

FUJITSU Software

Agile+ Relief C/C++ V1.1.1

Manual for IPA/SEC-C/C++ Check

 B1WD-3608-01ENZ0(00)

January 2023

ii

Preface

IPA/SEC-C/C++ check of Agile+ Relief C/C++ (hereinafter called Agile+ Relief) is an application program

for IPA/SEC-C/C++ coding verification by analyzing the source program and include file in C/C++

language.

This document specifies the IPA/SEC-C/C++ coding violation issued in Agile+ Relief.

About the message output for program fault in Agile+ Relief, please refer to "Message Indications

Manual".

About the error message output in Agile+ Relief, please refer to "Command Manual".

References
[Embedded System development Coding Reference guide [C Language Edition]] - Software

Engineering Center, Technology Headquarters, Information-technology Promotion Agency, Japan.

[Embedded System development Coding Reference guide [C++ Language Edition]] - Software

Engineering Center, Technology Headquarters, Information-technology Promotion Agency, Japan.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and

other countries.

MISRA and its logo are registered trademarks of MIRA Ltd, held on behalf of the MISRA Consortium.

CERT is registered trademarks of Carnegie Mellon University in the United States.

The names of other products and services referred to in this document are trademarks of their

respective developers and manufacturers.

particular technologies disclosed in this document may be subject to the Foreign Exchange and Foreign

Trade Control Law. Export of this document or any part thereof, or supply of this document or any part

thereof to a foreign resident, must be undertaken only in compliance with the provisions of the law.

 FUJITSU LIMITED

Note

⚫ Transmission or copying of this document in whole or in part is prohibited.

⚫ The content of this document is subject to change without prior notice.

All rights reserved, Copyright(C) 2006-2020 FUJITSU LIMITED.

iii

Contents

1. GUI FOR IPA/SEC-C/C++ CODING CHECK ... 1

1.1 CREATE PROJECT .. 1
1.2 CHECK FOR IPA/SEC-C/C++ CODING MANNER VIOLATION ... 10
1.3 EXPERIENCED WITH AGILE+ RELIEF C/C++ .. 16
1.4 SETTING UP RULE CHECKING ... 18

2. IPA/SEC-C/C++ CODING MANNER CHECK WITH COMMAND LINE 20

2.1 FUNCTIONS OF COMMAND ... 20
2.2 FORMAT OF COMMAND .. 20
2.3 COMMAND OPTIONS .. 20
2.4 RETURN VALUE .. 21
2.5 OUTPUT FILES ... 21
2.6 ERROR MESSAGES .. 22
2.7 EXAMPLE FOR USE .. 24

2.7.1 Analyze with pgr5 command .. 24
2.7.2 Message Checking in the pgrsec Command... 24

3. POINTS OF MESSAGE INDICATION ... 26

3.1 RELIABILITY .. 27
3.2 MAINTAINABILITY .. 89
3.3 PORTABILITY .. 187
3.4 EFFICIENCY .. 208
3.5 CODING MISS ... 213

APPENDIX A RULE LIST ... 237

A.1 IPA/SEC-C V1 RULE .. 237
A.2 IPA/SEC-C V2 RULE .. 238
A.3 IPA/SEC-C V3 RULE .. 239
A.4 IPA/SEC-C++ V1 RULE ... 240
A.5 IPA/SEC-C++ V2 RULE ... 241

1

1. GUI for IPA/SEC-C/C++ Coding Check

This section specifies how to check IPA/SEC-C/C++ coding through GUI.

1.1 Create Project

First, create the desired project in Agile+ Relief for use.

In Agile+ Relief, the management of source file in the unit of project is required for the
analysis of source file (source program) in C/C++.

Select [New Project…] from [File] menu in [Main Window].

[Project Wizard 1/3] dialog box is displayed.

2

 Please enter [sample] for project name.

 Please enter the project name with half-width numbers and English letters only. In
addition, do not spell the project name in Japanese.

The option of [Create this as a child project under the selected one] is not available here.

Entry of the desired directory is required for project saving. In this Example, please enter
[C:\demo\Example].

When a project name is entered with the directory name already existing, it will be
automatically added to the end of directory.

After the above settings are done, the dialog box is displayed as follows:

3

Choose [Next].

[Project Wizard 2/3] dialog box is displayed.

4

Perform project summary settings in this dialog box.

For the contents set here will be displayed in main window, an easy to understand
description will facilitate the convenience of later project reference.

 The punctuations, including Japanese (except half-width kana) and space are
allowed in project summary. (Also can be omitted).

[Sample Project] is set for this Example.

After the above settings are done,the dialog box is displayed as follows:

Choose [Next].

5

[Project Wizard 3/3] dialog box is displayed.

In this dialog box, specify the source file to be registered in project.

[File] is predetermined for file selection.

[C/C++ Source] is predetermined for file type.

The directory will be displayed on the left to the center of the dialog box.

Select [sample_sec] from the installation directory for Agile+ Relief C/C++.

 For usual Agile+ Relief C/C++ installation, the directories of [sample], [sample_new],
[sample_misra], [sample_sec] and [sample_cert], in which Example is installed, will
be created in the sub directory under the Agile+ Relief C/C++ installation directory.

The source files to be used in Example are displayed in the right view to the center of the
dialog box.

Drag the source files displayed in the view, and let the Example file in the state of select
all.

6

[Project Wizard 3/3] settings are described above.

Choose [Finish].

The project creation has been finished.

7

The settings (option settings) required for analysis are as follows:

[Project Preferences] dialog box is displayed.

Select [Coding Guidelines] option, and do check of [All (Coding Guideline violations
included)].

Select the rules for check in [Coding Guidelines].

[MISRA-C V1] to check according to MISRA-C:1998

[MISRA-C V2] to check according to MISRA-C:2004

[MISRA-C V3] to check according to MISRA-C:2012 and MISRA-C:2012 Amendment 1.

8

[MISRA-C++ V1] to check according to MISRA-C++:2008

[IPA/SEC-C V1] to check according to IPA/SEC-C V1

[IPA/SEC-C V2] to check according to IPA/SEC-C V2

[IPA/SEC-C V3] to check according to IPA/SEC-C V3

[IPA/SEC-C++ V1] to check according to IPA/SEC-C++ V1

[IPA/SEC-C++ V2] to check according to IPA/SEC-C++ V2

[CERT C] to check according to CERT C.

- [MISRA-C V1], [MISRA-C V2] and [MISRA-C++ V1] cannot be selected when no license for MISRA
option reserved.
- [MISRA-C V3] checks Coding Guideline violations by the rule added by MISRA-C:2012 Amendment
1 in addition to MISRA-C:2012. Please refer to "3.3 MISRA-C V3" in "MISRA Option Manual", when
you want to check Coding Guideline violations by the rule of MISRA-C:2012.
- If you don't have CERT C option license, you can't select [CERT C].

Select [IPA/SEC-C V1] here.

Select the contents for rule violation check in [Content to Confirm].

[Coding Guideline violations only] means to check the specified rule violations only.

[All (Coding Guideline violations included)] means to check not only the specified rule
violations, but also the problems according to Premier’s view.

In order to improve the program quality, it is recommended to check both coding manner
and the problems according to Premier’s view.

Select [All (Coding Guideline violations included)] here.

Choose [OK].

When the [Perform analyzing right now?] message is displayed, choose [Yes].

 If [No] selected, please select [Analyze All] from [Analyze] menu.

9

During analysis, the result and state of analysis are displayed in log display window.

There are no errors in the Example analysis. When the analysis is not performable
because of error in actual operation, please recheck the settings for compiler type,
include and macro, etc.

10

1.2 Check for IPA/SEC-C/C++ Coding Manner Violation
Be sure check for IPA/SEC-C/C++ coding manner violation is selected.

Select Example.c in [Main Window], and select [Coding Guideline Violations Viewer] from
[Tools] menu.

[Coding Guideline Violations Viewer] window is displayed.

11

Briefly introduce how to use [Coding Guideline Violations Viewer] window.

The files violating IPA/SEC-C/C++ coding manner are displayed in [File List] window.

The number of rules violating IPA/SEC-C/C++ coding manner are displayed in [Rule List].

The contents of message indication and the locations of indicated source program are

[File List]window [Rule List]window

[Message List]window

[Message]window

12

displayed in [Message List].

If [File List] on toolbar is set to be [Rule List], the [File List] window and [Rule List]
window will be substituted with each other.

When rule ID is selected in [Rule List] window, the corresponding message indication will
be displayed in [Message List] window.

Confirm the indicated locations for violation in turn and then correct source file.

Some of Rule ID for IPA/SEC-C/C++ coding manner may point to the same message
indication.

For example: The message ID indicated in line 22 of Example: The problem indicated in
pgr0733 is the same with that of R2.8.3 and M4.4.3.

It is recommended to select all rules in [Rule List] window, and perform corrections
according to the line number of source, which is of less repeatability and higher efficiency
than to select rule one by one in [Rule List] window and correct them in turn.

In Example source, please click [Line] title for sequencing incrementally and then correct
them in turn.

Select pgr0733 in line 22, and right click to select [Open Pgr Viewer].

13

Viewer will be started.

14

Confirm the revision point, and do certain modification with the existing editor.

If the meaning of the message indication is hard to understand, please select the
message and right click to select [Message Details].

Help window will be started. Please do correction with reference to help.

15

16

1.3 Experienced with Agile+ Relief C/C++

The procedures for a new project of IPA/SEC-C/C++ coding manner check are the same
with the normal project .

The only difference is the addition of procedures for [Coding Guidelines] of [Project
Preferences].

17

In addition, the display of [Message] in [Message List] of [Coding Guideline Violations
Viewer] window is a little different from that of [Rule List]. The rest, also the procedures
are similar to each other.

18

1.4 Setting up Rule Checking

When only the necessary rules other than all of them are required for checking, you need
to create a definition file for rule checking.

Please create the select message file in the form as follows:

Please write comma (;) at the line beginning of comment

Please write a rule ID or group name in one line.
The barced number can be recorded in certain condition.

Please use half-width English lowercase character for group name.

For IPA/SEC-C V1, write explicitly at the beginning of the file.
 ;Rule=SEC-C V1

For IPA/SEC-C V2, write explicitly at the beginning of the file.
 ;Rule=SEC-C V2

For IPA/SEC-C V3, write explicitly at the beginning of the file.
 ;Rule=SEC-C V3

For IPA/SEC-C++ V1, write explicitly at the beginning of the file.
 ;Rule=SEC-C++ V1

For IPA/SEC-C++ V2, write explicitly at the beginning of the file.
 ;Rule=SEC-C++ V2

For example:) Take R1.1.1, M1.2.1(1), M1.7.1 and Agile+ Relief 's a group as the objects
to check.

The definition file for rule checking uses the [Item Selection] option of the[Project
Preferences]dialogue box.

If you need to check the necessary rules only, select [Customizing point], and add the
check indication definition file that describes the check rules.

If you need to check all rules, select [All points].

If [Default value] is selected, the following check indication definition file will be applied.

 [Directory]

 For Windows:

 "(Agile+ Relief C/C++ Setup Directory)\Analyze\EPOM\MessageInfo"

 For Linux:

 "(Agile+ Relief C/C++ Setup Directory)/Analyze/EPOM/MessageInfo"

 [File name]

 IPA/SEC-C V1 : default-secv1.rul

 IPA/SEC-C V2 : default-secv2.rul

;Rule=SEC-C V1
R1.1.1
M1.2.1(1)
M1.7.1
group-a

19

 IPA/SEC-C V3 : default-secv3.rul

IPA/SEC-C++ V1 : default-secpv1.rul

IPA/SEC-C++ V2 : default-secpv2.rul

20

2. IPA/SEC-C/C++ Coding Manner Check with Command Line

This section specifies how to use pgrsec command in command line.

2.1 Functions of Command

The pgrsec command is used for the check of message indications output by pgr5
command, and output message for IPA/SEC-C/C++ coding manner violation. In addition,
it is necessary that the message information output by pgr5 command should be output
as files in csv format.

2.2 Format of Command

% pgrsec [-V] [--pgr] -T IPA/SEC-C/C++ version [-Z definition file for rule
checking]

 [--qm] input file

Note: [] means omittable.

2.3 Command Options

 option Description

-V Display the version, level and release of
pgrsec command. When the option is
specified, others will be ignored.

--pgr The option shall be specified when a
concurrent output of pgr5 command
contents is required.

-T IPA/SEC-C/C++ version Specify the version of IPA/SEC-C/C++ to
ouput.Please make sure it is specified.

Please don't insert space between -T
option and IPA/SEC-C/C++ version.

1: Check according to IPA/SEC-C V1
rules.

2: Check according to IPA/SEC-C V2
rules.

3: Check according to IPA/SEC-C V3
rules.

P1: Check according to IPA/SEC-C++ V1
rules.

P2: Check according to IPA/SEC-C++ V2
rules.

-Z definition file for rule checking Specify the select message file when only
the output of desired rules is required.

About the methods for the description of

21

select message file, please refer to [1.4
Setting up Rule Checking].

All rules will be output when this option is
not specified.

--qm This is the output format for the analysis

result consolidation mode of the Agile+

Relief(*). Specify this option to use the

analysis result consolidation mode of the

Agile+ Relief. For the analysis result

consolidation mode of the Agile+ Relief,

please refer to "2.3.2 Procedure of using

under analysis result consolidation mode"

in "Agile+ Relief Manual".

(*)Agile+ Relief is a function that enables
the visualization of problems related to
quality by checking quality data that
analyzed the source programs on a daily
basis. Please note that using this Agile+
Relief requires a license.

Input File CSV format is specified to save the
filename of contents indicated by pgr5
command.

Files will be saved in the following codes:

Chinese OS

 GB2312 code

Other Language OS

 Windows : SJIS code

 Red Hat Enterprise Linux 5 or 6

 : UTF-8 code

 Others : EUC code

2.4 Return Value

0 will be returned when pgrsec command normally ended, a value other than 0 will be
returned for error occurence.

2.5 Output Files

File will be output in CSV.

Example of File Output

“C:\Example.c”,22,”R2.8.3”,”○”, “Reliability”, “b”, “pgr0773”,

22

“No function declaration found before the function definition ‘SetCntProc’”.

Format Description

source file name “C:\Example.c”

line number 22

rule ID “R2.8.3”

rule classification “○”

rule group “Reliability”

Message group “b”

Message ID “pgr0773”

Message Indication “No function declaration found before the function
definition ‘SetCntProc’”.

2.6 Error Messages

PGRSEC_0001 Input file was not specified.

Input file is not specified. Please check the command format, and then reexecute.

PGRSEC_0002 Option cannot be specified after input file designation.

Command format is incorrect. Please check the command format and then reexecute.

PGRSEC_0003 Multiple input files cannot be specified.

Multiple input files are specified. Please check the command format and then reexecute.

PGRSEC_0004 Unknown option was specified.

Option Error. Please be sure the option is right.

PGRSEC_0005 -T option was not specified.

-T1 option, -T2 option, -T3 option, -TP1 option, or -TP2 option are not specified. Please
be sure to specify one of options.

PGRSEC_0006 -T option cannot be specified at the same time.

-T1 option, -T2 option, -T3 option, -TP1 option, and -TP2 option cannot be specified at
the same time. Please specify them one-at-a-time.

23

PGRSEC_0040 Parameter for –Z option was not specified.

No select message file was specified. Please check the command formation and then
reexecute.

24

2.7 Example for Use

2.7.1 Analyze with pgr5 command

Source file is analyzed with pgr5 command at first to obtain the message indication to be
checked in pgrsec command.

<Example>

pgr5 -F SEC_C_V1.idt --csv Example.c > message.csv

 (1) (2) (3) (4)

(1): Specify the identifier file for IPA/SEC-C/C++ analysis.

The identifier files for IPA/SEC-C/C++ analysis are saved in the following directories.

[Identifier File Saving Directory]

In Windows:

"(Agile+ Relief C/C++ Installation Directory)\Analyze\EPOM\SECInfo"

In Linux:

"(Agile+ Relief C/C++ Installation Directory)/Analyze/EPOM/SECInfo"

[Type of identifier files]

IPA/SEC-C V1 : SEC_C_V1.idt

IPA/SEC-C V2 : SEC_C_V2.idt

IPA/SEC-C V3 : SEC_C_V3.idt

IPA/SEC-C++ V1 : SEC_C++_V1.idt

IPA/SEC-C++ V2 : SEC_C++_V2.idt

(2):Output the contents of message indications in CSV format.

(3):Analyze objective source file.

(4):Target file for saving the message output in CSV format.

For more details of pgr5 command, please refer to "Command Manual".

2.7.2 Message Checking in the pgrsec Command

IPA/SEC-C/C++ rule violations will be obtained after the check of message indication
contents obtained through pgr5 command.

25

<Example>

pgrsec -T1 -Z"c:\demo\Rule\SEC-C V1.txt" message.csv

 (1) (2) (3)

(1): Specify the version of IPA/SEC-C/C++ rule.
Please specify the following options based on IPA/SEC-C/C++ Rules Version
determined by -F option in the pgr5 command.

IPA/SEC-C V1 : -T1

IPA/SEC-C V2 : -T2

IPA/SEC-C V3 : -T3

IPA/SEC-C++ V1 : -TP1

IPA/SEC-C++ V2 : -TP2

(2): The check indication definition file to be checked is recorded.

(3): The file of message indication contents output by pgr5 command in CSV format is
saved.

[Notes]

Please note the codes of input files for pgrsec((3) in the above sample).

In Chinese OS, the input file for the pgrsec command for both Windows and Linux needs

to be output in GB2312 code.

In other language OS, the input file for the pgrsec command needs to be output in SJIS

code for Windows and UTF-8 code for Red Hat Enterprise Linux 5 or 6, and the rest in

EUC code.

When the "--output_code" option is used with the pgr5 command, specify the option to
enable output with the above code. For further details regarding the pgr5 command,
please refer to the "Command Manual".

26

3. Points of Message Indication

This section specifies the examples for the points of message indications to the rules of
four qualities respectively in Agile+ Relief, such as [Reliability], [Maintainability],
[Portability] and [Efficiency].

The example for the points of message indication to [Frequent Coding Miss] is also
provided in Agile+ Relief. However, no definition has been made for the rule ID of
[Frequent Coding Miss], a prefix of [Miss] will shall be added in Agile+ Relief for unique.

The following explains the correspondence of IPA/SEC-C V1/V2/V3 rule. Please contact

us about the correspondence of IPA/SEC-C++ V1/V2 rule.

27

3.1 Reliability

R1.1.1

[Points of Message Indication in Agile+ Relief]

The automatic variable is referenced without having been set a value.

[Example 1]

int i;

if (data == 0) {

 i = 1;

}

data = i; <-[Variable "i" may be referenced before it has been set with a
value.]

28

R1.1.2

[Points of Message Indication in Agile+ Relief]

• The declaration of const variable not yet initialized.

[Example 1]

const int x; <-[The declaration “x” of const variable was not initialized.]

29

R1.2.1

[Points of Message Indication in Agile+ Relief]

• Attempt to use the string exceeding the length of array to perform the
initialization.

[Example 1]

char str[3] = "abc"; <-[Attempt to use the string “abc” exceeding the size of array “str” to
perform the initialization.]

30

R1.2.2

[Points of Message Indication in Agile+ Relief]

Some enumeration constants are assigned values while others are not.

[Example 1]

enum E1 { E11, E12 = 3, E13 } ; <-[In the declaration of the enumeration type "E1", assigned
members and unassigned members coexist.]

enum E2 { E21=1, E22, E23 = 5 } ; <-[In the declaration of the enumeration type "E2", assigned
members and unassigned members coexist.]

31

R1.3.1(1)

[Points of Message Indication in Agile+ Relief]

• The array factor is not referenced in the format of array.

[Example 1]

int data[] = { 1,2,3,4,5 };

int *p = data;

return *(p+1); <-[The mathematic operation of “p+1” is not compatible with
the format of array.]

32

R1.3.1.(2)

[Points of Message Indication in Agile+ Relief]

An arithmetic operation performed on a pointer of non-array type.

Use of a pointer of non-array type as an array.

[Example 1]

void func (int *array)

{

 int x;

 int *p = &x;

 *(array + 1) = 0; <-["array" in the pointer arithmetic operation "array + 1" is not a pointer
pointing to an array.]

 p++; <-["p" in the pointer arithmetic operation "p++" is not a pointer
pointing to an array.]

 *p = 1;

[Example 2]

void func (int *array)

{

 int x;

 int *p = &x;

 array[1] = 0; <-["array" in ["array[1]" is not a pointer pointing to an array.]

 p[1] = 1; <-["p" in "p[1]" is not a pointer pointing to an array.]

:

}

33

R1.3.2

[Points of Message Indication in Agile+ Relief]

Subtraction performed on the pointers that point to different arrays.

[Example 1]

int array1[10], array2[10];

int *p1, *p2;

int n;

p1 = array1;

p2 = array2;

n = p2 - p1; <-["p2" and "p1" of the pointer subtraction "p2 - p1" do not point to
the same array.]

34

R1.3.3

[Points of Message Indication in Agile+ Relief]:

Comparison is made between the addresses of objects of different types.

[Example1]

char *p;

long *q;

if(p < q) { <-[The expression "p < q" compares two object addresses of different
types (char *, long int *).]

35

R1.3.4 (IPA/SEC-C V2, V3 only)

[Points of Message Indication in Agile+ Relief]:

There is a parameter of pointer type or array type to which restrict is modified.

[Example1]

void func(int* restrict p) { } <-[There is a pointer that modified by restrict to the parameter
of the function "func".]

36

R2.1.1

[Points of Message Indication in Agile+ Relief]

One of the expressions on the left or right side of the operators ==, !=, <=, >=, is
of floating type.

[Example 1]

double d1, d2;

 :

if(d1 == d2) <-[The result of the comparison "d1== d2" between floating types
might not be that expected.]

37

R2.1.2

[Points of Message Indication in Agile+ Relief]

The loop counter of the for-statement is of floating-point type.

[Example 1]

float f;

for(f = 0.0 ; f < 1 ; f += 0.1) { ~ } <-[Using the floating type variable "f" as the loop counter
might result in unintended iterations.]

38

R2.1.3

[Points of Message Indication in Agile+ Relief]

• Pointer type to structure or union is recorded in 1st or 2nd parameter of memcmp
function.

[Example 1]

struct STRUCT {

 unsigned char a;

 unsigned char b;

 unsigned char c;

}

int func(struct STRUCT* s1, struct STRUCT* s2)

{

 if(memcmp((char*)s1, (char*)s2,sizeof(struct STRUCT))==0) <-[It is not ideal to perform the
comparison of structure or union with function “memcmp”.]

39

R2.2.1

[Points of Message Indication in Agile+ Relief]

• The conditional judgment other than the followings is performed to the function
call or variable recorded as if (boolean) and !if (boolean).
If(boolean)
if(!boolean)
if(boolean==0)
if(boolean!=0)

[Example 1]

 file name:file.c

 11: if(foo(10)) {

12: ~

if(foo(20) == 1) { <-[For “foo(10)”(line 11 of “file.c”) used to judge the condition
to be true or false, error might occur like in “foo(20) == 1”
when !=0 and ==0 is not applied.]

40

R2.3.1

[Points of Message Indication in Agile+ Relief]:

The operational result can not be represented in the unsigned type.

[Example1]

#define ABC 1U

unsigned int x;

x = ABC - 2; <-[The value of the unsigned expression "1U - 2" cannot be
represented by an unsigned type.]

if(x < 10)

[Example2]

#if (1u - 2u) > 128 <-["1u-2u", which is performed with unsigned types, results in a
value that cannot be represented by an unsigned type.]

[Example3]

unsigned int ui = 0xffffffff + 2 ; <- [The result of constant expression “0xffffffff + 2” containing

unsigned constant expression “0xffffffff” exceeds the bit width
of unsigned int type.]

41

R2.3.2

[Points of Message Indication in Agile+ Relief]

• Binary operation shall be braced when it is taken as an operand of ternary
operation.

• According to the different return value from ternary operation, the conversion from
underlying type to other different types might occur.

[Example 1]

x = a > 0 ? b + c : 0; <-[Operand”a > 0”of ternary operation “x = a > 0 ? b + c : 0”is
not braced with (). For a clear priority, please embrace it.]

 <-[Operand”b+c”of ternary operation “x=a>0?b+c:0”is not
braced with (). For a clear priority, please embrace it.]

[Example 2]

unsigned char uc1,uc2;

unsigned short us;

uc1 = (uc2==0) ? uc2 : us; <-”(uc2 == 0) ? uc2 : us” of “uc1=(uc2 == 0) ? uc2 : us” will be
converted to different types after operation.
(underlying type before conversion : unsigned short int , and
underlying type after conversion : unsigned char)

42

R2.3.3

[Points of Message Indication in Agile+ Relief]

• The type width of loop counter in for statement is less than that of comparison
expression.

[Example 1]

unsigned int n;

undigned char counter;

:

for(counter = 0 ;

counter < n ;

 counter++) <-[The type width of loop counter “counter” (unsigned char
type) is less than that of comparison “n” (int type), it may lead
to an infinite loop.]

{

43

R2.4.1

[Points of Message Indication in Agile+ Relief]:

Expected precision cannot be obtained with the expression.

[Example1]

double f;

int x, y;

 :

f = x * y; <-[The expression "f = x * y" might not obtain the correct value. Use "f
= (double)x * y" instead.]

if (f < x * y) <-[The expression "f < x * y" might not obtain the correct value. Use "f <
(double)x * y" instead.]

[Example2]

long long x1, x2, x3 ;

int i1, i2 ;

x1 = i1 * i2 ; <-[The correct value of the * operation in "x1 = i1 * i2" might not be able
to be obtained.]

x2 = i1 << 2 ; <-[The correct value of the << operation in "x2 = i1 << 2" might not be
able to be obtained.]

if (x3 < (i1 << 2)) <-[The correct value of the << operation in "x3 < (i1 << 2)" might not be able
to be obtained.]

44

R2.4.2

[Points of Message Indication in Agile+ Relief]

• The signed and unsigned descriptions coexist in comparison expression.

• Minus operation is performed to the signed and unsigned types.

[Example 1]

signed char sc;

unsigned char uc;

 :

if(sc == uc) <-[Unsigned “uc” and signed “sc” coexist in comparison
expression.]

[Example 2]

unsigned short x = 1 ;

if((x – 2) > 10) <-[Minus operation “x-2”is done to the signed and unsigned
types.]

45

R2.5.1

[Points of Message Indication in Agile+ Relief]:

Data may be lost due to type conversion.

[Example1]

long long x1, x2, x3 ;

int i1, i2 ;

x1 = i1 + i2 ; <-[The correct value of the + operation in "x1 = i1 + i2" might not be
able to be obtained.]

x2 = i1 - i2 ; <-[The correct value of the - operation in "x2 = i1 - i2" might not be able
to be obtained.]

if (x3 < i1 + i2) <-[The correct value of the + operation in "x3 < i1 + i2" might not be able
to be obtained.]

[Example2]

unsigned char func() {

 :

return 256; <-[Return value "256" exceeds the range of the return type of the
function "func" (return value: int, return type : unsigned
char).]

[Example3]

Filename: file1.c

50: void func(double x, int y) { ~ }

Filename: file2.c

int x, y;

:

func(x, y); <-[The correct value cannot be passed because the 1st argument "x"
of the function "func" and the corresponding parameter "x" in
the function definition in line 50 of "file1.c" are of different
types: integer and floating(argument : int , parameter :
double).]

46

R2.5.2

[Points of Message Indication in Agile+ Relief]

A unary operator (the minus sign) has been attached to an unsigned variable.

[Example 1]

unsigned long ul = 0x80000001;

long long x;

x = -ul ; <-[Appending a "minus" to the unsigned variable "ul" will not
necessarily make it negative.]

47

R2.5.3

[Points of Message Indication in Agile+ Relief]

The operational result may exceed the bit-width of the underlying type.

[Example 1]

unsigned char a = 0x1U ;

unsigned char b = 0xA0U ;

unsigned int x;

unsigned int y;

x = ~a ; <-["~a" might exceed the bit width of the underlying type unsigned
char of "a".]

y = (a + b) << 2 ; <-["(a + b) << 2" might exceed the bit width of the underlying type
unsigned char of "(a + b)".]

48

R2.5.4

[Points of Message Indication in Agile+ Relief]

The number of shifts of the bitwise shift operator is a negative constant, or has
exceeded the type size of the variable on the left.

[Example 1]

unsigned int x, y ;

x = y << -2 ; <-[The result of the shift operation "y << -2" may vary depending on
the compilers.]

x <<= -2 ; <-[The result of the shift operation "x <<= -2" may vary depending
on the compilers.]

[Example 2]

unsigned int u1, u2 ;

u1 = u2 << 32 ; <-[The number of bits specified for the shift operation "u2 << 32"
exceeds the type width of the result.]

if (u1 == (u2 >> 32)) <-[The number of bits specified for the shift operation "u2 >> 32"
exceeds the type width of the result.]

u1 <<= 32 ; <-[The number of bits specified for the shift operation "u1 <<=
32" exceeds the type width of the result.]

49

R2.6.1 (IPA/SEC-C V1 only)

[Points of Message Indication in Agile+ Relief]:

A bit field of 1 bit and signed type is declared.

[Example1]

struct STAG {

 signed int m1:1 ; <-[The bit width of signed bit field "m1" is only 1 bit.]

 unsigned int m2: 1 ;

 signed int m3: 2 ;

};

50

R2.6.1(1) (IPA/SEC-C V2, V3 only)

[Points of Message Indication in Agile+ Relief]:

A bit field of 1 bit and types other than unsigned type is declared.

[Example1]

struct STAG {

 signed int m1:1 ; <-[The bit width of signed bit field "m1" is only 1 bit.]

 unsigned int m2: 1 ;

 signed int m3: 2 ;

};

51

R2.6.1(2) (IPA/SEC-C V2, V3 only)

[Points of Message Indication in Agile+ Relief]:

A bit field of 1 bit and types other than unsigned type or _ Bool type is declared.

[Example1]

struct STAG {

 signed int m1:1 ; <-[The bit width of signed bit field "m1" is only 1 bit.]

 unsigned int m2: 1 ;

 _Bool m3: 2 ;

};

52

R2.6.1(3) (IPA/SEC-C V2, V3 only)

[Points of Message Indication in Agile+ Relief]:

The same with the message indication of R2.6.1(2). Please refer to R2.6.1(2).

53

R2.6.2

[Points of Message Indication in Agile+ Relief]

A bit-filed operation has been applied to the signed integer, type char, or a
negative constant.

[Example 1]

int x, y ;

x = y >> 2 ; <-[When the signed type variable "y" is assigned with a negative
value, the result of a right shift may vary depending on the
compiler.]

[Example 2]

int i1, i2 ;

i1 = i2 & 0x30 ; <-[The operand "i2" of the bit operation "i2 & 0x30" is signed.]

i1 <<= 3 ; <-[The operand "i1" of the bit operation "i1 <<= 3" is signed.]

if (^i1 == 0xfe) <-[The operand "i1" of the bit operation "^i1" is signed.]

54

R2.7.1(1)

[Points of Message Indication in Agile+ Relief]

One side of the cast operator is of type pointer to an object, the other side is not
integer type/void*/a pointer to an object.

[Example 1]

int *ip;

double d;

:

d = (double)ip; <-[The cast expression "(double)ip" is a conversion involving an
object pointer type and a type which is not an integer type,
object pointer type or void* type.]

55

R2.7.1(2)

[Points of Message Indication in Agile+ Relief]

• Cast is performed between the pointer to object type and that not addressing to
object type, the type of large width, and void * type.

[Example 1]

int *pv;

pv = (int *)((unsigned long) pv | 1); <-[The pointer type in cast expression “(unsigned
long)pv”is cast to a smaller type. (Cast Target Type: unsigned
long int, Expression to be Cast: int *)]

56

R2.7.1(3)

[Points of Message Indication in Agile+ Relief]

• Cast is performed between the pointer to object and that to the type of less type
width.

• Cast is performed between the pointer to function and the pointer to other
functions, or that not of int type.

[Example 1]

int *pv;

pv = (int *)((unsigned long) pv | 1); <-[The pointer type in cast expression “(unsigned
long)pv”is cast to smaller type. (Cast Target Type: unsigned
long int, Expression to be Cast: int *)]

[Example 2]

int (*fp)(void);

int *ip;

ip = (int *)fp; <-[Cast expression “(int)fp” is the conversion between the
pointer type to function and the type other than int. (Cast
Target Type: unsigned long int, Expression to be Cast: int *)]

57

R2.7.2

[Points of Message Indication in Agile+ Relief]

The cast has deleted the const or volatile qualifying the space that is pointed by
a pointer.

[Example 1]

const int x = 5;

int *p = (int*)&x; <-["(int *)&x" negates the const/volatile qualifying the space pointed to by
the pointer "&x" of type "const int*".]

58

R2.7.3 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

• The assignment expression and the comparison expression for negative values
are recorded in the variable of pointer type.

[Example 1]

char *p;

 :

p = -1; <-[Whether pointer type “p” can be used as negative is
subjected to the compiler type.]

59

R2.7.3 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• The assignment expression and the comparison expression for negative values
are recorded in the variable of pointer type.

• The left and right types of the conditional expression are different for the pointer
type and the non-pointer type.

[Example 1]

char *p;

 :

p = -1; <-[Whether pointer type “p” can be used as negative is
subjected to the compiler type.]

[Example 2]

int data, *dp;

 :

if (data == dp) <-[The left operand and right operand of the conditional
expression "data == dp" are of different types : pointer and
non-pointer(left : int, right : int *).]

60

R2.8.1

[Points of Message Indication in Agile+ Relief]

The function is defined in K&R format or does not specify parameters.

No parameter is found in the function decelerator.

[Example 1]

int func1(x) <-[Function "func1" is defined in K&R style or non-parameter form.]

int x;

{

 :

}

void func2() <-[Function "func2" is defined in K&R style or non-parameter form.]

{

 :

}

[Example 2]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

61

R2.8.2(1)

[Points of Message Indication in Agile+ Relief]:

There are variable parameters in the function declaration or definition.

No parameter has been specified in the function decelerator.

[Example1]

int func(int n, ...) ; <-[The parameter declaration of the function "func(int n, ...)"
contains "...".]

int func(int n, ...) { <-[The parameter declaration of the function "func(int n, ...)"

contains "...".]

[Example2]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

62

R2.8.2(2)

[Points of Message Indication in Agile+ Relief]

• Uncertain number of parameters is used in function declaration and function
definition.

[Example 1]

int func(int n, ...) ; <-[… is used in the parameter declaration of function “func” (int
n, …).]

int func(int n, ...) { <-[… is used in the parameter declaration of function “func” (int
n, …).]

}

63

R2.8.3

[Points of Message Indication in Agile+ Relief]:

The function is called without the corresponding function declaration.

A function is defined without the corresponding function declaration.

The function decelerator has not been designated with a parameter.

[Example1]

x = func(10); <-[There is no function declaration corresponding to the function call
"func".]

[Example2]

void func(int x) <-[Function "func" is defined without prior declaration.]

{

 :

}

[Example3]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

64

R3.1.1(1)

[Points of Message Indication in Agile+ Relief]

The array is declared without specifying its length.

[Example 1]

Filename: file.c

 #include "head.h"

 int data[256] ;

Filename: head.h

 extern int data[] ; <-[The length of an array has been omitted.]

65

R3.1.1(2)

[Points of Message Indication in Agile+ Relief]

The same with the message indication of P3.1.1(1). Please refer to P3.1.1(1).

66

R3.1.2

[Points of Message Indication in Agile+ Relief]

• Loop counter is not judged in the conditional expression of for statement.

[Example 1]

int GetId(void);

int id;

int array[10];

int i;

for(i = 0 ; (id = GetId()) != 0 ; i++) { <-[The check of loop counter scope is not contained in loop
condition.]

 if(i >= 10) { /*Check for Array Scope*/

 break;

 }

 array[i] = id;

}

67

R3.1.3 (IPA/SEC-C V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

68

R3.1.3 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• The array initialization indicator is out of range.

• The number of elements in the array using the initialization indicator is omitted.

• The end of an array using an initialization indicator has not been initialized.

[Example 1]

char str[5] = {'a','b','c','d', [5] = '\0'}; <-[The initialization indicator "5" for array "str" is greater than

the array size.]

[Example 2]

char str[] = {'a','b','c','d','\0',[2] = ','}; <-[The length of the array using the initializer is omitted.]

 :

char buf[3];

 :

strcpy(buf, str);

[Example 3]

#define END -1

#define BUFSIZE 10

int array1[5] = {1,2,3,[2] = 4,END}; <-[The end of the array using the initialization indicator has not

been initialized.]

int array2[BUFSIZE] = {1,2,3,4,[5] = END}; <-[The end of the array using the initialization indicator

has not been initialized.]

69

R3.1.4 (IPA/SEC-C V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

70

R3.1.4 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• A variable length array is declared.

[Example 1]

void sub(int n) {

char buff [n] ; <-[Variable-length array "buff" is declared.]

 :

}

void func(void) {

sub(0) ;

sub(4096) ;

sub(-1) ;

 :

71

R3.1.5(1) (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• Use the sizeof operator to determine the size of a pointer.

[Example 1]

char strdata[8];

char *p = strdata;

char check[8];

if(memcmp(p, check, sizeof(p)) == 0) <-[An error may exist in "sizeof(p)" which trying to get the

size of a pointer type.]

72

R3.1.5(2) (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• Use the sizeof operator to determine the size of the parameter of the array type.

[Example 1]

#define ARRAYSIZE 10

void sub(char c[ARRAYSIZE]) {

 printf("%d\n", sizeof(c)); /* Display 4 */ <-[The sizeof() operation that is operated for argument

"c" of array type may be unreasonable.]

}

void main() {

 char c[ARRAYSIZE];

 printf("%d\n", sizeof(c)); /* Display 10 */

 sub(c);

}

73

R3.2.1

[Points of Message Indication in Agile+ Relief]

• The contents of division by zero or possible are found.

[Example 1]

x = y / 0 ; <-[“y / 0”is the division by zero.]

[Example 2]

int x = 0;

if(data != 1) {

 x = 2;

}

return data/x ; <-[A variable "x" possibly being zero is used in division.]

74

R3.2.2

[Points of Message Indication in Agile+ Relief]:

The return value of functions malloc or fopen is referenced without checking if it
is NULL.

The parameter of pointer type is referenced to without checking if it is NULL.

An automatic variable that may be set to address 0 is referenced.

Checking NULL after the pointer operation.

[Example1]

char c, a[10], x ;

11: char *p = NULL ;

12: char *q = NULL ;

:

if (mode == 0) {

p = &x ;

q = a ;

}

c = *p ; <-[The variable "p", assigned with the 0 address in line 11, might
access the 0 address.]

strcpy (q, "abc") ; <-[The variable "q", assigned with the 0 address in line 12, might access
the 0 address.]

[Example2]

char *p ;

10: p = malloc(sizeof(char) * 100) ;

*p = ' \0' ; <-[The 0 address might be referenced because the variable "p" might
have been assigned with the 0 address in line 10.]

:

20: fp = fopen(filename, "r") ;

size = fread(buf, sizeof(buf), 1, fp) ; <-[The 0 address might be referenced because the variable
"fp" might have been assigned with the 0
address in line 20.]

75

[Example3]

10: int func(int *p)

{

 int x;

 x = *p; <-[The 0 address might be referenced because the variable "p", as
a parameter, might have been assigned with the 0 address in
line 10.]

[Example4]

p = G_xp ;

*p = 10 ; <-[The variable "p" compared with the 0 address in line 12 might
access the 0 address.]

12: if (p == NULL) {

:

}

76

R3.3.1

[Points of Message Indication in Agile+ Relief]:

The return value of the non-void function is ignored.

The return value of the function returning an abnormal value has not been
checked.

The function using the same name as that of the identifier registered under the
labels [NULL_RETURN_FUNCTION], [RETURN_CHECK_FUNCTION], and
[SET_VARIABLE_FUNCTION] of the identifier file is checked as an object. For
more details regarding the registration to an identifier file, see the -f option in
"Command Manual".

[Example1]

int func();

 :

func(10) ; <-[The return value of the function call "func" is not used.]

[Example2]

10: c = fgetc(in_fp) ;

fputc(c, out_fp) ; <-[The variable "c" is assigned the return value of the function "func" in
line 10 and then referenced without being judged.]

77

R3.3.2 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]:

The return value of the functions malloc or fopen is referred to without checking
if it is NULL.

An automatic variable, which may be set to address 0, has been referenced.

[Example1]

char *p ;

10: p = malloc(sizeof(char) * 100) ;

*p = ' \0' ; <-[The 0 address might be referenced because the variable "p" might
have been assigned with the 0 address in line 10.]

:

20: fp = fopen(filename, "r") ;

size = fread(buf, sizeof(buf), 1, fp) ; <-[The 0 address might be referenced because the variable
"fp" might have been assigned with the 0
address in line 20 .]

[Example2]

 char c, a[10], x ;

11: char *p = NULL ;

12: char *q = NULL ;

:

if (mode == 0) {

p = &x ;

q = a ;

}

c = *p ; <-[The variable "p", assigned with the 0 address in line 11, might
access the 0 address.]

strcpy (q, "abc") ; <-[The variable "q", assigned with the 0 address in line 12, might access
the 0 address.]

78

R3.3.2 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]:

The return value of the functions malloc or fopen is referred to without checking
if it is NULL.

An automatic variable, which may be set to address 0, has been referenced.

The parameter of pointer type is referenced to without checking if it is NULL.

[Example1]

char *p ;

10: p = malloc(sizeof(char) * 100) ;

*p = ' \0' ; <-[The 0 address might be referenced because the variable "p" might
have been assigned with the 0 address in line 10.]

:

20: fp = fopen(filename, "r") ;

size = fread(buf, sizeof(buf), 1, fp) ; <-[The 0 address might be referenced because the variable
"fp" might have been assigned with the 0
address in line 20 .]

[Example2]

 char c, a[10], x ;

11: char *p = NULL ;

12: char *q = NULL ;

:

if (mode == 0) {

p = &x ;

q = a ;

}

c = *p ; <-[The variable "p", assigned with the 0 address in line 11, might
access the 0 address.]

strcpy (q, "abc") ; <-[The variable "q", assigned with the 0 address in line 12, might access
the 0 address.]

79

[Example3]

10: int func(int *p)

{

 int x;

 x = *p; <-[The 0 address might be referenced because the variable "p", as
a parameter, might have been assigned with the 0 address in
line 10.]

80

R3.4.1

[Points of Message Indication in Agile+ Relief]

There is a recursive function.

[Example 1]

int func(int x) <-[The function "func" is a recursive function.]

{

 :

y = func(z);

 :

}

81

R3.5.1

[Points of Message Indication in Agile+ Relief]:

The statements if and else if are not followed by an else statement.

[Example1]

if (x > 0) { <-[There is no else statement at the end of an if else if statement. Even
when all cases have been accounted for, it is best to include
an empty else statement.]

 :

} else if (x < 0) {

 :

}

82

R3.5.2

[Points of Message Indication in Agile+ Relief]:

There is no default label in the switch statement.

The default label is placed before the case label.

[Example1]

switch (x) { <-[This switch statement contains no default label.]

case 1:

 x = a + b;

 break;

case 2:

 x = c + d;

 break;

}

[Example2]

switch (x) {

default: <-[The label default has been included before the label case in a
switch statement.]

 no++

 break;

 :

case 2 :

 no += x;

}

83

R3.5.3

[Points of Message Indication in Agile+ Relief]

• “==“ or “!=“ is used in the conditions of for statement.

[Sample1]

for(i = 0 ; i == n ; i++) <-[In loop processing of “for (i = 0 ; I == n ; i++)”, the loop condition “I ==
n” may be incorrect.]

case 1:

 x = a + b;

 break;

case 2:

 x = c + d;

 break;

}

84

R3.6.1

[Points of Message Indication in Agile+ Relief]

• Increment / decrement and assignment with update sequence undefined are found
in ANSI.

[Example 1]

i = j + j++; <-[The update timing of “j++” is not defined in ANSI, thus the value a of”j”
cannot be guaranteed.”j++”]

85

R3.6.2

[Points of Message Indication in Agile+ Relief]

• The function call with calling sequence undefined is found in ANSI.

[Example 1]

word_data = get_byte1() << 8 | get_byte2() ;

 <-[The calling sequence of function call “get_byte1”and
“get_byte2” are not defined in ANSI, it is better to separate
into two lines.]

[Example 2]

 file name:file.c

 x = Gx + func(); <-[The call timing of function “func” for update variable “Gx” in
line 100 of “file.c” is not defined, thus the value of “Gx” cannot
be guaranteed.]

 :

 int func(void)

 {

 :

100: Gx += 2;

 :

 }

86

R3.6.3 (IPA/SEC-C V2, V3 only)

[Points of Message Indication in Agile+ Relief]

• Within the sizeof operator, there is an update expression, a function call.

[Example 1]

x = sizeof (y++) ; <-["y++" is in sizeof, so updating is not performed.]

87

R3.11.1 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• The variable modified with volatile is not under exclusive control in multithread
function.

[Example 1]

#define ON 1

#define OFF 0

pthread_mutex_t lock;

volatile int comm_io;

void thread_1() { /* thread_1 is multithread function */

 comm_io = ON; <-[The variable "comm_io" qualified by volatile which used in multithread

function "thread_1" is not in exclusive control.]

}

void thread_2() { /* thread_2 is multithread function */

 comm_io = OFF; <-[The variable "comm_io" qualified by volatile which used in multithread

function "thread_2" is not in exclusive control.]

}

void thread_3() { /* thread_3 is multithread function */

 while(comm_io == ON) { <-[The variable "comm_io" qualified by volatile which used in

multithread function "thread_3" is not in exclusive control.]

 :

 }

}

88

R3.11.2 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• The bit field is not under exclusive control in multi-threaded functions.

[Example 1]

#define ON 1

pthread_mutex_t lock;

struct FLAG {

 unsigned int flag1 : 1;

 unsigned int flag2 : 1;

} f;

int thread_1(void) { /* thread_1 is multithread function. */

 f.flag1 = 1; <-[The bit field "f.flag1" which used in multithread function "thread_1" is not in

exclusive control.]

 :

 return data;

}

int thread_2(void) { /* thread_2 is multithread function. */

 f.flag2 = 1; <-[The bit field "f.flag2" which used in multithread function "thread_2" is not in

exclusive control.]

 :

 return data;

}

89

3.2 Maintainability

M1.1.1 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

• The unused functions, internal variables, external variables, parameters and labels
are found.

[Example 1]

labelA; <-[The label of “labelA” is not used.]

 :

 LabelA is not referenced by goto statement.

90

M1.1.1 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• The unused types, tags, macros, functions, internal variables, external variables,
parameters and labels are found.

[Example 1]

labelA; <-[The label of “labelA” is not used.]

 :

 LabelA is not referenced by goto statement.

91

M1.1.2 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

92

M1.1.2(1) (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• Line-splicing is used in "// " comments.

• Comment out the source code.

[Example 1]

extern bool_t b ;

void f (void) {

 int n = 0 ; // Note \ <-[Line-splicing is used in "// " comments.]

 if (b) The judgment sentence is not evaluated because of the comment continuation line.

 {

 ++n ; /* It always executes it. */

 }

[Example 2]

/* if (x >= 16) { */ <- [The source code may be commented out.]

if (x > 16) {

 :

93

M1.1.2(2) (IPA/SEC-C V3 only)

The same with the message indication of M1.1.2(1), please refer to M1.1.2(1).

94

M1.2.1(1)

[Points of Message Indication in Agile+ Relief]

• Commas are found in the declaration statement.

• Uses a comma outside an initialization expression or update expression in a for
statement.

[Example 1]

int *a,b ; <-[Comma is found in the declaration statement.]

[Example 2]

x=1 ,y=2; <-[“ x=1,y=2” uses a comma outside an initialization expression or update

 expression in a for statement.]

95

M1.2.1(2)

[Points of Message Indication in Agile+ Relief]

• Uses a comma outside an initialization expression or update expression in a for
statement.

[Example 1]

x=1 ,y=2; <-[“ x=1,y=2” uses a comma outside an initialization expression or update
 expression in a for statement.]

96

M1.2.2

[Points of Message Indication in Agile+ Relief]

• Suffix of l is added (lowercase English character l).

• The type of integer constant is unsigned, no suffixes of U and u are added.

[Example 1]

long x = 32768l ; <-[The easily confused suffix of “l” is used in “327681”.]

[Example 2]

unsigned int x = 0xA123 ; <-[Suffix of “U” is not used in “0xA123”.]

97

M1.2.3

[Points of Message Indication in Agile+ Relief]

• A line feed is found in character constant (‘‘).

[Example 1]

‘¥0

12’ ; <-[According ANSI, no line feed code is allowed in character
constant.]

98

M1.3.1

[Points of Message Indication in Agile+ Relief]:

There are a comparing operator, a logic operator and a constant in the
conditional expression of switch statement.

There is only one case label in the switch statement.

[Example1]

switch (x > 0) <-["x > 0" is used as the condition of a switch statement.]

{ ~ }

switch (1) <-["1" is used as the condition of a switch statement.]

{ ~ }

[Example2]

switch (x) { <-[The switch statement contains only one case label.]

case ONE :

 :

 break;

default:

 break;

}

99

M1.3.2

[Points of Message Indication in Agile+ Relief]

The case label or default label is not contained in the { } after the switch
statement.

[Example 1]

switch(x){

case 0 :

 {

 y = 10;

case 1: <-[The label case is not within the { } immediately following the
switch.]

 z = 100;

 break;

 }

100

M1.3.3

[Points of Message Indication in Agile+ Relief]

A variable is declared without specifying the specifier.

A function without return value should be defined as void.

[Example 1]

const x = 1, y = 2; <-[A declaration is made with no explicit type specifier.]

z; <-[A declaration is made with no explicit type specifier.]

[Example 2]

func(int x) <-[The function "func" has no return value and should be declared as
void.]

{

 :

 return;

}

101

M1.4.1

[Points of Message Indication in Agile+ Relief]

The expression on both sides of the operators && or ||, is not a primary
expression.

[Example 1]

if(p != 0 && *p == 1) <-["p != 0" in the && expression is not a primary expression.]

 <-["*p == 1" in the && expression is not a primary
expression.]

if (x == 1 || y > 5 && z != 0) <-["x == 1" in the || expression is not a primary expression.]

 <-["y > 5" in the && expression is not a primary
expression.]

 <-["z != 0" in the && expression is not a primary
expression.]

 <-["y > 5 && z != 0" in the || expression is not a
primary expression.]

102

M1.4.2

[Points of Message Indication in Agile+ Relief]

It is better to add a pair of parentheses.

[Example 1]

if (c = input() != 0) <-[In the expression "c = input() != 0", an assignment operation coexists
with a comparison operation. Parentheses () may
have been accidentally omitted."]

[Example 2]

if (0 < x < 10) <-[This compares the result of "0 < x" with "10", which may not be the
intention.]

[Example 3]

if(x == 0 && y == 0 || z == 0) <-["x == 0 && y == 0 || z == 0" contains both a && operation and a ||
operation. Parentheses () may have been omitted
accidentally.]

[Example 4]

x = (a > 0) ? 0 : (b > 0) ? 1 : 2 ; <-[In the expression "(a>0)?1:(b>0)?1:2", multiple ternary
operations are used together. Use parentheses ()
to show association explicitly.]

[Example 5]

x = a >> b & c ; <-["a >> b & c" mixes bit and shift operations with no parentheses ().
Use parentheses () to show precedence explicitly.]

103

M1.5.1

[Points of Message Indication in Agile+ Relief]

Cast a function name to a non-function pointer.

[Example 1]

int x , func(void) ;

x = func ; <-[The expression "x = func" referencing the function name "func"
might contain a mistake.]

if (func != 0) <-[The expression "func != 0" referencing the function name "func"
might contain a mistake.]

104

M1.5.2

[Points of Message Indication in Agile+ Relief]:

A non-boolean value is used in the conditional expression.

Comparison with 0 in the conditional expression.

[Example1]

if (x = y) <-[The assignment expression "x = y" is used as a condition.]

[Example2]

Filename: file.c

 int x, y ;

2: x = 100;

3: y = 100;

 if (x) <-["x" is not a bool value (a non-bool value is assigned in line 2 of
"file.c").]

 :

 if (!y) <-["y" is not a bool value (a non-bool value is assigned in line 3 of
"file.c").]

[Example3]

Filename: file.c

11: if (foo(10)) {

:

if (foo(20) == 1) { <-[The comparison operation "foo(20) == 1", which is not of the form !=0

or ==0 and is performed with "foo(10)" (in line 11 of "file.c")

which is used as a boolean value might contain a mistake.]

105

M1.6.1

[Points of Message Indication in Agile+ Relief]

• The same loop counter is used both outside and innerside of the for statement.

[Example 1]

20: for(i = 0 ; i < 5 ; i++) { <-[The same loop counter "i" is used in the for statements on
this line and line 30.]

{

:

30: for(i = 10 ; i < 10 ; i++)

106

M1.6.2(1)

[Points of Message Indication in Agile+ Relief]

A union is used.

[Example 1]

union UN <-[A union is used.]

{

 long m;

 short n[2];

};

107

M1.6.2(2)

[Points of Message Indication in Agile+ Relief]

• The different member name is referenced for the same union variable of the same
process route.

[Example 1]

union {

 int m1;

 char m2;

} x;

10: x.m1 = 1;

c = x.m2; <-[The different member “x.m2”is referenced for the union
member “x.m1” set in line 10.]

108

M1.7.1

[Points of Message Indication in Agile+ Relief]

• The identifier of the same name valid in outside is declared innerside.

• Typedef name is reused.

• Tag name is reused.

• The name of variable and function containing union is reused.

• The same identifier is reused within the same block and for different name space.

[Example 1]

 file name :file.c

10: unsigned char *cp;

void func()

{

 unsigned char *cp; <-[The variable “cp” declared is of the same name with the
variable “cp”outside the function (Line 10 of “file.c”).]

 }

[Example 2]

 file name:file.c

 void func1(void)

 {

 3: typedef char BYTE;

 :

 }

 void func2(void)

 {

 typedef char BYTE; <-[Typedef name “BYTE” is the same with that in line 3 of
“file,c”.]

 :

 }

[Example 3]

 file name:file1.c

10: struct tag{ int a; long b; };

 file name:file2.c

struct tag{ int x; long y; };

 <-[Tag declaration “tag” is different from that in line 10 of
“file1.c”.]

109

[Example 4]

 file name:file.c

1: static int name;

 void func (void)

 {

 enum {

 name , <-[“name” is the same with that of the static variable in line 1 of
“file.c”.]

}

[Example 5]

 file name:file.c

10: struct name {

 int name; <-[Member name is the same with that of the tag in line 10 of
“file.c”.]

 :

 };

 char *name; <-[Variable name is the same with that of the tag in line 10 of
“file.c”.]

110

M1.7.2

[Points of Message Indication in Agile+ Relief]

The following macros are redefined or invalidated:
__LINE__
__FILE__
__DATE__
__TIME__

The ANSI reserved identifiers have been defined or invalidated as macro
names.

[Example 1]

#define __FILE__ abc <-[The predefined macro "__FILE__" is defined again with #define.]

[Example 2]

#define errno -1 <-[In the #define line, "errno" is used as macro.]

#define malloc(a) mymalloc(a) <-[In the #define line, "malloc" is used as macro.]

111

M1.7.3 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

112

M1.7.3 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• It uses identifiers that begin with an underscore.

[Example 1]

#define __MACRO_A 0 <-[The identifier "__MACRO_A" that begin with an underscore is

reserved for ANSI, it is possible to lead to undefined behavior.]

int _valA; <-[The identifier "_valA" that begin with an underscore is reserved

for ANSI, it is possible

to lead to undefined behavior.]

void _funcA(); <-[The identifier "_funcA" that begin with an underscore is reserved

for ANSI, it is possible to lead to undefined behavior.]

113

M1.8.1

[Points of Message Indication in Agile+ Relief]:

There is a side-effect expression in the right part of the && operator, || operator
or the second and third expressions of the ternary operator.

[Example1]

int i, x[100];

volatile int z;

if (i == 0 && x[i++] == 0) <-[Update expression "i++" is not executed in all cases.]

if (x[i] == 0 || func(i) == 0) <-[Function "func" is not executed in all cases.]

x[i] = (x[i] == 0)? i : z ; <-[volatile variable "z" is not executed in all cases.]

114

M1.8.2 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]:

Mismatch of the parentheses, (and), in the replacement string of the #define
statement.

Mismatch of the { and } within the replacement string of the #define statement.

The replacement string of the #define statement consists only of the following
types: char, short, int, long, float, double, signed, unsigned and void.

[Example1]

#define AddTen(x) (x + 10 <-[The replacement string of the macro function "AddTen" is not
enclosed as a whole with parentheses () or curly
brackets { }.]

[Example2]

#define PSI32 int* <-[typedef can be used instead of macro "PSI32".]

PSI32 a, b;

115

M1.8.2 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]:

Mismatch of the parentheses, (and), in the replacement string of the #define
statement.

Mismatch of the { and } within the replacement string of the #define statement.

The replacement string of the #define statement consists only of the following
types: char, short, int, long, float, double, signed, unsigned and void.

A formal argument specification in the macro definition is not complete.

The closing parenthesis of the macro call is missing.

Arguments in the macro substitution string are not enclosed in ().

The macro function substitution string is not entirely enclosed in () or {}.

Reserved words are used in macro names.

[Example 1]

#define AddTen(x) (x + 10 <-[The replacement string of the macro function
"AddTen" is not enclosed as a whole with
parentheses () or curly brackets { }.]

[Example 2]

#define PSI32 int* <-[typedef can be used instead of macro "PSI32".]

PSI32 a, b;

[Example 3]

#define F(a, b <-[Specification of parameters in a macro definition
is incomplete.]

[Example 4]

#define F(a,b) ((a) + (b))

F(1, 2) <-[The macro call "F" is made with no ending

parentheses).]

End of file

116

[Example 5]

#define F(a, b) (a * b) <-[The parameters "a","b" in the replacement string

of the macro "F" are not enclosed with parentheses

().]

x = F(1 + 5, 10);

[Example 6]

#define AddTen(a) (a) + 10 <-[The replacement string of the macro function

"AddTen" is not enclosed as a whole with

parentheses () or curly brackets { }.]

x = AddTen(20) * 2 ;

[Example 7]

#define while (EXP) for(; (EXP) ;); <-[The macro name "while" is a keyword.]

#define unless(EXP) if (! (EXP)) /* The reserved word "If" in the substitution character

string is not pointed out. */

117

M1.8.3

[Points of Message Indication in Agile+ Relief]

• #line is used.

[Example 1]

#line 100 “abc” <-[#line is not recommended. shall be avoided.]

118

M1.8.4

[Points of Message Indication in Agile+ Relief]

A trigraph sequence is used.

[Example 1]

??=include "head.h" <-[The trigraph sequence "??=" is used.]

119

M1.8.5

[Points of Message Indication in Agile+ Relief]

An octal constant other than 0 or an octal escape sequence is used.

[Example 1]

int x = 010 ; <-[The octal constant "010" is used.]

[Example 2]

c = '\12' ; <-[The octal escape sequence "\12" is used.]

strcpy (s, "abc\14") ; <-[The octal escape sequence "\14" is used.]

120

M1.9.1

[Points of Message Indication in Agile+ Relief]

A semicolon is immediately followed by the ')' of the statements if, for and while.

There is a null statement such as :; or ;;.

[Example 1]

if (x == 0) ; <-[A semicolon immediately following an if statement, for statement
or while statement may cause an error.]

 x = y;

[Example 2]

int x ; ; <-[An unnecessary null statement may exist.]

switch(y) {

case 1: ; <-[An unnecessary null statement may exist.]

121

M1.9.2

[Points of Message Indication in Agile+ Relief]

• The variables used in the conditions of for, while, do-while statements are not
updated.

[Example 1]

while (x * 10 – y > 0) { <- [“x * 10 – y > 0” is the unchanged loop condition.]

 :

}

 x and y are not updated in while statement.

122

M1.10.1 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

123

M1.10.1 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• Using a literal.

[Example 1]

#define SIZE 256 /* It is not indicated in the macro definition */

int N[256] ; <-[The literal 256 is used. (literal type INTEGER)]

124

M1.11.1

[Points of Message Indication in Agile+ Relief]

• Some parameters of pointer type and array type are not updated.

[Example 1]

void func(int p[], unsigned int n)

 <-[Because the space pointed by the parameter of”int []” is not
updated, the const qualification is not performable.]

{

 int i;

 int num = 0;

 for(i = 0; i < n; i++) {

 num += p[i];

 }

}

125

M1.11.2

[Points of Message Indication in Agile+ Relief]

• Among the function groups of the same name with the identifiers registered under
the label of [PARALLEL_FUNCTION], the common external variable and static
variable are not qualified by volatile.

For the contents registered in the identifier file, please refer to –F option of
"Command Manual".

[Example 1]

/* This message will be output when intr01, intr02 and intr03 are registered under the
[PARALLEL_FUNCTION] label of the identifier file. */

int common ; <-[The external variable”common”used in multiple functions is
not qualified by volatile.]

void intr01()

{

 x1 = common ;

 x2 = common ;

 if(x1 != x2)

 :

void intr02()

{

 common = 2;

 :

void intr03()

{

 common = 3;

126

M1.11.3

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

127

M1.12.1

[Points of Message Indication in Agile+ Relief]

An undefined redundant sign exists in the preprocessing directives.

An undefined preprocessing directive exists.

[Example 1]

#ifdef DEG 1 <-[In ANSI, the extra symbol "1" is not defined and cannot be
used.]

[Example 2]

#asm <-[In ANSI, the preprocessing directive "#asm" is not defined and
cannot be used.]

128

M2.1.1

[Points of Message Indication in Agile+ Relief]:

Mismatch between the initializer list and the construction of the initialized
array/struct/union.

[Example1]

int data[2][3] = <-[Initialization of the array/structure/union "data" is
inconsistent with its makeup.]

 1, 2, 3, 4, 5, 6

} ;

struct A {

 int a1;

 int a2;

};

struct A adata[2] = { 1, 2, 3, 4 } ; <-[Initialization of the array/structure/union "adata" is
inconsistent with its makeup.]

struct B {

 int b1;

 struct A b2;

} ;

struct B bdata = { 1, 2, 3 } ; <-[Initialization of the array/structure/union "bdata" is inconsistent
with its makeup.]

int cdata[7] = { 1, 2, 3, 4, 5 } ; <-[Initialization of the array/structure/union "cdata" is inconsistent
with its makeup.]

129

M2.1.2

[Points of Message Indication in Agile+ Relief]

• The statement to be controlled in if, else, for, while, do-while and switch statement
is not braced with { }.

[Example 1]

if (x == 0) <-[It is recommended to brace the if statement with { }.]

 x = 10;

130

M2.2.1

[Points of Message Indication in Agile+ Relief]

There is an external variable or a global static variable used only in one
function.

[Example 1]

Filename: head.h

 extern int xx ; <-[The external variable "xx" that can be used in multiple functions
was referenced only in the function "func" in line 20 of file.c.
An internal static variable could be used instead.]

Filename: file.c

 #include "head.h"

 :

20: void func(int in)

{

xx = 0;

/*The external variable xx is used only in this function.*/

}

131

M2.2.2

[Points of Message Indication in Agile+ Relief]

• The external variable only used in one file is found.

[Example 1]

file name: file.c

int x = 0 ; <-[The external variable “x” is only used in file “file.c”.]

void x_add(void) { x++; }

int x_ref(void) { return x; }

 The variable x is only used in file.c.

132

M2.2.3

[Points of Message Indication in Agile+ Relief]

• The function only used in one file is found.

[Example 1]

file name: file.c

void func1(void) ;

void func2(void);

void func1(void) <-[The function “func2” is only used in file “file.c”.]

{

func2();

:

}

void func2(void)

{

 :

}

 Function func2 is only used in file.c.

133

M2.2.4

[Points of Message Indication in Agile+ Relief]

• Integer constant expression is used as the expression of the case label in this
switch statement.

[Example1]

int n;

switch(n) <-[Integer constant expression is used as the expression of the
case label in this switch statement.]

{

 case -1 : ~ break;

 case 0 : ~ break;

 case 1 : ~ break;

 case 2 : ~ break;

 default :

}

134

M3.1.1

[Points of Message Indication in Agile+ Relief]

Multiple break statements that jump out of a loop exist.

[Example 1]

while(1) { <-[Two or more break statements appear in a loop.]

 if(data == 1) {

 :

 break;

 }

 else if(data == 2) {

 :

 }

 else {

 break;

 }

}

135

M3.1.2(1)

[Points of Message Indication in Agile+ Relief]:

A goto statement is used.

[Example1]

LOOP:

func(&data);

if(data == 0) {

 goto LOOP; <-[A goto statement is used.]

}

136

M3.1.2(2)

The same with the message indication of M3.1.2(1), please refer to M3.1.2(1).

137

M3.1.3 (IPA/SEC-C V1 only)

[Points of Message Indication in Agile+ Relief]:

A continue statement is used.

[Example1]

Filename: file.c

 int func(char buf[], unsigned int n)

 {

 int i ;

 int not_space = 0;

 8: for(i = 0; i < n && buf[i] != ' \0' ; i++) {

 if(isspace(buf[i])) {

 continue; <-[The keyword "continue" is used (location of relevant loop
statement: line 8 of "file.c").]

 }

 not_space++;

 }

 return not_space;

 }

138

M3.1.4(1)

[Points of Message Indication in Agile+ Relief]:

The case label has no corresponding break statement.

[Example1]

switch (x) {

10: case 1:

11: no++; <-[A break statement for "case 1:" in line 10 may have been
accidentally omitted.]

12: case 2:

13: no++; <-[A break statement for "case 2:" in line 12 may have been
accidentally omitted.]

default: no++;

}

139

M3.1.4(2)

The same with the message indication of M3.1.4(1), please refer to M3.1.4(1).

140

M3.1.5(1)

[Points of Message Indication in Agile+ Relief]:

More than one exits in the function.

[Example1]

void func(void) <-[The function "func" has 2 or more exits.]

{

 :

 return;

 :

 return;

}

141

M3.1.5(2)

The same with the message indication of M3.1.5(1), please refer to M3.1.5(1).

142

M3.2.1(1)

[Points of Message Indication in Agile+ Relief]

A comma expression is used.

[Example 1]

x = 1, y = 2 ; <-["x=1,y=2" uses a comma outside an initialization expression or
update expression in a for statement.]

[Example 2]

struct tag { struct tag *next; int data; };

struct tag * top;

struct tag *p;

int code;

 :

for(code = 1, p = top ; <-["code = 1, p = top" uses a comma in the initialization expression or
update expression of a for statement.]

 p != 0;

 p = p->next) {

143

M3.2.1(2)

[Points of Message Indication in Agile+ Relief]

• In for statement, comma expression is used outside initialization and update
expression.

[Example 1]

x = 1, y = 2 ; <-[In for statement, comma expression is used in
“x=1,y=2”outside initialization and update expression.]

144

M3.2.2

[Points of Message Indication in Agile+ Relief]

• The increment (++) and decrement (--) expressions are used in operation.

[Example 1]

a = b++ ; <-[The result of “b++” is referenced in other operations.]

i = j + j++ ; <-[The result of “j++” is referenced in other operations.]

x++, y = 1 ; <-[The result of “x++” is referenced in other operations.]

145

M3.3.1

[Points of Message Indication in Agile+ Relief]

There is an expression unrelated to the loop control in the for-statement.

[Example 1]

for(i = 0 , flag = 0 ; i < n; i++, counter++) {

<-[An expression "flag = 0" irrelevant to loop control exists in a
for statement.]

<-[An expression "counter++" irrelevant to loop control exists in
a for statement.]

146

M3.3.2

[Points of Message Indication in Agile+ Relief]

Update a loop counter of the for-statement within the loop body.

[Example 1]

Filename: file.c

 5: for(i = 0; i < n; i++) {

 :

 i ++ ; <-[The loop counter "i" of a for statement is updated in the loop
body (for statement position: line 5 of "file.c").]

147

M3.3.3(1)

[Points of Message Indication in Agile+ Relief]:

There is assignment expression in the conditional expression.

The assignment operation and comparison operation coexist.

[Example1]

if(x = func()) <-[The assignment operator "=" is used in the conditional expression "if(x =
func())".]

if((y = z) != 0) <-[The assignment operator "=" is used in the conditional expression "(y =
z) != 0".]

148

M3.3.3(2)

The same with the message indication of M3.3.3(1), please refer to M3.3.3(1).

149

M3.4.1

[Points of Message Indication in Agile+ Relief]

The declaration contains more than 2 levels of indirect pointers.

[Example 1]

int ***x; <-[The pointer "x" exceeds 2 levels.]

150

M4.1.1

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

151

M4.2.1

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

152

M4.3.1

[Points of Message Indication in Agile+ Relief]

• The name violating the naming rule (*) is found.

About the description and conditions for message indication of naming rule, please refer
to "Check for Naming Rule" of "Command Manual".

[Example 1]

#define _MACRO 1 <-[Macro “_MACRO” violates the naming rule
(UNDERLINE=FALSE).]

bool g_Flag ; <-[Global variable “g_Flag3” violates the naming rule
(bool=b).]

153

M4.3.2

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

154

M4.4.1

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

155

M4.4.2

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

156

M4.4.3

[Points of Message Indication in Agile+ Relief]

• External function and variable are declared outside header file.

• The function declaration for function call is not found.

• No function declaration is found before function definition.

[Example 1]

int func(int n); <-[The external function “func” is declared outside header file.]

extern int x; <-[The external variable “x” is declared outside header file.]

[Example 2]

x = func(10); <-[The function declaration for function call “func” is not found.]

[Example 3]

void func(int x) <-[No function declaration is found before function definition “func”.]

{

 :

}

157

M4.4.4

[Points of Message Indication in Agile+ Relief]

• There is the definition of the variables of the same name and with external union.

[Example 1]

file name:file1.c

10: short *data;

 file name:file2.c

short data; <-[The variable definitions of “data” and that in line 10 of
“file1.c” are of pointer type and non-pointer type respectively.
(short int, short int *)]

[Example 2]

file name:file.c

10: int v = 1;

:

float v = 0.0; <-[The variable definition of “x” and that in line 10 of “file.c” are of the
different types. (float, int)]

158

M4.4.5

[Points of Message Indication in Agile+ Relief]

Variable and function definitions exist in the header file.

[Example 1]

Filename: head.h

int x ; <-[Space is allocated in the header file (variable "x").]

int func(void) <-[Space is allocated in the header file (function "func").]

 {

 return x;

 }

Filename: file.c

#include "head.h"

159

M4.4.6

[Points of Message Indication in Agile+ Relief]

Multiple inclusions of the same file exist.

[Example 1]

Filename: file.c

 #include "head.h"

12: #include "head.h" <-[The file "file.h" cannot be included redundantly (location of
redundancy: line 11 in "file.c").]

Filename: head.h

 extern int X;

160

M4.5.1(1)

[Points of Message Indication in Agile+ Relief]

• The parameter declaration with parameter name and not are found in function
declaration.

[Example 1]

int func(int a, int); <-[The parameter declaration with parameter name and not are found in
function “func”.]

:

int func(int a, int b)

{

 :

}

161

M4.5.1(2)

[Points of Message Indication in Agile+ Relief]

• There is no parameter name in the parameter declaration of function declaration.

• The parameter names are different in function declaration and function definition.

[Example 1]

int func(int a, int); <-[The parameter declaration with parameter name or not are found in
function “func”.]

:

int func(int a, int b)

{

 :

}

[Example 2]

void func(int, int); <-[All parameters in parameter declaration of function “func”
are without name.]

[Example 3]

 file name:file.c

1: int func(int data, <-[Parameter name “data” is different from the function
definition “func” in line 3 of “file.c”.]

2: int size); <-[Parameter name “size” is different from the function
definition “func” in line 3 of “file.c”.]

3: int func(int size, int data)

{

162

M4.5.2

[Points of Message Indication in Agile+ Relief]

• Tag of struct, union and enum type and variable are declared at the same time.

[Example 1]

struct STR { <- [Variable “Str” and struct tag are declared at the same
time.]

 int id ;

} str ;

163

M4.5.3(1)

[Points of Message Indication in Agile+ Relief]

• Comma is found at the end of initialization expression list.

• Comma is found at the end of enum type member list.

[Example 1]

struct tag data = { 'a' , 'b', } ; <-[Because comma is found at the end of initialization
expression list, the input may be incomplete.]

[Example 2]

enum ETAG { a=0 , b=0, } ; <-[Because comma is found at the end of enum type member
list, the input may be incomplete.]

164

M4.5.3(2)

[Points of Message Indication in Agile+ Relief]

The same with the message indication of M4.5.3(1), please refer to M4.5.3(1).

165

M4.6.1(1)

[Points of Message Indication in Agile+ Relief]

• Macro “NULL” is used.

This message will be output when NULL is registered under the
[CHECK_IDENTIFIER] label of the identifier file. For the registered in the identifier
file, please refer to –F option of "Command Manual".

[Example 1]

/* This message will be output when NULL is registered under the [CHECK_IDENTIFIER] label of
the identifier file. */

p = NULL ; <-[Macro “NULL” is used, please recheck.]

166

M4.6.1(2) (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

167

M4.6.1(2) (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• '¥0' is used for pointer type.

• (void*)0 is used for char type.

• 0 is used for char type.

[Example 1]

int func(char *str) {

 int count = 0;

 if (str == NULL) {

 return -1;

 }

 while (str != '\0') { <-['\0' is used for pointer type.]

 str++;

 count++;

 :

 }

 return count;

}

[Example 2]

#define NULL ((void*)0)

int func(char *str) {

 int count = 0;

 if (str == NULL) {

 return -1;

 }

 while (*str != NULL) { <-[(void*)0 is used for char type.]

 str++;

 count++;

 :

 }

 return count;

}

168

[Example 3]

int func(char *str) {

 int count = 0;

 if (str == NULL) {

 return -1;

 }

 while (*str != 0) { <-[0 is used for char type.]

 str++;

 count++;

 :

 }

 return count;

}

169

M4.7.1

[Points of Message Indication in Agile+ Relief]

• All replacement strings in function are not braced.

• Parameters in the replacement string of macro are not braced.

[Example 1]

#define AddTen(a) (a) +10 <-[All replacement strings in macro function “AddTen” are not
braced with () or { }.]

x = AddTen(20) * 2 ;

[Example 2]

#define F(a, b) (a * b) <-[Parameter “a” and “b” in the replacement string of macro “F” are not
braced with ().]

x = F(1 + 5, 10);

170

M4.7.2

[Points of Message Indication in Agile+ Relief]

A mismatch exists in the beginning and end of a conditional judgment.

[Example 1]

#endif <-[There are no preprocess directives corresponding to "#endif".]

[Example 2]

#ifdef ABC <-[There is no #endif corresponding to #if, #ifdef or #ifndef.]

171

M4.7.3

[Points of Message Indication in Agile+ Relief]

• Only macro name is specified to the right of #if or #elif.

• The identifier is found after the macro expansion to the right of #if or #elif.

[Example 1]

#if ABC <-[Defined may be missed in “ABC”.]

[Example 2]

#elif DEBUG <-[Macro “DEBUG”used as bool is found in #if and #elif statement.]

172

M4.7.4 (IPA/SEC-C V1 only)

[Points of Message Indication in Agile+ Relief]

Grammar errors exist in the #if or #elif statement.

A "defined" is generated by macro expansion from the #if or #elif statements.

[Example 1]

#if 1 1 <-[The end of the condition expression in an #if or #elif statement
contains a syntax error and cannot be executed.]

[Example 2]

#define DEF defined

#if DEF MAXNAM <-[An #if or #elif statement generates the string "defined" in the
process of macro expansion.]

173

M4.7.5

[Points of Message Indication in Agile+ Relief]:

The block contains a #define or a #undef statement.

[Example1]

void func(int n)

{

 #define MAX 10 <-[Macro "MAX" is operated by #defined in a block.]

 int i;

 for(i = 0; i < MAX; i++)

:

}

174

M4.7.6

[Points of Message Indication in Agile+ Relief]:

#undef statement is used.

[Example1]

#undef AAA <-[The macro "AAA" is undefined with #undef.]

175

M4.7.7 (IPA/SEC-C V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

176

M4.7.7 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]:

An integer description in a # if or # elif statement is neither 0 nor 1.

[Example1]

#if 100 <-[The expression of #if or #elif is not evaluated to 0 or 1.]

 :

#endif

#if VER < 100 /* Conditional expression is not pointed out. */

 :

#endif

#if 1 /* 1 is not pointed out. */

 :

#endif

177

M5.1.1 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

178

M5.1.1 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]:

Comment out source code for debugging.

[Example 1]

/* if (val > 0) { */ <- [The source code may be commented out.]

/* fprintf(stderr, "val = %d\n", val); */

/* } */

if (val > 16) {

 :

179

M5.1.2(1)

[Points of Message Indication in Agile+ Relief]

A # or ## operator is used in the macro.

[Example 1]

#define AAA(x,y) x###y <-[Operator # or ## is used in a macro.]

#define A(x) #x <-[Operator # or ## is used in a macro.]

#define B(x, y) x##y <-[Operator # or ## is used in a macro.]

#define C x##y <-[Operator # or ## is used in a macro.]

180

M5.1.2(2)

[Points of Message Indication in Agile+ Relief]:

Both #operator and ##operator exist in the macro function.

[Example1]

#define AAA(x, y) x###y <-[The operators # and ## are used together in the definition of the
macro function "AAA".]

181

M5.1.3

[Points of Message Indication in Agile+ Relief]

The same parameter has appeared more than once in the replacement string of
the macro function.

[Example 1]

#define ISNUM(a) (('0' <= (a)) && ((a) <= '9')) <-[In a #define statement, parameter "a" is
used two or more times in the
replacement string of the
macro function "ISNUM".]

if(ISNUM(*p++))

182

M5.2.1(1)

[Points of Message Indication in Agile+ Relief]

The following dynamic heap allocation functions are used:

malloc

calloc

realloc

free

[Example 1]

int *mp;

mp = (int *)malloc(sizeof(int) * 10); <-[function "malloc" is used.]

183

M5.2.1(2) (IPA/SEC-C V1, V2 only)

The same with the message indication of M5.2.1(1), please refer to M5.2.1(1).

184

M5.2.1(2) (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

The following dynamic heap allocation functions are used:

malloc

calloc

realloc

free

It refers to resources that have already been released.

It returns without releasing the resource acquired in the function.

The resource obtained in the function is used as the return value of the function.

The resource obtained in the function is assigned to an external variable and returned
without being released.

Free the space reserved in the variable declaration using a function that frees the
dynamic area.

Free a pointer to a static area using a function to free the dynamic area.

[Example 1]

int *mp;

mp = (int *)malloc(sizeof(int) * 10); <-[function "malloc" is used.]

[Example 2]

Line

11: if (mode == 0.) {

 12: free(p);

 13: }

 14: *p = 0 ; <-[The variable "p" the resources of which are reclaimed in

line 12, might be referenced.]

185

[Example 3]

Line

10: char *p ;

11: if ((p = malloc(sizeof(char) * 100)) == NULL) {

12: return 1 ;

13: }

 :

21: if (err) {

22: free(p) ;

23: return 1;

24: }

25: return 0 ; <-[Resources allocated with the function "malloc" in line 11

may not have been deallocated.]

[Example 4]

Line

10: void * func(int i , void* pBuff) {

11: void* p ;

12: if (i < 10)

13: p = malloc(i) ;

14: else

15: p = pBuff ;

16: return p ; <-[Resources point "p" allocated with the function "malloc" in

line 13 of function "func" is returned.]

17: }

[Example 5]

Line

1: extern char *p ;

 :

10: int func() {

11: if ((p = malloc(sizeof(char) * 100)) == NULL) {

12: return 1 ;

13: }

 :

21: if (err) {

22: free(p) ;

23: return 1;

24: }

25: return 0 ; <-[Global point "p" to resources which was allocated with the function

"malloc" in line 11 of function "func" may not have been deallocated.]

26: }

186

[Example 6]

Line

10: int x, *p, data[10] ;

11: p = data ;

12: free (&x) ; <-[The function "free" may not be used to deallocate the static

resource "&x".]

13: free (p) ; <-[The function "free" may not be used to deallocate the static

resource "data" assigned in line 11.]

[Example 7]

Line

10: time_t timer ;

11: struct tm *localtimer ;

12: time(&timer) ;

13: localtimer = localtime(& timer) ;

14: free(localtimer) ; <-[The return value "localtimer" of function "localtime" at line

13 point to a static field, it is an error to free it by function

"free".]

187

3.3 Portability

P1.1.1(1)

[Points of Message Indication in Agile+ Relief]

There are descriptions not compliant with C90 (ISO/IEC 9899:1990).

[Example 1]

static enum A { /*declaration*/ }; <-[The storage class specifier "static" may not be used here.]

extern struct B { /*declaration*/ }; <-[The storage class specifier "extern" may not be used here.]

[Example 2]

int a[-1]; <-[The number of array elements "-1" is not greater than 0.]

struct Dynamic_Array {

 unsigned int size;

 int data[0]; <-[The number of array elements "0" is not greater than 0.]

};

188

P1.1.1(2)

[Points of Message Indication in Agile+ Relief]

The same with the message indication of P1.1.1(1), please refer to P1.1.1 (1).

189

P1.1.2

[Points of Message Indication in Agile+ Relief]

• The operation is different according to the type of compiler.

[Example 1]

‘ab’; <-[The value of char const ‘ab’ composed by multiple characters is different according
to the type of compiler.]

[Example 2]

int x,y;

x = y >> 2; <-[Right shift is performed when a negative is found in signed “y”,then the result is
different to the type of compiler.]

190

P1.1.3

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

191

P1.2.1

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

192

P1.2.2

[Points of Message Indication in Agile+ Relief]

There exists an undefined escape sequence starting with \.

[Example 1]

c = '\8'; <-[Escape sequence "'\8'" might be processed differently depending on the
compiler.]

193

P1.3.1

[Points of Message Indication in Agile+ Relief]

The char type is not used for a character value.

Implicit conversion between the type char and signed char/unsigned char.

[Example 1]

char x;

 :

x = 1; <-[The char "x" not specified as signed or unsigned is not treated
as a character value.]

[Example 2]

signed char func(int x){

 char c;

 :

 return c; <-[If char is unsigned, the return value "c" and the function "func"
are of different types: signed and unsigned (type of return
value: char , function type: signed char).]

}

194

P1.3.2

[Points of Message Indication in Agile+ Relief]

• Enum const is defined with a value exceeding the scope of int.

[Example 1]

enum TAG { E1 = 0x123456789, <-[Enum const “E1” exceeds the scope of int.]

E2 = 1,

E3 = 2 };

195

P1.3.3(1)

[Points of Message Indication in Agile+ Relief]

• Struct and union with bit field member have been declared.

[Example 1]

struct TAG { <-[The member of bit field in struct “TAG” has been defined.]

 unsigned int m1:1 ;

 unsigned int m2:1 ;

};

196

P1.3.3(2)

The same message indication with that of P1.3.3(1), please refer to P1.3.3(1).

197

P1.3.3(3)

The same message indication with that of P1.3.3(1), please refer to P1.3.3(1).

198

P1.4.1

[Points of Message Indication in Agile+ Relief]

The included file name in the #include statement has not been embraced by <>,
or "".

[Example 1]

#include head.h <-[The name of the header file is not enclosed with angle brackets < >
or quotation marks " ".]

199

P1.4.2

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

200

P1.4.3

[Points of Message Indication in Agile+ Relief]:

There are ' (single quote), \(currency character), "(double-quote), /*(slash and
asterisk), multiple-byte characters(Chinese characters, etc)in the
#include-specified file name.

[Example1]

#include "abc/*XY*/d.h" <-[The file name "abc/*XY*/d.h" specified by #include contains one or
more characters not defined in ANSI.]

201

P1.5.1

[Points of Message Indication in Agile+ Relief]

• Absolute path is found in the file name specified with #include.

[Example 1]

#include “/home/APL/inc/file.h” <-[The file name “/home/APL/inc/file.h”specified with #include
is an absolute path name.]

202

P1.5.2 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• Set a constant as an argument to a function that specifies size.

• Setting variable values, such as variables, as arguments to functions that specify
sizes..

[Example 1]

a. int *mp;

mp = (int *)malloc(80); /* 80 = intsize * 20 */ <-[sizeof/strlen could be used to obtain the value

for the 1st argument "80" of the function

"malloc".]

b. #define MAX 256

char *op;

char msg[MAX];

memcpy(msg, op, MAX); <-[sizeof/strlen could be used to obtain the value

for the 3rd argument "256" of the function

"memcpy".]

c. char *cp;

if(strncmp(cp, "OK", 2) == 0) <-[sizeof/strlen could be used to obtain the value

for the 3rd argument "256" of the function

"strncmp".]

[Example 2]

unsigned int Msize;

int *Mp;

void set(void)

{

Msize = 4; /* 4 is the size of int */

}

void alc(void)

{

Mp = (int *)malloc(Msize); <-[Check whether sizeof/strlen is used to obtain

the value for the 1st argument "Msize" of the

function "malloc".]

}

203

P2.1.1

[Points of Message Indication in Agile+ Relief]

Assembly language is used.

[Example 1]

asm(mov r4, r0); <-[Assembly language "asm" is used.]

204

P2.1.2

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

205

P2.1.3(1) (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

Basic types int/short/char/long/double/float are used directly.

[Example 1]

#include "file1.h"

void func (void)

{

int short_length ;<-[In this file, a basic type (int/short/char/long/double/float) is used directly.]

 :

}

206

P2.1.3(1) (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

Basic types int/short/char/long/double/float are used directly.

The type name is defined by a macro.

[Example 1]

#include "file1.h"

void func (void)

{

int short_length ;<-[In this file, a basic type (int/short/char/long/double/float) is used directly.]

 :

}

[Example 2]

#define PSI32 int* <-[typedef can be used instead of macro "PSI32".]

PSI32 a, b;

207

P2.1.3(2)

[Points of Message Indication in Agile+ Relief]

The same with the message indication of P2.1.3(1), please refer to P2.1.3(1).

208

3.4 Efficiency

E1.1.1 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

209

E1.1.1 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• Macro functions are defined.

[Example 1]

#define max(a , b) ((a > b) ? a b) <-[The macro function "max" can be replaced by the inline

function or the template function.]

210

E1.1.2

[Points of Message Indication in Agile+ Relief]

• The value of the expression is unchanged in loop.

[Example 1]

10: for(i = 0 ; i < x * 10 – y ; i++) { <-[“x * 10 - y” is applied in loop process of line 10 repeatedly. It
may be placed outside loop.]

:

}
x and y are not updated in for statement.

211

E1.1.3

[Points of Message Indication in Agile+ Relief]

• Structure or union of non-pointer type is declared for the parameters of function
definition.

[Example 1]

int func(struct tag x) <-[The parameter “x” of pointer type or reference type can
speed up the processing and bring reduction in code size.]

{

 /* function body */

}

212

E1.1.4

[Points of Message Indication in Agile+ Relief]

• In an if statement with else if, the constant and == operator is applied by each
conditional expression through the same variable.

[Example 1]

if(x == 1) { ~ } <-[Not only confined to if statement, it is the same with swtich
statement.]

else if(x == 2) { ~ }

else if(x == 3) { ~ }

213

3.5 Coding Miss

MISS 1.1

[Points of Message Indication in Agile+ Relief]

There is an unexecuted statement.

[Example 1]

if(x == 1)

{ process 1 }

else if(x != 1)

{ process 2 }

else <-[This else statement will never be executed.]

{ process 3 }

if(y == 1)

{ process 1 }

else if(y != 1)

{ process 2 }

else if(y < 0) <-[This else statement will never be executed.]

{ process 3 }

[Example 2]

for (; ;) {

 /* no break*/

}

x = y + z ; <-[This will not be executed.]

214

MISS1.2

[Points of Message Indication in Agile+ Relief]:

Within the sizeof, there is an update expression, a function call or a volatile
variable.

[Example1]

x = sizeof(y++) ; <-["y++" is in sizeof, so updating is not performed.]

215

MISS1.3

[Points of Message Indication in Agile+ Relief]

• The internal variable and static external variable are not referenced after value
settings.

[Example 1]

int x ; <-[The value of variable “x” is not referenced for once.]

x = 1 ;

After then, x is not referenced.

216

MISS1.4 (Points of Message Indication in IPA/SEC-C V1)

[Points of Message Indication in Agile+ Relief]

• For non volatile parameter and automatic variable, the post increment and
decrement is found in return statement.

[Example 1]

int func(void)

{

 int x;

 :

 return x++; <-[The increment and decrement of return value “x++” is
meaningless.]

}

217

MISS1.4 (Points of Message Indication in IPA/SEC-C V2,
V3)

[Points of Message Indication in Agile+ Relief]

• The value of parameter is not referenced for once.

[Example 1]

void func(int arg)

{

 arg = 1 ;

 return; <-[The value of parameter “arg” is not referenced.]

}

218

MISS1.5 (IPA/SEC-C V1 only)

[Points of Message Indication in Agile+ Relief]

• The value of parameter is not referenced for once.

[Example 1]

void func(int arg)

{

 arg = 1 ;

 return; <-[The value of parameter “arg” is not referenced.]

}

219

MISS2.1

[Points of Message Indication in Agile+ Relief]

• The mathmethic description of the operator (< <= > >= == != ! && ||) and the
operator (< <= > >= == !=) appears repeatedly.

[Example 1]

if(0 < x < 10) <-[An error might occur when comparing the result of “0 < x”
with “10”.]

220

MISS2.2

[Points of Message Indication in Agile+ Relief]

• Some conditional expressions may be true or false according to being signed or
not, or of different sizes.

[Example 1]

char c;

 :

if (c == -1) { <-[If char is unsigned, “-1” is not equal to “c”.]

[Example 2]

short s;

:

if (s == 65536) <-[An error might occur when comparing “s” of short type with
the constant “65536” exceeding the bitwidth of short int type.]

221

MISS2.3

[Points of Message Indication in Agile+ Relief]

• A comparison with character const is made.

[Example 1]

char *p;

:

if (p == “OK”) <-[In “p == “OK”“, an error might occur when comparing with string literal.]

222

MISS2.4

[Points of Message Indication in Agile+ Relief]

The function may have no return statement for the return value, or the return
statement of the same type as the function does not exist.

[Example 1]

int func(void)

{

} <-[The function "func" does not have a return statement.]

[Example 2]

int func(int a)

{

 if (a == 0)

 { return 0; }

} <-[In the function "func", there are routes that do not have return
statements.]

[Example 3]

int func(void)

{

 :

 return 0;

 :

 return; <-[The return value of a return statement might have been omitted
accidentally.]

}

223

MISS2.5 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

The function may have no return statement for the return value, or the return
statement of the same type as the function does not exist.

[Example 1]

struct block *bp, *wbp;

int count;

wbp = (char*)bp + (count * 256); <-[The pointer addition/subtraction expression "bp +

(count * 256)" might contain a mistake.]

224

MISS3.1

[Points of Message Indication in Agile+ Relief]

• Attempt to access outside the scope of array.

[Example 1]

 file name:file.c

1: int data[10] ;

 :

5: data[10] =0 ; <-[The suffix ”10” of array “data” exceeds the socpe of array.
(Array Declaration: Line 1 of “file.c”.]

[Example 2]

file name :file.c

1: int i , data[10] ;

 :

5: for(i = 0 ; i <= 10 ; i++) {

6: data[i] = i ; <-[In for statement of line “5”, because “10” included in “i”
exceeds the scope of “data[i]”. (Array Declaration: Line 1
of”file.c”)]

225

MISS3.2

[Points of Message Indication in Agile+ Relief]

The address of an automatic variable has been set to a return value of the
function.

The address of an automatic variable is assigned to a variable outside the
effective scope.

[Example 1]

char *func(void)

{

char str[16];

 :

return str; <-[The address "str" is the address of an automatic variable and
should not be used as the return value of a function.]

 :

}

[Example 2]

int *p ;

{

 int x;

 p = &x ; <-[The address of the automatic variable x cannot be used outside
the scope.]

}

*p = 0 ;

226

MISS3.3

[Points of Message Indication in Agile+ Relief]

• The released resource is used by functions, such as free and fclose.

[Example 1]

11: if(mode == 0) {;

12: free(p) ;

13: }

14: *p = 0 ; <-[Variable “p” of released resource in line 12 maybe referenced.]

227

MISS3.4 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

228

MISS3.4 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• A string literal is referenced without const qualification.

[Example 1]

void func1(char *s);

void func0(void) {

 char *buf1 = "Agile+ Relief"; <-[Not specified by const but referred string literal.]

 :

 func1("Agile+ Relief"); <-[Not specified by const but referred string literal.]

}

229

MISS3.5 (IPA/SEC-C V1, V2 only)

[Points of Message Indication in Agile+ Relief]

• For the memory copying functions, like strcpy, the target memory size is less than
that of source memory.

• For the functions accessing the specified size, the memory of specified bytes
cannot be guaranteed.

[Example 1]

char a[10], b[20] ;

:

strcpy(a , b) ; <-[The memory space of “a” in “strcpy (a,b)” may be exceeded.
(Target:10, Source:20)]

[Example 2]

int x ;

struct { int m1; int m2 ; } sa ;

:

memset(&x , 0 , sizeof(sa)) ; <-[“memset (&x, 0, sizeof(sa)” may access the contents outside the
memory space of “x”. (Memory:4, size:8)]

230

MISS3.5 (IPA/SEC-C V3 only)

[Points of Message Indication in Agile+ Relief]

• For the memory copying functions, like strcpy, the target memory size is less than
that of source memory.

• For the functions accessing the specified size, the memory of specified bytes
cannot be guaranteed.

• Copying information obtained using a function that retrieves an environment
variable of an unpredictable length into an array with a function that copies the
data.

[Example 1]

char a[10], b[20] ;

:

strcpy(a , b) ; <-[The memory space of “a” in “strcpy (a,b)” may be exceeded.
(Target:10, Source:20)]

[Example 2]

int x ;

struct { int m1; int m2 ; } sa ;

:

memset(&x , 0 , sizeof(sa)) ; <-[“memset (&x, 0, sizeof(sa)” may access the contents outside the
memory space of “x”. (Memory:4, size:8)]

[Example 3]

#define ENV_PATHMAX 128

void func(void) {

 char path[ENV_PATHMAX];

strcpy(path, getenv("PATH")); <-[Copying environment variable into "path" in may access

addresses beyond array boundary.]

231

MISS4.1

[Points of Message Indication in Agile+ Relief]

• Logic sum and logic product may be mistakenly used in some conditional
expressions.

[Example 1]

if(x == 1 && x == 2) <-[“x == 1 && x == 2” cannot be true.]

[Example 2]

if(x == 1 || x == 1) <-[Meaningless conditional expression is found in “x == 1 || x ==
1”.]

if(x < 10 && x < 20) <-[Meaningless conditional expression is found in “x < 10 && x
< 20”.]

[Example 3]

if(x >= 1 && x <= 1) <-[The conditional expressions that can be incorporated is
found in “x >= 1 && x <= 1”.]

if(x >= 2 || x == 2) <-[The conditional expressions that can be incorporated is
found in “x >= 2 || x <= 2”.”]

[Example 4]

if(x != 1 || x != 2) <-[“x != 1 || x != 2” cannot be false.]

232

MISS4.2

[Points of Message Indication in Agile+ Relief]

• Logical sum is used in the conditions of for statement, and the judgment of loop
counter is contained in the conditional expression on one side.

[Example 1]

#define MAX 10

int h[MAX] ;

 :

for(i = 0 ; i < MAX || p != 0 ; i++) <-[An error might occur in loop condition “I < MAX || p !=
0”.]

{

 h[i] = 0 ;

:

}

233

MISS4.3

[Points of Message Indication in Agile+ Relief]

• Bit operation is found in the conditional expression.

[Example 1]

if (a < 0 & b < 0) <-[In “a < 0 & b <0”, & may be mistaken as &&, and | as ||.]

234

MISS5.1

[Points of Message Indication in Agile+ Relief]

• Assignment is found in the conditional expressions.

[Example 1]

if(x = y) <-[Assignment “x = y” is used as condition.]

[Example 2]

if(x = 0) <-[Conditional expression “x = 0” is meaningless. = may be mistaken as ==.]

235

MISS6.1

[Points of Message Indication in Agile+ Relief]

• The macro with the same name is redefined with other values.

[Example 1]

 file name :file.c

10: #define ABC 1

 #define ABC 10 <-[Macro “ABC” is redefined with a different value in line 10 of
“file.c”]

[Example 2]

#define ABC 10 <-[Macro “ABC” is redefined with a value different from –D
option]

As an option for Agile+ Relief analysis, specify –DABC=xxx (xxx is a value other than 10)

236

MISS6.2

[Points of Message Indication in Agile+ Relief]

The violation against this rule is not checked in Agile+ Relief.

237

Appendix A Rule List

A.1 IPA/SEC-C V1 rule

 Rule Status Rule Status Rule Status Rule Status

R1.1.1 ○ R3.6.1 ○ M3.1.3 ○ P1.1.1(2) ○ (RuleA)

R1.1.2 ○ R3.6.2 ○ M3.1.4(1) ○ P1.1.2 ○ (RuleA)

R1.2.1 ○ M1.1.1 ○ M3.1.4(2) ○(RuleB) P1.1.3 ×(RuleA&B)

R1.2.2 ○ M1.1.2 × M3.1.5(1) ○ P1.2.1 × (RuleB)

R1.3.1(1) ○ M1.2.1(1) ○ M3.1.5(2) ∆ (Note3) P1.2.2 ○
R1.3.1(2) ○ M1.2.1(2) ○ M3.2.1(1) ○ P1.3.1 ○

R1.3.2 ○ M1.2.2 ○ M3.2.1(2) ○ P1.3.2 ○
R1.3.3 ○ M1.2.3 ○ M3.2.2 ○ P1.3.3(1) ○
R2.1.1 ○ M1.3.1 ○ M3.3.1 ○ P1.3.3(2) ○
R2.1.2 ○ M1.3.2 ○ M3.3.2 ○ P1.3.3(3) ○ (RuleA)
R2.1.3 ○ M1.3.3 ○ M3.3.3(1) ○ P1.4.1 ○
R2.2.1 ○ M1.4.1 ○ M3.3.3(2) ○ P1.4.2 × (RuleB)
R2.3.1 ○ M1.4.2 ○ (RuleB) M3.4.1 ○ P1.4.3 ○
R2.3.2 ○ M1.5.1 ○ M4.1.1 × (RuleB) P1.5.1 ○
R2.3.3 ○ M1.5.2 ○ M4.2.1 × (RuleB) P2.1.1 ○ (RuleB)
R2.4.1 ○ M1.6.1 ○ M4.3.1 ○ (RuleB) P2.1.2 × (RuleB)
R2.4.2 ○ M1.6.2(1) ○ M4.3.2 × (RuleB) P2.1.3(1) ○
R2.5.1 ○ M1.6.2(2) ○ M4.4.1 × (RuleB) P2.1.3(2) ○ (RuleB)
R2.5.2 ○ M1.7.1 ○ M4.4.2 × (RuleB) E1.1.1 ×
R2.5.3 ○ M1.7.2 ○ M4.4.3 ○ E1.1.2 ○
R2.5.4 ○ M1.7.3 × M4.4.4 ○ E1.1.3 ○
R2.6.1 ○ M1.8.1 ○ M4.4.5 ○ E1.1.4 ∆ (RuleB)

(Note5) R2.6.2 ○ M1.8.2 ○ M4.4.6 ○ (RuleB)
R2.7.1(1) ○ M1.8.3 ○ M4.5.1(1) ○ MISS1.1 ○
R2.7.1(2) ○ M1.8.4 ○ M4.5.1(2) ○ MISS1.2 ○
R2.7.1(3) ○ M1.8.5 ○ M4.5.2 ○ MISS1.3 ○

R2.7.2 ○ M1.9.1 ∆ (Note1) M4.5.3(1) ○ MISS1.4 ○
R2.7.3 ○ M1.9.2 ∆ (RuleB)

(Note2)
M4.5.3(2) ○ MISS1.5 ○

R2.8.1 ○ M4.6.1(1) ○ MISS2.1 ○
R2.8.2(1) ○ M1.10.1 × M4.6.1(2) × MISS2.2 ○
R2.8.2(2) ○(RuleA) M1.11.1 ○ M4.7.1 ○ MISS2.3 ○

R2.8.3 ○ M1.11.2 ○ M4.7.2 ○ (RuleB) MISS2.4 ○
R3.1.1(1) ○ M1.11.3 × (RuleB) M4.7.3 ○ MISS3.1 ○
R3.1.1(2) ○ M1.12.1 ○ M4.7.4 ○ MISS3.2 ○

R3.1.2 ○ M2.1.1 ○ M4.7.5 ○ MISS3.3 ○
R3.2.1 ○ M2.1.2 ○ M4.7.6 ○ MISS3.4 ×
R3.2.2 ○ M2.2.1 ○ M5.1.1 × (RuleB) MISS3.5 ○
R3.3.1 ○ M2.2.2 ○ M5.1.2(1) ○ MISS4.1 ○
R3.3.2 ○ M2.2.3 ○ M5.1.2(2) ○ MISS4.2 ○
R3.4.1 ○ M2.2.4 ○ M5.1.3 ∆ (Note4) MISS4.3 ○
R3.5.1 ○(RuleB) M3.1.1 ○ M5.2.1(1) ○ MISS5.1 ○
R3.5.2 ○(RuleB) M3.1.2(1) ○ M5.2.1(2) ○ (RuleB) MISS6.1 ○
R3.5.3 ○ M3.1.2(2) ○ P1.1.1(1) ○ MISS6.2 ×

(RuleA): It denotes the rules for file creation.
(RuleB): It denotes the rules formed for the need of each project.
○: Indicated ×: Not Indicated
∆: Though it is hard to indicate the static analysis value error, the best effort will be made for possible

indication.
Note 1: It will be indicated when ‘)’ of if, for and while statement is followed with a colon.
Note 2: It will be indicated when the variable used in the condition of loop statement is not updated in loop.
Note 3: It will be indicated when more than 2 outlets found in function.
Note 4: It will be indicated for functions possibly leading trouble.
Note 5: It will be indicated for the if statement which seemly can be converted into a switch statement.

238

A.2 IPA/SEC-C V2 rule
 Rule Status Rule Status Rule Status Rule Status

R1.1.1 ○ R3.4.1 ○ M2.2.4 ○ M5.2.1(2) ○ (RuleB)
R1.1.2 ○ R3.5.1 ○(RuleB) M3.1.1 ○ P1.1.1(1) ○
R1.2.1 ○ R3.5.2 ○(RuleB) M3.1.2(1) ○ P1.1.1(2) ○ (RuleA)

R1.2.2 ○ R3.5.3 ○ M3.1.2(2) ○ P1.1.2 ○ (RuleA)

R1.3.1(1) ○ R3.6.1 ○ M3.1.4(1) ○ P1.1.3 ×(RuleA&B)

R1.3.1(2) ○ R3.6.2 ○ M3.1.4(2) ○(RuleB) P1.2.1 × (RuleB)

R1.3.2 ○ R3.6.3 ○ M3.1.5(1) ○ P1.2.2 ○
R1.3.3 ○ M1.1.1 ○ M3.1.5(2) ∆ (Note3) P1.3.1 ○
R1.3.4 ○ M1.1.2 × M3.2.1(1) ○ P1.3.2 ○
R2.1.1 ○ M1.2.1(1) ○ M3.2.1(2) ○ P1.3.3(1) ○
R2.1.2 ○ M1.2.1(2) ○ M3.2.2 ○ P1.3.3(2) ○
R2.1.3 ○ M1.2.2 ○ M3.3.1 ○ P1.3.3(3) ○ (RuleA)
R2.2.1 ○ M1.2.3 ○ M3.3.2 ○ P1.4.1 ○
R2.3.1 ○ M1.3.1 ○ M3.3.3(1) ○ P1.4.2 × (RuleB)
R2.3.2 ○ M1.3.2 ○ M3.3.3(2) ○ P1.4.3 ○
R2.3.3 ○ M1.3.3 ○ M3.4.1 ○ P1.5.1 ○
R2.4.1 ○ M1.4.1 ○ M4.1.1 × (RuleB) P2.1.1 ○ (RuleB)
R2.4.2 ○ M1.4.2 ○ (RuleB) M4.2.1 × (RuleB) P2.1.2 × (RuleB)
R2.5.1 ○ M1.5.1 ○ M4.3.1 ○ (RuleB) P2.1.3(1) ○
R2.5.2 ○ M1.5.2 ○ M4.3.2 × (RuleB) P2.1.3(2) ○ (RuleB)
R2.5.3 ○ M1.6.1 ○ M4.4.1 × (RuleB) E1.1.1 ×
R2.5.4 ○ M1.6.2(1) ○ M4.4.2 × (RuleB) E1.1.2 ○

R2.6.1(1) ○ M1.6.2(2) ○ M4.4.3 ○ E1.1.3 ○
R2.6.1(2) ○ M1.7.1 ○ M4.4.4 ○ E1.1.4 ∆ (RuleB)

(Note5) R2.6.1(3) ○ M1.7.2 ○ M4.4.5 ○
R2.6.2 ○ M1.7.3 × M4.4.6 ○ (RuleB) MISS1.1 ○

R2.7.1(1) ○ M1.8.1 ○ M4.5.1(1) ○ MISS1.2 ○
R2.7.1(2) ○ M1.8.2 ○ M4.5.1(2) ○ MISS1.3 ○
R2.7.1(3) ○ M1.8.3 ○ M4.5.2 ○ MISS1.4 ○

R2.7.2 ○ M1.8.4 ○ M4.5.3(1) ○ MISS2.1 ○
R2.7.3 ○ M1.8.5 ○ M4.5.3(2) ○ MISS2.2 ○
R2.8.1 ○ M1.9.1 ∆ (Note1) M4.6.1(1) ○ MISS2.3 ○

R2.8.2(1) ○ M1.9.2 ∆ (RuleB)
(Note2)

M4.6.1(2) × MISS2.4 ○
R2.8.2(2) ○(RuleA) M4.7.1 ○ MISS3.1 ○

R2.8.3 ○ M1.10.1 × M4.7.2 ○ (RuleB) MISS3.2 ○
R3.1.1(1) ○ M1.11.1 ○ M4.7.3 ○ MISS3.3 ○
R3.1.1(2) ○ M1.11.2 ○ M4.7.5 ○ MISS3.4 ×

R3.1.2 ○ M1.11.3 × (RuleB) M4.7.6 ○ MISS3.5 ○
R3.1.3 × M1.12.1 ○ M4.7.7 × MISS4.1 ○
R3.1.4 × M2.1.1 ○ M5.1.1 × (RuleB) MISS4.2 ○
R3.2.1 ○ M2.1.2 ○ M5.1.2(1) ○ MISS4.3 ○
R3.2.2 ○ M2.2.1 ○ M5.1.2(2) ○ MISS5.1 ○
R3.3.1 ○ M2.2.2 ○ M5.1.3 ∆ (Note4) MISS6.1 ○
R3.3.2 ○ M2.2.3 ○ M5.2.1(1) ○ MISS6.2 ×

(RuleA): It denotes the rules for file creation.
(RuleB): It denotes the rules formed for the need of each project.
○: Indicated ×: Not Indicated
∆: Though it is hard to indicate the static analysis value error, the best effort will be made for possible

indication.
Note 1: It will be indicated when ‘)’ of if, for and while statement is followed with a colon.
Note 2: It will be indicated when the variable used in the condition of loop statement is not updated in loop.
Note 3: It will be indicated when more than 2 outlets found in function.
Note 4: It will be indicated for functions possibly leading trouble.
Note 5: It will be indicated for the if statement which seemly can be converted into a switch statement.

239

A.3 IPA/SEC-C V3 rule
 Rule Status Rule Status Rule Status Rule Status

R1.1.1 ○ R3.4.1 ○ M2.2.3 ○ P1.1.1(1) ○
R1.1.2 ○ R3.5.1 ○(RuleB) M2.2.4 ○ P1.1.1(2) ○ (RuleA)

R1.2.1 ○ R3.5.2 ○(RuleB) M3.1.1 ○ P1.1.2 ○ (RuleA)

R1.2.2 ○ R3.5.3 ○ M3.1.2(1) ○ P1.1.3 ×(RuleA&B)

R1.3.1(1) ○ R3.6.1 ○ M3.1.2(2) ○ P1.2.1 × (RuleB)

R1.3.1(2) ○ R3.6.2 ○ M3.1.4(1) ○ P1.2.2 ○
R1.3.2 ○ R3.6.3 ○ M3.1.4(2) ○(RuleB) P1.3.1 ○
R1.3.3 ○ R3.11.1 ○ M3.1.5(1) ○ P1.3.2 ○
R1.3.4 ○ R3.11.2 ○ M3.1.5(2) ∆ (Note3) P1.3.3(1) ○
R2.1.1 ○ M1.1.1 ○ M3.2.1(1) ○ P1.3.3(2) ○
R2.1.2 ○ M1.1.2(1) ○ M3.2.1(2) ○ P1.3.3(3) ○ (RuleA)
R2.1.3 ○ M1.1.2(2) ○ M3.2.2 ○ P1.4.1 ○
R2.2.1 ○ M1.2.1(1) ○ M3.3.1 ○ P1.4.2 × (RuleB)
R2.3.1 ○ M1.2.1(2) ○ M3.3.2 ○ P1.4.3 ○
R2.3.2 ○ M1.2.2 ○ M3.3.3(1) ○ P1.5.1 ○
R2.3.3 ○ M1.2.3 ○ M3.3.3(2) ○ P1.5.2 ○
R2.4.1 ○ M1.3.1 ○ M3.4.1 ○ P2.1.1 ○ (RuleB)
R2.4.2 ○ M1.3.2 ○ M4.1.1 × (RuleB) P2.1.2 × (RuleB)
R2.5.1 ○ M1.3.3 ○ M4.2.1 × (RuleB) P2.1.3(1) ○
R2.5.2 ○ M1.4.1 ○ M4.3.1 ○ (RuleB) P2.1.3(2) ○ (RuleB)
R2.5.3 ○ M1.4.2 ○ (RuleB) M4.3.2 × (RuleB) E1.1.1 ○
R2.5.4 ○ M1.5.1 ○ M4.4.1 × (RuleB) E1.1.2 ○

R2.6.1(1) ○ M1.5.2 ○ M4.4.2 × (RuleB) E1.1.3 ○
R2.6.1(2) ○ M1.6.1 ○ M4.4.3 ○ E1.1.4 ∆ (RuleB)

(Note5) R2.6.1(3) ○ M1.6.2(1) ○ M4.4.4 ○
R2.6.2 ○ M1.6.2(2) ○ M4.4.5 ○ MISS1.1 ○

R2.7.1(1) ○ M1.7.1 ○ M4.4.6 ○ (RuleB) MISS1.2 ○
R2.7.1(2) ○ M1.7.2 ○ M4.5.1(1) ○ MISS1.3 ○
R2.7.1(3) ○ M1.7.3 ○ M4.5.1(2) ○ MISS1.4 ○

R2.7.2 ○ M1.8.1 ○ M4.5.2 ○ MISS2.1 ○
R2.7.3 ○ M1.8.2 ○ M4.5.3(1) ○ MISS2.2 ○
R2.8.1 ○ M1.8.3 ○ M4.5.3(2) ○ MISS2.3 ○

R2.8.2(1) ○ M1.8.4 ○ M4.6.1(1) ○ MISS2.4 ○
R2.8.2(2) ○(RuleA) M1.8.5

M1.9.1
○

∆ (Note1)
M4.6.1(2) ○ MISS2.5 ○

R2.8.3 ○ M4.7.1 ○ MISS3.1 ○
R3.1.1(1) ○ M1.9.2 ∆ (RuleB)

(Note2)
M4.7.2 ○ (RuleB) MISS3.2 ○

R3.1.1(2) ○ M4.7.3 ○ MISS3.3 ○
R3.1.2 ○ M1.10.1 × M4.7.5 ○ MISS3.4 ○
R3.1.3 ○ M1.11.1 ○ M4.7.6 ○ MISS3.5 ○
R3.1.4 ○ M1.11.2 ○ M4.7.7 ○ MISS4.1 ○

R3.1.5(1) ○ M1.11.3 × (RuleB) M5.1.1 ○ (RuleB) MISS4.2 ○
R3.1.5(2) ○ M1.12.1 ○ M5.1.2(1) ○ MISS4.3 ○

R3.2.1 ○ M2.1.1 ○ M5.1.2(2) ○ MISS5.1 ○
R3.2.2 ○ M2.1.2 ○ M5.1.3 ∆ (Note4) MISS6.1 ○
R3.3.1 ○ M2.2.1 ○ M5.2.1(1) ○ MISS6.2 ×
R3.3.2 ○ M2.2.2 ○ M5.2.1(2) ○ (RuleB)

(RuleA): It denotes the rules for file creation.
(RuleB): It denotes the rules formed for the need of each project.
○: Indicated ×: Not Indicated
∆: Though it is hard to indicate the static analysis value error, the best effort will be made for possible

indication.
Note 1: It will be indicated when ‘)’ of if, for and while statement is followed with a colon.
Note 2: It will be indicated when the variable used in the condition of loop statement is not updated in loop.
Note 3: It will be indicated when more than 2 outlets found in function.
Note 4: It will be indicated for functions possibly leading trouble.
Note 5: It will be indicated for the if statement which seemly can be converted into a switch statement.

240

A.4 IPA/SEC-C++ V1 rule
 Rule Status Rule Status Rule Status Rule Status

R1.1.1 ○ R3.5.3 × M1.8.8 ○ M4.5.3(2) ○
R1.2.2 ○ R3.6.1 ○ M1.9.1 ∆ (Note1) M4.6.1(1) ○

R1.3.1(1) ○ R3.6.2 ○ M1.9.2 ∆ (RuleB)
(Note2)

M4.6.1(2) ×
R1.3.1(2) ○ R3.7.1 ○ M4.7.1 ○

R1.3.2 ○ R3.7.2 ○ M1.10.1 × M4.7.2 ○(RuleB)
R1.3.3 ○ R3.7.3 ○ M1.11.1 ○ M4.7.3 ○
R1.4.1 ○ R3.7.4 ○ M1.11.2 × M4.7.4 ○
R1.4.2 ○ R3.7.5 ○ M1.11.3 ×(RuleB) M4.7.5 ○
R1.4.3 × R3.7.6 × M1.12.1 ○ M4.7.6 ○
R1.4.4 ○ R3.8.1(1) ○ M2.1.1 ○ M4.8.1 ○
R1.4.5 ○ R3.8.1(2) ○(RuleB) M2.1.2 ○ M4.8.2 ○
R1.4.6 × R3.8.2 ○ M2.2.1 × M4.8.3 ○
R1.5.1 ○ R3.8.3 ○ M2.2.2 × M5.1.1 ×(RuleB)
R2.1.1 ○ R3.8.4 ○ M2.2.3(1) × M5.1.2(1) ○
R2.1.2 ○ R3.8.5 ○ M2.2.3(2) × M5.1.2(2) ○
R2.1.3 ○ R3.8.6 ○ M2.2.4 ○ M5.1.3 ∆(Note4)
R2.3.1 ○ R3.8.7 ○ M2.2.5 ○ M5.2.1(1) ×
R2.3.2 ○ R3.8.8 ○ M3.1.1 ○ M5.2.1(2) ×(RuleB)
R2.3.3 ○ R3.8.9 ○ M3.1.2(1) ○ P1.1.1(1) ×
R2.4.1 ○ R3.9.1 × M3.1.2(2) ○ P1.1.1(2) ×(RuleA)
R2.4.2 ○ M1.1.1 ○ M3.1.3 ○ P1.1.2 ○(RuleA)
R2.5.1 ○ M1.1.2 × M3.1.4(1) ○ P1.1.3 ×(RuleA)

 (RuleB) R2.5.2 ○ M1.2.1(1) ○ M3.1.4(2) ○(RuleB)
R2.5.3 ○ M1.2.1(2) ○ M3.1.5(1) ○ P1.2.1 ×(RuleB)
R2.5.4 ○ M1.2.2 ○ M3.1.5(2) ∆(Note3) P1.2.2 ○

R2.6.1(1) ○ M1.2.3 ○ M3.2.1(1) ○ P1.3.1 ×
R2.6.1(2) ○ M1.2.4 ×(RuleB) M3.2.1(2) ○ P1.3.2 ○
R2.6.1(3) ○ M1.2.5 ○ M3.2.2 ○ P1.3.3(1) ○

R2.6.2 ○ M1.2.6 × M3.3.1 ○ P1.3.3(2) ○
R2.7.1(1) ○ M1.2.7 × M3.3.2 ○ P1.3.3(3) ○(RuleA)
R2.7.1(2) ○ M1.3.1 ○ M3.3.3(1) ○ P1.4.1 ○
R2.7.1(3) ○ M1.3.2 ○ M3.3.3(2) ○ P1.4.2 ×(RuleB)

R2.7.2 ○ M1.4.1 ○ M3.4.1 ○ P1.4.3 ○
R2.7.3 ○ M1.4.2 ○(RuleB) M3.5.1 × P1.5.1 ○

R2.7.4(1) ○ M1.5.1 ○ M4.1.1 ×(RuleB) P2.1.1 ○(RuleB)
R2.7.4(2) ○ M1.5.2 ○ M4.1.2 ○ P2.1.2 ×(RuleB)
R2.8.2(1) ○ M1.6.1 ○ M4.2.1 ×(RuleB) P2.1.3(1) ×
R2.8.2(2) ○(RuleA) M1.6.2(1) ○ M4.3.1 ○(RuleB) P2.1.3(2) ×(RuleB)

R2.8.3 ○ M1.6.2(2) ○ M4.3.2 ×(RuleB) E1.1.1 ×
R3.1.1(1) ○ M1.7.1 ○ M4.4.1 ×(RuleB) E1.1.2 ○
R3.1.1(2) ○ M1.7.2 ○ M4.4.2 ×(RuleB) E1.1.3 ○

R3.1.2 ○ M1.7.3 × M4.4.3 ○ E1.1.4 ∆ (RuleB)
(Note5) R3.2.1 ○ M1.8.1 ○ M4.4.6 ○(RuleB)

R3.2.2 ○ M1.8.2 ○ M4.4.7 ○ E1.1.5 ○
R3.3.1 ○ M1.8.3 ○ M4.4.8 ×(RuleB) E1.1.6 ○
R3.3.2 ○ M1.8.4 ○ M4.5.1(1) ○ E1.1.7 ×
R3.4.1 ○ M1.8.5 ○ M4.5.1(2) ○ E1.1.8 ○
R3.5.1 ○(RuleB) M1.8.6 ○ M4.5.2 × E1.1.9 ×
R3.5.2 ○(RuleB) M1.8.7 ○ M4.5.3(1) ○ E1.1.10 ×

(RuleA): It denotes the rules for file creation.
(RuleB): It denotes the rules formed for the need of each project.
○: Indicated ×: Not Indicated
∆: Though it is hard to indicate the static analysis value error, the best effort will be made for possible

indication.
Note 1: It will be indicated when ‘)’ of if, for and while statement is followed with a colon.
Note 2: It will be indicated when the variable used in the condition of loop statement is not updated in loop.
Note 3: It will be indicated when more than 2 outlets found in function.
Note 4: It will be indicated for functions possibly leading trouble.
Note 5: It will be indicated for the if statement which seemly can be converted into a switch statement.

241

A.5 IPA/SEC-C++ V2 rule
 Rule Status Rule Status Rule Status Rule Status

R1.1.1 ○ R3.6.2 ○ M1.8.7 ○ M4.6.1(1) ×
R1.2.2 ○ R3.6.3 ○ M1.8.8 ○ M4.6.1(2) ○

R1.3.1(1) ○ R3.7.1 ○ M1.9.1 ∆ (Note1) M4.6.1(3) ×
R1.3.1(2) ○ R3.7.2 ○ M1.9.2 ∆ (RuleB)

(Note2)
M4.7.1 ○

R1.3.2 ○ R3.7.3 ○ M4.7.2 ○(RuleB)
R1.3.3 ○ R3.7.4 ○ M1.10.1 × M4.7.3 ○
R1.4.1 ○ R3.7.5 ○ M1.11.1 ○ M4.7.5 ○
R1.4.2 ○ R3.7.6 × M1.11.2 × M4.7.6 ○
R1.4.3 × R3.7.7 × M1.11.3 ×(RuleB) M4.7.7 ×
R1.4.4 ○ R3.8.1(1) ○ M1.12.1 ○ M4.8.1 ○
R1.4.5 ○ R3.8.1(2) ○(RuleB) M2.1.1 ○ M4.8.2 ○
R1.4.6 × R3.8.2 ○ M2.1.2 ○ M4.8.3 ○
R1.5.1 ○ R3.8.3 ○ M2.2.1 × M5.1.1 ×(RuleB)
R2.1.1 ○ R3.8.4 ○ M2.2.2 × M5.1.2(1) ○
R2.1.2 ○ R3.8.5 ○ M2.2.3(1) × M5.1.2(2) ○
R2.1.3 ○ R3.8.6 ○ M2.2.3(2) × M5.1.3 ∆(Note4)
R2.3.1 ○ R3.8.7 ○ M2.2.4 ○ M5.2.1(1) ×
R2.3.2 ○ R3.8.8 ○ M2.2.5 ○ M5.2.1(2) ×(RuleB)
R2.3.3 ○ R3.8.9 ○ M2.3.1 ○ P1.1.1(1) ○
R2.4.1 ○ R3.9.1 × M3.1.1 ○ P1.1.1(2) ○(RuleA)
R2.4.2 ○ R3.10.1 × M3.1.2(1) ○ P1.1.2 ○(RuleA)
R2.5.1 ○ R3.11.1 × M3.1.2(2) ○ P1.1.3 ×(RuleA)

 (RuleB) R2.5.2 ○ R3.11.2 ○ M3.1.4(1) ○
R2.5.3 ○ M1.1.1 ○ M3.1.4(2) ○(RuleB) P1.2.1 ×(RuleB)
R2.5.4 ○ M1.1.2 × M3.1.5(1) ○ P1.2.2 ○

R2.6.1(1) ○ M1.2.1(1) ○ M3.1.5(2) ∆(Note3) P1.3.1 ×
R2.6.1(2) ○ M1.2.1(2) ○ M3.2.1(1) ○ P1.3.2 ○
R2.6.1(3) ○ M1.2.2 ○ M3.2.1(2) ○ P1.3.3(1) ○

R2.6.2 ○ M1.2.3 ○ M3.2.2 ○ P1.3.3(2) ○
R2.7.1(1) ○ M1.2.4 ×(RuleB) M3.3.1 ○ P1.3.3(3) ○(RuleA)
R2.7.1(2) ○ M1.2.5 ○ M3.3.2 ○ P1.4.1 ○
R2.7.1(3) ○ M1.2.6 × M3.3.3(1) ○ P1.4.2 ×(RuleB)

R2.7.2 ○ M1.2.7 × M3.3.3(2) ○ P1.4.3 ○
R2.7.3 ○ M1.3.1 ○ M3.4.1 ○ P1.5.1 ○

R2.7.4(1) ○ M1.3.2 ○ M3.5.1 × P1.6.1 ○
R2.7.4(2) ○ M1.4.1 ○ M4.1.1 ×(RuleB) P2.1.1 ○(RuleB)
R2.8.2(1) ○ M1.4.2 ○(RuleB) M4.1.2 ○ P2.1.2 ×(RuleB)
R2.8.2(2) ○(RuleA) M1.5.1 ○ M4.2.1 ×(RuleB) P2.1.3(1) ○(RuleB)

R2.8.3 ○ M1.5.2 ○ M4.3.1 ○(RuleB) P2.1.3(2) ○(RuleB)
R3.1.1(1) ○ M1.6.1 ○ M4.3.2 ×(RuleB) E1.1.1 ×
R3.1.1(2) ○ M1.6.2(1) ○ M4.4.1 ×(RuleB) E1.1.2 ○

R3.1.2 ○ M1.6.2(2) ○ M4.4.2 ×(RuleB) E1.1.3 ○
R3.2.1 ○ M1.7.1 ○ M4.4.3 ○ E1.1.4 ∆ (RuleB)

(Note5) R3.2.2 ○ M1.7.2 ○ M4.4.6 ○(RuleB)
R3.3.1 ○ M1.7.3 × M4.4.7 ○ E1.1.5 ○
R3.3.2 ○ M1.8.1 ○ M4.4.8 ×(RuleB) E1.1.6 ○
R3.4.1 ○ M1.8.2 ○ M4.5.1(1) ○ E1.1.7 ×
R3.5.1 ○(RuleB) M1.8.3 ○ M4.5.1(2) ○ E1.1.8 ○
R3.5.2 ○(RuleB) M1.8.4 ○ M4.5.2 × E1.1.9 ×
R3.5.3 × M1.8.5 ○ M4.5.3(1) ○ E1.1.10 ×
R3.6.1 ○ M1.8.6 ○ M4.5.3(2) ○

(RuleA): It denotes the rules for file creation.
(RuleB): It denotes the rules formed for the need of each project.
○: Indicated ×: Not Indicated
∆: Though it is hard to indicate the static analysis value error, the best effort will be made for possible

indication.
Note 1: It will be indicated when ‘)’ of if, for and while statement is followed with a colon.
Note 2: It will be indicated when the variable used in the condition of loop statement is not updated in loop.
Note 3: It will be indicated when more than 2 outlets found in function.
Note 4: It will be indicated for functions possibly leading trouble.
Note 5: It will be indicated for the if statement which seemly can be converted into a switch statement.

	Title Page
	Preface
	Contents
	1. GUI for IPA/SEC-C/C++ Coding Check
	1.1 Create Project
	1.2 Check for IPA/SEC-C/C++ Coding Manner Violation
	1.3 Experienced with Agile+ Relief C/C++
	1.4 Setting up Rule Checking

	2. IPA/SEC-C/C++ Coding Manner Check with Command Line
	2.1 Functions of Command
	2.2 Format of Command
	2.3 Command Options
	2.4 Return Value
	2.5 Output Files
	2.6 Error Messages
	2.7 Example for Use
	2.7.1 Analyze with pgr5 command
	2.7.2 Message Checking in the pgrsec Command

	3. Points of Message Indication
	3.1 Reliability
	3.2 Maintainability
	3.3 Portability
	3.4 Efficiency
	3.5 Coding Miss

	Appendix A Rule List
	A.1 IPA/SEC-C V1 rule
	A.2 IPA/SEC-C V2 rule
	A.3 IPA/SEC-C V3 rule
	A.4 IPA/SEC-C++ V1 rule
	A.5 IPA/SEC-C++ V2 rule

