

FUJITSU Software

Agile+ Relief C/C++ V1.1.1

MISRA Option Manual

B1WD-3607-01ENZ0(00)

January 2023

i

Foreword

Agile+ Relief C/C++(hereafter referred to as Agile+ Relief) MISRA options are applied to
analyze and output messages on source programs written in the C language/C++
language and header files for MISRA violations.

This manual illustrates MISRA violation conditions that apply to Agile+ Relief.

For more information regarding message information output for program defects in Agile+
Relief, please also refer to "Message Indications Manual".

For more information regarding error message output in Agile+ Relief, please refer to
"Command Manual".

References:

[MISRA-C:2004 Guidelines for the use of the C language in critical systems]- The Motor
Industry Software Reliability Association

[Use Guideline of C Language For Car (JASO/TP-01002)] - Corporations Motor
Technology Institute.

[Guide of MISRA-C Embedded Program Design with High Reliability For Embedded
Developer] written by - MISRA-C, Japan Standard Association.

[MISRA-C++:2008 Guidelines for the use of the C++ language in critical systems]- The
Motor Industry Software Reliability Association.

[MISRA-C:2012 Guidelines for the use of the C language in critical systems]- The Motor
Industry Software Reliability Association

[MISRA-C:2012 Amendment 1 Additional security guidelines for MISRA-C:2012]- The
Motor Industry Software Reliability Association

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United
States and certain other countries.

MISRA and its logo are registered trademarks of MIRA Ltd, held on behalf of the MISRA
Consortium.

CERT is registered trademarks of Carnegie Mellon University in the United States.

All other product and service names mentioned in this document generally imply
trademarks of their respective owners.

This written material contains specific technology that falls under the [Foreign Exchange
and International Trade Law]. Therefore, the export of any part of this documentation
without consent is illegal.

 FUJITSU Limited

Note

⚫ No part of this publication may be transcribed and printed without prior written
permission.

⚫ Information contained within this manual is subject to change without notice.

All rights reserved, Copyright(C) 2005-2023 FUJITSU LIMITED.

ii

Contents

1. MISRA Options in GUI.. 1

1.1 Create Project ... 1

1.2 Check for MISRA Violation .. 10

1.3 Experienced with Agile+ Relief C/C++ .. 16

1.4 Setting up Rule Checking .. 18

2 MISRA Options in Command line ... 21

2.1 Functions of Command ... 21

2.2 Format of Command .. 21

2.3 Command Options ... 21

2.4 Return Value ... 22

2.5 Output Files .. 23

2.6 Error Messages .. 23

2.7 Example for Use ... 25

2.7.1 Analyze with pgr5 command .. 25

2.7.2 Message Checking in the pgrmisra Command 25

3 Corresponding Indication Messages for the Violation of MISRA Rules 27

3.1 MISRA-C V1 ... 27

3.2 MISRA-C V2 ... 157

3.3 MISRA-C V3 ... 301

3.4 MISRA-C++ V1 .. 464

Appendix A: A List of MISRA Rules .. 695

A.1 MISRA-C V1 Rule .. 695

A.2 MISRA-C V2 Rule .. 697

A.3 MISRA-C V3 Rule .. 699

A.4 MISRA-C++ V1 Rule .. 701

1

1. MISRA Options in GUI

This chapter explains the settings of MISRA options in GUI.

1.1 Create Project

First, you are able to create projects for Agile+ Relief.

When analyzing C/C++ source files in Agile+ Relief, management must be performed on
the source files in the unit of a project.

Select [New Project] from the [File] menu of the [Main Window].

The dialogue box "Project Wizard 1/3" will be displayed.

2

Please enter "sample" in the Project Name.

Please enter single-byte alphanumeric characters. Multi byte characters in the Project

Name is not allowed.

"Create this as a child project under the selected one" cannot be selected here.

Enter the directory to which you wish to save the projects in the Project Directory. Please
enter "C:\demo" in the sample.

When a project name has been entered while a directory name is still required, the project
name will automatically be appended to the end of the directory name.

3

When establishing the settings, the following dialogue box will be displayed:

Select [Next].

"Project Wizard 2/3" dialogue box.

4

The dialogue box is for Project Summary settings.

In order to simplify illustration, the settings made here will be displayed in the Main
Window to facilitate convenient reference for future projects.

Note: Symbols including multi byte characters or spaces, and other such symbols are
allowed in the Project Summary. (Ellipses are available)

"Sample Project" is set for the illustration example.

When establishing the settings, the dialogue box will be displayed as follows:

Select [Next].

5

"Project Wizard 3/3" is displayed.

Add source files to this project in this dialogue box.

"File" is set in File Selection.

[C/C++ Source] is selected in File Category.

Index is displayed on the left side of the dialogue box.

Select "sample_misra" under the Agile+ Relief C/C++ installation directory .

◆ Regarding classic installation, when Agile+ Relief C/C++ installation is complete, there
will be installation samples in the sub-directory of "sample", "sample_new",
"sample_misra" , "sample_sec" and “sample_cert" created under the Agile+ Relief
C/C++ installation directory .

The source files used in the sample are displayed on the right side of the dialogue box.

Drag the source files displayed in the list, and select all sample files.

The settings of "Project Wizard 3/3" are as above.

Select [Finish].

6

A Project has been successfully completed.

The settings for analysis are as follows (option settings):

The "Project Preference" dialogue box will be displayed:

Select the "Coding Guidelines" option and then do the check of [Enable checking for

7

Coding Guideline violations].

[Coding Guideline] For Rule Settings:

[MISRA-C V1] checks in accordance with MISRA-C:1998.

[MISRA-C V2] checks in accordance with MISRA-C:2004.

[MISRA-C V3] checks in accordance with MISRA-C:2012 and MISRA-C:2012
Amendment 1.

[MISRA-C++ V1] checks in accordance with MISRA-C++:2008.

[IPA/SEC-C V1] checks in accordance with IPA/SEC-C V1.

[IPA/SEC-C V2] checks in accordance with IPA/SEC-C V2.

[IPA/SEC-C V3] checks in accordance with IPA/SEC-C V3.

[IPA/SEC-C++ V1] checks in accordance with IPA/SEC-C++ V1.

[IPA/SEC-C++ V2] checks in accordance with IPA/SEC-C++ V2.

[CERT C] checks in accordance with CERT C.

- [MISRA-C V1], [MISRA-C V2] and [MISRA-C++ V1] cannot be selected when no license for MISRA
option reserved.

- [MISRA-C V3] checks Coding Guideline violations by the rule added by MISRA-C:2012 Amendment
1 in addition to MISRA-C:2012. Please refer to "3.3 MISRA-C V3" in "MISRA Option Manual", when
you want to check Coding Guideline violations by the rule of MISRA-C:2012.

- If you don't have CERT C option license, you can't select [CERT C].

Select [MISRA-C V1] here.

8

[Content to Confirm] allows you to select and confirm the contents against Rules.

[Coding Guideline violations only] is applied to selected Rules Violation Checks only.

[ALL (Coding Guideline violations included)] is also applied to issues indicated in the
viewpoints of Agile+ Relief besides selected Rules Violation Checks.

In order to increase program quality and precision, the confirmation of issues indicated
both by Coding Guideline and the viewpoints of Agile+ Relief is recommended.

Select [ALL (Coding Guideline violations included)] here.

Select [OK].

When the "Perform analyzing right now" query is displayed, please select [Yes].

If you choose [No], please select [Analyze All] from the [Analyze] menu.

When the analysis is in progress, the current state of and results pertaining to the analysis
will be displayed in the log viewer.

9

No error occurred in the sample analysis. If an error occurred in actual practice and the
desired analysis cannot be performed, please review the Compiler Type, Include Directory
or Macro, and other such settings.

10

1.2 Check for MISRA Violation

Checking for MISRA Rule Violation.

Select sample.c in the "Main Window", and then select [Coding Guideline Violations
Viewer] from the [Tools] menu.

The "Coding Guideline Violations Viewer" window will be displayed:

11

Brief Illustration on how to use the "Coding Guideline Violations Viewer":

In the [List of Files] window, files that have violated MISRA are displayed.

In the [List of Rules] window, the formal number of the MISRA rule that has been violated
is displayed.

[List of Files]window [List of Rules]window

[List of Messages]window

[Message]window

12

In the [List of Messages] window, the contents and indicated row are displayed.

When "List by File" on the toolbar is changed to "List by Rule", the [List of Files] window
will be switched to the [List of Rules] window.

When a rule number in [List of Rules] is selected, information corresponding to the
message will be displayed in the [Message] window.

Please confirm the indicated locations in order and modify the source files.

Some MISRA rule numbers may sometimes refer to the same message.

For example, the message ID: pgr0733 indicated in line 22 of the sample corresponds to
MISRA-C V1 rules 20 and 71.

Please select the rules in the [List of Rules] window, and then make modifications
accordingly; select all rules and make all modifications to each number of the source
codes to ensure efficiency and avoid repetition.

As the source codes of the sample, select the [Line] title to display line numbers in
ascending order and modify them from top to bottom.

First, select pgr0733 in line 22 and then right click to select [Open Pgr Viewer].

13

Pgr Viewer will startup.

14

Confirm the places where modifications are required, and make the according
modifications by using the existing editor.

When message information is difficult to understand, please right click to select [Message
Details].

The [Help] window will be opened. Please modify with regard to the relevant contents.

15

16

1.3 Experienced with Agile+ Relief C/C++

Project creation using the MISRA option is similar to using normal project.

Indeed, the only point that requires explanation regards appending the [Coding
Guidelines] settings in [Project Preference].

17

In addition, one other point concerning the [Coding Guideline Violations Viewer] window is
different, that is "Message ID List" in "Message Information" window is displayed as "Rule
Number List". The others are similar in operation.

18

1.4 Setting up Rule Checking

If only part of the rules is desired to be checked, create a definition file for rule checking.

Please follow the following format to create the definition file:

Put a semicolon at the beginning of the comment line.

Write only one rule number or group name in a line.

Use single-byte lower-case English letters for group name.

For MISRA-C V1, write explicitly at the beginning of the file

 ; Rule=MISRA-C V1

For MISRA-C V2, write explicitly at the beginning of the file

 ; Rule=MISRA-C V2

For MISRA-C V3, write explicitly at the beginning of the file

 ; Rule=MISRA-C V3

For MISRA-C++ V1, write explicitly at the beginning of the file

 ; Rule=MISRA-C++ V1

Example1: Checking MISRA-C V1 rule 10,20,30 and Agile+ Relief's a group

Example2: Checking MISRA-C V2 rule 1.1,1.2 and Agile+ Relief's a group

;Rule=MISRA-C V1

10

20

30

group-a

;Rule=MISRA-C V2

1.1

1.2

group-a

19

Example3: Checking MISRA-C V3 rule 1.3,6.1 and Agile+ Relief's a group

Example4: Checking MISRA-C++ V1 rule 0-1-1, 0-1-3 and Agile+ Relief's a group

;Rule=MISRA-C++ V1

0-1-1

0-1-3

group-a

;Rule=MISRA-C V3

1.3

6.1

group-a

20

The definition file for rule checking uses the [Item Selection] option of the[Project
Preferences]dialogue box.

If you need to check the necessary rules only, select [Customizing point], and add the
check indication definition file that describes the check rules.

If you need to check all rules, select [All points]".

If [Default value] is selected, the following check indication definition file will be applied.

 [Directory]

 For Windows:

 "(Agile+ Relief C/C++ Setup Directory)\Analyze\EPOM\MessageInfo"

 For Linux:

 "(Agile+ Relief C/C++ Setup Directory)/Analyze/EPOM/MessageInfo"

 [File name]

 MISRA-C V1 : default-misrav1.rul

 MISRA-C V2 : default-misrav2.rul

 MISRA-C V3 : default-misrav3.rul

 MISRA-C++ V1 : default-misrapv1.rul

21

2 MISRA Options in Command line

This chapter specifies how to use the pgrmisra command in command line.

2.1 Functions of Command

The pgrmisra command is used to check the messages output in pgr5 command and
output the messages for MISRA Violation. In addition, the message contents output in
pgr5 must be output in files with the CSV format.

2.2 Format of Command

% pgrmisra [-V] [--pgr] -TMISRA Version [-Z definition file for rule checking] [--qm]

 Input File

Note: [] means omittable.

2.3 Command Options

Options Explanation

-V Displays pgrmisra command version,level
and release number. When this option is
specified, other options are ignored.

--pgr Outputs pgr5 command messages
simultaneously.

-TMISRA Version Specifies the output MISRA version. Please
make sure the option is specified. Please
don't insert space between -T option and
MISRA version.

1:Checks in accordance with MISRA-C V1.

2:Checks in accordance with MISRA-C V2.

3:Checks in accordance with MISRA-C V3.

P1:Checks in accordance with MISRA-C++
V1.

-Z definition file for rule checking If you want to output only certain rules,
specify them in the definition file.

You may refer to section 1.4 [Setting up Rule
Checking] for the syntax of the definition file.

If the option on the left is not specified, all
rules will be output.

--qm This is the output format for the analysis

22

result consolidation mode of the Agile+
Relief(*). Specify this option to use the
analysis result consolidation mode of the
Agile+ Relief. For the analysis result
consolidation mode of the Agile+ Relief,
please refer to "2.3.2 Procedure of using
under analysis result consolidation mode" in
"Agile+ Relief Manual".

(*)Agile+ Relief is a function that enables the
visualization of problems related to quality by
checking quality data that analyzed the
source programs on a daily basis. Please
note that using this Agile+ Relief requires a
license.

Input Files Saves file names of the pgr5 command
messages in the CSV format.

File will be saved in the following codes.

Chinese OS

 GB2312 code

OS in other languages

 Windows : SJIS code

 Red Hat Enterprise Linux 5 or 6

 : UTF-8 code

 Others : EUC code

2.4 Return Value

When the pgrmisra command ends normally, it will return to 0. If an error has occurred, it
will be returned to a value other than 0.

23

2.5 Output Files

Output Files will be output in the csv format.

Output Result Samples:

C:\sample.c",36,"52","required","control flowchart","pgr0667","unexecuted."

Format Explanation:

source file name "C:\sample.c"

line number 36

rule number "52"

rule category "required"

rule group "control flowchart"

message group "b"

message ID "pgr0667"

message information "unexecuted."

2.6 Error Messages

PGRMISRA_0001 Input file is not specified.

Input file is not specified. Please recheck the command format and then re-execute.

PGRMISRA_0002 The option cannot be specified when the input file is specified.

Command Format Error. Please confirm the command format and then re-execute.

PGRMISRA_0003 Multi input files cannot be specified.

Multi input files are specified. Please confirm the command format and then re-execute.

PGRMISRA_0004 Option error.

Option error. Please specify the correct option.

PGRMISRA_0005 -T option is not specified.

-T1 option, -T2 option, -T3 option or -TP1 option are not specified. Please be sure to
specify one of options.

24

PGRMISRA_0006 -T option cannot be specified at the same time.

-T1 option, -T2 option, -T3 option and -TP1 option cannot be specified at the same time.
Please specify them one-at-a-time.

PGRMISRA_0040 Parameter of option -Z is not specified.

In option -Z, the definition file for rule checking is not specified. You may execute it
again after confirming the command's format.

25

2.7 Example for Use

2.7.1 Analyze with pgr5 command

Use the pgr5 command to perform source file analysis for the purpose of obtaining a
message to be checked by the pgrmisra command.

[Example]:

pgr5 -F MISRA_C_V1.idt --csv sample.c > message.csv

 1 2 3 4

 1: Specifies the identifier files for MISRA Analysis.

Please specify the following identifier files respectively with the

[Saving Directory for Identifier Files]

Windows:

"(Agile+ Relief C/C++ installation directory)¥Analyze¥EPOM¥MisraInfo"

Linux:

"(Agile+ Relief C/C++ installation directory)/Analyze/EPOM/MisraInfo"

[Type of identifier files]
abidance of MISRA-C Rule Versions:

MISRA-C V1 : MISRA_C_V1.idt

MISRA-C V2 : MISRA_C_V2.idt

MISRA-C V3 : MISRA_C_V3.idt

MISRA-C++ V1 : MISRA_C++_V1.idt

 2: Outputs the message in CSV format.

 3: Analysis the source files of the objects.

 4: Saves the target file of message contents output in CSV format.

For further details regarding the pgr5 command, please refer to the "Command Manual".

2.7.2 Message Checking in the pgrmisra Command

Checks the messages output in the pgr5 command to obtain the messages against
MISRA Rules.

[Example]

pgrmisra -T1 -Z"F:\Rule\MISRA-C V1.txt" message.csv

 1 2 3

26

1: Specifies the MISRA Rules Version.

Please specify the following options based on MISRA Rules Version determined by
-F option in the pgr5 command.

MISRA-C V1 : -T1

MISRA-C V2 : -T2

MISRA-C V3 : -T3

MISRA-C++ V1 : -TP1

2: The check indication definition file specifies the rules you want to apply.

3: Saves the files of message contents of pgr5 command in CSV format.

[Notes]:

Please note the codes of input files for pgrmisra(3 in the above sample).

In Chinese OS, the input file for the pgrmisra command for both Windows and Linux
needs to be output in GB2312 code.

In other language OS, the input file for the pgrmisra command needs to be output in SJIS
code for Windows and UTF-8 code for Red Hat Enterprise Linux 5 or 6, and the rest in
EUC code.

When the "--output_code" option is used with the pgr5 command, specify the option to
enable output with the above code. For further details regarding the pgr5 command,
please refer to the "Command Manual".

MISRA-C V1

27

3 Corresponding Indication Messages for the Violation of
MISRA Rules

This chapter deals with messages in Agile+ Relief that indicate a violation of MISRA rules
has occurred.

3.1 MISRA-C V1

For the following rules, because the rules demand definite system handling behavior,
Agile+ Relief cannot check the behaviors when parsing the source code:

Rule 2

Rule 6

Rule 15

Rule 41

Rule 99

Rule 116

Further, since the following rule concerns the coding style of the source code, Agile+
Relief cannot check it:

Rule 10

MISRA-C V1

28

Rule 1

[Corresponding errors indicated by Agile+ Relief]:

⚫ Unspecified/undefined behaviors, or unsupported descriptions by C90
(ISO/IEC 9899:1990).

[Example1]

#include "abc/*XY*/d.h" <-[The file name "abc/*XY*/d.h" specified by #include
contains one or more characters not defined in ANSI.]

[Example2]

struct tag {

 int a : 10;

 int b : 0; <-[A bit field of size 0 must be anonymous.]

 int c : 10;

};

MISRA-C V1

29

Rule 2

Agile+ Relief will not check if the rule has been violated.

MISRA-C V1

30

Rule 3

[Corresponding errors indicated by Agile+ Relief]:

⚫ Valid keyword asm of the assembly language is used in the C processing
system.

[Example1]

asm(mov r4, r0); <-[Assembly language "asm" is used.]

MISRA-C V1

31

Rule 4

[Corresponding errors indicated by Agile+ Relief]:

⚫ Bitwise operation has exceeded the type size.

⚫ Divided by zero.

⚫ Out of the range of the array.

⚫ Address "0" may be referenced.

[Example1]

long long x1, x2 ;

int i1, i2;

x1 = i1 << i2; <-[The correct value of the << operation in "x1 = i1 << i2"

might not be able to be obtained.]

[Example2]

int data[10];

:

data[10]=0; <-[The subscript "10" of the array "data" exceeds the range of
the array (array declaration: Line 1 of "file.c").]

MISRA-C V1

32

Rule 5

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is an undefined escape sequence beginning with \.

[Example1]

c = '\8'; <-[Escape sequence "\8" might be processed differently
depending on the compiler.]

MISRA-C V1

33

Rule 6

Agile+ Relief will not check if the rule has been violated.

MISRA-C V1

34

Rule 7

[Corresponding errors indicated by Agile+ Relief]:

⚫ Trigraph sequence is used.

[Example1]

??=include "head.h" <-[The trigraph sequence "??= " is used.]

MISRA-C V1

35

Rule 8

[Corresponding errors indicated by Agile+ Relief]:

⚫ "L" denoting a wide character is used.

⚫ A Multiple bytes character is used.

[Example1]

L'a' <-["L" is used, denoting a wide character.]

L"abc" <-["L" is used, denoting a wide character.]

[Example2]

char *str = "a u"; <-[""a u"" contains a multibyte character.]

MISRA-C V1

36

Rule 9

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is a nested comment.

[Example1]

/* /* comment */ <-[A nested comment is used.]

MISRA-C V1

37

Rule 10

Agile+ Relief will not check if the rule has been violated.

MISRA-C V1

38

Rule 11

[Corresponding errors indicated by Agile+ Relief]:

⚫ The identifier is more than 31 characters in length.

⚫ The two identifiers differ only in the confusing characters.

[Example1]

int int_length_hensuu_0123456789abcd; <-[The length of the identifier
"int_length_hensuu_0123456789abcd"
exceeds 31 characters.]

[Example2]

Filename: file.c

1: int xO;

 void func(void)

 {

 int x0; <-[The identifier "x0" resembles "xO" in line 1
of "file.c", which may lead to confusion.]

:

}

MISRA-C V1

39

Rule 12

[Corresponding errors indicated by Agile+ Relief]:

⚫ Duplicate identifiers used in different namespaces within the same block.

[Example1]

Filename: file.c

10: struct name {

 int name; <-[The member "name" and the tag in line 10 of "file.c" share
the same name.]

:

 };

 char *name; <-[The variable "name" and the tag in line 10 of "file.c" share
the same name.]

MISRA-C V1

40

Rule 13

[Corresponding errors indicated by Agile+ Relief]:

⚫ A basic type int/short/char/long/double/float is used.

[Example1]

void func (void)

{

int short_length ; <-[In this file, a basic arithmetic type
(int/short/char/long/double/float) is used directly.]

 :

}

MISRA-C V1

41

Rule 14

[Corresponding errors indicated by Agile+ Relief]:

⚫ Only a char without signed/unsigned is used.

[Example1]

char c ; <-[A char is used in this file without specifying whether it is
signed/unsigned.]

MISRA-C V1

42

Rule 15

Agile+ Relief will not check if the rule has been violated.

MISRA-C V1

43

Rule 16

[Corresponding errors indicated by Agile+ Relief]:

⚫ A member of floating-point type and members of other types exist in a union
at the same time.

⚫ Bitwise operation for floating-point or pointer type.

⚫ A pointer type is cast to other pointer types.

[Example1]

union tag { <-[There is a member in union "tag" whose type is different
from that of float-type member "a".]

 double a;

 unsigned long b[2];

};

[Example2]

double d;

x = d << 1 ; <-[In ANSI, the operand "d" of the bit operation "d << 1" must
be of an integer type.]

[Example3]

int *adr1 ;

float *adr2 ;

adr1 = (int*)adr2 ; <-[The cast expression "(int*)adr2" casts the pointer type to a
different pointer type. (cast type: float *, expression: int *)]

MISRA-C V1

44

Rule 17

[Corresponding errors indicated by Agile+ Relief]:

⚫ Duplicate typedef name.

[Example1]

Filename: file.c

10: typedef char *cp;

void func()

{

 char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.c", outside the function.]

}

[Example2]

Filename: file.c

 void func1(void)

 {

 3: typedef char BYTE;

 :

 }

 void func2(void)

 {

 typedef char BYTE; <-[The typedef name "BYTE" is the same as the typedef
name defined in line 3 of "file.c".]

 :

 }

[Example3]

Filename: file1.h

 typedef int WORD ; <-[The type "WORD" defined with type "int" is defined again
with type "unsigned int" in line 20 of "file2.h".]

Filename: file2.h

20: typedef unsigned int WORD ;

MISRA-C V1

45

Rule 18

[Corresponding errors indicated by Agile+ Relief]:

⚫ An integer constant of unsigned type not suffixed by U or u.

⚫ In the subtraction, one operand is a signed integer constant greater than 0,
the other is an unsigned expression.

[Example1]

unsigned int x = 0xA123 ; <-[The unsigned value "0xA123" is used without the suffix
"U".]

[Example2]

unsigned short x = 1;

if((x - 2) > 10) <-[The subtraction "x - 2" is performed with a signed and an
unsigned operand.]

MISRA-C V1

46

Rule 19

[Corresponding errors indicated by Agile+ Relief]:

⚫ An octal constant is used.

[Example1]

int x = 010 ; <-[The octal constant "010" is used.]

double d = 012.3e-1; <-[The octal constant "012.3e-1" is used.]

MISRA-C V1

47

Rule 20

[Corresponding errors indicated by Agile+ Relief]:

⚫ A function is called without the corresponding function declaration.

⚫ A function is defined without the corresponding function declaration.

[Example1]

x = func(10); <-[There is no function declaration corresponding to the
function call "func".]

[Example2]

void func(int x) <-[Function "func" is defined without prior declaration.]

{

 :

}

MISRA-C V1

48

Rule 21

[Corresponding errors indicated by Agile+ Relief]:

⚫ Within the internal effective range, an identifier with the same name as the
identifier effective within the external effective range is declared.

[Example1]

Filename: file.c

10: unsigned char *cp;

void func()

{

 unsigned char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.c", outside the function.]

 }

[Example2]

Filename: file.c

10: struct tag { short a, b; } x;

void func()

{

 struct tag { int a, b; } y; <-[The declaration of the tag "tag" uses the same name as
"tag" in line 10 of "file.c", outside the function.]

 }

MISRA-C V1

49

Rule 22

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is an external variable or a global static variable used only in one
function.

[Example1]

Filename: head.h

 extern int xx ; <-[The external variable "xx" that can be used in multiple
functions was referenced only in the function "func" in line 20
of “file.c”. An internal static variable could be used instead.]

Filename: file.c

 #include "head.h"

 :

20: void func(int in)

{

xx = 0;

/*The external variable xx is used only in this function.*/

}

MISRA-C V1

50

Rule 23

[Corresponding errors indicated by Agile+ Relief]:

⚫ The function or the external variable is used in only one file.

[Example1]

Filename: file.c

int x = 0 ; <-[The external variable "x" is used only in the file "file.c".]

void x_add(void) { x++; }

int x_ref(void) { return x; }

/*The variable x is used only in the file file.c.*/

MISRA-C V1

51

Rule 24

[Corresponding errors indicated by Agile+ Relief]:

⚫ The variables or functions have the same name but with different storage
classes.

[Example1]

Filename: file.c

10: extern int flag;

 :

static int flag; <-[The variable "flag" has a different storage class in line 10 of
"file.c".]

MISRA-C V1

52

Rule 25

[Corresponding errors indicated by Agile+ Relief]:

⚫ The functions or variables with external connections are assigned identical
names.

[Example1]

Filename: file1.c

10: short *data;

Filename: file2.c

short data; <-[The variable definition "data" and the variable definition in
line 10 of "file1.c" are of different types: pointer and
non-pointer (short int , short int *).]

[Example2]

Filename: file.c

10: int v = 1;

:

float v = 0.0; <-[The variable definition "v" and the variable definition in line
10 are of different types (float, int).]

MISRA-C V1

53

Rule 26

[Corresponding errors indicated by Agile+ Relief]:

⚫ The functions or variables with external connections are used with different
types.

[Example1]

Filename: file1.c

10: short *data;

Filename: file2.c

extern short data; <-[The variable declaration "data" and the variable definition
in line 10 of "file1.c" are of different types: pointer and
non-pointer (variable declaration: short int, variable definition:
short int *).]

[Example2]

Filename: file1.c

10: int func(char *p){ ~ }

Filename: file2.c

int func(long *p); <-[The 1st parameter "p" in the function declaration "func" and
its corresponding parameter "p" in the function definition in
line 10 of "file1.c" are of different types (long int *, char *).]

MISRA-C V1

54

Rule 27

[Corresponding errors indicated by Agile+ Relief]:

⚫ A variable with extern is declared outside the header file.

[Example1]

Filename: file.c

extern int x ; <-[The external variable "x" is declared outside a header file.]

MISRA-C V1

55

Rule 28

[Corresponding errors indicated by Agile+ Relief]:

⚫ The register specifier is used in the function.

[Example1]

void func(void) <-[The specifier "register" is used in function "func".]

{

register int i = 3;

register float f = 3.0;

static double D = 3.0;

 :

return;

}

MISRA-C V1

56

Rule 29

[Corresponding errors indicated by Agile+ Relief]:

⚫ Type mismatch between the initial value and the declared data type.

[Example1]

struct A {

 int a1;

 int a2;

};

struct B {

 int b1;

 struct A b2;

} ;

struct B bdata = { 1, 2, 3 } ; <-[Initialization of the array/structure/union "bdata" is
inconsistent with its makeup.]

[Example2]

unsigned char x = 0x8000; <-[The initial value "0x80000" exceeds the bit width of "x" of
type unsigned char.]

struct T {

 unsigned char mem1;

 int mem2;

};

struct T y = {

 65535, <-[The initial value "65535" exceeds the bit width of "mem1" of
type unsigned char.]

 1

};

MISRA-C V1

57

Rule 30

[Corresponding errors indicated by Agile+ Relief]:

⚫ The automatic variable is being referenced without having been assigned a
value.

[Example1]

int i;

if (data == 0) {

 i = 1;

}

data = i; <-[Variable "i" may be referenced before it has been set with
a value.]

MISRA-C V1

58

Rule 31

[Corresponding errors indicated by Agile+ Relief]:

⚫ Mismatch between the initializer list and the construction of the initialized
array/struct/union.

[Example1]

int data[2][3] = <-[Initialization of the array/structure/union "data" is
inconsistent with its makeup.]

 1, 2, 3, 4, 5, 6

} ;

struct A {

 int a1;

 int a2;

};

struct A adata[2] = { 1, 2, 3, 4 } ; <-[Initialization of the array/structure/union "adata" is
inconsistent with its makeup.]

struct B {

 int b1;

 struct A b2;

} ;

struct B bdata = { 1, 2, 3 } ; <-[Initialization of the array/structure/union "bdata" is
inconsistent with its makeup.]

int cdata[7] = { 1, 2, 3, 4, 5 } ; <-[Initialization of the array/structure/union "cdata" is
inconsistent with its makeup.]

MISRA-C V1

59

Rule 32

[Corresponding errors indicated by Agile+ Relief]:

⚫ Some enumeration constants have been assigned a value while others have
not.

[Example1]

enum E1 { E11, E12 = 3, E13 } ; <-[In the declaration of the enumeration type "E1", assigned
members and unassigned members coexist.]

enum E2 { E21=1, E22, E23 = 5 } ; <-[In the declaration of the enumeration type "E2", assigned
members and unassigned members coexist.]

MISRA-C V1

60

Rule 33

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is a side-effect expression in the right part of the && operator, ||
operator or the second and third expressions of the ternary operator.

[Example1]

int i, x[100];

volatile int z;

if (i == 0 && x[i++] == 0) <-[Update expression "i++" is not executed in all cases.]

if (x[i] == 0 || func(i) == 0) <-[Function "func" is not executed in all cases.]

x[i] = (x[i] == 0)? i : z ; <-[volatile variable "z" is not executed in all cases.]

MISRA-C V1

61

Rule 34

[Corresponding errors indicated by Agile+ Relief]:

⚫ The expression on the left or the right side of && operator or || operator is
not a primary expression.

[Example1]

if(p != 0 && *p == 1) <-["p != 0" in the && expression is not a primary expression.]

 <-["*p == 1" in the && expression is not a primary expression.]

if (x == 1 || y > 5 && z != 0) <-["x == 1" in the || expression is not a primary expression.]
<-["y > 5" in the && expression is not a primary expression.]

 <-["z != 0" in the && expression is not a primary expression.]

 <-["y > 5 && z != 0" in the || expression is not a primary
expression.]

MISRA-C V1

62

Rule 35

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is assignment expression in the conditional expression.

⚫ The assignment operation and comparison operation coexist.

[Example1]

if(x = func()) <-[The assignment operator "=" is used in the conditional
expression "if(x = func())".]

if((y = z) != 0) <-[The assignment operator "=" is used in the conditional
expression "(y = z) != 0".]

MISRA-C V1

63

Rule 36

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is a bitwise operation in the conditional expression.

⚫ A bitwise operation (&, |) is performed on the result of the conditional
expression.

[Example1]

if (!(a & mask)) <-[The logical operation "a & mask" uses the result of the
operation "!(a & mask)" as a condition.]

if (a & mask) <-[The logical operation "a & mask" uses the result of the
operation "a & mask" as a condition.]

[Example2]

if (a < 0 & b < 0) <-[In "a < 0 & b < 0", & or | may be mistakenly used to
represent && or ||.]

MISRA-C V1

64

Rule 37

[Corresponding errors indicated by Agile+ Relief]:

⚫ Bitwise operation is performed on type char, a signed integer constant or a
negative constant.

[Example1]

int x, y ;

x = y >> 2 ; <-[When the signed type "y" is assigned with a negative value,
the result of a right shift may vary depending on the compiler.]

[Example2]

int i1, i2 ;

i1 = i2 & 0x30 ; <-[The operand "i2" of the bit operation "i2 & 0x30" is signed.]

i1 <<= 3 ; <-[The operand "i1" of the bit operation "i1 <<= 3" is signed.]

if (^i1 == 0xfe) <-[The operand "i1" of the bit operation "^i1" is signed.]

MISRA-C V1

65

Rule 38

[Corresponding errors indicated by Agile+ Relief]:

⚫ The number of times that the bitwise shift operator is applied to is a negative
constant, or has exceeded the type size of the left variable.

[Example1]

unsigned int x, y ;

x = y << -2 ; <-[The result of the shift operation "y << -2" may vary
depending on the compilers.]

x <<= -2 <-[The result of the shift operation "x <<= -2" may vary
depending on the compilers.]

[Example2]

unsigned int u1, u2 ;

u1 = u2 << 32 ; <-[The number of bits specified for the shift operation "u2 <<
32" exceeds the type width of the result.]

if (u1 == (u2 >> 32)) <-[The number of bits specified for the shift operation "u2 >>
32" exceeds the type width of the result.]

u1 <<= 32 ; <-[The number of bits specified for the shift operation "u1 <<=
32" exceeds the type width of the result.]

MISRA-C V1

66

Rule 39

[Corresponding errors indicated by Agile+ Relief]:

⚫ A unary operator (the minus sign) has been attached to an unsigned
variable.

[Example1]

unsigned long ul = 0x80000001;

long long x;

x = -ul ; <-[Appending a "minus" to the unsigned variable "ul" will not
necessarily make it negative.]

MISRA-C V1

67

Rule 40

[Corresponding errors indicated by Agile+ Relief]:

⚫ Within the sizeof, there is an update expression, a function call or a volatile
variable.

[Example1]

x = sizeof(y++) ; <-["y++" is in sizeof, so updating is not performed.]

MISRA-C V1

68

Rule 41

Agile+ Relief will not check if the rule has been violated.

MISRA-C V1

69

Rule 42

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is a comma expression outside the initialization expression and the
update expression of the for-statement.

[Example1]

x = 1, y = 2 ; <-["x=1,y=2" uses a comma outside an initialization
 expression or update expression in a for statement.]

MISRA-C V1

70

Rule 43

[Corresponding errors indicated by Agile+ Relief]:

⚫ Data may be lost due to type conversion.

[Example1]

long long x1, x2, x3 ;

int i1, i2 ;

x1 = i1 + i2 ; <-[The correct value of the + operation in "x1 = i1 + i2" might
not be able to be obtained.]

x2 = i1 - i2 ; <-[The correct value of the - operation in "x2 = i1 - i2" might
not be able to be obtained.]

if (x3 < i1 + i2) <-[The correct value of the + operation in "x3 < i1 + i2" might
not be able to be obtained.]

[Example2]

unsigned char func() {

 :

return 256; <-[Return value "256" exceeds the range of the return type of
the function "func" (return value: int, return type : unsigned
char).]

[Example3]

Filename: file1.c

50: void func(double x, int y) { ~ }

Filename: file2.c

int x, y;

:

func(x, y); <-[The correct value cannot be passed because the 1st
argument "x" of the function "func" and the corresponding
parameter "x" in the function definition in line 50 of "file1.c" are
of different types: integer and floating(argument : int ,
parameter : double).]

[Example4]

unsigned int ui = 0xffffffff + 2 ; <-[The result of constant expression “0xffffffff + 2” containing

MISRA-C V1

71

unsigned constant expression “0xffffffff” is beyond the bit width
of unsigned int type.]

MISRA-C V1

72

Rule 44

[Corresponding errors indicated by Agile+ Relief]:

⚫ The cast expression and the cast type are of different types.

[Example1]

unsigned int x, y;

 :

x = (unsigned int) y ; <-[The cast operator in the cast expression "(unsigned int)y"
is unnecessary (expression type: unsigned int).]

MISRA-C V1

73

Rule 45

[Corresponding errors indicated by Agile+ Relief]:

⚫ Performing a type conversion for a pointer type.

[Example1]

int data, *dp;

data = dp ; <-[The left operand and right operand of the assignment
expression "data = dp" are of different types: pointer and
non-pointer (left: int, right: int *).]

[Example2]

Filename: file.c

10: void func(char *p) { ~ }

 :

int i;

func(i); <-[The 1st argument "i" of the function "func" and the
corresponding parameter "p" in the function definition in line
10 of "file.c" are of different types: pointer and non-pointer
(argument: i, parameter: p).]

[Example3]

int x , func(void) ;

x = func ; <-[The expression "x = func" referencing the function name
"func" might contain a mistake.]

if (func != 0) <-[The expression "func != 0" referencing the function name
"func" might contain a mistake.]

MISRA-C V1

74

Rule 46

[Corresponding errors indicated by Agile+ Relief]:

⚫ The ANSI operation sequence is indefinite in the expression.

[Example1]

i = j + j++ ; <-[The update timing of "j++" is not defined in ANSI, so
the value of "j" cannot be guaranteed.]

i = ++i + j ; <-[The update timing of "++i" is not defined in ANSI, so
the value of "i" cannot be guaranteed.]

[Example2]

word_data = get_byte1() << 8 | get_byte2() ; <-[The execution sequence of the function calls
"get_byte1" and "get_byte2" is not specified in ANSI.
The function calls should be made in separate lines.]

[Example3]

Filename: file.c

 x = Gx + func(); <-[The timing of the function call "func" in line 100 of
"file.c" updating the variable "Gx" is undefined in ANSI,
so the value of "Gx" in the expression cannot be
guaranteed.]

 :

 int func(void)

 {

 :

100: Gx += 2;

 :

 }

MISRA-C V1

75

Rule 47

[Corresponding errors indicated by Agile+ Relief]:

⚫ It's better to add a pair of parentheses.

[Example1]

if (c = input() != 0) <-[In the expression "c = input() != 0", an assignment
operation coexists with a comparison operation. Parentheses

() may have been accidentally omitted.]

[Example2]

x = a > 0 ? b + c : 0 ; <-[The operand "a > 0" of the ternary operation " a > 0 ? b + c :
0" is not enclosed in parentheses (). Use parentheses () to
show precedence explicitly.]

 <-[The operand "b + c" of the ternary operation " a > 0 ? b + c :
0" is not enclosed in parentheses (). Use parentheses () to
show precedence explicitly.]

MISRA-C V1

76

Rule 48

[Corresponding errors indicated by Agile+ Relief]:

⚫ Expected precision cannot be obtained with the expression.

[Example1]

double f;

int x, y;

 :

f = x * y; <-[The expression "f = x * y" might not obtain the correct value.
Use "f = (double)x * y" instead.]

if (f < x * y) <-[The expression "f < x * y" might not obtain the correct value.
Use "f < (double)x * y" instead.]

[Example2]

long long x1, x2, x3 ;

int i1, i2 ;

x1 = i1 * i2 ; <-[The correct value of the * operation in "x1 = i1 * i2" might
not be able to be obtained.]

x2 = i1 << 2 ; <-[The correct value of the << operation in "x2 = i1 << 2" might
not be able to be obtained.]

if (x3 < (i1 << 2)) <-[The correct value of the << operation in "x3 < (i1 << 2)"
might not be able to be obtained.]

MISRA-C V1

77

Rule 49

[Corresponding errors indicated by Agile+ Relief]:

⚫ A non-boolean value is used in the conditional expression.

⚫ Comparison with 0 in the conditional expression.

[Example1]

if (x = y) <-[The assignment expression "x = y" is used as a condition.]

[Example2]

Filename: file.c

 int x, y ;

2: x = 100;

3: y = 100;

 if (x) <-["x" is not a bool value (a non-bool value is assigned in line
2 of "file.c").]

 :

 if (!y) <-["y" is not a bool value (a non-bool value is assigned in line
3 of "file.c").]

[Example3]

Filename: file.c

11: if (foo(10)) {

:

if (foo(20) == 1) { <-[The comparison operation "foo(20) == 1", which is not of

the form !=0 or ==0 and is performed with "foo(10)" (in line 11
of "file.c") which is used as a boolean value might contain a

mistake.]

MISRA-C V1

78

Rule 50

[Corresponding errors indicated by Agile+ Relief]:

⚫ One of the expressions on both sides of the operators == or != is of
floating-point type.

[Example1]

double d1, d2;

 :

if(d1 == d2) <-[The result of the comparison "d1== d2" between floating
types might not be that expected.]

MISRA-C V1

79

Rule 51

[Corresponding errors indicated by Agile+ Relief]:

⚫ The operational result can not be represented in the unsigned type.

[Example1]

#define ABC 1U

unsigned int x;

x = ABC - 2; <-[The value of the unsigned expression "1U - 2" cannot

be represented by an unsigned type.]

[Example2]

#if (1u - 2u) > 128 <-["1u-2u", which is performed with unsigned
types, results in a value that cannot be
represented by an unsigned type.]

[Example3]

unsigned short us = 0xffffffff + 2 ; <- [The result of constant expression “0xffffffff + 2”

containing unsigned constant expression “0xffffffff” is
beyond the bit width of unsigned short int type.]

MISRA-C V1

80

Rule 52

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is an unexecuted statement.

⚫ There is an eternally true/false conditional expression.

[Example1]

for(d = 0; d > 0; d++) <-[The initialization "d = 0;" in a for statement ensures that the
loop condition "d > 0;" is false.]

[Example2]

if ((x & 0xf0) == 0x01) <-[The bit pattern of "(x & 0xf0) "is not consistent with that of
"0x01".]

if ((x | 0xf0) == 0x01) <-[The bit pattern of "(x | 0xf0)" is not consistent with that of
"0x01".]

[Example3]

if (x == 1 && x == 2) <-[The condition expression "x == 1 && x == 2" is never true.]

if (x > 1 && x < 0) <-[The condition expression "x > 1 && x < 0" is never true.]

[Example4]

Filename: file.c

1: if(x == 1)

 { process }

 else if(x == 1) <-[The condition "x==1" will never be evaluated as true
because the same condition exists in line 1 of "file.c".]

MISRA-C V1

81

Rule 53

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is an expression free of side effects.

[Example1]

x == 1; <-[The expression "x == 1" is meaningless.]

void func(void);

:

func; <-[The expression "func" is meaningless.]

x, y = 1; <-[The expression "x" is meaningless.]

MISRA-C V1

82

Rule 54

[Corresponding errors indicated by Agile+ Relief]:

⚫ The parenthesis ')' of the if-statement, for-statement and while-statement is
closely followed by a semicolon.

⚫ There is a null statement such as :;or ;;.

[Example1]

if (x == 0) ; <-[A semicolon immediately following an if statement, for
statement or while statement may cause an error.]

 x = y;

[Example2]

int x ; ; <-[An unnecessary null statement may exist.]

switch(y) {

case 1:; <-[An unnecessary null statement may exist.]

MISRA-C V1

83

Rule 55

[Corresponding errors indicated by Agile+ Relief]:

⚫ A label is used.

⚫ There is a label starting with ' d' , except "default" in the switch statement.

[Example1]

LOOP: <-[A label is used.]

func(&data);

if(data == 0) {

 goto LOOP;

}

[Example2]

switch (x){

case 1: ~

 break;

case 2: ~

 break;

defaulte: <-[default may have been misspelled as "defaulte".]

 break;

}

MISRA-C V1

84

Rule 56

[Corresponding errors indicated by Agile+ Relief]:

⚫ A goto statement is used.

[Example1]

LOOP:

func(&data);

if(data == 0) {

 goto LOOP; <-[A goto statement is used.]

}

MISRA-C V1

85

Rule 57

[Corresponding errors indicated by Agile+ Relief]:

⚫ A continue statement is used.

[Example1]

Filename: file.c

 int func(char buf[], unsigned int n)

 {

 int i ;

 int not_space = 0;

 8: for(i = 0; i < n && buf[i] != ' \0' ; i++) {

 if(isspace(buf[i])) {

 continue; <-[The keyword "continue" is used (location of relevant loop
statement: line 8 of "file.c").]

 }

 not_space++;

 }

 return not_space;

 }

MISRA-C V1

86

Rule 58

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is a break statement for jumping out of the loop.

[Example1]

for(i = 0; i < 7; i++) {

 if(data[i] == 0) {

 break; <-[A break statement is used to end a loop.]

 }

}

MISRA-C V1

87

Rule 59

[Corresponding errors indicated by Agile+ Relief]:

⚫ The if, else, for, while, do-while and switch statements are not embraced by
curly brackets { }.

[Example1]

if (x == 0) <-[It might be better to add curly brackets { } to this if
statement.]

 x = 10;

MISRA-C V1

88

Rule 60

[Corresponding errors indicated by Agile+ Relief]:

⚫ The statements if and else if are not followed by an else statement.

[Example1]

if (x > 0) { <-[There is no else statement at the end of an if else if
statement. Even when all cases have been accounted for, it is
best to include an empty else statement.]

 :

} else if (x < 0) {

 :

}

MISRA-C V1

89

Rule 61

[Corresponding errors indicated by Agile+ Relief]:

⚫ The case label has no corresponding break statement.

[Example1]

switch (x) {

10: case 1:

11: no++; <-[A break statement for "case 1:" in line 10 may have been
accidentally omitted.]

12: case 2:

13: no++; <-[A break statement for "case 2:" in line 12 may have been
accidentally omitted.]

default: no++;

}

MISRA-C V1

90

Rule 62

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is no default label in the switch statement.

⚫ The default label is placed before the case label.

[Example1]

switch (x) { <-[This switch statement contains no default label.]

case 1:

 x = a + b;

 break;

case 2:

 x = c + d;

 break;

}

[Example2]

switch (x) {

default: <-[The label default has been included before the label case
in a switch statement.]

 no++

 break;

 :

case 2 :

 no += x;

}

MISRA-C V1

91

Rule 63

[Corresponding errors indicated by Agile+ Relief]:

⚫ There are a comparing operator, a logic operator and a constant in the
conditional expression of switch statement.

⚫ There is only one case label in the switch statement.

[Example1]

switch (x > 0) <-["x > 0" is used as the condition of a switch statement.]

{ ~ }

switch (1) <-["1" is used as the condition of a switch statement.]

{ ~ }

[Example2]

switch (x) { <-[The switch statement contains only one case label.]

case ONE :

 :

 break;

default:

 break;

}

MISRA-C V1

92

Rule 64

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is no case label in the switch statement.

[Example1]

switch (x) { <-[There is no case label in this switch body.]

default :

 i += x;

 break ;

}

MISRA-C V1

93

Rule 65

[Corresponding errors indicated by Agile+ Relief]:

⚫ The loop counter in the for-statement is of floating-point type.

[Example1]

float f;

for(f = 0.0 ; f < 1 ; f += 0.1) { ~ } <-[Using the floating type variable "f" as the loop counter
might result in unintended iterations.]

MISRA-C V1

94

Rule 66

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is an expression irrespective of cycle control in the statement.

[Example1]

for(i = 0, flag = 0 ; i < n ; i++, counter++) {

 <-[An expression "flag = 0" irrelevant to loop control exists in
a for statement.]

 <-[An expression "counter++" irrelevant to loop control exists
in a for statement.]

MISRA-C V1

95

Rule 67

[Corresponding errors indicated by Agile+ Relief]:

⚫ The loop counter in the for-statement has been updated in the loop body.

[Example1]

Filename: file.c

 5: for(i = 0 ; i < n ; i++) {

 :

i ++ ; <-[The loop counter "i" of a for statement is updated in the
loop body (for statement position: line 5 of "file.c").]

}

MISRA-C V1

96

Rule 68

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is a function declaration within the function.

[Example1]

void func()

{

 int func1(int) ; <-[A function declaration "func1" is made in a function.]

 int i ;

MISRA-C V1

97

Rule 69

[Corresponding errors indicated by Agile+ Relief]:

⚫ There are variable parameters in the function declaration or definition.

⚫ No parameter has been specified in the function decelerator.

[Example1]

int func(int n, ...) ; <-[The parameter declaration of the function "func(int n, ...)"
contains "...".]

int func(int n, ...) { <-[The parameter declaration of the function "func(int n, ...)"
contains "...".]

[Example2]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

MISRA-C V1

98

Rule 70

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is a recursive function.

[Example1]

int func(int x) <-[The function "func" is a recursive function.]

{

 :

y = func(z);

 :

}

MISRA-C V1

99

Rule 71

[Corresponding errors indicated by Agile+ Relief]:

⚫ The function is called without the corresponding function declaration.

⚫ A function is defined without the corresponding function declaration.

⚫ The function decelerator has not been designated with a parameter.

[Example1]

x = func(10); <-[There is no function declaration corresponding to the
function call "func".]

[Example2]

void func(int x) <-[Function "func" is defined without prior declaration.]

{

 :

}

[Example3]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

MISRA-C V1

100

Rule 72

[Corresponding errors indicated by Agile+ Relief]:

⚫ Type mismatch in functions or parameters in the function declaration and
definition.

[Example1]

Filename: file1.c

10: unsigned int func(char *p){ ~ }

Filename: file2.c

int func(char *p); <-[The function declaration "func" and the corresponding
function definition in line 10 of "file1.c" are of different types
(function declaration type: int, function definition type:
unsigned int).]

[Example2]

Filename: file1.c

10: int func(char *p){ ~ }

Filename: file2.c

int func(long *p); <-[The 1st parameter "p" in the function declaration "func" and
its corresponding parameter "p" in the function definition in
line 10 of "file1.c" are of different types (long int *, char *).]

MISRA-C V1

101

Rule 73

[Corresponding errors indicated by Agile+ Relief]:

⚫ In the parameter declaration, some parameters have been designated with
parameter names, while others have not.

[Example1]

int func(int a, int); <-[In the parameter declaration of function "func", some
parameters are declared with names while others are not.]

:

int func(int a, int b)

{

 :

}

MISRA-C V1

102

Rule 74

[Corresponding errors indicated by Agile+ Relief]:

⚫ Parameters in the function declaration and definition have been named
differently.

[Example1]

Filename: file.c

 int func(int data <-[The parameter name "data" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.c".]

 int size); <-[The parameter name "size" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.c".]

3: int func(int size, int data)

{

MISRA-C V1

103

Rule 75

[Corresponding errors indicated by Agile+ Relief]:

⚫ A function without a return value should be defined as void.

⚫ A variable is declared without a type specifier.

[Example1]

func(int x) <-[The function "func" has no return value and should be
declared as void.]

{

 :

 return;

}

[Example2]

const x = 1, y = 2; <-[A declaration is made with no explicit type specifier.]

z; <-[A declaration is made with no explicit type specifier.]

MISRA-C V1

104

Rule 76

[Corresponding errors indicated by Agile+ Relief]:

⚫ The function is defined in K&R format or without specifying a parameter.

⚫ No parameter has been specified in the function decelerator.

[Example1]

int func1(x) <-[Function "func1" is defined in K&R style or non-parameter
form.]

int x;

{

 :

}

void func2() <-[Function "func2" is defined in K&R style or non-parameter
form.]

{

 :

}

[Example2]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

MISRA-C V1

105

Rule 77

[Corresponding errors indicated by Agile+ Relief]:

⚫ Type mismatch between the function argument and the corresponding
parameter.

[Example1]

Filename: file1.c

10: void fa(int *p) { ~ }

Filename: file2.c

char *q;

:

fa(q); <-[The 1st argument "q" of the function "fa" and the
corresponding parameter "p" in the function definition in line
10 of "file1.c" are of different types (argument: char*,
parameter: int *).]

[Example2]

Filename: file1.c

10: void fb(int i) { ~ }

Filename: file2.c

enum E { e1, e2};

fb(e1); <-[The 1st argument "e1" of the function "fb" and the
corresponding parameter "i" in the function definition in line 10
of "file1.c" are of different types (argument: enum E,
parameter: int).]

[Example3]

Filename: file1.c

10: void fc(long l) { ~ }

Filename: file2.c

double d;

:

fc(d); <-[The 1st argument "d" of the function "fc" and the
corresponding parameter "l" in the function definition in line 10
of "file1.c" are of different types (argument: double, parameter:
long).]

MISRA-C V1

106

Rule 78

[Corresponding errors indicated by Agile+ Relief]:

⚫ The function has different numbers of parameters and arguments

[Example1]

Filename: file1.c

10: void func(int mode, char c) { ~ }

Filename: file2.c

func('a'); <-[The number of parameters in the function call "func" is
different from the number of parameters in the corresponding
function definition in line 10 of "file1.c".]

MISRA-C V1

107

Rule 79

[Corresponding errors indicated by Agile+ Relief]:

⚫ Attempt to refer to a return value that does not exist in a function.

[Example1]

Filename: file.c

x = func(0, 'a') ; <-[An unpredictable value might be referenced because the
function "func" called is defined in line 50 of "file.c" without a
return value.]

50: void func(int mode, char c) ;

MISRA-C V1

108

Rule 80

[Corresponding errors indicated by Agile+ Relief]:

⚫ The function argument is of a void type.

[Example1]

int func1(int);

void func2(void);

int main()

{

 func1(func2()); <-[The 1st argument "q" of the function "fa" and the
corresponding parameter "p" in the function definition in line
10 of "file.c" are of different types (argument: char*, parameter:
int*).]

 return 0;

}

13: void func1(int a)

 {

:

return;

}

void func2(void)

{

 :

}

MISRA-C V1

109

Rule 81

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is an un-updated parameter of point type or array type.

[Example1]

void func(int p[], unsigned int n) { <-[The space indicated by parameter "p" of type "int []"
is not updated and can be qualified with const.]

 int i;

 int num = 0;

 for(i = 0; i < n; i++) {

 num += p[i];

 }

}

[Example2]

int func(int *p){ <-[The parameter "p" can use passing by value.]

/* In the function, only referencing of the value of *p is
performed; *p is not updated and p is not referenced*/

}

MISRA-C V1

110

Rule 82

[Corresponding errors indicated by Agile+ Relief]:

⚫ More than one exits in the function.

[Example1]

void func(void) <-[The function "func" has 2 or more exits.]

{

 :

 return;

 :

 return;

}

MISRA-C V1

111

Rule 83

[Corresponding errors indicated by Agile+ Relief]:

⚫ The called function may have no return value, or types may be mismatched
between the called function and the return value.

[Example1]

int func(int a)

{

 if (a == 0)

 { return 0; }

} <-[In the function "func", there are routes that do not have
return statements.]

[Example2]

int func(void)

{

 :

 return 0;

 :

 return; <-[The return value of a return statement might have been
omitted accidentally.]

}

[Example3]

char *func(int x)

{

 int i;

 :

 return i; <-[The return value "i" and the function "func" are of different
types: pointer and non-pointer. (Return Value: int , Function:
char*)]

}

MISRA-C V1

112

Rule 84

[Corresponding errors indicated by Agile+ Relief]:

⚫ There is an expression within the return statement of the void function.

[Example1]

void func(void)

{

 :

 return 0 ; <-[The expression "0" appears in the return statement of the
void type function "func".]

}

MISRA-C V1

113

Rule 85

[Corresponding errors indicated by Agile+ Relief]:

⚫ Attempt to convert a function name into a non-function pointer.

[Example1]

int x , func(void) ;

x = func ; <-[The expression "x = func" referencing the function name
"func" might contain a mistake.]

if (func != 0) <-[The expression "func != 0" referencing the function name
"func" might contain a mistake.]

MISRA-C V1

114

Rule 86

[Corresponding errors indicated by Agile+ Relief]:

⚫ The return value of the non-void function is ignored.

⚫ The return value of the function returning an abnormal value has not been
checked.

The function using the same name as that of the identifier registered under the
labels [NULL_RETURN_FUNCTION], [RETURN_CHECK_FUNCTION], and
[SET_VARIABLE_FUNCTION] of the identifier file is checked as an object. For
more details regarding the registration to an identifier file, see the -f option in
"Command Manual".

[Example1]

int func();

 :

func(10) ; <-[The return value of the function call "func" is not used.]

[Example2]

10: c = fgetc(in_fp) ;

fputc(c, out_fp) ; <-[The variable "c" is assigned the return value of the function
"func" in line 10 and then referenced without being judged.]

MISRA-C V1

115

Rule 87

[Corresponding errors indicated by Agile+ Relief]:

⚫ The content before the #include line is neither a preprocessing directive, nor
a comment.

[Example1]

Filename: file.c

1: double func(void)

 { return X; }

 #include "head.h" <-[Statements (in line 1 of "file.c") which are not
preprocessing directives exist before this #include line.]

Filename: head.h

 extern double X;

MISRA-C V1

116

Rule 88

[Corresponding errors indicated by Agile+ Relief]:

⚫ There are ' (single quote), \(currency character), "(double-quote), /*(slash
and asterisk), multiple-byte characters(Chinese characters, etc)in the
#include-specified file name.

[Example1]

#include "abc/*XY*/d.h" <-[The file name "abc/*XY*/d.h" specified by #include
contains one or more characters not defined in ANSI.]

MISRA-C V1

117

Rule 89

[Corresponding errors indicated by Agile+ Relief]:

⚫ The include file of the #include statement has not been embraced by <>, or "
".

[Example1]

#include head.h <-[The name of the header file is not enclosed with angle
brackets < > or quotation marks "".]

MISRA-C V1

118

Rule 90

[Corresponding errors indicated by Agile+ Relief]:

⚫ Mismatch of the parentheses, (and), in the replacement string of the
#define statement.

⚫ Mismatch of the { and } within the replacement string of the #define
statement.

⚫ The replacement string of the #define statement consists only of the
following types: char, short, int, long, float, double, signed, unsigned and
void.

[Example1]

#define AddTen(x) (x + 10 <-[The replacement string of the macro function "AddTen" is
not enclosed as a whole with parentheses () or curly brackets
{ }.]

[Example2]

#define PSI32 int* <-[typedef can be used instead of macro "PSI32".]

PSI32 a, b;

MISRA-C V1

119

Rule 91

[Corresponding errors indicated by Agile+ Relief]:

⚫ The block contains a #define or a #undef statement.

[Example1]

void func(int n)

{

 #define MAX 10 <-[Macro "MAX" is operated by #defined in a block.]

 int i;

 for(i = 0; i < MAX; i++)

:

}

MISRA-C V1

120

Rule 92

[Corresponding errors indicated by Agile+ Relief]:

⚫ #undef statement is used.

[Example1]

#undef AAA <-[The macro "AAA" is undefined with #undef.]

MISRA-C V1

121

Rule 93

[Corresponding errors indicated by Agile+ Relief]:

⚫ The same parameter appears more than once in the replacement string of
the macro function.

[Example1]

#define ISNUM(a) ((' 0' <= (a)) && ((a) <= ' 9'))

 <-[In a #define statement, parameter "a" is used two or more
times in the replacement string of the macro function
"ISNUM".]

if(ISNUM(*p++))

MISRA-C V1

122

Rule 94

[Corresponding errors indicated by Agile+ Relief]:

⚫ The macro function has different numbers of parameters in the definition
and the function call.

[Example1]

Filename: file.c

10: #define FUNC(x, y) (((x)>(y))?(x):(y))

a = FUNC(x); <-[The number of the arguments in a call to the macro
"FUNC" is different from the number of parameters in the
corresponding macro definition in line 10 of "file.c", in violation
of the ANSI standard.]

MISRA-C V1

123

Rule 95

[Corresponding errors indicated by Agile+ Relief]:

⚫ The argument of the macro function begins with #.

[Example1]

#define F(b) b

F(#error "memory error") <-[A preprocessing directive is used in the argument "#error"
of a macro function.]

MISRA-C V1

124

Rule 96

[Corresponding errors indicated by Agile+ Relief]:

⚫ The parameter in the macro has not been embraced by parentheses ().

⚫ The replacement string of the macro has not been embraced by () or {}.

[Example1]

#define F(a, b) (a * b) <-[The parameters "a","b" in the replacement string of the
macro "F" are not enclosed with parentheses ().]

x = F(1 + 5, 10);

[Example2]

#define AddTen(a) (a) + 10 <-[The replacement string of the macro function "AddTen" is
not enclosed as a whole with parentheses () or curly brackets
{ }.]

x = AddTen(20) * 2 ;

MISRA-C V1

125

Rule 97

[Corresponding errors indicated by Agile+ Relief]:

⚫ The replacement string has not been specified in the macro of the #if or #elif
statement.

⚫ A statement, #undef, is used for an undefined macro.

[Example1]

/*The macro DEBUG is undefined, or no replacement string has been specified for it*/

#if DEBUG == 1 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

#elif DEBUG == 2 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

[Example2]

/* macro ABC,XYZ has not been defined */

#if ABC <-["ABC" might have been intended to be appended with
defined.]

#elif XYZ <-["XYZ" might have been intended to be appended with
defined.]

[Example3]

/* macro BBB has not been defined */

#undef BBB <-[#undef is used on the undefined macro "BBB".]

MISRA-C V1

126

Rule 98

[Corresponding errors indicated by Agile+ Relief]:

⚫ Both #operator and ##operator exist in the macro function.

[Example1]

#define AAA(x, y) x###y <-[The operators # and ## are used together in the definition
of the macro function "AAA".]

MISRA-C V1

127

Rule 99

Agile+ Relief will not check if the rule has been violated.

MISRA-C V1

128

Rule 100

[Corresponding errors indicated by Agile+ Relief]:

⚫ Symbol "defined" is generated from #if or #elif by macro expansion.

[Example1]

#define DEF defined

#if DEF MAXNAM <-[An #if or #elif statement generates the string "defined" in
the process of macro expansion.]

MISRA-C V1

129

Rule 101

[Corresponding errors indicated by Agile+ Relief]:

⚫ Arithmetic operation is performed on a pointer which is neither an array nor
a pointer to an array.

⚫ Subtraction performed on the pointers that point to different arrays.

[Example1]

int data[]={ 1, 2, 3, 4, 5 };

int *p = data;

return *(p+1); <-[Pointer arithmetic operation "p+1" is not in the form of array
indexing.]

[Example2]

void func (int *array)

{

 int x;

 int *p = &x;

 *(array + 1) = 0; <-["array" in the pointer arithmetic operation "array + 1" is not
a pointer pointing to an array.]

 p++; <-["p" in the pointer arithmetic operation "p++" is not a pointer
pointing to an array.]

 *p = 1;

[Example3]

int array1[10], array2[10];

int *p1, *p2;

int n;

p1 = array1;

p2 = array2;

n = p2 - p1; <-["p2" and "p1" of the pointer subtraction "p2 - p1" do not
point to the same array.]

MISRA-C V1

130

Rule 102

[Corresponding errors indicated by Agile+ Relief]:

⚫ The declaration contains an indirect pointer of more than 2 levels.

⚫ More than two levels of indirect pointer operation.

[Example1]

int ***x; <-[The pointer "x" exceeds 2 levels.]

[Example2]

struct S {

struct S *next;

int x;

} *sp;

char ***ppp;

 :

sp->next->next->next = adr; <-[The expression "sp->next->next->next" has more than 2
levels of pointers.]

ppp = ' a' ; <-[The expression "ppp" has more than 2 levels of
pointers.]

MISRA-C V1

131

Rule 103

[Corresponding errors indicated by Agile+ Relief]:

⚫ Comparison is made between the addresses of objects of different types.

[Example1]

char *p;

long *q;

if(p < q) { <-[The expression "p < q" compares two object addresses of
different types (char *, long int *).]

MISRA-C V1

132

Rule 104

[Corresponding errors indicated by Agile+ Relief]:

⚫ Converting a function name into a non-function pointer.

[Example1]

int x , func(void) ;

x = func ; <-[The expression "x = func" referencing the function name
"func" might contain a mistake.]

if (func != 0) <-[The expression "func != 0" referencing the function name
"func" might contain a mistake.]

MISRA-C V1

133

Rule 105

[Corresponding errors indicated by Agile+ Relief]:

⚫ Converting a function name into a pointer to a different function.

⚫ Converting a non-function pointer into a function pointer.

[Example1]

int * f(void);

int * (*fp)(void) = (void*(*)(void)) f ;

 <-[The expression "(void*(*)(void))f" casts a function pointer of
type int *(*)(void) to a function pointer of a different type.]

[Example2]

void * vp;

((void (*)(int)) vp)(0) ; <-["(void(*)(int))vp" converts a pointer of type void * into a
function pointer.]

MISRA-C V1

134

Rule 106

[Corresponding errors indicated by Agile+ Relief]:

⚫ The address of an automatic variable is set to the return value of the
function

⚫ The address of an automatic variable is assigned to a variable outside the
effective range.

[Example1]

char *func(void) {

char str[16];

 :

return str; <-[The address "str" is the address of an automatic variable
and should not be used as the return value of a function.]

}

[Example2]

int *p ;

{

 int x;

 p = &x ; <-[The address of the automatic variable x cannot be used

outside the scope.]

}

*p = 0 ;

MISRA-C V1

135

Rule 107

[Corresponding errors indicated by Agile+ Relief]:

⚫ The return value of functions malloc or fopen is referenced without checking
if it is NULL.

⚫ The parameter of pointer type is referenced to without checking if it is NULL.

⚫ An automatic variable that may be set to address 0 is referenced.

⚫ Checking NULL after the pointer operation.

[Example1]

char c, a[10], x ;

11: char *p = NULL ;

12: char *q = NULL ;

:

if (mode == 0) {

p = &x ;

q = a ;

}

c = *p ; <-[The variable "p", assigned with the 0 address in line 11,
might access the 0 address.]

strcpy (q, "abc") ; <-[The variable "q", assigned with the 0 address in line 12,
might access the 0 address.]

[Example2]

char *p ;

10: p = malloc(sizeof(char) * 100) ;

*p = ' \0' ; <-[The 0 address might be referenced because the variable
"p" might have been assigned with the 0 address in line 10.]

:

20: fp = fopen(filename, "r") ;

size = fread(buf, sizeof(buf), 1, fp) ; <-[The 0 address might be referenced because the variable
"fp" might have been assigned with the 0 address in line
20.]

MISRA-C V1

136

[Example3]

10: int func(int *p)

{

 int x;

 x = *p; <-[The 0 address might be referenced because the variable
"p", as a parameter, might have been assigned with the 0
address in line 10.]

[Example4]

p = G_xp ;

*p = 10 ; <-[The variable "p" compared with the 0 address in line 12
might access the 0 address.]

12: if (p == NULL) {

:

}

MISRA-C V1

137

Rule 108

[Corresponding errors indicated by Agile+ Relief]:

⚫ The array length is omitted.

[Example1]

Filename: file.c

 #include "head.h"

 int data[256] ;

Filename: head.h

 extern int data[] ; <-[The length of an array has been omitted.]

MISRA-C V1

138

Rule 109

[Corresponding errors indicated by Agile+ Relief]:

⚫ The same loop counter has been used in the for-statements both in the inner
layer and the outer layer.

⚫ For a union variable, a member of it has been assigned, but another is
referenced.

[Example1]

 for(i = 0; i < 5; i++) { <-[This for statement uses the same loop counter "i" as the for
statement in line 30.]

 :

30: for(i = 0; i < 10; i++) {

 :

}

}

[Example2]

union {

 int m1 ;

 char m2 ;

} x ;

10: x.m1 = 1 ;

c = x.m2 ; <-[The union member "x.m1" whose value is assigned in line
10 is referenced by another member "x.m2" of the union]

MISRA-C V1

139

Rule 110

[Corresponding errors indicated by Agile+ Relief]:

⚫ Union members of different sizes are declared.

[Example1]

union u_tag1 { <-[Union "u_tag1" contains members of different sizes.]

 double fdata;

 char cdata[4];

};

union u_tag2 { <-[Union "u_tag2" contains members of different sizes.]

 struct {

 short high;

 short low;

 } word1;

 int dword;

};

union u_tag3 { <-[Union "u_tag3" contains members of different sizes.]

 struct {

 unsigned int b1: 4;

 unsigned int b2: 4;

 unsigned int b3: 4;

 unsigned int b4: 4;

 } bit;

 unsigned int word2;

};

MISRA-C V1

140

Rule 111

[Corresponding errors indicated by Agile+ Relief]:

⚫ A bit field of neither type signed int nor unsigned int is declared

[Example1]

struct TAG {

 unsigned short m1:2 ; <-[The bitfield "m1" is declared with type unsigned short. The
declaration should be made with signed int or unsigned int.]

 unsigned int m2: 2 ;

 signed int m3: 2 ;

};

MISRA-C V1

141

Rule 112

[Corresponding errors indicated by Agile+ Relief]:

⚫ A bit field of 1 bit and signed type is declared.

[Example1]

struct STAG {

 signed int m1:1 ; <-[The bit width of signed bit field "m1" is only 1 bit.]

 unsigned int m2: 1 ;

 signed int m3: 2 ;

};

MISRA-C V1

142

Rule 113

[Corresponding errors indicated by Agile+ Relief]:

⚫ A nameless bit field of more than 1 bit has been declared.

⚫ There is no member name in the declaration of a structure or a union.

[Example1]

union uTAG {

 struct sTAG {

 unsigned int s1: 10 ;

 unsigned int s2: 10 ;

 unsigned int : 12 ; <-[No member name exists in the indicated bitfield
declaration.]

 } bit;

 long all;

};

MISRA-C V1

143

Rule 114

[Corresponding errors indicated by Agile+ Relief]:

⚫ The following macros have been redefined or undefined.
__LINE__
__FILE__
__DATE__
__TIME__

[Example1]

#define __FILE__ "abc" <-[The predefined macro "__FILE__" is defined again with
#define.]

MISRA-C V1

144

Rule 115

[Corresponding errors indicated by Agile+ Relief]:

⚫ The identifier using the same name as one of the key words has been used
in the definition and declaration.

The variable and function registered under the labels [RESERVED_IDENTIFIER] and
[RESERVED_LIBRARY_IDENTIFIER] of the identifier file have been checked as
objects. For more details regarding the registration to the identifier file, please refer to
the option -F in "Command Manual".

[Example1]

int errno ; <-[The name "errno" is the same as an external name used in
the system.]

void *malloc(unsigned int size) { <-[The name "malloc" is the same as an external name used
in the system.]

 :

}

MISRA-C V1

145

Rule 116

Agile+ Relief will not check if the rule has been violated.

MISRA-C V1

146

Rule 117

[Corresponding errors indicated by Agile+ Relief]:

⚫ The return value of the functions malloc or fopen is referred to without
checking if it is NULL.

⚫ An automatic variable, which may be set to address 0, has been referenced.

[Example1]

char *p ;

10: p = malloc(sizeof(char) * 100) ;

*p = ' \0' ; <-[The 0 address might be referenced because the variable
"p" might have been assigned with the 0 address in line 10.]

:

20: fp = fopen(filename, "r") ;

size = fread(buf, sizeof(buf), 1, fp) ; <-[The 0 address might be referenced because the variable
"fp" might have been assigned with the 0 address in line
20 .]

[Example2]

 char c, a[10], x ;

11: char *p = NULL ;

12: char *q = NULL ;

:

if (mode == 0) {

p = &x ;

q = a ;

}

c = *p ; <-[The variable "p", assigned with the 0 address in line 11,
might access the 0 address.]

strcpy (q, "abc") ; <-[The variable "q", assigned with the 0 address in line 12,
might access the 0 address.]

MISRA-C V1

147

Rule 118

[Corresponding errors indicated by Agile+ Relief]:

⚫ The following dynamic heap allocation functions are used:

malloc

calloc

realloc

free

[Example1]

int *mp;

mp = (int *)malloc(sizeof(int) * 10); <-[The function "malloc" is used.]

MISRA-C V1

148

Rule 119

[Corresponding errors indicated by Agile+ Relief]:

⚫ Identifier errno is used.

[Example1]

#include <errno.h>

:

if(errno == ENOENT) <-[The variable "errno" is used.]

MISRA-C V1

149

Rule 120

[Corresponding errors indicated by Agile+ Relief]:

⚫ Macro offsetof is used.

[Example1]

#include <stddef.h>

struct STAG {

 char *sp;

 long dt;

} *stagp;

long *dtp = (long *)((char*)stagp + offsetof(struct STAG, dt));

 <-[The macro offsetof" is used.]

MISRA-C V1

150

Rule 121

[Corresponding errors indicated by Agile+ Relief]:

⚫ The file locale.h is included through the #include statement.

⚫ Function setlocale is used.

[Example1]

#include <locale.h> <-[The file "locale.h" is included and should be confirmed.]

 :

setlocale(LC_ALL, " "); <-[The function "setlocale" is used.]

MISRA-C V1

151

Rule 122

[Corresponding errors indicated by Agile+ Relief]:

⚫ Function longjmp and macro setjmp are used.

[Example1]

#include <setjmp.h>

static jmp_buf parse_error;

:

longjmp(parse_error, 1); <-[The function "longjmp" is used.]

MISRA-C V1

152

Rule 123

[Corresponding errors indicated by Agile+ Relief]:

⚫ File signal.h has been included through #include statement.

The following functions are used:

signal

SIG_DFL

SIG_IGN

SIG_ERR

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

[Example1]

#include <signal.h> <-[The file "signal.h" is included and should be confirmed.]

extern void sigint_hnd(void);

:

signal(SIGINT, sigint_hnd); <-[The function "signal" is used.]

 <-[The macro "SIGINT" is used.]

MISRA-C V1

153

Rule 124

[Corresponding errors indicated by Agile+ Relief]:

⚫ File stdio.h has been included by the #include statement.

The following functions are used:

fgetpos

fopen

ftell

gets

perror

remove

rename

ungetc

[Example1]

#include <stdio.h> <-[The file "stdio.h" is included and should be confirmed.]

FILE *fp;

 :

fp = fopen("abc.txt", "r"); <-[The function "fopen" is used.]

MISRA-C V1

154

Rule 125

[Corresponding errors indicated by Agile+ Relief]:

⚫ Functions atof, atoi and atoll are used.

[Example1]

#include <stdlib.h>

int i;

char *str = "123";

i = atoi(str); <-[The function "atoi" is used.]

MISRA-C V1

155

Rule 126

[Corresponding errors indicated by Agile+ Relief]:

⚫ Functions abort, exit, getenv and system are used.

[Example1]

#include <stdlib.h>

:

if (j < 0) {

abort(); <-[The function "abort" is used.]

}

MISRA-C V1

156

Rule 127

[Corresponding errors indicated by Agile+ Relief]:

⚫ The following functions are used:

clock

difftime

mktime

time

asctime

ctime

gmtime

localtime

strftime

[Example1]

#include <time.h>

:

time_t tm:

time(&tm); <-[The function "time" is used.]

MISRA-C V2

157

3.2 MISRA-C V2

For the following rules, because the rules demand definite system handling behavior,

Agile+ Relief cannot check the behaviors when parsing the source code:

Rule 1.3

Rule 1.4

Rule 1.5

Rule 3.1

Rule 3.2

Rule 3.3

Rule 3.4

Rule 3.6

Further, since the following rules concerns the coding style of the source code, Agile+
Relief cannot check them:

Rule 2.4

Rule 18.3

MISRA-C V2

158

Rule 1.1

[The corresponding error indicated by Agile+ Relief]

⚫ There are descriptions not compliant with C90 (ISO/IEC 9899:1990).

[Example 1]

static enum A { /*declaration*/ }; <-[The storage class specifier "static" may not be used here.]

extern struct B { /*declaration*/ }; <-[The storage class specifier "extern" may not be used here.]

[Example 2]

int a[-1]; <-[The number of array elements "-1" is not greater than 0.]

struct Dynamic_Array {

 unsigned int size;

 int data[0]; <-[The number of array elements "0" is not greater than 0.]

} ;

MISRA-C V2

159

Rule 1.2

[The corresponding error indicated by Agile+ Relief]

⚫ Behaviors exist that are unspecified or undefined in C90(ISO/IEC
9899:1990):

[Example 1]

i = j + j++; <-[The update timing of "j++" is not defined in ANSI, so the
value of "j" cannot be guaranteed.]

i = ++i + j; <-[The update timing of "++i" is not defined in ANSI, so the
value of "i" cannot be guaranteed.]

[Example 2]

Filename: file1.c

10: void func(int mode, char c) { ~ }

Filename: file2.c

func('a'); <-[The number of parameters in the function call "func" is
different from the number of parameters in the corresponding
function definition in line 10 of "file1.c".]

MISRA-C V2

160

Rule 1.3

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

161

Rule 1.4

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

162

Rule 1.5

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

163

Rule 2.1

[The corresponding error indicated by Agile+ Relief]

⚫ Assembly language is used.

[Example 1]

asm(mov r4, r0); <-[Assembly language "asm" is used.]

MISRA-C V2

164

Rule 2.2

[The corresponding error indicated by Agile+ Relief]

⚫ // comment is used

[Example 1]

Filename: file.c

int Data; //input data <-[A "//" style comment is used in the file.]

MISRA-C V2

165

Rule 2.3

[The corresponding error indicated by Agile+ Relief]

⚫ A nested comment exists.

[Example 1]

/* /* comment */ <-[A nested comment is used.]

MISRA-C V2

166

Rule 2.4

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

167

Rule 3.1

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

168

Rule 3.2

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

169

Rule 3.3

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

170

Rule 3.4

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

171

Rule 3.5

[The corresponding error indicated by Agile+ Relief]

⚫ Struct and union with bit field member have been declared.

[Example 1]

struct TAG { <-[The member of bit field in struct “TAG” has been declared.]

 unsigned int m1:1 ;

 unsigned int m2:1 ;

};

MISRA-C V2

172

Rule 3.6

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

173

Rule 4.1

[The corresponding error indicated by Agile+ Relief]

⚫ There exists an undefined escape sequence starting with \.

[Example 1]

c = '\8'; <-[Escape sequence "'\8'" might be processed differently
depending on the compiler.]

MISRA-C V2

174

Rule 4.2

[The corresponding error indicated by Agile+ Relief]

⚫ A trigraph sequence is used.

[Example 1]

??=include "head.h" <-[The trigraph sequence "??=" is used.]

MISRA-C V2

175

Rule 5.1

[The corresponding errors indicated by Agile+ Relief]

⚫ The length of the identifier exceeds 31.

⚫ The two identifiers are different only with regard to the confusing characters.

[Example 1]

int int_length_hensuu_0123456789abcd; <-[The length of the identifier
"int_length_hensuu_0123456789abcd" exceeds 31
characters.]

[Example 2]

Filename: file.c

1: int xO;

 void func(void)

 {

 int x0; <-[The identifier "x0" resembles "xO" in line 1 of "file.c",
which may lead to confusion.]

MISRA-C V2

176

Rule 5.2

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier with a name identical to that of another identifier within the
external scope has been declared within the internal effective scope.

[Example 1]

Filename: file.c

10: unsigned char *cp;

void func()

{

 unsigned char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.c", outside the function.]

 }

[Example 2]

Filename: file.c

10: struct tag { short a, b; } x;

void func()

{

 struct tag { int a, b; } y; <-[The declaration of the tag "tag" uses the same name as
"tag" in line 10 of "file.c", outside the function.]

 }

MISRA-C V2

177

Rule 5.3

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate typedef name.

[Example 1]

Filename: file.c

10: typedef char *cp;

void func()

{

 char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.c", outside the function.]

 }

[Example 2]

Filename: file.c

 void func1(void)

 {

 3: typedef char BYTE;

 :

 }

 void func2(void)

 {

 typedef char BYTE; <-[The typedef name "BYTE" is the same as the typedef
name defined in line 3 of "file.c".]

 :

 }

[Example 3]

Filename: file1.h

 typedef int WORD ; <-[The type "WORD" defined with type "int" is defined again
with type "unsigned int" in line 20 of "file2.h".]

Filename: file2.h

20: typedef unsigned int WORD ;

Filename: file.c

 #include "file1.h"

MISRA-C V2

178

 #include "file2.h"

MISRA-C V2

179

Rule 5.4

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate tag name.

[Example 1]

Filename: file1.c

10: struct tag{ int a; long b; };

Filename: file2.c

struct tag{ int x; long y; }; <-[The tag declaration "tag" is inconsistent with that in line 10
of "file1.c".]

[Example 2]

Filename: file.c

10: struct tag{ int a; long b; } ;

:

 struct tag{ int a; long b; } ; <-[The tag "tag" has another declaration in line 10 of "file.c".
Delete one of the declarations.]

[Example 3]

Filename: file.c

10: struct name {

 int name; <-[The member "name" and the tag in line 10 of "file.c" share
the same name.]

 :

 };

 char *name; <-[The variable "name" and the tag in line 10 of "file.c" share
the same name.]

MISRA-C V2

180

Rule 5.5

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate variable or function names having an external linkage.

[Example 1]

Filename: file.c

1: static int name;

 void func (void)

 {

 enum {

 name , <-["name" and the static variable in line 1 of "file.c" have the
same name.]

}

[Example 2]

Filename: file1.c

10: short *data;

Filename: file2.c

extern short data; <-[The variable declaration "data" and the variable definition
in line 10 of "file1.c" are of different types: pointer and
non-pointer (variable declaration: short int, variable definition:
short int *).]

[Example 3]

Filename: file1.c

10: int func(char *p){ ~ }

Filename: file2.c

int func(long *p); <-[The 1st parameter "p" in the function declaration "func" and
its corresponding parameter "p" in the function definition in
line 10 of "file1.c" are of different types (long int *, char *).]

MISRA-C V2

181

Rule 5.6

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate identifiers used within the same block of different namespaces.

[Example 1]

Filename: file.c

10: struct name {

 int name; <-[The member "name" and the tag in line 10 of "file.c" share
the same name.]

 :

 };

 char *name; <-[The variable "name" and the tag in line 10 of "file.c" share
the same name.]

MISRA-C V2

182

Rule 5.7

[The corresponding errors indicated by Agile+ Relief]

⚫ An identifier with a name identical to that of another identifier within the
external scope has been declared within the internal effective scope.

⚫ Duplicate typedef name.

⚫ Duplicate tag name.

⚫ Duplicate variable or function names having an external linkage.

⚫ Duplicate identifiers used in the same block within different namespaces.

[Example 1]

Filename: file.c

10: extern int flag;

 :

static int flag; <-[The variable flag has a different storage class in line 10 of
"file.c".]

[Example 2]

Filename: file.c

10: #define ABC 1

#define ABC 10 <-[The macro "ABC" is redefined with a value different from
that in line 10 of "file.c".]

[Example 3]

Filename: file.c

10: typedef char *cp;

if(data == 0) {

 char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.c".]

 }

MISRA-C V2

183

Rule 6.1

[The corresponding errors indicated by Agile+ Relief]

⚫ The char type is not used for a character value.

⚫ Implicit conversion between the type char and signed char/unsigned char.

[Example 1]

char x;

 :

x = 1; <-[The char "x" not specified as signed or unsigned is not
treated as a character value.]

[Example 2]

signed char func(int x){

 char c;

 :

 return c; <-[If char is unsigned, the return value "c" and the function
"func" are of different types: signed and unsigned (type of
return value: char , function type: signed char).]

}

MISRA-C V2

184

Rule 6.2

[The corresponding error indicated by Agile+ Relief]

⚫ The signed char type or unsigned char type is not used for numeric values.

[Example 1]

unsigned char x;

 :

x = 'a'; <-[The signed/unsigned char "x" is not treated as a numeric
value.]

MISRA-C V2

185

Rule 6.3

[The corresponding error indicated by Agile+ Relief]

⚫ Basic types int/short/char/long/double/float are used directly.

[Example 1]

#include "file1.h"

void func (void)

{

int short_length ; <-[In this file, a basic arithmetic type
(int/short/char/long/double/float) is used directly.]

 :

}

MISRA-C V2

186

Rule 6.4

[The corresponding error indicated by Agile+ Relief]

⚫ A bit field of type neither signed int nor unsigned int is declared.

[Example 1]

struct TAG {

 unsigned short m1:2 ; <-[The bitfield "m1" is declared with type unsigned short. The
declaration should be made with signed int or unsigned int.]

 unsigned int m2: 2 ;

 signed int m3: 2 ;

};

MISRA-C V2

187

Rule 6.5

[The corresponding error indicated by Agile+ Relief]

⚫ A bit field of 1 bit and signed type is declared.

[Example 1]

struct STAG {

 signed int m1:1 ; <-[The bit width of signed bit field "m1" is only 1 bit.]

 unsigned int m2: 1 ;

 signed int m3: 2 ;

};

MISRA-C V2

188

Rule 7.1

[The corresponding error indicated by Agile+ Relief]

⚫ An octal constant other than 0 or an octal escape sequence is used.

[Example 1]

int x = 010 ; <-[The octal constant "010" is used.]

[Example 2]

c = '\12' ; <-[The octal escape sequence "\12" is used.]

strcpy (s, "abc\14") ; <-[The octal escape sequence "\14" is used.]

MISRA-C V2

189

Rule 8.1

[The corresponding errors indicated by Agile+ Relief]

⚫ No function is declared before the function call.

⚫ No function declaration is found before the function definition.

⚫ No specified parameter is found in the function decelerator.

[Example 1]

x = func(10); <-[There is no function declaration corresponding to the
function call "func".]

[Example 2]

void func(int x) <-[Function "func" is defined without prior declaration.]

{

 :

}

[Example 3]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

MISRA-C V2

190

Rule 8.2

[The corresponding errors indicated by Agile+ Relief]

⚫ A variable is declared without specifying the specifier.

⚫ A function without return value should be defined as void.

[Example 1]

const x = 1, y = 2; <-[A declaration is made with no explicit type specifier.]

z; <-[A declaration is made with no explicit type specifier.]

[Example 2]

func(int x) <-[The function "func" has no return value and should be
declared as void.]

{

 :

 return;

}

MISRA-C V2

191

Rule 8.3

[The corresponding error indicated by Agile+ Relief]

⚫ Type mismatch between function and parameter in the function declaration
and definition.

[Example 1]

Filename: file1.c

10: unsigned func(char *p){ ~ }

Filename: file2.c

int func(char *p); <-[The function declaration "func" and the corresponding
function definition in line 10 of "file1.c" are of different types
(function declaration type: int, function definition type:
unsigned int).]

[Example 2]

Filename: file1.c

10: int func(char *p){ ~ }

Filename: file2.c

int func(long *p); <-[The 1st parameter "p" in the function declaration "func" and
its corresponding parameter "p" in the function definition in
line 10 of "file1.c" are of different types (long int *, char *).]

MISRA-C V2

192

Rule 8.4

[The corresponding error indicated by Agile+ Relief]

⚫ The function, or a variable using the same name and having an external
linkage is used.

[Example 1]

Filename: file1.c

10: short *data;

Filename: file2.c

extern short data; <-[The variable declaration "data" and the variable definition
in line 10 of "file1.c" are of different types: pointer and
non-pointer (variable declaration: short int, variable definition:
short int *).]

[Example 2]

Filename: file1.c

10: int func(char *p){ ~ }

Filename: file2.c

int func(long *p); <-[The 1st parameter "p" in the function declaration "func" and
its corresponding parameter "p" in the function definition in
line 10 of "file1.c" are of different types (long int *, char *).]

MISRA-C V2

193

Rule 8.5

[The corresponding error indicated by Agile+ Relief]

⚫ Variable and function definitions exist in the header file.

[Example 1]

Filename: head.h

int x ; <-[Space is allocated in the header file (variable "x").]

int func(void) <-[Space is allocated in the header file (function "func").]

 {

 return x;

 }

Filename: file.c

#include "head.h"

MISRA-C V2

194

Rule 8.6

[The corresponding error indicated by Agile+ Relief]

⚫ A function is declared in the function.

[Example 1]

void func()

{

 int func1(int) ; <-[A function declaration "func1" is made in a function.]

 int i ;

MISRA-C V2

195

Rule 8.7

[The corresponding error indicated by Agile+ Relief]

⚫ There is an external variable or a global static variable used only in one
function.

[Example 1]

Filename: head.h

 extern int xx ; <-[The external variable "xx" that can be used in multiple
functions was referenced only in the function "func" in line 20
of "file.c ". An internal static variable could be used instead.]

Filename: file.c

 #include "head.h"

 :

20: void func(int in)

{

xx = 0;

/*The external variable xx is used only in this function.*/

}

MISRA-C V2

196

Rule 8.8

[The corresponding error indicated by Agile+ Relief]

⚫ There is an external variable declaration or external function declaration
outside of the header file.

[Example 1]

Filename: file.c

extern int x ; <-[The external variable "x" is declared outside a header file.]

[Example 2]

Filename: file.c

int func(int in) ; <-[The external function "func" is declared outside a header
file.]

MISRA-C V2

197

Rule 8.9

[The corresponding error indicated by Agile+ Relief]

⚫ There are function and variable definitions that possess external linkages
and are using identical names.

[Example 1]

Filename: file1.c

10: short *data;

Filename: file2.c

short data; <-[The variable definition "data" and the variable definition in
line 10 of "file1.c" are of different types: pointer and
non-pointer (short int , short int *).]

[Example 2]

Filename: file.c

10: int v = 1;

:

float v = 0.0; <-[The variable definition "v" and the variable definition in line
10 are of different types (float, int).]

MISRA-C V2

198

Rule 8.10

[The corresponding error indicated by Agile+ Relief]

⚫ There exists a external function or an external variable used in only one file.

[Example 1]

Filename: file.c

int x = 0 ; <-[The external variable "x" is used only in the file "file.c".]

void x_add(void) { x++; }

int x_ref(void) { return x; }

/*The variable "x" is only used in the file "file.c".*/

MISRA-C V2

199

Rule 8.11

[The corresponding error indicated by Agile+ Relief]

⚫ There is a variable or a function using identical names but having different
storage classes.

[Example 1]

Filename: file.c

10: extern int flag;

 :

static int flag; <-[The variable flag has a different storage class in line 10 of
"file.c".]

MISRA-C V2

200

Rule 8.12

[The corresponding error indicated by Agile+ Relief]

⚫ The array is declared without specifying its length.

[Example 1]

Filename: file.c

 #include "head.h"

 int data[256] ;

Filename: head.h

 extern int data[] ; <-[The length of an array has been omitted.]

MISRA-C V2

201

Rule 9.1

[The corresponding error indicated by Agile+ Relief]

⚫ The automatic variable is referenced without having been set a value.

[Example 1]

int i;

if (data == 0) {

 i = 1;

}

data = i; <-[Variable "i" may be referenced before it has been set with a
value.]

MISRA-C V2

202

Rule 9.2

[The corresponding error indicated by Agile+ Relief]

⚫ The initializer list and the initialized array/structure/union do not match in the
construction.

[Example 1]

int data[2][3] = { <-[Initialization of the array/structure/union "data" is
inconsistent with its makeup.]

 1, 2, 3, 4, 5, 6

} ;

struct A {

 int a1;

 int a2;

};

struct A adata[2] = { 1, 2, 3, 4 } ; <-[Initialization of the array/structure/union "adata" is
inconsistent with its makeup.]

struct B {

 int b1;

 struct A b2;

} ;

struct B bdata = { 1, 2, 3 } ; <-[Initialization of the array/structure/union "bdata" is
inconsistent with its makeup.]

int cdata[7] = { 1, 2, 3, 4, 5 } ; <-[Initialization of the array/structure/union "cdata" is
inconsistent with its makeup.]

MISRA-C V2

203

Rule 9.3

[The corresponding error indicated by Agile+ Relief]

⚫ Some enumeration constants are assigned values while others are not.

[Example 1]

enum E1 { E11, E12 = 3, E13 } ; <-[In the declaration of the enumeration type "E1", assigned
members and unassigned members coexist.]

enum E2 { E21=1, E22, E23 = 5 } ; <-[In the declaration of the enumeration type "E2", assigned
members and unassigned members coexist.]

MISRA-C V2

204

Rule 10.1

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an operation that performs underlying type conversion.

⚫ There is an implicit conversion that may lead to data loss resulting from
differences in signs, type size and types.

[Example 1]

void func(short s1, short s2)

{

 long L;

 signed char sc;

 L = s1 * s2; <-["s1 * s2" in "L = s1 * s2" is converted to a different type by
an operation (underlying type before conversion: signed short
int; underlying type after conversion: signed long int).]

 sc = s1 + s2; <-["s1 + s2" in "sc = s1 + s2" is converted to a different type by
an operation (underlying type before conversion: signed short
int; underlying type after conversion: signed char).]

[Example 2]

unsigned char x = 0x8000; <-[The initial value "0x80000" exceeds the bit width of "x" of
type unsigned char.]

struct T {

 unsigned char mem1;

 int mem2;

};

struct T y = { 65535, <-[The initial value "65535" exceeds the bit width of "mem1" of
type unsigned char.]

 1

};

MISRA-C V2

205

[Example 3]

Filename: file1.c

50: void func(char c) { ... }

Filename: file2.c

func(256); <-[The bit width of the 1st argument "256" of the function
"func" exceeds the bit width of the corresponding parameter
"c" in the function definition in line 50 of "file1.c"(argument: int ,
parameter: char).]

MISRA-C V2

206

Rule 10.2

[The corresponding error indicated by Agile+ Relief]

⚫ There is an implicit conversion causing losses in floating-point data.

[Example 1]

double data;

float s;

s = data ; <-[In the assignment expression "s = data", the size of the
expression on the right is larger than that of the expression on
the left, so the correct value might not be assigned (left : float ,
right : double).]

[Example 2]

float func(void){

 double x;

 :

 return x; <-[The correct value might not be returned because the type
size of the return value "x" is larger than that of the function
"func" (return value: double , function type: float).]

}

MISRA-C V2

207

Rule 10.3

[The corresponding errors indicated by Agile+ Relief]

⚫ A complex expression of integer type is cast to a type of the same or larger
size.

⚫ A complex expression of integer type is cast to a type of different signs.

⚫ A complex expression of integer type is cast to floating-point type.

[Example 1]

unsigned short a = 65432;

unsigned short b = 65432;

unsigned long x;

unsigned short y;

x = (unsigned long)(a+b); <-[The cast expression "(unsigned long)(a + b)" casts an
integer to a type that is not a smaller type of the same
signed/unsigned status (cast type: unsigned long int,
underlying type of the expression: unsigned short int).]

y = (unsigned short)(a+b); <-[The cast expression "(unsigned short)(a + b)" casts an
integer to a type that is not a smaller type of the same
signed/unsigned status (cast type: unsigned short int,
underlying type of the expression: unsigned short int).]

[Example 2]

unsigned short c = 32765:

if((unsigned)(c-2147483647) > 10) <-[The cast expression "(unsigned)(c - 2147483647)" casts
an integer to a type that is not a smaller type of the same
signed/unsigned status (cast type: unsigned int, underlying
type of the expression: signed int).]

[Example 3]

long a = 3;

long b = 2;

double x;

x = (double)(a/b); <-[The cast expression "(double)(a / b)" casts an integer to a
floating point type (cast type: double, underlying type of the
expression: signed long int).]

MISRA-C V2

208

Rule 10.4

[The corresponding errors indicated by Agile+ Relief]

⚫ A complex expression of floating-point type is cast to a type of the same or
larger size.

⚫ A complex expression of floating-point type is cast to integer type.

[Example 1]

float a = 1.0F/3;

float b = 1.0F/7;

long double x;

float y;

x = (long double)(a+b); <-[The cast expression "(long double)(a + b)" casts a floating
point type to a type that is not a smaller type (cast type: long
double, expression: float).]

y = (float)(a+b); <-[The cast expression "(float)(a + b)" casts a floating point
type to a type that is not a smaller type (cast type: float,
expression: float).]

[Example 2]

float a = 1.0F/3;

float b = 1.0F/7;

long x;

x = (long)(a+b); <-[The cast expression "(long)(a + b)" casts a floating point
type to an integer type (cast type: long int, expression: float).]

MISRA-C V2

209

Rule 10.5

[The corresponding errors indicated by Agile+ Relief]

⚫ The operational result may exceed the bit-width of the underlying type.

[Example 1]

unsigned char a = 0x1U ;

unsigned char b = 0xA0U ;

unsigned int x;

unsigned int y;

x = ~a ; <-["~a" might exceed the bit width of the underlying type
unsigned char of "a".]

y = (a + b) << 2 ; <-["(a + b) << 2" might exceed the bit width of the underlying
type unsigned char of "(a + b)".]

MISRA-C V2

210

Rule 10.6

[The Corresponding errors indicated by Agile+ Relief]

⚫ The unsigned constant is not suffixed by "U".

[Example 1]

/* The size of int is 16 bits */

unsigned int x = 0xA123 ; <-[The unsigned value "0xA123" is used without the suffix
"U".]

MISRA-C V2

211

Rule 11.1

[The Corresponding errors indicated by Agile+ Relief]

⚫ One side of the cast expression is of type pointer to a function, the other side
is of integer type.

[Example 1]

int (*fp)(void);

int *ip;

ip = (int *)fp; <-[The cast expression "(int *)fp" is a conversion involving a
function pointer type and a non-integer type (cast type: int *,
expression type: int (*) (void)).]

MISRA-C V2

212

Rule 11.2

[The corresponding error indicated by Agile+ Relief]

⚫ One side of the cast operator is of type pointer to an object, the other side is
not integer type/void*/a pointer to an object.

[Example 1]

int *ip;

double d;

:

d = (double)ip; <-[The cast expression "(double)ip" is a conversion involving
an object pointer type and a type which is not an integer type,
object pointer type or void* type.]

MISRA-C V2

213

Rule 11.3

[The corresponding error indicated by Agile+ Relief]

⚫ One side of the cast is of pointer type, the other side is of non-pointer type.

[Example 1]

int adr , *p ;

p = (int *)adr ; <-[The cast expression "(int *)adr" casts a non-pointer type to
a pointer type (cast type: int *, expression type: int).]

MISRA-C V2

214

Rule 11.4

[The corresponding errors indicated by Agile+ Relief]

⚫ Casting a pointer type to another pointer type.

[Example 1]

int *adr1 ;

char *adr2 ;

adr1 = (int*)adr2 ; <-[The cast expression "(int*)adr2" casts a pointer type to a
different pointer type (cast type: int *, expression type: char
*).]

MISRA-C V2

215

Rule 11.5

[The corresponding error indicated by Agile+ Relief]

⚫ The cast has deleted the const or volatile qualifying the space that is pointed
by a pointer.

[Example 1]

const int x = 5;

int *p = (int*)&x; <-["(int *)&x" negates the const/volatile qualifying the space
pointed to by the pointer "&x" of type "const int*".]

MISRA-C V2

216

Rule 12.1

[The Corresponding errors indicated by Agile+ Relief]

⚫ It is better to add a pair of parentheses.

[Example 1]

if (c = input() != 0) <-[In the expression "c = input() != 0", an assignment
operation coexists with a comparison operation. Parentheses
() may have been accidentally omitted."]

[Example 2]

if (0 < x < 10) <-[This compares the result of "0 < x" with "10", which may not
be the intention.]

[Example 3]

if(x == 0 && y == 0 || z == 0) <-["x == 0 && y == 0 || z == 0" contains both a && operation
and a || operation. Parentheses () may have been omitted
accidentally.]

[Example 4]

x = (a > 0) ? 0 : (b > 0) ? 1 : 2 ; <-[In the expression "(a>0)?1:(b>0)?1:2", multiple ternary
operations are used together. Use parentheses () to show
association explicitly.]

[Example 5]

x = a >> b & c ; <-["a >> b & c" mixes bit and shift operations with no
parentheses (). Use parentheses () to show precedence
explicitly.]

MISRA-C V2

217

Rule 12.2

[The corresponding error indicated by Agile+ Relief]

⚫ The ANSI operation order of the expression is indefinite.

[Example 1]

i = j + j++ ; <-[The update timing of "j++" is not defined in ANSI, so the
value of "j" cannot be guaranteed.]

i = ++i + j ; <-[The update timing of "++i" is not defined in ANSI, so the
value of "i" cannot be guaranteed.]

[Example 2]

word_data = get_byte1() << 8 | get_byte2() ;

 <-[The execution sequence of the function calls "get_byte"
and "get_byte" is not specified in ANSI. The function calls
should be made in separate lines.]

[Example 3]

Filename: file.c

 x = Gx + func(); <-[The timing of the function call "func" in line 100 of "file.c"
updating the variable "Gx" is undefined in ANSI, so the value
of "Gx" in the expression cannot be guaranteed.]

 :

 int func(void)

 {

 :

100: Gx += 2;

 :

 }

MISRA-C V2

218

Rule 12.3

[The corresponding error indicated by Agile+ Relief]

⚫ There is an update expression, a function call or a volatile variable within the
sizeof operator.

[Example 1]

x = sizeof(y++) ; <-["y++" is in sizeof, so updating is not performed.]

MISRA-C V2

219

Rule 12.4

[The corresponding error indicated by Agile+ Relief]

⚫ There is a side effect expression on the right side of the &&operator, ||
operator, or in the second or third expressions of the ternary operator.

[Example 1]

int i, x[100];

volatile int z;

if (i == 0 && x[i++] == 0) <-[Update expression "i++" is not executed in all cases.]

if (x[i] == 0 || func(i) == 0) <-[Function "func" is not executed in all cases.]

x[i] = (x[i] == 0)? i : z ; <-[volatile variable "z" is not executed in all cases.]

MISRA-C V2

220

Rule 12.5

[The corresponding error indicated by Agile+ Relief]

⚫ The expression on both sides of the operators && or ||, is not a primary
expression.

[Example 1]

if(p != 0 && *p == 1) <-["p != 0" in the && expression is not a primary expression.]

 <-["*p == 1" in the && expression is not a primary expression.]

if (x == 1 || y > 5 && z != 0) <-["x == 1" in the || expression is not a primary expression.]

 <-["y > 5" in the && expression is not a primary expression.]

 <-["z != 0" in the && expression is not a primary expression.]

 <-["y > 5 && z != 0" in the || expression is not a primary
expression.]

MISRA-C V2

221

Rule 12.6

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a bitwise operation in the conditional expression.

⚫ A bitwise operation (&, |) has been performed on the result of the conditional
expression.

⚫ A non-boolean value is used as a conditional expression.

[Example 1]

if (!(a & mask)) <-[The logical operation "a & mask" uses the result of the
operation "!(a & mask)" as a condition.]

if (a & mask) <-[The logical operation "a & mask" uses the result of the
operation "a & mask" as a condition.]

[Example 2]

if (a < 0 & b < 0) <-[In "a < 0 & b < 0", & or | may be mistakenly used to
represent && or ||.]

[Example 3]

Filename: file.c

 int x, y ;

2: x = 100;

3: y = 100;

 if (x) <-["x" is not a bool value (a non-bool value is assigned in line
2 of "file.c").]

 :

 if (!y) <-["y" is not a bool value (a non-bool value is assigned in line
3 of "file.c").]

MISRA-C V2

222

Rule 12.7

[The corresponding errors indicated by Agile+ Relief]

⚫ A bit-filed operation has been applied to the signed integer, type char, or a
negative constant.

[Example 1]

int x, y ;

x = y >> 2 ; <-[When the signed type variable "y" is assigned with a
negative value, the result of a right shift may vary depending
on the compiler.]

[Example 2]

int i1, i2 ;

i1 = i2 & 0x30 ; <-[The operand "i2" of the bit operation "i2 & 0x30" is signed.]

i1 <<= 3 ; <-[The operand "i1" of the bit operation "i1 <<= 3" is signed.]

if (^i1 == 0xfe) <-[The operand "i1" of the bit operation "^i1" is signed.]

MISRA-C V2

223

Rule 12.8

[The corresponding errors indicated by Agile+ Relief]

⚫ The number of shifts of the bitwise shift operator is a negative constant, or
has exceeded the type size of the variable on the left.

[Example 1]

unsigned int x, y ;

x = y << -2 ; <-[The result of the shift operation "y << -2" may vary
depending on the compilers.]

x <<= -2 ; <-[The result of the shift operation "x <<= -2" may vary
depending on the compilers.]

[Example 2]

unsigned int u1, u2 ;

u1 = u2 << 32 ; <-[The number of bits specified for the shift operation "u2 <<
32" exceeds the type width of the result.]

if (u1 == (u2 >> 32)) <-[The number of bits specified for the shift operation "u2 >>
32" exceeds the type width of the result.]

u1 <<= 32 ; <-[The number of bits specified for the shift operation "u1 <<=
32" exceeds the type width of the result.]

MISRA-C V2

224

Rule 12.9

[The corresponding error indicated by Agile+ Relief]

⚫ A unary operator (the minus sign) has been attached to an unsigned
variable.

[Example 1]

unsigned long ul = 0x80000001;

long long x;

x = -ul ; <-[Appending a "minus" to the unsigned variable "ul" will not
necessarily make it negative.]

MISRA-C V2

225

Rule 12.10

[The corresponding error indicated by Agile+ Relief]

⚫ A comma expression is used.

[Example 1]

x = 1, y = 2 ; <-["x=1,y=2" uses a comma outside an initialization
expression or update expression in a for statement.]

[Example 2]

struct tag { struct tag *next; int data; };

struct tag * top;

struct tag *p;

int code;

 :

for(code = 1, p = top ; <-["code = 1, p = top" uses a comma in the initialization
expression or update expression of a for statement.]

 p != 0;

 p = p->next) {

MISRA-C V2

226

Rule 12.11

[The corresponding error indicated by Agile+ Relief]

⚫ The operational result cannot be represented by an unsigned type.

[Example 1]

#define ABC 1U

unsigned int x;

x = ABC - 2; <-[The value of the unsigned expression "1U - 2" cannot be
represented by an unsigned type.]

if (x < 10)

[Example 2]

#if (1u - 2u) > 128 <-["1u-2u", which is performed with unsigned types, results in
a value that cannot be represented by an unsigned type.]

[Example3]

unsigned int ui = 0xffffffff + 2 ; <- [The result of constant expression “0xffffffff + 2” containing

 unsigned constant expression “0xffffffff” is beyond the bit
width of unsigned int type.]

MISRA-C V2

227

Rule 12.12

[The corresponding errors indicated by Agile+ Relief]

⚫ A member of floating-point type and members of other types exist in a union
at the same time.

⚫ Bitwise operation for floating-point or pointer type.

⚫ Cast a pointer type to pointer of other types.

[Example 1]

union tag { <-[There is a member in union "tag" whose type is different
from that of float-type member "a".]

 double a;

 unsigned long b[2];

};

[Example 2]

double d;

x = d << 1 ; <-[In ANSI, the operand "d" of the bit operation "d << 1" must
be of an integer type.]

[Example 3]

int *adr1 ;

float *adr2 ;

adr1 = (int*)adr2 ; <-[The cast expression "(int*)adr2" casts the pointer type to a
different pointer type. (cast type: char *, expression: int *)]

MISRA-C V2

228

Rule 12.13

[The corresponding error indicated by Agile+ Relief]

⚫ Mixed use of increment/decrement operators and other expressions.

[Example 1]

a = b++; <-[The result of "b++" is used in another operation.]

i = j + j++; <-[The result of "j++" is used in another operation.]

x++, y = 1; <-[The result of "x++" is used in another operation.]

MISRA-C V2

229

Rule 13.1

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an assignment expression in the conditional expression.

⚫ The assignment operation and comparing operation coexist.

[Example 1]

if(x = func()) <-[The assignment operator "=" is used in the conditional
expression "if(x = func())".]

if((y = z) != 0) <-[The assignment operator "=" is used in the conditional
expression "(y = z) != 0".]

MISRA-C V2

230

Rule 13.2

[The corresponding errors indicated by Agile+ Relief]

⚫ Use of a non-boolean value as a conditional expression.

⚫ A conditional expression is being compared with 0.

[Example 1]

if (x = y) <-[The assignment expression "x = y" is used as a condition.]

[Example 2]

Filename: file.c

 int x, y ;

2: x = 100;

3: y = 100;

 if (x) <-["x" is not a bool value (a non-bool value is assigned in line
2 of "file.c").]

 :

 if (!y) <-["y" is not a bool value (a non-bool value is assigned in line
3 of "file.c").]

[Example 3]

Filename: file.c

11: if (foo(10)) {

:

if (foo(20) == 1) { <-[The comparison operation "foo(20) == 1", which is not of
the form !=0 or ==0 and is performed with "foo(10)" (in line 11
of "file.c") which is used as a boolean value might contain a
mistake.]

MISRA-C V2

231

Rule 13.3

[The corresponding error indicated by Agile+ Relief]

⚫ One of the expressions on the left or right side of the operators ==, !=,
<=, >=, is of floating type.

[Example 1]

double d1, d2;

 :

if(d1 == d2) <-[The result of the comparison "d1== d2" between floating
types might not be that expected.]

MISRA-C V2

232

Rule 13.4

[The corresponding error indicated by Agile+ Relief]

⚫ The loop counter of the for-statement is of floating-point type.

[Example 1]

float f;

for(f = 0.0 ; f < 1 ; f += 0.1) { ~ } <-[Using the floating type variable "f" as the loop counter
might result in unintended iterations.]

MISRA-C V2

233

Rule 13.5

[The corresponding error indicated by Agile+ Relief]

⚫ There is an expression unrelated to the loop control in the for-statement.

[Example 1]

for(i = 0 , flag = 0 ; i < n; i++, counter++) {

 <-[An expression "flag = 0" irrelevant to loop control exists in a
for statement.]

 <-[An expression "counter++" irrelevant to loop control exists
in a for statement.]

MISRA-C V2

234

Rule 13.6

[The corresponding error indicated by Agile+ Relief]

⚫ Update a loop counter of the for-statement within the loop body.

[Example 1]

Filename: file.c

 5: for(i = 0; i < n; i++) {

 :

 i ++ ; <-[The loop counter "i" of a for statement is updated in the
loop body (for statement position: line 5 of "file.c").]

MISRA-C V2

235

Rule 13.7

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an eternally true/false conditional expression.

⚫ The conditional expression may be eternally true/false, depending on the
signs and the type size.

[Example 1]

if (x == 1 && x == 2) <-[The condition expression "x == 1 && x == 2" is never true.]

if (x > 1 && x < 0) <-[The condition expression "x > 1 && x < 0" is never true.]

[Example 2]

while(x * 10 - y > 0){ <-[The loop condition "x * 10 - y > 0" does not change.]

 :

}

/* The variables x and y are not updated in the while statement.*/

[Example 3]

char c;

 :

if (c == -1) { <-[If char is unsigned, "-1" cannot be equal to "c".]

[Example 4]

short s;

:

if (s == 65536) <-[Comparison of "s" of type short int with the constant
"65536" that exceeds the bit width of type short int is a
mistake.]

MISRA-C V2

236

Rule 14.1

[The corresponding error indicated by Agile+ Relief]

⚫ There is an unexecuted statement.

[Example 1]

if(x == 1)

{ process 1 }

else if(x != 1)

{ process 2 }

else <-[This else statement will never be executed.]

{ process 3 }

if(y == 1)

{ process 1 }

else if(y != 1)

{ process 2 }

else if(y < 0) <-[This else statement will never be executed.]

{ process 3 }

[Example 2]

for (; ;) {

 /* no break*/

}

x = y + z ; <-[This will not be executed.]

MISRA-C V2

237

Rule 14.2

[The corresponding error indicated by Agile+ Relief]

⚫ There is an expression free of side effect.

[Example 1]

x == 1; <-[The expression "x == 1" is meaningless.]

void func(void);

:

func; <-[The expression "func" is meaningless.]

x, y = 1; <-[The expression "x" is meaningless.]

MISRA-C V2

238

Rule 14.3

[The corresponding errors indicated by Agile+ Relief]

⚫ A semicolon is immediately followed by the ')' of the statements if, for and
while.

⚫ There is a null statement such as :; or ;;.

[Example 1]

if (x == 0) ; <-[A semicolon immediately following an if statement, for
statement or while statement may cause an error.]

 x = y;

[Example 2]

int x ; ; <-[An unnecessary null statement may exist.]

switch(y) {

case 1: ; <-[An unnecessary null statement may exist.]

MISRA-C V2

239

Rule 14.4

[The corresponding error indicated by Agile+ Relief]

⚫ A goto statement is used.

[Example 1]

LOOP:

func(&data);

if(data == 0) {

 goto LOOP; <-[A goto statement is used.]

}

MISRA-C V2

240

Rule 14.5

[The corresponding errors indicated by Agile+ Relief]

⚫ A continue statement is used.

[Example 1]

Filename: file.c

 int func(char buf[], unsigned int n)

 {

 int i ;

 int not_space = 0;

 8: for(i = 0; i < n && buf[i] != '\0'; i++) {

 if(isspace(buf[i])) {

 continue; <-[The keyword "continue" is used (location of relevant loop
statement: line 8 of "file.c").]

 }

 not_space++;

 }

 return not_space;

 }

MISRA-C V2

241

Rule 14.6

[The corresponding error indicated by Agile+ Relief]

⚫ Multiple break statements that jump out of a loop exist.

[Example 1]

while(1) { <-[Two or more break statements appear in a loop.]

 if(data == 1) {

 :

 break;

 }

 else if(data == 2) {

 :

 }

 else {

 break;

 }

}

MISRA-C V2

242

Rule 14.7

[The corresponding errors indicated by Agile+ Relief]

⚫ More than one exit in the function.

[Example 1]

void func(void) <-[The function "func" has 2 or more exits.]

{

 :

 return;

 :

 return;

}

MISRA-C V2

243

Rule 14.8

[The corresponding errors indicated by Agile+ Relief]

⚫ Statements controlled by for, while, do-while and switch are not embraced
by { } .

[Example 1]

while (x > 0) <-[It might be better to add curly brackets { } to this while
statement.]

 x--;

MISRA-C V2

244

Rule 14.9

[The corresponding errors indicated by Agile+ Relief]

⚫ Statements controlled by if, else statement have not been embraced by { }.

[Example 1]

if (x == 0) <-[It might be better to add curly brackets { } to this if
statement.]

 x = 10;

MISRA-C V2

245

Rule 14.10

[The corresponding errors indicated by Agile+ Relief]

⚫ The if and else if statements do not end with an else statement.

[Example 1]

if (x > 0) { <-[There is no else statement at the end of an if else if
statement. Even when all cases have been accounted for, it is
best to include an empty else statement.]

 :

} else if (x < 0) {

 :

}

MISRA-C V2

246

Rule 15.1

[The corresponding errors indicated by Agile+ Relief]

⚫ The case label or default label is not contained in the { } after the switch
statement.

[Example 1]

switch(x){

case 0 :

 {

 y = 10;

case 1: <-[The label case is not within the { } immediately following the
switch.]

 z = 100;

 break;

 }

MISRA-C V2

247

Rule 15.2

[The corresponding error indicated by Agile+ Relief]

⚫ The case label has no corresponding break statement.

[Example 1]

switch (x){

10: case 1:

11: no++; <-[A break statement for "case 1:" in line 10 may have been
accidentally omitted.]

12: case 2:

13: no++; <-[A break statement for "case 2:" in line 12 may have been
accidentally omitted.]

default: no++;

}

MISRA-C V2

248

Rule 15.3

[The corresponding errors indicated by Agile+ Relief]

⚫ No default label has been found in the switch statement.

⚫ A default label is placed before the case label.

[Example 1]

switch (x) { <-[This switch statement contains no default label.]

case 1:

 x = a + b;

 break;

case 2:

 x = c + d;

 break;

}

[Example 2]

switch (x) {

default: <-[The label default has been included before the label case
in a switch statement.]

 no++

 break;

case 2 :

 no += x;

}

MISRA-C V2

249

Rule 15.4

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a comparing operator, logical operator and a constant in the
conditional expression of switch statement.

⚫ There is only one case label in the switch statement.

[Example 1]

switch (x > 0) <-["x > 0" is used as the condition of a switch statement.]

{ … }

switch (1) <-["1" is used as the condition of a switch statement.]

{ … }

[Example 2]

switch (x) { <-[The switch statement contains only one case label.]

case ONE :

 :

 break;

default:

 break;

}

MISRA-C V2

250

Rule 15.5

[The corresponding errors indicated by Agile+ Relief]

⚫ No case label is found in the switch statement.

[Example 1]

switch (x) { <-[There is no case label in this switch body.]

 default :

 i += x;

 break ;

}

MISRA-C V2

251

Rule 16.1

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a variable length parameter in the function declaration and
definition.

⚫ No parameter is found in the function decelerator.

[Example 1]

int func(int n, ...) ; <-[The parameter declaration of the function "func(int n, ...)"
contains "...".]

int func(int n, ...) { <-[The parameter declaration of the function "func(int n, ...)"
contains "...".]

}

[Example 2]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

MISRA-C V2

252

Rule 16.2

[The corresponding error indicated by Agile+ Relief]

⚫ There is a recursive function.

[Example 1]

int func(int x) <-[The function "func" is a recursive function.]

{

 :

y = func(z);

 :

}

MISRA-C V2

253

Rule 16.3

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a nameless parameter in the parameter declaration of the function.

[Example 1]

int func(int a, int); <-[In the parameter declaration of function "func", some
parameters are declared with names while others are not.]

:

int func(int a, int b)

{

 :

}

[Example 2]

void func(int, int); <-[None of the parameters in the declaration of the function
"func" have names.]

MISRA-C V2

254

Rule 16.4

[The corresponding error indicated by Agile+ Relief]

⚫ The parameters of a function declaration and definition have different
names.

[Example 1]

Filename: file.c

 int func(int data, <-[The parameter name "data" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.c".]

 int size); <-[The parameter name "size" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.c".]

3: int func(int size, int data)

{

:

}

MISRA-C V2

255

Rule 16.5

[The corresponding errors indicated by Agile+ Relief]

⚫ The function is defined in K&R format or does not specify parameters.

⚫ No parameter is found in the function decelerator.

[Example 1]

int func1(x) <-[Function "func1" is defined in K&R style or non-parameter
form.]

int x;

{

 :

}

void func2() <-[Function "func2" is defined in K&R style or non-parameter
form.]

{

 :

}

[Example 2]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

MISRA-C V2

256

Rule 16.6

[The corresponding error indicated by Agile+ Relief]

⚫ The function has different numbers of arguments and parameters.

[Example 1]

Filename: file1.c

10: void func(int mode, char c) { ~ }

Filename: file2.c

func('a'); <-[The number of parameters in the function call "func" is
different from the number of parameters in the corresponding
function definition in line 10 of "file1.c".]

MISRA-C V2

257

Rule 16.7

[The corresponding error indicated by Agile+ Relief]

⚫ Un-updated parameters of pointer type or array type.

[Example 1]

void func(int p[], unsigned int n) <-[The space indicated by parameter "p" of type "int []" is not
updated and can be qualified with const.]

{

 int i;

 int num = 0;

 for(i = 0; i < n; i++) {

 num += p[i];

 }

}

[Example 2]

int func(int *p) <-[The parameter "p" can use passing by value.]

{

/* *p is referenced in the function, but *p has not been undated or p has been referenced before
this.*/

}

MISRA-C V2

258

Rule 16.8

[The corresponding error indicated by Agile+ Relief]

⚫ The function may have no return statement for the return value, or the return
statement of the same type as the function does not exist.

[Example 1]

int func(void)

{

} <-[The function "func" does not have a return statement.]

[Example 2]

int func(int a)

{

 if (a == 0)

 { return 0; }

} <-[In the function "func", there are routes that do not have
return statements.]

[Example 3]

int func(void)

{

 :

 return 0;

 :

 return; <-[The return value of a return statement might have been
omitted accidentally.]

}

MISRA-C V2

259

Rule 16.9

[The corresponding error indicated by Agile+ Relief]

⚫ Cast a function name to a non-function pointer.

[Example 1]

int x , func(void) ;

x = func ; <-[The expression "x = func" referencing the function name
"func" might contain a mistake.]

if (func != 0) <-[The expression "func != 0" referencing the function name
"func" might contain a mistake.]

MISRA-C V2

260

Rule 16.10

[The corresponding errors indicated by Agile+ Relief]

⚫ The return value of a non-void function is ignored.

⚫ An abnormal value is returned by the function without having been checked.

The function using a name identical to that of the identifier registered under the label
[NULL_RETURN_FUNCTION] and [SET_VARIABLE_FUNCTION] of the identifier
file is checked as an object. For details regarding registration to an identifier file, see
the - F option in the "Command Manual".

[Example 1]

int func();

 :

func(10) ; <-[The return value of the function call "func" is not used.]

[Example 2]

10: c = fgetc(in_fp) ;

fputc(c, out_fp) ; <-[The variable "c" is assigned the return value of the function
"func" in line 10 and then referenced without being judged.]

MISRA-C V2

261

Rule 17.1

[The corresponding errors indicated by Agile+ Relief]

⚫ An arithmetic operation performed on a pointer of non-array type.

⚫ Use of a non-zero array pointer as an array.

[Example 1]

void func (int *array)

{

 int x;

 int *p = &x;

 *(array + 1) = 0; <-["array" in the pointer arithmetic operation "array + 1" is not
a pointer pointing to an array.]

 p++; <-["p" in the pointer arithmetic operation "p++" is not a pointer
pointing to an array.]

 *p = 1;

[Example 2]

void func (int *array)

{

 int x;

 int *p = &x;

 array[1] = 0; <-["array" in ["array[1]" is not a pointer pointing to an array.]

 p[1] = 1; <-["p" in "p[1]" is not a pointer pointing to an array.]

:

}

MISRA-C V2

262

Rule 17.2

[The corresponding error indicated by Agile+ Relief]

⚫ Subtraction performed on the pointers that point to different arrays.

[Example 1]

int array1[10], array2[10];

int *p1, *p2;

int n;

p1 = array1;

p2 = array2;

n = p2 - p1; <-["p2" and "p1" of the pointer subtraction "p2 - p1" do not
point to the same array.]

MISRA-C V2

263

Rule 17.3

[The corresponding error indicated by Agile+ Relief]

⚫ Make magnitude comparisons between the addresses of two different
objects.

[Example 1]

char *p;

long *q;

if(p < q) { <-[The expression "p < q" compares two object addresses of
different types (char *, long int *).]

MISRA-C V2

264

Rule 17.4

[The corresponding error indicated by Agile+ Relief]

⚫ A pointer arithmetic operation is not in the array indexing form .

[Example 1]

int data[]={ 1, 2, 3, 4, 5 };

int *p = data;

return *(p+1); <-[Pointer arithmetic operation "p+1" is not in the form of array
indexing.]

MISRA-C V2

265

Rule 17.5

[The corresponding error indicated by Agile+ Relief]

⚫ The declaration contains more than 2 levels of indirect pointers.

[Example 1]

int ***x; <-[The pointer "x" exceeds 2 levels.]

MISRA-C V2

266

Rule 17.6

[The corresponding errors indicated by Agile+ Relief]

⚫ The address of an automatic variable has been set to a return value of the
function.

⚫ The address of an automatic variable is assigned to a variable outside the
effective scope.

[Example 1]

char *func(void)

{

char str[16];

 :

return str; <-[The address "str" is the address of an automatic variable
and should not be used as the return value of a function.]

 :

}

[Example 2]

int *p ;

{

 int x;

 p = &x ; <-[The address of the automatic variable x cannot be used
outside the scope.]

}

*p = 0 ;

MISRA-C V2

267

Rule 18.1

[The corresponding error indicated by Agile+ Relief]

⚫ The array length has been omitted.

[Example 1]

struct TAG {

 int a;

 char b[]; <-[The length of an array has been omitted.]

};

[Example 2]

Filename: file.c

 #include "head.h"

 int data[256] ;

Filename: head.h

 extern int data[] ; <-[The length of an array has been omitted.]

MISRA-C V2

268

Rule 18.2

[The corresponding errors indicated by Agile+ Relief]

⚫ For a union variable, a member of it has been assigned, but another is
referenced.

[Example 1]

union {

 int m1 ;

 char m2 ;

} x ;

10: x.m1 = 1 ;

c = x.m2 ; <-[The union member "x.m1" whose value is assigned in line
10 is referenced by another member "x.m2" of the union]

MISRA-C V2

269

Rule 18.3

Agile+ Relief will not check if this rule has been violated.

MISRA-C V2

270

Rule 18.4

[The corresponding error indicated by Agile+ Relief]

⚫ A union is used.

[Example 1]

union UN <-[A union is used.]

{

 long m;

 short n[2];

};

MISRA-C V2

271

Rule 19.1

[The corresponding error indicated by Agile+ Relief]

⚫ Before the line #include, contents exist that are neither preprocessing
directives nor comments.

[Example 1]

Filename: file.c

1: double func(void)

 { return X; }

 #include "head.h" <-[Statements (in line 1 of "file.c") which are not
preprocessing directives exist before this #include line.]

Filename: head.h

 extern double X;

MISRA-C V2

272

Rule 19.2

[The corresponding error indicated by Agile+ Relief]

⚫ In the #include-specified file name, there are '(single quotation), \(currency
character), "(double quote), /*(slash and asterisk) and multi-bytes
characters(Chinese characters, etc).

[Example 1]

#include "abc/*XY*/d.h" <-[The file name "abc/*XY*/d.h" specified by #include
contains one or more characters not defined in ANSI.]

MISRA-C V2

273

Rule 19.3

[The corresponding errors indicated by Agile+ Relief]

⚫ The included file name in the #include statement has not been embraced by
<>, or "".

[Example 1]

#include head.h <-[The name of the header file is not enclosed with angle
brackets < > or quotation marks " ".]

MISRA-C V2

274

Rule 19.4

[The corresponding errors indicated by Agile+ Relief]

⚫ The parenthesis, "(" and ")", in the replacement string of the #define
statement do not match.

⚫ The curly brackets "{" and "}" in the replacement string of the #define
statement do not match.

⚫ The replacement string of the #define statement consists only of the
following types: char, short, int, long, float, double, signed, unsigned and
void.

[Example 1]

#define AddTen(x) (x + 10 <-[The replacement string of the macro function "AddTen"
defined with #define contains one or more unmatched
parentheses.]

[Example 2]

#define PSI32 int* <-[typedef can be used instead of macro "PSI32".]

PSI32 a, b;

MISRA-C V2

275

Rule 19.5

[The corresponding error indicated by Agile+ Relief]

⚫ #define or #undef statements exist in the block.

[Example 1]

void func(int n)

{

 #define MAX 10 <-[Macro "MAX" is operated by #defined in a block.]

 int i;

 for(i = 0; i < MAX; i++)

MISRA-C V2

276

Rule 19.6

[The corresponding error indicated by Agile+ Relief]

⚫ A #undef is used.

[Example 1]

#undef AAA <-[The macro "AAA" is undefined with #undef.]

MISRA-C V2

277

Rule 19.7

[The corresponding error indicated by Agile+ Relief]

⚫ The same parameter has appeared more than once in the replacement
string of the macro function.

[Example 1]

#define ISNUM(a) (('0' <= (a)) && ((a) <= '9')) <-[In a #define statement, parameter "a" is used
two or more times in the replacement string of
the macro function "ISNUM".]

if(ISNUM(*p++))

MISRA-C V2

278

Rule 19.8

[The corresponding error indicated by Agile+ Relief]

⚫ Different numbers of parameters exist in the definition and call of a macro
function.

[Example 1]

Filename: file.c

10: #define FUNC(x,y) (((x)>(y))?(x):(y))

a = FUNC(x); <-[The number of the arguments in a call to the macro
"FUNC" is different from the number of parameters in the
corresponding macro definition in line 10 of "file.c", in violation
of the ANSI standard.]

MISRA-C V2

279

Rule 19.9

[The corresponding error indicated by Agile+ Relief]

⚫ The argument of the macro function begins with #.

[Example 1]

#define F(b) b

F(#error "memory error") <-[A preprocessing directive is used in the argument "#error"
of a macro function.]

MISRA-C V2

280

Rule 19.10

[The corresponding error indicated by Agile+ Relief]

⚫ The parameter in the replacement string of the macro is not embraced with
parentheses ().

[Example 1]

#define F(a, b) (a * b) <-[The parameters "a","b" in the replacement string of the
macro "F" are not enclosed with parentheses ().]

x = F(1 + 5, 10);

MISRA-C V2

281

Rule 19.11

[The corresponding errors indicated by Agile+ Relief]

⚫ An unspecified replacement string exists in the #if or #elif statement.

⚫ An #undef is used on the undefined macro.

[Example 1]

/*The macro DEBUG is undefined, or no replacement string has been specified for it*/

#if DEBUG == 1 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

#elif DEBUG == 2 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

[Example 2]

/* There are no definitions of macro ABC,XYZ*/

#if ABC <-["ABC" might have been intended to be appended with
defined.]

#elif XYZ <-["XYZ" might have been intended to be appended with
defined.]

[Example 3]

/* There are no definition of macro BBB*/

#undef BBB <-[#undef is used on the undefined macro "BBB".]

MISRA-C V2

282

Rule 19.12

[The corresponding error indicated by Agile+ Relief]

⚫ The #operator and the ##operator coexist in the macro function.

[Example 1]

#define AAA(x,y) x###y <-[The operators # and ## are used together in the definition
of the macro function "AAA".]

MISRA-C V2

283

Rule 19.13

[The corresponding error indicated by Agile+ Relief]

⚫ A # or ## operator is used in the macro.

[Example 1]

#define AAA(x,y) x###y <-[Operator # or ## is used in a macro.]

#define A(x) #x <-[Operator # or ## is used in a macro.]

#define B(x, y) x##y <-[Operator # or ## is used in a macro.]

#define C x##y <-[Operator # or ## is used in a macro.]

MISRA-C V2

284

Rule 19.14

[The corresponding errors indicated by Agile+ Relief]

⚫ Grammar errors exist in the #if or #elif statement.

⚫ A "defined" is generated by macro expansion from the #if or #elif
statements.

[Example 1]

#if 1 1 <-[The end of the condition expression in an #if or #elif
statement contains a syntax error and cannot be executed.]

[Example 2]

#define DEF defined

#if DEF MAXNAM <-[An #if or #elif statement generates the string "defined" in
the process of macro expansion.]

MISRA-C V2

285

Rule 19.15

[The corresponding error indicated by Agile+ Relief]

⚫ Multiple inclusions of the same file exist.

[Example 1]

Filename: file.c

 #include "head.h"

12: #include "head.h" <-[The file "file.h" cannot be included redundantly (location of
redundancy: line 11 in "file.c").]

Filename: head.h

 extern int X;

MISRA-C V2

286

Rule 19.16

[The corresponding errors indicated by Agile+ Relief]

⚫ An undefined redundant sign exists in the preprocessing directives.

⚫ An undefined preprocessing directive exists.

[Example 1]

#ifdef DEG 1 <-[In ANSI, the extra symbol "1" is not defined and cannot be
used.]

[Example 2]

#asm <-[In ANSI, the preprocessing directive "#asm" is not defined
and cannot be used.]

MISRA-C V2

287

Rule 19.17

[The corresponding error indicated by Agile+ Relief]

⚫ A mismatch exists in the beginning and end of a conditional judgment.

[Example 1]

#endif <-[There are no preprocess directives corresponding to
"#endif".]

[Example 2]

#ifdef ABC <-[There is no #endif corresponding to #if, #ifdef or #ifndef.]

MISRA-C V2

288

Rule 20.1

[The corresponding errors indicated by Agile+ Relief]

⚫ The following macros are redefined or invalidated:
__LINE__
__FILE__
__DATE__
__TIME__

⚫ The ANSI reserved identifiers have been defined or invalidated as macro
names.

[Example 1]

#define __FILE__ abc <-[The predefined macro "__FILE__" is defined again with
#define.]

[Example 2]

#define errno -1 <-[In the #define line, "errno" is used as macro.]

#define malloc(a) mymalloc(a) <-[In the #define line, "malloc" is used as macro.]

MISRA-C V2

289

Rule 20.2

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier using a name identical to that of the reserved identifier is used
in the declaration and definition.

The variable and function using identical names registered under the label
[RESERVED_IDENTIFIER] and [RESERVED_LIBRARY_IDENTIFIER] of the
identifier file are checked as an object. For more information regarding the
registration of an identifier file, see the -F option in the "Command Manual".

[Example 1]

int errno ; <-[The name "errno" is the same as an external name used in
the system.]

void *malloc(unsigned int size) { <-[The name "malloc" is the same as an external name used
in the system.]

 :

}

MISRA-C V2

290

Rule 20.3

[The corresponding errors indicated by Agile+ Relief]

⚫ The return value of the malloc or fopen functions has been referred to
without checking whether it is NULL.

⚫ The variable to whose value an address of "0" has been set is referenced.

[Example 1]

char *p ;

10: p = malloc(sizeof(char) * 100) ;

*p = '\0' ; <-[The 0 address might be referenced because the variable
"p" might have been assigned with the 0 address in line 10.]

:

20: fp = fopen(filename, "r") ;

size = fread(buf, sizeof(buf), 1, fp) ; <-[The 0 address might be referenced because the variable
"fp" might have been assigned with the 0 address in line
20.]

[Example 2]

 char c, a[10], x ;

11: char *p = NULL ;

12: char *q = NULL ;

:

if (mode == 0) {

p = &x ;

q = a ;

}

c = *p ; <-[The variable "p", assigned with the 0 address in line 11,
might access the 0 address.]

strcpy (q, "abc") ; <-[The variable "q", assigned with the 0 address in line 12,
might access the 0 address.]

MISRA-C V2

291

Rule 20.4

[The corresponding error indicated by Agile+ Relief]

⚫ The following dynamic heap allocation functions are used:

malloc

calloc

realloc

free

[Example 1]

int *mp;

mp = (int *)malloc(sizeof(int) * 10); <-[function "malloc" is used.]

MISRA-C V2

292

Rule 20.5

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier errno is used.

[Example 1]

#include <errno.h>

:

if(errno == ENOENT) <-[The variable "errno" is used.]

MISRA-C V2

293

Rule 20.6

[The corresponding error indicated by Agile+ Relief]

⚫ A macro offsetof is used.

[Example 1]

#include <stddef.h>

struct STAG {

 char *sp;

 long dt;

} *stagp;

long *dtp = (long *)((char*)stagp + offsetof(struct STAG, dt));

<-[macro "offsetof" is used]

MISRA-C V2

294

Rule 20.7

[The corresponding error indicated by Agile+ Relief]

⚫ The longjmp and macro setjmp functions are used.

[Example 1]

#include <setjmp.h>

static jmp_buf parse_error;

:

longjmp(parse_error, 1); <-[The function "longjmp" is used.]

MISRA-C V2

295

Rule 20.8

[The corresponding errors indicated by Agile+ Relief]

⚫ File signal.h has been included by the #include statement.

⚫ The following functions and macros are used:

signal

SIG_DFL

SIG_IGN

SIG_ERR

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

[Example 1]

#include <signal.h> <-[The file "locale.h" is included and should be confirmed.]

extern void sigint_hnd(void);

:

signal(SIGINT, sigint_hnd); <-[The function "signal" is used.]

 <-[The macro "SIGINT" is used.]

MISRA-C V2

296

Rule 20.9

[The corresponding errors indicated by Agile+ Relief]

⚫ File stdio.h is included by the #include statement.

⚫ The following functions are used:

fgetpos

fopen

ftell

gets

perror

remove

rename

ungetc

[Example 1]

#include <stdio.h> <-[The file "locale.h" is included and should be confirmed.]

FILE *fp;

 :

fp = fopen("abc.txt", "r"); <-[The function "fopen" is used.]

MISRA-C V2

297

Rule 20.10

[The corresponding error indicated by Agile+ Relief]

⚫ The atof, atoi and atoll functions are used.

[Example 1]

#include <stdlib.h>

int i;

char *str = "123";

i = atoi(str); <-[The function "atoi" is used]

MISRA-C V2

298

Rule 20.11

[The corresponding error indicated by Agile+ Relief]

⚫ The abort, exit, getenv, and system functions are used.

[Example 1]

#include <stdlib.h>

:

if (j < 0) {

abort(); <-[The function "abort" is used.]

}

MISRA-C V2

299

Rule 20.12

[The corresponding error indicated by Agile+ Relief]

⚫ The following functions are used:

clock

difftime

mktime

time

asctime

ctime

gmtime

localtime

strftime

[Example 1]

#include <time.h>

:

time_t tm:

time(&tm); <-[The function "time" is used.]

MISRA-C V2

300

Rule 21.1

[The corresponding errors indicated by Agile+ Relief]

⚫ Bitwise shift operation out of the type size

⚫ Divided by zero

⚫ Out of the range of the array

⚫ Address "0" may be referenced.

[Example 1]

long long x1, x2 ;

int i1, i2;

x1 = i1 << i2; <-[The correct value of the << operation in "x1 = i1 << i2"
might not be able to be obtained.]

[Example 2]

int data[10];

:

data[10]=0; <-[The subscript "10" of the array "data" exceeds the range of
the array (array declaration: Line 1 of "file.c").]

MISRA-C V3

301

3.3 MISRA-C V3

Agile+ Relief checks all rules provided for by MISRA-C:2012 and MISRA-C:2012
Amendment 1.

[MISRA-C V3] checks Coding Guideline violations by the rule added by MISRA-C:2012
Amendment 1 in addition to MISRA-C:2012. Please exclude the following rules from the
inspection object by Check indication definition file when you want to check Coding
Guideline violations by the rule of MISRA-C:2012.

Rule 12.5

Rule 21.16

Rule 21.17

Rule 21.18

Rule 21.19

Rule 21.20

Rule 22.7

Rule 22.8

Rule 22.9

Rule 22.10

* Please refer to "1.4 Setting up Rule Checking" to describe Check indication
definition file.

MISRA-C V3

302

Rule 1.1

[The corresponding error indicated by Agile+ Relief]

⚫ There is a description that violates Standard C syntax and Restriction.

[Example 1]

static enum A { /*declaration*/ }; <-[The storage class specifier "static" may not be used here.]

extern struct B { /*declaration*/ }; <-[The storage class specifier "extern" may not be used here.]

[Example 2]

int a[-1]; <-[The number of array elements "-1" is not greater than 0.]

struct Dynamic_Array {

 unsigned int size;

 int data[0]; <-[The number of array elements "0" is not greater than 0.]

} ;

MISRA-C V3

303

Rule 1.2

[The corresponding error indicated by Agile+ Relief]

⚫ Assembly language is used.

[Example 1]

asm(mov r4, r0); <-[Assembly language "asm" is used.]

MISRA-C V3

304

Rule 1.3

[The corresponding error indicated by Agile+ Relief]

⚫ Behaviors exist that are unspecified or undefined:

[Example 1]

i = j + j++; <-[The update timing of "j++" is not defined in ANSI, so the
value of "j" cannot be guaranteed.]

i = ++i + j; <-[The update timing of "++i" is not defined in ANSI, so the
value of "i" cannot be guaranteed.]

[Example 2]

Filename: file1.c

10: void func(int mode, char c) { ~ }

Filename: file2.c

func('a'); <-[The number of parameters in the function call "func" is
different from the number of parameters in the corresponding
function definition in line 10 of "file1.c".]

MISRA-C V3

305

Rule 2.1

[The corresponding error indicated by Agile+ Relief]

⚫ There is an unexecuted statement.

[Example 1]

if(x == 1)

{ process 1 }

else if(x != 1)

{ process 2 }

else <-[This else statement will never be executed.]

{ process 3 }

if(y == 1)

{ process 1 }

else if(y != 1)

{ process 2 }

else if(y < 0) <-[This else statement will never be executed.]

{ process 3 }

[Example 2]

for (; ;) {

 /* no break*/

}

x = y + z ; <-[This will not be executed.]

MISRA-C V3

306

Rule 2.2

[The corresponding error indicated by Agile+ Relief]

⚫ There is an expression free of side effect.

[Example 1]

x == 1; <-[The expression "x == 1" is meaningless.]

void func(void);

:

func; <-[The expression "func" is meaningless.]

x, y = 1; /* Comma expression */ <-[The expression "x" is meaningless.]

MISRA-C V3

307

Rule 2.3

[The corresponding error indicated by Agile+ Relief]

⚫ The type declared in the source file are not being used in the same source
file.

[Example 1]

typedef struct {

 char Name[64] ;

 int Age ;

} person_t ; <-[The type "person_t" is not used.]

/* The type "person_t"is not used in the same source file declared the type "person_t". */

MISRA-C V3

308

Rule 2.4

[The corresponding error indicated by Agile+ Relief]

⚫ The tag declared in the source file are not being used in the same source
file.

[Example 1]

struct person { <-[The tag "person" is not used.]

 char Name[64] ;

 int Age ;

} ;

/* The tag "person" is not used in the same source file declared the tag "person". */

MISRA-C V3

309

Rule 2.5

[The corresponding error indicated by Agile+ Relief]

⚫ The macro declared in the source file are not being used in the same source
file.

[Example 1]

#define TRUE 1 <-[The macro "TRUE" is not used.]

#define FALSE 0

#define MAXSIZE 8 <-[The macro "MAXSIZE" is not used.]

 :

int f (int n) {

 int data[8] ; /* It intended to be "int data[MAXSIZE] ; ". */

 if (n < 8) { /* It intended to be "if (n < MAXSIZE) {". */

 return data[n];

 }

 return FALSE ;

}

/* The macro"TRUE" and the macro "MAXSIZE" are not used in the same source file declared the
macro"TRUE" and the macro "MAXSIZE". */

MISRA-C V3

310

Rule 2.6

[The corresponding error indicated by Agile+ Relief]

⚫ There is a label not referred to by the goto statement.

[Example 1]

labelA: <-[The label "labelA" is not used.]

 : [1]

[1] No goto statement references the label labelA.

MISRA-C V3

311

Rule 2.7

[The corresponding error indicated by Agile+ Relief]

⚫ An unused parameter exists.

[Example 1]

void func(int x , int y) { <-[The parameter "x" is not used.]

cls(y);

 return;

}

MISRA-C V3

312

Rule 3.1

[The corresponding error indicated by Agile+ Relief]

⚫ A nested comment exists.

[Example 1]

/* /* comment */ <-[A nested comment is used.]

MISRA-C V3

313

Rule 3.2

[The corresponding error indicated by Agile+ Relief]

⚫ Line-splicing is described at the end of line in "//" comments.

[Example 1]

extern bool_t b ;

void f (void) {

 int n = 0 ; // Note \ <-[Line-splicing is used in "// " comments.]

 if (b) The judgment sentence is not evaluated because of the comment continuation line.

 {

 ++n ; /* It always executes it. */

 }

MISRA-C V3

314

Rule 4.1

[The corresponding error indicated by Agile+ Relief]

⚫ The escape sequence of the octal number and the hexadecimal has mixed
with a universal character in the string literal.

[Example 1]

char *s2 = "a\x20z " ; <-[The octal and hexadecimal escape sequences are mixed with universal
characters.]

MISRA-C V3

315

Rule 4.2

[The corresponding error indicated by Agile+ Relief]

⚫ A trigraph sequence is used.

[Example 1]

??=include "head.h" <-[The trigraph sequence "??=" is used.]

MISRA-C V3

316

Rule 5.1

[The corresponding error indicated by Agile+ Relief]

⚫ The length of the identifier with the external linkage exceeds the length
provided for by the ANSI standard. (In C90, the identifier is specified by 6
characters or less. In C99, the identifier is specified by 31 characters or
less.)

⚫ Two or more identifiers of the same name with only the distinction of
uppercase and lowercase with the external linkage are defined.

[Example 1]

/* Pattern of C90 */

int A23456G; <-[The length of the external identifier "A23456G" exceeds 6 characters.]

/* Pattern of C99 (if having specified options corresponding to C99 syntax.) */

int A234567890123456789012345678901G; <-[The length of the external identifier
"A234567890123456789012345678901G"
exceeds 31 characters.]

[Example 2]

File: a.c

Line 10: void sub(void) {

File: b.c

Line 20: void SUB(void) { <-[The name of "SUB" and "sub" at the line 10 of file "a.c" are only
different in case.]

MISRA-C V3

317

Rule 5.2

[The corresponding error indicated by Agile+ Relief]

⚫ The length of the identifier without the external linkage exceeds the length
provided for by the ANSI standard. (In C90, the identifier is specified by 31
characters or less. In C99, the identifier is specified by 63 characters or
less.)

[Example 1]

/* Pattern of C90 */

struct STR {

int m2345678901234567890123456789012;

<-[The length of the identifier "m2345678901234567890123456789012" exceeds 31 characters.]

 :

void func(void) {

int n2345678901234567890123456789012;

<-[The length of the identifier "n2345678901234567890123456789012" exceeds 31 characters.]

 :

/* Pattern of C99 (if having specified options corresponding to C99 syntax.) */

struct STR {

int m234567890123456789012345678901234567890123456789012345678901234;

<-[The length of the identifier
"m234567890123456789012345678901234567890123456789012345678901234" exceeds 63
characters.]

 :

void func(void) {

int n234567890123456789012345678901234567890123456789012345678901234;

<-[The length of the identifier
"n234567890123456789012345678901234567890123456789012345678901234" exceeds 63
characters.]

 :

MISRA-C V3

318

Rule 5.3

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier with a name identical to that of another identifier within the
external scope has been declared within the internal effective scope.

[Example 1]

Filename: file.c

10: unsigned char *cp;

void func()

{

 unsigned char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.c", outside the function.]

 }

[Example 2]

Filename: file.c

10: struct tag { short a, b; } x;

void func()

{

 struct tag { int a, b; } y; <-[The declaration of the tag "tag" uses the same name as
"tag" in line 10 of "file.c", outside the function.]

 }

MISRA-C V3

319

Rule 5.4

[The corresponding error indicated by Agile+ Relief]

⚫ There is a macro name that exceeds the length provided for by ANSI
standard. (In C90, the identifier is specified by 31 characters or less. In C99,
the identifier is specified by 63 characters or less.)

[Example 1]

/* Pattern of C90 */

#define M2345678901234567890123456789012;

<-[The length of the macro name "M2345678901234567890123456789012" exceeds 31
characters.]

 :

/* Pattern of C99 (if having specified options corresponding to C99 syntax.) */

#define M234567890123456789012345678901234567890123456789012345678901234;

<-[The length of the macro name
"M234567890123456789012345678901234567890123456789012345678901234" exceeds 63
characters.]

MISRA-C V3

320

Rule 5.5

[The corresponding error indicated by Agile+ Relief]

⚫ The identifier of the same name as the function-like macro is used.

[Example 1]

File: a.h

Line 1: #define MAX(x , y) (((x)>(y))?(x):(y))

File: a.c

Line 1: #include "a.h"

2: int MAX ; <-["MAX" is the macro function which defined in the line 1 of "a.h" was not
replaced.]

3:

4: void func(int x , int y) {

5: int r ;

6: r = MAX(x , y) ; /* It is substituted for the macro function "MAX" */

MISRA-C V3

321

Rule 5.6

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate typedef name.

[Example 1]

Filename: file.c

10: typedef char *cp;

void func()

{

 char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.c", outside the function.]

 }

[Example 2]

Filename: file.c

 void func1(void)

 {

 3: typedef char BYTE;

 :

 }

 void func2(void)

 {

 typedef char BYTE; <-[The typedef name "BYTE" is the same as the typedef
name defined in line 3 of "file.c".]

 :

 }

[Example 3]

Filename: file1.h

 typedef int WORD ; <-[The type "WORD" defined with type "int" is defined again
with type "unsigned int" in line 20 of "file2.h".]

Filename: file2.h

20: typedef unsigned int WORD ;

Filename: file.c

 #include "file1.h"

MISRA-C V3

322

 #include "file2.h"

MISRA-C V3

323

Rule 5.7

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate tag name.

[Example 1]

Filename: file1.c

10: struct tag{ int a; long b; };

Filename: file2.c

struct tag{ int x; long y; }; <-[The tag declaration "tag" is inconsistent with that in line
10 of "file1.c".]

[Example 2]

Filename: file.c

10: struct tag{ int a; long b; } ;

:

 struct tag{ int a; long b; } ; <-[The tag "tag" has another declaration in line 10 of "file.c".
Delete one of the declarations.]

[Example 3]

Filename: file.c

10: struct name {

 int name; <-[The member "name" and the tag in line 10 of "file.c" share
the same name.]

 :

 };

 char *name; <-[The variable "name" and the tag in line 10 of "file.c" share
the same name.]

MISRA-C V3

324

Rule 5.8

[The corresponding error indicated by Agile+ Relief]

⚫ The variable and the function of the same name are declared in a different
type and the storage class or are defined.

[Example 1]

Filename: file1.c

10: short *data;

Filename: file2.c

extern short data; <-[The variable declaration "data" and the variable definition
in line 10 of "file1.c" are of different types: pointer and
non-pointer (variable declaration: short int, variable definition:
short int *).]

[Example 2]

Filename: file1.c

10: int func(char *p){ ~ }

Filename: file2.c

int func(long *p); <-[The 1st parameter "p" in the function declaration "func" and
its corresponding parameter "p" in the function definition in
line 10 of "file1.c" are of different types (long int *, char *).]

MISRA-C V3

325

Rule 5.9

[The corresponding error indicated by Agile+ Relief]

⚫ The same name as a static variable and the function is used.

[Example 1]

Filename: file.c

1: static int name;

 void func (void)

 {

 enum {

 name , <-["name" and the static variable in line 1 of "file.c" have the
same name.]

}

MISRA-C V3

326

Rule 6.1

[The corresponding error indicated by Agile+ Relief]

⚫ A bit field of type neither signed int nor unsigned int is declared.

[Example 1]

struct TAG {

 unsigned short m1:2 ; <-[The bitfield "m1" is declared with type unsigned short. The
declaration should be made with signed int or unsigned int.]

 unsigned int m2: 2 ;

 signed int m3: 2 ;

};

MISRA-C V3

327

Rule 6.2

[The corresponding error indicated by Agile+ Relief]

⚫ A bit field of 1 bit and signed type is declared.

[Example 1]

struct STAG {

 signed int m1:1 ; <-[The bit width of signed bit field "m1" is only 1 bit.]

 unsigned int m2: 1 ;

 signed int m3: 2 ;

};

MISRA-C V3

328

Rule 7.1

[The corresponding error indicated by Agile+ Relief]

⚫ An octal constant other than 0 is used.

[Example 1]

int x = 010 ; <-[The octal constant "010" is used.]

MISRA-C V3

329

Rule 7.2

[The Corresponding errors indicated by Agile+ Relief]

⚫ The unsigned constant is not suffixed by "U".

[Example 1]

/* The size of int is 16 bits */

unsigned int x = 0xA123 ; <-[The unsigned value "0xA123" is used without the suffix
"U".]

MISRA-C V3

330

Rule 7.3

[The corresponding error indicated by Agile+ Relief]

⚫ "l" has been used by integer suffix or floating suffix.

[Example 1]

long x = 32768l ; <-["l” that may cause error easily has been used by “32768l”.]

MISRA-C V3

331

Rule 7.4

[The corresponding error indicated by Agile+ Relief]

⚫ Not specified by const but referred string literal.

[Example 1]

void func1(char *s);

void func0(void) {

 char *buf = "abc"; <-[Not specified by const but referred string literal.]

 :

 func1("abc"); <-[Not specified by const but referred string literal.]

}

MISRA-C V3

332

Rule 8.1

[The corresponding errors indicated by Agile+ Relief]

⚫ A variable is declared without specifying the specifier.

⚫ A function without return value should be defined as void.

[Example 1]

const x = 1, y = 2; <-[A declaration is made with no explicit type specifier.]

z; <-[A declaration is made with no explicit type specifier.]

[Example 2]

func(int x) <-[The function "func" has no return value and should be
declared as void.]

{

 :

 return;

}

MISRA-C V3

333

Rule 8.2

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a nameless parameter in the parameter declaration of the function.

⚫ The function is defined in K&R format or does not specify parameters.

⚫ No parameter is found in the function decelerator.

⚫ A variable is declared without specifying the specifier.

[Example 1]

int func(int a, int); <-[In the parameter declaration of function "func", some
parameters are declared with names while others are not.]

[Example 2]

int func1(x) <-[Function "func1" is defined in K&R style or non-parameter
form.]

int x;

{

 :

}

[Example 3]

int func() ; <-[Parameters are not specified in the function decelerator.]

void (*fp)(); <-[Parameters are not specified in the function decelerator.]

[Example 4]

const x = 1, y = 2; <-[A declaration is made with no explicit type specifier.]

void func(const z); <-[A declaration is made with no explicit type specifier.]

MISRA-C V3

334

Rule 8.3

[The corresponding errors indicated by Agile+ Relief]

⚫ Type mismatch between function and parameter in the function declaration
and definition.

⚫ Name mismatch between parameter in the function declaration and
definition.

⚫ Type mismatch between variable in the variable declaration and definition.

[Example 1]

Filename: file1.c

10: unsigned func(char *p){ ~ }

Filename: file2.c

int func(char *p); <-[The function declaration "func" and the corresponding
function definition in line 10 of "file1.c" are of different types
(function declaration type: int, function definition type:
unsigned int).]

[Example 2]

Filename: file1.c

10: int func(char *p){ ~ }

Filename: file2.c

int func(long *p); <-[The 1st parameter "p" in the function declaration "func" and
its corresponding parameter "p" in the function definition in
line 10 of "file1.c" are of different types (long int *, char *).]

[Example 3]

Filename: file1.c

10: short *data;

Filename: file2.c

extern short data; <-[The variable declaration "data" and the variable definition
in line 10 of "file1.c" are of different types: pointer and
non-pointer (variable declaration: short int, variable definition:
short int *).]

MISRA-C V3

335

[Example 4]

Filename: file.c

 int func(int data, <-[The parameter name "data" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.c".]

 int size); <-[The parameter name "size" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.c".]

3: int func(int size, int data)

{

:

}

MISRA-C V3

336

Rule 8.4

[The corresponding error indicated by Agile+ Relief]

⚫ Type mismatch between function and parameter in the function declaration
and definition.

⚫ Type mismatch between variable in the variable declaration and definition.

[Example 1]

Filename: file1.c

10: unsigned func(char *p){ ~ }

Filename: file2.c

int func(char *p); <-[The function declaration "func" and the corresponding
function definition in line 10 of "file1.c" are of different types
(function declaration type: int, function definition type:
unsigned int).]

[Example 2]

Filename: file1.c

10: short *data;

Filename: file2.c

extern short data; <-[The variable declaration "data" and the variable definition
in line 10 of "file1.c" are of different types: pointer and
non-pointer (variable declaration: short int, variable definition:
short int *).]

MISRA-C V3

337

Rule 8.5

[The corresponding error indicated by Agile+ Relief]

⚫ There is an external variable declaration or external function declaration
outside of the header file.

[Example 1]

Filename: file.c

extern int x ; <-[The external variable "x" is declared outside a header file.]

[Example 2]

Filename: file.c

int func(int in) ; <-[The external function "func" is declared outside a header
file.]

MISRA-C V3

338

Rule 8.6

[The corresponding error indicated by Agile+ Relief]

⚫ The function and the variable of the same name are defined.

[Example 1]

Filename: file1.c

10: int x;

Filename: file2.c

 int x; <-[The variable "x" has another definition in line 10 of "file1.c". One of them
should be deleted.]

[Example 2]

Filename: file1.c

10: int func();

Filename: file2.c

 int func(); <-[The function "func" has another definition in line 10 of "file1.c". One of them
should be deleted.]

MISRA-C V3

339

Rule 8.7

[The corresponding error indicated by Agile+ Relief]

⚫ There exists a external function or an external variable used in only one file.

[Example 1]

Filename: file.c

int x = 0 ; <-[The external variable "x" is used only in the file "file.c".]

void x_add(void) { x++; }

int x_ref(void) { return x; }

/* The variable "x" is only used in the file "file.c". */

MISRA-C V3

340

Rule 8.8

[The corresponding error indicated by Agile+ Relief]

⚫ There is a variable or a function using identical names but having different
storage classes.

[Example 1]

Filename: file.c

10: extern int flag;

 :

static int flag; <-[The variable flag has a different storage class in line 10 of
"file.c".]

MISRA-C V3

341

Rule 8.9

[The corresponding error indicated by Agile+ Relief]

⚫ There is an external variable or a global static variable used only in one
function.

[Example 1]

Filename: head.h

 extern int xx ; <-[The external variable "xx" that can be used in multiple
functions was referenced only in the function "func" in line 20
of "file.c ". An internal static variable could be used instead.]

Filename: file.c

 #include "head.h"

 :

20: void func(int in)

{

xx = 0;

/*The external variable xx is used only in this function.*/

}

MISRA-C V3

342

Rule 8.10

[The corresponding error indicated by Agile+ Relief]

⚫ There is inline function that does not specify the static storage class.

[Example 1]

inline void func() { } <-[There is no static specification in the inline function "func".]

MISRA-C V3

343

Rule 8.11

[The corresponding error indicated by Agile+ Relief]

⚫ The array is declared without specifying its length.

[Example 1]

Filename: file.c

 #include "head.h"

 int data[256] ;

Filename: head.h

 extern int data[] ; <-[The length of an array has been omitted.]

MISRA-C V3

344

Rule 8.12

[The corresponding error indicated by Agile+ Relief]

⚫ Some enumeration constants are assigned values while others are not.

[Example 1]

enum E1 { E11, E12 = 3, E13 } ; <-[In the declaration of the enumeration type "E1", assigned
members and unassigned members coexist.]

enum E2 { E21=1, E22, E23 = 5 } ; <-[In the declaration of the enumeration type "E2", assigned
members and unassigned members coexist.]

MISRA-C V3

345

Rule 8.13

[The corresponding error indicated by Agile+ Relief]

⚫ In the parameter of pointer type or array type not updated, there is no const.

[Example 1]

void func(int p[], unsigned int n) <-[The space indicated by parameter "p" of type "int []" is
not updated and can be qualified with const.]

{

 int i;

 int num = 0;

 for(i = 0; i < n; i++) {

 num += p[i];

 }

}

[Example 2]

int func(int *p) <-[The parameter "p" can use passing by value.]

{

/* *p is referenced in the function, but *p has not been undated or p has been referenced before
this.*/

}

MISRA-C V3

346

Rule 8.14

[The corresponding error indicated by Agile+ Relief]

⚫ There is a parameter of pointer type or array type to which restrict is
modified.

[Example 1]

void func(int* restrict p) { } <-[There is a pointer that modified by restrict to the parameter
of the function "func".]

MISRA-C V3

347

Rule 9.1

[The corresponding error indicated by Agile+ Relief]

⚫ The automatic variable is referenced without having been set a value.

[Example 1]

int i;

if (data == 0) {

 i = 1;

}

data = i; <-[Variable "i" may be referenced before it has been set with a
value.]

MISRA-C V3

348

Rule 9.2

[The corresponding error indicated by Agile+ Relief]

⚫ It is not enclosed with parentheses by initializing the structure, the union,
and the array according to the structure.

[Example 1]

int data[2][3] = { <-[Initialization of the array/structure/union "data" is
inconsistent with its makeup.]

 1, 2, 3, 4, 5, 6

} ;

struct A {

 int a1;

 int a2;

};

struct A adata[2] = { 1, 2, 3, 4 } ; <-[Initialization of the array/structure/union "adata" is
inconsistent with its makeup.]

MISRA-C V3

349

Rule 9.3

[The corresponding errors indicated by Agile+ Relief]

⚫ Initialization is not done by initializing the structure, the union, and the array
as for a number of elements.

[Example 1]

struct B {

 int b1;

 struct A b2;

} ;

struct B bdata = { 1, 2, 3 } ; <-[Initialization of the array/structure/union "bdata" is
inconsistent with its makeup.]

int cdata[7] = { 1, 2, 3, 4, 5 } ; <-[Initialization of the array/structure/union "cdata" is
inconsistent with its makeup.]

MISRA-C V3

350

Rule 9.4

[The corresponding errors indicated by Agile+ Relief]

⚫ The same element has been initialized more than onceby the array
declaration, the structure declaration, and the union declaration.

[Example 1]

int ary1[4] = { [0] = 4 , [1] = 3 , [2] = 2 , [2] = 1 }; <-[An element of object "ary1" is initialized more
than once.]

struct STR {

 int m1;

 int m2;

 int m3;

 int m4;

}

struct STR str1 = {

.m1 = 1 , .m2 = 2 , .m3 = 3 , .m3 = 4 }; <-[An element of object "str1" is initialized more than
once.]

MISRA-C V3

351

Rule 9.5

[The corresponding errors indicated by Agile+ Relief]

⚫ Tthe array size phrase in array declaration is omitted, and each Array
elements has been initialized

[Example 1]

int ary1[] = { [0] = 3 , [1] = 2 , [2] = 1 }; <-[The size of the array "ary1" is not specified explicitly
when designated initializers are used to initialize its
elements.]

int ary2[] = { [0...15] = 1 }; <-[The size of the array "ary2" is not specified explicitly
when designated initializers are used to initialize its
elements.]

MISRA-C V3

352

Rule 10.1

[The corresponding errors indicated by Agile+ Relief]

⚫ A wrong type to the paragraph of the expression is used.

[Example 1]

int i, data;

 :

i += (data < 1); <-[Operation of bool value has been used" i += (data < 1) " .]

[Example 2]

unsigned int x;

double d;

 :

x = d << 1 ; <-[In ANSI, the operator "d" of the bit operation "d << 1" must
be integer type.]

MISRA-C V3

353

Rule 10.2

[The corresponding errors indicated by Agile+ Relief]

⚫ The char type is not used for a character value.

⚫ There is an operation that performs underlying type conversion.

[Example 1]

char c;

 :

c = 1; <-[The char "c" not specified as signed or unsigned is not
treated as a character value.]

[Example 2]

void func(short s1, short s2)

{

 char sc;

 sc = s1 + s2; <-["s1 + s2" in "sc = s1 + s2" is converted to a different type by
an operation (underlying type before conversion: signed short
int; underlying type after conversion: signed char).]

MISRA-C V3

354

Rule 10.3

[The Corresponding errors indicated by Agile+ Relief]

⚫ There is an implicit conversion that may lead to data loss resulting from
differences in signs and types.

[Example 1]

unsigned char x = 0x8000; <-[The initial value "0x80000" exceeds the bit width of "x" of
type unsigned char.]

struct T {

 unsigned char mem1;

 int mem2;

};

struct T y = { 65535, <-[The initial value "65535" exceeds the bit width of "mem1" of
type unsigned char.]

 1

};

[Example 2]

Filename: file1.c

50: void func(char c) { ... }

Filename: file2.c

func(256); <-[The bit width of the 1st argument "256" of the function
"func" exceeds the bit width of the corresponding parameter
"c" in the function definition in line 50 of "file1.c"(argument:
int , parameter: char).]

[Example 3]

double data;

float s;

s = data ; <-[In the assignment expression "s = data", the size of the
expression on the right is larger than that of the expression on
the left, so the correct value might not be assigned (left : float ,
right : double).]

MISRA-C V3

355

Rule 10.4

[The corresponding error indicated by Agile+ Relief]

⚫ The type that is irrelevant to enumeration type was compared.

[Example 1]

enum COLOR{ RED, GREEN, BLUE } color ;

enum ERROR_CODE{ SUCCESS, ERROR } code ;

int x;

if(color == x) <-["color" is compared with irrelative type.(enum type : enum
COLOR, compared type : int)]

if(color != ERROR) <-["color" is compared with irrelative type.(enum type : enum
COLOR, compared type : enum ERROR_CODE)]

MISRA-C V3

356

Rule 10.5

[The corresponding error indicated by Agile+ Relief]

⚫ It is a cast to improper essential types.

[Example 1]

typedef _Bool bool_t;

typedef int int32_t;

enum enuma { ana };

enum enumb { anb };

enum enumb enb;

 :

(int32_t) 3U ; /* do not indicate */

(bool_t) 3U ; <-[The cast expression "(bool_t) 3U" is casted between two inappropriate
essential types. (cast type: _bool, expression type: unsigned int)]

(char) enb ; /* do not indicate */

(enum enuma) enb ; <-[The cast expression "(enum enuma) enb" is casted between two
inappropriate essential types. (cast type: enum enuma, expression type:
enum enumb)]

MISRA-C V3

357

Rule 10.6

[The corresponding error indicated by Agile+ Relief]

⚫ The result of the operation exceeds the type width of the expression.

[Example 1]

long long x ;

int i1 ;

 :

x1 = i1 + i2 ; <-[The correct value of the + operation in "x1 = i1 + i2" might
not be able to be obtained.]

MISRA-C V3

358

Rule 10.7

[The corresponding error indicated by Agile+ Relief]

⚫ When the expression of the integer type is operated, underlying type of the
expression is changed.

[Example 1]

void func(short s1, short s2)

{

 long L;

 signed char sc;

 L = s1 * s2; <-["s1 * s2" in "L = s1 * s2" is converted to a different type by an operation
(underlying type before conversion: signed short int, underlying type after
conversion: signed char).]

 sc = s1 + s2; <-["s1 + s2" in "sc = s1 + s2" is converted to a different type by an operation
(underlying type before conversion: signed short int, underlying type after
conversion: signed char).]

MISRA-C V3

359

Rule 10.8

[The corresponding error indicated by Agile+ Relief]

⚫ The integer type is not converted into same sign and a small type by using
cast expression.

⚫ The integer type is changed into the floating-point type by using cast
expression.

⚫ The floating-point type is not converted into a small type by using cast
expression.

⚫ The floating-point type is changed into the integer type by using cast
expression.

[Example 1]

unsigned short a = 65432;

unsigned short b = 65432;

unsigned long x;

x = (unsigned long)(a+b); <-[The cast expression "(unsigned long)(a + b)" casts an integer to a type
that is not a smaller type of the same signed/unsigned status (cast type:
unsigned long int, underlying type of the expression: unsigned short int).]

[Example 2]

long a = 3;

long b = 2;

double x;

x = (double)(a/b); <-[The cast expression "(double)(a / b)" casts an integer to a floating
point type (cast type: double, underlying type of the expression: signed
long int).]

[Example 3]

float a = 1.0F/3;

float b = 1.0F/7;

long double x;

x = (long double)(a+b); <-[The cast expression "(long double)(a + b)" casts a floating point type to
a type that is not a smaller type (cast type: long double, expression:
float).]

MISRA-C V3

360

[Example 4]

float a = 1.0F/3;

float b = 1.0F/7;

long x;

x = (long)(a+b); <-[The cast expression "(long)(a + b)" casts a floating point type to an integer type
(cast type: long int, expression: float).]

MISRA-C V3

361

Rule 11.1

[The Corresponding errors indicated by Agile+ Relief]

⚫ One side of the cast expression is of type pointer to a function, the other side
is of other types.

[Example 1]

int (*fp)(void);

int *ip;

ip = (int *)fp; <-[The cast expression "(int *)fp" is a conversion involving a
function pointer type and a non-integer type (cast type: int *,
expression type: int (*) (void)).]

MISRA-C V3

362

Rule 11.2

[The Corresponding errors indicated by Agile+ Relief]

⚫ A non-pointer type is cast to a pointer type.

⚫ A pointer type is cast to a non-pointer type.

⚫ A non-void* pointer is cast to a non-void* pointer of a different type.

[Example 1]

int adr , *p ;

p = (int *)adr ; <-[The cast expression "(int *)adr" casts a non-pointer type to a pointer type
(cast type: int *, expression type: int).]

[Example 2]

int *p , adr ;

adr = (int)p ; <-[The cast expression "(int)p" casts a pointer type to a non-pointer type (cast
type: int, expression type: int *).]

[Example 3]

int *adr1 ;

char *adr2 ;

adr1 = (int*)adr2 ; <-[The cast expression "(int*)adr2" casts the pointer type to a different pointer
type (cast type: int *, expression type: char *).]

MISRA-C V3

363

Rule 11.3

[The corresponding errors indicated by Agile+ Relief]

⚫ Casting a pointer type to another pointer type.

[Example 1]

int *adr1 ;

char *adr2 ;

adr1 = (int*)adr2 ; <-[The cast expression "(int*)adr2" casts a pointer type to a
different pointer type (cast type: int *, expression type: char
*).]

MISRA-C V3

364

Rule 11.4

[The corresponding error indicated by Agile+ Relief]

⚫ One side of the cast is of pointer type, the other side is of non-pointer type.

⚫ Conditional expression that does comparison of pointer type and
enumeration constant.

[Example 1]

int adr , *p ;

p = (int *)adr ; <-[The cast expression "(int *)adr" casts a non-pointer type to
a pointer type (cast type: int *, expression type: int).]

[Example 2]

enum ERROR_CODE {

 ERROR_NORMAL = 0,

 ERROR_FILE = 1,

 ERROR_DATA = 2

};

void func() {

 char* p;

 :

 if(p == ERROR_FILE) { <-[Compare pointer with an enumeration constant in the
conditional expression "p == ERROR_FILE". (pointer type :
char *)]

 :

 }

}

MISRA-C V3

365

Rule 11.5

[The corresponding errors indicated by Agile+ Relief]

⚫ The pointer of the void has been converted into other pointer types by the
assignment expression.

[Example 1]

uint16_t * p16 ;

uint32_t * p32 ;

char_t * pstr ;

void * p ;

 :

p = p32 ; /* This is not indicated */

p = (void *) p16 ; /* This is not indicated */

p32 = p ; <-[The assignment expression "p32 = p" assigns a void * pointer type to
"unsigned int *" type.]

p16 = (uint16_t *) p ; <-[The assignment expression "p16 = (uint16_t *) p" assigns a void *
pointer type to "unsigned short int *" type.]

pstr = (char_t *) malloc(80); /* This is not indicated */

MISRA-C V3

366

Rule 11.6

[The corresponding errors indicated by Agile+ Relief]

⚫ The cast expression of the integer type is used for the void pointer.

[Example 1]

int i ;

void *p ;

i = (int)p ; <-[The cast expression "(int)p " casts a pointer type to a
non-pointer type (cast type: int *, expression type: void *).]

MISRA-C V3

367

Rule 11.7

[The corresponding errors indicated by Agile+ Relief]

⚫ One side of the cast expression is of type pointer, the other side is of integer
type.

[Example 1]

float f ;

int *p ;

p = (int *)f ; <-[The cast expression "(int *)f" casts a non-pointer type to a
pointer type (cast type: int *, expression type: float).]

MISRA-C V3

368

Rule 11.8

[The corresponding error indicated by Agile+ Relief]

⚫ The cast has deleted the const or volatile qualifying the space that is pointed
by a pointer.

[Example 1]

const int x = 5;

int *p = (int*)&x; <-["(int *)&x" negates the const/volatile qualifying the space
pointed to by the pointer "&x" of type "const int*".]

MISRA-C V3

369

Rule 11.9

[The corresponding error indicated by Agile+ Relief]

⚫ Macro NULL is defined.

[Example 1]

#define NULL 0 <-[In the #define line, "NULL" is used as macro.]

MISRA-C V3

370

Rule 12.1

[The Corresponding errors indicated by Agile+ Relief]

⚫ It is better to add a pair of parentheses.

⚫ The expression on both sides of the operators && or ||, is not a primary
expression.

[Example 1]

if (c = input() != 0) <-[In the expression "c = input() != 0", an assignment
operation coexists with a comparison operation. Parentheses
() may have been accidentally omitted."]

[Example 2]

if (0 < x < 10) <-[This compares the result of "0 < x" with "10", which may
not be the intention.]

[Example 3]

if(x == 0 && y == 0 || z == 0) <-["x == 0 && y == 0 || z == 0" contains both a && operation
and a || operation. Parentheses () may have been omitted
accidentally.]

[Example 4]

x = (a > 0) ? 0 : (b > 0) ? 1 : 2 ; <-[In the expression "(a>0)?1:(b>0)?1:2", multiple ternary
operations are used together. Use parentheses () to show
association explicitly.]

[Example 5]

x = a >> b & c ; <-["a >> b & c" mixes bit and shift operations with no
parentheses (). Use parentheses () to show precedence
explicitly.]

MISRA-C V3

371

[Example 6]

if(p != 0 && *p == 1) <-["p != 0" in the && expression is not a primary expression.]

 <-["*p == 1" in the && expression is not a primary expression.]

MISRA-C V3

372

Rule 12.2

[The corresponding errors indicated by Agile+ Relief]

⚫ The number of shifts of the bitwise shift operator is a negative constant, or
has exceeded the type size of the variable on the left.

[Example 1]

unsigned int x, y ;

x = y << -2 ; <-[The result of the shift operation "y << -2" may vary
depending on the compilers.]

x <<= -2 ; <-[The result of the shift operation "x <<= -2" may vary
depending on the compilers.]

[Example 2]

unsigned int u1, u2 ;

u1 = u2 << 32 ; <-[The number of bits specified for the shift operation "u2 <<
32" exceeds the type width of the result.]

if (u1 == (u2 >> 32)) <-[The number of bits specified for the shift operation "u2 >>
32" exceeds the type width of the result.]

u1 <<= 32 ; <-[The number of bits specified for the shift operation "u1 <<=
32" exceeds the type width of the result.]

MISRA-C V3

373

Rule 12.3

[The corresponding error indicated by Agile+ Relief]

⚫ A comma expression is used.

[Example 1]

x = 1, y = 2 ; <-["x=1,y=2" uses a comma outside an initialization
expression or update expression in a for statement.]

[Example 2]

struct tag { struct tag *next; int data; };

struct tag * top;

struct tag *p;

int code;

 :

for(code = 1, p = top ; <-["code = 1, p = top" uses a comma in the initialization
expression or update expression of a for statement.]

 p != 0;

 p = p->next) {

MISRA-C V3

374

Rule 12.4

[The corresponding error indicated by Agile+ Relief]

⚫ The operational result cannot be represented by an unsigned type.

[Example 1]

#define ABC 1U

unsigned int x;

x = ABC - 2; <-[The value of the unsigned expression "1U - 2" cannot be
represented by an unsigned type.]

if (x < 10)

[Example 2]

#if (1u - 2u) > 128 <-["1u-2u", which is performed with unsigned types, results in
a value that cannot be represented by an unsigned type.]

[Example3]

unsigned int ui = 0xffffffff + 2 ; <- [The result of constant expression “0xffffffff + 2” containing

 unsigned constant expression “0xffffffff” is beyond the bit
width of unsigned int type.]

MISRA-C V3

375

Rule 12.5 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding error indicated by Agile+ Relief]

⚫ The size of the parameter of array type is obtained with sizeof.

[Example 1]

#define ARRAYSIZE 10

void sub(char c[ARRAYSIZE]) {

 printf("%d\n", sizeof(c)); /* Display 4 */ <-[The sizeof() operation that is operated for argument

"c" of array type may be unreasonable.]

}

void main() {

 char c[ARRAYSIZE];

 printf("%d\n", sizeof(c)); /* Display 10 */

 sub(c);

}

MISRA-C V3

376

Rule 13.1

[The corresponding error indicated by Agile+ Relief]

⚫ The expression that generates the side effect is in the initializer list.

[Example 1]

int f1(void) ;

void f2(int x , int y) {

int a[2] = { x + y , x - y } ; /* There is no side effect */

int b[2] = { 0 , f1() }; <-[The initializer lists of "b" contains an expression "f1()" which
occurred side effects.]

MISRA-C V3

377

Rule 13.2

[The corresponding error indicated by Agile+ Relief]

⚫ The ANSI operation order of the expression is indefinite.

⚫ The value of static variable and the external variable has been changed
without doing exclusive control in the multi-thread function. (CreateThread
and pthread_create function, etc.)

[Example 1]

i = j + j++ ; <-[The update timing of "j++" is not defined in ANSI, so the
value of "j" cannot be guaranteed.]

i = ++i + j ; <-[The update timing of "++i" is not defined in ANSI, so the
value of "i" cannot be guaranteed.]

[Example 2]

word_data = get_byte1() << 8 | get_byte2() ;

 <-[The execution sequence of the function calls "get_byte"
and "get_byte" is not specified in ANSI. The function calls
should be made in separate lines.]

[Example 3]

Filename: file.c

 x = Gx + func(); <-[The timing of the function call "func" in line 100 of "file.c"
updating the variable "Gx" is undefined in ANSI, so the value
of "Gx" in the expression cannot be guaranteed.]

 :

 int func(void)

 {

 :

100: Gx += 2;

 :

 }

MISRA-C V3

378

[Example 4]

static int account_num;

void *thread_func(void *param) {

 :

 account_num++; <-[The variable "account_num" which used in multithread function is not
in exclusive control.]

 :

}

void func(void) {

 int *thread;

 :

 pthread_create(&thread, NULL, (void *)thread_func, NULL);

 :

}

MISRA-C V3

379

Rule 13.3

[The corresponding error indicated by Agile+ Relief]

⚫ Mixed use of increment/decrement operators and other expressions.

[Example 1]

a = b++; <-[The result of "b++" is used in another operation.]

i = j + j++; <-[The result of "j++" is used in another operation.]

x++, y = 1; <-[The result of "x++" is used in another operation.]

MISRA-C V3

380

Rule 13.4

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an assignment expression in the conditional expression.

⚫ The assignment operation and comparing operation coexist.

[Example 1]

if(x = func()) <-[The assignment operator "=" is used in the conditional
expression "if(x = func())".]

if((y = z) != 0) <-[The assignment operator "=" is used in the conditional
expression "(y = z) != 0".]

MISRA-C V3

381

Rule 13.5

[The corresponding error indicated by Agile+ Relief]

⚫ There is a side effect expression on the right side of the &&operator, ||
operator, or in the second or third expressions of the ternary operator.

[Example 1]

int i, x[100];

volatile int z;

if (i == 0 && x[i++] == 0) <-[Update expression "i++" is not executed in all cases.]

if (x[i] == 0 || func(i) == 0) <-[Function "func" is not executed in all cases.]

x[i] = (x[i] == 0)? i : z ; <-[volatile variable "z" is not executed in all cases.]

MISRA-C V3

382

Rule 13.6

[The corresponding error indicated by Agile+ Relief]

⚫ There is an update expression, a function call or a volatile variable within the
sizeof operator.

[Example 1]

x = sizeof(y++) ; <-["y++" is in sizeof, so updating is not performed.]

MISRA-C V3

383

Rule 14.1

[The corresponding error indicated by Agile+ Relief]

⚫ The loop counter of the for-statement is of floating-point type.

[Example 1]

float f;

for(f = 0.0 ; f < 1 ; f += 0.1) { ~ } <-[Using the floating type variable "f" as the loop counter
might result in unintended iterations.]

MISRA-C V3

384

Rule 14.2

[The corresponding error indicated by Agile+ Relief]

⚫ There is an expression unrelated to the loop control in the for-statement.

⚫ Update a loop counter of the for-statement within the loop body.

[Example 1]

for(i = 0 , flag = 0 ; i < n; i++, counter++) {

 <-[An expression "flag = 0" irrelevant to loop control exists in a
for statement.]

 <-[An expression "counter++" irrelevant to loop control exists
in a for statement.]

[Example 2]

Filename: file.c

 5: for(i = 0; i < n; i++) {

 :

 i ++ ; <-[The loop counter "i" of a for statement is updated in the
loop body (for statement position: line 5 of "file.c").]

MISRA-C V3

385

Rule 14.3

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an eternally true/false conditional expression.

⚫ The conditional expression may be eternally true/false, depending on the
signs and the type size.

[Example 1]

if (x == 1 && x == 2) <-[The condition expression "x == 1 && x == 2" is never true.]

if (x > 1 && x < 0) <-[The condition expression "x > 1 && x < 0" is never true.]

[Example 2]

while(x * 10 - y > 0){ <-[The loop condition "x * 10 - y > 0" does not change.]

 :

}

/* The variables x and y are not updated in the while statement.*/

[Example 3]

char c;

 :

if (c == -1) { <-[If char is unsigned, "-1" cannot be equal to "c".]

[Example 4]

short s;

:

if (s == 65536) <-[Comparison of "s" of type short int with the constant
"65536" that exceeds the bit width of type short int is a
mistake.]

MISRA-C V3

386

Rule 14.4

[The corresponding errors indicated by Agile+ Relief]

⚫ Use of a non-_boolean value as a conditional expression.

⚫ A conditional expression is being compared with 0.

[Example 1]

if (x = y) <-[The assignment expression "x = y" is used as a condition.]

[Example 2]

Filename: file.c

 int x, y ;

2: x = 100;

3: y = 100;

 if (x) <-["x" is not a bool value (a non-bool value is assigned in line
2 of "file.c").]

 :

 if (!y) <-["y" is not a bool value (a non-bool value is assigned in line
3 of "file.c").]

[Example 3]

Filename: file.c

11: if (foo(10)) {

:

if (foo(20) == 1) { <-[The comparison operation "foo(20) == 1", which is not of
the form !=0 or ==0 and is performed with "foo(10)" (in line 11
of "file.c") which is used as a boolean value might contain a
mistake.]

MISRA-C V3

387

Rule 15.1

[The corresponding error indicated by Agile+ Relief]

⚫ A goto statement is used.

[Example 1]

 func(&data);

 if(data == 0) {

 goto LOOP; <-[A goto statement is used.]

 }

LOOP:

MISRA-C V3

388

Rule 15.2

[The corresponding errors indicated by Agile+ Relief]

⚫ The jumping destination is located before the goto statement.

[Example 1]

11: L1:;

 if (a < 0) {

 goto L1; <-[It jumps from the goto statement to the previous line.(jump position : line 11)]

 }

MISRA-C V3

389

Rule 15.3

[The corresponding error indicated by Agile+ Relief]

⚫ The jumping destination of goto statements do not contain goto statements.

[Example 1]

 if (a < 0) {

 goto L2; <-[Jump out of the scope of goto statement.(jump position : line 22)]

 }

 else {

22: L2:;

 }

MISRA-C V3

390

Rule 15.4

[The corresponding error indicated by Agile+ Relief]

⚫ Multiple break statements that jump out of a loop exist.

[Example 1]

while(1) { <-[Two or more break statements appear in a loop.]

 if(data == 1) {

 :

 break;

 }

 else if(data == 2) {

 :

 }

 else {

 break;

 }

}

MISRA-C V3

391

Rule 15.5

[The corresponding errors indicated by Agile+ Relief]

⚫ More than one exit in the function.

[Example 1]

void func(void) <-[The function "func" has 2 or more exits.]

{

 :

 return;

 :

 return;

}

MISRA-C V3

392

Rule 15.6

[The corresponding errors indicated by Agile+ Relief]

⚫ Statements controlled by for, while, do-while and switch are not embraced
by { } .

[Example 1]

while (x > 0) <-[It might be better to add curly brackets { } to this while statement.]

 x--;

MISRA-C V3

393

Rule 15.7

[The corresponding errors indicated by Agile+ Relief]

⚫ The if and else if statements do not end with an else statement.

[Example 1]

if (x > 0) { <-[There is no else statement at the end of an if else if
statement. Even when all cases have been accounted for, it is
best to include an empty else statement.]

 :

} else if (x < 0) {

 :

}

MISRA-C V3

394

Rule 16.1

[The corresponding errors indicated by Agile+ Relief]

⚫ The case label or default label is not contained in the { } after the switch
statement.

⚫ The case label has no corresponding break statement.

⚫ No default label has been found in the switch statement.

⚫ A default label is placed before the case label.

⚫ There is a comparing operator, logical operator and a constant in the
conditional expression of switch statement.

⚫ There is only one case label in the switch statement.

[Example 1]

switch(x){

case 0 :

 {

 y = 10;

case 1: <-[The label case is not within the { } immediately following
the switch.]

 z = 100;

 break;

 }

[Example 2]

switch (x){

10: case 1:

11: no++; <-[A break statement for "case 1:" in line 10 may have been
accidentally omitted.]

12: case 2:

13: no++; <-[A break statement for "case 2:" in line 12 may have been
accidentally omitted.]

default: no++;

}

[Example 3]

switch (x > 0){ <-["x > 0" is used as the condition of a switch statement.]

:

MISRA-C V3

395

}

switch (1){ <-["1" is used as the condition of a switch statement.]

:

}

MISRA-C V3

396

Rule 16.2

[The corresponding errors indicated by Agile+ Relief]

⚫ The case label or default label is not contained in the { } after the switch
statement.

[Example 1]

switch(x){

case 0 :

 {

 y = 10;

case 1: <-[The label case is not within the { } immediately following
the switch.]

 z = 100;

 break;

 }

MISRA-C V3

397

Rule 16.3

[The corresponding error indicated by Agile+ Relief]

⚫ The case label has no corresponding break statement.

[Example 1]

switch (x){

10: case 1:

11: no++; <-[A break statement for "case 1:" in line 10 may have been
accidentally omitted.]

12: case 2:

13: no++; <-[A break statement for "case 2:" in line 12 may have been
accidentally omitted.]

default: no++;

}

MISRA-C V3

398

Rule 16.4

[The corresponding errors indicated by Agile+ Relief]

⚫ No default label has been found in the switch statement.

[Example 1]

switch (x) { <-[This switch statement contains no default label.]

 case 1:

 x = a + b;

 break;

 case 2:

 x = c + d;

 break;

}

MISRA-C V3

399

Rule 16.5

[The corresponding errors indicated by Agile+ Relief]

⚫ A default label is placed before the case label.

[Example 1]

switch (x) {

 case 1 :

 no++;

 break;

 case 2 :

 default : <-[The label default has been included before the label case
in a switch statement.]

 no += x;

 break;

 case 3 :

 no += x;

 no++;

}

MISRA-C V3

400

Rule 16.6

[The corresponding errors indicated by Agile+ Relief]

⚫ There are no two case labels or more in the switch statement.

[Example 1]

switch (x) { <-[There is no case label in this switch body.]

 default :

 i += x;

 break ;

}

[Example 2]

switch (x) { <-[The switch statement contains only one case label.]

 case ONE :

 :

 break;

 default:

 break;

}

MISRA-C V3

401

Rule 16.7

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a comparing operator, logical operator and a constant in the
conditional expression of switch statement.

⚫ There is only one case label in the switch statement.

[Example 1]

switch (x > 0) <-["x > 0" is used as the condition of a switch statement.]

{ … }

switch (1) <-["1" is used as the condition of a switch statement.]

{ … }

[Example 2]

switch (x) { <-[The switch statement contains only one case label.]

 case ONE :

 :

 break;

 default:

 break;

}

MISRA-C V3

402

Rule 17.1

[The corresponding errors indicated by Agile+ Relief]

⚫ The function, macro, tag, and type defined by <stdarg.h> are used.

[Example 1]

void func(va_list ap) <-[The macro "va_list" is used.]

{

MISRA-C V3

403

Rule 17.2

[The corresponding error indicated by Agile+ Relief]

⚫ There is a recursive function.

[Example 1]

int func(int x) <-[The function "func" is a recursive function.]

{

 :

y = func(z);

 :

}

MISRA-C V3

404

Rule 17.3

[The corresponding errors indicated by Agile+ Relief]

⚫ There is no function declaration corresponding to the function call.

[Example 1]

x = func(10); <-[There is no function declaration corresponding to the
function call "func".]

/* Corresponding neither function declaration nor function definition are described before the
above-mentioned description. */

MISRA-C V3

405

Rule 17.4

[The corresponding error indicated by Agile+ Relief]

⚫ The function may have no return statement for the return value, or the return
statement of the same type as the function does not exist.

[Example 1]

int func(void)

{

} <-[The function "func" does not have a return statement.]

[Example 2]

int func(int a)

{

 if (a == 0)

 { return 0; }

} <-[In the function "func", there are routes that do not have
return statements.]

[Example 3]

int func(void)

{

 :

 return 0;

 :

 return; <-[The return value of a return statement might have been
omitted accidentally.]

}

MISRA-C V3

406

Rule 17.5

[The corresponding error indicated by Agile+ Relief]

⚫ It found argument of function call and parameter of declarations different
array size.

⚫ It found argument of function call for the same parameter type, but array
type of parameter is unknown size.

[Example 1]

File: a.h

Line 1: void f2(int array[4]);

File: a.c

Line 1: #include "a.h"

 2:

 3: void f1() {

 4: int a[3] ;

 5: f2 (a) ; <-[The array size of the 1st argument "a" of the function "f2" is different from
the corresponding parameter "array" in the function declaration in line 1
of "a.h". (argument: int[3], parameter: int[4])

[Example 2]

File: a.h

Line 1: void f2(int array[]);

 2: void f3(int *ptr);

File: a.c

Line 1: #include "a.h"

 2: void f1() {

 3: int a[3] ;

 4: f2 (a) ; <-[The array size of the parameter "array" in the function declaration in line 1
of "a.h" which corresponds to the 1st argument "a" of the function "f2" is not
specified. (argument: int[3], parameter: int[])]

MISRA-C V3

407

Rule 17.6

[The corresponding error indicated by Agile+ Relief]

⚫ In the parameter of function definition, array declaration for which the size is
specified with static is described.

[Example 1]

void func(int ary[static 10]) { <-[There is a parameter of function "func" which is array
described by keyword static.]

 :

MISRA-C V3

408

Rule 17.7

[The corresponding errors indicated by Agile+ Relief]

⚫ The return value of a non-void function is ignored.

[Example 1]

int func(int n);

 :

func(10) ; <-[The return value of the function call "func" is not used.]

MISRA-C V3

409

Rule 17.8

[The corresponding error indicated by Agile+ Relief]

⚫ None of variable or parameter has been quoted once.

[Example 1]

void func(int arg){ <-[The value of parameter "arg" has not been quoted even
once.]

 arg = 1;

 return;

}

MISRA-C V3

410

Rule 18.1

[The corresponding errors indicated by Agile+ Relief]

⚫ An arithmetic operation performed on a pointer of non-array type.

⚫ Use of a non-zero array pointer as an array.

⚫ Out of the range of the array

[Example 1]

void func (int *array)

{

 int x;

 int *p = &x;

 *(array + 1) = 0; <-["array" in the pointer arithmetic operation "array + 1" is not
a pointer pointing to an array.]

 p++; <-["p" in the pointer arithmetic operation "p++" is not a pointer
pointing to an array.]

 *p = 1;

[Example 2]

void func (int *array)

{

 int x;

 int *p = &x;

 array[1] = 0; <-["array" in ["array[1]" is not a pointer pointing to an array.]

 p[1] = 1; <-["p" in "p[1]" is not a pointer pointing to an array.]

:

}

[Example 3]

Filename: file.c

 1: int data[10];

:

10: data[10]=0; <-[The subscript "10" of the array "data" exceeds the range of
the array (array declaration: Line 1 of "file.c").]

MISRA-C V3

411

Rule 18.2

[The corresponding error indicated by Agile+ Relief]

⚫ Subtraction performed on the pointers that point to different arrays.

[Example 1]

int array1[10], array2[10];

int *p1, *p2;

int n;

p1 = array1;

p2 = array2;

n = p2 - p1; <-["p2" and "p1" of the pointer subtraction "p2 - p1" do not
point to the same array.]

MISRA-C V3

412

Rule 18.3

[The corresponding error indicated by Agile+ Relief]

⚫ Make magnitude comparisons between the addresses of two different
objects.

[Example 1]

char *p;

long *q;

if(p < q) { <-[The expression "p < q" compares two object addresses of
different types (char *, long int *).]

MISRA-C V3

413

Rule 18.4

[The corresponding error indicated by Agile+ Relief]

⚫ A pointer arithmetic operation is not in the array indexing form .

[Example 1]

int data[]={ 1, 2, 3, 4, 5 };

int *p = data;

return *(p+1); <-[Pointer arithmetic operation "p+1" is not in the form of array
indexing.]

MISRA-C V3

414

Rule 18.5

[The corresponding error indicated by Agile+ Relief]

⚫ The declaration contains more than 2 levels of indirect pointers.

[Example 1]

int ***x; <-[The pointer "x" exceeds 2 levels.]

MISRA-C V3

415

Rule 18.6

[The corresponding errors indicated by Agile+ Relief]

⚫ The address of an automatic variable has been set to a return value of the
function.

⚫ The address of an automatic variable is assigned to a variable outside the
effective scope.

[Example 1]

char *func(void)

{

char str[16];

 :

return str; <-[The address "str" is the address of an automatic variable
and should not be used as the return value of a function.]

 :

}

[Example 2]

int *p ;

{

 int x;

 p = &x ; <-[The address of the automatic variable x cannot be used
outside the scope.]

}

*p = 0 ;

MISRA-C V3

416

Rule 18.7

[The corresponding errors indicated by Agile+ Relief]

⚫ In non-initialized array declaration except the parameters declaration, array
length is omitted..

⚫ The number of elements specified for an array is a negative number or 0.

[Example 1]

File : body.c

#include "head.h"

int data[256] ;

File : head.h

extern int data[] ; <-[The length of an array has been omitted.]

[Example 2]

struct Dynamic_Array {

 unsigned int size;

 int data[0]; <-[The number of array elements "0" is not greater than 0.]

};

MISRA-C V3

417

Rule 18.8

[The corresponding errors indicated by Agile+ Relief]

⚫ Variable-length array is declared.

[Example 1]

void sub(int n) {

char buff [n] ; <-[Variable-length array "buff" is declared.]

 :

}

MISRA-C V3

418

Rule 19.1

[The corresponding errors indicated by Agile+ Relief]

⚫ For a union variable, a member of it has been assigned, but another is
referenced.

[Example 1]

union {

 int m1 ;

 char m2 ;

} x ;

10: x.m1 = 1 ;

c = x.m2 ; <-[The union member "x.m1" whose value is assigned in line
10 is referenced by another member "x.m2" of the union]

MISRA-C V3

419

Rule 19.2

[The corresponding error indicated by Agile+ Relief]

⚫ A union is used.

[Example 1]

union UN <-[A union is used.]

{

 long m;

 short n[2];

};

MISRA-C V3

420

Rule 20.1

[The corresponding error indicated by Agile+ Relief]

⚫ Before the line #include, contents exist that are neither preprocessing
directives nor comments.

[Example 1]

Filename: file.c

1: double func(void)

 { return X; }

 #include "head.h" <-[Statements (in line 1 of "file.c") which are not
preprocessing directives exist before this #include line.]

Filename: head.h

 extern double X;

MISRA-C V3

421

Rule 20.2

[The corresponding error indicated by Agile+ Relief]

⚫ In the #include-specified file name, there are '(single quotation), \(currency
character), "(double quote), /*(slash and asterisk) and multi-bytes
characters(Chinese characters, etc).

[Example 1]

#include "abc/*XY*/d.h" <-[The file name "abc/*XY*/d.h" specified by #include
contains one or more characters not defined in ANSI.]

MISRA-C V3

422

Rule 20.3

[The corresponding errors indicated by Agile+ Relief]

⚫ The included file name in the #include statement has not been embraced by
<>, or "".

[Example 1]

#include head.h <-[The name of the header file is not enclosed with angle
brackets < > or quotation marks " ".]

MISRA-C V3

423

Rule 20.4

[The corresponding errors indicated by Agile+ Relief]

⚫ Macro of the same name as keyword.

[Example 1]

#define while (EXP) for(; (EXP) ;); <-[The macro name "while" is a keyword.]

#define unless(EXP) if (! (EXP)) /* The reserved word "If" in the substitution character
string is not pointed out. */

MISRA-C V3

424

Rule 20.5

[The corresponding error indicated by Agile+ Relief]

⚫ A #undef is used.

[Example 1]

#undef AAA <-[The macro "AAA" is undefined with #undef.]

MISRA-C V3

425

Rule 20.6

[The corresponding error indicated by Agile+ Relief]

⚫ The argument of the macro function begins with #.

[Example 1]

#define F(b) b

F(#error "memory error") <-[A preprocessing directive is used in the argument "#error"
of a macro function.]

MISRA-C V3

426

Rule 20.7

[The corresponding error indicated by Agile+ Relief]

⚫ The parameter in the replacement string of the macro is not embraced with
parentheses ().

⚫ The replacement string of the macro has not been embraced by () or {}.

[Example 1]

#define F(a, b) (a * b) <-[The parameters "a","b" in the replacement string of the
macro "F" are not enclosed with parentheses ().]

x = F(1 + 5, 10);

[Example2]

#define AddTen(a) (a) + 10 <-[The replacement string of the macro function "AddTen" is
not enclosed as a whole with parentheses () or curly brackets
{ }.]

x = AddTen(20) * 2 ;

MISRA-C V3

427

Rule 20.8

[The corresponding error indicated by Agile+ Relief]

⚫ Constants other than 0 and 1 are described in conditional expression of #if
and #elif directive.

[Example 1]

#if 100 <-[The expression of #if or #elif is not evaluated to 0 or 1.]

 :

#endif

#if VER < 100 /* Conditional expression is not pointed out. */

 :

#endif

#if 1 /* 1 is not pointed out. */

 :

#endif

MISRA-C V3

428

Rule 20.9

[The corresponding errors indicated by Agile+ Relief]

⚫ An unspecified replacement string exists in the #if or #elif statement.

⚫ An #undef is used on the undefined macro.

[Example 1]

/*The macro DEBUG is undefined, or no replacement string has been specified for it*/

#if DEBUG == 1 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

#elif DEBUG == 2 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

[Example 2]

/* There are no definitions of macro ABC,XYZ*/

#if ABC <-["ABC" might have been intended to be appended with
defined.]

#elif XYZ <-["XYZ" might have been intended to be appended with
defined.]

[Example 3]

/* There are no definition of macro BBB*/

#undef BBB <-[#undef is used on the undefined macro "BBB".]

MISRA-C V3

429

Rule 20.10

[The corresponding error indicated by Agile+ Relief]

⚫ A # or ## operator is used in the macro.

[Example 1]

#define AAA(x,y) x###y <-[Operator # or ## is used in a macro.]

#define A(x) #x <-[Operator # or ## is used in a macro.]

#define B(x, y) x##y <-[Operator # or ## is used in a macro.]

#define C x##y <-[Operator # or ## is used in a macro.]

MISRA-C V3

430

Rule 20.11

[The corresponding error indicated by Agile+ Relief]

⚫ The #operator and the ##operator coexist in the macro function.

[Example 1]

#define AAA(x,y) x###y <-[The operators # and ## are used together in the definition
of the macro function "AAA".]

MISRA-C V3

431

Rule 20.12

[The corresponding error indicated by Agile+ Relief]

⚫ The replacement string of the macro definition contains a "#" or a "##".

[Example 1]

#define AAA(x,y) x###y <-[Operator # or ## is used in a macro.]

#define A(x) #x <-[Operator # or ## is used in a macro.]

#define B(x, y) x##y <-[Operator # or ## is used in a macro.]

#define C x##y <-[Operator # or ## is used in a macro.]

MISRA-C V3

432

Rule 20.13

[The corresponding error indicated by Agile+ Relief]

⚫ In ANSI specification, some lines have started with the undefined #.

[Example 1]

#asm <-[The undefined pre-processing command "#asm" cannot be
described in ANSI.]

MISRA-C V3

433

Rule 20.14

[The corresponding error indicated by Agile+ Relief]

⚫ A mismatch exists in the beginning and end of a conditional judgment.

[Example 1]

#endif <-[There are no preprocess directives corresponding to
"#endif".]

[Example 2]

#ifdef ABC <-[There is no #endif corresponding to #if, #ifdef or #ifndef.]

MISRA-C V3

434

Rule 21.1

[The corresponding errors indicated by Agile+ Relief]

⚫ The following macros are redefined or invalidated:
__LINE__
__FILE__
__DATE__
__TIME__

⚫ The ANSI reserved identifiers have been defined or invalidated as macro
names.

[Example 1]

#define __FILE__ abc <-[The predefined macro "__FILE__" is defined again with
#define.]

[Example 2]

#define errno -1 <-[In the #define line, "errno" is used as macro.]

#define malloc(a) mymalloc(a) <-[In the #define line, "malloc" is used as macro.]

MISRA-C V3

435

Rule 21.2

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier using a name identical to that of the reserved identifier is used
in the declaration and definition.

The variable and function using identical names registered under the label
[RESERVED_IDENTIFIER] and [RESERVED_LIBRARY_IDENTIFIER] of the
identifier file are checked as an object. For more information regarding the
registration of an identifier file, see the -F option in the "Command Manual".

[Example 1]

int errno ; <-[The name "errno" is the same as an external name used in
the system.]

MISRA-C V3

436

Rule 21.3

[The corresponding error indicated by Agile+ Relief]

⚫ The following dynamic heap allocation functions are used:

malloc

calloc

realloc

free

[Example 1]

int *mp;

mp = (int *)malloc(sizeof(int) * 10); <-[function "malloc" is used.]

MISRA-C V3

437

Rule 21.4

[The corresponding error indicated by Agile+ Relief]

⚫ File setjmp.h is included by the #include statement.

⚫ The longjmp and macro setjmp functions are used.

[Example 1]

#include <setjmp.h> <-[The file "setjmp.h" is included and should be confirmed.]

static jmp_buf parse_error;

 :

longjmp(parse_error, 1); <-[The function "longjmp" is used.]

MISRA-C V3

438

Rule 21.5

[The corresponding errors indicated by Agile+ Relief]

⚫ File signal.h has been included by the #include statement.

⚫ The following functions and macros are used:

signal

SIG_DFL

SIG_IGN

SIG_ERR

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

[Example 1]

#include <signal.h> <-[The file "signal.h" is included and should be confirmed.]

extern void sigint_hnd(void);

:

signal(SIGINT, sigint_hnd); <-[The function "signal" is used.]

 <-[The macro "SIGINT" is used.]

MISRA-C V3

439

Rule 21.6

[The corresponding errors indicated by Agile+ Relief]

⚫ File stdio.h is included by the #include statement.

⚫ The following functions are used:

fgetpos

fopen

ftell

gets

perror

remove

rename

ungetc

[Example 1]

#include <stdio.h> <-[The file "locale.h" is included and should be confirmed.]

FILE *fp;

 :

fp = fopen("abc.txt", "r"); <-[The function "fopen" is used.]

MISRA-C V3

440

Rule 21.7

[The corresponding error indicated by Agile+ Relief]

⚫ The atof, atoi, atol and atoll functions are used.

[Example 1]

#include <stdlib.h>

int i;

char *str = "123";

i = atoi(str); <-[The function "atoi" is used]

MISRA-C V3

441

Rule 21.8

[The corresponding error indicated by Agile+ Relief]

⚫ The abort, exit, getenv, and system functions are used.

[Example 1]

#include <stdlib.h>

:

if (j < 0) {

abort(); <-[The function "abort" is used.]

}

MISRA-C V3

442

Rule 21.9

[The corresponding error indicated by Agile+ Relief]

⚫ The bsearch and qsort functions are used.

[Example 1]

#include <stdlib.h>

:

qsort(d ,d_cnt, sizeof(d[0]),sort_int); <-[The function "qsort" is used.]

MISRA-C V3

443

Rule 21.10

[The corresponding error indicated by Agile+ Relief]

⚫ The following functions are used:

clock

difftime

mktime

time

asctime

ctime

gmtime

localtime

strftime

[Example 1]

#include <time.h>

:

time_t now:

time(&now); <-[The function "time" is used.]

MISRA-C V3

444

Rule 21.11

[The corresponding errors indicated by Agile+ Relief]

⚫ Standard C library <tgmath.h> is included by the #include statement.

[Example 1]

#include <tgmath.h> <-[The file "tgmath.h" is included and should be confirmed.]

MISRA-C V3

445

Rule 21.12

[The corresponding error indicated by Agile+ Relief]

⚫ The following functions and macros are used:

feclearexcept

fegetexceptflag

feraiseexcept

fesetexceptflag

fetestexcept

FE_INEXACT

FE_DIVBYZERO

FE_UNDERFLOW

FE_OVERFLOW

FE_INVALID

FE_ALL_EXCEPT

[Example 1]

fetestexcept(FE_OVERFLOW); <-[The function "fetestexcept" is used.]

 <-[The macro "FE_OVERFLOW" is used.]

MISRA-C V3

446

Rule 21.13 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding errors indicated by Agile+ Relief]

⚫ The parameters of the function that does the determination and the
translation of the character is not unsigned char type. (isalpha, isdigit, and
isalnum function, etc.)

[Example 1]

unsigned char uc ;

signed char sc ;

/* It is expressible by the unsigned char type */

if (isalpha(uc)) {

 :

/* There is a possibility including the value not expressible by the unsigned char type */

if (isalpha(sc)) { <-[The type of the 1st argument sc of the function "isalpha" should be
unsigned char. (argument type : signed char)]

 :

/* Value not expressible by unsigned char type */

if (isalpha(256)) { <-[The type of the 1st argument 256 of the function "isalpha" should be
unsigned char. (argument type : int)]

 :

MISRA-C V3

447

Rule 21.14 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding errors indicated by Agile+ Relief]

⚫ A "char *" pointer or "char array" type argument to a function like memcmp.

[Example 1]

void func (char* str1 , unsigned char* ustr2 , unsigned char* ustr3) {

 char ary1[3] ;

 char ary2[3] ;

 if(memcmp(ary1,ary2,3) == 0) <-[It is not desirable to try to compare string by function
"memcmp".]

 :

 if(memcmp(str1,"ABC",3) == 0) <-[It is not desirable to try to compare string by function
"memcmp".]

 :

 if(memcmp(str1,ustr2,3) == 0) <-[It is not desirable to try to compare string by function
"memcmp".]

 :

 if(memcmp(ustr2,ustr3,3) == 0) /* both arguments are not the string comparisons because of
"Unsigned char *" type, it not points it out. */

 :

}

MISRA-C V3

448

Rule 21.15 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding errors indicated by Agile+ Relief]

⚫ The comparison and the copy are done by memcmp and memcpy function,
etc. between objects of a different type.

[Example 1]

void TableCheck(int *pATable ,char *pBTable){

 char ICTable[12] ;

 int IDTable[12] ;

 :

 if(memcmp(IDTable , pBTable , 12)) <-[The type of the 1st argument "IDTable" and the 2nd
argument "pBTable" of the function "memcmp" are
different. (1st argument: int[12], 2nd argument: char
*)]

 if(memcmp(pBTable ,"ID" , 2)) /* The confirmation of the truncation is not pointed out. */

MISRA-C V3

449

Rule 21.16 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding error indicated by Agile+ Relief]

⚫ Pointer type to the structure and the union is specified for the memcmp
function.

[Example 1]

struct STRUCT {

 unsigned char a;

 unsigned char b;

 unsigned int c;

};

int func(struct STRUCT* s1, struct STRUCT* s2)

{

 if(memcmp((char*)s1, (char*)s2, sizeof(struct STRUCT)) == 0)

 <-[The function "memcmp" should not be used to compare structures or unions.]

 :

}

MISRA-C V3

450

Rule 21.17 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding error indicated by Agile+ Relief]

⚫ The size of the copy source exceeds the one of the copy target in the strcpy
and the strcat function.

[Example 1]

char a[10], b[20];

 :

strcpy(a , b) ; <-[The size of the copy source of the copy expression "strcpy(a, b) " might

exceed that of the copy target "a" (size of copy target:10, size of copy source:

20).]

MISRA-C V3

451

Rule 21.18 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding error indicated by Agile+ Relief]

⚫ The size at the connection destination and the connected size are equal in
the strncat function.

⚫ The area specified by the following functions has not been acquired.

memchr

memcmp

memcpy

memmove

memset

strncat

strncmp

strncpy

strxfrm

[Example 1]

char a[5];

strncpy(a, "abc", sizeof(a));

char b[] = "def" ;

strncat(a, b, sizeof(a)); <-["strncat(a, b, sizeof(a))" might access an address which exceeds the

range of space "a".(space: 5, size: 5)]

[Example 2]

int x ;

struct { int m1; int m2 ; } sa ;

:

memset(&x , 0 , sizeof(sa)) ; <-["memset(&x, 0, sizeof(sa))" might access an address which
exceeds the range of space "x".(space:4, size:8)]

MISRA-C V3

452

Rule 21.19 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding error indicated by Agile+ Relief]

⚫ The getenv function, the localeconv function, the setlocale function, and the
strerror function are used.

[Example 1]

char *path = NULL;

buf = getenv("PATH"); <-[The function "getenv" is used.]

MISRA-C V3

453

Rule 21.20 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding error indicated by Agile+ Relief]

⚫ The following functions are used.

asctime

ctime

gmtime

localtime

localeconv

getenv

setlocale

strerror

[Example 1]

const char *res;

res = setlocale(LC_ALL, 0); <-[The function "setlocale" is used.]

MISRA-C V3

454

Rule 22.1

[The corresponding error indicated by Agile+ Relief]

⚫ The resource acquired in the standard library function has not been
liberated.

[Example 1]

 char *p ;

10: if ((p = malloc(sizeof(char) * 100)) == NULL) {

 return 1 ;

 }

 :

 if (err) {

 free(p) ;

 return 1;

 }

 return 0 ; <-[Resources allocated with the function "malloc" in line 10
may not have been deallocated.]

MISRA-C V3

455

Rule 22.2

[The corresponding error indicated by Agile+ Relief]

⚫ Refer to the resource collected by the standard library function.

⚫ It collects it excluding the resource acquired in the standard library function.

[Example 1]

 if (mode == 0) {

10: free(p) ;

 }

 *p = 0 ; <-[The variable "p" the resources of which are reclaimed in
line 10, might be referenced.]

[Example 2]

 int *p, data[10] ;

10: p = data ;

 free(p) ; <-[The function "free" may not be used to deallocate the static
resource "data" assigned in line 10.]

MISRA-C V3

456

Rule 22.3

[The corresponding errors indicated by Agile+ Relief]

⚫ The file is doubly opened in a different mode.

[Example 1]

10: FILE* fp1 = fopen("tmp.txt", "r") ;

 FILE* fp2 = fopen("tmp.txt", "w") ; <-[File "tmp.txt" maybe has already been opened with "r"
mode in line 10.]

MISRA-C V3

457

Rule 22.4

[The corresponding errors indicated by Agile+ Relief]

⚫ It writes it in the file that opens in the reading mode.

[Example 1]

 char str[1024] ;

10: FILE* fp = fopen("tmp.txt", "r") ;

 :

 fprintf(fp, "%s\n", str) ; <-[Maybe write into the file "tmp.txt" which is opened with
read-only mode.(file open line : line 10)]

MISRA-C V3

458

Rule 22.5

[The corresponding errors indicated by Agile+ Relief]

⚫ Refer to the file pointer reversely.

[Example 1]

FILE* fp = fopen("tmp.txt", "r");

 :

fp->pos = 0 ; <-["*fp" is an expression of FILE pointer which is back referred.]

MISRA-C V3

459

Rule 22.6

[The corresponding errors indicated by Agile+ Relief]

⚫ Refer to the resource collected by the standard library function.

[Example 1]

 if (mode == 0) {

10: fclose (fp) ;

 }

 fprintf(fp, "end") ; <-[The variable "fp" the resources of which are reclaimed in
line 10, might be referenced.]

MISRA-C V3

460

Rule 22.7 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding errors indicated by Agile+ Relief]

⚫ A macro EOF is used.

[Example 1]

char c;

c = (char)getchar();

if(EOF != (int)c) { <-[The macro "EOF" is used.]

}

MISRA-C V3

461

Rule 22.8 (It added it by MISRA-C:2012 Amendment 1)

[The corresponding errors indicated by Agile+ Relief]

⚫ A variable errno is used.

[Example 1]

if(0 == errno) <-[The variable "errno" is used.]

}

MISRA-C V3

462

Rule 22.9 (It added it by MISRA-C:2012 Amendment 1)

It is the same comment as Rule 22.8, please refer to Rule 22.8 for detail.

MISRA-C V3

463

Rule 22.10 (It added it by MISRA-C:2012 Amendment 1)

It is the same comment as Rule 22.8, please refer to Rule 22.8 for detail.

MISRA-C++ V1

464

3.4 MISRA-C++ V1

For the following Rules, because the Rules for documentation, Agile+ Relief cannot check
the behaviors when parsing the source code:

⚫ Rule 0-3-1

⚫ Rule 0-4-1

⚫ Rule 0-4-2

⚫ Rule 0-4-3

⚫ Rule 1-0-2

⚫ Rule 1-0-3

⚫ Rule 2-2-1

⚫ Rule 7-4-1

⚫ Rule 9-6-1

⚫ Rule 15-0-1

⚫ Rule 16-6-1

⚫ Rule 17-0-4

Also, since the following Rule concerns the coding style of the source code, Agile+ Relief
cannot check it:

⚫ Rule 0-1-5

⚫ Rule 0-1-6

⚫ Rule 0-1-8

⚫ Rule 2-5-1

⚫ Rule 2-7-2

⚫ Rule 2-7-3

⚫ Rule 2-10-1

⚫ Rule 2-13-5

⚫ Rule 3-1-2

⚫ Rule 3-2-1

⚫ Rule 3-2-2

⚫ Rule 3-9-1

⚫ Rule 4-5-2

⚫ Rule 4-5-3

⚫ Rule 4-10-1

⚫ Rule 4-10-2

⚫ Rule 5-0-3

⚫ Rule 5-0-7

MISRA-C++ V1

465

⚫ Rule 5-0-8

⚫ Rule 5-0-9

⚫ Rule 5-0-11

⚫ Rule 5-0-12

⚫ Rule 5-17-1

⚫ Rule 6-4-8

⚫ Rule 6-5-4

⚫ Rule 6-5-6

⚫ Rule 7-1-1

⚫ Rule 7-3-4

⚫ Rule 7-3-5

⚫ Rule 7-4-2

⚫ Rule 7-5-3

⚫ Rule 9-3-1

⚫ Rule 10-1-2

⚫ Rule 10-1-3

⚫ Rule 10-2-1

⚫ Rule 10-3-1

⚫ Rule 10-3-2

⚫ Rule 10-3-3

⚫ Rule 12-1-2

⚫ Rule 12-8-2

⚫ Rule 14-5-1

⚫ Rule 14-6-1

⚫ Rule 14-6-2

⚫ Rule 14-7-1

⚫ Rule 14-7-2

⚫ Rule 14-7-3

⚫ Rule 14-8-1

⚫ Rule 14-8-2

⚫ Rule 15-0-3

⚫ Rule 15-1-3

⚫ Rule 15-3-3

⚫ Rule 15-3-4

MISRA-C++ V1

466

Rule 0-1-1

[The corresponding error indicated by Agile+ Relief]

⚫ There is an unexecuted statement.

[Example 1]

void foo () {

return;

x = y + z; <-[This will not be executed.]

}

MISRA-C++ V1

467

Rule 0-1-2

[The corresponding error indicated by Agile+ Relief]

⚫ Some statements are not executed because of the existence of invalid conditions.

[Example 1]

if(x == 1)

{ process 1 }

else if(x != 1)

{ process 2 }

else <-[This else statement will never be executed.]

{ process 3 }

if(y == 1)

{ process 1 }

else if(y != 1)

{ process 2 }

else if(y < 0) <-[This else statement will never be executed.]

{ process 3 }

MISRA-C++ V1

468

Rule 0-1-3

[The corresponding error indicated by Agile+ Relief]

⚫ An unused variable or parameter exists.

[Example 1]

void foo (){

int x; <-[The variable "x" is not used.]

return;

}

[Example 2]

void func (int p , int q){ <-[The parameter "p" is not used.]

 int n = q;

return;

}

MISRA-C++ V1

469

Rule 0-1-4

[The corresponding error indicated by Agile+ Relief]

⚫ None of variable or parameter has been quoted once.

[Example 1]

void foo (){

int x; <-[The value of variable "x" has not been quoted even once.]

x = 1;

return;

}

[Example 2]

void func(int arg){ <-[The value of parameter "arg" has not been quoted even
once.]

 arg = 1;

 return;

}

MISRA-C++ V1

470

Rule 0-1-5

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

471

Rule 0-1-6

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

472

Rule 0-1-7

[The corresponding errors indicated by Agile+ Relief]

⚫ The return value of a non-void function is ignored.

[Example 1]

int func();

 :

func() ; <-[The return value of the function call "func" is not used.]

MISRA-C++ V1

473

Rule 0-1-8

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

474

Rule 0-1-9

[The corresponding error indicated by Agile+ Relief]

⚫ An empty statement without meaning exists.

[Example 1]

int x ; ; <-[It may be an useless empty statement.]

switch(y){

case 1: ; <-[It may be an useless empty statement.]

MISRA-C++ V1

475

Rule 0-1-10

[The corresponding error indicated by Agile+ Relief]

⚫ An unused static function exists.

[Example 1]

static int func(){ <-[The static function "func" is not used.]

 int x = 32;

 return x;

}

/* The function func is not used. */

MISRA-C++ V1

476

Rule 0-1-11

[The corresponding error indicated by Agile+ Relief]

⚫ An unused parameter exists.

[Example 1]

void func(int x , int y) { <-[The parameter "x" is not used.]

cls(y);

 return;

}

MISRA-C++ V1

477

Rule 0-1-12

It is the same comment as Rule 0-1-11, please refer to Rule 0-1-11 for detail.

MISRA-C++ V1

478

Rule 0-2-1

[The corresponding errors indicated by Agile+ Relief]

⚫ For a union variable, a member of it has been assigned, but another is
referenced.

[Example 1]

union {

 int m1 ;

 char m2 ;

} x ;

10: x.m1 = 1 ;

c = x.m2 ; <-[The union member "x.m1" whose value is assigned in line
10 is referenced by another member "x.m2" of the union.]

MISRA-C++ V1

479

Rule 0-3-1

Agile+ Relief will not check if the rule has been violated.

MISRA-C++ V1

480

Rule 0-3-2

[The corresponding errors indicated by Agile+ Relief]

⚫ An abnormal value is returned by the function without having been checked.

⚫ Error code is not determined after the function is called.

The function using a name identical to that of the identifier registered under the label
[NULL_RETURN_FUNCTION], [RETURN_CHECK_FUNCTION] and
[SET_VARIABLE_FUNCTION] of the identifier file is checked as an object. For
details regarding registration to an identifier file, see the - F option in the "Command
Manual".

[Example 1]

char *p;

p = malloc(sizeof(char)* 100);

19: *p = ‘\0’: <-[At line 19, a value may be assigned to the variable *p of 0
address, or 0 address may be quoted.]

MISRA-C++ V1

481

Rule 0-4-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

482

Rule 0-4-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

483

Rule 0-4-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

484

Rule 1-0-1

[The corresponding error indicated by Agile+ Relief]

⚫ There are descriptions not compliant with C++ 2003(ISO/ICE 14882:2003).

[Example 1]

 int func(int x,); <-[In ANSI, “. . . “ is not permitted to be omitted.]

MISRA-C++ V1

485

Rule 1-0-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

486

Rule 1-0-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

487

Rule 2-2-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

488

Rule 2-3-1

[The corresponding error indicated by Agile+ Relief]

⚫ A trigraph sequence is used.

[Example 1]

??=include "head.h" <-[The trigraph sequence "??=" is used.]

MISRA-C++ V1

489

Rule 2-5-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

490

Rule 2-7-1

[The corresponding error indicated by Agile+ Relief]

⚫ A nested comment exists.

[Example 1]

/* if (argc==0)

 /* return -1 */ <-[A nested comment is used.]

*/

MISRA-C++ V1

491

Rule 2-7-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

492

Rule 2-7-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

493

Rule 2-10-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

494

Rule 2-10-2

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier with a name identical to that of another identifier within the
external scope has been declared within the internal effective scope.

[Example 1]

Filename: file.cc

10: unsigned char *cp;

void func()

{

 unsigned char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 10 of "file.cc", outside the function.]

}

[Example 2]

Filename: file.cc

10: struct s { short a, b; } x;

void func()

{

 struct s { int a, b; } y; <-[The declaration of the tag "s" uses the same name as "s" in
line 10 of "file.cc", outside the function.]

}

MISRA-C++ V1

495

Rule 2-10-3

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate typedef name.

[Example 1]

Filename: file.cc

1: typedef char *cp;

void func()

{

4: char *cp; <-[The declaration of the variable "cp" uses the same name
as the typedef in line 1 of "file.cc", outside the function.]

 if(data == 0){

 typedef char *cp; <-[The declaration of the typedef "cp" uses the same name as
the variable in line 4 of "file.cc".]

 }

}

MISRA-C++ V1

496

Rule 2-10-4

[The corresponding error indicated by Agile+ Relief]

⚫ Duplicate class name, struct name, union name and enum name.

[Example 1]

Filename: file.cc

1: class CLS{

};

:

void func()

{

 class CLS{ <-[The declaration of the tag "CLS" uses the same name as
the “CLS” in line 1 of "file.cc", outside the function.]

 };

}

[Example 2]

Filename: file.cc

void func()

{

3: class CLS{

 };

 :

if(data == 0){

 class CLS{ <-[The declaration of the tag "CLS" uses the same name as
the "CLS" in line 3 of "file.cc".]

 };

 }

}

MISRA-C++ V1

497

Rule 2-10-5

[The corresponding error indicated by Agile+ Relief]

⚫ Identifiers with the same name have been defined outside and inside the
function.

[Example 1]

File name: file.cc

1: typedef char *cp;

void func ()

{

 char *cp; <-[The name of declaration of the variable "cp" is identical to
the name of typedef outside the function (line 1 of "file.cc").]

}

[Example 2]

File name: file.cc

void func1()

{

 char c; <-[The name of declaration of the variable "c" is identical to
the name of the variable outside the function (line 6 of
"file.cc").]

}

void func2(){

6: extern char c;

}

MISRA-C++ V1

498

Rule 2-10-6

[The corresponding error indicated by Agile+ Relief]

⚫ Identifiers with the same name have been defined outside and inside the
function.

⚫ A name that is duplicated with the external name used by the system has
been used.

[Example 1]

File name: file.cc

10: typedef char *cp;

void func(){

char *cp; <-[The name of declaration of the variable “cp” is identical to
the name of typedef outside the function (line 10 of “file.cc”).]

 }

[Example 2]

void *FILE(unsigned int size) { <-[“FILE” is duplicated with the external name used by the
system.]

 :

 }

MISRA-C++ V1

499

Rule 2-13-1

[The corresponding error indicated by Agile+ Relief]

⚫ There exists an undefined escape sequence starting with \.

[Example 1]

c = '\8'; <-[Escape sequence "'\8'" might be processed differently
depending on the compiler.]

MISRA-C++ V1

500

Rule 2-13-2

[The corresponding error indicated by Agile+ Relief]

⚫ An octonary escape sequence has been used.

⚫ A number beginning with 0 exists.

[Example 1]

c = '\12' ; <-[The octal escape sequence "\12" is used.]

strcpy (s, "abc\14") ; <-[The octal escape sequence "\14" is used.]

[Example 2]

int x = 010 ; <-[The octal constant "010" is used.]

MISRA-C++ V1

501

Rule 2-13-3

[The Corresponding errors indicated by Agile+ Relief]

⚫ The unsigned constant is not suffixed by "U".

[Example 1]

/* The size of int is 16 bits */

unsigned int x = 0xA123 ; <-[The unsigned value "0xA123" is used without the suffix
"U".]

MISRA-C++ V1

502

Rule 2-13-4

[The corresponding error indicated by Agile+ Relief]

⚫ The lowercase l has been used by integer suffix or floating suffix.

[Example 1]

long x = 32768l ; <-["l” that may cause error easily has been used by “32768l”.]

long double y = 3.14l ; <-[“l” that may cause error easily has been used by”3.14l”.]

MISRA-C++ V1

503

Rule 2-13-5

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

504

Rule 3-1-1

[The corresponding error indicated by Agile+ Relief]

⚫ A variable or function has been defined in the include file.

[Example 1]

File name: head.h

int x ; <-[Space has been allocated in the head file. (Variable “x”)]

int func() <-[Space has been allocated in the head file. (function
“func”)]

{

 return x;

}

File name: file.cc

#include "head.h"

MISRA-C++ V1

505

Rule 3-1-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

506

Rule 3-1-3

[The corresponding error indicated by Agile+ Relief]

⚫ The array is declared without specifying its length.

[Example 1]

Filename: file.cc

 #include "head.h"

 int data[256] ;

Filename: head.h

 extern int data[] ; <-[The length of an array has been omitted.]

MISRA-C++ V1

507

Rule 3-2-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

508

Rule 3-2-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

509

Rule 3-2-3

[The corresponding error indicated by Agile+ Relief]

⚫ There is an external variable declaration or external function declaration
outside of the header file.

[Example 1]

Filename: file.cc

extern int x ; <-[The external variable "x" is declared outside a header file.]

[Example 2]

Filename: file.cc

int func(int in) ; <-[The external function "func" is declared outside a header
file.]

MISRA-C++ V1

510

Rule 3-2-4

[The corresponding error indicated by Agile+ Relief]

⚫ The external variables with the same name of a type have been defined in a
file.

[Example 1]

File name: file.cc

10: int x =1;

 :

int x; <-[The variable “x” is also defined at line 10 of “file.cc”. It is
recommended to delete the part without initial value.]

MISRA-C++ V1

511

Rule 3-3-1

[The corresponding error indicated by Agile+ Relief]

⚫ External variable or external function has been declared outside the head
file.

⚫ A function that is not declared has been defined.

[Example 1]

File name: file.cc

extern int x ; <-[The external variable “x” has been declared outside the
head file.]

[Example 2]

File name: file.cc

void func(int x) <-[No function declaration before the function definition
“func”.]

{

 :

}

MISRA-C++ V1

512

Rule 3-3-2

[The corresponding error indicated by Agile+ Relief]

⚫ There is a variable or a function using identical names but having different
storage classes.

[Example 1]

Filename: file.cc

10: extern int flag;

 :

static int flag; <-[The variable flag has a different storage class in line 10 of
"file.cc".]

MISRA-C++ V1

513

Rule 3-4-1

[The corresponding error indicated by Agile+ Relief]

⚫ There is a global static variable used only in one function.

[Example 1]

Filename: file.cc

13: static int yy ; <-[The external variable "yy" that can be used in multiple
functions was referenced only in the function "func" in line 23
of "file.cc”. An internal static variable could be used instead.]

 :

23: void func(int xx)

{

 /* static variable yy is only used in this function.*/

MISRA-C++ V1

514

Rule 3-9-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

515

Rule 3-9-2

[The corresponding error indicated by Agile+ Relief]

⚫ Basic arithmetic types int/short/char/long/double/float are used directly.

[Example 1]

void func ()

{

int short_length ; <-[In this file, a basic arithmetic type (int/short/char/long/double/float)
is used directly.]

}

MISRA-C++ V1

516

Rule 3-9-3

[The corresponding errors indicated by Agile+ Relief]

⚫ A member of floating-point type and members of other types exist in a union
at the same time.

⚫ Bitwise operation for floating-point or pointer type.

⚫ Cast a pointer of floating-point to pointer of other types.

[Example 1]

union UN1 <-[There is a member in union "UN1" whose type is different
from that of float-type member "a".]

{

 double a;

 unsigned long b[2];

};

[Example 2]

double d;

x = d << 1 ; <-[In ANSI, the operand "d" of the bit operation "d << 1" must
be of an integer type.]

[Example 3]

int *adr1 ;

float *adr2 ;

adr1 = (int*)adr2 ; <-[The cast expression "(int*)adr2" casts the pointer type to a
different pointer type. (cast type: char *, expression: int *)]

MISRA-C++ V1

517

Rule 4-5-1

[The corresponding error indicated by Agile+ Relief]

⚫ Operation of bool value or bool type variable has been performed.

[Example 1]

int i, data;

 :

i += (data < 1); <-[Operation of bool value has been used" i += (data < 1) " .]

MISRA-C++ V1

518

Rule 4-5-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

519

Rule 4-5-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

520

Rule 4-10-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

521

Rule 4-10-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

522

Rule 5-0-1

[The corresponding error indicated by Agile+ Relief]

⚫ The ANSI operation order of the expression is indefinite.

[Example 1]

i = j + j++ ; <-[The update timing of "j++" is not defined in ANSI, so the
value of "j" cannot be guaranteed.]

i = ++i + j ; <-[The update timing of "++i" is not defined in ANSI, so the
value of "i" cannot be guaranteed.]

[Example 2]

word_data = get_byte() << 8 | get_byte() ;

<-[The execution sequence of the function calls "get_byte"
and "get_byte" is not specified in ANSI. The function calls
should be made in separate lines.]

MISRA-C++ V1

523

Rule 5-0-2

[The Corresponding errors indicated by Agile+ Relief]

⚫ It is better to add a pair of parentheses.

[Example 1]

if (c = input() != 0) <-[In the expression "c = input() != 0", an assignment
operation coexists with a comparison operation. Parentheses
() may have been accidentally omitted."]

[Example 2]

if (0 < x < 10) <-[This compares the result of "0 < x" with "10", which may
not be the intention.]

[Example 3]

if(x == 0 && y == 0 || z == 0) <-["x == 0 && y == 0 || z == 0" contains both a && operation
and a || operation. Parentheses () may have been omitted
accidentally.]

[Example 4]

x = (a > 0) ? 0 : (b > 0) ? 1 : 2 ; <-[In the expression "(a>0)?1:(b>0)?1:2", multiple ternary
operations are used together. Use parentheses () to show
association explicitly.]

[Example 5]

x = a >> b & c ; <-["a >> b & c" mixes bit and shift operations with no
parentheses (). Use parentheses () to show precedence
explicitly.]

MISRA-C++ V1

524

Rule 5-0-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

525

Rule 5-0-4

[The corresponding error indicated by Agile+ Relief]

⚫ The signed value and unsigned value are compared.

[Example 1]

signed char sc;

unsigned char uc;

 :

if (sc == uc) <-[Unsigned "uc" and signed "sc" are coexisting in the
comparison expression "sc == uc".]

MISRA-C++ V1

526

Rule 5-0-5

[The corresponding error indicated by Agile+ Relief]

⚫ The result of integer operation (+,-,*,/) was assigned to the floating type, or it
is compared with the floating type.

[Example 1]

double d, f ;

int x, y;

 :

f = x + y; <-["f = x + y” may not get the correct value. It is recommended
to use “f = (double)x + y”.]

if (d < x + y) <-[“d < x + y” may not get the correct value. It is
recommended to use “d < (double)x + y”.]

[Example 2]

double f;

int x, y;

 :

f = x * y; <-[“f = x * y” cannot get the correct value. Please use “f =
(double)x * y”.]

if (f < x * y) <-[“f < x * y” cannot get the correct value. Please use “f <
(double)x * y”.]

MISRA-C++ V1

527

Rule 5-0-6

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an implicit conversion that may lead to data loss resulting from
differences in signs, type size and types.

[Example 1]

int i;

i = 0xfffffffffffffffff; <-[“0xfffffffffffffffff”that exceeds the range that can be shown by
constant cannot be used.]

[Example 2]

long data;

short s;

s = data ; <-[The size at the right of assignment expression “s = data” is
too large, value may not be assigned correctly. (left : short ,
right : long)]

[Example 3]

Filename: file.cc

10: void func(signed char sc) { ~ }

 :

 int i;

 :

func(i); <-[In the first actual parameter "i" of the function
"func" and its correspondent virtual parameter "sc"
(Function definition of line 10 of "file.cc"), the size of
actual parameter is large, value may not be
transferred correctly. (Actual parameter: int, Virtual
parameter: signed char)"]

MISRA-C++ V1

528

Rule 5-0-7

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

529

Rule 5-0-8

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

530

Rule 5-0-9

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

531

Rule 5-0-10

[The corresponding errors indicated by Agile+ Relief]

⚫ The operational result may exceed the bit-width of the underlying type.

[Example 1]

unsigned char a = 0x1U ;

unsigned char b = 0xA0U ;

unsigned int x;

unsigned int y;

x = ~a ; <-["~a" might exceed the bit width of the underlying type
(unsigned char) of "a".]

y = (a + b) << 2 ; <-["(a + b) << 2" might exceed the bit width of the underlying
type (unsigned char) of "(a + b)".]

MISRA-C++ V1

532

Rule 5-0-11

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

533

Rule 5-0-12

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

534

Rule 5-0-13

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an assignment expression in the conditional expression.

⚫ The assignment operation and comparing operation coexist.

[Example 1]

if(x = func()) <-[The assignment operator "=" is used in the conditional
expression "if(x = func())".]

if((y = z) != 0) <-[The assignment operator "=" is used in the conditional
expression "(y = z) != 0".]

MISRA-C++ V1

535

Rule 5-0-14

It is the same comment as Rule 5-0-13, please refer to Rule 5-0-13 for detail.

MISRA-C++ V1

536

Rule 5-0-15

[The corresponding error indicated by Agile+ Relief]

⚫ A pointer arithmetic operation is not in the array indexing form .

[Example 1]

int data[]={ 1, 2, 3, 4, 5 };

int *p = data;

return *(p+1); <-[Pointer arithmetic operation "p+1" is not in the form of array
indexing.]

MISRA-C++ V1

537

Rule 5-0-16

[The corresponding errors indicated by Agile+ Relief]

⚫ An arithmetic operation performed on a pointer of non-array type.

⚫ Use of a non-zero array pointer as an array.

[Example 1]

void func (int *array)

{

 int x;

 int *p = &x;

 *(array + 1) = 0; <-["array" in the pointer arithmetic operation "array + 1" is not
a pointer pointing to an array.]

 p++; <-["p" in the pointer arithmetic operation "p++" is not a pointer
pointing to an array.]

 }

[Example 2]

void func (int *array)

{

 int x;

 int *p = &x;

 array[1] = 0; <-["array" in ["array[1]" is not a pointer pointing to an array.]

 p[1] = 1; <-["p" in "p[1]" is not a pointer pointing to an array.]

}

MISRA-C++ V1

538

Rule 5-0-17

[The corresponding error indicated by Agile+ Relief]

⚫ Subtraction performed on the pointers that point to different arrays.

[Example 1]

int array1[10], array2[10];

int *p1, *p2;

int n;

p1 = array1;

p2 = array2;

n = p2 - p1; <-["p2" and "p1" of the pointer subtraction "p2 - p1" do not
point to the same array.]

MISRA-C++ V1

539

Rule 5-0-18

[The corresponding error indicated by Agile+ Relief]

⚫ Make magnitude comparisons between the addresses of two different
objects.

[Example 1]

char *p;

long *q;

if(p < q) { <-[The expression "p < q" compares two object addresses of
different types (char *, long int *).]

MISRA-C++ V1

540

Rule 5-0-19

[The corresponding error indicated by Agile+ Relief]

⚫ The declaration contains more than 2 levels of indirect pointers.

[Example 1]

int ***x; <-[The pointer "x" exceeds 2 levels.]

MISRA-C++ V1

541

Rule 5-0-20

[The corresponding error indicated by Agile+ Relief]

• The operator of the bit operation is non-integer type.

[Example 1]

unsigned int x;

double d;

unsigned int *xp;

x = d << 1 ; <-[In ANSI, the operator "d" of the bit operation "d << 1" must
be integer type.]

x = xp >> 2 ; <-[In ANSI, the operator "xp" of the bit operation "xp >> 2"
must be integer type.]

MISRA-C++ V1

542

Rule 5-0-21

[The corresponding errors indicated by Agile+ Relief]

⚫ A bit-filed operation has been applied to the signed integer, type char, or a
negative constant.

[Example 1]

int x, y ;

x = y >> 2 ; <-[When the signed type variable "y" is assigned with a
negative value, the result of a right shift may vary depending
on the compiler.]

[Example 2]

int x, y ;

x =y & 0x30 ; <-[The operand "y" of the bit operation "y & 0x30" is signed.]

x <<= 3 ; <-[The operand "x" of the bit operation "x <<= 3" is signed.]

if (^x == 0xfe) <-[The operand "x" of the bit operation "^x" is signed.]

MISRA-C++ V1

543

Rule 5-2-1

[The corresponding error indicated by Agile+ Relief]

⚫ The expression on both sides of the operators && or ||, is not a primary
expression.

[Example 1]

if(p != 0 && *p == 1) <-["p != 0" in the && expression is not a primary expression.]

 <-["*p == 1" in the && expression is not a primary expression.]

if (x == 1 || y > 5 && z != 0) <-["x == 1" in the || expression is not a primary expression.]

 <-["y > 5" in the && expression is not a primary expression.]

 <-["z != 0" in the && expression is not a primary expression.]

 <-["y > 5 && z != 0" in the || expression is not a primary
expression.]

MISRA-C++ V1

544

Rule 5-2-2

[The corresponding error indicated by Agile+ Relief]

• The pointer of basic class was cast to the pointer of derived class by non
dynamic_cast.

[Example 1]

class ANIMAL {

 :

};

class FISH : public ANIMAL {

public:

 void Swim() { }

};

class BIRD : public ANIMAL {

public:

 void Fly(){ }

};

void func(ANIMAL* a) {

 FISH* f = (FISH*)a; <-[dynamic_cast should be used for the cast "(FISH *)a" to
derived class. (after conversion : class FISH*, before
conversion : class ANIMAL*)]

 f->Swim();

 BIRD* b = static_cast<BIRD*>(a); <-[dynamic_cast should be used for the cast
"static_cast<BIRD *> (a)" to derived class. (after conversion :
class BIRD*, before conversion : class ANIMAL*)]

 b->Fly();

}

MISRA-C++ V1

545

Rule 5-2-3

[The corresponding error indicated by Agile+ Relief]

• dynamic_cast was used.

• The pointer of basic class was cast to the pointer of derived class by non
dynamic_cast.

[Example 1]

class X {/* X class definition (include virtual function) */};

class Y : public X { /* Y class definition */ };

class Z : public Y { /* Z class definition */ };

void fa(Z* pa)

{

 Y * pb = dynamic_cast < Y* >(pa); <-[dynamic_cast may not be used in EC++.]

}

[Example 2]

class ANIMAL {

 :

};

class FISH : public ANIMAL {

public:

 void Swim() { }

};

class BIRD : public ANIMAL {

public:

 void Fly(){ }

};

void func(ANIMAL* a) {

 FISH* f = (FISH*)a; <-[dynamic_cast should be used for the cast "(FISH *)a" to
derived class. (after conversion : class FISH*, before
conversion : class ANIMAL*)]

 f->Swim();

 BIRD* b = static_cast<BIRD*>(a); <-[dynamic_cast should be used for the cast
"static_cast<BIRD *> (a)" to derived class. (after conversion :
class BIRD*, before conversion : class ANIMAL*)]

 b->Fly();

}

MISRA-C++ V1

546

Rule 5-2-4

[The corresponding error indicated by Agile+ Relief]

⚫ The cast expression of C style was used.

[Example 1]

class A {

 public:

 virtual void func(){

 }

};

class B : public A {

 public:

 virtual void func(){

 }

};

 :

A*a = new B;

B*b = (B*)a; <-[Please do not use cast”(B*)a” of C style in C++.]

MISRA-C++ V1

547

Rule 5-2-5

[The corresponding error indicated by Agile+ Relief]

⚫ The cast has deleted the const or volatile qualifying the space that is pointed
by a pointer.

[Example 1]

const int x = 5;

int *p = (int*)&x; <-["(int *)&x" negates the const/volatile qualifying the space
pointed to by the pointer "&x" of type "const int*".]

MISRA-C++ V1

548

Rule 5-2-6

[The Corresponding errors indicated by Agile+ Relief]

⚫ One side of the cast expression is of type pointer to a function, the other side
is of integer type.

[Example 1]

int (*fp)(void);

int *ip;

ip = (int *)fp; <-[The cast expression "(int *)fp" is a conversion involving a
function pointer type and a non-integer type (cast type: int *,
expression type: int (*) (void)).]

MISRA-C++ V1

549

Rule 5-2-7

[The corresponding error indicated by Agile+ Relief]

⚫ The pointer type was cast to another pointer type.

[Example 1]

int *adr1 ;

char *adr2 ;

adr1 = (int*)adr2 ; <-[The cast expression “(int*)adr2”casted the pointer type to
another pointer type. (cast type : char *, Expression : int *)]

MISRA-C++ V1

550

Rule 5-2-8

[The corresponding error indicated by Agile+ Relief]

⚫ Casting a non-pointer type to a pointer type.

[Example 1]

int adr , *p ;

p = (int *)adr ; <-[The cast expression "(int *)adr" casts a non-pointer type to
a pointer type (cast type: int *, expression type: int).]

MISRA-C++ V1

551

Rule 5-2-9

[The corresponding error indicated by Agile+ Relief]

⚫ Casting a pointer type to a non-pointer type.

[Example 1]

int *p , adr ;

adr = (int)p ; <-[The cast expression "(int)p " casts a pointer type to a
non-pointer type (cast type: int *, expression type: int).]

MISRA-C++ V1

552

Rule 5-2-10

[The corresponding error indicated by Agile+ Relief]

⚫ Mixed use of increment/decrement operators and other expressions.

[Example 1]

i = j++; <-[The result of "j++" is used in another operation.]

i = j + j++; <-[The result of "j++" is used in another operation.]

i++, j = 1; <-[The result of "i++" is used in another operation.]

MISRA-C++ V1

553

Rule 5-2-11

[The corresponding error indicated by Agile+ Relief]

⚫ && operator was defined in multiple times. Operator, ||Operator.

[Example 1]

class A {

 public:

 A* operator&() {

 :

 }

 bool operator&&(const A& rhs) const {<-[Define the operator && in multiple times may cause
changes in evaluation sequence during operation.]

 :

 }

 bool operator||(const A& rhs) const { <-[Define the operator || in multiple times may cause
changes in evaluation sequence during operation.]

 :

 }

} ;

MISRA-C++ V1

554

Rule 5-2-12

[The corresponding error indicated by Agile+ Relief]

⚫ The array type of derived class was transferred to the pointer of basic class
or array type.

⚫ The virtual parameter of array type exists, but the parameter indicating the
array size does not exist.

[Example 1]

File name: file.cc

 class BASE {

 public:

 int m1;

 } ;

 class DERIVED : public BASE {

 public:

 int m2;

 int m3;

 } ;

10: void func(BASE *pb, int n) { //The pointer of basic class was accepted, and the processing
equivalent to the number of arrays was performed

 for(int i = 0 ; i < n ; i++) {

 cout << pb[i].m1 << endl ;

 }

 }

 :

 BASE b[5];

 func(b, 5) ;

 DERIVED d[5];

 func(d, 5) ; <-[The array of derived class is passed to the base class
@1.(function: "func"; argument: No. the First one; type of
argument: DERIVED [5]; type of parameter: BASE *;
declaration : line 10 of "file.cc")]

[Example 2]

void func (int h[]){ <-[The function "func" contains a parameter of type array, but
there are no unsigned parameters describing the array size.]

}

MISRA-C++ V1

555

Rule 5-3-1

[The corresponding errors indicated by Agile+ Relief]

⚫ A non-boolean value is used as a conditional expression.

[Example 1]

if ((nerr) && (a + b)) <-[The logical operation " (nerr) && (a + b)" uses the result
of the operation "(a + b)" as a condition.]

if ((nerr) || (a << b)) <-[The logical operation "(nerr) || (a << b)" uses the result of
the operation "(a << b)" as a condition.]

[Example 2]

Filename: file.cc

 int x, y ;

2: x = 100;

3: y = 100;

 if (x) <-["x" is not a bool value (a non-bool value is assigned in line
2 of "file.cc").]

 :

 if (!y) <-["y" is not a bool value (a non-bool value is assigned in line
3 of "file.cc").]

MISRA-C++ V1

556

Rule 5-3-2

[The corresponding error indicated by Agile+ Relief]

⚫ A unary operator (the minus sign) has been attached to an unsigned
variable.

[Example 1]

unsigned long ul = 0x80000001;

long long x;

x = -ul ; <-[Appending a "minus" to the unsigned variable "ul" will not
necessarily make it negative.]

MISRA-C++ V1

557

Rule 5-3-3

[The corresponding error indicated by Agile+ Relief]

⚫ & operator was defined in multiple times.

[Example 1]

class A {

 public:

 A* operator&() { <-[Define the operator & in multiple times may cause changes
in evaluation sequence during operation.]

 :

 }

} ;

MISRA-C++ V1

558

Rule 5-3-4

[The corresponding error indicated by Agile+ Relief]

⚫ There is an update expression, a function call or a volatile variable within the
sizeof operator.

[Example 1]

x = sizeof(y++) ; <-["y++" is in sizeof, so updating is not performed.]

MISRA-C++ V1

559

Rule 5-8-1

[The corresponding errors indicated by Agile+ Relief]

⚫ The number of shifts of the bitwise shift operator is a negative constant, or
has exceeded the type size of the variable on the left.

[Example 1]

unsigned int x, y ;

x = y << -2 ; <-[The result of the shift operation "y << -2" may vary
depending on the compilers.]

x <<= -2 ; <-[The result of the shift operation "x <<= -2" may vary
depending on the compilers.]

[Example 2]

unsigned int x, y ;

x = y << 32 ; <-[The number of bits specified for the shift operation "y <<
32" exceeds the type width of the result.]

if (x == (y >> 32)) <-[The number of bits specified for the shift operation "y >>
32" exceeds the type width of the result.]

x <<= 32 ; <-[The number of bits specified for the shift operation "x <<=
32" exceeds the type width of the result.]

MISRA-C++ V1

560

Rule 5-14-1

[The corresponding error indicated by Agile+ Relief]

⚫ There is a side effect expression on the right side of the &&operator, ||
operator, or in the second or third expressions of the ternary operator.

[Example 1]

int i, x[100];

volatile int z;

if (i == 0 && x[i++] == 0) <-[Update expression "i++" is not executed in all cases.]

if (x[i] == 0 || func(i) == 0) <-[Function "func" is not executed in all cases.]

x[i] = (x[i] == 0)? i : z ; <-[volatile variable "z" is not executed in all cases.]

MISRA-C++ V1

561

Rule 5-17-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

562

Rule 5-18-1

[The corresponding error indicated by Agile+ Relief]

⚫ A comma expression is used.

[Example 1]

x = 1, y = 2 ; <-["x=1,y=2" uses a comma outside an initialization
expression or update expression in a for statement.]

MISRA-C++ V1

563

Rule 5-19-1

[The corresponding error indicated by Agile+ Relief]

⚫ The operational result cannot be represented by an unsigned type.

[Example 1]

unsigned int ui = 0xffffffff + 2 ; <- [The result of constant expression “0xffffffff + 2”containing
unsigned constant expression “0xffffffff”is beyond the bit width
of unsigned int type.]

[Example 2]

#if (1u - 2u) > 128 <-["1u-2u", which is performed with unsigned types, results in
a value that cannot be represented by an unsigned type.]

MISRA-C++ V1

564

Rule 6-2-1

[The corresponding errors indicated by Agile+ Relief]

⚫ There is an assignment expression in the conditional expression.

⚫ The assignment operation and comparing operation coexist.

[Example 1]

if(x = func()) <-[The assignment operator "=" is used in the conditional
expression "if(x = func())".]

if((y = z) != 0) <-[The assignment operator "=" is used in the conditional
expression "(y = z) != 0".]

MISRA-C++ V1

565

Rule 6-2-2

[The corresponding error indicated by Agile+ Relief]

⚫ One of the expressions on the left or right side of the operators ==, !=,
<=, >=, is of floating type.

[Example 1]

double d1, d2;

 :

if(d1 == d2) <-[The result of the comparison "d1== d2" between floating
types might not be that expected.]

MISRA-C++ V1

566

Rule 6-2-3

[The corresponding errors indicated by Agile+ Relief]

⚫ A semicolon is immediately followed by the ')' of the statements if, for and
while.

⚫ There is a null statement such as :; or ;;.

[Example 1]

if (x == 0) ; <-[A semicolon immediately following an if statement, for
statement or while statement may cause an error.]

x = y;

[Example 2]

int x ; ; <-[An unnecessary null statement may exist.]

switch(y) {

case 1: ; <-[An unnecessary null statement may exist.]

MISRA-C++ V1

567

Rule 6-3-1

[The corresponding errors indicated by Agile+ Relief]

⚫ Statements controlled by for, while, do-while and switch are not embraced
by { } .

[Example 1]

while (x > 0) <-[It might be better to add curly brackets { } to this while
statement.]

 x--;

MISRA-C++ V1

568

Rule 6-4-1

[The corresponding errors indicated by Agile+ Relief]

⚫ Statements controlled by if, else statement have not been embraced by { }.

[Example 1]

if (x == 0) <-[It might be better to add curly brackets { } to this if
statement.]

 x = 10;

MISRA-C++ V1

569

Rule 6-4-2

[The corresponding errors indicated by Agile+ Relief]

⚫ The if and else if statements do not end with an else statement.

[Example 1]

if (x > 0) { <-[There is no else statement at the end of an if else if
statement. Even when all cases have been accounted for, it is
best to include an empty else statement.]

 :

} else if (x < 0) {

 :

}

MISRA-C++ V1

570

Rule 6-4-3

[The corresponding errors indicated by Agile+ Relief]

⚫ The case label or default label is not contained in the { } after the switch
statement.

⚫ The case label has no corresponding break statement.

⚫ No default label has been found in the switch statement.

⚫ A default label is placed before the case label.

⚫ There is a comparing operator, logical operator and a constant in the
conditional expression of switch statement.

⚫ There is only one case label in the switch statement.

[Example 1]

switch(x){

case 0 :

 {

 y = 10;

case 1: <-[The label case is not within the { } immediately following
the switch.]

 z = 100;

 break;

 }

[Example 2]

switch (x){

10: case 1:

11: no++; <-[A break statement for "case 1:" in line 10 may have been
accidentally omitted.]

12: case 2:

13: no++; <-[A break statement for "case 2:" in line 12 may have been
accidentally omitted.]

default: no++;

}

[Example 3]

switch (x > 0){ <-["x > 0" is used as the condition of a switch statement.]

:

MISRA-C++ V1

571

}

switch (1){ <-["1" is used as the condition of a switch statement.]

:

}

MISRA-C++ V1

572

Rule 6-4-4

[The corresponding errors indicated by Agile+ Relief]

⚫ The case label or default label is not contained in the { } after the switch
statement.

[Example 1]

switch(x){

case 0 :

 {

 y = 10;

case 1: <-[The label case is not within the { } immediately following
the switch.]

 z = 100;

 break;

 }

}

MISRA-C++ V1

573

Rule 6-4-5

[The corresponding error indicated by Agile+ Relief]

⚫ The case label has no corresponding break statement.

[Example 1]

switch (x){

10: case 1:

11: no++; <-[A break statement for "case 1:" in line 10 may have been
accidentally omitted.]

12: case 2:

13: no++; <-[A break statement for "case 2:" in line 12 may have been
accidentally omitted.]

default: no++;

}

MISRA-C++ V1

574

Rule 6-4-6

[The corresponding errors indicated by Agile+ Relief]

⚫ No default label has been found in the switch statement.

⚫ A default label is placed before the case label.

[Example 1]

switch (x) { <-[This switch statement contains no default label.]

case 1:

 x = a + b;

 break;

case 2:

 x = c + d;

 break;

}

[Example 2]

switch (x) {

default: <-[The label default has been included before the label case
in a switch statement.]

 no++

 break;

case 1 :

 no += x;

}

MISRA-C++ V1

575

Rule 6-4-7

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a comparing operator, logical operator and a constant in the
conditional expression of switch statement.

⚫ There is only one case label in the switch statement.

[Example 1]

switch (x > 0) <-["x > 0" is used as the condition of a switch statement.]

{ ~ }

switch (1) <-["1" is used as the condition of a switch statement.]

{ ~ }

[Example 2]

switch (x) { <-[The switch statement contains only one case label.]

case ONE :

 :

 break;

default:

 break;

}

MISRA-C++ V1

576

Rule 6-4-8

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

577

Rule 6-5-1

[The corresponding error indicated by Agile+ Relief]

⚫ The loop counter of the for-statement is of floating-point type.

⚫ Irrelevant variable exists in the condition to continue the loop.

[Example 1]

float f;

for(f = 0.0 ; f < 1 ; f += 0.1) { <-[Using the floating type variable "f" as the loop counter
might result in unintended iterations.]

 :

}

[Example 2]

for(i = 0, flag = 0; <-[The expression “flag = 0”that is not relevant to the loop
control exists in the for statement.]

i < n;

i++, counter++) <-[The expression “counter++” that is not relevant to the loop
control exists in the for statement.]

{

 :

}

MISRA-C++ V1

578

Rule 6-5-2

[The corresponding error indicated by Agile+ Relief]

⚫ The loop condition of the for statement is == or !=.

[Example 1]

for (int i = 0 ; i == n ; i++) <-[In the loop “for(i=0;i==n;i++)”, the loop condition “i==n” may
be wrong.]

{

 :

}

MISRA-C++ V1

579

Rule 6-5-3

[The corresponding error indicated by Agile+ Relief]

⚫ Update a loop counter of the for-statement within the loop body.

[Example 1]

Filename: file.cc

5: for(i = 0; i < n; i++) {

 :

 i ++ ; <-[The loop counter "i" of a for statement is updated in the
loop body (for statement position: line 5 of "file.cc").]

}

MISRA-C++ V1

580

Rule 6-5-4

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

581

Rule 6-5-5

[The corresponding error indicated by Agile+ Relief]

⚫ Irrelevant variable exists in the condition to continue the loop.

[Example 1]

for(int i = 0, flag = 0; <-[The expression “flag = 0”that is not relevant to the loop
control exists in the for statement.]

i < n;

i++, counter++) <-[The expression “counter++” that is not relevant to the loop
control exists in the for statement.]

{

 :

}

MISRA-C++ V1

582

Rule 6-5-6

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

583

Rule 6-6-1

[The corresponding error indicated by Agile+ Relief]

⚫ A goto statement is used.

[Example 1]

LOOP:

void func(&data);

if(data == 0) {

 goto LOOP; <-[A goto statement is used.]

}

MISRA-C++ V1

584

Rule 6-6-2

It is the same comment as Rule 6-6-1, please refer to Rule 6-6-1 for detail.

MISRA-C++ V1

585

Rule 6-6-3

[The corresponding errors indicated by Agile+ Relief]

⚫ A continue statement is used.

[Example 1]

Filename: file.c

 int func(char buf[], unsigned int n)

 {

 int i ;

 int not_space = 0;

 8: for(i = 0; i < n && buf[i] != '\0'; i++) {

 if(isspace(buf[i])) {

 continue; <-[The keyword "continue" is used (location of relevant loop
statement: line 8 of "file.c").]

 }

 not_space++;

 }

 return not_space;

 }

MISRA-C++ V1

586

Rule 6-6-4

[The corresponding error indicated by Agile+ Relief]

⚫ Multiple break statements that jump out of a loop exist.

[Example 1]

while(1) { <-[Two or more break statements appear in a loop.]

 if(data == 1) {

 :

 break;

 }

 else if(data == 2) {

 :

 }

 else {

 break;

 }

}

MISRA-C++ V1

587

Rule 6-6-5

[The corresponding errors indicated by Agile+ Relief]

⚫ More than one exit in the function.

[Example 1]

void func(void) <-[The function "func" has 2 or more exits.]

{

 :

 return;

 :

 return;

}

MISRA-C++ V1

588

Rule 7-1-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

589

Rule 7-1-2

[The corresponding error indicated by Agile+ Relief]

⚫ Un-updated parameters of pointer type or array type.

[Example 1]

void func(int p[], unsigned int n) <-[The space indicated by parameter "p" of type "int []" is
not updated and can be qualified with const.]

{

 int i;

 int num = 0;

 for(i = 0; i < n; i++) {

 num += p[i];

 }

}

MISRA-C++ V1

590

Rule 7-2-1

[The corresponding error indicated by Agile+ Relief]

⚫ The type that is irrelevant to enumeration type was compared.

[Example 1]

enum COLOR{ RED, GREEN, BLUE } color ;

enum ERROR_CODE{ SUCCESS, ERROR } code ;

int x;

if(color == x) <-["color" is compared with irrelative type.(enum type : enum
COLOR, compared type : int)]

if(color != ERROR) <-["color" is compared with irrelative type.(enum type : enum
COLOR, compared type : enum ERROR_CODE)]

if(color <= 0) <-["color" is compared with irrelative type.(enum type : enum
COLOR, compared type : int)]

if(color > -2) <-["color" is compared with irrelative value.(enum type : enum
COLOR, compared value : -2)]

MISRA-C++ V1

591

Rule 7-3-1

[The corresponding error indicated by Agile+ Relief]

⚫ Name space is not used when declaring or defining a class or function.

[Example 1]

//A group class and function

class CLS_A { <-[To avoid name conflict, declaration or definition should be
performed in namespace.]

public:

 int x ;

} ;

int GetData(CLS_A& a) ;

//B group class and function

class CLS_B {

public:

 long x ;

} ;

long GetData_B(CLS_B& b) {

 return b.x ;

}

MISRA-C++ V1

592

Rule 7-3-2

[The corresponding error indicated by Agile+ Relief]

⚫ The operator main was used.

[Example 1]

/*This comment is output when main is described under the [CHECK_IDENTIFIER] label of operator
file */

if(main == ENOENT) <-[You used the variable "main", please check.]

MISRA-C++ V1

593

Rule 7-3-3

[The corresponding error indicated by Agile+ Relief]

⚫ An anonymous name space has been defined in the head file.

[Example 1]

File name: head.h

namespace { <-[The anonymous namespace was defined in the header file
"head.h".]

 int x ;

}

MISRA-C++ V1

594

Rule 7-3-4

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

595

Rule 7-3-5

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

596

Rule 7-3-6

[The corresponding error indicated by Agile+ Relief]

⚫ The using command or using declaration was used in the head file.

[Example 1]

File name: header.h

namespace NSA {

 void func() ;

} ;

using namespace NSA ; <-["using was used in the head file. (File name: "header.h",
Description: "using namespace NSA")]

MISRA-C++ V1

597

Rule 7-4-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

598

Rule 7-4-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

599

Rule 7-4-3

[The corresponding error indicated by Agile+ Relief]

⚫ Assembly language is used.

[Example 1]

asm(mov r4, r0); <-[Assembly language "asm" is used.]

MISRA-C++ V1

600

Rule 7-5-1

[The corresponding errors indicated by Agile+ Relief]

⚫ The address of an automatic variable has been set to a return value of the
function.

[Example 1]

char *func(void)

{

char str[16];

 :

return str; <-[The address "str" is the address of an automatic variable
and should not be used as the return value of a function.]

 :

}

MISRA-C++ V1

601

Rule 7-5-2

[The corresponding errors indicated by Agile+ Relief]

⚫ The address of an automatic variable is assigned to a variable outside the
effective scope.

[Example 1]

int *p ;

{

 int x;

 p = &x ; <-[The address of the automatic variable x cannot be used
outside the scope.]

}

*p = 0 ;

MISRA-C++ V1

602

Rule 7-5-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

603

Rule 7-5-4

[The corresponding error indicated by Agile+ Relief]

⚫ There is a recursive function.

[Example 1]

int func(int x) <-[The function "func" is a recursive function.]

{

 :

y = func(z);

 :

}

MISRA-C++ V1

604

Rule 8-0-1

[The corresponding error indicated by Agile+ Relief]

⚫ Comma was used in the declaration statement.

[Example 1]

int *a, b; <-[Comma was used in the declaration statement.]

enum {

 AA, BB ,CC

} e1, e2 ; <-[Comma was used in the declaration statement.]

MISRA-C++ V1

605

Rule 8-3-1

[The corresponding error indicated by Agile+ Relief]

⚫ The default parameter value of virtual parameters in basic class and derived
class are different.

[Example 1]

File name: file.cc

 class A {

 public:

 3: virtual void f(int n=1) {

 }

 } ;

 class B : public A {

 public:

 void f(int n=2) { <-[The function "f" of class B modified the value of default
parameter of the virtual function "f"(line 3 of “file.cc”) of class
A.]

 }

 } ;

MISRA-C++ V1

606

Rule 8-4-1

[The corresponding errors indicated by Agile+ Relief]

⚫ There is a variable length parameter in the function declaration and
definition.

[Example 1]

int func(int n, ...) ; <-[The parameter declaration of the function "func(int n, ...)"
contains "...".]

int func(int n, ...) { <-[The parameter declaration of the function "func(int n, ...)"
contains "...".]

}

MISRA-C++ V1

607

Rule 8-4-2

[The corresponding error indicated by Agile+ Relief]

⚫ The parameters of a function declaration and definition have different
names.

[Example 1]

Filename: file.cc

 int func(int data, <-[The parameter name "data" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.cc".]

 int size); <-[The parameter name "size" is inconsistent with the
parameter name in the function definition "func" in line 3 of
"file.cc".]

3: int func(int size, int data)

{

:

}

MISRA-C++ V1

608

Rule 8-4-3

[The corresponding error indicated by Agile+ Relief]

⚫ The function may have no return statement for the return value, or the return
statement of the same type as the function does not exist.

[Example 1]

int func()

{

} <-[The function "func" does not have a return statement.]

[Example 2]

int func(int a)

{

 if (a == 0)

 { return 0; }

} <-[In the function "func", there are routes that do not have
return statements.]

[Example 3]

int func()

{

 :

 return 0;

 :

 return; <-[The return value of a return statement might have been
omitted accidentally.]

}

MISRA-C++ V1

609

Rule 8-4-4

[The corresponding error indicated by Agile+ Relief]

⚫ Cast a function name to a non-function pointer.

[Example 1]

int x , func(void) ;

x = reinterpret_cast<int>(func) ; <-[The expression "x = reinterpret_cast<int>(func)"
referencing the function name "func" might contain a mistake.]

if (func != 0){ <-[The expression "func != 0" referencing the function name
"func" might contain a mistake.]

 :

}

MISRA-C++ V1

610

Rule 8-5-1

[The corresponding error indicated by Agile+ Relief]

⚫ The automatic variable is referenced without having been set a value.

[Example 1]

int i;

if (data == 0) {

 i = 1;

}

data = i; <-[Variable "i" may be referenced before it has been set with a
value.]

MISRA-C++ V1

611

Rule 8-5-2

[The corresponding error indicated by Agile+ Relief]

⚫ The initializer list and the initialized array/structure/union do not match in the
construction.

[Example 1]

int data[2][3] = { <-[Initialization of the array/structure/union "data" is
inconsistent with its makeup.]

 1, 2, 3, 4, 5, 6

} ;

struct A {

 int a1;

 int a2;

};

A adata[2] = { 1, 2, 3, 4 } ; <-[Initialization of the array/structure/union "adata" is
inconsistent with its makeup.]

struct B {

 int b1;

 struct A b2;

} ;

B bdata = { 1, 2, 3 } ; <-[Initialization of the array/structure/union "bdata" is
inconsistent with its makeup.]

int cdata[7] = { 1, 2, 3, 4, 5 } ; <-[Initialization of the array/structure/union "cdata" is
inconsistent with its makeup.]

MISRA-C++ V1

612

Rule 8-5-3

[The corresponding error indicated by Agile+ Relief]

⚫ Some enumeration constants are assigned values while others are not.

[Example 1]

enum E1 { E11, E12 = 3, E13 } ; <-[In the declaration of the enumeration type "E1", assigned
members and unassigned members coexist.]

enum E2 { E21=1, E22, E23 = 5 } ; <-[In the declaration of the enumeration type "E2", assigned
members and unassigned members coexist.]

MISRA-C++ V1

613

Rule 9-3-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

614

Rule 9-3-2

[The corresponding error indicated by Agile+ Relief]

⚫ The return value is the address of non-const number which has a more strict
access limit.

[Example 1]

File name: file.cc

class CLS {

public :

 int * f ();

 :

 private :

20: int data;

} ;

int *CLS::f ()

 {

 return &data ; <-[The address of the number "data" which has a more strict
access limit than the function "f" was returned as a function.
(Member declaration: Line 20 of "file.cc")]

}

MISRA-C++ V1

615

Rule 9-33

[The corresponding error indicated by Agile+ Relief]

⚫ The member function without const limit and without member variable being
updated was defined.

[Example 1]

class CLS {

private:

 int m_val;

 int f() { <-[Because the member function "f" of class CLS did not
updated the status of object, const limit can be performed.]

 return m_val;

 }

} ;

MISRA-C++ V1

616

Rule 9-5-1

[The corresponding error indicated by Agile+ Relief]

⚫ A union is used.

[Example 1]

union UN <-[A union is used.]

{

 long m;

 short n[2];

};

MISRA-C++ V1

617

Rule 9-6-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

618

Rule 9-6-2

[The corresponding error indicated by Agile+ Relief]

⚫ The bitfield is declared with char , short or long type.

[Example 1]

struct STR {

 unsigned short m1:2 ; <-[The bitfield "m1" is declared with type unsigned short. The
declaration should be made with signed int or unsigned int.]

 unsigned int m2: 2 ;

 signed int m3: 2 ;

};

MISRA-C++ V1

619

Rule 9-6-3

[The corresponding error indicated by Agile+ Relief]

⚫ A bit field of enum type is declared.

[Example 1]

struct STR {

enum week {SUN, MON, TUE, WED, THU, FRY, SAT};

week val : 6; <-[The bitfield "val" is declared with type week. The
declaration should be made with signed int or unsigned int.]

};

MISRA-C++ V1

620

Rule 9-6-4

[The corresponding error indicated by Agile+ Relief]

⚫ A bit field of 1 bit and signed type is declared.

[Example 1]

struct STR {

 signed int m1:1 ; <-[The bit width of signed bit field "m1" is only 1 bit.]

 unsigned int m2: 1 ;

 signed int m3: 2 ;

};

MISRA-C++ V1

621

Rule 10-1-1

[The corresponding error indicated by Agile+ Relief]

⚫ Virtual inheritance was used.

[Example 1]

class B : public virtual A { <-[EC++ cannot use virtual inheritance.]

 :

};

MISRA-C++ V1

622

Rule 10-1-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

623

Rule 10-1-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

624

Rule 10-2-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

625

Rule 10-3-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

626

Rule 10-3-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

627

Rule 10-3-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

628

Rule 11-0-1

[The corresponding error indicated by Agile+ Relief]

⚫ The data member of public was declared in the class.

[Example 1]

class CLS { <-[public data exists in the class "CLS". Please do not use the
public data.]

public :

 CLS();

 int dataa;

 int datab;

 int datac;

} ;

MISRA-C++ V1

629

Rule 12-1-1

[The corresponding error indicated by Agile+ Relief]

⚫ The virtual function was called in constructor function or destructor function.

[Example 1]

File name: file.cc

 class CLS {

 public:

 CLS() {

 m=f(); <-[The virtual function "f"(Defined in line 6 of "file.cc") was
called in the constructor function "CLS".]

 }

 6: virtual int f() {

 return 1;

 }

 int m;

 } ;

MISRA-C++ V1

630

Rule 12-1-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

631

Rule 12-1-3

[The corresponding error indicated by Agile+ Relief]

⚫ Some classes contain the constructor function of single parameter without
specified explicit.

[Example 1]

class CLS { <-[class CLS has the single-argument constructor.]

public:

 CLS(int x) {

 m = x ;

 }

private:

 int m ;

} ;

MISRA-C++ V1

632

Rule 12-8-1

[The corresponding error indicated by Agile+ Relief]

⚫ In the copy constructor function, not all of the data members that contain the
basic class have been initialized.

[Example 1]

class A {

public :

 A() { }

 A(const A & a) {

 m_a1 = a.m_a1 ;

 m_a2 = a.m_a2 ;

 }

private :

 int m_a1 ;

 int m_a2 ;

} ;

class B : public A {

public :

 //Data member that does not copy the basic class

 B(const B & b) :

 m_b1(b.m_b1) , m_b2(b.m_b2) { <-[The copy constructor function of class B does not
copy all data members.]

 }

private :

 int m_b1 ;

 int m_b2 ;

} ;

class C : public A {

public :

 // Does not copy m_c2

 C(const C & c) :

 A(c) , m_c1(c.m_c1) { <-[The copy constructor function of class C does not
copy all data members.]

 }

private :

 int m_c1 ;

 int m_c2 ;

} ;

MISRA-C++ V1

633

Rule 12-8-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

634

Rule 14-5-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

635

Rule 14-5-2

[The corresponding error indicated by Agile+ Relief]

⚫ In the class of data member with defined destructor function or pointer type,
copy constructor function and copy assignment operator are not defined.

[Example 1]

class A { <-[class CLS explicitly defined destructor function, but it does
not explicitly declared copy constructor function or copy
assignment operator.]

public:

 A();

 ~A();

};

[Example 2]

class B { <-[class B contains pointer type data member, but does not
explicitly declared copy constructor function or copy
assignment operator.]

public:

 B() {

 m.create ();

 }

 ~B() {

 m.delete();

 }

private:

 char* m;

} ;

MISRA-C++ V1

636

Rule 14-5-3

It is the same comment as Rule 14-5-2, please refer to Rule 14-5-2 for detail.

MISRA-C++ V1

637

Rule 14-6-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

638

Rule 14-6-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

639

Rule 14-7-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

640

Rule 14-7-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

641

Rule 14-7-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

642

Rule 14-8-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

643

Rule 14-8-2

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

644

Rule 15-0-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

645

Rule 15-0-2

[The corresponding error indicated by Agile+ Relief]

⚫ The object of pointer type was thrown.

[Example 1]

class Exception {

} ;

void f1() {

 Exception* p = new Exception ;

 throw p ; <-[The exception "p" should throw a value.]

}

MISRA-C++ V1

646

Rule 15-0-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

647

Rule 15-1-1

[The corresponding error indicated by Agile+ Relief]

⚫ In the constructor function or destructor function, the new expression or
delete expression was described outside the try block.

[Example 1]

class CLS{

public:

CLS(int m){ <-[The constructor "CLS" should catch exceptions.]

 m_p = new int[m];

 }

~CLS(){ <-[The destructor "~CLS" should catch exceptions.]

delete m_p;

}

private:

int* m_p;

};

int foo(){

try{

CLS cls(-1);

 } catch(...) {.

 }

}

MISRA-C++ V1

648

Rule 15-1-2

[The corresponding error indicated by Agile+ Relief]

⚫ NULL was thrown.

[Example 1]

try {

 throw NULL; <-[NULL is thrown.]

} catch (int e){

 //Exception processing of integer;

} catch (char* e){

 //Exception processing of character pointer;

} catch(int* e){

 //Exception processing of integer pointer;

}

MISRA-C++ V1

649

Rule 15-1-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

650

Rule 15-3-1

It is the same comment as Rule 15-1-1, please refer to Rule 15-1-1 for detail.

MISRA-C++ V1

651

Rule 15-3-2

[The corresponding error indicated by Agile+ Relief]

⚫ The catch handler is not ended with catch(...).

[Example 1]

void func1(int x) {

 if(x == 0) {

 throw 0 ;

 }

 Library_x() ; //unknown type of throw

}

void func2() {

 try {

 func1(0) ;

 }

 catch(int n) { <-[The end of catch handler is not catch(...).]

 // error process

 }

}

MISRA-C++ V1

652

Rule 15-3-3

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

653

Rule 15-3-4

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

654

Rule 15-3-5

[The corresponding error indicated by Agile+ Relief]

⚫ The parameter during catch can be described by quoting.

[Example 1]

void func() {

 try {

 f();

 }

 catch(Except e) { <-[Exception should be catched by quoting.]

 :

 }

}

MISRA-C++ V1

655

Rule 15-3-6

[The corresponding error indicated by Agile+ Relief]

⚫ The catch handler of basic class comes in the former, and the exception
handler of derived class comes in the later.

[Example 1]

File name: file.cc

 class BICYCLE {

 public:

 void run_stop() { } //Run stops

 } ;

 class MOTORCYCLE : public BICYCLE {

 public:

 void engine_stop() { } //Engine stops

 } ;

 :

 try {

 MOTORCYCLE m;

 throw m;

 }

 catch(BICYCLE& b) { <-[The catch handler for base class "class BICYCLE" exists
before the catch handler (in line 18 of "file.cc") for derived
class "class MOTORCYCLE".]

 b.run_stop() ; //Run stops

 }

18: catch(MOTORCYCLE& m) {

 m.run_stop() ; //Run stops

 m.engine_stop() ;//Engine stops

 }

MISRA-C++ V1

656

Rule 15-3-7

It is the same comment as Rule 15-3-2, please refer to Rule 15-3-2 for detail.

MISRA-C++ V1

657

Rule 15-4-1

[The corresponding error indicated by Agile+ Relief]

⚫ Exception specification was used.

[Example 1]

void f() throw(ERROR1) { <-[The exception specification is used.]

 :

}

MISRA-C++ V1

658

Rule 15-5-1

It is the same comment as Rule 15-3-1, please refer to Rule 15-3-1 for detail.

MISRA-C++ V1

659

Rule 15-5-2

It is the same comment as Rule 15-4-1, please refer to Rule 15-4-1 for detail.

MISRA-C++ V1

660

Rule 15-5-3

[The corresponding error indicated by Agile+ Relief]

⚫ The catch handler of the main function is not ended with catch(...).

[Example 1]

void main() {

try {

:

 }

catch(char c) { <-[The end of catch handler of the function "main" is not
catch(...).]

// error process

 }

}

MISRA-C++ V1

661

Rule 16-0-1

[The corresponding error indicated by Agile+ Relief]

⚫ Before the line #include, contents exist that are neither preprocessing
directives nor comments.

[Example 1]

Filename: file.cc

1: double func()

 { return X; }

 #include "head.h" <-[Statements (in line 1 of "file.cc") which are not
preprocessing directives exist before this #include line.]

Filename: head.h

 extern double X;

MISRA-C++ V1

662

Rule 16-0-2

[The corresponding error indicated by Agile+ Relief]

⚫ #define or #undef statements exist in the block.

[Example 1]

void func(int n)

{

 #define MAX 10 <-[Macro "MAX" is operated by #defined in a block.]

 int i;

 for(i = 0; i < MAX; i++){

 :

}

 }

MISRA-C++ V1

663

Rule 16-0-3

[The corresponding error indicated by Agile+ Relief]

⚫ A #undef is used.

[Example 1]

#undef AAA <-[The macro "AAA" is undefined with #undef.]

MISRA-C++ V1

664

Rule 16-0-4

[The corresponding error indicated by Agile+ Relief]

⚫ Macro function is defined.

[Example 1]

#define max(a , b) ((a > b) ? a : b) <-[The macro function "max" can be inline function or template
function.]

MISRA-C++ V1

665

Rule 16-0-5

[The corresponding error indicated by Agile+ Relief]

⚫ The argument of the macro function begins with #.

[Example 1]

#define F(b) b

F(#error "memory error") <-[A preprocessing directive is used in the argument "#error"
of a macro function.]

MISRA-C++ V1

666

Rule 16-0-6

[The corresponding error indicated by Agile+ Relief]

⚫ The parameter in the replacement string of the macro is not embraced with
parentheses ().

[Example 1]

#define F(a, b) (a * b) <-[The parameters "a", "b" in the replacement string of the
macro "F" are not enclosed with parentheses ().]

x = F(1 + 5, 10);

MISRA-C++ V1

667

Rule 16-0-7

[The corresponding errors indicated by Agile+ Relief]

⚫ An unspecified replacement string exists in the #if or #elif statement.

⚫ An #undef is used on the undefined macro.

[Example 1]

/*The macro DEBUG is undefined, or no replacement string has been specified for it*/

#if DEBUG == 1 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

#elif DEBUG == 2 <-[The replacement string of the macro "DEBUG" in an #if or
#elif statement is not specified.]

[Example 2]

/* There are no definitions of macro ABC,XYZ*/

#if ABC <-["ABC" might have been intended to be appended with
defined.]

#elif XYZ <-["XYZ" might have been intended to be appended with
defined.]

[Example 3]

/* There are no definition of macro BBB*/

#undef BBB <-[#undef is used on the undefined macro "BBB".]

MISRA-C++ V1

668

Rule 16-0-8

[The corresponding error indicated by Agile+ Relief]

⚫ In ANSI specification, some lines have started with the undefined #.

[Example 1]

#asm <-[The undefined pre-processing command "#asm" cannot be
described in ANSI.]

MISRA-C++ V1

669

Rule 16-1-1

[The corresponding errors indicated by Agile+ Relief]

⚫ Grammar errors exist in the #if or #elif statement.

⚫ A "defined" is generated by macro expansion from the #if or #elif
statements.

[Example 1]

#if 1 1 <-[The end of the condition expression in an #if or #elif
statement contains a syntax error and cannot be executed.]

[Example 2]

#define DEF defined

#if DEF MAXNAM <-[An #if or #elif statement generates the string "defined" in
the process of macro expansion.]

MISRA-C++ V1

670

Rule 16-1-2

[The corresponding error indicated by Agile+ Relief]

⚫ A mismatch exists in the beginning and end of a conditional judgment.

[Example 1]

#endif <-[There are no preprocess directives corresponding to
"#endif".]

[Example 2]

#ifdef ABC <-[There is no #endif corresponding to #if, #ifdef or #ifndef.]

MISRA-C++ V1

671

Rule 16-2-1

[The corresponding error indicated by Agile+ Relief]

⚫ Macro function was defined.

⚫ The integer constant has been defined for Macro.

[Example 1]

#define max(a , b) ((a > b) ? a : b) <-[The macro function "max" can be inline function or template
function.]

[Example 2]

#define RED 1 <-[The macro "RED" can be const constant or enumeration
constant.]

#define YELLOW 2 <-[The macro "YELLOW" can be const constant or
enumeration constant.]

#define BLUE 3 <-[The macro "BLUE" can be const constant or enumeration
constant.]

MISRA-C++ V1

672

Rule 16-2-2

It is the same comment as Rule 16-2-1, please refer to Rule 16-2-1 for detail.

MISRA-C++ V1

673

Rule 16-2-3

[The corresponding error indicated by Agile+ Relief]

⚫ Multiple inclusions of the same file exist.

[Example 1]

Filename: file.cc

11: #include "head.h"

 #include "head.h" <-[The file "file.h" cannot be included redundantly (location of
redundancy: line 11 in "file.cc").]

Filename: head.h

 extern int X;

MISRA-C++ V1

674

Rule 16-2-4

[The corresponding error indicated by Agile+ Relief]

⚫ In the #include-specified file name, there are '(single quotation), "(double
quote), /*(slash and asterisk) and multi-bytes characters(Chinese characters,
etc).

[Example 1]

#include "abc/*XY*/d.h" <-[The file name "abc/*XY*/d.h" specified by #include
contains one or more characters not defined in ANSI.]

MISRA-C++ V1

675

Rule 16-2-5

[The corresponding error indicated by Agile+ Relief]

⚫ In the #include-specified file name, there are \(currency character).

[Example 1]

#include "\d.h" <-[The file name "\d.h " specified by #include contains one or
more characters not defined in ANSI.]

MISRA-C++ V1

676

Rule 16-2-6

[The corresponding errors indicated by Agile+ Relief]

⚫ The included file name in the #include statement has not been embraced by
<>, or "".

[Example 1]

#include head.h <-[The name of the header file is not enclosed with angle
brackets < > or quotation marks " ".]

MISRA-C++ V1

677

Rule 16-3-1

[The corresponding error indicated by Agile+ Relief]

⚫ The #operator and the ##operator coexist in the macro function.

[Example 1]

#define AAA(x,y) x###y <-[The operators # and ## are used together in the definition
of the macro function "AAA".]

MISRA-C++ V1

678

Rule 16-3-2

[The corresponding error indicated by Agile+ Relief]

⚫ A # or ## operator is used in the macro.

[Example 1]

#define AAA(x,y) x###y <-[Operator # or ## is used in a macro.]

#define A(x) #x <-[Operator # or ## is used in a macro.]

#define B(x, y) x##y <-[Operator # or ## is used in a macro.]

#define C x##y <-[Operator # or ## is used in a macro.]

MISRA-C++ V1

679

Rule 16-6-1

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

680

Rule 17-0-1

[The corresponding errors indicated by Agile+ Relief]

⚫ The following macros are redefined or invalidated:
__LINE__
__FILE__
__DATE__
__TIME__

⚫ The ANSI reserved identifiers have been defined or invalidated as macro
names.

[Example 1]

#define __FILE__ abc <-[The predefined macro "__FILE__" is defined again with
#define.]

[Example 2]

#define errno -1 <-[In the #define line, "errno" is used as macro.]

#define malloc(a) mymalloc(a) <-[In the #define line, "malloc" is used as macro.]

MISRA-C++ V1

681

Rule 17-0-2

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier using a name identical to that of the reserved identifier is used
in the declaration and definition.

The variable and function using identical names registered under the label
[RESERVED_IDENTIFIER] and [RESERVED_LIBRARY_IDENTIFIER] of the
identifier file are checked as an object. For more information regarding the
registration of an identifier file, see the -F option in the "Command Manual".

[Example 1]

int errno ; <-[The name "errno" is the same as an external name used in
the system.]

MISRA-C++ V1

682

Rule 17-0-3

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier using a name identical to that of the reserved identifier is used
in the declaration and definition.

The variable and function using identical names registered under the label
[RESERVED_IDENTIFIER] and [RESERVED_LIBRARY_IDENTIFIER] of the
identifier file are checked as an object. For more information regarding the
registration of an identifier file, see the -F option in the "Command Manual".

[Example 1]

void *malloc(unsigned int size) { <-[The name "malloc" is the same as an external name used
in the system.]

 :

}

MISRA-C++ V1

683

Rule 17-0-4

Agile+ Relief will not check if this rule has been violated.

MISRA-C++ V1

684

Rule 17-0-5

[The corresponding error indicated by Agile+ Relief]

⚫ The longjmp and macro setjmp functions are used.

[Example 1]

#include <setjmp.h>

static jmp_buf parse_error;

:

longjmp(parse_error, 1); <-[The function "longjmp" is used.]

MISRA-C++ V1

685

Rule 18-0-1

[The corresponding error indicated by Agile+ Relief]

⚫ The following standard C library was imported through #include.

assert.h

iso646.h

setjmp.h

stdio.h

wchar.h

ctype.h

limits.h

signal.h

stdlib.h

wctype.h

errno.h

locale.h

stdarg.h

string.h

float.h

math.h

stddef.h

time.h

[Example 1]

#include <locale.h> <-[You have included the file "locale.h", please check.]

MISRA-C++ V1

686

Rule 18-0-2

[The corresponding error indicated by Agile+ Relief]

⚫ The atof, atoi and atoll functions are used.

[Example 1]

#include <stdlib.h>

int i;

char *str = "123";

i = atoi(str); <-[The function "atoi" is used.]

MISRA-C++ V1

687

Rule 18-0-3

[The corresponding error indicated by Agile+ Relief]

⚫ The abort, exit, getenv, and system functions are used.

[Example 1]

#include <stdlib.h>

:

if (j < 0) {

abort(); <-[The function "abort" is used.]

}

MISRA-C++ V1

688

Rule 18-0-4

[The corresponding error indicated by Agile+ Relief]

⚫ The following functions are used:

clock

difftime

mktime

time

asctime

ctime

gmtime

localtime

strftime

[Example 1]

#include <ctime>

:

time_t tm:

time(&tm); <-[The function "time" is used.]

MISRA-C++ V1

689

Rule 18-0-5

[The corresponding error indicated by Agile+ Relief]

⚫ The following functions are used:

strcpy

strcmp

strcat

strchr

strspn

strcspn

strpbrk

strrchr

strstr

strtok

strlen

[Example 1]

char a[4] = “123”;

char n[4];

strcpy(n, a); <-[You have used the function “strcpy”, please check.]

MISRA-C++ V1

690

Rule 18-2-1

[The corresponding error indicated by Agile+ Relief]

⚫ A macro offsetof is used.

[Example 1]

#include <cstddef>

struct STR {

 char *sp;

 long dt;

} *strp;

long *dtp = (long *)((char*)strp + offsetof(struct STR, dt));

<-[macro "offsetof" is used]

MISRA-C++ V1

691

Rule 18-4-1

[The corresponding error indicated by Agile+ Relief]

⚫ The following dynamic heap allocation functions are used:

malloc

calloc

realloc

free

[Example 1]

int *mp;

mp = (int *)malloc(sizeof(int) * 10); <-[function "malloc" is used.]

MISRA-C++ V1

692

Rule 18-7-1

[The corresponding errors indicated by Agile+ Relief]

⚫ The following functions and macros are used:

signal

SIG_DFL

SIG_IGN

SIG_ERR

SIGABRT

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

[Example 1]

extern void sigint_hnd();

:

signal(SIGINT, sigint_hnd); <-[The function "signal" is used.]

 <-[The macro "SIGINT" is used.]

MISRA-C++ V1

693

Rule 19-3-1

[The corresponding error indicated by Agile+ Relief]

⚫ An identifier errno is used.

[Example 1]

#include <errno.h>

:

if(errno == ENOENT){ <-[The variable "errno" is used. Please check.]

 :

}

MISRA-C++ V1

694

Rule 27-0-1

[The corresponding errors indicated by Agile+ Relief]

⚫ File stdio.h or cstdio is included by the #include statement.

⚫ The following functions are used:

fgetpos

fopen

ftell

gets

perror

remove

rename

[Example 1]

#include <stdio.h> <-[The file "locale.h" is included and should be confirmed.]

FILE *fp;

 :

fp = fopen("abc.txt", "r"); <-[The function "fopen" is used.]

695

Appendix A: A List of MISRA Rules

A.1 MISRA-C V1 Rule

Rule Yes or
No[2]

 Rule Yes or
No[2]

 Rule Yes or
No[2]

 Rule Yes or
No[2]

1 Y 33 Y 65 Y 97 Y

2[1] N 34 Y 66 Y 98 Y

3 Y 35 Y 67 Y 99[1] N

4[1] X[3] 36 Y 68 Y 100 Y

5 Y 37 Y 69 Y 101 Y

6[1] N 38 Y 70 Y 102 Y

7 Y 39 Y 71 Y 103 X[5]

8 Y 40 Y 72 Y 104 Y

9 Y 41[1] N 73 Y 105 Y

10 N 42 Y 74 Y 106 Y

11 Y 43 Y 75 Y 107 Y

12 Y 44 Y 76 Y 108 Y

13 Y 45 Y 77 Y 109 Y[6]

14 Y 46 Y 78 Y 110 Y

15[1] N 47 Y 79 Y 111 Y

16 Y 48 Y 80 Y 112 Y

17 Y 49 Y 81 Y 113 Y

18 Y 50 Y 82 Y 114 Y

19 Y 51 Y 83 Y 115 Y

20 Y 52 Y 84 Y 116[1] N

21 Y 53 Y 85 Y 117 X[7]

22 Y 54 Y 86 Y 118 Y

23 Y 55 Y 87 Y 119 Y

24 Y 56 Y 88 Y 120 Y

25 Y 57 Y 89 Y 121 Y

26 Y 58 Y 90 Y 122 Y

27 Y 59 Y 91 Y 123 Y

28 Y 60 Y 92 Y 124 Y

29 Y 61 Y 93 Y[4] 125 Y

30 Y 62 Y 94 Y 126 Y

31 Y 63 Y 95 Y 127 Y

32 Y 64 Y 96 Y

[1]: Rules required for documentation.

[2]: Y: Violation of the MISRA rule can be indicated
 N: Violation of the MISRA rule can not be indicated
 X: Rules, that during static analysis are difficult to check but that will be checked if
possible.

[3]: Violation of the rule will be indicated in the following cases:

⚫ A bitwise shift operation out of the type size.

⚫ Divided by zero.

⚫ Out of the range of the array.

⚫ Address "0" may be referenced.

[4]: macro functions that may result in failures.

[5]: Messages will be indicated for magnitude comparisons of addresses belonging to

696

objects of different types.

[6]: Messages will be indicated for a union variable in which a member has been assigned
a value but an different member is used.

[7]: Messages will be indicated for calling a real-time library function, the argument address
of which may be 0.

697

A.2 MISRA-C V2 Rule

Rule Yes or
No[2]

 Rule Yes or
No[2]

 Rule Yes or
No[2]

 Rule Yes or
No[2]

1.1 Y 8.7 Y 13.4 Y 18.2 Y

1.2 Y 8.8 Y 13.5 Y 18.3 N

1.3[1] N 8.9 Y 13.6 Y 18.4 Y

1.4[1] N 8.10 Y 13.7 Y 19.1 Y

1.5[1] N 8.11 Y 14.1 Y 19.2 Y

2.1 Y 8.12 Y 14.2 Y 19.3 Y

2.2 Y 9.1 Y 14.3 Y 19.4 Y

2.3 Y 9.2 Y 14.4 Y 19.5 Y

2.4 N 9.3 Y 14.5 Y 19.6 Y

3.1[1] N 10.1 Y 14.6 Y 19.7 Y

3.2[1] N 10.2 Y 14.7 Y 19.8 Y

3.3[1] N 10.3 Y 14.8 Y 19.9 Y

3.4[1] N 10.4 Y 14.9 Y 19.10 Y

3.5[1] Y 10.5 Y 14.10 Y 19.11 Y

3.6[1] N 10.6 Y 15.1 Y 19.12 Y

4.1 Y 11.1 Y 15.2 Y 19.13 Y

4.2 Y 11.2 Y 15.3 Y 19.14 Y

5.1 Y 11.3 Y 15.4 Y 19.15 Y

5.2 Y 11.4 Y 15.5 Y 19.16 Y

5.3 Y 11.5 Y 16.1 Y 19.17 Y

5.4 Y 12.1 Y 16.2 Y 20.1 Y

5.5 Y 12.2 Y 16.3 Y 20.2 Y

5.6 Y 12.3 Y 16.4 Y 20.3 X[4]

5.7 Y 12.4 Y 16.5 Y 20.4 Y

6.1 Y 12.5 Y 16.6 Y 20.5 Y

6.2 Y 12.6 Y 16.7 Y 20.6 Y

6.3 Y 12.7 Y 16.8 Y 20.7 Y

6.4 Y 12.8 Y 16.9 Y 20.8 Y

6.5 Y 12.9 Y 16.10 Y 20.9 Y

7.1 Y 12.10 Y 17.1 Y 20.10 Y

8.1 Y 12.11 Y[3] 17.2 Y 20.11 Y

8.2 Y 12.12 Y 17.3 Y 20.12 Y

8.3 Y 12.13 Y 17.4 Y 21.1 X[5]

8.4 Y 13.1 Y 17.5 Y

8.5 Y 13.2 Y 17.6 Y

8.6 Y 13.3 Y 18.1 Y
[1]: Rules required for documentation.

[2]: Y: Violation of the MISRA rule can be indicated
 N : Violation of the MISRA rule can not be indicated
 X : Rules, that during static analysis are difficult to check but that will be checked if
possible.

[3]: Messages will be indicated for a negative result from the subtraction of an unsigned
constant.

[4]: Messages will be indicated for calling a real-time library function, the argument address
of which may be "0".

[5]: Violation of the rule will be indicated in the following cases:

⚫ A bitwise shift operation out of the type size

⚫ Divided by zero

698

⚫ Out of the range of the array

⚫ Address "0" may be referenced

699

A.3 MISRA-C V3 Rule

- The rule that there is (*1) mark in the rule column is a rule added by MISRA-C:2012
Amendment 1.

Rule Yes
or
No[1]

 Rule Yes
or
No[1]

 Rule Yes
or
No[1]

 Rule Yes
or
No[1]

1.1 Y 8.11 Y 14.3 Y 20.6 Y

1.2 Y 8.12 Y[8] 14.4 Y 20.7 Y

1.3 Y 8.13 Y 15.1 Y 20.8 Y

2.1 Y 8.14 Y 15.2 Y 20.9 Y

2.2 Y 9.1 Y 15.3 Y 20.10 Y

2.3 Y 9.2 Y 15.4 Y 20.11 Y

2.4 Y 9.3 Y 15.5 Y 20.12 Y

2.5 Y 9.4 Y 15.6 Y 20.13 Y

2.6 Y 9.5 Y 15.7 Y 20.14 Y

2.7 Y 10.1 Y 16.1 Y 21.1 Y

3.1 X[2] 10.2 Y 16.2 Y 21.2 Y

3.2 Y 10.3 Y 16.3 Y 21.3 Y

4.1 Y 10.4 Y 16.4 Y 21.4 Y

4.2 Y 10.5 Y 16.5 Y 21.5 Y

5.1 Y 10.6 Y 16.6 Y 21.6 Y

5.2 Y 10.7 Y 16.7 Y 21.7 Y

5.3 Y 10.8 Y 17.1 Y 21.8 Y

5.4 Y 11.1 Y 17.2 Y 21.9 Y

5.5 Y 11.2 Y 17.3 Y 21.10 Y

5.6 Y 11.3 Y 17.4 Y 21.11 Y

5.7 Y 11.4 Y 17.5 Y 21.12 Y

5.8 Y[3] 11.5 Y 17.6 Y 21.13(*1) Y

5.9 Y 11.6 X[9] 17.7 Y 21.14(*1) Y

6.1 X[4] 11.7 Y 17.8 Y 21.15(*1) Y

6.2 Y 11.8 Y 18.1 Y 21.16(*1) Y[11]

7.1 Y 11.9 Y 18.2 Y 21.17(*1) Y[12]

7.2 Y 12.1 Y 18.3 Y 21.18(*1) Y

7.3 Y 12.2 Y 18.4 Y[10] 21.19(*1) Y

7.4 Y 12.3 Y 18.5 Y 21.20(*1) Y

8.1 Y 12.4 Y 18.6 Y 22.1 Y

8.2 Y 12.5(*1) Y 18.7 Y 22.2 Y

8.3 X[5] 13.1 Y 18.8 Y 22.3 Y

8.4 X[6] 13.2 Y 19.1 Y 22.4 Y

8.5 X[7] 13.3 Y 19.2 Y 22.5 Y

8.6 Y 13.4 Y 20.1 Y 22.6 Y

8.7 Y 13.5 Y 20.2 Y 22.7(*1) Y

8.8 Y 13.6 Y 20.3 Y 22.8(*1) Y

8.9 Y 14.1 Y 20.4 Y 22.9(*1) Y

8.10 Y 14.2 Y 20.5 Y 22.10(*1) Y

[1]: Y: Violation of the MISRA rule can be indicated.
 X : Rules, that during static analysis are difficult to check but that will be checked if
possible.

[2]: The following “/*” and “//” descriptions can not be indicated.

⚫ "//" description in /* comment

700

⚫ "/*" and "//" descriptions in // comment

[3]: The variable and the function without the external linkage are indicated.

[4]: "_ Bool" type can not be indicated.

[5]: The presence of the type qualifier can not be indicated.

[6]: The presence of variable declaration can not be indicated.

[7]: The declaration in two or more header files can not be indicated.

[8]: When the value of the enumeration constant is unique, it is likely to be indicated.

[9]: The integer constant can not be indicated.

[10]: The arithmetic operation of "++" and "--" are indicated.

[11]: The string or floating type object of comparison in the memcmp function can not be
indicated.

[12]: The strcat function and the strcpy function are indicated.

701

A.4 MISRA-C++ V1 Rule

Rule Yes
or
No[2]

 Rule Yes
or
No[2]

 Rule Yes
or
No[2]

 Rule Yes
or
No[2]

0-1-1 Y 4-5-3 N 6-4-5 Y 10-3-2 N

0-1-2 Y 4-10-1 N 6-4-6 Y 10-3-3 N

0-1-3 X[3] 4-10-2 N 6-4-7 Y 11-0-1 Y

0-1-4 Y 5-0-1 Y 6-4-8 N 12-1-1 Y

0-1-5 N 5-0-2 Y 6-5-1 Y 12-1-2 N

0-1-6 N 5-0-3 N 6-5-2 Y 12-1-3 Y

0-1-7 Y 5-0-4 X[13] 6-5-3 Y 12-8-1 Y

0-1-8 N 5-0-5 X[14] 6-5-4 N 12-8-2 N

0-1-9 X[4] 5-0-6 Y 6-5-5 X[17] 14-5-1 N

0-1-10 X[5] 5-0-7 N 6-5-6 N 14-5-2 Y

0-1-11 X[6] 5-0-8 N 6-6-1 Y 14-5-3 Y

0-1-12 X[6] 5-0-9 N 6-6-2 Y 14-6-1 N

0-2-1 Y 5-0-10 Y 6-6-3 Y 14-6-2 N

0-3-1[1] N 5-0-11 N 6-6-4 Y 14-7-1 N

0-3-2 Y 5-0-12 N 6-6-5 Y 14-7-2 N

0-4-1[1] N 5-0-13 Y 7-1-1 N 14-7-3 N

0-4-2[1] N 5-0-14 Y 7-1-2 Y 14-8-1 N

0-4-3[1] N 5-0-15 Y 7-2-1 Y 14-8-2 N

1-0-1 X[7] 5-0-16 Y 7-3-1 Y 15-0-1[1] N

1-0-2[1] N 5-0-17 Y 7-3-2 Y 15-0-2 Y

1-0-3[1] N 5-0-18 X[15] 7-3-3 Y 15-0-3 N

2-2-1[1] N 5-0-19 Y 7-3-4 N 15-1-1 Y

2-3-1 Y 5-0-20 X[16] 7-3-5 N 15-1-2 Y

2-5-1 N 5-0-21 Y 7-3-6 Y 15-1-3 N

2-7-1 Y 5-2-1 Y 7-4-1[1] N 15-3-1 X[20]

2-7-2 N 5-2-2 Y 7-4-2 N 15-3-2 Y

2-7-3 N 5-2-3 Y 7-4-3 X[18] 15-3-3 N

2-10-1 N 5-2-4 Y 7-5-1 Y 15-3-4 N

2-10-2 Y 5-2-5 Y 7-5-2 Y 15-3-5 Y

2-10-3 X[8] 5-2-6 Y 7-5-3 N 15-3-6 Y

2-10-4 X[9] 5-2-7 Y 7-5-4 Y 15-3-7 Y

2-10-5 X[10] 5-2-8 Y 8-0-1 Y 15-4-1 Y

2-10-6 Y 5-2-9 Y 8-3-1 Y 15-5-1 Y

2-13-1 Y 5-2-10 Y 8-4-1 Y 15-5-2 Y

2-13-2 Y 5-2-11 Y 8-4-2 Y 15-5-3 Y

2-13-3 Y 5-2-12 Y 8-4-3 Y 16-0-1 Y

2-13-4 Y 5-3-1 Y 8-4-4 Y 16-0-2 Y

2-13-5 N 5-3-2 Y 8-5-1 Y 16-0-3 Y

3-1-1 Y 5-3-3 Y 8-5-2 Y 16-0-4 Y

3-1-2 N 5-3-4 Y 8-5-3 Y 16-0-5 Y

3-1-3 Y 5-8-1 Y 9-3-1 N 16-0-6 Y

3-2-1 N 5-14-1 Y 9-3-2 X[19] 16-0-7 Y

3-2-2 N 5-17-1 N 9-3-3 Y 16-0-8 Y

3-2-3 Y 5-18-1 Y 9-5-1 Y 16-1-1 Y

3-2-4 X[11] 5-19-1 Y 9-6-1[1] N 16-1-2 Y

3-3-1 Y 6-2-1 Y 9-6-2 Y 16-2-1 X[21]

3-3-2 Y 6-2-2 Y 9-6-3 Y 16-2-2 Y

3-4-1 X[12] 6-2-3 Y 9-6-4 Y 16-2-3 Y

702

Rule Yes
or
No[2]

Rule Yes
or
No[2]

Rule Yes
or
No[2]

Rule Yes
or
No[2]

3-9-1 N 6-3-1 Y 10-1-1 Y 16-2-4 Y

3-9-2 Y 6-4-1 Y 10-1-2 N 16-2-5 Y

3-9-3 Y 6-4-2 Y 10-1-3 N 16-2-6 Y

4-5-1 Y 6-4-3 Y 10-2-1 N 16-3-1 Y

4-5-2 N 6-4-4 Y 10-3-1 N 16-3-2 Y

16-6-1[1] N 17-0-4[1] N 18-0-3 Y 18-4-1 Y

17-0-1 Y 17-0-5 Y 18-0-4 Y 18-7-1 Y

17-0-2 Y 18-0-1 Y 18-0-5 Y 19-3-1 Y

17-0-3 Y 18-0-2 Y 18-2-1 Y 27-0-1 Y

[1]: Rules required for documentation.

[2] Y: Violation of the MISRA rule can be indicated
N: Violation of the MISRA rule can not be indicated
X: Rules, that during static analysis are difficult to check but that will be checked if
possible.

[3]: Messages will be indicated for unused variable which is neither global variable nor
member variable.

[4]: Messages will be indicated for the source code that it maybe executed, while even be
deleted, no effect to the function will be produced.

[5]: Messages will be indicated for unused static function.

[6] Messages will be indicated for unused parameter.

[7]: Messages will be indicated for descriptions which is not compliant with C++
2003(ISO/ICE 14882:2003).

[8]: Messages will be indicated for duplicating typedef name.

[9]: Messages will be indicated for duplicating class name, struct name, union name and
enum name.

[10]: Messages will be indicated for defining identifiers with the same name outside and
inside the function.

[11]: Messages will be indicated for defining the external variables with the same name of a
type in a file.

[12]: Messages will be indicated for using global static variable only in one function.

[13]: Messages will be indicated for comparing signed value and unsigned value.

[14]: Messages will be indicated for assigning the result of integer operation(+,-,*,/)to the
floating type or comparing it with the floating type.

[15]: Messages will be indicated if the comparison is made between the addresses of
objects with different types.

[16]: Messages will be indicated if the operand of bit operation is non-integer type.

[17]: Messages will be indicated if an irrelevant variable exists in the loop condition of for
statement.

[18]: Messages will be indicated if an assemble statement is used.

[19]: Messages will be indicated if the address of non-const member which has a more
strict access limit is used as the return value.

[20]: Messages will be indicated if a new expression or a delete expression is written out of
the try block in constructor or destructor.

703

[21]: Messages will be indicated in the following cases:

⚫ Macro function was defined.

⚫ The integer constant has been defined for Macro.

	Title Page
	Foreword
	Contents
	1. MISRA Options in GUI
	1.1 Create Project
	1.2 Check for MISRA Violation
	1.3 Experienced with Agile+ Relief C/C++
	1.4 Setting up Rule Checking

	2 MISRA Options in Command line
	2.1 Functions of Command
	2.2 Format of Command
	2.3 Command Options
	2.4 Return Value
	2.5 Output Files
	2.6 Error Messages
	2.7 Example for Use
	2.7.1 Analyze with pgr5 command
	2.7.2 Message Checking in the pgrmisra Command

	3 Corresponding Indication Messages for the Violation of MISRA Rules
	3.1 MISRA-C V1
	3.2 MISRA-C V2
	3.3 MISRA-C V3
	3.4 MISRA-C++ V1

	Appendix A: A List of MISRA Rules
	A.1 MISRA-C V1 Rule
	A.2 MISRA-C V2 Rule
	A.3 MISRA-C V3 Rule
	A.4 MISRA-C++ V1 Rule

