
J2UL-2462-02ENZ0(02)
March 2022

FUJITSU Software
Technical Computing Suite V4.0L20

Job Operation Software
API user's Guide for Power API

Preface

Purpose of This Manual

This manual describes how to use the Power API provided by the Job Operation Software of Technical Computing Suite.

Intended Readers

This manual is intended for administrators who operate and manage jobs and the end users who actually use the Power API. The manual
assumes readers have the following knowledge:

- Basic Linux knowledge

- Knowledge of usage of job, obtained from the "Job Operation Software End-user's Guide"

- Knowledge of the Sandia Power API specifications

Organization of This Manual

This manual is organized as follows.

Chapter 1 What is the Power API?

This chapter provides an overview of the Power API.

Chapter 2 How to Use the Power API

This chapter describes how to create, compile, and execute a Power API program.

Chapter 3 Items Specific to a System Consisting of the FX or PRIMERGY Server

This chapter describes items specific to the Power API in the system.

Appendix A Functions Available in the Job Operating Software

This appendix describes the range of supported Power API functions on the Job Operation Software.

Appendix B Sample Programs

This appendix describes sample programs that use the Power API.

Notation Used in This Manual

Representation of Units

The following table lists the prefixes representing units in this manual. As a rule, disk size is expressed as a power of 10, and memory
size is expressed as a power of 2. Be careful about specifying sizes when displaying or entering commands.

Prefix Value Prefix Value

K (kilo) 103 Ki (kibi) 210

M (mega) 106 Mi (mebi) 220

G (giga) 109 Gi (gibi) 230

T (tera) 1012 Ti (tebi) 240

P (peta) 1015 Pi (pebi) 250

Representation of Model Names

In this manual, the computer that based on Fujitsu A64FX CPU is abbreviated as "FX server", and FUJITSU server PRIMERGY as
"PRIMERGY server" (or simply "PRIMERGY").
Also, specifications of some of the functions described in the manual are different depending on the target model. In the description of
such a function, the target model is represented by its abbreviation as follows:
[FX]: The description applies to FX servers.
[PG]: The description applies to PRIMERGY servers.

- i -

Representation of the Path Name of a Command

In operation examples, a command in the /bin, /usr/bin, /sbin, or /usr/sbin directory may not be indicated by an absolute path in some
cases.

Symbols in This Manual

This manual uses the following symbols.

 Note

The Note symbol indicates an item requiring special care. Be sure to read these items.

 See

The See symbol indicates the reference source of detailed information.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks

- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of Publication and Version

Version Manual Code

March 2022, Version 2.2 J2UL-2462-02ENZ0(02)

June 2020, Version 2.1 J2UL-2462-02ENZ0(01)

March 2020, Second version J2UL-2462-02ENZ0(00)

January 2020, First version J2UL-2462-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020-2022

Update History

Changes Location Version

Added description of electrical energy on FX server. 3.2.2 2.2

Changed power measurement and control target of Power API. Chapter 1 2.1

Changed cross compiler command name. 2.2, B.1

Clarified the behavior of the function when retrieving non existing Object. 3.2.1

Clarified the data type which varies on Attribute. 3.2.2, 3.2.3,
3.3.2

Changed query function for upper of lower limit of power knob. 3.2.3

Changed sample program code. B.4

Changed sample CPU Frequency. 3.2.3 2

- ii -

Changes Location Version

Changed the look according to product upgrades. -

All rights reserved.

The information in this manual is subject to change without notice.

- iii -

Contents
Chapter 1 What is the Power API?...1

Chapter 2 How to Use the Power API.. 2
2.1 How to Create a Power API Program..2

2.1.1 Power API Program Flow...2
2.1.2 Initialization.. 3
2.1.3 Getting Objects... 3
2.1.4 Power Measurement and Control... 4
2.1.5 Termination Process... 4

2.2 Compile Method.. 4
2.3 Execution Method..5

Chapter 3 Items Specific to a System Consisting of the FX or PRIMERGY Server... 6
3.1 Initialization Function..6
3.2 Power Control and Measurement on the FX Server.. 6

3.2.1 Expression of the Object Tree Structure of the FX Server... 6
3.2.2 Power Measurement on the FX Server... 8
3.2.3 Power Control on the FX Server...9

3.3 Power Control and Measurement on the PRIMERGY Server.. 10
3.3.1 Expression of the Object Tree Structure of the PRIMERGY Server... 10
3.3.2 Power Measuring on the PRIMERGY Server.. 11
3.3.3 Power Control on the PRIMERGY Server... 12

3.4 Statistical Information..12

Appendix A Functions Available in the Job Operating Software.. 13

Appendix B Sample Programs... 16
B.1 Sample Programs Included in the Package... 16
B.2 Example of a Program of Electric Energy Measurement..16
B.3 Example of a Program of Power Control..17
B.4 Example of a Program to Get Statistical Information...18

- iv -

Chapter 1 What is the Power API?
The Sandia Power API (Power Application Programming Interface) defines a library interface proposed by Sandia National Laboratories
to measure and control power.
The Sandia Power API provides the necessary measurement and control capabilities for every HPC (High Performance Computing) system.

The Power API used with the Job Operation Software can run on the compute nodes of the FX server and PRIMERGY server. End users
can perform the following operations without special privileges by executing a program that uses the Power API as a job.

Table 1.1 Operations Executable by the Power API

Model Compute Node Power Measurement Compute Node Power Control

FX server Yes Yes

PRIMERGY server Yes No

Yes: Executable, No: Not executable

The Power API can be executed from an application program written in C. In Job Operation Software, the Power API can be also used from
Fortran. Sample programs are included in the package for this purpose. In this manual, a program that uses the Power API is called a Power
API program.

The Power API available in this system is based on the Power API specification of version 2.0 that Sandia National Laboratories made open
to the public. The following operations are available.

- End users can use the provided functions in "Appendix A Functions Available in the Job Operating Software."

- Power can be measured and controlled on the compute nodes which the Power API is executed.

 See

- For details on the Sandia Power API, see the webpages of Sandia National Laboratories.

http://powerapi.sandia.gov/

- For details on sample programs, see "Appendix B Sample Programs."

 Note

The Power API is not available in KVM mode in the job execution environment. For more information about KVM mode, see "Job
Operation Software End-user's Guide."

- 1 -

http://powerapi.sandia.gov/

Chapter 2 How to Use the Power API
This chapter describes how to use the Power API from a job.

Use the Power API in the following step on a system consisting of the FX server or PRIMERGY server.

1. Create a program that uses the Power API.

2. Compile the Power API program.

3. Submit and execute the created program as a job.

The following sections describe each step of the procedure.

2.1 How to Create a Power API Program
This section describes how to create a Power API program so that end users can measure and control power on individual hardware.

 See

For details on items specific to the system, see "Chapter 3 Items Specific to a System Consisting of the FX or PRIMERGY Server."

For details on the Power API specifications, see the webpages of Sandia National Laboratories.

http://powerapi.sandia.gov/

2.1.1 Power API Program Flow
The basic steps of a Power API program are as follows.

1. Initialize

2. Get the target Object for power measurement and control.

In the Power API, hardware such as a CPU and memory is called "Object." For details on acquisition of Objects, see "2.1.3 Getting
Objects."

3. Measure and control power to the target program section.

In the Power API, Attributes are used to express the power measurement and control types that are available for Objects. End users
can measure and control power on the target hardware by specifying Objects and Attributes. For details on power measurement and
control, see "2.1.4 Power Measurement and Control."

4. Perform the termination process.

The following example shows a power measurement program written based on the above steps.

#include <stdio.h>

#include "pwr.h"

int main()

{

 PWR_Cntxt cntxt = NULL;

 PWR_Obj obj = NULL;

 double energy0 = 0.0;

 double energy1 = 0.0;

 PWR_Time ts0 = 0;

 PWR_Time ts1 = 0;

 double ave_power = 0.0;

 // 1. Initialize Power API

 PWR_CntxtInit(PWR_CNTXT_DEFAULT, PWR_ROLE_APP, "app", &cntxt);

- 2 -

http://powerapi.sandia.gov/

 // 2. Get Object (In this step, get an Object that indicates the entire compute node.)

 PWR_CntxtGetObjByName(cntxt, "plat.node", &obj);

 // 3. Get electric energy at start and end points of program section to be measured,

 // and calculate average power in program section using obtained electric energy

 // (In this step, PWR_ATTR_ENERGY is specified as an Attribute.)

 PWR_ObjAttrGetValue(obj, PWR_ATTR_ENERGY, &energy0, &ts0);

 ... // Arbitrary program section

 PWR_ObjAttrGetValue(obj, PWR_ATTR_ENERGY, &energy1, &ts1);

 // Calculate the average electric power from the two electric power quantities,

 // energy-0 and energy-1.

 // 4. Terminate processing of Power API

 PWR_CntxtDestroy(cntxt);

 return 0;

}

The following sections describe each step of the procedure.

2.1.2 Initialization
End users initialize the Power API by calling the PWR_CntxtInit() initialization function.

The following identifiers are specified in arguments for the initialization function.

- PWR_CntxtType type

This identifier specifies the function to use the Power API.

- PWR_Role role

This identifier indicates the privileges of the Power API user. The available range of the function that can be used by the specified
PWR_CntxtType varies depending on specified privileges.

 See

For details on PWR_CntxtType and PWR_Role that can be specified in this system, see "3.1 Initialization Function."

2.1.3 Getting Objects
In the Sandia Power API, the hardware whose power is measured and controlled is called an Object. The system targeted by the Power API
is expressed by an Object tree structure. An end user can retrieve the Object by specifying its unique name using the
PWR_CntxtGetObjByName function.

Table 2.1 Function to Get an Object by Specifying a Unique Name

Function Description

PWR_CntxtGetObjByName Gets the Object with the specified unique name.

 See

For details on Objects and Object trees in this system, see "3.2.1 Expression of the Object Tree Structure of the FX Server" and "3.3.1
Expression of the Object Tree Structure of the PRIMERGY Server."

- 3 -

2.1.4 Power Measurement and Control
End users can measure and control power by specifying Objects and Attributes.

The following functions are used for power measurement and control.

Table 2.2 Functions to Get and Set Attributes

Function Description

PWR_ObjAttrGetValue Gets a single Attribute value for an Object.

PWR_ObjAttrSetValue Sets a single Attribute value to an Object.

To measure power, specify PWR_ATTR_ENERGY in the PWR_ObjAttrGetValue function. To change the power control frequency,
specify PWR_ATTR_FREQ in the PWR_ObjAttrSetValue function. To get the currently set frequency, specify PWR_ATTR_FREQ in the
PWR_ObjAttrGetValue function.

 See

- The Attributes that can be specified vary depending on the target Object. For the correspondence relationship of Objects and Attributes
that can be specified in this system, see "3.2 Power Control and Measurement on the FX Server" and "3.3 Power Control and
Measurement on the PRIMERGY Server" based on the compute node model.

- In the Power API, there are some functions that collectively set and get multiple Objects and Attributes. For details on the Power API
specifications, see the webpages of Sandia National Laboratories.

2.1.5 Termination Process
The end user can terminate the Power API using the following function.

Table 2.3 Termination Function

Function Description

PWR_CntxtDestroy Terminates the Power API.

2.2 Compile Method
To create an execution file for a Power API program, an end user needs to compile the Power API program on the login node. When
compiling the program, use the header file of the Power API, and link the Power API library.

The Power API header file is pwr.h, and the library is libpwr.so.
The following table lists the locations of the Power API header files and libraries. The locations of the header file and library vary depending
on the compute node on which the Power API is executed.

Table 2.4 Locations of Header Files and Libraries

File Type Location

Power API header file for FX server /opt/FJSVtcs/pwrm/aarch64/include/

Power API header file for PRIMERGY server /opt/FJSVtcs/pwrm/x86_64/include/

Power API library for FX server /opt/FJSVtcs/pwrm/aarch64/lib64/

Power API library for PRIMERGY server /opt/FJSVtcs/pwrm/x86_64/lib64/

The following command line shows an example to compile the Power API program sample.c for the FX server using a cross compiler (the
command name is fccpx).

$ fccpx sample,c -L /opt/FJSVtcs/pwrm/aarch64/lib64 \

-I /opt/FJSVtcs/pwrm/aarch64/include -lpwr

- 4 -

2.3 Execution Method
An end user writes a job script to execute a Power API program and submit a job.

For example, the job.sh job script to execute a.out of a Power API program is written as follows.

#!/bin/bash

#PJM -L node=1

./a.out

Submit the job as follows:.

$ pjsub job.sh

 See

For details on how to write a job script of the Job Operation Software and how to submit jobs, see "Job Operation Software End-user's
Guide."

- 5 -

Chapter 3 Items Specific to a System Consisting of the FX
or PRIMERGY Server

This chapter describes the items specific to the Power API in a system consisting of the FX or PRIMERGY server.

3.1 Initialization Function
This section describes PWR_CntxtType and PWR_Role that can be specified in arguments of the PWR_CntxtInit function to initialize a
Power API program.

The following types can be specified in the PWR_CntxtType type argument.

Table 3.1 PWR_CntxtType That Can be Specified

PWR_CntxtType Description

PWR_CNTXT_DEFAULT Power API standard functions can be used.

PWR_CNTXT_FX1000 [FX] A function that is extended for the FX server can be used.

The Power API used in this system originally defines the Attributes corresponding to power measurement and control specific to the FX
server by extending the Attributes of the Power API. End users can use the Attributes specific to the FX server by specifying
PWR_CNTXT_FX1000 at initialization.

The following role can be specified in the PWR_Role role argument.

Table 3.2 PWR_Role That Can be Specified

PWR_Role Description

PWR_ROLE_APP Refers to application users.

3.2 Power Control and Measurement on the FX Server
This section describes the Object tree structure of the FX server and also power measurement and control that can be performed on the FX
server.

3.2.1 Expression of the Object Tree Structure of the FX Server
The Power API on this system can get only Objects of the compute node on which The Power API is running. The Objects of other compute
nodes cannot be obtained.

The compute node on which The Power API is running is expressed as a tree structure as shown in the following figure.

Each node indicates an individual Object.

- 6 -

Figure 3.1 Object Tree of the FX Server

In the above figure, the Objects shown in the same color indicate that they are the same PWR_ObjType.

The following table provides details on each Object.

Table 3.3 Objects of the FX Server

Unique Name PWR_ObjType Description

plat.node PWR_OBJ_NODE Entire node

plat.node.cpu PWR_OBJ_SOCKET CPU Socket

plat.node.memN (N = 0 to 3) PWR_OBJ_MEM Memory

plat.node.pci PWR_OBJ_POWER_PLANE PCI express

plat.node.tofuopt PWR_OBJ_NIC Optical module

plat.node.cpu.uncmg PWR_OBJ_POWER_PLANE Parts other than assistant core group in CPU,
CMG, and Tofu

plat.node.cpu.acores PWR_OBJ_POWER_PLANE Assistant core group

plat.node.cpu.cmgN (N = 0 to 3) PWR_OBJ_POWER_PLANE CMG

plat.node.cpu.tofu PWR_OBJ_NIC Tofu

plat.node.cpu.acores.coreL
- Compute node: L=0,1
- Compute node and I/O node: L=0 to 3

PWR_OBJ_CORE Assistant core

plat.node.cpu.cmgN.cores PWR_OBJ_POWER_PLANE Compute core group in CMG

plat.node.cpu.cmgN.cores.l2cache PWR_OBJ_POWER_PLANE L2 cache

- 7 -

Unique Name PWR_ObjType Description

plat.node.cpu.cmgN.cores.coreM

The range of M for N is as follows:
- When N=0, M=12 - 23
- When N=1, M=24 - 35
- When N=2, M=36 - 47
- When N=3, M=48 - 59

PWR_OBJ_CORE Compute core

Caution must be exercised so that a unique Object name used by the Power API is expressed by separating the name of each node that is
passed when tracing a tree, starting from the tree root (plat.node).

For example, when an Object of a core under cmg0 in Figure 3.1 Object Tree of the FX Server is expressed with a unique name, the name
is plat.node.cmg0.cores.

 Note

- An Object with a unique name of plat.node.cpu.acores.coreL (L=2 or 3) exists only in the compute and I/O node, not in the compute
node. Specifying these objects in the PWR_CntxtGetObjByName function for a compute node returns error.

3.2.2 Power Measurement on the FX Server
The FX server can measure the following two types of electrical energy (Unit: J).

Electrical Energy Description

Estimated electrical energy
(IDEAL)

Electrical energy that is estimated based on the number of CPU instructions issued and other
information. This value does not take into account variations in electrical energy due to individual
differences in computing nodes, and the estimated electrical energy is the same for the same job.
The value is estimated by hardware and updated every millisecond.

Measured electrical energy
(MEASURED)

Electrical energy that the job actually consumed.
This value takes into account variations in electrical energy due to individual differences in computing
nodes and/or individual differences of data patterns to calculation, therefore the measured electrical
energy is different for the same job.
The value is collected by hardware from an electric energy measurement element and updated every
5 milliseconds.

The following table lists the Power API Attribute and whose data type corresponding to each type of electrical energy and Objects that can
be measured.

Table 3.4 Attribute Corresponding to Each Type of Electrical Energy and Objects That Can be Measured

Electrical Energy Attribute (data type) Object That Can be Measured

Estimated electrical energy PWR_ATTR_ENERGY
(double)

Entire node
Compute core group in CMG
L2 cache
Memory
Tofu
Part other than assistant core group in CPU, CMG, and
Tofu
Assistant core
Optical module
PCI Express

Measured electrical energy PWR_ATTR_MEASURED_ENERGY
(double)

Entire node

- 8 -

 Note

- The estimated electrical energy of an <entire node> on the FX server can be calculated using the following calculation formula:

<Compute core group in CMG> + <L2 cache> + <Memory> + <Tofu> + <parts other than assistant core in

CPU, CMG, and Tofu>

The <assistant core> is used for processes other than jobs. The estimated electrical energy of an <optical module> and <PCI Express>
is changed based on the node to which a job is assigned. Therefore, these three estimated electric energies are not included in the
calculation of the estimated electrical energy of an entire node.

- The measured electrical energy of an <entire node> on the FX server includes <assistant core>, <optical module>, and <PCI Express>,
which are configured differently for computing and I/O nodes.

- When the same job is performed on different nodes, the estimated electric energy for the <entire node> is the same however the
measured electric energy varies depending on computing nodes. There may be a +/- 40% difference between two types of the electrical
energy of <entire node> for same nodes.

- PWR_ATTR_MEASURED_ENERGY is an extended Attribute of the FX server. Estimated electrical energy can be measured only
when the PWR_CntxtType type argument is specified in PWR_CNTXT_FX1000 at initialization.

3.2.3 Power Control on the FX Server
Power can be controlled on the FX server using the following power knob functions.

Table 3.5 Power Knob Functions Available on the FX Server

Power Knob Function Description

Changing frequency Controls the frequency of the CPU.

Memory access limit Controls the bus usage rate between the memory access controller and memory.

Instruction issuance limit Controls the number of instructions simultaneously processed by the core.

EXA only Controls the number of pipes of the core that can be used by an instruction that uses a general-purpose
register.

Eco mode, FLA only state FLA only controls the number of pipes of the core that can use FP and SIMD registers. Eco mode
increases the power reduction effect when FLA only is enabled.

Retention state Determines whether or not to transit to a low power state (Retention state) when no process is running
on the core.

The following table lists the Power API Attribute and whose data type corresponding to each power knob function, Objects available for
the power knob function, and values that can be set.

Table 3.6 Attributes Corresponding to the Power Knob Function, Available Objects, and Values that Can be Set

Power Knob Function Attribute (data type) Available Object Value That Can be Set

Changing frequency PWR_ATTR_FREQ
(double)

CPU Socket Set in unit of Hz.

2200000000
2000000000
1600000000
Hardware configurable values may
differ from those listed.

Memory access limit PWR_ATTR_THROTTLING_STATE
(uint64_t)

Memory 0: 100% bus usage rate
1: 90% bus usage rate
2: 80% bus usage rate
3: 70% bus usage rate
4: 60% bus usage rate
5: 50% bus usage rate
6: 40% bus usage rate

- 9 -

Power Knob Function Attribute (data type) Available Object Value That Can be Set

7: 30% bus usage rate
8: 20% bus usage rate
9: 10% bus usage rate

Instruction issuance
number limit

PWR_ATTR_ISSUE_STATE
(uint64_t)

Compute core 0: 4 instructions
1: 2 instructions

EXA only PWR_ATTR_EX_PIPE_STATE
(uint64_t)

Compute core 0: Use pipe A and pipe B
1: Use only pipe A

Eco mode,
FLA only state

PWR_ATTR_ECO_STATE
(uint64_t)

Compute core 0: Disable Eco mode and FLA only
1: Disable Eco mode and enable FLA
only
2: Enable Eco mode and FLA only

Retention state PWR_ATTR_RETENTION_STATE
(uint64_t)

Compute core 0: Do not transition to Retention state
1: Transition to Retention state

The range that end users can set for power control is restricted by administrator settings. The following method can be used to know the value
range that can be set for power control.

- Make an inquiry by specifying Attribute and Metadata in the PWR_ObjAttrGetMeta function of the Power API. Set Metadata as
PWR_MD_MIN or PWR_MD_MAX to obtain the lowest or highest value of Attribute, respectively. The data type of return value
depends on the Attribute, as shown in "Table 3.6 Attributes Corresponding to the Power Knob Function, Available Objects, and Values
that Can be Set."

 See

For details on the PWR_ObjAttrGetMeta function specifications, see the webpages of Sandia National Laboratories.

http://powerapi.sandia.gov/

 Note

PWR_ATTR_THROTTLING_STATE, PWR_ATTR_ISSUE_STATE, PWR_ATTR_EX_PIPE_STATE, PWR_ATTR_ECO_STATE,
and PWR_ATTR_RETENTION_STATE are extended Attributes of the FX server. Power can be controlled only when the
PWR_CntxtType type argument is specified in PWR_CNTXT_FX1000.

3.3 Power Control and Measurement on the PRIMERGY Server
This section describes the Object tree structure of the PRIMERGY server and also power measurement and control that can be performed
on the PRIMERGY server.

3.3.1 Expression of the Object Tree Structure of the PRIMERGY Server
The Power API on this system can get only Objects of the compute node on which The Power API is running. The Objects of other compute
nodes cannot be obtained.

The compute node on which The Power API is running is expressed as a tree structure as shown in the following figure. Each node in the
tree indicates an individual Object.

- 10 -

http://powerapi.sandia.gov/

Figure 3.2 Object Tree of the PRIMERGY Server

In the above figure, the Objects shown in the same color indicate that they are the same PWR_ObjType.

The following table provides details on each Object.

Table 3.7 Objects of the PRIMERGY Server

Unique Name PWR_ObjType Description

plat.node PWR_OBJ_NODE Entire node

plat.node.cpuN
(N is hardware-dependent.)

PWR_OBJ_SOCKET CPU Socket

plat.node.memN
(N is hardware-dependent.)

PWR_OBJ_MEM Memory

plat.node.cpuN.cores
(N is hardware-dependent.)

PWR_OBJ_POWER_PLANE CPU core group

plat.node.cpuN.cores.coreM

(N and M are hardware-dependent.)

PWR_OBJ_CORE CPU core

Note that the unique name of Object used in the Power API is the name of the node that has traversed the tree from the root of the tree
(plat.node) , separated by ".".

For example, when an Object of the cores under cpu0 in Object Tree of the PRIMERGY Compute Node is expressed with a unique name,
the name is plat.node.cpu0.cores.

3.3.2 Power Measuring on the PRIMERGY Server
The PRIMERGY server can use the following electrical energy (Unit: J).

Electrical Energy Description

Measured electrical energy Actually measured electrical energy. Power that was actually consumed by a job can be obtained using
measured electrical energy.

- 11 -

The following table lists the Power API Attribute and whose data type corresponding to each type of electrical energy and Objects that can
be measured.

Table 3.8 Attribute Corresponding to Each Type of Electrical Energy and Objects That Can be Measured

Electrical Energy Attribute (data type) Objects That Can be Measured

Measured electrical energy PWR_ATTR_ENERGY
(double)

CPU Socket
Memory
CPU core group

 Note

The objects whose electrical energy can be measured vary depending on the CPU mounted on the PRIMERGY server. The Power API
function returns a return value indicating an error when the end user specifies an unmeasurable Object at electrical energy measurement.
For details, see the webpages of Sandia National Laboratories.

3.3.3 Power Control on the PRIMERGY Server
Power cannot be controlled from a job on the PRIMERGY server.

3.4 Statistical Information
The Sandia Power API defines the functions that get statistical information. In this system, statistical information on power
(PWR_ATTR_POWER) can be obtained for Objects that can use PWR_ATTR_ENERGY.

The following table lists the type of statistical information that can be obtained by the Power API and the corresponding Attribute. Power
consumption is calculated periodically based on changes in electric energy and statistics are performed.

Table 3.9 Type of Statistical Information That Can be Obtained

Item Attribute

Power PWR_ATTR_POWER

 See

- For details on the Objects available for PWR_ATTR_ENERGY, see "3.2.2 Power Measurement on the FX Server" or "3.3.2 Power
Measuring on the PRIMERGY Server" according to the compute node type.

- For more information on statistics and the functions that retrieve them, see the webpages of Sandia National Laboratories.

See also "B.4 Example of a Program to Get Statistical Information" that has a sample program of the statistical information functions.

- 12 -

Appendix A Functions Available in the Job Operating
Software

End users can use the following functions with the Power API provided by the Job Operation Software.

Table A.1 List of Functions Available to End Users

Function Name Availability Description

PWR_CntxtInit Yes Initialization function of the Power API

PWR_CntxtDestroy Yes Termination function of the Power API

PWR_CntxtGetEntryPoint Yes Function to get the Objects of the Object tree root

PWR_ObjGetType Yes Function to get PWR_ObjType of the specified Object

PWR_ObjGetName Yes Function to inquire about the unique name of the specified Object

PWR_ObjGetParent Yes Function to get the parent Object of the specified Object

PWR_ObjGetChildren Yes Function to get the child Objects of the specified Object

PWR_CntxtGetObjByName Yes Function to get the Object corresponding to the specified unique name

PWR_GrpCreate Yes Function to generate a Group to store multiple Objects

PWR_GrpDestroy Yes Function to discard the specified Group

PWR_GrpAddObj Yes Function to add the specified Objects to the specified Group

PWR_GrpRemoveObj Yes Function to delete the specified Objects from the specified Group

PWR_GrpGetNumObjs Yes Function to get the number of Objects contained in the specified Group

PWR_GrpGetObjByIndx Yes Function to get the Objects corresponding to the specified element numbers
from the specified Group

PWR_GrpDuplicate Yes Function to duplicate the specified Group

PWR_GrpUnion Yes Function to generate a Group by performing the union operation of two specified
Groups

PWR_GrpIntersection Yes Function to generate a Group by performing the intersection operation of two
specified Groups

PWR_GrpDifference Yes Function to generate a Group by performing the difference operation of two
specified Groups

PWR_GrpSymDifference Yes Function to generate a Group by performing the symmetric difference operation
of two specified Groups

PWR_CntxtGetGrpByName No Function to get the system-defined Groups corresponding to the specified
unique names. This function cannot be used because Group is not defined in this
system.

PWR_ObjAttrGetValue Yes Function to get the specified Attribute values for the specified Objects

PWR_ObjAttrSetValue Yes [FX] Function to set the specified Attribute values to the specified Objects. This
function can be used only on the FX server.

PWR_StatusCreate Yes Function to generate the status to hold individual error information when
collectively getting and setting multiple Objects and Attributes

PWR_StatusDestroy Yes Function to discard the specified status

PWR_StatusPopError Yes Function to get error information held in the specified status

PWR_StatusClear Yes Function to clear error information held in the specified status

PWR_ObjAttrGetValues Yes Function to collectively get multiple Attribute values for the specified Objects

- 13 -

Function Name Availability Description

PWR_ObjAttrSetValues Yes [FX] Function to collectively get multiple specified Attribute values for the specified
Objects. This function can be used only on the FX server.

PWR_ObjAttrIsValid Yes Function to inquire whether or not the specified Attribute is available for the
specified Object

PWR_GrpAttrGetValue Yes Function to collectively get multiple specified Attribute values for all Objects
belonging to the specified Group

PWR_GrpAttrSetValue Yes [FX] Function to collectively set specified Attribute values to all Objects belonging to
the specified Group. This function can be used only on the FX server.

PWR_GrpAttrGetValues Yes Function to collectively get multiple specified Attribute values from all Objects
belonging to the specified Group

PWR_GrpAttrSetValues Yes [FX] Function to collectively set multiple specified Attribute values to all the Objects
belonging to the specified Group. This function can be used only on the FX
server.

PWR_ObjAttrGetMeta Yes Function to get detailed description information related to the specified Objects
and Attributes

PWR_ObjAttrSetMeta No Function to set detailed setting information on the specified Objects and
Attributes. End users are prohibited from setting detailed setting information in
this system. For this reason, end users cannot use this function.

PWR_MetaValueAtIndex Yes Function to inquire about the values that can be set in the specified Objects and
Attributes

PWR_ObjGetStat No Function to get statistical information on the specified Objects and Attributes
from the data accumulated in the system. This function is not supported by the
Power API on this system.

PWR_GrpGetStats No Function to get statistical information on each Object from data accumulated in
the system for all Objects and Attributes belonging to the specified Group. This
function is not supported by the Power API on this system.

PWR_ObjCreateStat Yes Function to generate objstat to collect statistical information on the specified
Objects and Attributes in real time

PWR_GrpCreateStat Yes Function to generate grpstat to collect statistical information on each Object in
real time for all Objects and Attributes belonging to the specified Group

PWR_StatStart Yes Function to start collecting the specified objstat or grpstat statistical information

PWR_StatStop Yes Function to stop collecting the specified objstat or grpstat statistical information

PWR_StatClear Yes Function to clear the collected data of the specified objstat or grpstat statistical
information

PWR_StatGetValue Yes Function to get statistical values from the specified objstat

PWR_StatGetValues Yes Function to get the statistical value of each Object included in the specified
grpstat

PWR_StatGetReduce Yes Function to perform a reduction calculation for the statistical value of each
Object included in the specified grpstat

PWR_GrpGetReduce No Function to get statistical information on each Object from data accumulated in
the system for all Objects and Attributes belonging to the specified Group, and
to perform a reduction calculation. This function is not supported by the Power
API on this system.

PWR_StatDestroy Yes Function to discard the specified stat

PWR_GetMajorVersion Yes Function to get the major version of the Power API

PWR_GetMinorVersion Yes Function to get the minor version of the Power API

- 14 -

Function Name Availability Description

PWR_GetReportByID No Function to get statistical information on the specified Attributes. Due to the
Sandia Power API specifications, end users cannot use this function.

PWR_StateTransitDelay No Function to get the time taken for a transition between the two specified power
management-related states of the specified Object. This function is not
supported by the Power API of this system.

PWR_AppHintCreate No Function to create application tuning tip information for a program section. This
function is not supported by the Power API of this system.

PWR_AppHintDestroy No Function to discard tuning tip information. This function is not supported by the
Power API of this system.

PWR_AppHintStart No Function to report to the OS that the program process that is the target of tuning
tip information has started. This function is not supported by the Power API of
this system.

PWR_AppHintStop No Function to report to the OS that the program process that is the target of tuning
tip information has ended. This function is not supported by the Power API of
this system.

PWR_AppHintProgress No Function to indicate the calculation progress rate in the specified program
section. This function is not supported by the Power API of this system.

PWR_SetSleepStateLimit No Function to set the deepest sleep state to which the OS is allowed to transition.
This function is not supported by the Power API of this system.

PWR_WakeUpLatency No Function to get the transition time for recovery from the specified sleep mode.
This function is not supported by the Power API of this system.

PWR_RecommendSleepState No Function to get the deepest sleep state within td by the Power API of this system.

PWR_SetPerfState No Function to set the specified Object the specified recovery transition time. This
function is not supported the performance level defined for Objects. This
function is not supported by the Power API of this system.

PWR_GetPerfState No Function to get the current performance level of the specified Object. This
function is not supported by the Power API of this system.

PWR_GetSleepState No Function to get the current sleep state of the specified Object. This function is not
supported by the Power API of this system.

Yes: Available, No: Not available

If a function that is not available is executed, an error is returned.

 See

For details on each function, see the webpages of Sandia National Laboratories.

http://powerapi.sandia.gov/

- 15 -

http://powerapi.sandia.gov/

Appendix B Sample Programs
This appendix describes sample programs that use the Power API.

B.1 Sample Programs Included in the Package
Two types of sample programs use the Power API: sample programs in C language and sample program in Fortran language.
Sample programs in each language are placed in the following directory under the login node:

- Sample programs in C language

/usr/src/FJSVtcs/pwrm/powerapi/c/

- Sample programs in Fortran language

/usr/src/FJSVtcs/pwrm/powerapi/fortran/

The following sample programs are placed in individual directories.

Table B.1 Sample Programs Contained in Directories

Sample Program File Name (C Language) File Name (Fortran Language)

Electrical energy measurement pwrget.c pwrget.f03

Power control pwrset.c pwrset.f03

Statistical information acquisition pwrstat.c pwrstat.f03

Electrical energy measurement of multiple Objects pwrget_multi.c pwrget_multi.f03

Power control of multiple Objects pwrset_multi.c pwrset_multi.f03

Definition of Power API functions, variables, and types in
Fortran (corresponding to header file)

pwrf.f03

pwrtypesf.f03

End users change and compile these sample programs as appropriate after copying them to their own directory on the login node.

When compiling sample programs in C language, end users specify the file name of the sample program to be compiled first. For details
on the necessary header files and libraries for compilation, see "2.2 Compile Method." When compiling sample programs in Fortran
language, end users specify the file name of the sample program to be compiled and pwrf.f03 first. Be sure that pwrf.f03 comes first in the
order of specifying files.

The following example shows the command line for compiling a sample program (pwrget.f03) for electrical energy measurement using a
cross compiler (the command name is frtpx). For details on specifying the necessary Power API libraries when compiling, see "2.2 Compile
Method."

$ frtpx pwrf.f03 pwrget.f03 -L /opt/FJSVtcs/pwrm/aarch64/lib64 -lpwr

The following sections, the following information is written in a sample program in C language:

- Electric energy measurement

- Power control

- Statistical information acquisition

B.2 Example of a Program of Electric Energy Measurement
The following example is a program to get an Object by specifying the unique name of the Object on the FX server, and to get electrical
energy.

#include <stdio.h>

#include <unistd.h>

#include "pwr.h"

- 16 -

int main()

{

 PWR_Cntxt cntxt = NULL;

 PWR_Obj obj = NULL;

 int rc;

 double energy1 = 0.0;

 double energy2 = 0.0;

 double ave_power = 0.0;

 PWR_Time ts1 = 0;

 PWR_Time ts2 = 0;

 // Get context of Power API

 rc = PWR_CntxtInit(PWR_CNTXT_DEFAULT, PWR_ROLE_APP, "app", &cntxt);

 if (rc != PWR_RET_SUCCESS) {

 printf("CntxtInit Failed\n");

 return 1;

 }

 // Get the Object for which the electric energy is measured

 rc = PWR_CntxtGetObjByName(cntxt, "plat.node", &obj);

 if (rc != PWR_RET_SUCCESS) {

 printf("CntxtGetObjByName Failed\n");

 return 1;

 }

 // Get the estimated electric energy of Object

 rc = PWR_ObjAttrGetValue(obj, PWR_ATTR_ENERGY, &energy1, &ts1);

 if (rc != PWR_RET_SUCCESS) {

 printf("ObjAttrGetValue Failed (rc = %d)\n", rc);

 return 1;

 }

 sleep(3);

 rc = PWR_ObjAttrGetValue(obj, PWR_ATTR_ENERGY, &energy2, &ts2);

 if (rc != PWR_RET_SUCCESS) {

 printf("ObjAttrGetValue Failed (rc = %d)\n", rc);

 return 1;

 }

 // Calculate the average power from the electric energy of the two measurement points

 ave_power = (energy2 - energy1) / ((ts2 - ts1) / 1000000000.0);

 printf("ave_power = %lf\n", ave_power);

 // Destroy the context

 PWR_CntxtDestroy(cntxt);

 return 0;

}

B.3 Example of a Program of Power Control
The following example is a program to get an Object by specifying the unique name of the Object on the FX server and to set a frequency.

#include <stdio.h>

#include "pwr.h"

int main()

{

 PWR_Cntxt cntxt = NULL;

 PWR_Obj obj = NULL;

- 17 -

 int rc;

 double freq = 0.0;

 // Get context of Power API

 rc = PWR_CntxtInit(PWR_CNTXT_DEFAULT, PWR_ROLE_APP, "app", &cntxt);

 if (rc != PWR_RET_SUCCESS) {

 printf("CntxtInit Failed\n");

 return 1;

 }

 // Get the Object for which the frequency is set

 rc = PWR_CntxtGetObjByName(cntxt, "plat.node.cpu", &obj);

 if (rc != PWR_RET_SUCCESS) {

 printf("CntxtGetObjByName Failed\n");

 return 1;

 }

 // Specify frequency to set

 freq = 2000000000.0;

 // Set the frequency to Object

 rc = PWR_ObjAttrSetValue(obj, PWR_ATTR_FREQ, &freq);

 if (rc != PWR_RET_SUCCESS) {

 printf("ObjAttrSetValue Failed (rc = %d)\n", rc);

 return 1;

 }

 // Destroy the context

 PWR_CntxtDestroy(cntxt);

 return 0;

}

B.4 Example of a Program to Get Statistical Information
The following example is a program to get the minimum value of the power used in a section on the FX server.

#include <stdio.h>

#include <unistd.h>

#include "pwr.h"

int main()

{

 PWR_Cntxt cntxt = NULL;

 PWR_Obj obj = NULL;

 PWR_Stat stat = NULL;

 int rc;

 double min_power = 0.0;

 PWR_TimePeriod period = { PWR_TIME_UNINIT, PWR_TIME_UNINIT, PWR_TIME_UNINIT };

 // Get context of Power API

 rc = PWR_CntxtInit(PWR_CNTXT_DEFAULT, PWR_ROLE_APP, "app", &cntxt);

 if (rc != PWR_RET_SUCCESS) {

 printf("CntxtInit Failed\n");

 return 1;

 }

 // Get the Object for which statistics are to be retrieved

 rc = PWR_CntxtGetObjByName(cntxt, "plat.node", &obj);

 if (rc != PWR_RET_SUCCESS) {

 printf("CntxtGetObjByName Failed\n");

 return 1;

 }

- 18 -

 // Get Statistical Object to obtain minimum power value

 rc = PWR_ObjCreateStat(obj, PWR_ATTR_POWER, PWR_ATTR_STAT_MIN, &stat);

 if (rc != PWR_RET_SUCCESS) {

 printf("ObjCreateStat Failed (rc = %d)\n", rc);

 return 1;

 }

 // Start to get statistics

 rc = PWR_StatStart(stat);

 sleep(3);

 // Stop to get statistics

 rc = PWR_StatStop(stat);

 // Get amount of statistics

 rc = PWR_StatGetValue(stat, &min_power, &period);

 if (rc != PWR_RET_SUCCESS) {

 printf("StatGetValue Failed (rc = %d)\n", rc);

 return 1;

 }

 printf("minimum power : %lf\n", min_power);

 printf("start : %lu\n", period.start);

 printf("stop : %lu\n", period.stop);

 printf("instant : %lu\n", period.instant);

 // Destroy statistical Object

 PWR_StatDestroy(stat);

 // Destroy context

 PWR_CntxtDestroy(cntxt);

 return 0;

}

- 19 -

	Title Page
	Preface
	Update History
	Contents
	Chapter 1 What is the Power API?
	Chapter 2 How to Use the Power API
	2.1 How to Create a Power API Program
	2.1.1 Power API Program Flow
	2.1.2 Initialization
	2.1.3 Getting Objects
	2.1.4 Power Measurement and Control
	2.1.5 Termination Process

	2.2 Compile Method
	2.3 Execution Method

	Chapter 3 Items Specific to a System Consisting of the FX or PRIMERGY Server
	3.1 Initialization Function
	3.2 Power Control and Measurement on the FX Server
	3.2.1 Expression of the Object Tree Structure of the FX Server
	3.2.2 Power Measurement on the FX Server
	3.2.3 Power Control on the FX Server

	3.3 Power Control and Measurement on the PRIMERGY Server
	3.3.1 Expression of the Object Tree Structure of the PRIMERGY Server
	3.3.2 Power Measuring on the PRIMERGY Server
	3.3.3 Power Control on the PRIMERGY Server

	3.4 Statistical Information

	Appendix A Functions Available in the Job Operating Software
	Appendix B Sample Programs
	B.1 Sample Programs Included in the Package
	B.2 Example of a Program of Electric Energy Measurement
	B.3 Example of a Program of Power Control
	B.4 Example of a Program to Get Statistical Information

