses "()" following the MPI_START routine.

- As for @elapsed, @wait, and @call, the information on the MPI_START routine is output.

- As for @byte, @ma, @mb, @mc, and @md, the information on the Persistent Collective Communication Request routine
which has been initiated is output.

- 56 -

- If multiple MPI_START routines exist, data is aggregated for each persistent communication request routine which has been
initiated.

- Outputs other than the above are the same as the normal outputs.

2. When using the MPI_STARTALL routine to initiate the persistent communication request

Both the Persistent Collective Communication Request routine and the MPI_STARTALL routine are output as the MPI
communication cost information. They have the following features.

Persistent Collective Communication Request routine

- As for @mfunc, the name of the Persistent Collective Communication routine is output.

- As for @byte, 0 is fixed.

- Outputs other than the above are the same as the normal outputs.

MPI_STARTALL routine

Information on the MPI_STARTALL routine consists of the following two types of lines.

- Lines in which @mfunc is the MPI_STARTALL routine (hereafter referred to as the "main lines")

- Lines in which @mfunc is the "name of Persistent Collective Communication Request routine initiated with the
"MPI_STARTALL routine (hereafter referred to as the "detail lines")

They have the following features.

Main lines

- As for @mfunc, the MPI_STARTALL routine is output.

- As for @elapsed, @wait, and @call, the information on the MPI_STARTALL routine is output.

- As for @byte, @ma, @mb, @mc, and @md, the aggregated data of all the Persistent Collective Communication Request
routines that have been initiated is output.

Detail lines

- Information on the detail lines is output with the parentheses "()", @mfunc is output with indentation.

- As for @mfunc, the name of the Persistent Collective Communication Request routine is output that has been initiated with
MPI_STARTALL. If more than one Persistent Collective Communication Request routine has been initiated, one line per
routine is output.

- Outputs for @elapsed and @wait are fixed as "--".

- As for @byte, @call, @ma, @mb, @mc, and @md, the aggregated results of the routine corresponding to @mfunc are output
with the parentheses "()".

If more than one MPI_STARTALL routine exists, data is aggregated as the same routine only when the type and the order of
invocation for the initiated Persistent Collective Communication Request routines are identical. However, if the same Persistent
Collective Communication Request routine is called multiple times, only the first invocation counts.

 Example

An example of output (excerpt) of the Persistent Collective Communication Request routine is shown below.

MPI_START

 0.0001 0.0000 0.0000 2 2 0 0 0 MPI_Send_init

 0.0000 0.0000 3999.5000 2 1 1 0 0

MPI_Start(MPI_Send_init)

MPI_STARTALL

 0.0000 0.0000 0.0000 2 2 0 0 0 MPI_Send_init

 0.0000 0.0000 0.0000 2 2 0 0 0 MPI_Bsend_init

 0.0000 0.0000 0.0000 2 2 0 0 0 MPI_Rsend_init

- 57 -

 0.0000 0.0000 1091998.5000 2 0 0 0 2 MPI_Startall

 -- -- (3999.5000) (2) (1) (1) (0) (0)

(MPI_Send_init)

 -- -- (63999.5000) (2) (0) (1) (1) (0)

(MPI_Bsend_init)

 -- -- (1023999.5000) (2) (0) (0) (1) (1)

(MPI_Rsend_init)

 0.0000 0.0000 0.0000 1 1 0 0 0 MPI_Comm_rank

Formulas of the message length

The calculation formula of the MPI routine other than the Persistent Collective Communication Request is shown below. For the calculation
formula of the MPI routine for the Persistent Collective Communication Request, see "Formulas of the message length (Persistent
Collective Communication Request Routine)".

Table 3.4 Formulas of the message length

MPI subroutine/function Formula

MPI_SEND
MPI_BSEND
MPI_SSEND
MPI_RSEND
MPI_ISEND
MPI_IBSEND
MPI_ISSEND
MPI_IRSEND

Number of elements in send buffer*Size of data type of each element in send buffer

MPI_RECV Number of elements received*Size of data type of each element in receive buffer

 Note

If the MPI_RECV routine argument "status" is "MPI_STATUS_IGNORE", "Number of
elements received" cannot be obtained and becomes 0. Do not specify
"MPI_STATUS_IGNORE" for the argument "status".

MPI_IRECV Number of elements in receive buffer*Size of data type of each element in receive buffer

MPI_SENDRECV (Number of elements in send buffer*Size of data type of element in send buffer)+(Number of
elements received*Size of data type of element in receive buffer)

 Note

If the MPI_SENDRECV routine argument "status" is "MPI_STATUS_IGNORE", "Number
of elements received" cannot be obtained and becomes 0. Do not specify
"MPI_STATUS_IGNORE" for the argument "status".

MPI_SENDRECV_REPLACE (Number of elements in send and receive buffer*Size of data type of element in send and
receive buffer)*2

MPI_BCAST
MPI_IBCAST

- Root process
Number of elements in buffer*Size of data type of element in buffer*2

- Other than root process
Number of elements in buffer*Size of data type of element in buffer

MPI_GATHER
MPI_IGATHER

- Root process
(Number of elements in send buffer*Size of data type of element in send buffer)+(Total
number of processes*Number of elements of data received from each process*Size of
data type of receive buffer element)

- 58 -

MPI subroutine/function Formula

- Other than root process
Number of elements in send buffer*Size of data type of element in send buffer

MPI_GATHERV
MPI_IGATHERV

- Root process
(Number of elements in send buffer*Size of data type of element in send buffer)+(Total
number of elements of data received from each process*Size of data type of receive buffer
element)

- Other than root process
Number of elements in send buffer*Size of data type of element in send buffer

MPI_SCATTER
MPI_ISCATTER

- Root process
(Total number of processes*Number of elements sent to each process*Size of data type
of element in send buffer)+(Number of elements in receive buffer*Size of data type of
element in receive buffer)

- Other than root process
Number of elements in receive buffer*Size of data type of element in receive buffer

MPI_SCATTERV
MPI_ISCATTERV

- Root process
(Total number of elements of data sent to each process*Size of data type of element in
send buffer)+(Number of elements in receive buffer*Size of data type of element in
receive buffer)

- Other than root process
Number of elements in receive buffer*Size of data type of element in receive buffer

MPI_ALLGATHER
MPI_IALLGATHER

(Number of elements in send buffer*Size of data type of element in send buffer)+(Total
number of processes*Number of elements in receive buffer*Size of data type of element in
receive buffer)

MPI_ALLGATHERV
MPI_IALLGATHERV

(Number of elements in send buffer*Size of data type of element in send buffer)+(Total
number of elements of data received from each process*Size of data type of element in receive
buffer)

MPI_ALLTOALL
MPI_IALLTOALL

(Total number of processes*Number of elements of data sent to each process*Size of data type
of element in send buffer)+(Total number of processes*Number of elements of data received
from a single process*Size of data type of element in receive buffer)

MPI_ALLTOALLV
MPI_IALLTOALLV

(Total number of elements of data sent to each process*Size of data type of element in send
buffer)+(Total number of elements of data received from each process*Size of data type of
element in receive buffer)

MPI_REDUCE
MPI_IREDUCE

- Root process
Number of elements in send buffer*Size of data type of element in send buffer*2

- Other than root process
Number of elements in send buffer*Size of data type of element in send buffer

MPI_ALLREDUCE
MPI_IALLREDUCE

Number of elements in send buffer*Size of data type of element in send buffer*2

MPI_REDUCE_SCATTER
MPI_IREDUCE_SCATTER

(Total number of elements of data sent to each process*Size of data type of element in buffer)
+(Number of elements received*Size of data type of element in buffer)

MPI_SCAN
MPI_ISCAN

Number of elements in input buffer*Size of data type of element in input buffer*2

MPI_PUT
MPI_RPUT

Number of elements in origin buffer*Size of data type of element in origin buffer

MPI_GET
MPI_RGET

Number of elements in target buffer*Size of data type of element in target buffer

MPI_ACCUMULATE
MPI_RACCUMULATE

Number of elements in origin buffer*Size of data type of element in origin buffer

- 59 -

MPI subroutine/function Formula

MPI_ALLTOALLW
MPI_IALLTOALLW

(Number of elements in send buffer of each process*Size of data type of send buffer of each
process)+(Number of elements in receive buffer of each process*Size of data type of receive
buffer of each process)

MPI_EXSCAN
MPI_IEXSCAN

Number of elements in input buffer*Size of data type of element in input buffer*2

MPI_REDUCE_SCATTER_BLOCK
MPI_IREDUCE_SCATTER_BLOCK

(Size of data type of element in buffer*Total number of processes*Number of elements of
each block)+(Size of data type of element in buffer*Number of elements of each block)

MPI_MRECV
MPI_IMRECV

Size of data type of each receive buffer element*Number of elements in receive buffer

MPI_COMPARE_AND_SWAP Size of data type of all buffer elements*2

MPI_GET_ACCUMULATE
MPI_RGET_ACCUMULATE

(Size of data type of origin buffer*Number of entries of origin buffer)+(Size of data type of
target buffer*Number of entries of target buffer)

MPI_NEIGHBOR_ALLGATHER
MPI_INEIGHBOR_ALLGATHER

(Number of elements in send buffer*Size of data type of element in send buffer)+(Number of
input edges*Number of elements in receive buffer*Size of data type of element in receive
buffer)

MPI_NEIGHBOR_ALLGATHERV
MPI_INEIGHBOR_ALLGATHERV

(Number of elements in send buffer*Size of data type of element in send buffer)+(Total
number of elements in receive buffer of each input edge*Size of data type of element in
receive buffer)

MPI_NEIGHBOR_ALLTOALL
MPI_INEIGHBOR_ALLTOALL

(Number of output edges*Number of elements in send buffer*Size of data type of element in
send buffer)+(Number of input edges*Number of elements in receive buffer*Size of data type
of element in receive buffer)

MPI_NEIGHBOR_ALLTOALLV
MPI_INEIGHBOR_ALLTOALLV

(Total number of elements in send buffer of each output edge*Size of data type of element in
send buffer)+(Total number of elements in receive buffer of each input edge*Size of data type
of element in receive buffer)

MPI_NEIGHBOR_ALLTOALLW
MPI_INEIGHBOR_ALLTOALLW

(Total number of elements in send buffer of each output edge*Size of data type of element in
send buffer of each output edge)+(Total number of elements in receive buffer of each input
edge*Size of data type of element in receive buffer of each input edge)

Formulas of the message length (Persistent Collective Communication Request Routine)

The following table shows the calculation formula of the MPI routine for the Persistent Collective Communication Request. For the
calculation formula of the MPI routine other than the Persistent Collective Communication Request, see "Formulas of the message length".

Table 3.5 Formulas of the message length (Persistent Collective Communication Request Routine)

MPI subroutine/function Formula

MPI_SEND_INIT
MPI_BSEND_INIT
MPI_SSEND_INIT
MPI_RSEND_INIT

Number of elements in send buffer*Size of data type of each element in send buffer

MPI_RECV_INIT Number of elements in receive buffer*Size of data type of each element in receive
buffer

MPIX_BCAST_INIT - Root process
Number of elements in buffer*Size of data type of element in buffer*2

- Other than root process
Number of elements in buffer*Size of data type of element in buffer

MPIX_GATHER_INIT - Root process
(Number of elements in send buffer*Size of data type of element in send buffer)
+(Total number of processes*Number of elements of data received from each
process*Size of data type of receive buffer element)

- 60 -

MPI subroutine/function Formula

- Other than root process
Number of elements in send buffer*Size of data type of element in send buffer

MPIX_GATHERV_INIT - Root process
(Number of elements in send buffer*Size of data type of element in send buffer)
+(Total number of elements of data received from each process*Size of data type
of receive buffer element)

- Other than root process
Number of elements in send buffer*Size of data type of element in send buffer

MPIX_SCATTER_INIT - Root process
(Total number of processes*Number of elements sent to each process*Size of data
type of element in send buffer)+(Number of elements in receive buffer*Size of
data type of element in receive buffer)

- Other than root process
Number of elements in receive buffer*Size of data type of element in receive
buffer

MPIX_SCATTERV_INIT - Root process
(Total number of elements of data sent to each process*Size of data type of
element in send buffer)+(Number of elements in receive buffer*Size of data type
of element in receive buffer)

- Other than root process
Number of elements in receive buffer*Size of data type of element in receive
buffer

MPIX_ALLGATHER_INIT (Number of elements in send buffer*Size of data type of element in send buffer)+
(Total number of processes*Number of elements in receive buffer*Size of data type of
element in receive buffer)

MPIX_ALLGATHERV_INIT (Number of elements in send buffer*Size of data type of element in send buffer)+
(Total number of elements of data received from each process*Size of data type of
element in receive buffer)

MPIX_ALLTOALL_INIT (Total number of processes*Number of elements of data sent to each process*Size of
data type of element in send buffer)+(Total number of processes*Number of elements
of data received from a single process*Size of data type of element in receive buffer)

MPIX_ALLTOALLV_INIT (Number of elements in send buffer*Size of data type of element in send buffer)+
(Total number of elements of data received from each process*Size of data type of
element in receive buffer)

MPIX_ALLTOALLW_INIT (Number of elements in send buffer of each process*Size of data type of send buffer
of each process)+(Number of elements in receive buffer of each process*Size of data
type of receive buffer of each process)

MPIX_REDUCE_INIT - Root process
Number of elements in send buffer*Size of data type of element in send buffer*2

- Other than root process
Number of elements in send buffer*Size of data type of element in send buffer

MPIX_ALLREDUCE_INIT Number of elements in send buffer*Size of data type of element in send buffer*2

MPIX_REDUCE_SCATTER_BLOCK_INIT (Size of data type of element in buffer*Total number of processes*Number of
elements of each block)+(Size of data type of element in buffer*Number of elements
of each block)

MPIX_REDUCE_SCATTER_INIT (Total number of elements of data sent to each process*Size of data type of element in
buffer)+(Number of elements received*Size of data type of element in buffer)

MPIX_SCAN_INIT Number of elements in input buffer*Size of data type of element in input buffer*2

- 61 -

MPI subroutine/function Formula

MPIX_EXSCAN_INIT Number of elements in input buffer*Size of data type of element in input buffer*2

MPIX_NEIGHBOR_ALLGATHER_INIT (Number of elements in send buffer*Size of data type of element in send buffer)+
(Number of input edges*Number of elements in receive buffer*Size of data type of
element in receive buffer)

MPIX_NEIGHBOR_ALLGATHERV_INIT (Number of elements in send buffer*Size of data type of element in send buffer)+
(Total number of elements in receive buffer of each input edge*Size of data type of
element in receive buffer)

MPIX_NEIGHBOR_ALLTOALL_INIT (Number of output edges*Number of elements in send buffer*Size of data type of
element in send buffer)+(Number of input edge*Number of elements in receive
buffer*Size of data type of element in receive buffer)

MPIX_NEIGHBOR_ALLTOALLV_INIT (Total number of elements in send buffer of each output edge *Size of data type of
element in send buffer)+(Total number of elements in receive buffer of each input
edge*Size of data type of element in receive buffer)

MPIX_NEIGHBOR_ALLTOALLW_INIT (Total number of elements in send buffer of each output edge* Size of data type of
element in send buffer of each output edge)+(Total number of elements in receive
buffer of each input edge*Size of data type of element in receive buffer of each input
edge)

3.2.2.4 CPU Performance Analysis Information
As CPU performance analysis information, CPU performance characteristics at the time of application execution. Output this information
only if the -Hevent option argument specified with "3.1.4 Measuring Profile Data" is pa1 or statistics.

Output format of the CPU performance analysis information

Application

Performance monitor event : statistics

 @level

 Execution Floating-point Mem throughput Mem throughput

 Kind time(s) GFLOPS peak ratio(%) (GB/s) peak ratio(%)

 AVG @time @value1 @value2 @value3 @value4 @name @number

 MAX @time @value1 @value2 @value3 @value4

 MIN @time @value1 @value2 @value3 @value4

 Execution Floating-point Mem throughput Mem throughput

 Kind time(s) GFLOPS peak ratio(%) (GB/s) peak ratio(%)

 AVG @time @value1 @value2 @value3 @value4 @name @number @sno

 MAX @time @value1 @value2 @value3 @value4

 MIN @time @value1 @value2 @value3 @value4

 Effective Floating-point SIMD inst. SVE operation

 Kind instruction operation rate(%) rate(%)

 AVG @value5 @value6 @value7 @value8 @name @number

 MAX @value5 @value6 @value7 @value8

 MIN @value5 @value6 @value7 @value8

 Effective Floating-point SIMD inst. SVE operation

 Kind instruction operation rate(%) rate(%)

- 62 -

 AVG @value5 @value6 @value7 @value8 @name @number @sno

 MAX @value5 @value6 @value7 @value8

 MIN @value5 @value6 @value7 @value8

 Kind IPC GIPS

 AVG @value9 @value10 @name @number

 MAX @value9 @value10

 MIN @value9 @value10

 Kind IPC GIPS

 AVG @value9 @value10 @name @number @sno

 MAX @value9 @value10

 MIN @value9 @value10

Process

 @level @pno @sno

 Execution Floating-point Mem throughput Mem throughput

 Kind time(s) GFLOPS peak ratio(%) (GB/s) peak ratio(%)

 AVG @time @value1 @value2 @value3 @value4 @name @number

 MAX @time @value1 @value2 @value3 @value4

 MIN @time @value1 @value2 @value3 @value4

 Execution Floating-point Mem throughput Mem throughput

 Kind time(s) GFLOPS peak ratio(%) (GB/s) peak ratio(%)

 AVG @time @value1 @value2 @value3 @value4 @name @number

 MAX @time @value1 @value2 @value3 @value4

 MIN @time @value1 @value2 @value3 @value4

 Effective Floating-point SIMD inst. SVE operation

 Kind instruction operation rate(%) rate(%)

 AVG @value5 @value6 @value7 @value8 @name @number

 MAX @value5 @value6 @value7 @value8

 MIN @value5 @value6 @value7 @value8

 Effective Floating-point SIMD inst. SVE operation

 Kind instruction operation rate(%) rate(%)

 AVG @value5 @value6 @value7 @value8 @name @number

 MAX @value5 @value6 @value7 @value8

 MIN @value5 @value6 @value7 @value8

 Kind IPC GIPS

 AVG @value9 @value10 @name @number

 MAX @value9 @value10

 MIN @value9 @value10

 Kind IPC GIPS

 AVG @value9 @value10 @name @number

 MAX @value9 @value10

 MIN @value9 @value10

Thread

- 63 -

 @level @pno

 Execution Floating-point Mem throughput Mem throughput

 time(s) GFLOPS peak ratio(%) (GB/s) peak ratio(%)

 @time @value1 @value2 @value3 @value4 @name @number

 @time @value1 @value2 @value3 @value4 @name @number

 Effective Floating-point SIMD inst. SVE operation

 instruction operation rate(%) rate(%)

 @value5 @value6 @value7 @value8 @name @number

 @value5 @value6 @value7 @value8 @name @number

 IPC GIPS

 @value9 @value10 @name @number

 @value9 @value10 @name @number

Table 3.6 Output items of the CPU performance characteristics
Output Item Meaning of Output Item

@level Information total level (Application, Process, Thread)

@pno Process or thread number

@sno Spawn number

It is taken in the (Spawn @num) format. (Where @num is a numerical value)

This item is output only when all the following conditions are met.

- The measurement target is the MPI program.

- When the fapp command is set with the -Wspawn option enabled, or the info key "fjprof_spawn_dir_name" is set in
the program.

- When @level is Application or Process.

- The process is a dynamically generated process.

@time Time taken to execute instructions in the measurement target region (second)

@value1 Count of floating-point operations performed per second

 Note

The GFLOPS value is calculated by assuming that all elements are active. Therefore, in the case of a program with many
inactive elements, a higher value than the original GFLOPS value is output.

@value2 Ratio of the measured value to the theoretical value for floating-point operation performance (%)

 Note

The theoretical value for floating-point operation performance is calculated by assuming that double precision operations
are performed. Therefore, in the case of single or half precision, a value 2 to 4 times higher than the actual percentage is
output.

If the -Hmode=user option is specified in "3.1.4 Measuring Profile Data", this output item is fixed as "--".

@value3 Memory throughput (GB/s)

@value4 Ratio of the measured value to the theoretical value for memory throughput (%)

- 64 -

Output Item Meaning of Output Item

@value5 Total number of instructions executed

 Note

The total number of instructions executed does not include MOVPRFX instructions.

@value6 Total number of floating-point operations executed

@value7 Ratio of the number of SIMD instructions to the total number of instructions executed (%)

@value8 Ratio of the number of SVE operations to the total number of floating-point operations executed (%)

@value9 Number of instructions executed per cycle

@value10 Number of instructions executed per second

 Note

The output of @time and each @value is expected to be less than 12 digits. Therefore, if the output exceeds 13 digits, there is a discrepancy
between the heading and the output.

3.2.3 Detail of Profile Result (XML Format)
If the -txml option is specified in "3.1.5 Outputting Profile Result", the result is output in the XML format. The followings are applied to
the XML format.

3.2.3.1 Structure of XML format
The structure of the XML format output is described; the whole output of the XML format is enclosed by the <profile> element, and the
<profile> element consists of the <environment> element and the <information> element.

XML Format

<?xml version="1.0" encoding="utf-8"?> XML declaration

<profile type="@type" version="@vid" output_version="@oid"> Profiling information

 <environment> The environment information for

 measuring profiling data

 </environment>

 <information item="advanced"> Performance information

 </information>

</profile>

Output items

Element Name Overview Description

profile Profiling information This element includes the XML format output of Profiler.

environment Environment information for measuring
profiling data

This element includes the following information of the TEXT format(*).

- "3.2.2.1 Environment Information for Measurement Profiling Data"

information Performance information This element includes the following information of the TEXT format(*).

- "3.2.2.2 Statistical Time Information"

- "3.2.2.4 CPU Performance Analysis Information"

- "3.2.2.3 MPI Communication Cost Information"

- 65 -

(*)Some entries do not match the TEXT and XML formats.

3.2.3.2 Details of XML format output
The following sections describe the elements used in the XML format output. Note that the output items for each element are the same as
for TEXT output unless otherwise specified.

3.2.3.2.1 Profiling Information <profile>

This element includes the XML format output of the Advanced Performance Profiler.

Element Name Description

profile <profile type="@type" version="@vid" output_version="@oid"> </profile>

This element includes the XML format output of Profiler.

@type indicates the kind of Profiler, and is fixed to "fapp"

@vid indicates the version number of the Profiler.

@oid indicates the version number of output format.

3.2.3.2.2 Environment Information for Measuring Profiling Data <environment>

As environment information for measuring profiling data, environment information as of when the profile data was measured is output.

XML Format

<environment>

 <measured_time unit="date">@date</measured_time>

 <type_of_program program="@program" />

 <coordinate x="@x" y="@y" z="@z"/>

 <vector_length vlen="@vlen"/>

 <spawn id="@id">

 <process id="@id">

 <host name="@name"/>

 <frequency unit="MHz">@frequency</frequency>

 <cntfrq unit="Hz">@cntfrq</cntfrq>

 <thread id="@id">

 <cmg id="@cmg"/>

 <core id="@core"/>

 </thread>

 </process>

 </spawn>

</environment>

Output items

Element Name Description

environment <environment> </environment>

This element includes the environment information for measuring profiling data.

measured_time <measured_time unit="date"> @date </measured_time>

This element shows the measurement date and time of profile data.

@date shows the measurement data and time in YYYY-MM-DDThh:mm:ss format.

type_of_program <type_of_program program="@program "/>

This element shows the program execution format.

@program is one of the followings:

- 66 -

Element Name Description

"SERIAL" : Serial
"Thread(AUTO)" : Automatic parallelization only
"Thread(OpenMP)" : OpenMP only
"Thread(OpenMP+AUTO)" : OpenMP and automatic parallelization
"MPI" : MPI only
"MPI+Thread(AUTO)" : MPI and automatic parallelization
"MPI+Thread(OpenMP)" : MPI and OpenMP
"MPI+Thread(OpenMP+AUTO)" : MPI, OpenMP, and automatic parallelization

coordinate <coordinate x="@x " y="@y " z="@z " />

This element shows the logical shape at the time of MPI program execution.

The value of x-axis, y-axis, and z-axis is shown in @x, @y, and @z.

 Note

Outputs the result only when the data measurement target is an MPI program.

The logical shape of dynamically generated processes are not outputted.

vector_length <vector_length vlen="@vlen"/>

This element shows the SVE vector length.

@vlen show the SVE vector length (bits).

spawn <spawn id="@id"> </spawn>

This element shows the spawn number. This element will be output multiple times when the multiple spawned
processes exist.

@id indicates the spawn number. If this process is not spawned, @id is 0.

process <process id="@id"> </process>

This element shows the process number. This element will be output multiple times when the multiple processes
exist.

@id indicates the process number.

host <host name="@name"/>

This element shows the host name of node.

@name indicates the host name.

frequency <frequency unit="MHz"> @frequency </frequency>

This element shows the CPU frequency. The unit is MHz (unit="MHz").

@frequency indicates the CPU frequency.

 Note

If any of the following conditions applies, "-" is output as the CPU frequency:

- The -Inocpupa option is enabled in "3.1.4 Measuring Profile Data"

- The -Hmethod=fast option is specified in "3.1.4 Measuring Profile Data" and measurement has never been
performed on the measurement region specified in "3.1.1 Adding a Measurement Region Specifying Routine"

- The -Hmode=user option is specified in "3.1.4 Measuring Profile Data"

cntfrq <cntfrq unit="Hz"> @cntfrq </cntfrq>

This element shows the timer clock frequency. The unit is Hz (unit="Hz").

- 67 -

Element Name Description

@cntfrq indicates the timer clock frequency.

 Note

For "3.1.4 Measuring Profile Data", if the -Inocpupa option is enabled, the timer clock frequency outputs "0".

thread <thread id="@id"> </thread>

This element shows the thread number. This element will be output multiple times when the multiple threads exist.

@id indicates the thread number.

cmg <cmg id="@cmg"/>

This element shows the CMG number.

@cmg indicates the CMG number.

core <core id="@core"/>

This element shows the core number.

@core indicates the core number.

3.2.3.2.3 Performance Information <information>

As performance information, several types of performance information are output. The outputs of performance information are the statistics
time information, the CPU performance analysis information and the MPI communication cost information for each process or each thread.

XML Format

<information item="advanced">

 <region name="@name" id="@number">

 <spawn id="@id">

 <process id="@id">

 <time>

 <elapsed unit="s">@elapsed</elapsed>

 <user unit="s">@user</user>

 <system unit="s">@system</system>

 </time>

 <thread id="@id">

 <call_count>@call_count</call_count>

 <time>

 <user unit="s">@user</user>

 <system unit="s">@system</system>

 </time>

 <cpupa>

 </cpupa>

 </thread>

 <mpi>

 </mpi>

 </process>

 </spawn>

 </region>

</information>

Output items

Element Name Description

information <information item="@item"> </information>

- 68 -

Element Name Description

This element includes the performance information.

For @item, the kind of performance information is output, and is fixed to "advanced".

region <region name="@name" id="@number">

This element shows the measurement region name.

@name indicates the group name and @number indicates the detail number.

spawn <spawn id="@id"> </spawn>

This element shows the spawn number. This element will be output multiple times when the multiple spawned
processes exist.

@id indicates the spawn number. If this process is not spawned, @id is 0.

process <process id="@id"> </process>

This element shows the process number. This element will be output multiple times when the multiple processes
exist.

@id indicates the process number.

time

(directly under
process)

<time> </time>

This element includes the statistic time information of process.

elapsed

(directly under
process and time)

<elapsed unit="s" > @elapsed </elapsed>

This element shows the elapsed time of each process in unit of second (unit="s").

@elapsed indicates the elapsed time of each process.

user

(directly under
process and time)

<user unit="s"> @user </user>

This element shows the user CPU time of each process in unit of second (unit="s").

@user indicates the user CPU time of each process.

If @program of <type_of_program> element is other than "SERIAL" or "MPI", or if you specified the -
Inocputime option when measuring the profile data, this element does not output.

system

(directly under
process and time)

<system unit="s"> @system </system>

This element shows the system CPU time of each process in unit of second (unit="s").

@system indicates the system CPU time of each process.

If @program of <type_of_program> element is other than "SERIAL" or "MPI", or if you specified the -
Inocputime option when measuring the profile data, this element does not output.

thread <thread id="@id"> </thread>

This element shows the thread number. This element will be output multiple times when the multiple threads
exist.

@id indicates the thread number.

call_count <call_count> @call_count </call_count>

This element shows the call count.

@call_count indicates the call count.

time

(directly under
thread)

<time> </time>

This element includes the statistic time information of thread.

user <user unit="s"> @user </user>

This element shows the user CPU time of each thread in unit of second (unit="s").

- 69 -

Element Name Description

(directly under
thread and time)

@user indicates the user CPU time of each thread.

If @program of <type_of_program> element is other than "SERIAL" or "MPI", or if you specified the -
Inocputime option when measuring the profile data, this element does not output.

system

(directly under
thread and time)

<system unit="s"> @system </system>

This element shows the system CPU time of each thread in unit of second (unit="s").

@system indicates the system CPU time of each thread.

If @program of <type_of_program> element is other than "SERIAL" or "MPI", or if you specified the -
Inocputime option when measuring the profile data, this element does not output.

cpupa <cpupa> </cpupa>

This element includes the CPU performance analysis information.

Refer "3.2.3.2.4 CPU Performance Analysis Information <cpupa>" for details.

mpi <mpi> </mpi>

This element includes the MPI communication cost information.

Refer "3.2.3.2.5 MPI Communication Cost Information <mpi>" for details.

3.2.3.2.4 CPU Performance Analysis Information <cpupa>

As CPU performance analysis information, CPU performance characteristics at the time of application execution are output.

XML Format

<cpupa>

 <event name="@name"> @event </event>

</cpupa>

Output items

Element
Name

Description

cpupa <cpupa> </cpupa>

This element includes the CPU performance analysis information.

event <event name="@name"> @event </event>

This element shows CNTVCT (Counter-timer Virtual Count), PMCCNTR (Performance Monitors Cycle Counter), and
the measured information of the PMU event. This element outputs, in addition to CNTVCT and PMCCNTR, the
information of the measured PMU events.

@name indicates the PMU event number.

@event indicates the measured result corresponding to the PMU event number.

For more information about CNTVCT and PMCCNTR, see the documents and web site published by Arm. For PMU
events, see "A64FX PMU Events" on https://github.com/fujitsu/A64FX/tree/master/doc/ .

3.2.3.2.5 MPI Communication Cost Information <mpi>

As MPI communication cost information, the number of MPI function executions, message length, execution time and waiting time are
output.

XML format (MPI routines other than MPI_start or MPI_startall)

<mpi>

 <function name="@name">

- 70 -

https://github.com/fujitsu/A64FX/tree/master/doc/

 <time>

 <elapsed unit="s">@elapsed</elapsed>

 <wait unit="s">@wait</wait>

 </time>

 <call_count>@call_count</call_count>

 <total_message_length>@total_message_length</total_message_length>

 <message_length_histogram>

 <call_count min_length="@min_length" max_length="@max_length">@call_count</call_count>

 </message_length_histogram>

 </function>

</mpi>

XML format(MPI_start or MPI_startall routine)

<mpi>

 <function name="@name">

 <time>

 <elapsed unit="s">@elapsed</elapsed>

 <wait unit="s">@wait</wait>

 </time>

 <request>

 <function name="@name">

 <call_count>@call_count</call_count>

 <total_message_length>@total_message_length</total_message_length>

 <message_length_histogram>

 <call_count min_length="@min_length" max_length="@max_length">@call_count</call_count>

 </message_length_histogram>

 </function>

 </request>

 </function>

</mpi>

Output items

Element Name Description

mpi <mpi> </mpi>

This element includes the MPI communication cost information.

function <function name="@name"> </function>

This element shows the MPI library routine name.

@name indicates the MPI library routine name.

time <time> </time>

This element includes the statistic time information of MPI library.

elapsed <elapsed unit="s" > @elapsed </elapsed>

This element shows the elapsed time of each MPI library routine in unit of second (unit="s").

@elapsed indicates the elapsed time of each MPI library routine.

wait <wait unit="s" > @wait </wait>

This element shows the waiting time of each MPI library routine in unit of second (unit="s").

@wait indicates the waiting time of each MPI library routine.

request <request> </request>

This element includes the detailed information of MPI_start or MPI_startall routines.

call_count (directly under
function)

<call_count> @call_count </call_count>

This element shows the number of calls of each MPI library routine.

- 71 -

Element Name Description

@call_count indicates the number of calls of each MPI library routine.

total_message_length <total_message_length> @total_message_length </total_message_length>

This element shows the total message length of each MPI library routine.

@total_message_length indicates the total message length of each MPI library routine.

message_length_histogram <message_length_histogram> </message_length_histogram>

This element includes the histogram of message length.

call_count (directly under
message_length_histogram)

<call_count min_length="@min_length" max_length="@max_length"> @call_count </
call_count>

This element shows the number of calls in a range of message length.

@min_length and @max_length indicate the lower bound and the upper bound of range of message
length.

@call_count indicates the number of calls.

- 72 -

Chapter 4 CPU Performance Analysis Report
This chapter describes the CPU Performance Analysis Report.

The CPU Performance Analysis Report aggregates a lot of CPU performance analysis information measured through multiple executions
and visualizes it in an easy-to-understand way, using tables and associated graphs. The Advanced Performance Profiler is used to measure
CPU performance analysis information. The CPU Performance Analysis Report is designed not to exceed one A3 sheets when printed. The
CPU Performance Analysis Report provides the following four stages (Single Report, Brief Report, Standard Report, and Detail Report)
according to the type and granularity of the information to be displayed. The CPU Performance Analysis Report file is in Microsoft Excel
file format (.xlsm).

Single Report

This is a CPU performance analysis report that requires minimum number of measurements for creating a report. A high level of
information is output such as execution time, operation performance, memory throughput and number of instructions. If you use a Single
report, perform measurement once with the Advanced Performance Profiler.

Brief Report

This is a CPU Performance Analysis Report that can be created with the fewer number of measurement times. We recommend the Brief
Report if you want to readily use the CPU Performance Analysis Report. Although the amount of information is less than the Standard
Report, the number of measurement times for creating a report can be reduced compared with the Standard Report. To use the Brief
Report, perform measurement five times with the Advanced Performance Profiler.

Standard Report

This is the standard CPU Performance Analysis Report. We recommend the Standard Report for normal use. To use the Standard Report,
perform measurement eleven times with the Advanced Performance Profiler.

Detail Report

This is the most detailed CPU Performance Analysis Report. We recommend the Detail Report if the amount of information from the
Standard Report is insufficient. Although the largest number of measurement times is required for report creation, all information for
the CPU Performance Analysis Report is displayed. To use the Detail Report, perform measurement seventeen times with the Advanced
Performance Profiler.

The following is a list of the information available in the CPU Performance Analysis Report. "all" in the table indicates that all information
is output, "some" indicates that some information is output, and "-" indicates that no information is output.

Table 4.1 CPU Performance Analysis Report, List of Tables

Table Title Report Type Table Outline

Single Brief Standard Detail

Information all all all all Displays measurement environment information and user's specification.

Statistics some all all all Displays information related to CPU performance characteristics, such as
memory throughput, number of instructions, and number of operations.

[Simple]

Displays information concerning the CPU behaviors such as the memory
throughput, number of instructions, and number of operations.

[Brief , Standard , Detail]

In addition to the contents of the Single report, displays the ratio of the active
element in the floating-point operations.

Cycle
Accounting

- some all all Displays program execution time breakdown.
[Brief]

Displays program execution time by classifying it into 9 types.

[Standard , Detail]

Displays program execution time by classifying it into 20 types.

- 73 -

Table Title Report Type Table Outline

Single Brief Standard Detail

Busy - some some all Displays the information on the program memory cache and busy rate for the
operation pipeline.

[Brief]

Displays the busy rates such as for the primary cache, secondary cache,
memory, and floating-point operation pipeline, as well as the occurrence rate
of SFI (Store Fetch Interlock).

[Standard]

In addition to the contents of the brief report, displays the busy rates for the
integer operation pipeline, address calculation operation pipeline, and
predicate operation pipeline.

[Detail]

In addition to the contents of the standard report, displays the ratio of the active
element in the L1 pipeline.

Cache - some all all Displays information about cache misses.

[Brief]

In the case of the Brief Report, displays the number of cache misses of the
primary data and secondary caches and the ratio to the number of load store
instructions.

[Standard , Detail]

In the case of the Standard or Detail Report, the breakdown of the number of
cache misses is added in addition to the contents of the Brief Report.

Instruction - some some all Displays information about instruction mixes.

[Brief]

Displays information about instruction mixes by classifying it into 9 types.

[Standard]

Displays information about instruction mixes by classifying it into 25 types.

[Detail]

Displays information about instruction mixes by classifying it into 28 types.

FLOPS - some all all Displays the information on the floating-point operations.

[Brief]

Displays the performance of the floating-point operation including the active
element ratio.

[Standard , Detail]

In addition to the contents of the brief report, displays the number of floating-
point operations of different precision.

Extra - - - all Displays the details of gather instructions and information on instructions that
are not included in instruction mixes.

Hardware
Prefetch Rate
(%) (/Hardware
Prefetch)

- - - all Displays a breakdown of hardware prefetches.

Data Transfer
CMGs

- - - all Displays information about throughput between the user-specified CMG and
all other CMGs, memory, Tofu, and PCI.

- 74 -

Table Title Report Type Table Outline

Single Brief Standard Detail

Power
Consumption
(W)

- - all all Displays the power consumption of cores, L2 cache, and memory.

 Point

The input file is common to these reports. Therefore, for example, if you want to change an already created Standard Report to a Detail
Report, only six measurements (difference between the two reports) are additionally required.

4.1 Procedure for Using the CPU Performance Analysis Report
This section provides the procedure for using the CPU Performance Analysis Report.

Figure 4.1 Procedure for using the CPU Performance Analysis Report

The following describes each operation in detail.

4.1.1 Adding a Measurement Region Specifying Routine
To the source code, add the measurement region specifying routine required for specifying the region (starting and stopping positions of
measurement) from which profile data is measured.

For detail, see "3.1.1 Adding a Measurement Region Specifying Routine".

4.1.2 Specifying Environment Variables
Specify environment variables required when using the Profiler. For details, see "2.1.2 Specifying Environment Variables "

4.1.3 Compilation
Compile a program. For detail, see "2.1.3 Compilation".

- 75 -

4.1.4 Measuring Profile Data
Measure data by using the fapp command. To measure profile data for the CPU Performance Analysis Report, you need to specify the -
Hevent option with the fapp command. For fapp command, see "3.1.4 Measuring Profile Data"

The following shows execution examples for each report.

Single Report

To create a Single Report, perform measurement once by specifying -Hevent=pa1.

Measurement example for Single Report creation

fapp -C -d ./rep1 -Hevent=pa1 ./a.out

Brief Report

To create a Brief Report, perform measurement five times by specifying -Hevent=pa1 to -Hevent=pa5.

Measurement example for Brief Report creation

fapp -C -d ./rep1 -Hevent=pa1 ./a.out

fapp -C -d ./rep2 -Hevent=pa2 ./a.out

fapp -C -d ./rep3 -Hevent=pa3 ./a.out

fapp -C -d ./rep4 -Hevent=pa4 ./a.out

fapp -C -d ./rep5 -Hevent=pa5 ./a.out

Standard Report

To create a Standard Report, perform measurement eleven times by specifying -Hevent=pa1 to -Hevent=pa11.

Measurement example for Standard Report creation

fapp -C -d ./rep1 -Hevent=pa1 ./a.out

fapp -C -d ./rep2 -Hevent=pa2 ./a.out

fapp -C -d ./rep3 -Hevent=pa3 ./a.out

fapp -C -d ./rep4 -Hevent=pa4 ./a.out

fapp -C -d ./rep5 -Hevent=pa5 ./a.out

fapp -C -d ./rep6 -Hevent=pa6 ./a.out

fapp -C -d ./rep7 -Hevent=pa7 ./a.out

fapp -C -d ./rep8 -Hevent=pa8 ./a.out

fapp -C -d ./rep9 -Hevent=pa9 ./a.out

fapp -C -d ./rep10 -Hevent=pa10 ./a.out

fapp -C -d ./rep11 -Hevent=pa11 ./a.out

Detail Report

To create a Detail Report, perform measurement seventeen times by specifying -Hevent=pa1 to -Hevent=pa17.

Measurement example for Detail Report creation

fapp -C -d ./rep1 -Hevent=pa1 ./a.out

fapp -C -d ./rep2 -Hevent=pa2 ./a.out

fapp -C -d ./rep3 -Hevent=pa3 ./a.out

fapp -C -d ./rep4 -Hevent=pa4 ./a.out

fapp -C -d ./rep5 -Hevent=pa5 ./a.out

fapp -C -d ./rep6 -Hevent=pa6 ./a.out

fapp -C -d ./rep7 -Hevent=pa7 ./a.out

fapp -C -d ./rep8 -Hevent=pa8 ./a.out

fapp -C -d ./rep9 -Hevent=pa9 ./a.out

fapp -C -d ./rep10 -Hevent=pa10 ./a.out

fapp -C -d ./rep11 -Hevent=pa11 ./a.out

fapp -C -d ./rep12 -Hevent=pa12 ./a.out

fapp -C -d ./rep13 -Hevent=pa13 ./a.out

fapp -C -d ./rep14 -Hevent=pa14 ./a.out

fapp -C -d ./rep15 -Hevent=pa15 ./a.out

fapp -C -d ./rep16 -Hevent=pa16 ./a.out

fapp -C -d ./rep17 -Hevent=pa17 ./a.out

- 76 -

 Note

- When measuring profile data for the CPU Performance Analysis Report, do not specify the -Inocpupa option with the fapp command.
If you specify the -Inocpupa option, the -Hevent option is disabled.

- Only one -Hevent option can be specified for one measurement. If you specify multiple -Hevent options, the last specified -Hevent
option is enabled.

- The operation of the program must be the same across all measurements. For example, ensure that input data is the same across all
measurement times.

- The measurement order is random. For example, it is no problem if measurement for which Hevent=pa1 is specified is performed after
measurement for which -Hevent=pa2 is specified.

- According to the -Hevent option with which measurement is performed, the name of the CSV file output in "4.1.5 Outputting Profile
Result " is determined. Therefore, we recommend giving a name to the directory that stores measured profile data in a way that you can
tell the specified arguments.

4.1.5 Outputting Profile Result
Use the fapppx command or fapp command of the Advanced Performance Profiler to output CSV files to be used for the CPU Performance
Analysis Report. To output CSV files that are to be input to the CPU Performance Analysis Report, specify the -tcsv option. For details on
the options, see "3.1.5 Outputting Profile Result". The following shows an execution example for each report.

Single Report

To create a Single Report, output the five CSV files pa1.csv by using the profile data -Hevent=pa1.

Example of outputting profile data stored in the directories "rep1" in CSV format for the CPU

Performance Analysis Report

fapppx -A -d ./rep1 -Icpupa,nompi -tcsv -o pa1.csv

Brief Report

To create a Brief Report, output the five CSV files pa1.csv to pa5.csv by using the profile data -Hevent=pa1 to -Hevent=pa5.

Example of outputting profile data stored in the directories "rep1" to "rep5" in CSV format for

the CPU Performance Analysis Report

fapppx -A -d ./rep1 -Icpupa,nompi -tcsv -o pa1.csv

fapppx -A -d ./rep2 -Icpupa,nompi -tcsv -o pa2.csv

fapppx -A -d ./rep3 -Icpupa,nompi -tcsv -o pa3.csv

fapppx -A -d ./rep4 -Icpupa,nompi -tcsv -o pa4.csv

fapppx -A -d ./rep5 -Icpupa,nompi -tcsv -o pa5.csv

Standard Report

To create a Standard Report, output the five CSV files pa1.csv to pa11.csv by using the profile data -Hevent=pa1 to -Hevent=pa11.

Example of outputting profile data stored in the directories "rep1" to "rep11" in CSV format for

the CPU Performance Analysis Report

fapppx -A -d ./rep1 -Icpupa,nompi -tcsv -o pa1.csv

fapppx -A -d ./rep2 -Icpupa,nompi -tcsv -o pa2.csv

fapppx -A -d ./rep3 -Icpupa,nompi -tcsv -o pa3.csv

fapppx -A -d ./rep4 -Icpupa,nompi -tcsv -o pa4.csv

fapppx -A -d ./rep5 -Icpupa,nompi -tcsv -o pa5.csv

fapppx -A -d ./rep6 -Icpupa,nompi -tcsv -o pa6.csv

fapppx -A -d ./rep7 -Icpupa,nompi -tcsv -o pa7.csv

fapppx -A -d ./rep8 -Icpupa,nompi -tcsv -o pa8.csv

fapppx -A -d ./rep9 -Icpupa,nompi -tcsv -o pa9.csv

fapppx -A -d ./rep10 -Icpupa,nompi -tcsv -o pa10.csv

fapppx -A -d ./rep11 -Icpupa,nompi -tcsv -o pa11.csv

Detail Report

To create a Detail Report, output the five CSV files pa1.csv to pa17.csv by using the profile data -Hevent=pa1 to -Hevent=pa17.

- 77 -

Example of outputting profile data stored in the directories "rep1" to "rep17" in CSV format for

the CPU Performance Analysis Report

fapppx -A -d ./rep1 -Icpupa,nompi -tcsv -o pa1.csv

fapppx -A -d ./rep2 -Icpupa,nompi -tcsv -o pa2.csv

fapppx -A -d ./rep3 -Icpupa,nompi -tcsv -o pa3.csv

fapppx -A -d ./rep4 -Icpupa,nompi -tcsv -o pa4.csv

fapppx -A -d ./rep5 -Icpupa,nompi -tcsv -o pa5.csv

fapppx -A -d ./rep6 -Icpupa,nompi -tcsv -o pa6.csv

fapppx -A -d ./rep7 -Icpupa,nompi -tcsv -o pa7.csv

fapppx -A -d ./rep8 -Icpupa,nompi -tcsv -o pa8.csv

fapppx -A -d ./rep9 -Icpupa,nompi -tcsv -o pa9.csv

fapppx -A -d ./rep10 -Icpupa,nompi -tcsv -o pa10.csv

fapppx -A -d ./rep11 -Icpupa,nompi -tcsv -o pa11.csv

fapppx -A -d ./rep12 -Icpupa,nompi -tcsv -o pa12.csv

fapppx -A -d ./rep13 -Icpupa,nompi -tcsv -o pa13.csv

fapppx -A -d ./rep14 -Icpupa,nompi -tcsv -o pa14.csv

fapppx -A -d ./rep15 -Icpupa,nompi -tcsv -o pa15.csv

fapppx -A -d ./rep16 -Icpupa,nompi -tcsv -o pa16.csv

fapppx -A -d ./rep17 -Icpupa,nompi -tcsv -o pa17.csv

 Note

- When outputting a CSV file for the CPU Performance Analysis Report, do not specify the -Inocpupa option with the fapppx command
or fapp command. If you specify the -Inocpupa option, information necessary for the CPU Performance Analysis Report is not output.

- The names of CSV files used for the CPU Performance Analysis Report are fixed. Add .csv to the value specified in event in the -
Hevent=event option at the time of measurement with the fapp command, and use it as the file name. It is no problem if you manually
change the file name after outputting the file with a different name.

- The output order is random. For example, it is no problem if pa1.csv is output after pa2.csv.

4.1.6 Creating a CPU Performance Analysis Report
Read the CSV format file output by "4.1.5 Outputting Profile Result " into the CPU performance analysis report. See "4.1.6.1 Error and
Warning Messages Output by the CPU Performance Analysis Report" for the messages output from the CPU Performance Analysis Report.

1. Store CSV files output in "4.1.5 Outputting Profile Result " and the CPU Performance Analysis Report file (cpu_pa_report.xlsm) in
the same directory. The CPU Performance Analysis Report file is stored in the following location in login node.

/installation_path/misc/cpupa/cpu_pa_report.xlsm

For details on "installation_path", contact the system administrator.

2. Copy the directory prepared in 1. to an environment that can run Microsoft Excel.

3. Start the CPU Performance Analysis Report file (cpu_pa_report.xlsm).

 Note

The CPU Performance Analysis Report uses the macro function of Microsoft Excel. If a macro is disabled due to security settings,
manually enable it. For details on how to enable a macro, see the help for your Microsoft Excel or other relevant documents.

- 78 -

4. A dialog appears where you select contents to be output to the CPU Performance Analysis Report. Enter necessary information.

a. If data from multiple processes exists in a CSV file, the process number input window appears. Enter the process number you
want to reference. If the entered process number does not exist in data in pa1.csv, a warning message appears and you are
returned to the process number input window. If there is only one process, the process number input window does not appear.

Figure 4.2 Process number input window

b. If the specified process is executed in multiple CMGs, the CMG number input window appears. Enter the CMG number you
want to reference. If the entered CMG number does not exist in data in pa1.csv, a warning message appears and you are returned
to the CMG number input window. If there is only one CMG, the CMG number input window does not appear.

Figure 4.3 CMG number input window

- 79 -

c. If multiple measurement regions specified by the measurement region specifying routine exist in the specified process, the
measurement region selection window shown in the figure below appears. Select the measurement region name you want to
reference. If there is only one measurement region, the measurement region selection window does not appear.

Figure 4.4 Measurement region selection window

5. CSV file reading starts. Only files with the names pa1.csv to pa17.csv are to be read, which are located in the same directory as the
CPU Performance Analysis Report file. When reading ends normally, the following messages appear for each created report.

Message Message Description

CPU Performance Analysis Report (Single Report)
created.

A CPU Performance Analysis Report (Single Report) is created.

CPU Performance Analysis Report (Brief Report)
created.

A CPU Performance Analysis Report (Brief Report) is created.

CPU Performance Analysis Report (Standard Report)
created.

A CPU Performance Analysis Report (Standard Report) is created.

CPU Performance Analysis Report (Detail Report)
created.

A CPU Performance Analysis Report (Detail Report) is created.

 Point

The report type for CPU performance analysis is determined by the CSV files in the directory. The priority for selecting the report type is
as follows:

1. If all of the files pa1.csv to pa17.csv exist, a Detail Report is created.

2. If all of the files pa1.csv to pa11.csv exist, a Standard Report is created.

3. If all of the pa1.csv to pa5.csv files exist, a Brief Report is created.

- 80 -

4. If the pa1.csv file exists, a Single Report is generated.

 Note

Store only the CSV files required for the report type in the directory. If there is an excess or deficiency of the CSV file, a CPU
performance analysis report is created, but the output results are not guaranteed.

 Note

The created CPU performance analysis report file is not automatically saved. If necessary, save the file. However, CPU performance
analysis report file that has already loaded the CSV files does not load new CSV files. When reusing the saved CPU performance analysis
report file, save it with "Save As" instead of "Save".

4.1.6.1 Error and Warning Messages Output by the CPU Performance Analysis Report
The following lists error and warning messages output by the CPU Performance Analysis Report. If an error message appears, the Excel
file is closed. If a warning message is output, processing continues. paXX.csv specifies the name of the relevant input file.

Table 4.2 Error Messages

Error Message Error Description

pa1.csv : Cannot open the file. pa1.csv: Cannot open the file.

paXX.csv : The version of the CPU Performance Analysis Report
file does not match that of the fapppx command.

paXX.csv: The version of the CPU Performance Analysis Report
file does not match that of the fapppx command.

paXX.csv : The file name does not match the argument in the -
Hevent option.

paXX.csv: The file name does not match the specified value of the
-Hevent option.

paXX.csv : Data measured on a static process is not found. paXX.csv: Data from a static process is not found.

paXX.csv : The file format is not supported. paXX.csv: The file format is not supported.

paXX.csv : No data found for specified process number. paXX.csv: No data is found for the specified process number.

paXX.csv : No data found for specified CMG number. paXX.csv: No data is found for the specified CMG number.

paXX.csv : No data found for specified region name. paXX.csv: No data is found for the specified measurement region
name.

paXX.csv : The environment seems to not bind process to core. paXX.csv: It contains data that is not CPU binding or that is CPU
binding incorrectly.

An unknown error has occurred. An unknown error has occurred.

Missing input files. Some input files are missing.

Table 4.3 Warning Messages

Warning Message Warning Description

Data measured on a dynamically
generated process is ignored.

Data from a dynamically generated process is included, but it will be ignored.

No data found for specified process
number.

No data is found for the specified process number. (When you are in the process number input
window)

No data found for specified CMG
number.

No data is found for the specified CMG number. (When you are in the CMG number input
window)

paXX.csv : The measured time
difference with pa1 exceeds 5%.
(XX=XX...)

The execution time for the measurement region difference with pa1 exceeds 5%.

- 81 -

Warning Message Warning Description

 Note

For this message only, the "paXX.csv" string at the beginning of the message is fixed. Only
numbers separated by commas are output to (XX = XX...) of the file number for which the
difference of measurement time is detected. For example, if you find a difference between
the results of pa2.csv and pa5.csv, print (XX = 2,5).

If this message is output, the precision of the output may be reduced. It is recommended to
remeasure the corresponding CSV format file.

Because of the short measured time,
there may be large error in the results.
The average measured time of the region
is less than 150 microseconds.

Because of the short execution time for the measurement region, there may be many
measurement errors in the result. The average execution time per time of the measurement
region is less than 150 microseconds.

4.2 CPU Performance Analysis Report Output Result
Describes the CPU Performance Analysis Report output result.

4.2.1 Overview of CPU Performance Analysis Report Output Result
The structure of the CPU Performance Analysis Report is as follows. For a list of information that can be referenced in each table, see
"Chapter 4 CPU Performance Analysis Report".

Figure 4.5 Structure of the CPU Performance Analysis Report

- 82 -

The following shows the structure of the respective tables.

Figure 4.6 Table structure

The following describes items in tables.

Table 4.4 Description of items

Name Description

Table title Title of the table. For details, see the respective subsections having the same header as the table title
in "4.2.2 Detail of CPU Performance Analysis Report Output Result".

Process number + thread
number

Shows process and thread numbers.

CMG number Shows a CMG number.

Item name Shows the classification and names of items.

Item color Shows colors in the graph corresponding to the table.

Calculated value Shows the values of items corresponding to each process and each thread to the second decimal place.

Representative value Shows the average or total of the calculated values. Whether an average or total value is shown
depends on the table. Some tables have no representative values.

Graphs are available for some tables.

- 83 -

Figure 4.7 Graph structure

The following describes items in graphs.

Table 4.5 Description of items

Name Description

Graph title Title of the graph. The naming convention is "corresponding table title" + "graph overview".

Graph Displays a graph representing the contents of the table. The type of the graph depends on the items.

Legend Legend of the graph. Legend colors in the graph correspond to "item colors" in the table.

4.2.2 Detail of CPU Performance Analysis Report Output Result
This section describes the details of the tables and graphs that are present in the CPU Performance Analysis Report file.

4.2.2.1 Information
Information displays measurement environment information based on the actual measurement results and the contents specified by user.

Figure 4.8 Layout of Information

- 84 -

Table 4.6 Output Items in Information
Name Description

Measured time Measurement date/time

Node name Name of the node on which the process is executed

Process no. Specified process number

CMG no. Specified CMG number

Measured region Specified measurement region name

Vector length (bit) Vector length (bit)

CPU frequency(GHz) Clock frequency (GHz) of the CPU calculated from actual measurement results

 Note

If you specify "4.1.4 Measuring Profile Data" with the -Hmode=user option or -Hmethod=normal option, the
value of the CPU frequency (GHz) is not guaranteed.

Since the calculation is based on the actual measurement results, it may differ from the CPU frequency of the
environment information for measuring profiling data.

4.2.2.2 Statistics
"Statistics" displays the information concerning the CPU behaviors such as the memory throughput, number of instructions, and number
of operations. In a brief report, it also shows the ratio of active element in the floating point operation. If the background color in the cell
changes to pale blue, it indicates the good operation performance for that item. Statistics has a corresponding table and graph. It displays
a bar graph representing the items shown in blue text in Table "Table 4.7 Output Items in Statistics (Single Report)" or "Table 4.8 Output
Items in Statistics (Brief, Standard, and Detail Report)".

4.2.2.2.1 Statistics (Single Report)

Figure 4.9 Layout of Statistics (Single Report)

- 85 -

Figure 4.10 Graph of Statistics (Single Report)

Table 4.7 Output Items in Statistics (Single Report)

Name Description

Execution time(s) Time taken to execute instructions in the measurement target region (second)

GFLOPS Count of floating-point operations performed per second

 Note

The GFLOPS value is calculated by assuming that all elements are active. Therefore, in the case of a program
with many inactive elements, a higher value than the original GFLOPS value is output.

Floating-point
operation peak ratio(%)

Ratio of the measured value to the theoretical value for floating-point operation performance (%)

- 86 -

Name Description

 Note

The theoretical value for floating-point operation performance is calculated by assuming that double
precision operations are performed. Therefore, in the case of single or half precision, a value 2 to 4 times
higher than the actual percentage is output.

If you specify "4.1.4 Measuring Profile Data" with the -Hmode=user option or -Hmethod=normal option, the
value of the Floating-point operation peak ratio(%) is not guaranteed.

Memory
throughput(GB/s)

Memory throughput (GB/s)

Memory throughput
peak ratio(%)

Ratio of the measured value to the theoretical value for memory throughput (%)

 Note

- The theoretical value of memory throughput is for one CMG. If you access not only the memory of own
CMG but also the memory of other CMGs at the same time, measured value of memory throughput may
exceed the theoretical value. In this case, memory throughput peak ratio may exceed 100%.

- The theoretical value for memory throughput assumes simultaneous memory access from all cores in the
CMG. However, in fact, each core may perform memory accesses at different times. In such a case, if the
memory access amount of all cores is aggregated within the measurement region, memory accesses at
different timings are aggregated as simultaneous accesses. As a result, measured value of memory
throughput obtained from the memory access amount and execution time may exceed the theoretical
value. The memory throughput peak ratio may exceed 100%.

Effective instruction Total number of instructions executed

 Note

The total number of instructions executed does not include MOVPRFX instructions.

Floating-point
operation

Total number of floating-point operations executed

SIMD Instruction
rate(%) (/Effective
Instruction)

Ratio of the number of SIMD instructions to the total number of instructions executed (%)

SVE operation rate(%) Ratio of the number of SVE operations to the total number of floating-point operations executed (%)

IPC Number of instructions executed per cycle

GIPS Number of instructions executed per second

- 87 -

4.2.2.2.2 Statistics (Brief, Standard, and Detail Report)

Figure 4.11 Layout of Statistics (Brief, Standard, and Detail Report)

- 88 -

Figure 4.12 Graph of Statistics (Brief, Standard, and Detail Report)

Table 4.8 Output Items in Statistics (Brief, Standard, and Detail Report)

Name Description

Execution time(s) Time taken to execute instructions in the measurement target region (second)

GFLOPS Count of floating-point operations performed per second

 Note

The GFLOPS value is calculated by assuming that all elements are active. Therefore, in the case of a program
with many inactive elements, a higher value than the original GFLOPS value is output.

Floating-point
operation peak
ratio(%)

Ratio of the measured value to the theoretical value for floating-point operation performance (%)

- 89 -

Name Description

 Note

The theoretical value for floating-point operation performance is calculated by assuming that double precision
operations are performed. Therefore, in the case of single or half precision, a value 2 to 4 times higher than the
actual percentage is output.

If you specify "4.1.4 Measuring Profile Data" with the -Hmode=user option or -Hmethod=normal option, the
value of the Floating-point operation peak ratio(%) is not guaranteed.

Memory
throughput(GB/s)

Memory throughput (GB/s)

Memory throughput
peak ratio(%)

Ratio of the measured value to the theoretical value for memory throughput (%)

 Note

- The theoretical value of memory throughput is for one CMG. If you access not only the memory of own
CMG but also the memory of other CMGs at the same time, measured value of memory throughput may
exceed the theoretical value. In this case, memory throughput peak ratio may exceed 100%.

- The theoretical value for memory throughput assumes simultaneous memory access from all cores in the
CMG. However, in fact, each core may perform memory accesses at different times. In such a case, if the
memory access amount of all cores is aggregated within the measurement region, memory accesses at
different timings are aggregated as simultaneous accesses. As a result, measured value of memory
throughput obtained from the memory access amount and execution time may exceed the theoretical
value. The memory throughput peak ratio may exceed 100%.

Effective instruction Total number of instructions executed

 Note

The total number of instructions executed does not include MOVPRFX instructions.

Floating-point
operation

Total number of floating-point operations executed

SIMD Instruction
rate(%) (/Effective
Instruction)

Ratio of the number of SIMD instructions to the total number of instructions executed (%)

SVE operation rate(%) Ratio of the number of SVE operations to the total number of floating-point operations executed (%)

Floating-point
pipeline Active
element rate(%)

Ratio of active elements in floating-point operations (%)

 Note

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of
many non-SVE instructions, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of SVE instructions is close to 100%.

- If the ratio of store instructions is high, the ratio of active elements may degrade. We recommend to
limitedly use it only when the ratio of store instructions is low.

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases
of one-byte data type operation, a higher ratio than that of the original Active element is output. You
should limitedly use it only when the ratio of one-byte data type operation is low.

IPC Number of instructions executed per cycle

- 90 -

Name Description

GIPS Number of instructions executed per second

4.2.2.3 Cycle Accounting
Cycle Accounting displays a breakdown of program execution time (unit: second). The Brief Report displays the information by classifying
it into nine types. The Standard and Detail Reports display the information by classifying it into 20 types. Cycle Accounting has a
corresponding table and graph. It displays a stacked bar graph representing Table "Table 4.9 Output Items in Cycle Accounting (Brief
Report)" or output items (excluding Total) in "Table 4.10 Output Items in Cycle Accounting (Standard and Detail Reports)". In addition,
for the purpose of comparison, it displays a bar graph representing the execution times converted from the values of the following output
items in "4.2.2.4 Busy": "L1 busy rate(%)", "L2 busy rate(%)", "Memory busy rate(%)", "Floating-point operation pipeline busy rate(%)",
"Integer operation pipeline busy rate(%)".

4.2.2.3.1 Cycle Accounting (Brief Report)

Figure 4.13 Layout of Cycle Accounting (Brief Report)

- 91 -

Figure 4.14 Graph of Cycle Accounting (Brief Report)

Table 4.9 Output Items in Cycle Accounting (Brief Report)

Name Description

Prefetch port busy wait Time during which the number of committed instructions was 0 because the prefetch port was busy

Memory access wait & Cache
access wait

Time during which the number of committed instructions was 0 because of memory access wait
and cache access wait

Operation wait Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was in execution of an operation

Other wait Time during which the number of committed instruction was 0 due to other factors

Store port busy wait Time during which the number of committed instructions was 0 because the store port was full

Instruction fetch wait Time during which the number of committed instructions was 0 because of wait for instruction
load

Barrier synchronization wait Time during which the number of committed instructions was 0 because the instruction controller
was stopped due to a WFE or WFI instruction

1 instruction commit Time during which 1 instruction was executed in 1 cycle

Other instruction commit Time during which 2 to 8 instructions were executed in 1 cycle

Total Total time

- 92 -

4.2.2.3.2 Cycle Accounting (Standard and Detail Reports)

Figure 4.15 Layout of Cycle Accounting (Standard and Detail Reports)

Figure 4.16 Graph of Cycle Accounting (Standard and Detail Reports)

Table 4.10 Output Items in Cycle Accounting (Standard and Detail Reports)

Name Description

Prefetch port busy wait by
hardware prefetch

Time during which the number of committed instructions was 0 because of prefetch port busy wait
due to hardware prefetch

Prefetch port busy wait by
software prefetch

Time during which the number of committed instructions was 0 because of prefetch port busy wait
due to software prefetch

Integer load memory access wait Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was waiting for data due to memory access for integer load

- 93 -

Name Description

Floating-point load memory
access wait

Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was waiting for data due to memory access for floating-point load

Integer load L2 cache access wait Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was waiting for data due to secondary cache access for integer load

Integer load L1D cache access
wait

Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was waiting for data due to primary data cache access for integer
load

Floating-point load L2 cache
access wait

Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was waiting for data due to secondary cache access for floating-
point load

Floating-point load L1D cache
access wait

Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was waiting for data due to primary data cache access for floating-
point load

 Note

Floating-point load L1D cache access wait may include wait time for L1D cache access for general-
purpose registers.

Integer operation wait Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was in an integer operation execution

Floating-point operation wait Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was in a floating-point operation execution

Branch instruction wait Time during which the number of committed instructions was 0 because the oldest instruction
among instructions in execution was in a branching execution

Other wait Time during which the number of committed instructions was 0 due to other factors

Store port busy wait Time during which the number of committed instructions was 0 because the store port was full

Instruction fetch wait Time during which the number of committed instructions was 0 because of wait for instruction load

Barrier synchronization wait Time during which the number of committed instructions was 0 because the instruction controller
was stopped due to a WFE or WFI instruction

1 instruction commit Time during which 1 instruction was executed in 1 cycle

2 instruction commit Time during which 2 instructions were executed in 1 cycle

3 instruction commit Time during which 3 instructions were executed in 1 cycle

4 instruction commit Time during which 4 instructions were executed in 1 cycle

Other instruction commit Time during which 5 to 8 instructions were executed in 1 cycle

Total Total time

4.2.2.4 Busy
Busy displays the information on the busy rate for the program memory cache and operation pipeline. In a brief report, it shows the busy
rates such as for the primary cache, secondary cache, memory, and floating-point operation pipeline, as well as the occurrence rate of SFI
(Store Fetch Interlock). In a standard report, in addition to the contents of the brief report, it shows the busy rates for the integer operation
pipeline, address calculation operation pipeline, and predicate operation pipeline. In a detail report, in addition to the contents of the standard
report, it shows the ratio of the active element in the L1 pipeline. If the background color in the cell changes to pink, it indicates that item
may be the performance bottleneck.

- 94 -

4.2.2.4.1 Busy (Brief Report)

Figure 4.17 Layout of Busy (Brief Report)

Table 4.11 Output Items in Busy (Brief Report)

Name Description

Floating-point
operation
pipeline A busy
rate(%)

Busy rate for the floating-point operation pipeline A (%)

Floating-point
operation
pipeline B busy
rate(%)

Busy rate for the floating-point operation pipeline B (%)

L1 busy rate(%) Busy rate for the primary cache (%)

L2 busy rate(%) Busy rate for the secondary cache (%)

Memory busy
rate(%)

Memory busy rate (%)

 Note

- The theoretical value of memory throughput is for one CMG. If you access not only the memory of own CMG
but also the memory of other CMGs at the same time, measured value of memory throughput may exceed the
theoretical value. In this case, memory busy ratio (same as memory throughput peak ratio) may exceed 100%.

- The theoretical value for memory throughput assumes simultaneous memory access from all cores in the CMG.
However, in fact, each core may perform memory accesses at different times. In such a case, if the memory
access amount of all cores is aggregated within the measurement region, memory accesses at different timings
are aggregated as simultaneous accesses. As a result, measured value of memory throughput obtained from the
memory access amount and execution time may exceed the theoretical value. The memory busy ratio (same as
memory throughput peak ratio) may exceed 100%.

Floating-point
pipeline A Active
element rate(%)

Active element ratio in the floating-point operation pipeline A (%)

 Note

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of many
non-SVE instructions, a higher ratio than that of the original Active element is output. You should limitedly use
it only when the ratio of SVE instructions is high.

- If the ratio of store instructions is high, the ratio of active elements may degrade. We recommend to limitedly
use it only when the ratio of store instructions is low.

- 95 -

Name Description

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases of one-
byte data type operation, a higher ratio than that of the original Active element is output. You should limitedly
use it only when the ratio of one-byte data type operation is low.

Floating-point
pipeline B Active
element rate(%)

Active element ratio in the floating-point operation pipeline B (%)

 Note

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of many
non-SVE instructions, a higher ratio than that of the original Active element is output. You should limitedly use
it only when the ratio of SVE instructions is high.

- If the ratio of store instructions is high, the ratio of active elements may degrade. We recommend to limitedly
use it only when the ratio of store instructions is low.

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases of one-
byte data type operation, a higher ratio than that of the original Active element is output. You should limitedly
use it only when the ratio of one-byte data type operation is low.

SFI(Store Fetch
Interlock) rate

Queuing time ratio by SFI (Store Fetch Interlock)

4.2.2.4.2 Busy (Standard Report)

Figure 4.18 Layout of Busy (Standard Report)

Table 4.12 Output Items in Busy (Standard Report)

Name Description

Floating-point
operation pipeline A
busy rate(%)

Busy rate for the floating-point operation pipeline A (%)

Floating-point
operation pipeline B
busy rate(%)

Busy rate for the floating-point operation pipeline B (%)

Integer operation
pipeline A busy
rate(%)

Busy rate for the integer operation pipeline A (%)

Integer operation
pipeline B busy
rate(%)

Busy rate for the integer operation pipeline B (%)

- 96 -

Name Description

L1 busy rate(%) Busy rate for the primary cache (%)

L2 busy rate(%) Busy rate for the secondary cache (%)

Memory busy rate(%) Memory busy rate (%)

 Note

- The theoretical value of memory throughput is for one CMG. If you access not only the memory of own
CMG but also the memory of other CMGs at the same time, measured value of memory throughput may
exceed the theoretical value. In this case, memory busy ratio (same as memory throughput peak ratio) may
exceed 100%.

- The theoretical value for memory throughput assumes simultaneous memory access from all cores in the
CMG. However, in fact, each core may perform memory accesses at different times. In such a case, if the
memory access amount of all cores is aggregated within the measurement region, memory accesses at
different timings are aggregated as simultaneous accesses. As a result, measured value of memory
throughput obtained from the memory access amount and execution time may exceed the theoretical
value. The memory busy ratio (same as memory throughput peak ratio) may exceed 100%.

Address calculation
operation pipeline A
busy rate(%)

Busy rate for the address calculation operation pipeline A (%)

Address calculation
operation pipeline B
busy rate(%)

Busy rate for the address calculation operation pipeline B (%)

Floating-point
pipeline A Active
element rate(%)

Active element ratio in the floating-point operation pipeline A (%)

 Note

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of
many non-SVE instructions, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of SVE instructions is high.

- If the ratio of store instructions is high, the ratio of active elements may degrade. We recommend to
limitedly use it only when the ratio of store instructions is low.

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases
of one-byte data type operation, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of one-byte data type operation is low.

Floating-point
pipeline B Active
element rate(%)

Active element ratio in the floating-point operation pipeline B (%)

 Note

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of
many non-SVE instructions, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of SVE instructions is high.

- If the ratio of store instructions is high, the ratio of active elements may degrade. We recommend to
limitedly use it only when the ratio of store instructions is low.

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases
of one-byte data type operation, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of one-byte data type operation is low.

- 97 -

Name Description

SFI(Store Fetch
Interlock) rate

Queuing time ratio by SFI (Store Fetch Interlock)

4.2.2.4.3 Busy (Detail Report)

Figure 4.19 Layout of Busy (Detail Report)

Table 4.13 Output Items in Busy (Detail Report)

Name Description

Floating-point
operation pipeline A
busy rate(%)

Busy rate for the floating-point operation pipeline A (%)

Floating-point
operation pipeline B
busy rate(%)

Busy rate for the floating-point operation pipeline B (%)

Integer operation
pipeline A busy rate(%)

Busy rate for the integer operation pipeline A (%)

Integer operation
pipeline B busy rate(%)

Busy rate for the integer operation pipeline B (%)

L1 busy rate(%) Busy rate for the primary cache (%)

L2 busy rate(%) Busy rate for the secondary cache (%)

Memory busy rate(%) Memory busy rate (%)

 Note

- The theoretical value of memory throughput is for one CMG. If you access not only the memory of own
CMG but also the memory of other CMGs at the same time, measured value of memory throughput may
exceed the theoretical value. In this case, memory busy ratio (same as memory throughput peak ratio)
may exceed 100%.

- The theoretical value for memory throughput assumes simultaneous memory access from all cores in the
CMG. However, in fact, each core may perform memory accesses at different times. In such a case, if the
memory access amount of all cores is aggregated within the measurement region, memory accesses at
different timings are aggregated as simultaneous accesses. As a result, measured value of memory
throughput obtained from the memory access amount and execution time may exceed the theoretical
value. The memory busy ratio (same as memory throughput peak ratio) may exceed 100%.

- 98 -

Name Description

Address calculation
operation pipeline A
busy rate(%)

Busy rate for the address calculation operation pipeline A (%)

Address calculation
operation pipeline B
busy rate(%)

Busy rate for the address calculation operation pipeline B (%)

Floating-point pipeline
A Active element
rate(%)

Active element ratio in the floating-point operation pipeline A (%)

 Note

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of
many non-SVE instructions, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of SVE instructions is high.

- If the ratio of store instructions is high, the ratio of active elements may degrade. We recommend to
limitedly use it only when the ratio of store instructions is low.

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases
of one-byte data type operation, a higher ratio than that of the original Active element is output. You
should limitedly use it only when the ratio of one-byte data type operation is low.

Floating-point pipeline
B Active element
rate(%)

Active element ratio in the floating-point operation pipeline B (%)

 Note

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of
many non-SVE instructions, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of SVE instructions is high.

- If the ratio of store instructions is high, the ratio of active elements may degrade. We recommend to
limitedly use it only when the ratio of store instructions is low.

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases
of one-byte data type operation, a higher ratio than that of the original Active element is output. You
should limitedly use it only when the ratio of one-byte data type operation is low.

L1 pipeline 0 Active
element rate(%)

Active element ratio in the L1 pipeline 0 (%)

L1 pipeline 1 Active
element rate(%)

Active element ratio in the L1 pipeline 1 (%)

SFI(Store Fetch
Interlock) rate

Queuing time ratio by SFI (Store Fetch Interlock)

4.2.2.5 Cache
Cache displays information about cache misses. In the case of the Brief Report, displays the number of cache misses of the primary data
and secondary caches and the ratio to the number of load store instructions. In the case of the Standard or Detail Report, comparison with
the multiple numbers of instructions is added in addition to the contents of the Brief Report. The background color of cells may change to
pink, which means that the item may have resulted in a performance bottleneck. Cache has a corresponding table and graph. It displays a
stacked bar graph representing the items shown in blue text in Table "Table 4.14 Output Items in Cache (Brief Report)" or "Table 4.15
Output Items in Cache (Standard and Detail Reports)".

- 99 -

4.2.2.5.1 Cache (Brief Report)

Figure 4.20 Layout of Cache (Brief Report)

- 100 -

Figure 4.21 Graph of Cache (Brief Report)

Table 4.14 Output Items in Cache (Brief Report)

Name Description

Load-store instruction Number of load store instructions

L1D miss Number of primary data cache misses

L1D miss rate (/Load-store instruction) Ratio of primary data cache misses to the number of load store instructions

L1D miss demand rate(%) (/L1D miss) Ratio of primary data cache misses due to demand access among primary data cache misses
(%)

L2 miss Number of secondary cache misses

L2 miss rate (/Load-store instruction) Ratio of secondary cache misses to the number of load store instructions

L2 miss demand rate(%) (/L2 miss) Ratio of secondary cache misses due to demand access among secondary cache misses (%)

- 101 -

 Point

The total value in the stacked bar graph matches to "L1D miss rate(%)(/Load-store instruction)" or "L2 miss rate(%)(/Load-store
instruction)".

4.2.2.5.2 Cache (Standard and Detail Reports)

Figure 4.22 Layout of Cache (Standard and Detail Reports)

- 102 -

Figure 4.23 Graph of Cache (Standard and Detail Reports)

Table 4.15 Output Items in Cache (Standard and Detail Reports)

Name Description

L1I miss rate (/Effective instruction) Ratio of primary instruction cache misses to the total number of executed
instructions

Load-store instruction Number of load store instructions

L1D miss Number of primary data cache misses

L1D miss rate (/Load-store instruction) Ratio of primary data cache misses to the number of load store instructions

L1D miss demand rate(%) (/L1D miss) Ratio of primary data cache misses due to demand access among primary data
cache misses (%)

L1D miss hardware prefetch rate(%) (/L1D miss) Ratio of primary data cache misses due to hardware prefetch among primary data
cache misses (%)

- 103 -

Name Description

L1D miss software prefetch rate(%) (/L1D miss) Ratio of primary data cache misses due to software prefetch among primary data
cache misses (%)

L2 miss Number of secondary cache misses

L2 miss rate (/Load-store instruction) Ratio of secondary cache messes to the number of load store instructions

L2 miss demand rate(%) (/L2 miss) Ratio of secondary cache misses due to demand access among secondary cache
misses (%)

L2 miss hardware prefetch rate(%) (/L2 miss) Ratio of secondary cache misses due to hardware prefetch among secondary cache
misses (%)

L2 miss software prefetch rate(%) (/L2 miss) Ratio of secondary cache misses due to software prefetch among secondary cache
misses (%)

L1D TLB miss rate (/Load-store instruction) Ratio of L1D TLB misses to the number of load store instructions

L2D TLB miss rate (/Load-store instruction) Ratio of L2D TLB misses to the number of load store instructions

 Point

The total value in the stacked bar graph matches to "L1D miss rate(%)(/Load-store instruction)" or "L2 miss rate(%)(/Load-store
instruction)".

The ratio of cache misses may be out of range due to exceed the effect of measurement errors or measurement variation. The ratio of cache
misses greater than 100% is considered 100%, and the ratio of cache misses less than 0% is considered 0%.

4.2.2.6 Instruction
Instruction displays information about instruction mixes. The Brief Report displays the information by classifying it into 10 types; the
Standard Report, 25 types; and the Detail Report, 28 types.

4.2.2.6.1 Instruction (Brief Report)

Figure 4.24 Layout of Instruction (Brief Report)

Table 4.16 Output Items in Instruction (Brief Report)

Name Description

SIMD load instruction except gather load Number of SIMD load instructions excluding gather load instructions

Non-contiguous gather load instruction Number of non-contiguous gather load instructions

Non-SIMD load instruction Number of non-SIMD load instructions

SIMD store instruction except scatter store Number of SIMD store instructions excluding scatter store instructions

Non-contiguous scatter store instruction Number of non-contiguous scatter store instructions

Non-SIMD store instruction Number of non-SIMD store instructions

Floating-point instruction except FMA and
reciprocal

Number of floating-point operation instructions excluding floating-point multiply and
add operation instructions and floating-point precision conversion instructions

- 104 -

Name Description

FMA instruction Number of floating-point multiply and add operation instructions

Floating-point reciprocal instruction Number of floating-point reciprocal operation instructions

Other instruction Number of other instructions

Total Total number of instructions

 Note

Total number of instructions does not include MOVPRFX instructions.

4.2.2.6.2 Instruction (Standard Report)

Figure 4.25 Layout of Instruction (Standard Report)

Table 4.17 Output Items in Instruction (Standard Report)

Name Description

Single vector contiguous load instruction Number of SIMD contiguous load instructions

Multiple vector contiguous structure load
instruction

Number of SIMD contiguous structure load instructions

Non-contiguous gather load instruction Number of non-contiguous gather load instructions

Broadcast load instruction Number of broadcast load instructions

Fill instruction Number of fill instructions

First-fault load instruction Number of First-fault load instructions

Non-SIMD load instruction Number of non-SIMD load instructions

Single vector contiguous store instruction Number of SIMD contiguous store instructions

Multiple vector contiguous structure store
instruction

Number of SIMD contiguous structure store instructions

Non-contiguous scatter store instruction Number of non-contiguous scatter store instructions

Spill instruction Number of spill instructions

Non-SIMD store instruction Number of non-SIMD store instructions

Contiguous prefetch instruction Number of contiguous prefetch instructions

Gathering prefetch instruction Number of gather prefetch instructions

Scalar prefetch instruction Number of normal prefetch instructions

DCZVA instruction Number of DCZVA instructions

Floating-point instruction except FMA and
reciprocal

Number of floating-point operation instructions excluding floating-point multiply
and add operation instructions and floating-point precision conversion instructions

FMA instruction Number of floating-point multiply and add operation instructions

Floating-point reciprocal instruction Number of floating-point reciprocal operation instructions

- 105 -

Name Description

Floating-point conversion instruction Number of floating-point precision conversion instructions

Floating-point move instruction Number of floating-point move instructions

Integer instruction Number of integer operation instructions

Branch instruction Number of branch instructions

Predicate instruction Number of predicate operation instructions

Other instruction Number of other operations

Total Total number of instructions

 Note

Total number of instructions does not include MOVPRFX instructions.

4.2.2.6.3 Instruction (Detail Report)

Figure 4.26 Layout of Instruction (Detail Report)

Table 4.18 Output Items in Instruction (Detail Report)

Name Description

Single vector contiguous load instruction Number of SIMD contiguous load instructions

Multiple vector contiguous structure load
instruction

Number of SIMD contiguous structure load instructions

Non-contiguous gather load instruction Number of non-contiguous gather load instructions

Broadcast load instruction Number of broadcast load instructions

Floating-point register fill instruction Number of fill instructions into floating point register

Predicate register fill instruction Number of fill instructions into predicate register

First-fault load instruction Number of First-fault load instructions

Non-SIMD load instruction Number of non-SIMD load instructions

Single vector contiguous store instruction Number of SIMD contiguous store instructions

Multiple vector contiguous structure store
instruction

Number of SIMD contiguous structure store instructions

Non-contiguous scatter store instruction Number of non-contiguous scatter store instructions

Floating-point register spill instruction Number of spill instructions from floating-point register

Predicate register spill instruction Number of spill instructions from predicate register

Non-SIMD store instruction Number of non-SIMD store instructions

Contiguous prefetch instruction Number of contiguous prefetch instructions

Gathering prefetch instruction Number of gather prefetch instructions

- 106 -

Name Description

Scalar prefetch instruction Number of normal prefetch instructions

DCZVA instruction Number of DCZVA instructions

Floating-point instruction except FMA and
reciprocal

Number of floating-point operation instructions excluding floating-point multiply
and add operation instructions and floating-point precision conversion instructions

FMA instruction Number of floating-point multiply and add operation instructions

Floating-point reciprocal instruction Number of floating-point reciprocal operation instructions

Floating-point conversion instruction Number of floating-point precision conversion instructions

Floating-point move instruction Number of floating-point move instructions

Integer instruction Number of integer operation instructions

Branch instruction Number of branch instructions

Predicate instruction Number of predicate operation instructions

Crypto-graphic instruction Number of cryptographic instructions

Other instruction Number of other operations

Total Total number of instructions

 Note

Total number of instructions does not include MOVPRFX instructions.

4.2.2.7 FLOPS
FLOPS displays information about floating-point operations. In the case of the Brief Report, it displays the ratio of active elements and
floating-point operation performance considering the ratio of active elements. In the case of the Standard or Detail Report, it displays the
ratio of the number of floating-point operations at each precision level, in addition to the contents of the Brief Report.

- 107 -

4.2.2.7.1 FLOPS (Brief Report)

Figure 4.27 Layout of FLOPS (Brief Report)

Table 4.19 Output Items in FLOPS (Brief Report)

Name Description

GFLOPS by
Active
element rate

floating-point operation performance considering the ratio of active elements

 Note

- Normally, all GFLOPS values are calculated by assuming that all elements are active. Therefore, in the case of a
program with many inactive elements, a higher value than the original GFLOPS value is output. For a program that
uses many Predicate operations, use of the number of floating-point operations executed per second that takes into
account the ratio of active elements makes it possible to calculate more precise values. However, if the ratio of store
instructions is high, the precision of the number of floating-point operations executed per second that takes into
account the ratio of active elements may degrade. We recommend to limitedly use it only when the ratio of store
instructions is low.

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of many non-
SVE instructions, a higher ratio than that of the original Active element is output. You should limitedly use it only
when the ratio of SVE instructions is high.

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases of one-byte
data type operation, a higher ratio than that of the original Active element is output. You should limitedly use it only
when the ratio of one-byte data type operation is low.

- 108 -

4.2.2.7.2 FLOPS (Standard and Detail Reports)

Figure 4.28 Layout of FLOPS (Standard and Detail Reports)

Table 4.20 Output Items in FLOPS (Standard and Detail Reports)

Name Description

Double precision
floating-point
operation

Double precision floating-point operation count

Single precision
floating-point
operation

Single precision floating-point operation count

Half precision
floating-point
operation

Half precision floating-point operation count

GFLOPS by Active
element rate

floating-point operation performance considering the ratio of active elements

 Note

- Normally, all GFLOPS values are calculated by assuming that all elements are active. Therefore, in the
case of a program with many inactive elements, a higher value than the original GFLOPS value is output.
For a program that uses many Predicate operations, use of the number of floating-point operations
executed per second that takes into account the ratio of active elements makes it possible to calculate more
precise values. However, if the ratio of store instructions is high, the precision of the number of floating-
point operations executed per second that takes into account the ratio of active elements may degrade. We
recommend to limitedly use it only when the ratio of store instructions is low.

- Except for the SVE instruction, the percentage of the Active element is converted to 100%. In cases of
many non-SVE instructions, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of SVE instructions is high.

- 109 -

Name Description

- In the one-byte data type operation, the percentage of the Active element is converted to 100%. In cases
of one-byte data type operation, a higher ratio than that of the original Active element is output. You should
limitedly use it only when the ratio of one-byte data type operation is low.

4.2.2.8 Extra
Extra displays the details of gather instructions and information on instructions that are not included in instruction mixes.

Figure 4.29 Layout of Extra

Table 4.21 Output Items in Extra

Name Description

0 flow rate(%) Ratio of instructions that resulted in 0-flow execution because they were Inactive elements,
among gather instructions (%)

1 flow rate(%) Ratio of instructions that resulted in 1-flow execution among gather instructions (%)

2 flows rate(%) Ratio of instructions that resulted in 2-flow execution among gather instructions (%)

Micro-operation instruction Number of micro instructions

Element manipulated instruction Number of inter-element operation instructions

Register manipulated instruction Number of inter-register operation instructions

MOVPRFX instruction Number of MOVPRFX instructions

Math functional instruction Number of mathematical function auxiliary operation instructions

Micro decomposition instruction rate(%) Micro instruction decomposition rate (%)

Branch prediction miss rate(%) Branch misprediction rate (%)

4.2.2.9 Hardware Prefetch Rate (%) (/Hardware Prefetch)
Hardware Prefetch Rate (%) (/Hardware Prefetch) displays a breakdown of hardware prefetch. For hardware prefetch, there are modes such
as "Stream detect mode" and "Prefetch injection mode". This table shows how much each mode was operating.

- 110 -

Figure 4.30 Layout of Hardware Prefetch Rate(%) (/Hardware Prefetch)

Table 4.22 Output Items in Hardware Prefetch Rate(%) (/Hardware Prefetch)

Name Description

L1 cache Stream mode prefetch rate Ratio of prefetches in stream mode among hardware prefetches

Injection mode allocate prefetch rate Ratio of prefetches whose prefetch injection mode is ALLOCATE mode among
hardware prefetches

Injection mode unallocate prefetch
rate

Ratio of prefetches whose prefetch injection mode is UNALLOCATE mode
among hardware prefetches

L2 cache Stream mode prefetch rate Ratio of prefetches in stream mode among hardware prefetches

Injection mode allocate prefetch rate Ratio of prefetches whose prefetch injection mode is ALLOCATE mode among
hardware prefetches

Injection mode unallocate prefetch
rate

Ratio of prefetches whose prefetch injection mode is UNALLOCATE mode
among hardware prefetches

L1/L2 cache Other hardware prefetch Ratio of other prefetches among hardware prefetches

4.2.2.10 Data Transfer CMGs
Data Transfer CMGs displays information about throughput between the user-specified CMG and Own memory, Other memory, Tofu, and
PCI.

- 111 -

Figure 4.31 Layout of Data Transfer CMGs

Table 4.23 Output Items in Data Transfer CMGs

Name Description

read Own memory Throughput performance of data transfer from Own memory to the target CMG (GB/s)

Other memory Throughput performance of data transfer from Other memory to the target CMG (GB/s)

Tofu Throughput performance of data transfer from Tofu to the target CMG (GB/s)

PCI Throughput performance of data transfer from PCI to the target CMG (GB/s)

write Own memory Throughput performance of data transfer from the target CMG to Own memory (GB/s)

Other memory Throughput performance of data transfer from the target CMG to Other memory (GB/s)

Tofu Throughput performance of data transfer from the target CMG to Tofu (GB/s)

PCI Throughput performance of data transfer from the target CMG to PCI (GB/s)

4.2.2.11 Power Consumption (W)
Power consumption (W) displays power consumption in W (watts) calculated by converting values obtained from the cores, L2 cache, and
PMU counter. Power consumption (W) has a corresponding table and graph. It displays a stacked bar graph representing the output items
in Table "Table 4.24 Output Items in Power Consumption (W)".

- 112 -

Figure 4.32 Layout of Power Consumption (W)

Figure 4.33 Graph of Power Consumption (W)

Table 4.24 Output Items in Power Consumption (W)

Name Description

Power consumption used by core Power consumed by cores

- 113 -

Name Description

Power consumption used by L2 cache Power consumed by L2 cache

Power consumption used by memory Power consumed by memory

- 114 -

Chapter 5 Notes
This chapter provides notes on using the Profiler.

5.1 Notes Common to Profilers

5.1.1 COARRAY
When the compiler option -Ncoarray is enabled, note the following:

- Instant Performance Profiler and Advanced Performance Profiler

- A value obtained by adding 1 to the rank or process number is equivalent to the image index.

- The costs of the MPI library used by the COARRAY function may be appropriated.

- "Type of program" of "Environment Information for Measurement Profiling Data" is not "MPI".

- "Virtual coordinate" of "Environment Information for Measurement Profiling Data" is not output.

- Instant Performance Profiler

- All Process numbers are output as "Process0".

- Advanced Performance Profiler

- MPI communication cost information may be empty.

- The image number is the rank number or process number plus 1.

5.1.2 Impact of Compiler Options
If you specify the following compiler options when compiling a program, the Profiler may behave in an unexpected way. For details on the
compiler options mentioned in the text, see the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide".

Compiler option -f{pie|PIE}

When you specify position-independent executable (PIE) program as execution file, profile data cannot be measured correctly.

5.1.3 Node-Sharing Job
If the type of a job is node-sharing job, profile data measurement may fail or correct information may not be output. In the case of MPI
execution, profile data measurement fails and the program ends. For details on the node-sharing job, see "Job Operation Software" manuals.

5.1.4 Targets of Measurement of Thread Parallelization Information
The Performance Profiler operates in cooperation with a Fujitsu compiler. Therefore, only Fujitsu compiler automatic parallelization and
OpenMP parallel processing can be targets of thread parallelization measurement. Pthread parallelization is not measured.

5.1.5 mpiexec command
- When you specify "mpiexec" command's option "-x LD_LIBRARY_PATH=value" and execute program, note the following:

Instant Performance Profiler

You have to specify "value" in the environment variable "LD_LIBRARY_PATH" to take preference over "/installation_path/lib64/
fipp".

- 115 -

 Example

fipp -C -d ./tmp mpiexec -x LD_LIBRARY_PATH=/installation_path/lib64/fipp:/installation_path/

lib64:./tmplib ./a.out

Advanced Performance Profiler

You have to specify "value" in the environment variable "LD_LIBRARY_PATH" to take preference over "/installation_path/lib64/
fapp".

 Example

fapp -C -d ./tmp mpiexec -x LD_LIBRARY_PATH=/installation_path/lib64/fapp:/installation_path/

lib64:./tmplib ./a.out

- Measurement performed with the mpiexec command with { -app | --app } option of the execution definition file specification method
does not guarantee operation.

For details on { -app | --app } option, see the "MPI User's Guide".

5.1.6 Impact of Using the MPI Profiling Interface
The Profiler measures information by hooking MPI functions, so the Profiler and MPI Profiling Interface cannot be used together. When
the Profiler measures a program that hooks MPI functions using the MPI profiling interface, the following information may be output.

- Instant Performance Profiler and Advanced Performance Profiler

- "Type of program" of "Environment Information for Measurement Profiling Data" is not "MPI".

- "Virtual coordinate" of "Environment Information for Measurement Profiling Data" is not output.

- Instant Performance Profiler

- All Process numbers are output as "Process0".

- Advanced Performance Profiler

- MPI communication cost information may be empty.

5.1.7 Mixed Language Programming for MPI Program
You may use the option command when implementing including calling MPI library with different languages. Specify as follows at that
time for linkage. For details on how to implement with different languages, see the "Fortran User's Guide", "C User's Guide", or "C++ User's
Guide".

Command for linkage Option

mpifccpx command (native compiler : mpifcc command)

mpiFCCpx command (native compiler :mpiFCC command)

-lfjprofmpif

mpifrtpx command (native compiler : mpifrt command) -lfjprofmpi

5.1.8 Exit Status
When measured by the Profiler, the outputted exit status may be the exit status of a target program or the exit status of the Profiler.

5.1.9 LD_PRELOAD
Do not use the environment variable LD_PRELOAD. The fipp or fapp command does not work correctly when LD_PRELOAD is used.

- 116 -

5.2 Notes on the Instant Performance Profiler

5.2.1 Impact of Compiler Options
If you specify the following compiler options when compiling a program, Instant Performance Profiler cannot be measured correctly. For
details on the compiler options mentioned in the text, see the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide".

Optimization option

In the case of a C or C++ language program, specify the optimization option (-O1 or greater) at the time of compilation in order to
measure the loop information of the program with the Instant Performance Profiler.

Compiler option -g

When the compiler option -g is enabled, do not use the Instant Performance Profiler. Using -g increases the amount of debug
information, which can increase execution time and memory usage.

Compiler option -Nline, -ffj-line

Use the compiler option -Nline(default option) or -ffj-line when using the Instant Performance Profiler.

Compiler option -Nnoline , -ffj-no-line

When the compiler option -Nnoline or -ffj-no-line is enabled, costs for which the -Puserfunc option of the fipp command is used cannot
be measured correctly. For such a program, enable the -Pnouserfunc option so that you can measure costs correctly. In addition, when
the compiler option -Nnoline or -ffj-no-line is enabled, MPI library costs cannot be measured correctly.

Compiler option -Klto, -flto

When the compiler option -Klto or -flto is enabled, the following information output by the Instant Performance Profiler may not be
displayed correctly.

Loop Cost Distribution Information

When you compile your C or C++ language program, the loop cost distribution information of its functions in the object file is not
output.

Call graph information

A procedure name generated internally by link time optimization may be displayed as the procedure name to be displayed.

Source code information

The cost of each line may not be displayed correctly.

Compiler option -fno-debug-info-for-profiling

If the compiler option -fno-debug-info-for-profiling is enabled when you compile your C++ language program in Clang Mode, in the
information that the compiler generates for the profiler, the same name may be assigned to different entities. In that case, you cannot
distinguish between different entities with the same name in the result of the Instant Performance Profiler.

5.2.2 Prohibition of Catching or Issuing SIGVTALRM Signal
The Instant Performance Profiler measures profile data by catching a SIGVTALRM signal. If a SIGVTALRM signal is caught or issued
in the program, profile data cannot be measured correctly.

5.2.3 Sampling Interval at the Time of Profile Data Measurement
The sampling interval at the time of profile data measurement may not achieve the specified time because it is affected by a proximate OS
timer interrupt interval that is smaller than the sampling interval value. Specifically, the following impacts occur:

When a sampling interval smaller than the OS timer interrupt interval is specified

It is rounded up to the OS timer interrupt interval value.

When a sampling interval larger than the OS timer interrupt interval is specified

It is rounded to a multiple of the OS timer interrupt interval that is proximate and smaller than the specified value.

- 117 -

Although it depends on the anti-noise measures by the OS, the timer interrupt interval is approximately 11 to 14 milliseconds. The following
shows an example regarding the contradistinction between sampling interval and timer interrupt interval.

 Example

When the timer interrupt interval is 14 milliseconds

- Value specified in the -i is 10: Sampling interval of 14 milliseconds

- Value specified in the -i is 25: Sampling interval of 14 milliseconds

- Value specified in the -i is 100: Sampling interval of 98(=14*7) milliseconds

5.2.4 Profiler Workspace
If the workspace of the Instant Performance Profiler becomes insufficient at the time of profile data measurement, the following message
is output when the program ends.

fipp: work memory overflowed. specify memsize or more to -m option and retry.

memsize in the message is a recommended value for the Instant Performance Profiler workspace used at the time of profile data
measurement. If this message is output, enlarge the Instant Performance Profiler workspace by specifying the -m memsize option with the
fipp command. Then, measure profiled data again.

5.2.5 -pall Option
When the -pall option is specified with the fipppx command or fipp command, the information of all processes is output. If a parallel process
is large, processing may take time. The fipp command measures the profile data of all processes. If the execution of the fipppx command
or fipp command takes time, we recommend to output data in batches by using saved profile data and limiting processes, instead of
outputting the information of all processes at one time.

5.2.6 CPU Performance Characteristics
The Instant Performance Profiler itself is included in the CPU Performance Characteristics.

5.2.7 Cost Information
- The costs of the functions with the same name are appropriated as the costs of a single function, even if they are substantially different.

If the optimization option (-O1 or higher) is specified at the time of compilation, the line information of each instruction may become
different from the source lines due to an impact of optimization. This applies, for example, to the case where the line information of each
instruction becomes the starting position of a loop and costs are appropriated at the starting point of the loop.

- When the information total level for output items is Application, the cost of the entire program will be output.

- Since loop cost distribution information and line cost distribution information contain costs that are not included in aggregate
calculation, the cost of the entire program may not match the total of individual costs.

- It is expected that the percentage of the cost of each task to the cost of the entire program is small. If you do not specify the number of
outputs (-l option) for procedure information when outputting profile result, 10 procedure information items are output by default in the
order of cost from highest. Therefore, task information may not be output.

- For a program created using a source code that includes a header file, profile data is output as the line numbers in the header file by
handling cost information corresponding to the header file.

- In an inlined program, the cost of the inlined portion is counted as the cost of the inlined caller's procedure.

- When you measure costs with the Instant Performance Profiler, the following cost information may appear on the next line number of
the function call line.

- Waiting cost for synchronization between threads

- MPI cost

- 118 -

- User-defined function cost measured with -Puserfunc option

 Example

Ignore lines with no processing, such as comment lines.

67 void call_barrier()

68 {

69 int idx=0, cnt=10000;

70 for (idx=0; idx<cnt; idx++)

71 {

72 MPI_Barrier(MPI_COMM_WORLD);

73 /* comment */

74 }

75 return;

76 }

 MPI % Communication (s) Line

--

 33 94.2857 0.3430 -- Process 1

--

 20 57.1429 0.2079 74 call_barrier

 12 34.2857 0.1247 18 main

 1 2.8571 0.0104 64 main

If the next operation (in the example, " } ") is on the same line, the line numbers do not shift.

67 void call_barrier()

68 {

69 int idx=0, cnt=10000;

70 for (idx=0; idx<cnt; idx++) { MPI_Barrier(MPI_COMM_WORLD); } return; }

 MPI % Communication (s) Line

 --

 33 91.6667 0.3362 -- Process 1

 --

 12 33.3333 0.1223 18 main

 1 2.7778 0.0102 64 main

 20 55.5556 0.2038 70 call_barrier

- MPI cost and Waiting cost for synchronization between threads information may not be output due to optimization effects.

5.2.8 Source Code Information
If no user procedures are included in the top five procedures in the procedure cost distribution information of the Instant Performance
Profiler, source code information is not output. If this applies, the following message is output.

Symbol information up to the 5th do not include information which relates to the source code.

5.2.9 Call Graph Information
- For the call graph information of the Instant Performance Profiler, the call traces of the following programs may not be able to be

analyzed.

When the frame pointer register is not guaranteed due to optimization effects

If the nest level of the call trace is 1, the nest level is output as "<???>". If the nest level of the call trace is 2 or higher, call graph
information is output in error. In order to output call graph information correctly, specify the following option at the time of
compilation.

- For Fortran and C/C++ (Trad Mode) : -Knoomitfp option

- 119 -

- For C/C++ (Clang Mode) : -fno-omit-frame-pointer option

For more information, see the "Fortran User's Guide", "C User's Guide", or the "C++ User's Guide".

When the nest level of a call trace becomes 128 or higher

The nest level is output as "<???>".

When the sampling interrupt occurs at the entry or exit of the procedure

call graph information may be output incorrectly, failing to correctly analyze the call source. This phenomenon may have occurred
if line cost distribution information contains the costs of the following lines:

For a Fortran program

- SUBROUTINE statement

- FUNCTION statement

- ENTRY statement

- RETURN statement

- END statement

For C/C++ program

- Brace that indicates the start of a function

- Brace that indicates the end of a function

- return statement

- In an inlined program, the cost of the inlined portion is counted as the cost of the inlined caller's procedure.

- The following two of a certain procedure may not be equal:

- The value of the procedure cost at the Application level in the procedure cost distribution information

- The total value of the procedure cost in the call graph information

5.2.10 Cost Information for Line Number 0
There may be costs accrued at line number 0. If cost information for line number 0 exists, the output is as follows:

Cost Information

Outputs cost information on line number 0 in the process unit in which the cost was accrued. Multiple lines may be output. The procedure
name includes the procedure name in which the cost was accrued.

Source Code Information

Outputs the total cost accrued at line number 0 to the first line of source code (line0). Fixed values "/* other costs */" are output to the
source code.

5.2.11 -u option
- If the procedure name is changed when compiled, the procedure name and the generated procedure name may not match and sum

correctly. For the procedure name after compiling, see the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide".

- When specifying -u option and -f func_name option at the same time, there are the following precautions.

- If a generated procedure name is specified for the -f func_name option, outputs the procedure information to which the generated
procedure belongs.

- If the cost of procedure or generated procedure is 0 and the total cost of procedure and generated procedure is 1 or greater, it outputs
a warning message and ignores the -f func_name option.

- In some cost information, procedure_name may not be output (refer to Created procedure name on "Table 2.6 Names of Generated
Procedures for Thread Parallel Programs" for procedure_name). In this case, if you specify -u option, the output item, "@name", of the
cost information will be blank.

- 120 -

5.2.12 -Minlined option
In the case when the executable contains many functions inlined by compiler optimization, the Instant Performance Profiler may take a long
time to process or use more memory.

5.2.13 Sampling Number
If you use the Instant Performance Profiler to measure a program that includes sleep functions(sleep, usleep, nanosleep) or input/output
statement processing, the sampling number of cost information may not be output correctly.

5.2.14 Signal Interrupt by Sampling
The Instant Performance Profiler sampling is implemented with signal interrupts (SIGVTALRM). Therefore, if you use a function that is
affected by a signal interrupt, it may not work as expected. In this case, you should modify the program assuming that a signal interrupt
occurs.

5.3 Notes on the Advanced Performance Profiler

5.3.1 MPI Thread Support
If the thread support level is MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE, the Advanced Performance Profiler cannot
measure profile data correctly.

5.3.2 CPU Performance Analysis Information
If you specify the -Hmethod=fast option, information is measured even while the process for which measurement is performed is in the
Sleep state and is not assigned to a CPU. For example, the value of the execution time of the CPU performance analysis function may be
greater compared with the case where the -Hmethod=normal option is specified.

The Advanced Performance Profiler itself is included in the CPU Performance Analysis information.

5.3.3 -Hevent_raw Option
If the -Hevent_raw option is specified together with the -Hmethod=normal option, you cannot specify the same event number multiple
times. The following error message is output, and the program is aborted.

RTINF2xxx : Internal error. PAPI return code = xxx.

5.3.4 Elapsed Time Information for MPI Library
In the case of an application created with the mpiFCC command, the name of a C++ language member function is output as the MPI library
name for the elapsed time information of an MPI library. The Advanced Performance Profiler cannot measure the elapsed time information
of an MPI library for MPI functions called from a child thread.

5.3.5 CPU Binding
When measuring profile data, you must control the bindings so that threads and CPU have a one-to-one relationship.

For more information about CPU binding, see the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide" when using thread-
parallel program.
Use the VCOORD file for CPU binding when using non-thread-parallel and MPI program (using mpiexec command). See { -vcoordfile |
--vcoordfile } option in "MPI User's Guide" to specify the VCOORD file. Set the number of CPUs (cores) to "1" (core=1) for all processes
in the VCOORD file.
Use "taskset" or "numactl" command for CPU binding when using neither thread-parallel nor MPI program. For more information, see the
man page.

- 121 -

5.3.6 Routines that Cannot Measure MPI Communication Cost Information
Some routines defined in "mpi_f08.mod" or "mpi_f08_ext.mod" cannot measure "3.2.2.3 MPI Communication Cost Information". For
"mpi_f08.mod" and "mpi_f08_ext.mod", see "MPI User's Guide".

5.4 Notes on the CPU Performance Analysis Report

5.4.1 CPU Performance Analysis Report File
If CPU Performance Analysis Report File with "4.1.6 Creating a CPU Performance Analysis Report"(cpu_pa_report.xlsm) is saved to a file,
new read processing is not performed. To read different measurement result, do not save the file after data reading, or copy a new CPU
Performance Analysis Report file.

5.4.2 Dynamically Generated Processes
The CPU Performance Analysis Report does not support dynamically generated processes.

- 122 -

Appendix A Troubleshooting
The following describes troubleshooting for the Profiler.

A.1 Instant Performance Profiler

A.1.1 Performing profile data measurement results in longer execution time
compared with normal execution

When measuring profile data, if the execution time is longer than the normal execution time, one of the following causes may occur.

- This may be due to the sampling overhead of the Instant Performance Profiler. By increasing the sampling interval with the -i option
of the fipp command, you can reduce the number of overhead occurrences and reduce the execution time of the program. For
information about the fipp command, see the "2.1.4 Measuring Profile Data ".

- The Instant Performance Profiler reads the information required for measurement from the program, but if the number of lines, files,
or symbols in program is large, the loading process may take much time. If the scope of measurement can be limited to a specific object
(for example, by using the -Sregion option), you can reduce the time of loading process by specifying the -Nnoline or -ffj-no-line option
when generating objects that are not to be measured. For -Nnoline or -ffj-no-line option, see the "Fortran User's Guide", "C User's
Guide", or "C++ User's Guide". However, objects with the -Nnoline or -ffj-no-line option do not output the following information.

- "Procedure start line number" and "Procedure end line number" in "2.2.2.4.1 Procedure Cost Distribution Information "

- "2.2.2.4.2 Loop Cost Distribution Information"

- "2.2.2.4.3 Line Cost Distribution Information"

A.1.2 Memory usage increases when measuring the profile data compared
with the normal operation

If the memory usage increases when measuring the profile data compared with the normal operation, the following causes may apply.

When measuring the profile data by the Instant Performance Profiler, area of memory for the procedure information, loop information and
line information of the executable file (hereinafter referred to as a debug information) is stored as a process in an area of memory separate
from the area allocated by using the fipp command with the -m memsize option. Therefore, the memory usage may increase to cause the
profile data measurement to fail due to insufficient memory. In that case, reduce the debug information for the executable file and measure
the profile data. As a guide for the memory usage for debug information, appropriately 300 byte per procedure, 150 byte per loop, and 150
byte per line are required, respectively. However, the debug information changes depending on the length of the procedure name, number
of execution threads, and options specified for the Instant Performance Profiler. In addition, you can reduce the debug information by
enabling the compiler option -Nnoline or -ffj-no-line when compiling the objects so that the memory for the loop information and line
information will not be allocated any more. For -Nnoline option, see the "Fortran User's Guide", "C User's Guide", or "C++ User's Guide".
However, objects with the -Nnoline option do not output the following information.

- "Procedure start line number" and "Procedure end line number" in "2.2.2.4.1 Procedure Cost Distribution Information "

- "2.2.2.4.2 Loop Cost Distribution Information"

- "2.2.2.4.3 Line Cost Distribution Information"

A.1.3 A procedure name that does not exist in the source code (such as a
library name) appears

To measure profile data only with user procedure names, specify the -Puserfunc option with the fipp command. For details on the fipp
command, see "2.1.4 Measuring Profile Data".

A.1.4 Fail to open profile data
It is possible that the application that is a target of profile data measurement has not ended normally. Measure the profile data again.

- 123 -

A.1.5 The symbol __?unknown is output
During profile data measurement, it may be found that a cost does not correspond to any procedure. This cost is output with the symbol name
"__?unknown". When measuring thread parallel programs, waiting cost for synchronization between threads may apply to this case. The
output of this symbol may be suppressed by enlarging the sampling interval with the -i option of the fipp command at the time of profile
data measurement. Also, the -Icall and -Inocall options of the fipp command differ in the process of tracing the frame pointers, and if you
measure call graph information with the -Icall option of the fipp command at the time of profile data measurement, the symbol may not be
output. For details of the fipp command, see the "2.1.4 Measuring Profile Data".

A.2 Advanced Performance Profiler

A.2.1 Performing profile data measurement results in longer execution time
compared with normal execution

You can shorten the execution time of the Advanced Performance Profiler by reducing the number of measurement regions and the number
of calls in the Advanced Profiler routine.

A.2.2 Fail to open profile data
It is possible that the application that is a target of profile data measurement has not ended normally. Measure the profile data again.

A.3 CPU Performance Analysis Report

A.3.1 Fail to load CSV Format File (File line limit exceeded)
If the CSV format file has more than 1048576 lines, Excel cannot load the CSV format file because it exceeds the maximum number of lines
that Excel can handle. In this case, the following message will be output. The workaround is to keep the number of lines in the CSV format
file within the maximum number of lines (1048576 lines).

The file format is not supported.

Here is how to reduce the number of lines in the CSV file. (Can be used in combination)

1. Reduce the number of measurement regions of fapp_start/fapp_stop.

2. Use the argument level of fapp_start/fapp_stop.
After dividing the levels by the level argument, use the -L option to suppress the output of unnecessary regions.

3. The -Inompi option of the fapppx command suppresses the output of MPI information.

4. By specifying the -p<n>,limit=<m> option of the fapppx command, reduce the output information.

- 124 -

Appendix B List of Messages
This appendix describes typical messages output by the Profiler. Messages are output to the standard error output.

B.1 List of Message (fipp command)

fipp: -C or -A option is not specified.

[Message Explanation]

The -C option or -A option is not specified.

[System Behavior]

The system terminates the processing.

[User Response]

Specify the -C option or -A option.

fipp: -d option is not specified.

[Message Explanation]

The -d option is not specified.

[System Behavior]

The system terminates the processing.

[User Response]

Specify the -d option.

fipp: The specified argument of -d option is not directory.

[Message Explanation]

The argument of the -d option is incorrectly specified.

[System Behavior]

The system terminates the processing.

[User Response]

Confirm whether the argument of the -d option is correctly specified.

fipp: The specified directory in -d option is permission denied.

[Message Explanation]

The directory specified in the -d option does not have read, write, or execute permission.

[System Behavior]

The system terminates the processing.

[User Response]

Set read, write, and execute permission on the directory specified in the -d option.

fipp: The executable program was not specified to an operand.

[Message Explanation]

No executable file is specified, or the executable file does not exist.

- 125 -

[System Behavior]

The system terminates the processing.

[User Response]

Specify the existing executable file.

fipp: The specified argument of -I parm option is invalid.

[Message Explanation]

The wrong argument parm is specified in the -I option.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fipp: The specified argument of -l parm option is not integer.

[Message Explanation]

The non-numerical argument parm is specified in the -l option.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fipp: The specified value of -l parm option is outside the range.
 The default value is applied. { limit = 0 }

[Message Explanation]

The argument parm specified in the -l option is outside the range.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system enables the -l 0 option and continues the processing.

[User Response]

Correct the argument parm.

fipp: The specified argument of -H option is invalid.

[Message Explanation]

The argument of the -H option is incorrectly specified.

- 126 -

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument of the -H option.

fipp: The specified argument of -P parm option is invalid.

[Message Explanation]

The argument parm specified in the -P option is incorrect.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fipp: -Inocall option cannot be specified together with -Puserfunc option.

[Message Explanation]

The -Puserfunc and -Inocall options are specified together.

[System Behavior]

The system terminates the processing.

[User Response]

When the -Puserfunc option is specified, specify the -Icall option.

fipp: The -Icall option is necessary for specified -Puserfunc option.

[Message Explanation]

The -Puserfunc option is specified, but the -Icall option is not specified.

[System Behavior]

The system terminates the processing.

[User Response]

When the -Puserfunc option is specified, specify the -Icall options.

fipp: The specified argument of -S parm option is invalid.

[Message Explanation]

The argument parm specified in the -S option is incorrect.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

- 127 -

fipp: The specified argument of -i parm option is not integer.

[Message Explanation]

The non-numerical argument parm is specified in the -i option.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fipp: The specified value of -i parm option is outside the range.
 The default value is applied. { interval = 100 }

[Message Explanation]

The argument parm specified in the -i option is outside the range.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system enables the -i 100 option and continues the processing.

[User Response]

Correct the argument parm.

fipp: The specified argument of -m parm option is not integer.

[Message Explanation]

The non-numerical argument parm is specified in the -m option.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fipp: The specified value of -m parm option is outside the range.
 The default value is applied. { memsize = 3000 }

[Message Explanation]

The argument parm specified in the -m option is outside the range.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system enables the -m 3000 option and continues the processing.

- 128 -

[User Response]

Correct the argument parm.

fipp: The specified value of -m parm option is within the range but large.
 Therefore, the working memory may not be allocated.

[Message Explanation]

The argument parm specified in the -m option is large. If the product of the number of processes per node and the number of threads per
process is large, the working memory may not be allocated.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system continues the processing.

[User Response]

If necessary, reduce the product of the number of processes per node and the number of threads per process, or the argument parm.

fipp: The specified argument of -L parm option is invalid.

[Message Explanation]

The argument parm specified in the -L option is incorrect.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fipp: The specified argument of -W parm option is invalid.

[Message Explanation]

The argument parm specified in the -W option is incorrect.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fipp: Cannot specify the "-Wspawn" option when executing non-MPI program.

[Message Explanation]

Specifies the non-MPI program with the -Wspawn option.

[System Behavior]

The system terminates the processing.

- 129 -

[User Response]

Do not specify the -Wspawn option.

fipp: The profiling data is not correctly generated.

[Message Explanation]

The file format of the executable file is incorrect.

[System Behavior]

The system terminates the processing.

[User Response]

Check the file format of the executable file.

fipp: The files had already existed in the specified value of fjprof_spawn_dir_name key.

[Message Explanation]

A directory specified for the info key "fjprof_spawn_dir_name" already exists.

[System Behavior]

The system terminates the processing.

[User Response]

Check whether the value specified for fjprof_spawn_dir_name is correct.

fipp: The specified value of fjprof_spawn_dir_name key is not directory.

[Message Explanation]

A file having the same name as the directory specified for the info key "fjprof_spawn_dir_name" already exists.

[System Behavior]

The system terminates the processing.

[User Response]

Check whether the value specified for fjprof_spawn_dir_name is correct.

fipp: The specified value of fjprof_spawn_dir_name key is permission denied.

[Message Explanation]

You do not have permission to read, write, or execute on the directory specified for the info key "fjprof_spawn_dir_name".

[System Behavior]

The system terminates the processing.

[User Response]

Set read, write, and execute permission on the directory specified for fjprof_spawn_dir_name.

fipp: obsolete option parm1 changed to parm2.

[Message Explanation]

parm1 is an old option. Change it to the parm2 option.

[Parameters Explanation]

parm1 : old option name

parm2 : option name

- 130 -

[System Behavior]

The system enables the parm2 option and continues the processing.

[User Response]

Change the parm1 option to the parm2 option.

fipp: parm1 option was specified. parm2 option is ignored.

[Message Explanation]

Since the parm1 option is specified, the parm2 option is disabled.

[Parameters Explanation]

parm1 : Option name to be enabled

parm2 : Option name to be disabled

[System Behavior]

The system enables only the parm1 option and continues the processing.

[User Response]

When the parm1 option is specified, do not specify the parm2 option.

fipp: parm1 option cannot be specified together with parm2 option.

[Message Explanation]

You specified the parm1 option and the parm2 option at the same time.

[Parameters Explanation]

parm1 : Option name

parm2 : Option name

[System Behavior]

The system terminates the processing.

[User Response]

Delete either the parm1 option or the parm2 option.

fipp: The specified argument of -M parm option is invalid.

[Message Explanation]

The wrong argument parm is specified in the -M option.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

B.2 List of Message (fipppx command)

fipppx: -A option is not specified.

- 131 -

[Message Explanation]

The -A option is not specified.

[System Behavior]

The system terminates the processing.

[User Response]

Specify the -A option.

fipppx: invalid argument of option -- parm

[Message Explanation]

The argument of parm option is incorrectly specified.

[Parameters Explanation]

parm: Invalid option name or argument

[System Behavior]

The system terminates the processing.

[User Response]

Correct the option or argument based on the parm information.

fipppx: No information on the specified region. : func_name

[Message Explanation]

There is no cost information for the procedure name func_name specified with the -f option.

[Parameters Explanation]

func_name : procedure name

[System Behavior]

The system ignores this option and continues the processing.

[User Response]

No special action is required.

fipppx: parm1 option cannot be specified together with parm2 option.

[Message Explanation]

You specified the parm1 option and the parm2 option at the same time.

[Parameters Explanation]

parm1 : Option name

parm2 : Option name

[System Behavior]

The system terminates the processing.

[User Response]

Delete either the parm1 option or the parm2 option.

- 132 -

B.3 List of Message (fapp command)

fapp: -C or -A option is not specified.

[Message Explanation]

The -C option or -A option is not specified.

[System Behavior]

The system terminates the processing.

[User Response]

Specify the -C option or -A option.

fapp: -d option is not specified.

[Message Explanation]

The -d option is not specified.

[System Behavior]

The system terminates the processing.

[User Response]

Specify the -d option.

fapp: The specified argument of -d option is not directory.

[Message Explanation]

The argument of the -d option is incorrectly specified.

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument of the -d option.

fapp: The specified directory in -d option is permission denied.

[Message Explanation]

The directory specified in the -d option does not have read, write, or execute permission.

[System Behavior]

The system terminates the processing.

[User Response]

Set read, write, and execute permission on the directory specified in the -d option.

fapp: The specified argument of -I parm option is invalid.

[Message Explanation]

The wrong argument parm is specified in the -I option.

[Parameters Explanation]

parm : Argument specified by the user

- 133 -

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

fapp: The specified argument of -H option is invalid.

[Message Explanation]

The argument of the -H option is incorrectly specified.

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument of the -H option.

fapp: The specified parm argument of -H option is invalid.

[Message Explanation]

The argument of the -H option is incorrectly specified.

[Parameters Explanation]

parm : "event=", "event_raw=", "mode=", or "method="

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument of the -H option.

fapp: The number of PMU event specified to -Hevent_raw option exceed the limit. (max = 8)

[Message Explanation]

Too many numerical values were specified as arguments of the -Hevent_raw= option.

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument of the -H option.

fapp: The specified argument of -W parm option is invalid.

[Message Explanation]

The argument parm specified in the -W option is incorrect.

[Parameters Explanation]

parm : Argument specified by the user

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument parm.

- 134 -

fapp: The executable program was not specified to an operand.

[Message Explanation]

No executable file is specified, or the executable file does not exist.

[System Behavior]

The system terminates the processing.

[User Response]

Specify the existing executable file.

fapp: The files had already existed in the specified value of fjprof_spawn_dir_name key.

[Message Explanation]

A directory specified for the info key "fjprof_spawn_dir_name" already exists.

[System Behavior]

The system terminates the processing.

[User Response]

Check whether the value specified for fjprof_spawn_dir_name is correct.

fapp: The specified value of fjprof_spawn_dir_name key is not directory.

[Message Explanation]

A file having the same name as the directory specified for the info key "fjprof_spawn_dir_name" already exists.

[System Behavior]

The system terminates the processing.

[User Response]

Check whether the value specified for fjprof_spawn_dir_name is correct.

fapp: The specified value of fjprof_spawn_dir_name key is permission denied.

[Message Explanation]

You do not have permission to read, write, or execute on the directory specified for the info key "fjprof_spawn_dir_name".

[System Behavior]

The system terminates the processing.

[User Response]

Set read, write, and execute permission on the directory specified for fjprof_spawn_dir_name.

fapp: parm1 option was specified. parm2 option is ignored.

[Message Explanation]

Since the parm1 option is specified, the parm2 option is disabled.

[Parameters Explanation]

parm1 : Option name to be enabled

parm2 : Option name to be disabled

[System Behavior]

The system enables only the parm1 option and continues the processing.

- 135 -

[User Response]

When the parm1 option is specified, do not specify the parm2 option.

fapp: obsolete option parm1 changed to parm2.

[Message Explanation]

parm1 is an old option. Change it to the parm2 option.

[Parameters Explanation]

parm1 : Old option name

parm2 : Option name

[System Behavior]

The system enables the parm2 option and continues the processing.

[User Response]

Change the parm1 option to the parm2 option.

fapp: parm1 option cannot be specified together with parm2 option.

[Message Explanation]

You specified the parm1 option and the parm2 option at the same time.

[Parameters Explanation]

parm1 : Option name

parm2 : Option name

[System Behavior]

The system terminates the processing.

[User Response]

Delete either the parm1 option or the parm2 option.

B.4 List of Message (fapppx command)

fapppx: -A option is not specified.

[Message Explanation]

The -A option is not specified.

[System Behavior]

The system terminates the processing.

[User Response]

Specify the -A option.

fapppx: invalid argument of option -- parm

[Message Explanation]

The argument of the parm option is incorrectly specified.

[Parameters Explanation]

parm : invalid option name or argument

- 136 -

[System Behavior]

The system terminates the processing.

[User Response]

Correct the argument or option parm.

fapppx: The -Hpa option is obsolete and will be removed in a future release. The option is ignored.

[Message Explanation]

The -Hpa option is no longer necessary. It is scheduled to be discarded in the future.

[System Behavior]

The system ignores this option and continues the processing.

[User Response]

No special action is required. However, we recommend not to specify the -Hpa option.

fapppx: obsolete option parm1 changed to parm2.

[Message Explanation]

parm1 is an old option. Change it to the parm2 option.

[Parameters Explanation]

parm1 : Old option name

parm2 : Option name

[System Behavior]

The system enables the parm2 option and continues the processing.

[User Response]

Change the parm1 option to the parm2 option.

- 137 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 Overview of the Profiler
	1.1 Configuration of the Profiler
	1.2 Flow of Tuning

	Chapter 2 Instant Performance Profiler
	2.1 Procedure for Using the Instant Performance Profiler
	2.1.1 Adding a Measurement Region Specifying Routine
	2.1.1.1 fipp_start / fipp_stop Subroutines (Fortran)
	2.1.1.2 fipp_start function / fipp_stop Function (C language and C++)

	2.1.2 Specifying Environment Variables
	2.1.3 Compilation
	2.1.3.1 Compiler Options
	2.1.3.1.1 Fortran
	2.1.3.1.2 C and C++ Languages

	2.1.3.2 Info Key fjprof_spawn_dir_name

	2.1.4 Measuring Profile Data
	2.1.5 Outputting Profile Result

	2.2 Profile Result
	2.2.1 Overview of Profile Result
	2.2.2 Details of Profile Result (TEXT Format)
	2.2.2.1 Environment Information for Measuring Profiling Data
	2.2.2.2 Statistics Time Information
	2.2.2.3 CPU Performance Characteristics
	2.2.2.4 Cost Information
	2.2.2.4.1 Procedure Cost Distribution Information
	2.2.2.4.2 Loop Cost Distribution Information
	2.2.2.4.3 Line Cost Distribution Information

	2.2.2.5 Call Graph Information
	2.2.2.6 Source Code Information

	2.2.3 Details of Profile Result (XML Format)
	2.2.3.1 Structure of XML format
	2.2.3.2 Details of XML format output
	2.2.3.2.1 Profiling Information <profile>
	2.2.3.2.2 Environment Information for Measuring Profiling Data <environment>
	2.2.3.2.3 Performance Information <information>
	2.2.3.2.4 Statistics Time Information <time>
	2.2.3.2.5 CPU Performance Characteristics <cpupa>
	2.2.3.2.6 Cost Information <cost>
	2.2.3.2.7 Call Graph Information <call>

	Chapter 3 Advanced Performance Profiler
	3.1 Procedure for Using the Advanced Performance Profiler
	3.1.1 Adding a Measurement Region Specifying Routine
	3.1.1.1 fapp_start / fapp_stop Subroutines (Fortran)
	3.1.1.2 fapp_start function / fapp_stop Function (C language and C++)

	3.1.2 Specifying Environment Variables
	3.1.3 Compilation
	3.1.4 Measuring Profile Data
	3.1.5 Outputting Profile Result

	3.2 Profile Result
	3.2.1 Overview of Profile Result
	3.2.2 Detail of Profile Result (TEXT Format)
	3.2.2.1 Environment Information for Measurement Profiling Data
	3.2.2.2 Statistical Time Information
	3.2.2.3 MPI Communication Cost Information
	3.2.2.4 CPU Performance Analysis Information

	3.2.3 Detail of Profile Result (XML Format)
	3.2.3.1 Structure of XML format
	3.2.3.2 Details of XML format output
	3.2.3.2.1 Profiling Information <profile>
	3.2.3.2.2 Environment Information for Measuring Profiling Data <environment>
	3.2.3.2.3 Performance Information <information>
	3.2.3.2.4 CPU Performance Analysis Information <cpupa>
	3.2.3.2.5 MPI Communication Cost Information <mpi>

	Chapter 4 CPU Performance Analysis Report
	4.1 Procedure for Using the CPU Performance Analysis Report
	4.1.1 Adding a Measurement Region Specifying Routine
	4.1.2 Specifying Environment Variables
	4.1.3 Compilation
	4.1.4 Measuring Profile Data
	4.1.5 Outputting Profile Result
	4.1.6 Creating a CPU Performance Analysis Report
	4.1.6.1 Error and Warning Messages Output by the CPU Performance Analysis Report

	4.2 CPU Performance Analysis Report Output Result
	4.2.1 Overview of CPU Performance Analysis Report Output Result
	4.2.2 Detail of CPU Performance Analysis Report Output Result
	4.2.2.1 Information
	4.2.2.2 Statistics
	4.2.2.2.1 Statistics (Single Report)
	4.2.2.2.2 Statistics (Brief, Standard, and Detail Report)

	4.2.2.3 Cycle Accounting
	4.2.2.3.1 Cycle Accounting (Brief Report)
	4.2.2.3.2 Cycle Accounting (Standard and Detail Reports)

	4.2.2.4 Busy
	4.2.2.4.1 Busy (Brief Report)
	4.2.2.4.2 Busy (Standard Report)
	4.2.2.4.3 Busy (Detail Report)

	4.2.2.5 Cache
	4.2.2.5.1 Cache (Brief Report)
	4.2.2.5.2 Cache (Standard and Detail Reports)

	4.2.2.6 Instruction
	4.2.2.6.1 Instruction (Brief Report)
	4.2.2.6.2 Instruction (Standard Report)
	4.2.2.6.3 Instruction (Detail Report)

	4.2.2.7 FLOPS
	4.2.2.7.1 FLOPS (Brief Report)
	4.2.2.7.2 FLOPS (Standard and Detail Reports)

	4.2.2.8 Extra
	4.2.2.9 Hardware Prefetch Rate (%) (/Hardware Prefetch)
	4.2.2.10 Data Transfer CMGs
	4.2.2.11 Power Consumption (W)

	Chapter 5 Notes
	5.1 Notes Common to Profilers
	5.1.1 COARRAY
	5.1.2 Impact of Compiler Options
	5.1.3 Node-Sharing Job
	5.1.4 Targets of Measurement of Thread Parallelization Information
	5.1.5 mpiexec command
	5.1.6 Impact of Using the MPI Profiling Interface
	5.1.7 Mixed Language Programming for MPI Program
	5.1.8 Exit Status
	5.1.9 LD_PRELOAD

	5.2 Notes on the Instant Performance Profiler
	5.2.1 Impact of Compiler Options
	5.2.2 Prohibition of Catching or Issuing SIGVTALRM Signal
	5.2.3 Sampling Interval at the Time of Profile Data Measurement
	5.2.4 Profiler Workspace
	5.2.5 -pall Option
	5.2.6 CPU Performance Characteristics
	5.2.7 Cost Information
	5.2.8 Source Code Information
	5.2.9 Call Graph Information
	5.2.10 Cost Information for Line Number 0
	5.2.11 -u option
	5.2.12 -Minlined option
	5.2.13 Sampling Number
	5.2.14 Signal Interrupt by Sampling

	5.3 Notes on the Advanced Performance Profiler
	5.3.1 MPI Thread Support
	5.3.2 CPU Performance Analysis Information
	5.3.3 -Hevent_raw Option
	5.3.4 Elapsed Time Information for MPI Library
	5.3.5 CPU Binding
	5.3.6 Routines that Cannot Measure MPI Communication Cost Information

	5.4 Notes on the CPU Performance Analysis Report
	5.4.1 CPU Performance Analysis Report File
	5.4.2 Dynamically Generated Processes

	Appendix A Troubleshooting
	A.1 Instant Performance Profiler
	A.1.1 Performing profile data measurement results in longer execution time compared with normal execution
	A.1.2 Memory usage increases when measuring the profile data compared with the normal operation
	A.1.3 A procedure name that does not exist in the source code (such as a library name) appears
	A.1.4 Fail to open profile data
	A.1.5 The symbol __?unknown is output

	A.2 Advanced Performance Profiler
	A.2.1 Performing profile data measurement results in longer execution time compared with normal execution
	A.2.2 Fail to open profile data

	A.3 CPU Performance Analysis Report
	A.3.1 Fail to load CSV Format File (File line limit exceeded)

	Appendix B List of Messages
	B.1 List of Message (fipp command)
	B.2 List of Message (fipppx command)
	B.3 List of Message (fapp command)
	B.4 List of Message (fapppx command)

