
J2UL-2464-02ENZ0(01)
September 2020

FUJITSU Software
Technical Computing Suite V4.0L20

Job Operation Software
API user's Guide
for Job Information Notification API

Preface

Purpose of This Manual

This manual describes the job information notification API, which is a part of the job operation management function of the Job Operation
Software included in Technical Computing Suite.

Intended Readers

This manual is intended for the administrator who operates and manages interconnects with the Job Operation Software.

The manual assumes that readers have the following knowledge:

- Basic Linux knowledge

- General knowledge of the Job Operation Software from the "Job Operation Software Overview"

- General knowledge of the job operation management function from the "Job Operation Software Administrator's Guide for Job
Management"

Organization of This Manual

This manual is organized as follows.

Chapter 1 Overview of the Job Information Notification API

Describes an overview of the job information notification API and types of the job information notification API.

Chapter 2 Use of Job Information Notification API

Describes how to create a program that uses the job information notification API as well as a usage image of the API.

Appendix A Notes Relevant to Bulk Job Information Reported With the Job Information Notification API

Describes special notes on bulk job information reported with the job information notification API (how to select a report pattern of bulk
job information and how to set a PJM code that is not subject to billing).

Appendix B Reference: APIs Relevant to Connection to Job Manager Function

Describes the functions used for connecting to or disconnecting from the job manager function.

Appendix C Reference: APIs Relevant to Setting of Monitoring Target Information

Describes the functions used to set a job to be monitored and set notifications (filter) of state transition information from the job manager
function.

Appendix D Reference: APIs Relevant to Reading of Header Information

Describes the functions used for reading the header of notifications sent from the job manager function.

Appendix E Reference: APIs Relevant to Data Information

Describes the functions used for reading notification data sent from the job manager function.

Notation Used in This Manual

Notation of model names

In this manual, the computer that based on Fujitsu A64FX CPU is abbreviated as "FX server", and FUJITSU server PRIMERGY as
"PRIMERGY server" (or simply "PRIMERGY").
Also, specifications of some of the functions described in the manual are different depending on the target model. In the description of
such a function, the target model is represented by its abbreviation as follows:
[FX]: The description applies to FX servers.
[PG]: The description applies to PRIMERGY servers.

Administrators

The Job Operation Software has different types of administrators: system administrator, cluster administrator, and job operation
administrator. However, they may all be represented as just "administrator" in this document. In such cases, an administrator who

- i -

manages the system usually means the system administrator or cluster administrator. An administrator who manages job operations
means the cluster administrator or job operation administrator.

Symbols in This Manual

This manual uses the following symbols.

 Note

The Note symbol indicates an item requiring special care. Be sure to read these items.

 See

The See symbol indicates the written reference source of detailed information.

 Information

The Information symbol indicates a reference note related to Job Operation Software.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks

- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of Publication and Version

Version Manual code

September 2020, Version 2.1 J2UL-2464-02ENZ0(01)

March 2020, Second version J2UL-2464-02ENZ0(00)

January 2020, First version J2UL-2464-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020

Update history

Changes Location Version

Fixed errata. - 2.1

Added the value to be stored in the member pjsub_option_exflg of the job information
notification structure Pjmapi_info_job_t.

E.1.1 2

Changed the look according to product upgrades. -

Fixed errata and modified descriptions. -

- ii -

All rights reserved.

The information in this manual is subject to change without notice.

- iii -

Contents
Chapter 1 Overview of the Job Information Notification API.. 1

Chapter 2 Use of Job Information Notification API...2
2.1 How to Create a Program...2
2.2 Processing Flow...2
2.3 Job-Related Information Obtained by a Program.. 3
2.4 Example of the Job Information Notification API...4

Appendix A Notes Relevant to Bulk Job Information Reported With the Job Information Notification API.............................. 5
A.1 Bulk Job Information Reported.. 5
A.2 How to Set the End Code of a Job That is Not Subject to Billing..6

Appendix B Reference: APIs Relevant to Connection to Job Manager Function...8
B.1 PJM_connect().. 8
B.2 PJM_disconnect()..8

Appendix C Reference: APIs Relevant to Setting of Monitoring Target Information.. 10
C.1 PJM_set_target_jobinfo()..10
C.2 PJM_unset_target_jobinfo()..13

Appendix D Reference: APIs Relevant to Reading of Header Information.. 14
D.1 PJM_read_head().. 14

Appendix E Reference: APIs Relevant to Data Information... 16
E.1 PJM_read_data()... 16

E.1.1 Job Information Notification Structure (PJM_INFO_JOB)...16
E.1.2 Notification Structure of Change to the ACCEPT State (PJM_CHANGE_ACCEPT)... 37
E.1.3 Notification Structure of Change to the QUEUED State (PJM_CHANGE_QUEUED)...38
E.1.4 Notification Structure of Change to the RUNNING-A State (PJM_CHANGE_RUNNING_A)..41
E.1.5 Notification Structure of Change to the RUNNING State (PJM_CHANGE_RUNNING)...42
E.1.6 Notification Structure of Change to the RUNOUT State (PJM_CHANGE_RUNOUT).. 43
E.1.7 Notification Structure of Change to the EXIT State (PJM_CHANGE_EXIT)..53
E.1.8 Notification Structure of Change to the CANCEL State (PJM_CHANGE_CANCEL)..56
E.1.9 Notification Structure of Change to the HOLD State (PJM_CHANGE_HOLD)..59
E.1.10 Notification Structure of Change to the ERROR State (PJM_CHANGE_ERROR)... 62
E.1.11 Notification Structure of Change to the REJECT State (PJM_CHANGE_REJECT)... 65
E.1.12 Notification Structure of Change to the RUNNING-P State (PJM_CHANGE_RUNNING_P)... 66
E.1.13 Notification Structure of Change to the RUNNING-E State (PJM_CHANGE_RUNNING_E)...67
E.1.14 Notification Structure of Scheduling Result (PJM_CHANGE_SCHED)..67
E.1.15 Notification Structure of Attribute Change (PJM_CHANGE_ALTER)... 69
E.1.16 Simple Data Notification Structure (PJM_CHANGE_SIMPLE_DATA)... 70

- iv -

Chapter 1 Overview of the Job Information Notification API
The job manager function of the job operation management function provides an API (Application Program Interface) that notifies the
programs of job-related information when a transition of job state occurs. Such programs are those that perform processes specific to job
operation such as a billing processes and job tracing processes created by the job operation administrator. This API is called "job information
notification API."

The job manager function provides the functions of the job information notification API as listed below. For details on using the functions,
see "Chapter 2 Use of Job Information Notification API."

Table 1.1 Functions of job information notification API

Function Description

PJM_connect() Connecting to the job manager function

PJM_disconnect() Disconnecting from the job manager function

PJM_set_target_jobinfo() Setting monitoring target information (filter)

PJM_unset_target_jobinfo() Cancelling monitoring target information (filter)

PJM_read_head() Reading header information

PJM_read_data() Reading data information

 See

For details of each job information notification API, see from "Appendix B Reference: APIs Relevant to Connection to Job Manager
Function" to "Appendix E Reference: APIs Relevant to Data Information."

- 1 -

Chapter 2 Use of Job Information Notification API
This chapter describes how to create a program that uses the job information notification API as well as how to use it.

2.1 How to Create a Program
The job information notification API is provided by the header file and library shown below. The header file and library are stored in the
compute cluster management node.

- Header file

/usr/include/FJSVtcs/pjm/pjmapi.h

- Library

/usr/lib64/libpjmapi.so

The description below explains how to create a program.

Create a program in the compute cluster management node.

1. Include the header pjmapi.h in a source file that uses the job information notification API.

#include <FJSVtcs/pjm/pjmapi.h>

int main(void)

{

 // Processing using the job information notification API

 return 0;

}

2. Compile the created source file.
When creating an executable file, link lpjmapi, the library of the job information notification API.

gcc -lpjmapi -o module name source file

 Note

As to a compiler, use the OS-standard gcc. All other compilers are not supported.

2.2 Processing Flow
The following is the processing flow when a program created by the job operation administrator uses the job information notification API.

- 2 -

Figure 2.1 Processing Flow when a Program Uses the Job Information Notification API

1. A program uses the function PJM_connect() to connect to the job manager function.

2. The program uses the function PJM_set_target_jobinfo() to set a filter for information that the program obtains.

3. The job manager function notifies of job information according to the filter, and the program obtains the information. After reading
header information by using the function PJM_read_head(), the program uses the function PJM_read_data() to read job information.

4. The job manager function notifies of an event (differential information) according to the filter, and the program obtains the
information. After reading header information by using the function PJM_read_head(), the program uses the function
PJM_read_data() to read differential information that is contained in the header information and is specific to the event.

5. The program uses the function PJM_disconnect() to disconnect it from the job manager function.

2.3 Job-Related Information Obtained by a Program
The job-related information that a program obtains by using the job information notification API includes "job information" and
"differential information."

Job information

Job-related information such as information of amounts of resources required by a job, limit values, scheduling result information, and
statistical information. Job information is reported only on either of the following conditions.

- The job is filtered as a notification target ("3. Notification of current information" in Figure 2.1).

- The submitted job enters the QUEUED state for the first time ("4. Event notification" in Figure 2.1).

Differential information

Job information that is updated on job state transition. Differential information specific to each event is reported when a job state
transition occurs ("4. Event notification" in Figure 2.1).

The order in which job information and differential information are reported is, for example, as follows for the period from job submission
to job end.

1. Notification of change to the ACCEPT state

2. Notification of job information

3. Notification of change to the QUEUED state

4. Notification of scheduling result

- 3 -

5. Notification of change to the QUEUED state

6. Notification of change to the RUNNING-A state

7. Notification of change to the RUNNING state

8. Notification of change to the RUNOUT state

9. Notification of change to the EXIT state

 Note

Notification of the transition to the ACCEPT state occurs prior to notification of job information.

 See

When data of a notification sent by the function PJM_read_data() is read, in the case of job information, the data is stored in the job
information notification structure PJM_INFO_JOB. In the case of differential information, the data is stored in the job state change
notification structure PJM_CHANGE_state name after transition of the notification type corresponding to the state transition of the job. For
details of each structure, see "Appendix E Reference: APIs Relevant to Data Information."

2.4 Example of the Job Information Notification API
This section provides an example of using the job information notification API.

The following is a program example.

- Main processing

main () {

 PJM_connect() /* 1. Connect a program to the job manager function */

 PJM_set_target_jobinfo() /* 2. Set a filter */

 pthread_create() /* Creating a thread for accepting an event *./

 while(1){

 /* Setting change acceptance process */.

 PJM_set_target_jobinfo() /* 2. Set a filter */

 PJM_unset_target_jobinfo() /* 2. Remove a filter */

 }

}

- Thread processing

thread_main() {

 while(1){

 PJM_read_head() /* 3. Reading the header (waiting to be read) */

 PJM_read_data() /* 3. Reading the data */

 switch(){ /* Processing according to the read event */

 /* Describing processing details */

 }

 }

}

When the function PJM_read_head(), which reads the header of a notification sent from the job manager function, is called, the function
waits for reading until the header to be reported is read. Therefore, if main processing such as accepting of change is performed even during
the reading, use the function PJM_connect() to connect to the job manager function first, and use the function PJM_set_target_jobinfo() to
set a filter, like the above program. Then, create a thread for reading for processing.

- 4 -

Appendix A Notes Relevant to Bulk Job Information
Reported With the Job Information
Notification API

This appendix describes special notes relevant to bulk job information reported with the job information notification API.

A.1 Bulk Job Information Reported
For a bulk job, you can use the function PJM_set_target_jobinfo(), which is used for setting filters, to select a notification pattern of bulk
job information.

 See

For details of the function PJM_set_target_jobinfo(), see "C.1 PJM_set_target_jobinfo()."

The following explains how to select a notification pattern of bulk job information.

- For notification of only summary information of a bulk job
Specify "0" in the bulk_subjob_notify_trigger member of the target_info structure to be handed over to the function
PJM_set_target_jobinfo().

The figure below indicates the notification timings of summary information from the job manager function when a bulk job is executed.
Summary information is reported at the timing when the first sub job is started, and summary information of the bulk end is reported
at the timing when the last sub job is ended.

Figure A.1 Notification of Only Summary Information of a Bulk Job

- 5 -

- For notification triggered by every sub job besides notification of summary information of a bulk job
Set the flag "PJM_STATUS_state" corresponding to the state for which notification is necessary in the bulk_subjob_notify_trigger
member of the target_info structure to be handed over to the function PJM_set_target_jobinfo().

The figure below indicates that summary information and sub job information are reported at the start and end of every sub job.

Figure A.2 Notification Triggered by Every Sub Job Besides Notification of Summary Information of a Bulk Job

A.2 How to Set the End Code of a Job That is Not Subject to Billing
The job execution elapse time (elapse) of the summary information of a bulk job is the total value of the execution elapse times of all the
sub jobs. However, this value includes the execution elapse times of the sub jobs that are not subject to billing. If some sub jobs are not
executed correctly due to a node down or another cause (in the case of the job end code (PJM code) of a value other than 0), these sub jobs
may be example cases of such sub jobs. In preparation of such a case, to exclude the elapse values of the sub jobs that do not end correctly
from the billing targets, specific PIM codes can be set. Through this setting, the execution elapse times of the sub jobs that end with the
specific PJM codes can be summarized as the job execution elapse time that is not subject to billing (elapse_off_acc).

To specify the PJM codes relevant to which execution elapse times are not subject to billing, add the setting below to papjmapi.conf, a
configuration file relevant to the job information notification API. This file is provided in /var/opt/FJSVtcs/shared_disk/pjm/.private/ in the
compute cluster management node.

ELAPSE_OFF_ACC= PJM code

[Notes on setting]

- Describe PJM codes in numerical characters. Description using other characters is invalid.

- To describe multiple PJM codes, delimit them with a comma "," or a space character.

- PJM codes are not checked. Therefore, if you describe an invalid PJM code, it is set.

- The lines in which ELAPSE_OFF_ACC= is missing at the beginning are skipped.

- 6 -

- If you describe multiple lines, they are all valid.

- If a line includes an invalid character string, the line is valid up to that character.

- The maximum length of a line is 4096 characters. A line that is 4097 characters long or longer causes a read error.

- The number of PJM codes that can be set is 1024. If 1025 or more PJM codes are set, the first 1024 codes are set and the rest are ignored.

The following is an example.

cat /var/opt/FJSVtcs/shared_disk/pjm/.private/papjmapi.conf

ELAPSE_OFF_ACC= 1,2,3

ELAPSE_OFF_ACC= 4 5 6

ELAPSE_OFF_ACC= 5 6 7

In this example, for sub jobs with PJM codes 1 to 7, the elapse values are added to elapse_off_acc since they are treated as sub jobs that are
not subject to billing.

- 7 -

Appendix B Reference: APIs Relevant to Connection to
Job Manager Function

This appendix describes the APIs relevant to connection to the job manager function.

 Information

The description from "Appendix B: Reference: APIs Relevant to Connection to Job Manager Function" to "Appendix E Reference: APIs
Relevant to Data Information" shows input-output of the arguments of functions (in and out). The meanings of in and out are as follows.

- in
A program that uses the job information notification API sets this information, and the job manager function refers to this information.

- out
The job manager function sets this information, and a program that uses the job information notification API refers to this information.

B.1 PJM_connect()
This is a function used for connecting to the job manager function.

#include <FJSVtcs/pjm/pjmapi.h>

int PJM_connect(int *errcd);

Table B.1 Argument of PJM_connect()

Argument Type Input-Output Description

errcd int * out If connection to the job manager function fails, the value corresponding to
the error is set.

Table B.2 Return Values of PJM_connect()

Result Return Value

In the case of success The connected file descriptor is returned.

In the case of an error -1 is returned, and any one of the following values corresponding to errors is set in errcd.

Table B.3 Values Set in errcd in the Case of Errors

Value Set in errcd Meaning

PJM_ERR_BOOTYET The job manager function has not been started.

PJM_ERR_CANTOPEN Opening of the file descriptor failed.

PJM_ERR_INTERNAL An internal error occurred.

B.2 PJM_disconnect()
This is a function used for disconnecting from the job manager function.

#include <FJSVtcs/pjm/pjmapi.h>

int PJM_disconnect(int fd, int *errcd);

Table B.4 Arguments of PJM_disconnect()

Argument Type Input-Output Description

fd int in Set the file descriptor returned by PJM_connect.

errcd int * out If disconnection fails, the value corresponding to the error is set.

- 8 -

Table B.5 Return Values of PJM_disconnect()

Result Return Value

In the case of success 0 is returned.

In the case of an error -1 is returned, and any one of the following values corresponding to errors is set in errcd.

Table B.6 Values Set in errcd in the Case of Errors

Value Set in errcd Meaning

PJM_ERR_CANTCLOSE A close error occurred.

PJM_ERR_INTERNAL An internal error occurred.

- 9 -

Appendix C Reference: APIs Relevant to Setting of
Monitoring Target Information

This appendix describes APIs relevant to setting of monitoring target information.

C.1 PJM_set_target_jobinfo()
This function is used to set a job to be monitored and to make the setting of notification of state transition information from the job manager
function (filter). It reports job information or differential information of the job specified by target_job as a monitoring target at the timing
specified by notify_trigger.

#include <FJSVtcs/pjm/pjmapi.h>

int PJM_set_target_jobinfo(int fd, const struct target_info *targetinfo);

Table C.1 Arguments of PJM_set_target_jobinfo()

Argument Type Input-
Output

Description

fd int in The file descriptor returned from PJM_connect is set.

targetinfo const struct
target_info *

out The relevant information can be added as a monitoring target by
setting a condition in each member variable.

The structure target_info is as follows.

typedef struct target_info {

 struct target_job targetjob; /* (in)target_job */

 int kind_info /* (in)kind of targetjob */

 int notify_trigger; /* (in)job info notify trigger */

 int bulk_subjob_notify_trigger ; /* (in)bulk subjob notify trigger */

 int simple_data_model; /* (in)simple data of model */

} target_info_t;

typedef struct target_job {

 int kind_job /* (in)kind of information */

 int job_id; /* (in)job ID */

 uid_t uid; /* (in)user id */

 gid_t gid; /* (in)user group id*/

 char rscunit_name[PJM_RSCUNAME_MAX]; /* (in)rsc unit name */

 char rscgrp_name[PJM_RSCGROUP_MAX]; /* (in)rsc group name*/

} target_job_t;

Each member has the following values.

Table C.2 Members of the target_info Structure

Member Type Input-
Output

Description

target_job struct target_job in The relevant jobs can be added as monitoring targets by setting a
condition in each member.
If kind_job is PJM_KINDJOB_ALL and the PJM_KINDINFO_JOB
flag is set in kind_info, all the jobs are targets.

kind_info int in Specifies what type of information is obtained.
The following value is specified.

PJM_KINDINFO_JOB: Job information

notify_trigger int in Specifies what conditions are notified. For reported information, see
"E.1 PJM_read_data()."
Specification is valid only when the PJM_KINDINFO_JOB flag is set

- 10 -

Member Type Input-
Output

Description

in kind_info.
Logical addition of the following values are specified.

PJM_STATUS_INFO_JOB:
Job information is reported on either of the following conditions.
- The filter setting specifies the job as a notification target.
- The submitted job enters the QUEUED state for the first time.
PJM_STATUS_ACCEPT: ACCEPT state
PJM_STATUS_QUEUED: QUEUED state
PJM_STATUS_RUNNING_A: RUNNING-A state
PJM_STATUS_RUNNING: RUNNING state
PJM_STATUS_RUNOUT: RUNOUT state
PJM_STATUS_EXIT: EXIT state
PJM_STATUS_CANCEL: CANCEL state
PJM_STATUS_HOLD: HOLD state
PJM_STATUS_ERROR: ERROR state
PJM_STATUS_SCHED: Scheduling notification
PJM_STATUS_REJECT: REJECT state
PJM_STATUS_RUNNING_P: RUNNING-P state
PJM_STATUS_RUNNING_E: RUNNING-E state
PJM_STATUS_ALTER: Job attribute change notification
PJM_STATUS_ALL: All the states

bulk_subjob_notify_trigger int in Specifies in what conditions a sub job of a bulk job is notified.
For reported information, see "E.1 PJM_read_data()."
Specification is valid only when the PJM_KINDINFO_JOB flag is set
in kind_info.

Logical addition of the following values are specified.
The setting of a status for which there is no notification event of a sub
job (PJM_STATUS_REJECT, PJM_STATUS_ACCEPT, etc.) is
ignored.

PJM_STATUS_INFO_JOB:
Job information is reported on either of the following conditions.
- The filter setting specifies the job as a notification target.
- The submitted job enters the QUEUED state for the first time.
PJM_STATUS_ACCEPT: ACCEPT state
PJM_STATUS_QUEUED: QUEUED state
PJM_STATUS_RUNNING_A: RUNNING-A state
PJM_STATUS_RUNNING: RUNNING state
PJM_STATUS_RUNOUT: RUNOUT state
PJM_STATUS_EXIT: EXIT state
PJM_STATUS_CANCEL: CANCEL state
PJM_STATUS_HOLD: HOLD state
PJM_STATUS_ERROR: ERROR state
PJM_STATUS_SCHED: Scheduling notification
PJM_STATUS_REJECT: REJECT state
PJM_STATUS_RUNNING_P: RUNNING-P state
PJM_STATUS_RUNNING_E: RUNNING-E state
PJM_STATUS_ALTER: Job attribute change notification
PJM_STATUS_ALL: All the states (All bits are set)

simple_data_model int in Specifies whether to report a normal job, a step job, summary
information of a bulk job, or sub job notification of a bulk job as simple
data.

- 11 -

Member Type Input-
Output

Description

Logical addition of the following values are specified.
For a job model for which any of the following values are not set, data
corresponding to the conventional notification type is reported.

PJM_SIMPLE_DATA_NORMAL:
Normal job notification is reported as simple data.
PJM_SIMPLE_DATA_STEP:
Step job notification is reported as simple data.
PJM_SIMPLE_DATA_BULK_SUMMERY:
The summary information of a bulk job is reported as simple data.
PJM_SIMPLE_DATA_BULK_SUBJOB:
Sub job notification of a bulk job is reported as simple data.
PJM_SIMPLE_DATA_ALL:
All notification is reported as simple data (all the bits are set).

kind_job int in Specifies jobs of notification targets.
Logical addition of the following values are specified. If multiple bits
are set, jobs that satisfy all the conditions are targets.

PJM_KINDJOB_ALL: All the jobs
PJM_KINDJOB_ID: Specification by a job ID
PJM_KINDJOB_USER: Specification by a user ID
PJM_KINDJOB_GROUP: Specification by a group ID
PJM_KINDJOB_RSCUNIT: Specification by a resource unit ID
PJM_KINDJOB_RSCGRP: Specification by a resource group ID

job_id uint in Specifies the job ID of a target job.
Specification is valid only when PJM_KINDJOB_ID is spedified for
kind_job.

uid uid_t in Specifies the owner user ID of a target job.
Specification is valid only when PJM_KINDJOB_USER is spedified
for kind_job.

gid gid_t in Specifies the owner group ID of a target job.
Specification is valid only when PJM_KINDJOB_GROUP is
spedified for kind_job.

rscunit_name
[PJM_RSCUNAME_MAX]

char[] in Specifies the owner resource unit ID of a target job.
PJM_RSCUNAME_MAX is 64.
Specification is valid only when PJM_KINDJOB_RSCUNIT is
spedified for kind_job.

rscgrp_name
[PJM_RSCGROUP_MAX]

char[] in Specifies the owner resource group ID of a target job.
PJM_RSCUNAME_MAX is 64.
Specification is valid only when PJM_KINDJOB_RSCGRP is
spedified for kind_job.

Table C.3 Return Values of PJM_set_target_jobinfo()

Result Return Value

In the case of success 0 is returned.

In the case of an error The value corresponding to any one of the following errors is returned.
PJM_ERR_SEND: A send error occurred.
PJM_ERR_INTERNAL: An internal error occurred.

- 12 -

 Note

If PJM_set_target_job() is called multiple times with different arguments, new information is added while the previously registered job
information transition notification is maintained as it is.

C.2 PJM_unset_target_jobinfo()
This function is used to deselect jobs from the monitoring targets. This function is also used to deselect the state transition notification
information (filter) of the job manager function from the monitoring targets.
The specification method of jobs is the same as that for PJM_set_target_jobinfo(). For details, see "C.1 PJM_set_target_jobinfo()."

#include <FJSVtcs/pjm/pjmapi.h>

int PJM_unset_target_jobinfo(int fd, const struct target_info *targetinfo);

Table C.4 Argument of PJM_unset_target_jobinfo()

Argument Type Input-Output Description

fd int in The file descriptor returned from PJM_connect is set.

targetinfo const struct
target_info *

in The same as struct target_info *targetinfo of
PJM_set_target_jobinfo()
For details, see "Table C.1 Arguments of
PJM_set_target_jobinfo()."

Table C.5 Return Values of PJM_unset_target_jobinfo()

Result Return Value

In the case of success 0 is returned.

In the case of an error The value corresponding to any one of the following errors is returned.
PJM_ERR_SEND: A send error occurred.
PJM_ERR_INTERNAL: An internal error occurred.

- 13 -

Appendix D Reference: APIs Relevant to Reading of
Header Information

This appendix describes the APIs relevant to reading of header information.

D.1 PJM_read_head()
This function is used to read the header of a notification sent from the job manager function. A program using this API waits for read data
until the header to be reported is read. By calling PJM_read_data() according to the reported event type, the program can obtain the contents
of the notification.

#include <FJSVtcs/pjm/pjmapi.h>

int PJM_read_head(int fd, int *notice_kind, int *data_flags, struct timespec *sendtime, int

*datasize);

Table D.1 Arguments of PJM_read_head()

Argument Type Input-
Output

Description

fd int in The file descriptor returned from PJM_connect is set.

notice_kind int * out The following notification types reported by the job manager function are
stored.

PJM_INFO_JOB: Job information notification
PJM_CHANGE_ACCEPT: Notification of change to the ACCEPT state
PJM_CHANGE_QUEUED: Notification of change to the QUEUED state
PJM_CHANGE_RUNNING_A: Notification of change to the
RUNNING-A state
PJM_CHANGE_RUNNING: Notification of change to the RUNNING
state
PJM_CHANGE_RUNOUT: Notification of change to the RUNOUT state
PJM_CHANGE_EXIT: Notification of change to the EXIT state
PJM_CHANGE_CANCEL: Notification of change to the CANCEL state
PJM_CHANGE_HOLD: Notification of change to the HOLD state
PJM_CHANGE_ERROR: Notification of change to the ERROR state
PJM_CHANGE_SCHED: Notification of scheduling result
PJM_CHANGE_REJECT: Notification of change to the REJECT state
PJM_CHANGE_RUNNING_P: Notification of change to the
RUNNING-P state
PJM_CHANGE_RUNNING_E: Notification of change to the
RUNNING-E state
PJM_CHANGE_ALTER: Notification of attribute change

data_flags int * out The data type reported by the job manager function is stored.
For a data type, information is represented as a bit value, and the logical
addition of the values below is stored.
(*) Currently, only PJM_DATA_FLAGS_SIMPLE is supported.

If nothing is set (0 is set), the data structure of notification contents
obtained with PJM_read_data() is a structure corresponding to the
notification type specified by conventional notice_kind.

PJM_DATA_FLAGS_SIMPLE: Notification of simple data
The data structure of notification contents obtained with PJM_read_data()
is not a structure corresponding to the notification type specified by
notice_kind but the simple data notification structure.

sendtime struct timespec * out The time when the job manager function sends a notification is stored.

- 14 -

Argument Type Input-
Output

Description

datasize int * out The size of data to be read with PJM_read_data() is stored.

Table D.2 Return Values of PJM_read_head()

Result Return Value

In the case of success 0 is returned.

In the case of an error The value corresponding to any one of the following errors is returned.
PJM_ERR_INVALID: PJM_read_head() was called without reading data.
PJM_ERR_READ: A read error occurred.
PJM_ERR_INTERNAL: An internal error occurred.

- 15 -

Appendix E Reference: APIs Relevant to Data Information
This appendix describes APIs relevant to data information.

E.1 PJM_read_data()
This function reads notification data sent from the job manager function (data corresponding to the header read with PJM_read_head()).

#include <FJSVtcs/pjm/pjmapi.h>

int PJM_read_data(int fd, void **data_p);

Table E.1 Arguments of PJM_read_data()

Argument Type Input-
Output

Description

fd int in The file descriptor returned from PJM_connect is set.

data_p void ** out Storage pointer of obtained data
The caller secures a memory space of datasize read with PJM_read_head(), and
specifies the pointer to this space.
Stored data is a structure corresponding to the notification type and data type.

The following are the notification types.
PJM_INFO_JOB: Job information notification structure
PJM_CHANGE_ACCEPT: Notification structure of change to the ACCEPT state
PJM_CHANGE_QUEUED: Notification structure of change to the QUEUED state
PJM_CHANGE_RUNNING_A: Notification structure of change to the
RUNNING-A state
PJM_CHANGE_RUNNING: Notification structure of change to the RUNNING
state
PJM_CHANGE_RUNOUT: Notification structure of change to the RUNOUT state
PJM_CHANGE_EXIT: Notification structure of change to the EXIT state
PJM_CHANGE_CANCEL: Notification structure of change to the CANCEL state
PJM_CHANGE_HOLD: Notification structure of change to the HOLD state
PJM_CHANGE_ERROR: Notification structure of change to the ERROR state
PJM_CHANGE_SCHED: Notification structure of scheduling result
PJM_CHANGE_REJECT: Notification structure of change to the REJECT state
PJM_CHANGE_RUNNING_P: Notification structure of change to the RUNNING-
P state
PJM_CHANGE_RUNNING_E: Notification structure of change to the RUNNING-
E state
PJM_CHANGE_ALTER: Notification structure of attribute change

The following is the data type.
PJM_DATA_FLAGS_SIMPLE: Simple data notification structure

Table E.2 Return Values of PJM_read_data()

Result Return Value

In the case of success 0 is returned.

In the case of an error The value corresponding to any one of the following errors is returned.
PJM_ERR_READ: A read error occurred.
PJM_ERR_INTERNAL: An internal error occurred.

E.1.1 Job Information Notification Structure (PJM_INFO_JOB)
The function PJM_read_data() reads the notification data sent when the notification type is PJM_INFO_JOB. The following are the job
information notification structures that are reported by the argument data_p of the function PJM_read_data().

- 16 -

typedef struct Pjmapi_info_job {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 int16_t jobstatus; /* Job status */

 int16_t job_aprio; /* Job priority level within the resource unit */

 int16_t job_uprio; /* Job priority level within the same user */

 int16_t pad1;

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 int subjob_num; /* Number of sub jobs */

 uint exit_code; /* exitcode of the user script */

 int32_t signal_no; /* Signal number of the user script */

 int pjm_code; /* PJM code */

 uint node_x; /* Allocated node shape x */

 uint node_y; /* Allocated node shape y */

 uint node_z; /* Allocated node shape z */

 uint node_num; /* Number of allocated nodes */

 uid_t uid; /* User ID */

 gid_t exec_gid; /* Execution group ID */

 uint node_req_x; /* Number of requested nodes in

 the x direction */

 uint node_req_y; /* Number of requested nodes in

 the y direction */

 uint node_req_z; /* Number of requested nodes in

 the z direction */

 uint node_req_num; /* Number of requested nodes */

 uint node_mpi_x; /* --Node shape with mpi option

 specification (x) */

 uint node_mpi_y; /* --Node shape with mpi option

 specification (y) */

 uint node_mpi_z; /* --Node shape with mpi option

 specification (z) */

 uint node_mpi_num; /* --Number of nodes with mpi option

 specification */

 int proc; /* Number of processes */

 int proc_bynode; /* Number of processes for 1 node */

 int sd_num; /* Number of dependence relation expressions */

 uid_t lasthold_uid; /* User ID held/cancelled in the last state */

 uint32_t subjobflag; /* Attribute of transfer wait for preceding

 step job result */

 uint hold_count; /* HOLD count */

 int run_count; /* RERUN count */

 uint unavailable_nodenum; /* Number of unavailable nodes */

 uint sum_cpu_req_num; /* Total number of requested CPUs */

 uint32_t used_cpunum; /* Number of CPUs used */

 int umask; /* File mask */

 int mailflag; /* Mail send flag */

 uint pro_exit_code; /* Prologue exit code */

 uint epi_exit_code; /* Epilogue exit code */

 uint32_t vn_cpu_req; /* Requested number of CPU cores

 by virtual node */

 int rankmap_type; /* Rank map type */

 int rankmap_num; /* Number of placed rank maps */

 int vn_multi; /* Number of placed virtual nodes */

 int node_type; /* Node type */

 uint32_t num_alloc_vnode; /* Number of allocated virtual nodes */

 uint sum_cpu_alloc_num; /* Total number of allocated CPUs */

 uint used_nodenum; /* Number of nodes used */

 uint sum_cpu_prealloc_num; /* Total number of scheduler allocation CPUs */

- 17 -

 time_t create_date; /* Job submission time */

 time_t start_date; /* Job start time */

 time_t end_date; /* Job end time */

 time_t elapse; /* Job execution elapse time */

 time_t elapse_off_acc; /* Job execution elapse time that is not subject

 to billing */

 time_t sched_date; /* Job execution start time */

 time_t que_date; /* Time of QUEUED transition */

 time_t runa_date; /* Time of RUNNING-A transition */

 time_t run_date; /* Time of RUNNING transition */

 time_t runout_date; /* Time of RUNOUT transition */

 time_t exit_date; /* Time of EXIT transition */

 time_t cancel_date; /* Time of CANCEL transition */

 time_t hold_date; /* Time of HOLD transition */

 time_t err_date; /* Time of ERR transition */

 uint64_t attribute; /* Job attribute */

 time_t spec_date; /* Execution start time specified at

 job submission */

 uint64_t elapse_limit; /* Limit value of job elapse time */

 char jobname[64]; /* Job name */

 char rscunit_name[PJM_RSCUNAME_MAX]; /* Resource unit name */

 char rscgrp_name[PJM_RSCGROUP_MAX]; /* Resource group name */

 uint64_t mem_req; /* Requested memory amount (by node) */

 uint64_t node_cpu; /* Limit value of CPU time (by node) */

 time_t reject_date; /* Reject transition time */

 char hostname[16]; /* Submitted host name */

 char reason[64]; /* REASON */

 time_t fst_start_date; /* Initial job execution start time */

 uint64_t sum_runa_time; /* Cumulative RUNNING-A time (seconds) */

 uint64_t sum_run_time; /* Cumulative RUNNING time (seconds) */

 uint64_t sum_hold_time; /* Cumulative HOLD time (seconds) */

 uint64_t sum_wait_time; /* Cumulative wait time (seconds) */

 uint64_t mem_lmt; /* Memory amount limit value */

 uint64_t mem_job_alloc; /* Allocated memory amount */

 uint64_t prc_cputm_lmt; /* CPU time limit value by process */

 uint64_t prc_corefile_lmt; /* Core file size limit value by process */

 uint64_t prc_cre_proc_lmt; /* Limit value of the number of user processes

 by process */

 uint64_t prc_data_lmt; /* Data segment limit value by process */

 uint64_t prc_locked_mem_lmt; /* Lock memory limit value by process */

 uint64_t prc_psx_msq_que_lmt; /* POSIX message queue limit value by process */

 uint64_t prc_openfiles_lmt; /* File descriptor limit value by process */

 uint64_t prc_pndng_sgnl_lmt; /* Limit value of the number of signals

 by process */

 uint64_t prc_prmfl_lmt; /* File size limit value by process */

 uint64_t prc_stack_lmt; /* Stack segment limit value by process */

 uint64_t prc_vmem_lmt; /* Virtual memory size limit value by process */

 uint64_t max_used_mem; /* Maximum memory use amount (bytes) */

 uint64_t usctmut; /* Total user CPU time and total system CPU time

 (seconds) */

 time_t snapshottime; /* Data collection year/month/day */

 time_t pjdel_date; /* Job deletion request time */

 time_t delete_date; /* Job deletion time */

 time_t all_prec_subjob_exit_date; /* Preceding sub job end time */

 char fsname[64]; /* External file system name */

 char appname[64]; /* Application name */

 time_t prologue_start_date; /* Prologue start time */

 time_t runp_date; /* Time of RUNNING-P transition */

 time_t epilogue_start_date; /* Epilogue start time */

 time_t rune_date; /* Time of RUNNING-E transition */

 time_t prologue_end_date; /* Prologue end time */

 time_t epilogue_end_date; /* Epilogue end time */

 uint64_t pack_policy; /* Virtual node placement policy */

- 18 -

 uint64_t exec_policy; /* Execution mode */

 uint64_t sum_vm_job_use; /* Total used memory amount by virtual node

 (bytes) */

 uint64_t sum_usr_cputm; /* Total user CPU time */

 uint64_t sum_sys_cputm; /* Total system CPU time */

 uint64_t mem_job_prealloc; /* Scheduler allocation memory amount (bytes) */

 off_t curdir_ofs; /* Offset to job submission directory */

 off_t mail_ofs; /* Offset to mail address */

 off_t shell_ofs; /* Offset to job shell */

 off_t comment_ofs; /* Offset to comment */

 off_t stdout_ofs; /* Offset to standard output file */

 off_t stderr_ofs; /* Offset to standard error output file */

 off_t job_acct_ofs; /* Offset to job statistical information

 file path */

 off_t ndlist_ofs; /* Offset to node ID list */

 off_t tofulist_ofs; /* Offset to Tofu coordinate list */

 off_t sd_ofs; /* Offset to dependency expression

 (Pjmapi_sd_t) */

 int32_t req_mpi_static_proc; /* Number of requested MPI static processes */

 int32_t req_mpi_proc; /* Number of requested MPI processes */

 int32_t alloc_mpi_static_proc; /* Number of allocated MPI static processes */

 int32_t alloc_mpi_proc; /* Number of allocated MPI processed */

 uint64_t numa_policy; /* NUMA policy */

 uint32_t start_blkno; /* Bulk start number */

 uint32_t end_blkno; /* Bulk end number */

 uint32_t affected_nid; /* Node ID that affected job result */

 uint32_t prealloc_rmexit_exitcode; /* prealloc exit end code */

 uint32_t predel_rmexit_exitcode; /* predel exit end code */

 uint32_t postfree_rmexit_exitcode; /* postfree exit end code */

 uint64_t prealloc_start_time; /* prealloc exit start time */

 uint64_t prealloc_end_time; /* prealloc exit end time */

 uint64_t predel_start_time; /* predel exit start time */

 uint64_t predel_end_time; /* predel exit end time */

 uint64_t postfree_start_time; /* postfree exit start time */

 uint64_t postfree_end_time; /* postfree exit end time */

 uint8_t prealloc_exec_kind; /* prealloc exit execution timing */

 uint8_t predel_exec_kind; /* predel exit execution timing */

 uint8_t postfree_exec_kind; /* postfree exit execution timing */

 uint8_t backfill_flg; /* Backfill flag */

 uint8_t pad4[4];

 struct timespec last_sched_date; /* Scheduling start time */

 uint64_t pjsub_option_flg; /* pjsub command option */

 uint64_t pjsub_option_exflg; /* Enhanced pjsub command option */

 uint64_t pjsub_L_arg_flg; /* argument flag of the -L option of

 the pjsub command */

 uint64_t pjsub_mpi_arg_flg; /* argument flag of the --mpi option of

 the pjsub command */

 uint64_t pjsub_step_arg_flg; /* argument flag of the --step option of

 the pjsub command */

 uint64_t pjsub_P_arg_flg; /* argument flag of the -P option of

 the pjsub command */

 time_t last_suspended_date; /* For future extension */

 time_t last_resumed_date; /* For future extension */

 uint64_t sum_suspended_time; /* For future extension */

 uint32_t total_suspended_count; /* For future extension */

 uint8_t pad5[3];

 uint8_t elapsed_time_mode; /* Elapse time limit specification method */

 uint64_t adaptive_elapsed_time_min; /* Elapse time limit minimum value */

 uint64_t adaptive_elapsed_time_max; /* Elapse time limit maximum value */

 uint64_t job_env_boot_time; /* Job execution environment boot time */

 uint64_t job_env_shutdown_time; /* Job execution environment shutdown time */

 int64_t fj_profiler; /* Fujitsu profiler use count */

 off_t req_cstmrsc_ofs; /* Offset to custom resource information

- 19 -

 (Pjmapi_req_cstmrsc_t) */

 off_t supplementary_info_ofs; /* Offset to additional information */

 time_t total_node_down_time; /* For expansion */

 char arch_info[16] /* Machine type */

 off_t hw_info_ofs; /* Offset to hardware specific information */

} Pjmapi_info_job_t;

typedef struct Pjmapi_sd {

 int endcode_type; /* End code type */

 int form_type; /* Condition format */

 int form_value_num; /* Number of condition values */

 int deletetype; /* Deletion type */

 int to_stepno_num; /* Number of dependent step numbers */

 uint8_t pad1[4];

 off_t form_value_ofs; /* Offset to condition value */

 off_t to_stepno_ofs; /* Offset to dependent step number */

} Pjmapi_sd_t;

typedef enum {

 PJM_CSTMRSC_VALUE_TYPE_NUMERIC = 1,

 PJM_CSTMRSC_VALUE_TYPE_STRING = 2

} Pjmapi_cstmrsc_value_type_t;

typedef struct Pjmapi_req_cstmrsc {

 off_t next_ofs; /* Offset where next custom resource information

 (Pjmapi_req_cstmrsc_t) is stored */

 char name[PJM_MAX_CSTM_NAME_LEN] /* Custom resource name */

 Pjmapi_cstmrsc_info_t cstmrsc_info; /* Custom resource type structure */

} Pjmapi_req_cstmrsc_t;

typedef struct Pjmapi_cstmrsc_info {

 uint8_t is_pernode; /* Whether NodeID is specified, 1 if specified */

 uint8_t value_type; /* Value type of custom resource (specifiable with

 pjmapi_cstmrsc_value_type_t) */

 uint8_t pad[6];

 union {

 int64_t num_value; /* Requested amount of custom resource */

 char string_value[PJM_MAX_CSTM_NAME_LEN]; /* Requested type of custom resource */

 } value_rsc;

} Pjmapi_cstmrsc_info_t;

typedef struct Pjmapi_info_hwspecific_fx {

 uint64_t tofu_user_comm_recv_byte; /* Tofu user communication receive

 data size (bytes) */

 uint64_t tofu_user_comm_send_byte; /* Tofu user communication send

 data size (bytes) */

 uint64_t tofu_sys_comm_rsv_byte; /* Tofu system communication receive

 data size (bytes) */

 uint64_t tofu_sys_comm_send_byte; /* Tofu system communication send

 data size (bytes) */

 uint32_t sum_alloc_assistcpunum; /* Number of allocated assistant cores */

 uint32_t sum_used_assistcpunum; /* Number of assistant cores used */

 uint64_t sum_usr_assistcputm; /* Total user CPU use time of

 assistant core */

 uint64_t sum_sys_assistcputm; /* Total system CPU use time of

 assistant core */

 uint64_t sum_used_assistant_core_max_mem; /* Maximum use memory amount of

 assistant core */

 uint64_t sector_cache_using_program_count; /* Start count of sector cache using

 program */

 uint64_t intra_node_barrier_using_program_count; /* Count of chip internal barrier using

 program */

- 20 -

 Pjmapi_job_power_consumption_t power_consumption; /* Power consumption-related information */

 Pjmapi_reserved_param_t reserved_param; /* For future extension */

 Pjmapi_reserved_info_t reserved_info; /* For future extension */

} Pjmapi_info_hwspecific_fx_t;

typedef struct Pjmapi_info_hwspecific_pcc {

 Pjmapi_job_power_consumption_pcc_t power_consumption; /* PC cluster power consumption-related

 information */

} Pjmapi_info_hwspecific_pcc_t;

typedef struct Pjmapi_job_power_consumption {

 uint16_t power_consumption_state; /* Acquisition state of power information */

 uint8_t utilization_info_of_power_api; /* Power knob use information */

 uint8_t pad[1];

 uint32_t num_cmg; /* Number of CMGs */

 off_t cmgs_ofs; /* Offset to power consumption structure

 by CMG */

 Pjmapi_power_consumption_t ideal_cpu_peripherals; /* Peripheral power consumption

 information in CPU (estimation) */

 Pjmapi_power_consumption_t ideal_opticalmodule; /* Optical module power consumption

 information (estimation) */

 Pjmapi_power_consumption_t ideal_tofu; /* Tofu power consumption information

 (estimation) */

 Pjmapi_power_consumption_t ideal_pcie; /* PCI-E power consumption information

 (estimation) */

 Pjmapi_power_consumption_t ideal_node; /* Node power consumption information

 (estimation) */

 Pjmapi_power_consumption_t measured_node; /* Node power consumption information

 (result) */

 struct timespec measure_start_date; /* Power measurement start time */

 struct timespec measure_end_date; /* Power measurement end time */

} Pjmapi_job_power_consumption_t;

typedef struct Pjmapi_job_power_consumption_pcc {

 uint16_t power_consumption_state; /* Acquisition state of power information */

 uint8_t pad[2];

 uint32_t num_pkg; /* Number of packages */

 off_t pkgs_ofs; /* Offset to power consumption structure

 by package */

 Pjmapi_power_consumption_t measured_node; /* Node power consumption information

 (result) */

 struct timespec measure_start_date; /* Power measurement start time */

 struct timespec measure_end_date; /* Power measurement end time */

} Pjmapi_job_power_consumption_pcc_t;

typedef struct Pjmapi_cmg_power_consumption {

 int32_t cmgno; /* CMG NUMBER */

 uint8_t pad[4];

 Pjmapi_power_consumption_t ideal_core; /* Compute core power consumption

 information by CMG (estimation) */

 Pjmapi_power_consumption_t ideal_l2cache; /* L2 cache power consumption

 information by CMG (estimation) */

 Pjmapi_power_consumption_t ideal_mem; /* Memory power consumption

 information by CMG (estimation) */

} Pjmapi_cmg_power_consumption_t;

typedef struct Pjmapi_pkg_power_consumption {

 int32_t pkgno; /* Package number */

 uint8_t pad[4];

 Pjmapi_power_consumption_t cpu; /* CPU power consumption information

 by package */

 Pjmapi_power_consumption_t mem; /* Memory power consumption information

- 21 -

 by package */

 Pjmapi_power_consumption_t pp0; /* PP0 power consumption information

 by package */

} Pjmapi_pkg_power_consumption_t;

typedef struct Pjmapi_power_consumption {

 double avg_power; /* Average power consumption */

 double max_power; /* Maximum power consumption */

 double min_power; /* Minimum power consumption */

 double energy; /* Power consumption amount */

} Pjmapi_power_consumption_t;

typedef struct Pjmapi_reserved_param {

 uint64_t reserved1; /* For future extension */

 uint64_t reserved2; /* For future extension */

 uint64_t reserved3; /* For future extension */

 uint64_t reserved4; /* For future extension */

 uint64_t reserved5; /* For future extension */

 int32_t reserved6; /* For future extension */

 int32_t reserved7; /* For future extension */

 int32_t reserved8; /* For future extension */

 int32_t reserved9; /* For future extension */

 uint64_t reserved10; /* For future extension */

 uint64_t reserved11; /* For future extension */

 off_t reserved12; /* For future extension */

 off_t reserved13; /* For future extension */

} Pjmapi_reserved_param_t;

typedef struct Pjmapi_reserved_info {

 struct timespec reserved1; /* For future extension */

 struct timespec reserved2; /* For future extension */

 struct timespec reserved3; /* For future extension */

 struct timespec reserved4; /* For future extension */

 struct timespec reserved5; /* For future extension */

 struct timespec reserved6; /* For future extension */

 uint64_t reserved7; /* For future extension */

 double reserved8; /* For future extension */

 double reserved9; /* For future extension */

 uint64_t reserved10; /* For future extension */

 uint64_t reserved11; /* For future extension */

 uint64_t reserved12; /* For future extension */

 uint64_t reserved13; /* For future extension */

 uint64_t reserved14; /* For future extension */

 uint64_t reserved15; /* For future extension */

 uint64_t reserved16; /* For future extension */

 double reserved17; /* For future extension */

 uint64_t reserved18; /* For future extension */

 uint64_t reserved19; /* For future extension */

 uint64_t reserved20; /* For future extension */

 uint64_t reserved21; /* For future extension */

 double reserved22; /* For future extension */

 uint64_t reserved23; /* For future extension */

 uint64_t reserved24; /* For future extension */

 uint64_t reserved25; /* For future extension */

 uint64_t reserved26; /* For future extension */

} Pjmapi_reserved_info_t;

- 22 -

Table E.3 Members of Job Information Notification Structure PJM_INFO_JOB
Member Type Input-

Output
Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status
is stored.

jobstatus int16_t out The current status of the target job is stored.

job_aprio int16_t out The job priority level within the resource unit is stored.

job_uprio int16_t out The job priority level within the same user is stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

subjob_num int out The number of the sub jobs of the target job is stored.

exit_code uint out The exit code of the shell script of the target job is stored.

signal_no int32_t out The signal number of the shell script of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

node_x uint out The allocated shape of the target job is stored.

node_y uint

node_z uint

node_num uint out The number of the allocated nodes of the target job is stored.

uid uid_t out The uid of the job submitter is stored.

exec_gid gid_t out The gid with which the job is executed is stored.

node_req_x uint out The number of the requested nodes in the direction of x, y, or
z is stored.

node_req_y uint

node_req_z uint

node_req_num uint out The number of requested nodes of the job is stored.

node_mpi_x uint out The number of the mpi option-specified nodes in the direction
of x, y, or z is stored.

node_mpi_y uint

node_mpi_z uint

- 23 -

Member Type Input-
Output

Description

node_mpi_num uint out The number of the mpi option-specified nodes of the job is
stored.

proc int out The number of the processes of the job is stored.

proc_bynode int out The number of the processes of the job for 1 node is stored.

sd_num int out The number of the dependence relation expressions set for the
job is stored.

lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.

subjobflag uint32_t out The attribute of waiting for transfer of the result of the
preceding step job of the target job is stored.

hold_count uint out The number of times when the target job was held is stored.

run_count int out The number of times when the target job is re-executed is
stored.

unavailable_nodenum uint out The number of available nodes in the allocated scope of the
target job is stored.

sum_cpu_req_num uint out The number of CPUs requested by the target job is stored.

used_cpunum uint32_t out The number of CPUs used by the target job is stored.

umask int out The umask value of the submitter user of the target job (value
converted into a decimal number) is stored.

mailflag int out The flag about whether there is mail transfer of the target job
is stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)

pro_exit_code uint out The end code of the prologue script of the target job is stored.

epi_exit_code uint out The end code of the epilogue script of the target job is stored.

vn_cpu_req uint32_t out The number of allocated cores of the target job by virtual node
is stored.

rankmap_type int out The rank map of the target job is stored.
The value is any of the following.
0: No specification
1: rank-map-bynode
2: rank-map-bychip

rankmap_num int out The number of placed rank maps of the target job is stored.

node_type int out The node type of the target job is stored.

num_alloc_vnode uint32_t out The number of allocated virtual nodes of the target job is
stored.

sum_cpu_alloc_num uint out The total number of the allocated CPUs is stored.

used_nodenum uint out The number of nodes used is stored.

sum_cpu_prealloc_num uint out The total number of CPUs allocated by the scheduler function
is stored.

- 24 -

Member Type Input-
Output

Description

create_date time_t out The time when the target job was submitted (execution time
of the pjsub command) is stored.

start_date time_t out The job start time of the target job is stored.

end_date time_t out The job end time of the target job is stored.

elapse time_t out The job elapse time of the target job is stored.

elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.

sched_date time_t out The job execution start time of the target job is stored.

que_date time_t out The time of the transition of the target job to QUEUED is
stored.

runa_date time_t out The time of the transition of the target job to RUNNING-A is
stored.

run_date time_t out The time of the transition of the target job to RUNNING is
stored.

runout_date time_t out The time of the transition of the target job to RUNOUT is
stored.

exit_date time_t out The time of the transition of the target job to EXIT is stored.

cancel_date time_t out The time of the transition of the target job to CANCEL is
stored.

hold_date time_t out The time of the transition of the target job to HOLD is stored.

err_date time_t out The time of the transition of the target job to ERROR is
stored.

attribute uint64_t out The attribute of the job is set by the following flags.
0x000002: Specification of strict
0x004000: Specification of strict-io

spec_date time_t out The specification of the date and time when the job execution
to be started is stored.

elapse_limit uint64_t out The limit value of the elapsed time is stored.
In case of UNLIMITED, PJM_RLIM_INFINITY(~0ULL) is
stored.
If limit values of the elapsed time are specified as a range, the
maximum time of the limit of the elapse time (seconds) is set.

jobname[64] char[] out The job name of the target job is stored.

rscunit_name[PJM_
RSCUNAME_MAX]

char[] out The resource unit name of the job is stored.

rscgrp_name[PJM_
RSCGROUP_MAX]

char[] out The resource group name of the job is stored.

mem_req uint64_t out The requested memory amount by node is stored.

node_cpu uint64_t out The limit value of CPU time by node is stored.

reject_date time_t out The transition time to REJECT is stored.

hostname[16] char[] out The node name of the node where the target job was
submitted (up to 15 characters from the beginning) is stored.

reason[64] char[] out The REASON of the target job is stored.

- 25 -

Member Type Input-
Output

Description

fst_start_date time_t out The time when the target job transition to the RUNNING state
occurred for the first time is stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target
job (seconds, rounded up to the nearest whole digit) is stored.

sum_run_time uint64_t out The cumulative time of the RUNNING state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_hold_time uint64_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_wait_time uint64_t out The cumulative wait time of the target job is stored.

mem_lmt uint64_t out The memory amount limit value of the job in the node of the
target job (bytes) is stored.

mem_job_alloc uint64_t out The memory amount allocated in the node of the target job
(bytes) is stored.

prc_cputm_lmt uint64_t out The limit value of CPU use time of the target job by process
(seconds) is stored.

prc_corefile_lmt uint64_t out The limit value of the core file size of the target job by process
(bytes) is stored.

prc_cre_proc_lmt uint64_t out The limit value of the number of user processes of the target
job by process is stored.

prc_data_lmt uint64_t out The limit value of the data segment of the target job by
process is stored.

prc_locked_mem_lmt uint64_t out The limit value of the locked memory of the target job by
process is stored.

prc_psx_msq_que_lmt uint64_t out The limit value of the POSIX message queue of the target job
by process is stored.

prc_openfiles_lmt uint64_t out The limit value of the file descriptor of the target job by
process is stored.

prc_pndng_sgnl_lmt uint64_t out The limit value of the number of signal of the target job by
process is stored.

prc_prmfl_lmt uint64_t out The limit value of the file size of the target job by process is
stored.

prc_stack_lmt uint64_t out The limit value of the stack segment of the target job by
process is stored.

prc_vmem_lmt uint64_t out The limit value of the virtual memory size of the target job by
process is stored.

max_used_mem uint64_t out The maximum memory usage of the target job is stored.

usctmut uint64_t out The total user CPU time and total system CPU time of the
target job (seconds) are stored.

snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.

pjdel_date time_t out The job deletion request time of the target job is stored.

delete_date time_t out The job deletion time of the target job is stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

fsname[64] char[] out The file system name of the target job is stored.

- 26 -

Member Type Input-
Output

Description

appname[64] char[] out The application name of the target job is stored.

prologue_start_date time_t out The prologue start time in the compute node of the target job
is stored.

runp_date time_t out The time of the transition of the state of the PJM of the target
job to RUNNING_P is stored.

epilogue_start_date time_t out The epilogue start time in the compute node of the target job
is stored.

rune_date time_t out The time of the transition of the state of the PJM of the target
job to RUNNING_E is stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job
is stored.

epilogue_end_date time_t out The epilogue end time in the compute node of the target job is
stored.

pack_policy uint64_t out The virtual node policy of the target job is stored.
The value is as follows.
0: PACK
1: UNPACK
2: Absolutely PACK
3: Absolutely UNPACK

exec_policy uint64_t out The execution mode policy of the target job is stored.
The value is as follows.
0: SHARE
1: SIMPLEX

sum_vm_job_use uint64_t out The total memory amount of the target job by virtual node
(bytes) is stored.

sum_usr_cputm uint64_t out The total user CPU use time is stored.

sum_sys_cputm uint64_t out The total system CPU use time is stored.

mem_job_prealloc uint64_t out The allocated memory amount of the target job is stored.

curdir_ofs off_t out The offset to the character string, in which the job submission
directory set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* curdir = (char*) PJMAPI_OFF_TO_PTR(curdir_ofs)

mail_ofs off_t out The offset to the character string, in which the mail address set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* mail = (char*) PJMAPI_OFF_TO_PTR (mail_ofs)

shell_ofs off_t out The offset to the character string, in which the shell script set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* shell = (char*) PJMAPI_OFF_TO_PTR(shell_ofs)

comment_ofs off_t out The offset to the character string, in which the comment set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.

- 27 -

Member Type Input-
Output

Description

char* comment = (char*)
PJMAPI_OFF_TO_PTR(comment_ofs)

stdout_ofs off_t out The offset to the character string, in which the path of the
standard output file set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* stdout = (char*) PJMAPI_OFF_TO_PTR(stdout_ofs)

stderr_ofs off_t out The offset to the character string, in which the path of the
standard error output file set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* stderr = (char*) PJMAPI_OFF_TO_PTR (stderr_ofs)

job_acct_ofs off_t out The offset to the character string, in which the path of the job
statistical information file set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* job_acct= (char*)
PJMAPI_OFF_TO_PTR(job_acct_ofs)

ndlist_ofs off_t out The offset to the character string, in which the node ID list set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
int nolist= (int *) PJMAPI_OFF_TO_PTR(ndlist_ofs)

tofulist_ofs off_t out The offset to the character string, in which the Tofu
coordinate list set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
tofu_3d_t tofulist= (tofu_3d_t *)
PJMAPI_OFF_TO_PTR(tofulist_ofs)
(*1) The Tofu coordinates are stored in the structure of the
Tofu coordinates. For details, see (*1) indicated outside of
this table.

sd_ofs off_t out The offset to the dependence relation expression structure, in
which the dependence relation expression information set for
the job is stored, is stored. (*2)
The following expression can be used to obtain the pointer to
the relevant structure.
pjmapi_sd_t* sd = (sd_t*) PJMAPI_OFF_TO_PTR(sd_ofs)

req_mpi_static_proc int32_t out The number of requested MPI static processes set for the job
is stored.

req_mpi_proc int32_t out The number of requested MPI processes set for the job is
stored.

alloc_mpi_static_proc int32_t out The number of allocated MPI static processes set for the job
is stored.

alloc_mpi_proc int32_t out The number of allocated MPI processes set for the job is
stored.

numa_policy uint64_t out The NUMA policy set for the job is stored.
The value to be set is as follows.
0: PACK
1: UNPACK

- 28 -

Member Type Input-
Output

Description

start_blkno uint32_t out The bulk start number set for the job is stored.

end_blkno uint32_t out The bulk end number set for the job is stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.

predel_start_time uint64_t out The time of the start of the predel exit of the target job is
stored.

predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.

postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.

postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing

- 29 -

Member Type Input-
Output

Description

predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded

postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
2: Job end timing

backfill_flg uint8_t out The flag of a backfilled job

last_sched_date struct timespec out The scheduling start time of the target job is stored.

pjsub_option_flg uint64_t out The options specified for the pjsub command are stored as
flags.
The stored values are as follows.
0x0000000000000001: --at
0x0000000000000002: --bulk
0x0000000000000004: --dir-prefix
0x0000000000000080: --comment
0x0000000000000200: -e
0x0000000000000800: --gid
0x0000000000001000: --gname
0x0000000000008000: --interact
0x0000000000010000: -j
0x0000000000020000: --rsc-list
0x0000000000040000: -m
0x0000000000080000: --mail-list
0x0000000000100000: --mpi
0x0000000000400000: --name
0x0000000001000000: --norestart
0x0000000004000000: -o
0x0000000020000000: -p
0x0000000040000000: --restart
0x0000000080000000: -s
0x0000000100000000: -S
0x0000000400000000: --sparam
0x0000000800000000: --spath
0x0000001000000000: --step
0x0000200000000000: --vset
0x0000400000000000: -w
0x0000800000000000: -x
0x0001000000000000: -X
0x0020000000000000: --reason
0x0040000000000000: --fs
0x0080000000000000: --appname
0x0100000000000000: -P--vn-policy
0x0200000000000000: -P--exec-policy
0x0400000000000000: -P

- 30 -

Member Type Input-
Output

Description

pjsub_option_exflg uint64_t out The options specified for the pjsub command are stored as
flags.
The stored values are as follows.
0x0000000000000001:--net-route dynamic

pjsub_L_arg_flg uint64_t out The options specified for the pjsub command are stored as
flags.
The stored values are as follows.
0x0000000000000001: node
0x0000000000000004: elapse
0x0000000000000008: node-mem
0x0000000000000020: rscunit
0x0000000000000040: rscgrp
0x0000000000000100: proc-core
0x0000000000000200: proc-cpu
0x0000000000000400: proc-crproc
0x0000000000000800: proc-data
0x0000000000001000: proc-lockm
0x0000000000002000: proc-msgq
0x0000000000004000: proc-openfd
0x0000000000008000: proc-psig
0x0000000000010000: proc-filesz
0x0000000000020000: proc-stack
0x0000000000040000: proc-vmem
0x0000000000800000: extended resource

pjsub_mpi_arg_flg uint64_t out The arguments specified for the --mpi option of the pjsub
command are set as flags and stored.
The stored values are as follows.
0x0000000000000001: shape
0x0000000000000002: proc
0x0000000000000004: rank-map-bynode
0x0000000000000008: rank-map-bychip
0x0000000000000010: rank-map-hostfile
0x0000000000000020: assign-online-node

pjsub_step_arg_flg uint64_t out The arguments specified for the -- step option of the pjsub
command are set as flags and stored.
The stored values are as follows.
0x0000000000000001: jid
0x0000000000000002: sd
0x0000000000000004: sn
0x0000000000000008: send
0x0000000000000010: jnam

pjsub_P_arg_flg uint64_t out The arguments specified for the -P option of the pjsub
command are set as flags and stored.
The stored values are as follows.
0x0000000000000001: vn-policy
0x0000000000000002: exec-policy

last_suspended_date time_t out It is used for future extension.

last_resumed_date time_t out It is used for future extension.

sum_suspend_time uint64_t out It is used for future extension.

total_suspended_count uint32_t out It is used for future extension.

- 31 -

Member Type Input-
Output

Description

elapsed_time_mode uint8_t out The specification method of the elapsed time of the target job
The following values are stored.
PJM_ELAPSED_TIME_MODE_ADAPTIVE:
Specification method for when the elapsed time limit values
are specified as a range
PJM_ELAPSED_TIME_MODE_FIXED: Specification
method for when the elapsed time limit values are not
specified as a range

adaptive_elapsed_time_min uint64_t out The minimum elapsed time value of a job for which the target
elapsed time limit values are specified as a range is stored.
If the elapsed time limit values are not specified as a range, 0
is set.

adaptive_elapsed_time_max uint64_t out The maximum elapse time value of a job for which the target
elapsed time limit values are specified as a range is stored.
If the elapsed time limit values are not specified as a range, 0
is set.

job_env_boot_time uint64_t out The time taken for the boot processing of the job execution
environment is stored.

job_env_shutdown_time uint64_t out The time taken for the shutdown processing of the job
execution environment is stored.

fj_profiler int64_t out The number of times of Fujitsu profiler use by the target job
is stored.

req_cstmrsc_ofs off_t out The offset to the requested custom resource information
(Pjmapi_req_cstmrsc_t) is stored.
The following expression can be used to obtain the pointer to
the requested custom resource information.
Pjmapi_req_cstmrsc_t* req_cstm_p =
(Pjmapi_req_cstmrsc_t *)
PJMAPI_OFF_TO_PTR(req_cstmrsc_ofs)
If the requested custom resource information does not exist, 0
is stored.

supplementary_info_ofs off_t out The offset to the additional information (char) is stored.
The following expression can be used to obtain the pointer to
the additional information.
char* buff_supliinfo_p = (char *)
PJMAPI_OFF_TO_PTR(supplementary_info_ofs)
If the additional information does not exist, 0 is stored.

total_node_down_time time_t out For extension

arch_info[16] char[] out The character string indicating a machine type is stored.

hw_info_ofs off_t out The offset to the hardware specific information is stored.
The following expression can be used to obtain the pointer to
the hardware specific information by machine type.
For machine type FX:
Pjmapi_info_hwspecific_fx_t *hw_fx_info_p =
(Pjmapi_info_hwspecific_fx_t*)
PJMAPI_OFF_TO_PTR(hw_info_ofs)
If the hardware specific information does not exist, 0 is
stored.
For machine type PG:
Pjmapi_info_hwspecific_pcc_t *hw_pcc_info_p =
(Pjmapi_info_hwspecific_pcc_t*)

- 32 -

Member Type Input-
Output

Description

PJMAPI_OFF_TO_PTR(hw_info_ofs)
If the hardware specific information does not exist, 0 is
stored.

endcode_type int out The end code type of a dependence relation expression is
stored.
Either one of the following values is set.
PJM_SD_ENDCODE_TYPE_EC: The end status of the
shell is used for dependence judgment.
PJM_SD_ENDCODE_TYPE_PC: The PJM code is used for
dependence judgment.

form_type int out A dependence relation expression is stored.
Any one of the following values is set.
PJM_SD_FORM_TYPE_EQ: = form_value
PJM_SD_FORM_TYPE_NE: != form_value
PJM_SD_FORM_TYPE_GT: > form_value
PJM_SD_FORM_TYPE_LT: < form_value
PJM_SD_FORM_TYPE_GE: >= form_value
PJM_SD_FORM_TYPE_LE: <=form_value

form_value_num int out The value of dependence relation expression is stored.

deletetype int out A deletion method of a dependence relation expression is
stored.
Any one of the following values is set.
PJM_SD_DELTYPE_ONE: Only the relevant sub job is
deleted.
PJM_SD_DELTYPE_AFTER: The relevant sub job and
subsequent dependent sub jobs are deleted.
PJM_SD_DELTYPE_ALL: All the sub jobs are deleted.

to_steno_num int out The number of step numbers on which the job is dependent is
stored.

form_value_ofs off_t out The offset to the value of the dependence relation expression
is stored.
The following expression can be used to obtain the pointer.
i int form_value[] = (int*)
PJMAPI_OFF_TO_PTR(form_value_ofs)

to_stepno_ofs off_t out The offset to the step number on which the job is dependent is
stored.
The following expression can be used to obtain the pointer.
int to_stepno[] = (int*)
PJMAPI_OFF_TO_PTR(to_stepno_ofs)

next_ofs off_t out The offset to the next custom resource information
(Pjmapi_req_cstmrsc_t) is stored.
If the next custom resource information does not exist, 0 is
stored.

name[PJM_MAX_CSTM_
NAME_LEN]

char[] out The custom resource name is stored.

cstmrsc_info Pjmapi_cstmrsc_
info_t

out The requested amount or requested type of the custom
resource information is stored.

is_pernode uint8_t out If the custom resource is a resource by node, 1 is set.
If the custom resource is not a resource by node, 0 is set.

- 33 -

Member Type Input-
Output

Description

value_type uint8_t out The value type of the custom resource (value that can be
specified by pjmapi_cstmrsc_value_type_t)
Either numeric specification
(PJM_CSTMRSC_VALUE_TYPE_NUMERIC) or type
specification(PJM_CSTMRSC_VALUE_TYPE_STRING)
is stored.

value_rsc union out The requested amount or requested type of the custom
resource information is stored.

num_value int64_t out The requested amount of the custom resource information is
set.

string_value[PJM_MAX_
CSTM_NAME_LEN]

char[] out The type of the custom resource information is set.

tofu_user_comm_recv_byte uint64_t out The receive data size used for user level communication of
the target job via the Tofu interconnect (bytes) is stored.

tofu_user_comm_send_byte uint64_t out The send data size used for user level communication of the
target job via the Tofu interconnect (bytes) is stored.

tofu_sys_comm_rsv_byte uint64_t out The receive data size used for system communication of the
target job via the Tofu interconnect (bytes) is stored.

tofu_sys_comm_send_byte uint64_t out The send data size used for system communication of the
target job via the Tofu interconnect (bytes) is stored.

sum_alloc_assistcpunum uint32_t out The number of allocated assistant cores set for the job is
stored.

sum_used_assistcpunum uint32_t out The number of used assistant cores set for the job is stored.

sum_usr_assistcputm uint64_t out The total CPU use time of users of the assistant cores set for
the job is stored.

sum_sys_assistcputm uint64_t out The total CPU use time of the system of the assistant cores set
for the job is stored.

sum_used_assistant_core_
max_mem

uint64_t out The maximum use amount of the memory used by the
assistant cores of the target job (bytes) is stored.

sector_cache_using_
program_count

uint64_t out The number of times when programs that use the sector cache
of the target job are started is stored.

intra_node_barrier_using_
program_count

uint64_t out The number of times when programs that use the chip internal
barrier of the target job are started is stored.

power_consumption Pjmapi_job_power_
consumption_t

out The power consumption-related information is stored.

reserved_param Pjmapi_reserved_
param_t

out It is used for future extension.

reserved_info Pjmapi_reserved_
info_t

out It is used for future extension.

power_consumption Pjmapi_job_power_
consumption_pcc_t

out Power consumption-related information of the PC cluster is
stored.

power_consumption_state uint16_t out The acquisition status of power information of the target job
is stored as a value of logical addition flags.
The value is as follows.
0x0: The obtained information does not include nodes
affected by node-sharing jobs.
0x1: The obtained information includes nodes affected by

- 34 -

Member Type Input-
Output

Description

node-sharing jobs.
0x2: There are nodes whose information failed to be obtained.
0x4: Since there are preceding jobs, information of some
nodes was not obtained.

utilization_info_of_power_api uint8_t out Whether the target job uses the Power API and whether the
power knob is operated are stored with the corresponding bits
set on or off.
The value is as follows.
0b00(0): The API is not used and the knob is not operated.
0b01(1): The API is used and the knob is not operated.
0b03(3): The API is used and the knob is operated.

num_cmg uint32_t out The number of CMGs of the target job is stored.

cmgs_ofs off_t out The offset to the power consumption structure by CMG is
stored.
The following expression can be used to obtain the pointer to
the power consumption structure by CMG.
Pjmapi_cmg_power_consumption_t *cmgs_p
=(Pjmapi_cmg_power_consumption_t
*)PJMAPI_OFF_TO_PTR(cmgs_ofs)

ideal_cpu_peripherals Pjmapi_power_
consumption_t

out Peripheral power consumption information in the CPU
(estimation) is stored.

ideal_opticalmodule Pjmapi_power_
consumption_t

out Optical module power consumption information (estimation)
is stored.

ideal_tofu Pjmapi_power_
consumption_t

out Tofu power consumption information (estimation) is stored.

ideal_pcie Pjmapi_power_
consumption_t

out PCI-E power consumption information (estimation) is stored.

ideal_node Pjmapi_power_
consumption_t

out Node power consumption information (estimation) is stored.

measured_node Pjmapi_power_
consumption_t

out Node power consumption information (result) is stored.

measure_start_date struct timespec out The power measurement start time is stored.

measure_end_date struct timespec out The power measurement end time is stored.

num_pkg uint32_t out The number of packages of the target job is stored.

pkgs_ofs off_t out The offset to the power consumption structure by package is
stored.

cmgno int32_t out The CMG number is stored.

ideal_core Pjmapi_power_
consumption_t

out The compute core power consumption information by CMG
(estimation) is stored.

ideal_l2cache Pjmapi_power_
consumption_t

out The L2 cache power consumption information by CMG
(estimation) is stored.

ideal_mem Pjmapi_power_
consumption_t

out The memory power consumption information by CMG
(estimation) is stored.

pkgno int32_t out Package number is stored.

cpu Pjmapi_power_
consumption_t

out The CPU power consumption information by package is
stored.

- 35 -

Member Type Input-
Output

Description

mem Pjmapi_power_
consumption_t

out The memory power consumption information by package is
stored.

pp0 Pjmapi_power_
consumption_t

out The pp0 power consumption information by package is
stored.

avg_power double out The average power consumption of the target power items is
stored.

max_power double out The maximum power consumption of the target power items
is stored.

min_power double out The minimum power consumption of the target power items
is stored.

energy double out The power consumption amount of the target power items is
stored.

(*1)
The structure of Tofu coordinates is as follows.

typedef struct tofu_3d{

 unsigned int x;

 unsigned int y;

 unsigned int z;

 unsigned int pad;

} tofu_3d_t;

Table E.4 Members of Tofu coordinate Structure

Member Type Input-
Output

Description

x unsigned int out A Tofu x coordinate is stored.

y unsigned int out A Tofu y coordinate is stored.

z unsigned int out A Tofu z coordinate is stored.

(*2)
The offset to the dependence relation expression structure, in which the dependence relation expression information set for the job is stored,
is stored in the argument off_t sd_ofs. However, for a step job, the dependence relation expressions, expression values that can be specified
for dependence relation expressions, and the number of dependent jobs are variable. Information of a step job is accessed using the offset.
The following example has two dependence relation expressions. The first dependence relation expression has two values and one
dependent job. The second dependence relation expression has one value and two dependent jobs.

- 36 -

Figure E.1 Structure Example of a Dependence Relation Expression

(*3) The member reservedn is for future expansion.

E.1.2 Notification Structure of Change to the ACCEPT State
(PJM_CHANGE_ACCEPT)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_ACCEPT. The
following is the notification structure of change to the ACCEPT state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_accept {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 uint32_t pad2;

 time_t create_date; /* Job submission time */

} Pjmapi_change_accept_t;

Table E.5 Members of Notification Structure of Change to the ACCEPT State PJM_CHANGE_ACCEPT

Member Type Input-
Output

Description

job_model uint16_t out The bit indicated by any one of the following macros is set
according to the job model.

- 37 -

Member Type Input-
Output

Description

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

create_date time_t out The time when the target job was submitted (execution time
of the pjsub command) is stored.

E.1.3 Notification Structure of Change to the QUEUED State
(PJM_CHANGE_QUEUED)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_QUEUED. The
following is the notification structure of change to the QUEUED state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_queued {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 int subjob_num; /* Number of sub jobs */

 uint pro_exit_code; /* Prologue exit code */

 time_t que_date; /* Time of QUEUED transition */

 uint64_t sum_runa_time; /* Cumulative RUNNING-A time (seconds) */

 uint64_t sum_hold_time; /* Cumulative HOLD time (seconds) */

 time_t prologue_end_date; /* Prologue end time */

 time_t all_prec_subjob_exit_date; /* Preceding sub job end time */

 uint32_t affected_nid; /* Node ID that affected job result */

 uint32_t prealloc_rmexit_exitcode; /* prealloc exit end code */

 uint32_t predel_rmexit_exitcode; /* predel exit end code */

 uint32_t postfree_rmexit_exitcode; /* postfree exit end code */

 uint64_t prealloc_start_time; /* prealloc exit start time */

 uint64_t prealloc_end_time; /* prealloc exit end time */

 uint64_t predel_start_time; /* predel exit start time */

 uint64_t predel_end_time; /* predel exit end time */

 uint64_t postfree_start_time; /* postfree exit start time */

 uint64_t postfree_end_time; /* postfree exit end time */

 uint8_t prealloc_exec_kind; /* prealloc exit execution timing */

 uint8_t predel_exec_kind; /* predel exit execution timing */

 uint8_t postfree_exec_kind; /* postfree exit execution timing */

 uint8_t pad1[5];

} Pjmapi_change_queued_t;

- 38 -

Table E.6 Members of Notification Structure of Change to the QUEUED State

Member Type Input-
Output

Description

job_model uint16_t out The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status
is stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

subjob_num int out The number of the sub jobs of the target job is stored.

pro_exit_code uint out The end code of the prologue script of the target job is
stored.

que_date time_t out The time of the transition of the target job to QUEUED is
stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target
job (seconds, rounded up to the nearest whole digit) is
stored.

sum_hold_time uint64_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job
is stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.

- 39 -

Member Type Input-
Output

Description

0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.

predel_start_time uint64_t out The time of the start of the predel exit of the target job is
stored.

predel_end_time uint64_t out The time of the end of the predel exit of the target job is
stored.

postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.

postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing

predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager
function or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded

postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
2: Job end timing

- 40 -

E.1.4 Notification Structure of Change to the RUNNING-A State
(PJM_CHANGE_RUNNING_A)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_RUNNING_A. The
following is the notification structure of change to the RUNNING-A state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_running_a {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 time_t runa_date; /* Time of RUNNING-A transition */

 time_t all_prec_subjob_exit_date; /* Preceding sub job end time */

 uint64_t sum_wait_time; /* Cumulative wait time */

 uint node_num; /* Number of allocated nodes */

 uint node_x; /* Allocated node shape x */

 uint node_y; /* Allocated node shape y */

 uint node_z; /* Allocated node shape z */

 uint32_t vn_cpu_req; /* Requested number of CPU cores

 by virtual node */

 uint32_t num_alloc_vnode; /* Number of allocated virtual nodes */

 uint sum_cpu_prealloc_num; /* Total number of scheduler allocation CPUs */

 uint pad2;

 time_t sched_date; /* Job execution start time */

 uint64_t mem_job_prealloc; /* Scheduler allocation memory amount */

 struct timespec last_sched_date; /* Scheduling start time */

 uint8_t backfill_flg; /* Backfill flag */

} Pjmapi_change_running_a_t;

Table E.7 Members of Notification Structure of Change to the RUNNING-A State

Member Type Input-
Output

Description

job_model uint16_t out The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status
is stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

- 41 -

Member Type Input-
Output

Description

runa_date time_t out The time of the transition of the target job to RUNNING-A
is stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

sum_wait_time uint64_t out The cumulative wait time of the target job is stored.

node_num uint out The number of the allocated nodes of the target job is stored.

node_x uint out The allocated shape of the target job is stored.

node_y uint

node_z uint

vn_cpu_req uint32_t out The number of allocated cores of the target job by virtual
node is stored.

num_alloc_vnode uint32_t out The number of allocated virtual nodes of the target job is
stored.

sum_cpu_prealloc_num uint out The total number of CPUs allocated by the scheduler
function is stored.

sched_date time_t out The job execution start time of the target job is stored.

mem_job_prealloc uint64_t out The allocated memory amount of the target job is stored.

last_sched_date struct timespec out The scheduling start time of the target job is stored.

backfill_flg uint8_t out The flag of a backfilled job

E.1.5 Notification Structure of Change to the RUNNING State
(PJM_CHANGE_RUNNING)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_RUNNING. The
following is the notification structure of change to the RUNNING state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_running {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 int run_count; /* RERUN count */

 uint pro_exit_code; /* Prologue exit code */

 time_t start_date; /* Job start time */

 time_t run_date; /* Time of RUNNING transition */

 time_t fst_start_date; /* Initial job execution start time */

 uint64_t sum_runa_time; /* Cumulative RUNNING-A time (seconds) */

 time_t prologue_end_date; /* Prologue end time */

} Pjmapi_change_running_t;

Table E.8 Members of Notification Structure of Change to the RUNNING State

Member Type Input-
Output

Description

job_model uint16_t out The bit indicated by any one of the following macros is set
according to the job model.

- 42 -

Member Type Input-
Output

Description

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

run_count int out The number of times when the target job is re-executed is stored.

pro_exit_code uint out The end code of the prologue script of the target job is stored.

start_date time_t out The job start time of the target job is stored.

run_date time_t out The time of the transition of the target job to RUNNING is
stored.

fst_start_date time_t out The time when the target job transition to the RUNNING state
occurred for the first time is stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.

E.1.6 Notification Structure of Change to the RUNOUT State
(PJM_CHANGE_RUNOUT)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_RUNOUT. The
following is the notification structure of change to the RUNOUT state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_runout {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 uint exit_code; /* exitcode of the user script */

 uint used_nodenum; /* Number of nodes used */

 int32_t signal_no; /* Signal number of the user script */

 int pjm_code; /* PJM code */

 uint unavailable_nodenum; /* Number of unavailable nodes */

- 43 -

 uint sum_cpu_alloc_num; /* Total number of allocated CPUs */

 uint32_t used_cpunum; /* Number of CPUs used */

 uint epi_exit_code; /* Epilogue exit code */

 uint64_t sum_usr_cputm; /* Total user CPU time */

 uint64_t sum_sys_cputm; /* Total system CPU time */

 time_t end_date; /* Job end time */

 time_t elapse; /* Job execution elapse time */

 time_t elapse_off_acc; /* Job execution elapse time that is not subject

 to billing

 char last_rscunit [PJM_RSCUNAME_MAX]; /* Submit resource unit name */

 char last_rscgrp [PJM_RSCGROUP_MAX]; /* Submit resource group name */

 time_t runout_date; /* Time of RUNOUT transition */

 uint64_t sum_run_time; /* Cumulative RUNNING time */

 uint64_t mem_job_alloc; /* Allocated memory amount */

 uint64_t max_used_mem; /* Maximum memory use amount (byte)*/

 uint64_t usctmut; /* Total user CPU time and total system CPU time

 (seconds) */

 time_t snapshottime; /* Data collection year/month/day */

 time_t epilogue_end_date; /* Epilogue end time */

 uint64_t sum_vm_job_use; /* Total used memory amount by virtual node */

 uint32_t affected_nid; /* Node ID that affected job result */

 uint32_t prealloc_rmexit_exitcode; /* prealloc exit end code */

 uint32_t predel_rmexit_exitcode; /* predel exit end code */

 uint32_t postfree_rmexit_exitcode; /* postfree exit end code */

 uint64_t prealloc_start_time; /* prealloc exit start time */

 uint64_t prealloc_end_time; /* prealloc exit end time */

 uint64_t predel_start_time; /* predel exit start time */

 uint64_t predel_end_time; /* predel exit end time */

 uint64_t postfree_start_time; /* postfree exit start time */

 uint64_t postfree_end_time; /* postfree exit end time */

 uint8_t prealloc_exec_kind; /* prealloc exit execution timing */

 uint8_t predel_exec_kind; /* predel exit execution timing */

 uint8_t postfree_exec_kind; /* postfree exit execution timing */

 uint8_t pad[5];

 uint64_t job_env_boot_time; /* Job execution environment boot time */

 uint64_t job_env_shutdown_time; /* Job execution environment shutdown time */

 int64_t fj_profiler; /* Fujitsu profiler use count */

 time_t total_node_down_time; /* For expansion */

 char arch_info[16]; /* Machine type */

 off_t req_cstmrsc_ofs; /* Offset to custom resource information

 (Pjmapi_req_cstmrsc_t) */

 off_t hw_info_ofs; /* Offset to hardware specific information */

} Pjmapi_change_runout_t;

typedef enum {

 PJM_CSTMRSC_VALUE_TYPE_NUMERIC = 1,

 PJM_CSTMRSC_VALUE_TYPE_STRING = 2

} Pjmapi_cstmrsc_value_type_t;

typedef struct Pjmapi_req_cstmrsc {

 off_t next_ofs; /* Offset where next custom resource information

 (Pjmapi_req_cstmrsc_t) is stored */

 char name[PJM_MAX_CSTM_NAME_LEN]; /* Custom resource name */

 Pjmapi_cstmrsc_info_t cstmrsc_info; /* Custom resource type structure */

} Pjmapi_req_cstmrsc_t;

typedef struct Pjmapi_cstmrsc_info {

 uint8_t is_pernode; /* Whether NodeID is specified, 1 if specified */

 uint8_t value_type; /* Value type of custom resource (specifiable with

 pjmapi_cstmrsc_value_type_t) */

 uint8_t pad[6];

 union {

 int64_t num_value; /* Requested amount of custom resource */

- 44 -

 char string_value[PJM_MAX_CSTM_NAME_LEN]; /* Requested type of custom resource */

 } value_rsc;

} Pjmapi_cstmrsc_info_t;

typedef struct Pjmapi_info_hwspecific_fx {

 uint64_t tofu_user_comm_recv_byte; /* Tofu user communication receive

 data size (bytes) */

 uint64_t tofu_user_comm_send_byte; /* Tofu user communication send

 data size (bytes) */

 uint64_t tofu_sys_comm_rsv_byte; /* Tofu system communication receive

 data size (bytes) */

 uint64_t tofu_sys_comm_send_byte; /* Tofu system communication send

 data size (bytes) */

 uint32_t sum_alloc_assistcpunum; /* Number of allocated assistant cores */

 uint32_t sum_used_assistcpunum; /* Number of assistant cores used */

 uint64_t sum_usr_assistcputm; /* Total user CPU use time of

 assistant core */

 uint64_t sum_sys_assistcputm; /* Total system CPU use time of

 assistant core */

 uint64_t sum_used_assistant_core_max_mem /* Maximum use memory amount of

 assistant core */

 uint64_t sector_cache_using_program_count; /* Start count of sector cache using

 program */

 uint64_t intra_node_barrier_using_program_count; /* Count of chip internal barrier using

 program */

 Pjmapi_job_power_consumption_t power_consumption; /* Power consumption-related

 information */

 Pjmapi_reserved_param_t reserved_param; /* For future extension */

 Pjmapi_reserved_info_t reserved_info; /* For future extension */

} Pjmapi_info_hwspecific_fx_t;

typedef struct Pjmapi_info_hwspecific_pcc {

 Pjmapi_job_power_consumption_pcc_t power_consumption; /* PC cluster power consumption-related

 information */

} Pjmapi_info_hwspecific_pcc_t;

typedef struct Pjmapi_job_power_consumption {

 uint16_t power_consumption_state; /* Acquisition state of power information */

 uint8_t utilization_info_of_power_api; /* Power knob use information */

 uint8_t pad[1];

 uint32_t num_cmg; /* Number of CMGs */

 off_t cmgs_ofs; /* Offset to power consumption structure

 by CMG */

 Pjmapi_power_consumption_t ideal_cpu_peripherals; /* Peripheral power consumption

 information in CPU (estimation) */

 Pjmapi_power_consumption_t ideal_opticalmodule; /* Optical module power consumption

 information (estimation) */

 Pjmapi_power_consumption_t ideal_tofu; /* Tofu power consumption information

 (estimation) */

 Pjmapi_power_consumption_t ideal_pcie; /* PCI-E power consumption information

 (estimation) */

 Pjmapi_power_consumption_t ideal_node; /* Node power consumption information

 (estimation) */

 Pjmapi_power_consumption_t measured_node; /* Node power consumption information

 (result) */

 struct timespec measure_start_date; /* Power measurement start time */

 struct timespec measure_end_date; /* Power measurement end time */

} Pjmapi_job_power_consumption_t;

typedef struct Pjmapi_job_power_consumption_pcc {

 uint16_t power_consumption_state; /* Acquisition state of power information */

 uint8_t pad[2];

 uint32_t num_pkg; /* Number of packages */

- 45 -

 off_t pkgs_ofs; /* Offset to power consumption structure by

 package */

 Pjmapi_power_consumption_t measured_node; /* Node power consumption information

 (result) */

 struct timespec measure_start_date; /* Power measurement start time */

 struct timespec measure_end_date; /* Power measurement end time */

} Pjmapi_job_power_consumption_pcc_t;

typedef struct Pjmapi_cmg_power_consumption {

 int32_t cmgno; /* CMG NUMBER */

 uint8_t pad[4];

 Pjmapi_power_consumption_t ideal_core; /* Compute core power consumption

 information by CMG (estimation) */

 Pjmapi_power_consumption_t ideal_l2cache; /* L2 cache power consumption

 information by CMG (estimation) */

 Pjmapi_power_consumption_t ideal_mem; /* Memory power consumption

 information by CMG (estimation) */

} Pjmapi_cmg_power_consumption_t;

typedef struct Pjmapi_pkg_power_consumption {

 int32_t pkgno; /* Package number */

 uint8_t pad[4];

 Pjmapi_power_consumption_t cpu; /* CPU power consumption information by

 package */

 Pjmapi_power_consumption_t mem; /* Memory power consumption information by

 package */

 Pjmapi_power_consumption_t pp0; /* PP0 power consumption information by

 package */

} Pjmapi_pkg_power_consumption_t;

typedef struct Pjmapi_power_consumption {

 double avg_power; /* Average power consumption */

 double max_power; /* Maximum power consumption */

 double min_power; /* Minimum power consumption */

 double energy; /* Power consumption amount */

} Pjmapi_power_consumption_t;

typedef struct Pjmapi_reserved_param {

 uint64_t reserved1; /* For future extension */

 uint64_t reserved2; /* For future extension */

 uint64_t reserved3; /* For future extension */

 uint64_t reserved4; /* For future extension */

 uint64_t reserved5; /* For future extension */

 int32_t reserved6; /* For future extension */

 int32_t reserved7; /* For future extension */

 int32_t reserved8; /* For future extension */

 int32_t reserved9; /* For future extension */

 uint64_t reserved10; /* For future extension */

 uint64_t reserved11; /* For future extension */

 off_t reserved12; /* For future extension */

 off_t reserved13; /* For future extension */

} Pjmapi_reserved_param_t;

typedef struct Pjmapi_reserved_info {

 struct timespec reserved1; /* For future extension */

 struct timespec reserved2; /* For future extension */

 struct timespec reserved3; /* For future extension */

 struct timespec reserved4; /* For future extension */

 struct timespec reserved5; /* For future extension */

 struct timespec reserved6; /* For future extension */

 uint64_t reserved7; /* For future extension */

 double reserved8; /* For future extension */

- 46 -

 double reserved9; /* For future extension */

 uint64_t reserved10; /* For future extension */

 uint64_t reserved11; /* For future extension */

 uint64_t reserved12; /* For future extension */

 uint64_t reserved13; /* For future extension */

 uint64_t reserved14; /* For future extension */

 uint64_t reserved15; /* For future extension */

 uint64_t reserved16; /* For future extension */

 double reserved17; /* For future extension */

 uint64_t reserved18; /* For future extension */

 uint64_t reserved19; /* For future extension */

 uint64_t reserved20; /* For future extension */

 uint64_t reserved21; /* For future extension */

 double reserved22; /* For future extension */

 uint64_t reserved23; /* For future extension */

 uint64_t reserved24; /* For future extension */

 uint64_t reserved25; /* For future extension */

 uint64_t reserved26; /* For future extension */

} Pjmapi_reserved_info_t;

Table E.9 Members of Notification Structure of Change to the RUNOUT State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

exit_code uint out The exit code of the shell script of the target job is stored.

used_nodenum uint out The number of nodes used is stored.

signal_no int32_t out The signal number of the shell script of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

unavailable_nodenum uint out The number of available nodes in the allocated scope of the
target job is stored.

sum_cpu_alloc_num uint out The total number of the allocated CPUs is stored.

used_cpunum uint32_t out The number of CPUs used by the target job is stored.

- 47 -

Member Type Input-
Output

Description

epi_exit_code uint out The end code of the epilogue script of the target job is stored.

sum_usr_cputm uint64_t out The total user CPU use time is stored.

sum_sys_cputm uint64_t out The total system CPU use time is stored.

end_date time_t out The job end time of the target job is stored.

elapse time_t out The job elapse time of the target job is stored.

elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.

last_rscunit[PJM_RSCUNAME
_MAX]

char[] out The submit resource unit name of the target job is stored.

last_rscgrp[PJM_RSCGROUP
_MAX]

char[] out The submit resource group name of the target job is stored.

runout_date time_t out The time of the transition of the target job to RUNOUT is
stored.

sum_run_time uint64_t out The cumulative time of the RUNNING state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

mem_job_alloc uint64_t out The memory amount allocated in the node of the target job
(bytes) is stored.

max_used_mem uint64_t out The maximum memory usage of the target job is stored.

usctmut uint64_t out The total user CPU time and total system CPU time of the target
job (seconds) are stored.

snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.

epilogue_end_date time_t out The prologue end time in the compute node of the target job is
stored.

sum_vm_job_use uint64_t out The total memory amount of the target job by virtual node
(bytes) is stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit

- 48 -

Member Type Input-
Output

Description

script
255: Error other than the above

postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.

predel_start_time uint64_t out The time of the start of the predel exit of the target job is stored.

predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.

postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.

postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing

predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded

postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
2: Job end timing

job_env_boot_time uint64_t out The time taken for the boot processing of the job execution
environment is stored.

job_env_shutdown_time uint64_t out The time taken for the shutdown processing of the job
execution environment is stored.

fj_profiler int64_t out The number of times of Fujitsu profiler use by the target job is
stored.

total_node_down_time time_t out For extension

arch_info[16] char[] out The character string indicating a machine type is stored.

- 49 -

Member Type Input-
Output

Description

req_cstmrsc_ofs off_t out The offset to the requested custom resource information
(Pjmapi_req_cstmrsc_t) is stored.
The following expression can be used to obtain the pointer to
the requested custom resource information.
Pjmapi_req_cstmrsc_t* req_cstm_p = (Pjmapi_req_cstmrsc_t
*) PJMAPI_OFF_TO_PTR(req_cstmrsc_ofs)
If the requested custom resource information does not exist, 0
is stored.

hw_info_ofs off_t out The offset to the hardware specific information is stored.
The following expression can be used to obtain the pointer to
the hardware specific information by machine type.
For machine type FX:
Pjmapi_info_hwspecific_fx_t *hw_fx_info_p =
(Pjmapi_info_hwspecific_fx_t*)
PJMAPI_OFF_TO_PTR(hw_info_ofs)
If the hardware specific information does not exist, 0 is stored.
For machine type PG:
Pjmapi_info_hwspecific_pcc_t *hw_pcc_info_p =
(Pjmapi_info_hwspecific_pcc_t*)
PJMAPI_OFF_TO_PTR(hw_info_ofs)
If the hardware specific information does not exist, 0 is stored.

next_ofs off_t out The offset to the next custom resource information
(Pjmapi_req_cstmrsc_t) is stored.
If the next custom resource information does not exist, 0 is
stored.

name[PJM_MAX_CSTM_
NAME_LEN]

char[] out The custom resource name is stored.

cstmrsc_info Pjmapi_cstmrsc_
info_t

out The requested amount or requested type of the custom resource
information is stored.

is_pernode uint8_t out If the custom resource is a resource by node, 1 is set.
If the custom resource is not a resource by node, 0 is set.

value_type uint8_t out The value type of the custom resource (value that can be
specified by pjmapi_cstmrsc_value_type_t)
Either numeric specification
(PJM_CSTMRSC_VALUE_TYPE_NUMERIC) or type
specification(PJM_CSTMRSC_VALUE_TYPE_STRING) is
stored.

value_rsc union out The requested amount or requested type of the custom resource
information is stored.

num_value int64_t out The requested amount of the custom resource information is
set.

string_value[PJM_MAX_CSTM
_NAME_LEN]

char[] out The requested amount of the custom resource information is
set.

tofu_user_comm_recv_byte uint64_t out The receive data size used for user level communication of the
target job via the Tofu interconnect (bytes) is stored.

tofu_user_comm_send_byte uint64_t out The send data size used for user level communication of the
target job via the Tofu interconnect (bytes) is stored.

tofu_sys_comm_rsv_byte uint64_t out The receive data size used for system communication of the
target job via the Tofu interconnect (bytes) is stored.

- 50 -

Member Type Input-
Output

Description

tofu_sys_comm_send_byte uint64_t out The send data size used for system communication of the target
job via the Tofu interconnect (bytes) is stored.

sum_alloc_assistcpunum uint32_t out The number of allocated assistant cores set for the job is stored.

sum_used_assistcpunum uint32_t out The number of used assistant cores set for the job is stored.

sum_usr_assistcputm uint64_t out The total CPU use time of the system of the assistant cores set
for the job is stored.

sum_sys_assistcputm uint64_t out The total CPU use time of the system of the assistant cores set
for the job is stored.

sum_used_assistant_core_
max_mem

uint64_t out The maximum use amount of the memory used by the assistant
cores of the target job (bytes) is stored.

sector_cache_using_program_
count

uint64_t out The number of times when programs that use the sector cache
of the target job are started is stored.

intra_node_barrier_using_
program_count

uint64_t out The number of times when programs that use the chip internal
barrier of the target job are started is stored.

power_consumption Pjmapi_job_power
_consumption_t

out The power consumption-related information is stored.

reserved_param Pjmapi_reserved_
param_t

out It is used for future extension.

reserved_info Pjmapi_reserved_
info_t

out It is used for future extension.

power_consumption Pjmapi_job_power_
consumption_pcc_t

out Power consumption-related information of the PC cluster is
stored.

power_consumption_state uint16_t out The acquisition status of power information of the target job is
stored as a value of logical addition flags.
The value is as follows.
0x0: The obtained information does not include nodes affected
by node-sharing jobs.
0x1: The obtained information includes nodes affected by
node-sharing jobs.
0x2: There are nodes whose information failed to be obtained.
0x4: Since there are preceding jobs, information of some nodes
was not obtained.

utilization_info_of_power_api uint8_t out Whether the target job uses the Power API and whether the
power knob is operated are stored with the corresponding bits
set on or off.
The value is as follows.
0b00(0): The API is not used and the knob is not operated.
0b01(1): The API is used and the knob is not operated.
0b03(3): The API is used and the knob is operated.

num_cmg uint32_t out The number of CMGs of the target job is stored.

cmgs_ofs off_t out The offset to the power consumption structure by CMG is
stored.
The following expression can be used to obtain the pointer to
the power consumption structure by CMG.
Pjmapi_cmg_power_consumption_t *cmgs_p
=(Pjmapi_cmg_power_consumption_t
*)PJMAPI_OFF_TO_PTR(cmgs_ofs)

- 51 -

Member Type Input-
Output

Description

ideal_cpu_peripherals Pjmapi_power_
consumption_t

out Peripheral power consumption information in the CPU
(estimation) is stored.

ideal_opticalmodule Pjmapi_power_
consumption_t

out Optical module power consumption information (estimation)
is stored.

ideal_tofu Pjmapi_power_
consumption_t

out Tofu power consumption information (estimation) is stored.

ideal_pcie Pjmapi_power_
consumption_t

out PCI-E power consumption information (estimation) is stored.

ideal_node Pjmapi_power_
consumption_t

out Node power consumption information (estimation) is stored.

measured_node Pjmapi_power_
consumption_t

out Node power consumption information (result) is stored.

measure_start_date struct timespec out The power measurement start time is stored.

measure_end_date struct timespec out The power measurement end time is stored.

num_pkg uint32_t out The number of packages of the target job is stored.

pkgs_ofs off_t out The offset to the power consumption structure by package is
stored.

cmgno int32_t out The CMG number is stored.

ideal_core Pjmapi_power_
consumption_t

out The compute core power consumption information by CMG
(estimation) is stored.

ideal_l2cache Pjmapi_power_
consumption_t

out The L2 cache power consumption information by CMG
(estimation) is stored.

ideal_mem Pjmapi_power_
consumption_t

out The memory power consumption information by CMG
(estimation) is stored.

pkgno int32_t out Package number is stored.

cpu Pjmapi_power_
consumption_t

out The CPU power consumption information by package is
stored.

mem Pjmapi_power_
consumption_t

out The memory power consumption information by package is
stored.

pp0 Pjmapi_power_
consumption_t

out The pp0 power consumption information by package is stored.

avg_power double out The average power consumption of the target power items is
stored.

max_power double out The maximum power consumption of the target power items is
stored.

min_power double out The minimum power consumption of the target power items is
stored.

energy double out The power consumption amount of the target power items is
stored.

(*) The member reservedn is for future expansion.

- 52 -

E.1.7 Notification Structure of Change to the EXIT State
(PJM_CHANGE_EXIT)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_EXIT. The following
is the notification structure of change to the EXIT state of the job reported by the argument data_p of the function PJM_read_data().

typedef struct Pjmapi_change_exit {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 int pjm_code; /* PJM code */

 uid_t lasthold_uid; /* User ID held/cancelled in the last state */

 int mailflag; /* Mail send flag */

 time_t exit_date; /* Time of EXIT transition */

 time_t elapse; /* Job execution elapse time */

 time_t elapse_off_acc; /* Job execution elapse time that is not subject

 to billing */

 char reason[64]; /* REASON */

 uint64_t sum_runa_time; /* Cumulative RUNNING-A time (seconds) */

 uint64_t sum_hold_time; /* Cumulative HOLD time (seconds) */

 uint64_t sum_wait_time; /* Cumulative wait time (seconds) */

 time_t snapshottime; /* Data collection year/month/day */

 uint32_t affected_nid; /* Node ID that affected job result */

 uint32_t prealloc_rmexit_exitcode; /* prealloc exit end code */

 uint32_t predel_rmexit_exitcode; /* predel exit end code */

 uint32_t postfree_rmexit_exitcode; /* postfree exit end code */

 uint64_t prealloc_start_time; /* prealloc exit start time */

 uint64_t prealloc_end_time; /* prealloc exit end tim */

 uint64_t predel_start_time; /* predel exit start time */

 uint64_t predel_end_time; /* predel exit end time */

 uint64_t postfree_start_time; /* postfree exit start time */

 uint64_t postfree_end_time; /* postfree exit end time */

 uint8_t prealloc_exec_kind; /* prealloc exit execution timing */

 uint8_t predel_exec_kind; /* predel exit execution timing */

 uint8_t postfree_exec_kind; /* postfree exit execution timing */

 uint8_t pad1[5];

} Pjmapi_change_exit_t;

Table E.10 Members of Notification Structure of Change to the EXIT State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

- 53 -

Member Type Input-
Output

Description

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.

mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)

exit_date time_t out The time of the transition of the target job to EXIT is stored.

elapse time_t out The job elapse time of the target job is stored.

elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.

reason[64] char[] out The REASON of the target job is stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_hold_time uint64_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_wait_time uint64_t out The cumulative wait time of the target job is stored.

snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end

- 54 -

Member Type Input-
Output

Description

1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.

predel_start_time uint64_t out The time of the start of the predel exit of the target job is stored.

predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.

postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.

postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing

predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded

postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
2: Job end timing

- 55 -

E.1.8 Notification Structure of Change to the CANCEL State
(PJM_CHANGE_CANCEL)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_CANCEL. The
following is the notification structure of change to the CANCEL state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_cancel {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 int pjm_code; /* PJM code */

 uid_t lasthold_uid; /* User ID held/cancelled in the last state */

 int mailflag; /* Mail send flag */

 uint pro_exit_code; /* Prologue exit code */

 time_t cancel_date; /* Time of CANCEL transition */

 time_t elapse; /* Job execution elapse time */

 time_t elapse_off_acc; /* Job execution elapse time that is not subject

 to billing */

 char reason[64]; /* REASON */

 uint64_t sum_runa_time; /* Cumulative RUNNING-A time (seconds) */

 uint64_t sum_hold_time; /* Cumulative HOLD time (seconds) */

 uint64_t sum_wait_time; /* Cumulative wait time (seconds) */

 time_t pjdel_date; /* Job deletion request time *./

 time_t delete_date; /* Job deletion time */

 time_t snapshottime; /* Data collection year/month/day */

 time_t prologue_end_date; /* Prologue end time */

 time_t all_prec_subjob_exit_date; /* Preceding sub job end time */

 uint32_t affected_nid; /* Node ID that affected job result */

 uint32_t prealloc_rmexit_exitcode; /* prealloc exit end code */

 uint32_t predel_rmexit_exitcode; /* predel exit end code */

 uint32_t postfree_rmexit_exitcode; /* postfree exit end code */

 uint64_t prealloc_start_time; /* prealloc exit start time */

 uint64_t prealloc_end_time; /* prealloc exit end tim */

 uint64_t predel_start_time; /* predel exit start time */

 uint64_t predel_end_time; /* predel exit end time */

 uint64_t postfree_start_time; /* postfree exit start time */

 uint64_t postfree_end_time; /* postfree exit end time */

 uint8_t prealloc_exec_kind; /* prealloc exit execution timing */

 uint8_t predel_exec_kind; /* predel exit execution timing */

 uint8_t postfree_exec_kind; /* postfree exit execution timing */

 uint8_t pad1[5];

} Pjmapi_change_cancel_t;

Table E.11 Members of Notification Structure of Change to the CANCEL State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

- 56 -

Member Type Input-
Output

Description

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.

mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)

pro_exit_code uint out The end code of the prologue script of the target job is stored.

cancel_date time_t out The time of the transition of the target job to CANCEL is
stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

elapse time_t out The job elapse time of the target job is stored.

elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.

reason[64] char[] out The REASON of the target job is stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_hold_time uint64_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_wait_time uint64_t out The cumulative wait time of the target job is stored.

pjdel_date time_t out The job deletion request time of the target job is stored.

delete_date time_t out The job deletion time of the target job is stored.

snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

- 57 -

Member Type Input-
Output

Description

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.

predel_start_time uint64_t out The time of the start of the predel exit of the target job is stored.

predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.

postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.

postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing

predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function

- 58 -

Member Type Input-
Output

Description

6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded

postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
2: Job end timing

E.1.9 Notification Structure of Change to the HOLD State
(PJM_CHANGE_HOLD)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_HOLD. The following
is the notification structure of change to the HOLD state of the job reported by the argument data_p of the function PJM_read_data().

typedef struct Pjmapi_change_hold {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 uid_t lasthold_uid; /* User ID held/cancelled in the last state */

 uint hold_count; /* HOLD count */

 int mailflag; /* Mail send flag */

 uint pro_exit_code; /* Prologue exit code */

 time_t hold_date; /* Time of HOLD transition */

 uint64_t sum_runa_time; /* Cumulative RUNNING-A time (seconds) */

 uint64_t sum_wait_time; /* Cumulative wait time (seconds) */

 time_t prologue_end_date; /* Prologue end time */

 time_t all_prec_subjob_exit_date; /* Preceding sub job end time */

 char reason[64]; /* REASON */

 uint32_t affected_nid; /* Node ID that affected job result */

 uint32_t prealloc_rmexit_exitcode; /* prealloc exit end code */

 uint32_t predel_rmexit_exitcode; /* predel exit end code */

 uint32_t postfree_rmexit_exitcode; /* postfree exit end code */

 uint64_t prealloc_start_time; /* prealloc exit start time */

 uint64_t prealloc_end_time; /* prealloc exit end tim */

 uint64_t predel_start_time; /* predel exit start time */

 uint64_t predel_end_time; /* predel exit end time */

 uint64_t postfree_start_time; /* postfree exit start time */

 uint64_t postfree_end_time; /* postfree exit end time */

 uint8_t prealloc_exec_kind; /* prealloc exit execution timing */

 uint8_t predel_exec_kind; /* predel exit execution timing */

 uint8_t postfree_exec_kind; /* postfree exit execution timing */

 uint8_t pad1[5];

} Pjmapi_change_hold_t;

Table E.12 Members of Notification Structure of Change to the HOLD State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

- 59 -

Member Type Input-
Output

Description

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.

hold_count uint out The number of times when the target job was held is stored.

mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)

pro_exit_code uint out The end code of the prologue script of the target job is stored.

hold_date time_t out The time of the transition of the target job to HOLD is stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_wait_time uint64_t out The cumulative wait time of the target job is stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

reason[64] char[] out The REASON of the target job is stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job

- 60 -

Member Type Input-
Output

Description

102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.

predel_start_time uint64_t out The time of the start of the predel exit of the target job is stored.

predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.

postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.

postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing

predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded

postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.
The value to be set is as follows.

- 61 -

Member Type Input-
Output

Description

0: Not executed
2: Job end timing

E.1.10 Notification Structure of Change to the ERROR State
(PJM_CHANGE_ERROR)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_ERROR. The
following is the notification structure of change to the ERROR state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_error {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 int pjm_code; /* PJM code */

 uid_t lasthold_uid; /* User ID held/cancelled in the last state */

 int mailflag; /* Mail send flag */

 uint pro_exit_code; /* Prologue exit code */

 time_t err_date; /* Time of ERR transition */

 time_t all_prec_subjob_exit_date; /* Preceding sub job end time */

 char reason[64]; /* REASON */

 uint64_t sum_runa_time; /* Cumulative RUNNING-A time (seconds) */

 uint64_t sum_hold_time; /* Cumulative HOLD time (seconds) */

 uint64_t sum_wait_time; /* Cumulative wait time (seconds) */

 time_t snapshottime; /* Data collection year/month/day */

 time_t prologue_end_date; /* Prologue end time */

 uint32_t affected_nid; /* Node ID that affected job result */

 uint32_t prealloc_rmexit_exitcode; /* prealloc exit end code */

 uint32_t predel_rmexit_exitcode; /* predel exit end code */

 uint32_t postfree_rmexit_exitcode; /* postfree exit end code */

 uint64_t prealloc_start_time; /* prealloc exit start time */

 uint64_t prealloc_end_time; /* prealloc exit end tim */

 uint64_t predel_start_time; /* predel exit start time */

 uint64_t predel_end_time; /* predel exit end time */

 uint64_t postfree_start_time; /* postfree exit start time */

 uint64_t postfree_end_time; /* postfree exit end time */

 uint8_t prealloc_exec_kind; /* prealloc exit execution timing */

 uint8_t predel_exec_kind; /* predel exit execution timing */

 uint8_t postfree_exec_kind; /* postfree exit execution timing */

 uint8_t pad1[5];

} Pjmapi_change_error_t;

Table E.13 Members of Notification Structure of Change to the ERROR State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

- 62 -

Member Type Input-
Output

Description

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.

mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)

pro_exit_code uint out The end code of the prologue script of the target job is stored.

err_date time_t out The time of the transition of the target job to ERROR is stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

reason[64] char out The REASON of the target job is stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_hold_time uint64_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_wait_time uint64_t out The cumulative wait time of the target job is stored.

snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job

- 63 -

Member Type Input-
Output

Description

3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.

predel_start_time uint64_t out The time of the start of the predel exit of the target job is stored.

predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.

postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.

postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing

predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded

- 64 -

Member Type Input-
Output

Description

postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
2: Job end timing

E.1.11 Notification Structure of Change to the REJECT State
(PJM_CHANGE_REJECT)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_REJECT. The
following is the notification structure of change to the REJECT state of the job reported by the argumaent data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_reject {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 int pjm_code; /* PJM code */

 time_t reject_date; /* Reject transition time */

} Pjmapi_change_reject_t;

Table E.14 Members of Notification Structure of Change to the REJECT State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

reject_date time_t out The transition time to REJECT is stored.

- 65 -

E.1.12 Notification Structure of Change to the RUNNING-P State
(PJM_CHANGE_RUNNING_P)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_RUNNING_P. The
following is the notification structure of change to the RUNNING-P state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_running_p {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 time_t prologue_start_date; /* Prologue start time */

 time_t runp_date; /* Time of RUNNING-P transition */

} Pjmapi_change_running_p_t;

Table E.15 Members of Notification Structure of Change to the RUNNING-P State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

prologue_start_date time_t out The prologue start time in the compute node of the target job is
stored.

runp_date time_t out The time of the transition of the state of the PJM of the target
job to RUNNING_P is stored.

- 66 -

E.1.13 Notification Structure of Change to the RUNNING-E State
(PJM_CHANGE_RUNNING_E)

The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_RUNNING_E. The
following is the notification structure of change to the RUNNING-E state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_running_e {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 time_t epilogue_start_date; /* Epilogue start time */

 time_t rune_date; /* Time of RUNNING-E transition */

} Pjmapi_change_running_e_t;

Table E.16 Members of Notification Structure of Change to the RUNNING-E State

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

epilogue_start_date time_t out The epilogue start time in the compute node of the target job is
stored.

rune_date time_t out The time of the transition of the state of the PJM of the target
job to RUNNING_E is stored.

E.1.14 Notification Structure of Scheduling Result (PJM_CHANGE_SCHED)
The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_SCHED. The following
is the notification structure of the scheduling result of the job reported by the argument data_p of the function PJM_read_data().

- 67 -

typedef struct Pjmapi_change_sched {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t num_retry; /* Retry count */

 int16_t pre_jobstatus; /* Previous job status */

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 uint node_num; /* Number of allocated nodes */

 uint node_x; /* Allocated node shape x */

 uint node_y; /* Allocated node shape y */

 uint node_z; /* Allocated node shape z */

 uint32_t vn_cpu_req; /* Requested number of CPU cores

 by virtual node */

 uint32_t num_alloc_vnode; /* Number of allocated virtual nodes */

 uint sum_cpu_prealloc_num; /* Total number of scheduler allocation CPUs */

 uint pad2;

 time_t sched_date; /* Job execution start time */

 uint64_t mem_job_prealloc; /* Scheduler allocation memory amount (bytes) */

 off_t ndlist_ofs; /* Offset to node ID list */

 off_t tofulist_ofs; /* Offset to Tofu coordinate list */

 struct timespec last_sched_date; /* Scheduling start time */

 uint8_t backfill_flg; /* Backfill flag */

 uint8_t pad1[7];

} Pjmapi_change_sched_t;

Table E.17 Members of Notification Structure of Scheduling Result

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

node_num uint out The number of the allocated nodes of the target job is stored.

node_x uint out The allocated shape of the target job is stored.

node_y uint

node_z uint

- 68 -

Member Type Input-
Output

Description

vn_cpu_req uint32_t out The number of allocated cores of the target job by virtual node is
stored.

num_alloc_vnode uint32_t out The number of allocated virtual nodes of the target job is stored.

sum_cpu_prealloc_num uint out The total number of CPUs allocated by the scheduler function is
stored.

sched_date time_t out The job execution start time of the target job is stored.

mem_job_prealloc uint64_t out The allocated memory amount of the target job is stored.

ndlist_ofs off_t out The offset to the character string, in which the node ID list set for
the job is stored, is stored.
The following expression can be used to obtain the pointer to the
character string.
int nolist= (int *) PJMAPI_OFF_TO_PTR(ndlist_ofs)

tofulist_ofs off_t out The offset to the character string, in which the Tofu coordinate list
set for the job is stored, is stored.
The following expression can be used to obtain the pointer to the
character string.
tofu_3d_t tofulist= (tofu_3d_t *)
PJMAPI_OFF_TO_PTR(tofulist_ofs)
(*1) The Tofu coordinates are stored in the structure of the Tofu
coordinates. For details, see "Table E.4 Members of Tofu
coordinate Structure." in " E.1.1 Job Information Notification
Structure (PJM_INFO_JOB)."

last_sched_date struct timespec out The scheduling start time of the target job is stored.

backfill_flg uint8_t out The flag of a backfilled job

E.1.15 Notification Structure of Attribute Change (PJM_CHANGE_ALTER)
The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_ALTER. The following
is the notification structure of attribute change of the job reported by the argument data_p of the function PJM_read_data().

typedef struct Pjmapi_change_alter {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint16_t pad[2];

 uint32_t job_type; /* Job type */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

 char rscunit_name[PJM_RSCUNAME_MAX]; /* Resource unit name */

 char rscgrp_name[PJM_RSCGROUP_MAX]; /* Resource group name */

 uint64_t elapse_limit; /* Limit value of job elapse time */

 int16_t job_aprio; /* Job priority level within

 the resource unit */

 int16_t job_uprio; /* Job priority level within the same user */

 off_t req_cstmrsc_ofs; /* Offset to custom resource information

 (Pjmapi_req_cstmrsc_t) */

} Pjmapi_change_alter_t;

- 69 -

Table E.18 Members of Notification Structure of Attribute Change
Member Type Input-

Output
Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

rscunit_name
[PJM_RSCUNAME_MAX]

char out The resource unit name of the job is stored.

rscgrp_name
[PJM_RSCGROUP_MAX]

char out The resource group name of the job is stored.

elapse_limit uint64_t out The limit value of the elapsed time is stored.
In case of UNLIMITED, PJM_RLIM_INFINITY(~0ULL) is
stored.
If limit values of the elapsed time are specified as a range, the
maximum time of the limit of the elapse time (seconds) is set.

job_aprio int16_t out The job priority level within the resource unit is stored.

job_uprio int16_t out The job priority level within the same user is stored.

req_cstmrsc_ofs off_t out The offset to the requested custom resource information
(Pjmapi_req_cstmrsc_t) is stored.
The following expression can be used to obtain the pointer to the
requested custom resource information.
Pjmapi_req_cstmrsc_t* req_cstm_p = (Pjmapi_req_cstmrsc_t *)
PJMAPI_OFF_TO_PTR(req_cstmrsc_ofs)
If the requested custom resource information does not exist, 0 is
stored.

E.1.16 Simple Data Notification Structure (PJM_CHANGE_SIMPLE_DATA)
The function PJM_read_data() reads notification data that is received when the notification type is PJM_CHANGE_SIMPLE_DATA. The
following is the notification structure of simple data of the job reported by the argument data_p of the function PJM_read_data().

typedef struct Pjmapi_change_simple_data {

 uint16_t job_model; /* Job model */

 uint16_t job_flags; /* Job additional information */

 uint32_t jobid; /* Job ID */

 uint32_t blkno; /* Bulk number */

 uint32_t stepno; /* Step number */

- 70 -

 time_t accept_date; /* Job submission time */

} Pjmapi_change_simple_data_t;

Table E.19 Members of Simple Data Notification Structure

Member Type Input-
Output

Description

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

accept_date time_t out The submission time of the target job is stored.

The data structure for simple data notification Pjmapi_change_simple_data_t is common to all the notification events.

Each parameter of Pjmapi_change_simple_data_t is the minimum needed information for obtaining detailed information from the
notification information of this simple data by using the pmdumpjobinfo command. accept_date (job submission time) is used to identify
the job when jobid exceeds UINT32_MAX and makes a circuit.

- 71 -

	Title Page
	Preface
	Update history
	Contents
	Chapter 1 Overview of the Job Information Notification API
	Chapter 2 Use of Job Information Notification API
	2.1 How to Create a Program
	2.2 Processing Flow
	2.3 Job-Related Information Obtained by a Program
	2.4 Example of the Job Information Notification API

	Appendix A Notes Relevant to Bulk Job Information Reported With the Job Information Notification API
	A.1 Bulk Job Information Reported
	A.2 How to Set the End Code of a Job That is Not Subject to Billing

	Appendix B Reference: APIs Relevant to Connection to Job Manager Function
	B.1 PJM_connect()
	B.2 PJM_disconnect()

	Appendix C Reference: APIs Relevant to Setting of Monitoring Target Information
	C.1 PJM_set_target_jobinfo()
	C.2 PJM_unset_target_jobinfo()

	Appendix D Reference: APIs Relevant to Reading of Header Information
	D.1 PJM_read_head()

	Appendix E Reference: APIs Relevant to Data Information
	E.1 PJM_read_data()
	E.1.1 Job Information Notification Structure (PJM_INFO_JOB)
	E.1.2 Notification Structure of Change to the ACCEPT State (PJM_CHANGE_ACCEPT)
	E.1.3 Notification Structure of Change to the QUEUED State (PJM_CHANGE_QUEUED)
	E.1.4 Notification Structure of Change to the RUNNING-A State (PJM_CHANGE_RUNNING_A)
	E.1.5 Notification Structure of Change to the RUNNING State (PJM_CHANGE_RUNNING)
	E.1.6 Notification Structure of Change to the RUNOUT State (PJM_CHANGE_RUNOUT)
	E.1.7 Notification Structure of Change to the EXIT State (PJM_CHANGE_EXIT)
	E.1.8 Notification Structure of Change to the CANCEL State (PJM_CHANGE_CANCEL)
	E.1.9 Notification Structure of Change to the HOLD State (PJM_CHANGE_HOLD)
	E.1.10 Notification Structure of Change to the ERROR State (PJM_CHANGE_ERROR)
	E.1.11 Notification Structure of Change to the REJECT State (PJM_CHANGE_REJECT)
	E.1.12 Notification Structure of Change to the RUNNING-P State (PJM_CHANGE_RUNNING_P)
	E.1.13 Notification Structure of Change to the RUNNING-E State (PJM_CHANGE_RUNNING_E)
	E.1.14 Notification Structure of Scheduling Result (PJM_CHANGE_SCHED)
	E.1.15 Notification Structure of Attribute Change (PJM_CHANGE_ALTER)
	E.1.16 Simple Data Notification Structure (PJM_CHANGE_SIMPLE_DATA)

