08
FUJITSU

FUJITSU Software
Technical Computing Suite V4.0L20

Job Operation Software
API user's Guide
for Job Information Notification API

J2UL-2464-02ENZ0(01)
September 2020

Preface

Purpose of This Manual

This manual describes the job information notification API, which is a part of the job operation management function of the Job Operation
Software included in Technical Computing Suite.

Intended Readers
This manual is intended for the administrator who operates and manages interconnects with the Job Operation Software.
The manual assumes that readers have the following knowledge:
- Basic Linux knowledge
- General knowledge of the Job Operation Software from the "Job Operation Software Overview"

- General knowledge of the job operation management function from the "Job Operation Software Administrator's Guide for Job
Management"

Organization of This Manual
This manual is organized as follows.
Chapter 1 Overview of the Job Information Notification API
Describes an overview of the job information notification APl and types of the job information notification API.
Chapter 2 Use of Job Information Notification API
Describes how to create a program that uses the job information notification API as well as a usage image of the API.
Appendix A Notes Relevant to Bulk Job Information Reported With the Job Information Notification API

Describes special notes on bulk job information reported with the job information notification API (how to select a report pattern of bulk
job information and how to set a PJIM code that is not subject to billing).

Appendix B Reference: APIs Relevant to Connection to Job Manager Function
Describes the functions used for connecting to or disconnecting from the job manager function.
Appendix C Reference: APIs Relevant to Setting of Monitoring Target Information

Describes the functions used to set a job to be monitored and set notifications (filter) of state transition information from the job manager
function.

Appendix D Reference: APIs Relevant to Reading of Header Information
Describes the functions used for reading the header of notifications sent from the job manager function.
Appendix E Reference: APIs Relevant to Data Information

Describes the functions used for reading notification data sent from the job manager function.

Notation Used in This Manual
Notation of model names

In this manual, the computer that based on Fujitsu A64FX CPU is abbreviated as "FX server", and FUJITSU server PRIMERGY as
"PRIMERGY server" (or simply "PRIMERGY™").

Also, specifications of some of the functions described in the manual are different depending on the target model. In the description of
such a function, the target model is represented by its abbreviation as follows:

[FX]: The description applies to FX servers.

[PG]: The description applies to PRIMERGY servers.

Administrators

The Job Operation Software has different types of administrators: system administrator, cluster administrator, and job operation
administrator. However, they may all be represented as just "administrator” in this document. In such cases, an administrator who

manages the system usually means the system administrator or cluster administrator. An administrator who manages job operations
means the cluster administrator or job operation administrator.

Symbols in This Manual

This manual uses the following symbols.

gﬂ Note

The Note symbol indicates an item requiring special care. Be sure to read these items.

2, See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

The See symbol indicates the written reference source of detailed information.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

;ﬂ Information

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks
- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of Publication and Version

Version Manual code
September 2020, Version 2.1 J2UL-2464-02ENZ0(01)
March 2020, Second version J2UL-2464-02ENZ0(00)
January 2020, First version J2UL-2464-01ENZ0(00)

Copyright
Copyright FUJITSU LIMITED 2020

Update history

Changes Location Version

Fixed errata. - 2.1

Added the value to be stored in the member pjsub_option_exflg of the job information E.11 2
notification structure Pjmapi_info_job_t.

Changed the look according to product upgrades. -

Fixed errata and modified descriptions. -

Al'l rights reserved.
The information in this nmanual

is subject to change w thout notice.

Contents

Chapter 1 Overview of the Job Information NOtIfICAtION APL..........ooi e e e e e e eneeas 1

Chapter 2 Use of Job Information NOEICAtION APLL......oo ettt et e e e et e e e e e e anbbe e e e e e e nneees 2
2.1 HOW 10 CrEALE 8 PIOGIAIM.......eiutitiitiitietietieti et st ettt sttt s e et e e e b e b e skt e bt eh e e Rt e s e e s b e b e e b4 o b £ eb £ e h £ 2 E e e h e e e e e e e e eEeebeeb e eb e e beenbenb e b e b e nbenbeeneeneenis 2
2.2 PrOCESSING FIOW.....cuii ittt bbb b b h ke b e e a e bt e e h £ e 4o R e e bt Eeh £ A4 e £ b€ AEeh £ e b e e b e e b e e e bt et e bt e b et e bt e bt et

2.3 Job-Related Information Obtained by a Program.....
2.4 Example of the Job Information Notification API

Appendix A Notes Relevant to Bulk Job Information Reported With the Job Information Notification APL..............ccccceveeeinis 5
A.1 Bulk JOD INFOrMAation REPOIEA.ueuieiieeieiiiieieie ettt etttk es et b bRt e bRt e et e bttt bt ne ettt b en e 5
A.2 How to Set the End Code of a Job That is NOt SUDJECE t0 BIllING........c.ciiiiiiiiiiiieiicee s 6

Appendix B Reference: APIs Relevant to Connection to Job Manager Function
B.1 PIM_CONMNECE() .. veueeuitenieieieeit sttt sttt bttt bbb bt
B.2 PJM_disconnect()

Appendix C Reference: APIs Relevant to Setting of Monitoring Target INformation...............cceeiiiiin e 10
C.1 PIM_SEt_tArget_JODINTO(). ... v everereereriireeieiiiest ettt bbbttt b bt 10
C.2 PIM_UNSEL_tAIGEL JODINTO(). .. veueeueteuieteieii ettt sttt b bbb bbb etk e b e b b et e b e b e bt eb b e bt b ent e b et e bt st e st et et bt e ne e 13

Appendix D Reference: APIs Relevant to Reading of Header INfOrmation...............coiiiiiiiiiiiiiiiiieee e 14
D1 PIM_TEAA_NEAA() - .ttt b bbbt e bR R E bR bR R bbbt 14

Appendix E Reference: APIs Relevant to Data INfOrmMation.............ooiiiiiiiie i e e e e saare e e e e s snenes 16
L 1 =T o [oL T OO OO SO PSSP PP PSPPI 16

E.1.1 Job Information Notification Structure (PIM_INFO _JOB)......c.cccoiiiirieiiiiseitei sttt sttt sb et sb e anan 16
E.1.2 Notification Structure of Change to the ACCEPT State (PIM_CHANGE_ACCEPT)......cccriiierinrierseen e 37
E.1.3 Notification Structure of Change to the QUEUED State (PIM_CHANGE_QUEUED)........cccocciiiiiininnienirseneesee e 38
E.1.4 Notification Structure of Change to the RUNNING-A State (PJIM_CHANGE_RUNNING_A).......c.cccoiiveiiierieiseesesienenns 41
E.1.5 Notification Structure of Change to the RUNNING State (PIM_CHANGE_RUNNING).........cccectrirmriinnieininieeeieseieens 42
E.1.6 Notification Structure of Change to the RUNOUT State (PIM_CHANGE_RUNOUT)......coceiiiirnierineenesreeeseeeeeeeas 43
E.1.7 Notification Structure of Change to the EXIT State (PIM_CHANGE_EXIT)....ccoiiiiiiiiiiiiieieereenenee e 53
E.1.8 Notification Structure of Change to the CANCEL State (PJIM_CHANGE_CANCEL).......ccccoeieiiiiiiieien e 56
E.1.9 Notification Structure of Change to the HOLD State (PIM_CHANGE_HOLD)............... s 59
E.1.10 Notification Structure of Change to the ERROR State (PJM_CHANGE_ERROR)......... ettt ettt ettt ane 62
E.1.11 Notification Structure of Change to the REJECT State (PIM_CHANGE_REJECT)......ccciiiiiniiineeeneeneee e 65
E.1.12 Notification Structure of Change to the RUNNING-P State (PIM_CHANGE_RUNNING_P).....cccccoviviviiiiiiiciieecerenenn 66
E.1.13 Notification Structure of Change to the RUNNING-E State (PIM_CHANGE_RUNNING_E).......ccccccvveiinriiirreiennenne 67
E.1.14 Notification Structure of Scheduling Result (PIM_CHANGE_SCHED)........ccccciiitiiiiireene it 67
E.1.15 Notification Structure of Attribute Change (PIM_CHANGE_ALTER)........cccoiiiiiiieiseieesiee et 69
E.1.16 Simple Data Notification Structure (PIM_CHANGE_SIMPLE_DATA).. ..ottt 70

|Chapter 1 Overview of the Job Information Notification API

The job manager function of the job operation management function provides an API (Application Program Interface) that notifies the
programs of job-related information when a transition of job state occurs. Such programs are those that perform processes specific to job
operation such as a billing processes and job tracing processes created by the job operation administrator. This API is called "job information

notification APL."

The job manager function provides the functions of the job information notification API as listed below. For details on using the functions,
see "Chapter 2 Use of Job Information Notification API."

Table 1.1 Functions of job information notification API

Function

Description

PJM_connect()

Connecting to the job manager function

PJM_disconnect()

Disconnecting from the job manager function

PJM_set_target_jobinfo()

Setting monitoring target information (filter)

PJM_unset_target_jobinfo()

Cancelling monitoring target information (filter)

PJM_read_head()

Reading header information

PJM_read_data()

Reading data information

2 See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

For details of each job information notification API, see from "Appendix B Reference: APls Relevant to Connection to Job Manager
Function" to "Appendix E Reference: APIs Relevant to Data Information."”

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

IChapter 2 Use of Job Information Notification AP

This chapter describes how to create a program that uses the job information notification API as well as how to use it.

2.1 How to Create a Program

The job information notification API is provided by the header file and library shown below. The header file and library are stored in the
compute cluster management node.

- Header file
{usr/include/FJSVtcs/pjm/pjmapi.h
- Library
{usr/lib64/libpjmapi.so
The description below explains how to create a program.
Create a program in the compute cluster management node.

1. Include the header pjmapi.h in a source file that uses the job information notification API.

#i ncl ude <FJSVt cs/ pj m pj mapi . h>

int main(void)

{
/'l Processing using the job infornation notification API
return O;

}

2. Compile the created source file.
When creating an executable file, link Ipjmapi, the library of the job information notification API.

gcc -l pjmapi -o nodul e nane source file

Qn Note

As to a compiler, use the OS-standard gcc. All other compilers are not supported.

2.2 Processing Flow

The following is the processing flow when a program created by the job operation administrator uses the job information notification API.

Figure 2.1 Processing Flow when a Program Uses the Job Information Notification API

/_

1. Connect a program to
4) the job manager function

2. 5et afilter

3. Natify the current information

Job information it ! Job manager function

notification API (PJM)
4. Notify an event

3

Program

5. Disconnect the program from
the job manager function

N\ h 4 |

1. A program uses the function PJIM_connect() to connect to the job manager function.

2. The program uses the function PJM_set_target_jobinfo() to set a filter for information that the program obtains.

3. The job manager function notifies of job information according to the filter, and the program obtains the information. After reading
header information by using the function PJIM_read_head(), the program uses the function PJM_read_data() to read job information.

4. The job manager function notifies of an event (differential information) according to the filter, and the program obtains the
information. After reading header information by using the function PJM_read_head(), the program uses the function
PJM_read_data() to read differential information that is contained in the header information and is specific to the event.

5. The program uses the function PIM_disconnect() to disconnect it from the job manager function.

2.3 Job-Related Information Obtained by a Program

The job-related information that a program obtains by using the job information notification API includes "job information" and
"differential information."

Job information

Job-related information such as information of amounts of resources required by a job, limit values, scheduling result information, and
statistical information. Job information is reported only on either of the following conditions.

- The job is filtered as a notification target (3. Notification of current information™ in Figure 2.1).
- The submitted job enters the QUEUED state for the first time (4. Event notification™ in Figure 2.1).
Differential information

Job information that is updated on job state transition. Differential information specific to each event is reported when a job state
transition occurs ("4. Event notification" in Figure 2.1).

The order in which job information and differential information are reported is, for example, as follows for the period from job submission
to job end.

1. Notification of change to the ACCEPT state
2. Notification of job information

3. Notification of change to the QUEUED state
4

. Notification of scheduling result

. Natification of change to the QUEUED state
. Notification of change to the RUNNING-A state

5

6

7. Notification of change to the RUNNING state
8. Notification of change to the RUNOUT state
9

. Notification of change to the EXIT state

L:n Note

Notification of the transition to the ACCEPT state occurs prior to notification of job information.

2, See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

When data of a notification sent by the function PJM_read_data() is read, in the case of job information, the data is stored in the job
information notification structure PJIM_INFO_JOB. In the case of differential information, the data is stored in the job state change
notification structure PIM_CHANGE_state name after transition of the notification type corresponding to the state transition of the job. For

details of each structure, see "Appendix E Reference: APIs Relevant to Data Information."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

2.4 Example of the Job Information Notification API

This section provides an example of using the job information notification API.
The following is a program example.

- Main processing

main () {
PJM connect () /* 1. Connect a programto the job manager function */
PJM set _target _j obinfo() /* 2. Set a filter */
pt hread_create() /* Creating a thread for accepting an event *./
whi | e(1){
/* Setting change acceptance process */.
PJM set _t arget _j obi nfo() /* 2. Set a filter */
PJM unset _target _j obi nfo() /* 2. Renpbve a filter */
}
}

Thread processing

thread_nain() {

while(1){
PIM r ead_head() /* 3. Reading the header (waiting to be read) */
PJM read_dat a() /* 3. Reading the data */
switch(){ /* Processing according to the read event */
/* Describing processing details */
}
}

}

When the function PJIM_read_head(), which reads the header of a notification sent from the job manager function, is called, the function
waits for reading until the header to be reported is read. Therefore, if main processing such as accepting of change is performed even during
the reading, use the function PJIM_connect() to connect to the job manager function first, and use the function PJIM_set_target_jobinfo() to

set a filter, like the above program. Then, create a thread for reading for processing.

Appendix A Notes Relevant to Bulk Job Information
Reported With the Job Information
Notification API

This appendix describes special notes relevant to bulk job information reported with the job information notification API.

A.1 Bulk Job Information Reported

For a bulk job, you can use the function PIM_set_target_jobinfo(), which is used for setting filters, to select a notification pattern of bulk

job information.

25, See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

For details of the function PIM_set_target_jobinfo(), see "C.1 PIM_set_target_jobinfo()."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

The following explains how to select a notification pattern of bulk job information.

- For notification of only summary information of a bulk job

Specify "0" in the bulk_subjob_notify trigger member of the target_info structure to be handed over to the function
PJM_set_target_jobinfo().

The figure below indicates the notification timings of summary information from the job manager function when a bulk job is executed.
Summary information is reported at the timing when the first sub job is started, and summary information of the bulk end is reported

at the timing when the last sub job is ended.

Figure A.1 Notification of Only Summary Information of a Bulk Job

L

Program

Job information notification API

Summary

information

Summary
information

-

o

Bulk job Bulk job
|summary information | execution
f Bulk job) Sub job
X Sub job 1) execution
[Bulk job)

L Sub job 2)
(Bulk job
L Sub job 3 J

Sub job
execution

Bulk job

end

Sub job
end
,| Subjob
end

Sub job Sub job

execution end

Job manager function (PJM)

- For notification triggered by every sub job besides notification of summary information of a bulk job
Set the flag "PIM_STATUS_state" corresponding to the state for which notification is necessary in the bulk_subjob_notify_trigger
member of the target_info structure to be handed over to the function PJM_set_target_jobinfo().

The figure below indicates that summary information and sub job information are reported at the start and end of every sub job.

Figure A.2 Notification Triggered by Every Sub Job Besides Notification of Summary Information of a Bulk Job

Program

Job information notification API

)

-

Sub job
information

3

-

Sub job
information

~information__

Summary
information

>

Sub job

Bulk job

end

Bulk job Bulk job
| summary information execution
[Bulk job) Sub job
X Sub job 1) execution
(Bulk job
L Sub job 2 J
(Bulk job
i Sub job 3

Sub job
execution

Sub job

end

Sub job
end

Sub job
execution

Sub job

Job manager function (PJM)

end

A.2 How to Setthe End Code of aJob That is Not Subject to Billing

The job execution elapse time (elapse) of the summary information of a bulk job is the total value of the execution elapse times of all the
sub jobs. However, this value includes the execution elapse times of the sub jobs that are not subject to billing. If some sub jobs are not
executed correctly due to a node down or another cause (in the case of the job end code (PJM code) of a value other than 0), these sub jobs
may be example cases of such sub jobs. In preparation of such a case, to exclude the elapse values of the sub jobs that do not end correctly
from the billing targets, specific PIM codes can be set. Through this setting, the execution elapse times of the sub jobs that end with the
specific PJM codes can be summarized as the job execution elapse time that is not subject to billing (elapse_off_acc).

To specify the PIM codes relevant to which execution elapse times are not subject to billing, add the setting below to papjmapi.conf, a
configuration file relevant to the job information notification API. This file is provided in /var/opt/FJSVtcs/shared_disk/pjm/.private/ in the

compute cluster management node.

ELAPSE_OFF_ACC= PJM code

[Notes on setting]

- Describe PIM codes in numerical characters. Description using other characters is invalid.

To describe multiple PIM codes, delimit them with a comma "," or a space character.
PJM codes are not checked. Therefore, if you describe an invalid PJM code, it is set.

The lines in which ELAPSE_OFF_ACC= is missing at the beginning are skipped.

If you describe multiple lines, they are all valid.

- If aline includes an invalid character string, the line is valid up to that character.

The maximum length of a line is 4096 characters. A line that is 4097 characters long or longer causes a read error.
- The number of PJM codes that can be set is 1024. If 1025 or more PJM codes are set, the first 1024 codes are set and the rest are ignored.

The following is an example.

cat /var/opt/FISVtcs/shared_disk/pjm . private/papjmapi.conf
ELAPSE_OFF ACC= 1,2, 3
ELAPSE_OFF_ACC= 4 5 6
ELAPSE_OFF_ACC= 5 6 7

In this example, for sub jobs with PJM codes 1 to 7, the elapse values are added to elapse_off_acc since they are treated as sub jobs that are
not subject to billing.

Appendix B Reference: APIs Relevant to Connection to
Job Manager Function

This appendix describes the APIs relevant to connection to the job manager function.

ﬂ Information

The description from "Appendix B: Reference: APIs Relevant to Connection to Job Manager Function™ to "Appendix E Reference: APIs
Relevant to Data Information™ shows input-output of the arguments of functions (in and out). The meanings of in and out are as follows.

-in

A program that uses the job information notification API sets this information, and the job manager function refers to this information.

- out

The job manager function sets this information, and a program that uses the job information notification API refers to this information.

B.1 PJM connect()

This is a function used for connecting to the job manager function.

#i ncl ude <FJSVtcs/ pj m pj mapi . h>
int PIJMconnect(int *errcd);

Table B.1 Argument of PJM connect()

Argument

Type

Input-Output Description

errcd int*

out If connection to the job manager function fails, the value corresponding to
the error is set.

Table B.2 Return Values of PJM connect()

Result

Return Value

In the case of success

The connected file descriptor is returned.

In the case of an error

-1 is returned, and any one of the following values corresponding to errors is set in errcd.

Table B.3 Values Set in errcd in the Case of Errors

Value Set in errcd

Meaning

PJM_ERR_BOOTYET

The job manager function has not been started.

PIM_ERR_CANTOPEN

Opening of the file descriptor failed.

PIM_ERR_INTERNAL

An internal error occurred.

B.2 PJM disconnect()

This is a function used for disconnecting from the job manager function.

#i ncl ude <FJSVtcs/ pj m pj mapi . h>

int PIMdisconnect(int fd, int *errcd);

Table B.4 Arguments of PJM disconnect()

Argument Type Input-Output Description
fd int in Set the file descriptor returned by PJM_connect.
errcd int* out If disconnection fails, the value corresponding to the error is set.

Table B.5 Return Values of PIM disconnect()

Result Return Value
In the case of success 0 is returned.
In the case of an error -1 is returned, and any one of the following values corresponding to errors is set in errcd.

Table B.6 Values Set in errcd in the Case of Errors

Value Set in errcd Meaning
PIM_ERR_CANTCLOSE A close error occurred.
PJM_ERR_INTERNAL An internal error occurred.

Appendix C Reference: APIs Relevant to Setting of
Monitoring Target Information

This appendix describes APIs relevant to setting of monitoring target information.

C.1 PJM set target jobinfo()

This function is used to set a job to be monitored and to make the setting of notification of state transition information from the job manager
function (filter). It reports job information or differential information of the job specified by target_job as a monitoring target at the timing

specified by notify_trigger.

#i ncl ude <FJSVt cs/ pj m pj mapi . h>
int PIMset_target_jobinfo(int fd,

const struct target_info *targetinfo);

Table C.1 Arguments of PJM set target jobinfo()

Argument Type Input- Description
Output
fd int in The file descriptor returned from PJIM_connect is set.
targetinfo const struct out The relevant information can be added as a monitoring target by
target_info * setting a condition in each member variable.
The structure target_info is as follows.
typedef struct target_info {
struct target_job targetjob; /* (in)target_job */
int ki nd_info /* (in)kind of targetjob */
int notify_trigger; /* (in)job info notify trigger */
int bul k_subj ob_notify_trigger /* (in)bul k subjob notify trigger */
int si npl e_dat a_nodel ; /* (in)sinmple data of nodel */
} target_info_t;
typedef struct target_job {
int ki nd_j ob /* (in)kind of information */
int job_id; /* (in)job ID */
uid_t uid; /* (in)user id */
gid_t gid; /* (in)user group id*/
char rscuni t _nanme[PJM_RSCUNAME_MAX] ; /* (in)rsc unit name */
char rscgr p_name[PIM_RSCGROUP_MAX] ; /* (in)rsc group nane*/
} target_job_t;
Each member has the following values.
Table C.2 Members of the target info Structure
Member Type Input- Description
Output
target_job struct target_job | in The relevant jobs can be added as monitoring targets by setting a
condition in each member.
If kind_job is PIM_KINDJOB_ALL and the PJM_KINDINFO_JOB
flag is set in kind_info, all the jobs are targets.
kind_info int in Specifies what type of information is obtained.
The following value is specified.
PIM_KINDINFO_JOB: Job information
notify_trigger int in Specifies what conditions are notified. For reported information, see
"E.1 PJM_read_data()."
Specification is valid only when the PIM_KINDINFO_JOB flag is set

-10 -

Member

Type

Input-
Output

Description

in kind_info.
Logical addition of the following values are specified.

PIJM_STATUS_INFO_JOB:

Job information is reported on either of the following conditions.
- The filter setting specifies the job as a notification target.

- The submitted job enters the QUEUED state for the first time.
PIJM_STATUS_ACCEPT: ACCEPT state
PJM_STATUS_QUEUED: QUEUED state
PJIM_STATUS_RUNNING_A: RUNNING-A state
PJIM_STATUS_RUNNING: RUNNING state
PJM_STATUS_RUNOUT: RUNOUT state
PIM_STATUS_EXIT: EXIT state

PJM_STATUS_CANCEL: CANCEL state
PIM_STATUS_HOLD: HOLD state

PJM_STATUS_ERROR: ERROR state
PJM_STATUS_SCHED: Scheduling notification
PJM_STATUS_REJECT: REJECT state
PJIM_STATUS_RUNNING_P: RUNNING-P state
PJIM_STATUS_RUNNING_E: RUNNING-E state
PIJM_STATUS_ALTER: Job attribute change notification
PIJIM_STATUS_ALL: All the states

bulk_subjob_notify_trigger

int

Specifies in what conditions a sub job of a bulk job is notified.

For reported information, see "E.1 PJM_read_data()."

Specification is valid only when the PIM_KINDINFO_JOB flag is set
in kind_info.

Logical addition of the following values are specified.

The setting of a status for which there is no notification event of a sub
job (PIM_STATUS_REJECT, PIM_STATUS_ACCEPT, etc.) is
ignored.

PIM_STATUS_INFO_JOB:

Job information is reported on either of the following conditions.
- The filter setting specifies the job as a notification target.

- The submitted job enters the QUEUED state for the first time.
PIJM_STATUS_ACCEPT: ACCEPT state
PJM_STATUS_QUEUED: QUEUED state
PJIM_STATUS_RUNNING_A: RUNNING-A state
PJIM_STATUS_RUNNING: RUNNING state
PJM_STATUS_RUNOUT: RUNOUT state
PIM_STATUS_EXIT: EXIT state

PJM_STATUS_CANCEL: CANCEL state
PIM_STATUS_HOLD: HOLD state

PJM_STATUS_ERROR: ERROR state
PJM_STATUS_SCHED: Scheduling notification
PJIM_STATUS_REJECT: REJECT state
PIJIM_STATUS_RUNNING_P: RUNNING-P state
PJIM_STATUS_RUNNING_E: RUNNING-E state
PIJM_STATUS_ALTER: Job attribute change notification
PIM_STATUS_ALL: All the states (All bits are set)

simple_data_model

int

Specifies whether to report a normal job, a step job, summary
information of abulk job, or sub job notification of abulk job as simple
data.

-11 -

Member

Type

Input-
Output

Description

Logical addition of the following values are specified.
For a job model for which any of the following values are not set, data
corresponding to the conventional notification type is reported.

PJIM_SIMPLE_DATA_NORMAL:

Normal job notification is reported as simple data.
PJM_SIMPLE_DATA_STEP:

Step job notification is reported as simple data.
PJM_SIMPLE_DATA_BULK_SUMMERY:

The summary information of a bulk job is reported as simple data.
PJM_SIMPLE_DATA_BULK_SUBJOB:

Sub job notification of a bulk job is reported as simple data.
PJM_SIMPLE_DATA_ALL:

All notification is reported as simple data (all the bits are set).

kind_job

int

Specifies jobs of notification targets.
Logical addition of the following values are specified. If multiple bits
are set, jobs that satisfy all the conditions are targets.

PJM_KINDJOB_ALL: All the jobs

PJM_KINDJOB_ID: Specification by a job ID
PJM_KINDJOB_USER: Specification by a user ID
PJM_KINDJOB_GROUP: Specification by a group ID
PJM_KINDJOB_RSCUNIT: Specification by a resource unit ID
PJM_KINDJOB_RSCGRP: Specification by a resource group ID

job_id

uint

Specifies the job ID of a target job.
Specification is valid only when PJIM_KINDJOB_ID is spedified for
kind_job.

uid

uid_t

Specifies the owner user ID of a target job.
Specification is valid only when PIM_KINDJOB_USER is spedified
for kind_job.

gid

gid_t

Specifies the owner group ID of a target job.
Specification is valid only when PJIM_KINDJOB_GROUP is
spedified for kind_job.

rscunit_name
[PIM_RSCUNAME_MAX]

char[]

Specifies the owner resource unit ID of a target job.
PJM_RSCUNAME_MAX is 64.

Specification is valid only when PIM_KINDJOB_RSCUNIT is
spedified for kind_job.

rscgrp_name
[PIM_RSCGROUP_MAX]

char]

Specifies the owner resource group ID of a target job.
PIJIM_RSCUNAME_MAX is 64.

Specification is valid only when PJIM_KINDJOB_RSCGRP is
spedified for kind_job.

Table C.3 Return Values of PJM set target jobinfo()

Result

Return Value

In the case of success

0 is returned.

In the case of an error

The value corresponding to any one of the following errors is returned.
PJM_ERR_SEND: A send error occurred.
PJIM_ERR_INTERNAL: An internal error occurred.

-12 -

Qn Note

If PJM_set_target_job() is called multiple times with different arguments, new information is added while the previously registered job
information transition notification is maintained as it is.

C.2 PJM unset target jobinfo()

This function is used to deselect jobs from the monitoring targets. This function is also used to deselect the state transition notification
information (filter) of the job manager function from the monitoring targets.
The specification method of jobs is the same as that for PJM_set_target_jobinfo(). For details, see "C.1 PIM_set_target_jobinfo()."

#i ncl ude <FJSVtcs/ pj m pj mapi . h>
int PIMunset_target_jobinfo(int fd,

const struct target_info *targetinfo);

Table C.4 Argument of PJM unset target jobinfo()
Argument Type Input-Output Description
fd int in The file descriptor returned from PJIM_connect is set.
targetinfo const struct in The same as struct target_info *fargetinfo of

target_info *

PJM_set_target_jobinfo()
For details, see "Table C.1 Arguments of
PJM_set_target_jobinfo()."

Table C.5 Return Values of PJM unset target jobinfo()

Result

Return Value

In the case of success

0 is returned.

In the case of an error

The value corresponding to any one of the following errors is returned.
PJM_ERR_SEND: A send error occurred.

PJM_ERR_INTERNAL.: An internal error occurred.

-13-

Appendix D Reference: APIs Relevant to Reading of
Header Information

This appendix describes the APIs relevant to reading of header information.

D.1 PJM read head()

This function is used to read the header of a notification sent from the job manager function. A program using this APl waits for read data
until the header to be reported is read. By calling PJIM_read_data() according to the reported event type, the program can obtain the contents

of the notification.

int PIMread_head(int fd,
*dat asi ze) ;

#i ncl ude <FJSVt cs/ pj M pj mapi . h>
int *notice_kind,

int *data_flags, struct timespec *sendtine, int

Table D.1 Arguments of PJM read head(

Argument

Type

Input-
Output

Description

fd

int

The file descriptor returned from PJM_connect is set.

notice_kind

int*

out

The following notification types reported by the job manager function are
stored.

PJM_INFO_JOB: Job information notification
PJM_CHANGE_ACCEPT: Notification of change to the ACCEPT state
PJM_CHANGE_QUEUED: Notification of change to the QUEUED state
PJM_CHANGE_RUNNING_A: Notification of change to the
RUNNING-A state

PJM_CHANGE_RUNNING: Notification of change to the RUNNING
state

PJM_CHANGE_RUNOUT: Notification of change to the RUNOUT state
PIJM_CHANGE_EXIT: Notification of change to the EXIT state
PJM_CHANGE_CANCEL: Notification of change to the CANCEL state
PJM_CHANGE_HOLD: Notification of change to the HOLD state
PJM_CHANGE_ERROR: Notification of change to the ERROR state
PJM_CHANGE_SCHED: Notification of scheduling result
PJM_CHANGE_REJECT: Notification of change to the REJECT state
PJM_CHANGE_RUNNING_P: Notification of change to the
RUNNING-P state

PJM_CHANGE_RUNNING_E: Notification of change to the
RUNNING-E state

PJM_CHANGE_ALTER: Notification of attribute change

data_flags

int*

out

The data type reported by the job manager function is stored.

For a data type, information is represented as a bit value, and the logical
addition of the values below is stored.

(*) Currently, only PIM_DATA_FLAGS_SIMPLE is supported.

If nothing is set (0 is set), the data structure of notification contents
obtained with PJM_read_data() is a structure corresponding to the
notification type specified by conventional notice_kind.

PJM_DATA_FLAGS_SIMPLE: Notification of simple data

The data structure of notification contents obtained with PJIM_read_data()
is not a structure corresponding to the notification type specified by
notice_kind but the simple data notification structure.

sendtime

struct timespec *

out

The time when the job manager function sends a notification is stored.

-14 -

Argument Type Input- Description
Output
datasize int * out The size of data to be read with PJIM_read_data() is stored.

Table D.2 Return Values of PJM read head()

Result

Return Value

In the case of success

0 is returned.

In the case of an error

The value corresponding to any one of the following errors is returned.
PJM_ERR_INVALID: PJM_read_head() was called without reading data.
PJM_ERR_READ: A read error occurred.

PJM_ERR_INTERNAL.: An internal error occurred.

-15-

Appendix E Reference: APIs Relevant to Data Information

This appendix describes APIs relevant to data information.

E.1 PJM read data()

This function reads notification data sent from the job manager function (data corresponding to the header read with PIM_read_head()).

#i ncl ude <FJSVt cs/ pj m pj mapi . h>
int PIMread_data(int fd,

void **data_p);

Table E.1 Arguments of PJM read data()

Argument Type Input- Description
Output
fd int in The file descriptor returned from PJM_connect is set.
data_p void ** out Storage pointer of obtained data

The caller secures a memory space of datasize read with PJIM_read_head(), and
specifies the pointer to this space.
Stored data is a structure corresponding to the notification type and data type.

The following are the notification types.

PIJM_INFO_JOB: Job information notification structure
PIJM_CHANGE_ACCEPT: Notification structure of change to the ACCEPT state
PJM_CHANGE_QUEUED: Notification structure of change to the QUEUED state
PIJIM_CHANGE_RUNNING_A: Notification structure of change to the
RUNNING-A state

PIJM_CHANGE_RUNNING: Notification structure of change to the RUNNING
state

PIJM_CHANGE_RUNOUT: Notification structure of change to the RUNOUT state
PJM_CHANGE_EXIT: Notification structure of change to the EXIT state
PJM_CHANGE_CANCEL: Notification structure of change to the CANCEL state
PJM_CHANGE_HOLD: Notification structure of change to the HOLD state
PIJM_CHANGE_ERROR: Notification structure of change to the ERROR state
PJM_CHANGE_SCHED: Notification structure of scheduling result
PIJM_CHANGE_REJECT: Notification structure of change to the REJECT state
PIJIM_CHANGE_RUNNING_P: Notification structure of change to the RUNNING-
P state

PIJM_CHANGE_RUNNING_E: Notification structure of change to the RUNNING-
E state

PJM_CHANGE_ALTER: Notification structure of attribute change

The following is the data type.
PIM_DATA_FLAGS_SIMPLE: Simple data notification structure

Table E.2 Return Values of PJM read data()

Result

Return Value

In the case of success

0 is returned.

In the case of an error

The value corresponding to any one of the following errors is returned.
PJM_ERR_READ: A read error occurred.
PJM_ERR_INTERNAL: An internal error occurred.

E.1.1 Job Information Notification Structure (PJM_INFO JOB)

The function PJM_read_data() reads the notification data sent when the notification type is PIM_INFO_JOB. The following are the job
information notification structures that are reported by the argument data_p of the function PJIM_read_data().

-16 -

typedef struct Pjmapi_info_job {

uint16_t j ob_nodel
uint16_t job_flags
uint16_t numretry;
intl6_t pre_j obst at us
int16_t j obst at us
intl6_t job_aprio
intl6_t job_uprio
intl16_t padi;

ui nt 32_t job_type

ui nt 32_t jobid

ui nt32_t bl kno

ui nt32_t st epno

int subj ob_num

ui nt exit_code
int32_t si gnal _no

int pj m_code

ui nt node_x;

ui nt node_y;

ui nt node_z;

ui nt node_num
uid_t ui d;

gid_t exec_gid

ui nt node_r eq_x;

ui nt node_req_y;

ui nt node_req_z;

ui nt node_r eq_nun
ui nt node_npi _x;

ui nt node_npi _y;

ui nt node_npi _z;

ui nt node_npi _numn
i nt proc;

int proc_bynode
int sd_num

uid_t | ast hol d_ui d
uint32_t subj obfl ag

ui nt hol d_count;
int run_count;

ui nt unavai | abl e_nodenum
ui nt sum_cpu_req_num
ui nt32_t used_cpunum
int unmask

i nt mai | fl ag

ui nt pro_exit_code
ui nt epi _exit_code
ui nt32_t vn_cpu_req
int rankmap_type
i nt rankmap_num
int vn_mul ti;

int node_t ype

ui nt32_t num al | oc_vnode
ui nt sum cpu_al | oc_num
ui nt used_nodenum
ui nt sum cpu_preal | oc_num

/*
/*
| *
| *
| *
/*
/*

| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*
/*
| *
| *
| *

/*

/*

/*
/*

/*

/*

/*

/*
/*
/*
/*
/*

/*
| *
| *
| *
/*
/*
/*
| *
| *
| *

/*
/*
| *
| *
| *
/*
/*
/*

-17 -

Job nodel */

Job additional information */

Retry count */

Previ ous job status */

Job status */

Job priority level within the resource unit
Job priority level within the same user */

Job type */
Job ID */
Bul k nunber */

Step nunber */

Nunmber of sub jobs */

exitcode of the user script */

Si gnal nunmber of the user script */
PJM code */

Al | ocat ed node shape x */

Al'l ocat ed node shape y */

Al'l ocat ed node shape z */

Nunmber of all ocated nodes */

User 1D */

Execution group ID */

Nunber of requested nodes in

the x direction */

Nunmber of requested nodes in

the y direction */

Number of requested nodes in

the z direction */

Nunber of requested nodes */

--Node shape with npi option
specification (x) */

--Node shape with npi option
specification (y) */

--Node shape with npi option
specification (z) */

--Nunber of nodes with npi option
speci fication */

Nunmber of processes */

Number of processes for 1 node */
Number of dependence rel ation expressions */
User I D held/cancelled in the |last state */
Attribute of transfer wait for preceding
step job result */

HOLD count */

RERUN count */

Number of unavail abl e nodes */
Total nunber of requested CPUs */
Nurber of CPUs used */

File mask */

Mai | send flag */

Prol ogue exit code */

Epi | ogue exit code */

Request ed nunber of CPU cores

by virtual node */

Rank map type */

Nunmber of placed rank maps */
Number of placed virtual nodes */
Node type */

Nunber of allocated virtual nodes */
Total nunber of allocated CPUs */
Nurmber of nodes used */

Total nunber of schedul er allocation CPUs */

*/

time_t
time_t
time_t
time_t
time_t

time_t
time_t
time_t
time_t
time_t
time_t
time_t
time_t
time_t
ui nt 64_t
time_t

ui nt 64_t
char
char
char

ui nt 64_t
ui nt 64_t
time_t
char
char
time_t

ui nt 64_t
ui nt 64_t
ui nt 64 _t
ui nt64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64 _t

ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64 _t

ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64 _t
ui nt 64_t

time_t
time_t
time_t
time_t
char
char
time_t
time_t
time_t
time_t
time_t
time_t
ui nt 64_t

create_date;
start_date;
end_dat e;

el apse;

el apse_of f _acc;

sched_dat e;
que_dat e;
runa_dat e;
run_dat e;
runout _dat e;
exit_date;
cancel _dat e;
hol d_dat e;
err_date;
attribute;
spec_dat e;

elapse_limt;
j obnane[64] ;

/*
/*
/*
/*
/*

/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *

/*
/*

rscunit _nane[PJIM_RSCUNAME_MAX] ; /*
rscgrp_name[PIM RSCGROUP_MAX] ; [*

nmem req;
node_cpu;

rej ect _date;

host name[16] ;
reason[64] ;
fst_start_date;
sum runa_ti me;
sumrun_time;

sum hol d_ti me;
sumwait_time;
mem | nt;

mem j ob_al | oc;
prc_cputm| nt;
prc_corefile_|nt;
prc_cre_proc_|Int;

prc_data_lnt;

prc_| ocked_nem | nt;
prc_psx_mnsq_que_| nt;
prc_openfiles_|nt;
prc_pndng_sgnl _Int;

prc_prnfl _Int;
prc_stack_I nt;
prc_vmem.| nt;
max_used_nmem
usct mut ;

shapshotti me;

pj del _date;

del et e_dat e;

al | _prec_subj ob_exit_date;
f snanme[64] ;

appnane[64] ;

prol ogue_start_date;
runp_dat e;

epi |l ogue_start_date;
rune_date;

prol ogue_end_dat e;
epi | ogue_end_dat e;
pack_policy;

| *
| *
/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
| *
| *
/*
/*
/*
/*
| *
| *
/*
/*
/*

-18 -

Job submission time */

Job start time */

Job end tine */

Job execution el apse tine */

Job execution elapse tine that is not subject
to billing */

Job execution start time */

Time of QUEUED transition */
Time of RUNNING A transition */
Time of RUNNING transition */
Time of RUNQUT transition */
Time of EXIT transition */
Time of CANCEL transition */
Tine of HOLD transition */
Time of ERR transition */

Job attribute */

Execution start tinme specified at

j ob submi ssion */

Limt value of job elapse time */

Job name */

Resource unit nane */

Resource group name */

Request ed nmenory anmount (by node) */
Limt value of CPU tine (by node) */
Reject transition tine */

Submi tted host name */

REASON */

Initial job execution start time */

Cunul ati ve RUNNING A tine (seconds) */
Curul ative RUNNING tinme (seconds) */
Cunul ative HOLD tinme (seconds) */

Cunul ative wait tinme (seconds) */

Menory anmount limt value */

Al l ocated nmenmory amount */

CPU time limt value by process */

Core file size |limt value by process */
Limit value of the nunber of user processes
by process */

Data segnent limt value by process */
Lock menory linmt value by process */
PCSI X nessage queue limt value by process */
File descriptor limt value by process */
Limt value of the nunmber of signals

by process */

File size limt value by process */

Stack segment limit value by process */
Virtual nenory size limt value by process */
Maxi mum nenory use anount (bytes) */
Total user CPU tine and total system CPU tine
(seconds) */

Data col |l ection year/ nonth/day */

Job del etion request tine */

Job deletion time */

Preceding sub job end tine */

External file system nanme */

Application name */

Prol ogue start time */

Time of RUNNING P transition */

Epi | ogue start time */

Time of RUNNING E transition */

Prol ogue end time */

Epi | ogue end tine */

Virtual node placement policy */

ui nt 64 _t
ui nt64_t

ui nt 64_t
ui nt 64_t
ui nt 64 _t
of f _t
of f _t
of f _t
of f _t
of f _t
of f _t
of f _t

of f _t
of f _t
of f _t

int32_t
int32_t
int32_t
int32_t
ui nt 64_t
uint32_t
uint32_t
ui nt 32_t
ui nt32_t
ui nt 32_t
uint32_t
ui nt 64 _t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
struct tinespec
ui nt 64 _t
ui nt 64_t
ui nt 64_t

ui nt 64_t

ui nt 64 _t

ui nt 64_t
time_t
time_t

ui nt 64 _t
uint32_t
uint8_t
uint8_t
ui nt 64_t
ui nt 64_t
ui nt 64 _t
ui nt 64_t
int64_t
of f _t

exec_policy;
sumvm j ob_use;

sum_usr_cput m
sum sys_cput m
mem j ob_preal | oc;

curdir_ofs;
mai | _ofs;
shel | _ofs;

comment _of s;
st dout _of s;
stderr_ofs;
job_acct_ofs;

ndl i st_ofs;
tofulist_ofs;
sd_of s;

req_npi _static_proc;
req_npi _proc;

al l oc_npi _static_proc;
al | oc_npi _proc;

nume_pol i cy;

start_bl kno;

end_bl kno;

af fected_nid;

preal | oc_rnexit_exitcode;
predel _rmexit_exitcode;
postfree_rnmexit_exitcode;
preal l oc_start_tine;
preall oc_end_tine;
predel _start _tinme;
predel _end_ti nme;
postfree_start_tine;
postfree_end_tine;

preal | oc_exec_ki nd;
predel _exec_ki nd;

post free_exec_kind;
backfill _flg;

pad4[4] ;

| ast _sched_dat e;

pj sub_option_flg;

pj sub_option_exfl g;

pj sub_L_arg_flg;

pj sub_mpi _arg_flg;
pj sub_step_arg_flg;
pjsub_P_arg flg;

| ast _suspended_dat e;

| ast _resuned_dat e;

sum suspended_ti ne;

total _suspended_count;
pad5[3] ;

el apsed_ti ne_node;
adaptive_el apsed_time_nin;
adaptive_el apsed_ti me_nax;
job_env_boot _ti ne;

j ob_env_shut down_ti me;
fj_profiler;
reqg_cstnrsc_ofs;

/*
/*

/*
| *
| *
/*
/*
/*
/*
| *
| *
/*

/*
/*
/*

/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *
/*
/*
/*

/*
/*
/*
/*

/*

/*

/*

/*
/*
/*
/*

/*
/*
| *
| *
/*
/*
/*

-19-

Execution node */

Total used menory anount by virtual
(bytes) */

Total user CPU tine */

Total system CPU time */

Schedul er allocation nenory anount (bytes) */
Offset to job subnission directory */

O fset to mail address */

Offset to job shell */

O fset to comrent */

O fset to standard output file */

O fset to standard error output file */
Offset to job statistical information

file path */

Offset to node ID list */

O fset to Tofu coordinate list */

O fset to dependency expression

(Pjmapi _sd_t) */

Nunmber of requested MPI
Nunmber of requested MPI
Nunmber of allocated MPI
Number of all ocated MPI
NUMA policy */

Bul k start nunber */
Bul k end nunber */
Node ID that affected job result */
prealloc exit end code */

predel exit end code */

postfree exit end code */

prealloc exit start time */
prealloc exit end time */

node

static processes */
processes */
static processes */
processed */

predel exit start time */
predel exit end tine */
postfree exit start time */

postfree exit end time */

preal loc exit execution timng */
predel exit execution timng */
postfree exit execution timng */
Backfill flag */

Schedul ing start tine */

pj sub conmand option */

Enhanced pj sub comrand option */
argunment flag of the -L option of
the pj sub command */
argunment flag of the --np
the pj sub comand */
argunment flag of the --step option of
the pj sub command */

argunment flag of the -P option of

the pj sub command */

For future extension */

For future extension */

For future extension */

For future extension */

option of

El apse time linmt specification nethod */
El apse time linmt mnimmvalue */

El apse time limt maxi mum val ue */

Job execution environnent boot tine */
Job execution environment shutdown time */
Fujitsu profiler use count */

Offset to customresource information

(Pjmapi _req_cstnmrsc_t) */

of f _t suppl ementary_i nfo_of s; /* Offset to additional information */

time_t total _node_down_ti me; /* For expansion */

char arch_i nf o[16] /* Machine type */

of f _t hw_i nfo_of s; /* Ofset to hardware specific information */

} Pjmapi_info_job_t;

typedef struct Pjmapi_sd {

int endcode_t ype; /* End code type */

int formtype; /* Condition format */

int formyval ue_num /* Number of condition values */

int del et et ype; /* Del etion type */

int to_stepno_num /* Nunmber of dependent step nunbers */
uint8_t padl[4] ;

of f _t formyval ue_of s; /* Offset to condition value */

of f _t to_stepno_ofs; /* Offset to dependent step nunber */

} Pjmapi _sd_t;

typedef enum {
PJM_CSTMRSC_VALUE_TYPE_NUMERI C = 1,
PJM CSTMRSC VALUE _TYPE_STRING = 2
} Pjmapi _cstmrsc_val ue_type_t;

typedef struct Pjmapi_req_cstnrsc {

of f _t next _ofs; /* O fset where next customresource information
(Pjmapi _req_cstnrsc_t) is stored */

char name[PIM_MAX_CSTM NAME_LEN] /* Custom resource nane */

Pj mapi _cstnrsc_info_t cstnrsc_info; /* Customresource type structure */

} Pjmapi _req_cstnrsc_t;

typedef struct Pjmapi_cstmrsc_info {

ui nt8_t is_pernode; /* \Wiether NodelD is specified, 1 if specified */
uint8_t val ue_type; [/* Value type of customresource (specifiable with
pj mapi _cstnrsc_val ue_type_t) */
uint8_t pad] 6] ;
uni on {
int64_t num val ue; /* Requested anpunt of custom resource */
char string_val ue[PIM_ MAX_CSTM NAME_LEN]; /* Requested type of customresource */

} val ue_rsc;
} Pjmapi _cstnmrsc_info_t;

typedef struct Pjmapi _info_hwspecific_fx {

ui nt 64_t tof u_user_commrecv_byte; /* Tofu user conmunication receive
data size (bytes) */
ui nt 64_t t of u_user _comm send_byte; /* Tofu user comunication send
data size (bytes) */
ui nt 64_t tof u_sys_commrsv_byte; /* Tofu system communi cation receive
data size (bytes) */
ui nt 64_t tof u_sys_comm send_byte; /* Tofu system communi cati on send
data size (bytes) */
uint32_t sum al | oc_assi st cpunum /* Nunmber of allocated assistant cores */
ui nt32_t sum used_assi st cpunum /* Number of assistant cores used */
ui nt64_t sum usr_assi stcputm /* Total user CPU use tinme of
assi stant core */
ui nt 64_t sum sys_assi stcputm /* Total system CPU use tine of
assi stant core */
ui nt 64_t sum used_assi st ant _core_nmax_mem /* Maxi mum use menory anount of
assi stant core */
ui nt64_t sect or _cache_usi ng_program count; /* Start count of sector cache using
program */
ui nt 64_t intra_node_barrier_using_programcount; /* Count of chip internal barrier using
program */

-20 -

Pj mapi _j ob_power _consunption_t power_consunpti on;

Pj mapi _reserved_paramt reserved_param
Pj mapi _reserved_info_t reserved_info;
} Pjmapi _i nfo_hwspecific_fx_t;

/* Power consunption-related information */
/* For future extension */
/* For future extension */

typedef struct Pjmapi_i nfo_hwspecific_pcc {

Pj mapi _j ob_power _consunpti on_pcc_t power_consunpti on;

} Pjmapi _i nfo_hwspecific_pcc_t;

/* PC cluster power consunption-related
information */

typedef struct Pjmapi_job_power_consunption {

uint16_t power _consunpti on_state;
uint8_t utilization_info_of_power_api;
uint8_t pad[1] ;

uint32_t num cng;

of f _t cngs_ofs;

Pj mapi _power _consunpti on_t

Pj mapi _power _consunpti on_t

Pj mapi _power _consunption_t ideal _tofu;
Pj mapi _power _consunption_t ideal _pcie;
Pj mapi _power _consunption_t ideal _node;

Pj mapi _power _consunption_t measured_node;

struct tinespec neasure_start_date;
struct tinmespec neasure_end_date;
} Pj mapi _j ob_power _consunption_t;

i deal _cpu_peri pheral s;

i deal _opti cal nodul e;

/* Acquisition state of power information */

/* Power knob use information */

/* Nurmber of CMZ */

/* Offset to power consunption structure
by CMG */

/* Peripheral power consunption
information in CPU (estimtion) */

/* Optical nodul e power consunption
information (estimation) */

/* Tofu power consunption infornation
(estimation) */

/* PCl-E power consunption information
(estimation) */

/* Node power consunption information
(estimation) */

/* Node power consunption information
(result) */

/* Power measurenment start time */

/* Power measurenent end time */

typedef struct Pjmapi_job_power_consunption_pcc {

uint16_t power _consunpti on_state;
uint8_t pad[2] ;

ui nt 32_t num pkg;

of f _t pkgs_of s;

Pj mapi _power _consunption_t neasured_node;

struct tinespec neasure_start_date;
struct tinespec neasure_end_date;
} Pj mapi _j ob_power _consunption_pcc_t;

/* Acquisition state of power information */

/* Number of packages */

/* Offset to power consunption structure
by package */

/* Node power consunption information
(result) */

/* Power measurenent start time */

/* Power measuremnent end tine */

typedef struct Pjmapi_cng_power_consunption {
int32_t cmgno;
uint8_t pad[4];
Pj mapi _power _consunption_t ideal _core;

Pj mapi _power _consunption_t ideal _| 2cache;
Pj mapi _power _consunption_t ideal _nem

} Pj mapi _cng_power _consunption_t;

/* CMG NUMBER */

/* Compute core power consunption
informati on by CMG (estination) */

/* L2 cache power consunption
informati on by CMG (estimation) */

/* Mermory power consunption
informati on by CMG (estination) */

typedef struct Pjmapi_pkg_power_consunption {
int32_t pkgno;
uint8_t pad[4];
Pj mapi _power _consunption_t cpu;

Pj mapi _power _consunption_t nem

-21-

/* Package nunber */

/* CPU power consunption information
by package */
/* Memory power consunption information

by package */

Pj mapi _power _consunption_t ppO; /* PPO power consunption infornation
by package */

} Pj mapi _pkg_power _consunption_t;

typedef struct Pjmapi_power_consunption {
doubl e avg_power ; /* Average power consunption */
doubl e max_power ; /* Maxi mum power consunption */
doubl e m n_power ; /* M ni mum power consunption */
doubl e ener gy; /* Power consunption amount */

} Pj mapi _power _consunption_t;

typedef struct Pjnapi_reserved_param {
ui nt64_t reservedl; /* For future extension */
ui nt 64_t reserved2; /* For future extension */
ui nt 64_t reserveds; /* For future extension */
ui nt 64_t reserved4; /* For future extension */
ui nt 64_t reserved5; /* For future extension */
int32_t reserved6; /* For future extension */
int32_t reserved7; /* For future extension */
int32_t reserveds; /* For future extension */
int32_t reserved9; /* For future extension */
ui nt 64_t reservedlo; /* For future extension */
ui nt 64_t reservedl1l; /* For future extension */
of f _t reservedl12; /* For future extension */
of f _t reservedl13; /* For future extension */

} Pj mapi _reserved_paramt;

typedef struct Pjmapi_reserved_info {
struct tinespec reservedl; /* For future extension */
struct tinespec reserved2; /* For future extension */
struct timespec reserved3; /* For future extension */
struct tinespec reserved4; /* For future extension */
struct tinespec reserved5; /* For future extension */
struct timespec reserved6; /* For future extension */
ui nt 64_t reserved7; /* For future extension */
doubl e reserveds; /* For future extension */
doubl e reserved9; /* For future extension */
ui nt 64 _t reservedlo; /* For future extension */
ui nt 64_t reservedll; /* For future extension */
ui nt 64_t reservedl2; /* For future extension */
ui nt 64_t reservedl13; /* For future extension */
ui nt 64_t reservedl4; /* For future extension */
ui nt 64 _t reservedls; /* For future extension */
ui nt 64_t reservedl6; /* For future extension */
doubl e reservedl?; /* For future extension */
ui nt 64_t reservedls; /* For future extension */
ui nt 64_t reservedl19; /* For future extension */
ui nt 64_t reserved20; /* For future extension */
ui nt 64_t reserved2l; /* For future extension */
doubl e reserved22; /* For future extension */
ui nt 64_t reserved23; /* For future extension */
ui nt 64_t reserved24, /* For future extension */
ui nt 64_t reserved25; /* For future extension */
ui nt 64_t reserved26; /* For future extension */

} Pjmapi _reserved_info_t;

-22-

Table E.3 Members of Job Information Notification Structure PJIM INFO JOB

Member Type Input- Description
Output
job_model uintl6_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.
PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job
job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job
num_retry uintl6_t out The retry count of the target job is stored.
pre_jobstatus int16_t out The previous status of the target job before the current status
is stored.
jobstatus intl6_t out The current status of the target job is stored.
job_aprio intl6 _t out The job priority level within the resource unit is stored.
job_uprio intl6 _t out The job priority level within the same user is stored.
job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job
jobid uint32_t out The job ID of the target job is stored.
blkno uint32_t out The bulk number of the target job is stored.
stepno uint32_t out The step number of the target job is stored.
subjob_num int out The number of the sub jobs of the target job is stored.
exit_code uint out The exit code of the shell script of the target job is stored.
signal_no int32_t out The signal number of the shell script of the target job is stored.
pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.
node_x uint out The allocated shape of the target job is stored.
node_y uint
node_z uint
node_num uint out The number of the allocated nodes of the target job is stored.
uid uid_t out The uid of the job submitter is stored.
exec_gid gid_t out The gid with which the job is executed is stored.
node_req_x uint out The number of the requested nodes in the direction of x, y, or
- z is stored.
node_req_y uint
node_req_z uint
node_req_num uint out The number of requested nodes of the job is stored.
node_mpi_x uint out The number of the mpi option-specified nodes in the direction
. . of X, y, or z is stored.
node_mpi_y uint
node_mpi_z uint

-23-

Member Type Input- Description
Output
node_mpi_num uint out The number of the mpi option-specified nodes of the job is
stored.
proc int out The number of the processes of the job is stored.
proc_bynode int out The number of the processes of the job for 1 node is stored.
sd_num int out The number of the dependence relation expressions set for the
job is stored.
lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held itis stored. If the job was canceled, the user ID of the
user who canceled it is stored.
subjobflag uint32_t out The attribute of waiting for transfer of the result of the
preceding step job of the target job is stored.
hold_count uint out The number of times when the target job was held is stored.
run_count int out The number of times when the target job is re-executed is
stored.
unavailable_nodenum uint out The number of available nodes in the allocated scope of the
target job is stored.
sum_cpu_reg_num uint out The number of CPUs requested by the target job is stored.
used_cpunum uint32_t out The number of CPUs used by the target job is stored.
umask int out The umask value of the submitter user of the target job (value
converted into a decimal number) is stored.
mailflag int out The flag about whether there is mail transfer of the target job
is stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)
pro_exit_code uint out The end code of the prologue script of the target job is stored.
epi_exit_code uint out The end code of the epilogue script of the target job is stored.
vn_cpu_req uint32_t out The number of allocated cores of the target job by virtual node
is stored.
rankmap_type int out The rank map of the target job is stored.
The value is any of the following.
0: No specification
1: rank-map-bynode
2: rank-map-bychip
rankmap_num int out The number of placed rank maps of the target job is stored.
node_type int out The node type of the target job is stored.
num_alloc_vnode uint32_t out The number of allocated virtual nodes of the target job is
stored.
sum_cpu_alloc_num uint out The total number of the allocated CPUs is stored.
used_nodenum uint out The number of nodes used is stored.
sum_cpu_prealloc_num uint out The total number of CPUs allocated by the scheduler function
is stored.

-24 -

Member Type Input- Description
Output

create_date time_t out The time when the target job was submitted (execution time
of the pjsub command) is stored.

start_date time_t out The job start time of the target job is stored.

end_date time_t out The job end time of the target job is stored.

elapse time_t out The job elapse time of the target job is stored.

elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.

sched_date time_t out The job execution start time of the target job is stored.

que_date time_t out The time of the transition of the target job to QUEUED is
stored.

runa_date time_t out The time of the transition of the target job to RUNNING-A is
stored.

run_date time_t out The time of the transition of the target job to RUNNING is
stored.

runout_date time_t out The time of the transition of the target job to RUNOUT is
stored.

exit_date time_t out The time of the transition of the target job to EXIT is stored.

cancel_date time_t out The time of the transition of the target job to CANCEL is
stored.

hold_date time_t out The time of the transition of the target job to HOLD is stored.

err_date time_t out The time of the transition of the target job to ERROR is
stored.

attribute uint64_t out The attribute of the job is set by the following flags.
0x000002: Specification of strict
0x004000: Specification of strict-io

spec_date time_t out The specification of the date and time when the job execution
to be started is stored.

elapse_limit uinté4_t out The limit value of the elapsed time is stored.
In case of UNLIMITED, PJIM_RLIM_INFINITY(~0ULL) is
stored.
If limit values of the elapsed time are specified as a range, the
maximum time of the limit of the elapse time (seconds) is set.

jobname[64] char[] out The job name of the target job is stored.

rscunit_name[PJM_ char[] out The resource unit name of the job is stored.

RSCUNAME_MAX]

rscgrp_name[PJM_ char[] out The resource group name of the job is stored.

RSCGROUP_MAX]

mem_req uint64_t out The requested memory amount by node is stored.

node_cpu uint64_t out The limit value of CPU time by node is stored.

reject_date time_t out The transition time to REJECT is stored.

hostname[16] charf] out The node name of the node where the target job was
submitted (up to 15 characters from the beginning) is stored.

reason[64] char[] out The REASON of the target job is stored.

-25-

Member Type Input- Description
Output

fst_start_date time_t out The time when the target job transition to the RUNNING state
occurred for the first time is stored.

sum_runa_time uinté4 _t out The cumulative time of the RUNNING-A state of the target
job (seconds, rounded up to the nearest whole digit) is stored.

sum_run_time uinté4_t out The cumulative time of the RUNNING state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_hold_time uinté4 t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

sum_wait_time uint64_t out The cumulative wait time of the target job is stored.

mem_Imt uint64_t out The memory amount limit value of the job in the node of the
target job (bytes) is stored.

mem_job_alloc uint64_t out The memory amount allocated in the node of the target job
(bytes) is stored.

prc_cputm_Imt uinté4_t out The limit value of CPU use time of the target job by process
(seconds) is stored.

prc_corefile_Imt uinté4_t out The limit value of the core file size of the target job by process
(bytes) is stored.

prc_cre_proc_Imt uinté4_t out The limit value of the number of user processes of the target
job by process is stored.

prc_data_Imt uint64_t out The limit value of the data segment of the target job by
process is stored.

prc_locked_mem_Imt uinté4_t out The limit value of the locked memory of the target job by
process is stored.

prc_psx_msqg_que_Imt uint64_t out The limit value of the POSIX message queue of the target job
by process is stored.

prc_openfiles_Imt uint64_t out The limit value of the file descriptor of the target job by
process is stored.

prc_pndng_sgnl_Imt uint64_t out The limit value of the number of signal of the target job by
process is stored.

prc_prmfl_Imt uint64_t out The limit value of the file size of the target job by process is
stored.

prc_stack_Imt uinté4_t out The limit value of the stack segment of the target job by
process is stored.

prc_vmem_Imt uint64_t out The limit value of the virtual memory size of the target job by
process is stored.

max_used_mem uint64_t out The maximum memory usage of the target job is stored.

usctmut uint64_t out The total user CPU time and total system CPU time of the
target job (seconds) are stored.

snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.

pjdel_date time_t out The job deletion request time of the target job is stored.

delete_date time_t out The job deletion time of the target job is stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

fsname[64] char[] out The file system name of the target job is stored.

-26 -

Member Type Input- Description
Output
appname[64] char[] out The application name of the target job is stored.
prologue_start_date time_t out The prologue start time in the compute node of the target job
is stored.
runp_date time_t out The time of the transition of the state of the PIM of the target
job to RUNNING_P is stored.
epilogue_start_date time_t out The epilogue start time in the compute node of the target job
is stored.
rune_date time_t out The time of the transition of the state of the PJM of the target
job to RUNNING_E is stored.
prologue_end_date time_t out The prologue end time in the compute node of the target job
is stored.
epilogue_end_date time_t out The epilogue end time in the compute node of the target job is
stored.
pack_policy uint64_t out The virtual node policy of the target job is stored.
The value is as follows.
0: PACK
1: UNPACK
2: Absolutely PACK
3: Absolutely UNPACK
exec_policy uinté4_t out The execution mode policy of the target job is stored.
The value is as follows.
0: SHARE
1: SIMPLEX
sum_vm_job_use uinté4_t out The total memory amount of the target job by virtual node
(bytes) is stored.
sum_usr_cputm uinté4 t out The total user CPU use time is stored.
sum_sys_cputm uint64_t out The total system CPU use time is stored.
mem_job_prealloc uint64_t out The allocated memory amount of the target job is stored.
curdir_ofs off t out The offset to the character string, in which the job submission
directory set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* curdir = (char*) PIMAPI_OFF_TO_PTR(curdir_ofs)
mail_ofs off_t out The offset to the character string, in which the mail address set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* mail = (char*) PIMAPI_OFF_TO_PTR (mail_ofs)
shell_ofs off t out The offset to the character string, in which the shell script set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* shell = (char*) PIMAPI_OFF_TO_PTR(shell_ofs)
comment_ofs off t out The offset to the character string, in which the comment set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.

-27 -

Member Type Input- Description
Output

char* comment = (char*)
PJMAPI_OFF_TO_PTR(comment_ofs)

stdout_ofs off_t out The offset to the character string, in which the path of the
standard output file set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* stdout = (char*) PIMAPI_OFF_TO_PTR(stdout_ofs)

stderr_ofs off_t out The offset to the character string, in which the path of the
standard error output file set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* stderr = (char*) PIMAPI_OFF_TO_PTR (stderr_ofs)

job_acct_ofs off_t out The offset to the character string, in which the path of the job
statistical information file set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
char* job_acct= (char*)
PIMAPI_OFF_TO_PTR(job_acct_ofs)

ndlist_ofs off_t out The offset to the character string, in which the node 1D list set
for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
int nolist= (int *) PIMAPI_OFF_TO_PTR(ndlist_ofs)

tofulist_ofs off t out The offset to the character string, in which the Tofu
coordinate list set for the job is stored, is stored.
The following expression can be used to obtain the pointer to
the character string.
tofu_3d_t tofulist= (tofu_3d_t *)
PIMAPI_OFF_TO_PTR(tofulist_ofs)
(*1) The Tofu coordinates are stored in the structure of the
Tofu coordinates. For details, see (*1) indicated outside of
this table.

sd_ofs off_t out The offset to the dependence relation expression structure, in
which the dependence relation expression information set for
the job is stored, is stored. (*2)
The following expression can be used to obtain the pointer to
the relevant structure.
pjmapi_sd_t* sd = (sd_t*) PIMAPI_OFF_TO_PTR(sd_ofs)

req_mpi_static_proc int32_t out The number of requested MPI static processes set for the job
is stored.

req_mpi_proc int32_t out The number of requested MPI processes set for the job is
stored.

alloc_mpi_static_proc int32_t out The number of allocated MPI static processes set for the job
is stored.

alloc_mpi_proc int32_t out The number of allocated MPI processes set for the job is
stored.

numa_policy uinté4_t out The NUMA policy set for the job is stored.
The value to be set is as follows.
0: PACK
1: UNPACK

-28 -

Member

Type

Input-
Output

Description

start_blkno

uint32_t

out

The bulk start number set for the job is stored.

end_blkno

uint32_t

out

The bulk end number set for the job is stored.

affected_nid

uint32_t

out

The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode

uint32_t

out

The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

predel_rmexit_exitcode

uint32_t

out

The end code of the predel exit of the target job is stored.
The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

postfree_rmexit_exitcode

uint32_t

out

The end code of the postfree exit of the target job is stored.
The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

prealloc_start_time

uint64_t

out

The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time

uinté4_t

out

The time of the end of the prealloc exit of the target job is
stored.

predel_start_time

uint64_t

out

The time of the start of the predel exit of the target job is
stored.

predel_end_time

uint64_t

out

The time of the end of the predel exit of the target job is stored.

postfree_start_time

uinté4 _t

out

The time of the start of the postfree exit of the target job is
stored.

postfree_end_time

uint64_t

out

The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind

uint8_t

out

The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

1: Job start timing

-29-

Member

Type

Input-
Output

Description

predel_exec_kind

uint8_t

out

The predel exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

3: pjdel command execution timing

4: pjhold command execution timing

5: Timing of a deletion request from the job manager function
or job scheduler function

6: Timing of a compute node error

7: Timing when the CPU time is exceeded

8: Timing when the elapsed time is exceeded

9: Timing when the memory use amount exceeded

postfree_exec_kind

uint8 t

out

The postfree exit execution timing of the target job is stored.

The value to be set is as follows.

0: Not executed
2: Job end timing

backfill_flg

uint8_t

out

The flag of a backfilled job

last_sched_date

struct timespec

out

The scheduling start time of the target job is stored.

pjsub_option_flg

uint64_t

out

The options specified for the pjsub command are stored as

flags.

The stored values are as follows.

0x0000000000000001

0x0000000000000002:
0x0000000000000004:
0x0000000000000080:
0x0000000000000200:
0x0000000000000800:
0x0000000000001000:
0x0000000000008000:
0x0000000000010000:
0x0000000000020000:
0x0000000000040000:
0x0000000000080000:
0x0000000000100000:
0x0000000000400000:
0x0000000001000000:
0x0000000004000000:

0x0000000020000000

0x0000000040000000:
0x0000000080000000:
0x0000000100000000:
0x0000000400000000:
0x0000000800000000:

0x0000001000000000

0x0000200000000000:
0x0000400000000000:
0x0000800000000000:
0x0001000000000000:
0x0020000000000000:
0x0040000000000000:
0x0080000000000000:
0x0100000000000000:

0x0200000000000000

0x0400000000000000:

o --at

--bulk
--dir-prefix
--comment
-e

--gid
--gname
--interact
i
--rsc-list
-m
--mail-list
--mpi
--name
--norestart
-0

Y
--restart

-S

-S
--sparam
--spath

: --step
--vset

--reason
--fs

--appname
-P--vn-policy

: -P--exec-policy
-P

-30-

Member

Type

Input-
Output

Description

pjsub_option_exflg

uint64_t

out

The options specified for the pjsub command are stored as

flags.

The stored values are as follows.
0x0000000000000001:--net-route dynamic

pjsub_L_arg_flg

uinté4 t

out

The options specified for the pjsub command are stored as

flags.

The stored values are as follows.

0x0000000000000001

0x0000000000000004:
0x0000000000000008:
0x0000000000000020:
0x0000000000000040:
0x0000000000000100:
0x0000000000000200
0x0000000000000400:
0x0000000000000800:
0x0000000000001000
0x0000000000002000:
0x0000000000004000:
0x0000000000008000
0x0000000000010000:
0x0000000000020000:
0x0000000000040000:
0x0000000000800000:

node
elapse
node-mem
rscunit
rscgrp
proc-core

: proc-cpu

proc-crproc
proc-data

: proc-lockm

proc-msgq
proc-openfd

: proc-psig

proc-filesz
proc-stack
proc-vmem
extended resource

pjsub_mpi_arg_flg

uint64_t

out

The arguments specified for the --mpi option of the pjsub
command are set as flags and stored.
The stored values are as follows.

0x0000000000000001:
0x0000000000000002:
0x0000000000000004:
0x0000000000000008:
0x0000000000000010:
0x0000000000000020:

shape

proc
rank-map-bynode
rank-map-bychip
rank-map-hostfile
assign-online-node

pjsub_step_arg_flg

uinté4 t

out

The arguments specified for the -- step option of the pjsub
command are set as flags and stored.

The stored values are as follows.

0x0000000000000001: jid

0x0000000000000002: sd

0x0000000000000004: sn

0x0000000000000008: send

0x0000000000000010: jnam

pjsub_P_arg_flg

uint64_t

out

The arguments specified for the -P option of the pjsub
command are set as flags and stored.

The stored values are as follows.
0x0000000000000001: vn-policy
0x0000000000000002: exec-policy

last_suspended_date

time_t

out

It is used for future extension.

last_resumed_date

time_t

out

It is used for future extension.

sum_suspend_time

uinté4_t

out

It is used for future extension.

total_suspended_count

uint32_t

out

It is used for future extension.

-31-

Member

Type

Input-
Output

Description

elapsed_time_mode

uint8_t

out

The specification method of the elapsed time of the target job
The following values are stored.
PJM_ELAPSED_TIME_MODE_ADAPTIVE:
Specification method for when the elapsed time limit values
are specified as a range
PJM_ELAPSED_TIME_MODE_FIXED: Specification
method for when the elapsed time limit values are not
specified as a range

adaptive_elapsed_time_min

uinté4 _t

out

The minimum elapsed time value of a job for which the target
elapsed time limit values are specified as a range is stored.
If the elapsed time limit values are not specified as a range, 0
is set.

adaptive_elapsed_time_max

uint64_t

out

The maximum elapse time value of a job for which the target
elapsed time limit values are specified as a range is stored.
If the elapsed time limit values are not specified as a range, 0
is set.

job_env_boot_time

uinté4 t

out

The time taken for the boot processing of the job execution
environment is stored.

job_env_shutdown_time

uint64_t

out

The time taken for the shutdown processing of the job
execution environment is stored.

fj_profiler

inté4_t

out

The number of times of Fujitsu profiler use by the target job
is stored.

req_cstmrsc_ofs

off t

out

The offset to the requested custom resource information
(Pjmapi_req_cstmrsc_t) is stored.

The following expression can be used to obtain the pointer to
the requested custom resource information.
Pjmapi_req_cstmrsc_t* req_cstm_p =
(Pjmapi_reg_cstmrsc_t *)
PIJIMAPI_OFF_TO_PTR(req_cstmrsc_ofs)

If the requested custom resource information does not exist, 0
is stored.

supplementary_info_ofs

off_t

out

The offset to the additional information (char) is stored.
The following expression can be used to obtain the pointer to
the additional information.

char* buff_supliinfo_p = (char *)
PIMAPI_OFF_TO_PTR(supplementary_info_ofs)

If the additional information does not exist, 0 is stored.

total_node_down_time

time_t

out

For extension

arch_info[16]

char[]

out

The character string indicating a machine type is stored.

hw_info_ofs

off t

out

-32-

The offset to the hardware specific information is stored.
The following expression can be used to obtain the pointer to
the hardware specific information by machine type.

For machine type FX:

Pjmapi_info_hwspecific_fx_t *hw_fx_info_p =
(Pjmapi_info_hwspecific_fx_t*)
PIMAPI_OFF_TO_PTR(hw_info_ofs)

If the hardware specific information does not exist, 0 is
stored.

For machine type PG:

Pjmapi_info_hwspecific_pcc_t *hw_pcc_info_p =
(Pjmapi_info_hwspecific_pcc_t*)

Member

Type

Input-
Output

Description

PIMAPI_OFF_TO_PTR(hw_info_ofs)
If the hardware specific information does not exist, 0 is
stored.

endcode_type

int

out

The end code type of a dependence relation expression is
stored.

Either one of the following values is set.
PJM_SD_ENDCODE_TYPE_EC: The end status of the
shell is used for dependence judgment.
PJM_SD_ENDCODE_TYPE_PC: The PJM code is used for
dependence judgment.

form_type

int

out

A dependence relation expression is stored.
Any one of the following values is set.
PIM_SD_FORM_TYPE_EQ: = form_value
PIM_SD_FORM_TYPE_NE: != form_value
PJM_SD_FORM_TYPE_GT: > form_value
PJM_SD_FORM_TYPE_LT: < form_value
PJM_SD_FORM_TYPE_GE: >= form_value
PJM_SD_FORM_TYPE_LE: <=form_value

form_value_num

int

out

The value of dependence relation expression is stored.

deletetype

int

out

A deletion method of a dependence relation expression is
stored.

Any one of the following values is set.
PIM_SD_DELTYPE_ONE: Only the relevant sub job is
deleted.

PJM_SD_DELTYPE_AFTER: The relevant sub job and
subsequent dependent sub jobs are deleted.
PIM_SD_DELTYPE_ALL: All the sub jobs are deleted.

to_steno_num

int

out

The number of step numbers on which the job is dependent is
stored.

form_value_ofs

off t

out

The offset to the value of the dependence relation expression
is stored.

The following expression can be used to obtain the pointer.
i int form_value[] = (int*)
PJIMAPI_OFF_TO_PTR(form_value_ofs)

to_stepno_ofs

off_t

out

The offset to the step number on which the job is dependent is
stored.

The following expression can be used to obtain the pointer.
int to_stepnol[] = (int*)
PIMAPI_OFF_TO_PTR(to_stepno_ofs)

next_ofs

off t

out

The offset to the next custom resource information
(Pjmapi_req_cstmrsc_t) is stored.

If the next custom resource information does not exist, 0 is
stored.

name[PIM_MAX_CSTM_

NAME_LEN]

char[]

out

The custom resource name is stored.

cstmrsc_info

Pjmapi_cstmrsc_
info_t

out

The requested amount or requested type of the custom
resource information is stored.

is_pernode

uint8_t

out

If the custom resource is a resource by node, 1 is set.
If the custom resource is not a resource by node, 0 is set.

-33-

Member Type Input- Description
Output
value_type uint8_t out The value type of the custom resource (value that can be
specified by pjmapi_cstmrsc_value_type_t)
Either numeric specification
(PIM_CSTMRSC_VALUE_TYPE_NUMERIC) or type
specification(PJIM_CSTMRSC_VALUE_TYPE_STRING)
is stored.
value_rsc union out The requested amount or requested type of the custom
resource information is stored.
num_value inté4_t out The requested amount of the custom resource information is
set.
string_value[PIM_MAX_ char[] out The type of the custom resource information is set.
CSTM_NAME_LEN]
tofu_user_comm_recv_byte uint64_t out The receive data size used for user level communication of
the target job via the Tofu interconnect (bytes) is stored.
tofu_user_comm_send_byte uint64_t out The send data size used for user level communication of the
target job via the Tofu interconnect (bytes) is stored.
tofu_sys_comm_rsv_byte uint64_t out The receive data size used for system communication of the
target job via the Tofu interconnect (bytes) is stored.
tofu_sys_comm_send_byte uint64_t out The send data size used for system communication of the
target job via the Tofu interconnect (bytes) is stored.
sum_alloc_assistcpunum uint32_t out The number of allocated assistant cores set for the job is
stored.
sum_used_assistcpunum uint32_t out The number of used assistant cores set for the job is stored.
sum_usr_assistcputm uinté4 t out The total CPU use time of users of the assistant cores set for
the job is stored.
sum_sys_assistcputm uint64_t out The total CPU use time of the system of the assistant cores set
for the job is stored.
sum_used_assistant_core_ uinté4 t out The maximum use amount of the memory used by the
max_mem assistant cores of the target job (bytes) is stored.
sector_cache_using_ uint64_t out The number of times when programs that use the sector cache
program_count of the target job are started is stored.
intra_node_barrier_using_ uint64_t out The number of times when programs that use the chip internal
program_count barrier of the target job are started is stored.
power_consumption Pjmapi_job_power_ out The power consumption-related information is stored.
consumption_t
reserved_param Pjmapi_reserved_ out It is used for future extension.
param_t
reserved_info Pjmapi_reserved_ out It is used for future extension.
info_t
power_consumption Pjmapi_job_power_ out Power consumption-related information of the PC cluster is
consumption_pcc_t stored.
power_consumption_state uintl6_t out The acquisition status of power information of the target job
is stored as a value of logical addition flags.
The value is as follows.
0x0: The obtained information does not include nodes
affected by node-sharing jobs.
0x1: The obtained information includes nodes affected by

-34-

Member Type Input- Description
Output
node-sharing jobs.
0x2: There are nodes whose information failed to be obtained.
0x4: Since there are preceding jobs, information of some
nodes was not obtained.
utilization_info_of_power_api uint8_t out Whether the target job uses the Power API and whether the
power knob is operated are stored with the corresponding bits
set on or off.
The value is as follows.
0b00(0): The API is not used and the knob is not operated.
0b01(1): The API is used and the knob is not operated.
0b03(3): The API is used and the knob is operated.
num_cmg uint32_t out The number of CMGs of the target job is stored.
cmgs_ofs off_t out The offset to the power consumption structure by CMG is
stored.
The following expression can be used to obtain the pointer to
the power consumption structure by CMG.
Pjmapi_cmg_power_consumption_t *cmgs_p
=(Pjmapi_cmg_power_consumption_t
*)PIMAPI_OFF_TO_PTR(cmgs_ofs)
ideal_cpu_peripherals Pjmapi_power_ out Peripheral power consumption information in the CPU
consumption_t (estimation) is stored.
ideal_opticalmodule Pjmapi_power_ out Optical module power consumption information (estimation)
consumption_t is stored.
ideal_tofu Pjmapi_power_ out Tofu power consumption information (estimation) is stored.
consumption_t
ideal_pcie Pjmapi_power_ out PCI-E power consumption information (estimation) is stored.
consumption_t
ideal_node Pjmapi_power_ out Node power consumption information (estimation) is stored.
consumption_t
measured_node Pjmapi_power_ out Node power consumption information (result) is stored.
consumption_t
measure_start_date struct timespec out The power measurement start time is stored.
measure_end_date struct timespec out The power measurement end time is stored.
num_pkg uint32_t out The number of packages of the target job is stored.
pkgs_ofs off t out The offset to the power consumption structure by package is
stored.
cmgno int32_t out The CMG number is stored.
ideal_core Pjmapi_power_ out The compute core power consumption information by CMG
consumption_t (estimation) is stored.
ideal_I2cache Pjmapi_power_ out The L2 cache power consumption information by CMG
consumption_t (estimation) is stored.
ideal_mem Pjmapi_power_ out The memory power consumption information by CMG
consumption_t (estimation) is stored.
pkgno int32_t out Package number is stored.
cpu Pjmapi_power_ out The CPU power consumption information by package is
consumption_t stored.

-35-

Member Type Input- Description
Output
mem Pjmapi_power_ out The memory power consumption information by package is
consumption_t stored.
ppO0 Pjmapi_power_ out The pp0 power consumption information by package is
consumption_t stored.
avg_power double out The average power consumption of the target power items is
stored.
max_power double out The maximum power consumption of the target power items
is stored.
min_power double out The minimum power consumption of the target power items
is stored.
energy double out The power consumption amount of the target power items is
stored.
*1)
The structure of Tofu coordinates is as follows.
typedef struct tofu_3d{
unsi gned i nt X;
unsi gned i nt y;
unsi gned i nt z;
unsi gned i nt pad;
} tofu_3d_t;
Table E.4 Members of Tofu coordinate Structure
Member Type Input- Description
Output
X unsigned int out A Tofu x coordinate is stored.
y unsigned int out A Tofu y coordinate is stored.
z unsigned int out A Tofu z coordinate is stored.

(*2)

The offset to the dependence relation expression structure, in which the dependence relation expression information set for the job is stored,
is stored in the argument off_t sd_ofs. However, for a step job, the dependence relation expressions, expression values that can be specified
for dependence relation expressions, and the number of dependent jobs are variable. Information of a step job is accessed using the offset.
The following example has two dependence relation expressions. The first dependence relation expression has two values and one
dependent job. The second dependence relation expression has one value and two dependent jobs.

-36-

Figure E.1 Structure Example of a Dependence Relation Expression

Pimapi_info_job t

Pimapi_sd t

form_value_num 1

1o stepno num 2
form value ofs
Pjmapi_sd t

: [form_value_num 2
31 form_value_ofs

to Stepno num 1
form value ofs

~form value |

form value | :
to_step num_______ -
to) step_num__ | ;
[to_step_num Jomrrm e

(*3) The member reservedr is for future expansion.

E.1.2 Notification Structure of Change to the ACCEPT State
(PJM_CHANGE_ACCEPT)

The function PJM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_ACCEPT. The
following is the notification structure of change to the ACCEPT state of the job reported by the argument data_p of the function

PJM_read_data().

typedef struct Pjnmapi_change_accept {
uint16_t j ob_nodel
uint16_t job_flags
ui nt 32_t job_type
ui nt 32_t jobid
ui nt32_t bl kno
uint32_t st epno
uint32_t pad2
time_t create_date;

} Pj mapi _change_accept _t;

/*
/*
/*
| *
| *
/*

/*

Job node
Job addit
Job type
Job ID */

*/
i onal
*/

Bul k nunber */
Step nunber */

Job submi ssion tine */

information */

Table E.5 Members of Notification Structure of Change to the ACCEPT State PJM CHANGE ACCEPT

-37-

Member Type Input- Description
Output
job_model uintl6_t out The bit indicated by any one of the following macros is set
according to the job model.

Member Type Input- Description
Output

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PIM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

create_date time_t out The time when the target job was submitted (execution time
of the pjsub command) is stored.

E.1.3 Notification Structure of Change to the QUEUED State

(PIM_CHANGE_QUEUED)

The function PIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_QUEUED. The
following is the notification structure of change to the QUEUED state of the job reported by the argument data_p of the function

PJM_read_data().

typedef struct Pjmapi_change_queued {
uint16_t j ob_nodel ;
uint16_t job_fl ags;
uint16_t numretry;
intl6_t pre_j obst at us;
ui nt 32_t j ob_type;
ui nt 32_t j obi d;
ui nt 32_t bl kno;
ui nt32_t st epno;
i nt subj ob_num
ui nt pro_exit_code;
time_t que_dat e;
ui nt 64_t sumruna_ti me;
ui nt 64_t sum hol d_ti me;
time_t pr ol ogue_end_dat e;
time_t al | _prec_subjob_exit_date;
ui nt 32_t af fected_nid;
ui nt32_t preal | oc_rmexit_exitcode;
ui nt 32_t predel _rmexit_exitcode;
ui nt 32_t postfree_rnexit_exitcode;
ui nt 64 _t preal loc_start_tine;
ui nt 64 _t preal l oc_end_ti ne;
ui nt 64 _t predel _start _tinme;
ui nt 64_t predel _end_ti ne;
ui nt 64_t postfree_start_tine;
ui nt 64_t postfree_end_tine;
uint8_t preal | oc_exec_ki nd;
uint8_t predel _exec_ki nd;
uint8_t postfree_exec_kind;
uint8_t padl[5] ;

} Pj mapi _change_queued_t;

/* Job nodel */
/* Job additional
/* Retry count */
/* Previous job status */

/* Job type */

/* Job ID */

/* Bul k number */

/* Step nunber */

/* Nurber of sub jobs */

/* Prol ogue exit code */

/* Time of QUEUED transition */

/* Cumul ative RUNNING A tine (seconds) */
/* Cumul ative HOLD tine (seconds) */

/* Prologue end time */

/* Preceding sub job end tine */

/* Node ID that affected job result */
/* prealloc exit end code */

/* predel exit end code */

/* postfree exit end code */

/* prealloc exit start time */

/* prealloc exit end time */

/* predel exit start time */

/* predel exit end tine */

/* postfree exit start time */

/* postfree exit end time */

/* prealloc exit execution timng */

/* predel exit execution timng */

/* postfree exit execution timng */

informati on */

-38-

Table E.6 Members of Notification Structure of Change to the QUEUED State

Member Type Input- Description
Output
job_model uintl6_t out The bit indicated by any one of the following macros is set

according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.

PIM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uintl6_t out The retry count of the target job is stored.

pre_jobstatus intl6_t out The previous status of the target job before the current status
is stored.

job_type uint32_t out The job type of the target job is stored.

The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

subjob_num int out The number of the sub jobs of the target job is stored.

pro_exit_code uint out The end code of the prologue script of the target job is
stored.

que_date time_t out The time of the transition of the target job to QUEUED is
stored.

sum_runa_time uinté4 _t out The cumulative time of the RUNNING-A state of the target
job (seconds, rounded up to the nearest whole digit) is
stored.

sum_hold_time uinté4_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job
is stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.

-39-

Member

Type

Input-
Output

Description

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

postfree_rmexit_exitcode

uint32_t

out

The end code of the postfree exit of the target job is stored.
The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

prealloc_start_time

uint64_t

out

The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time

uinté4 _t

out

The time of the end of the prealloc exit of the target job is
stored.

predel_start_time

uint64_t

out

The time of the start of the predel exit of the target job is
stored.

predel_end_time

uinté4 _t

out

The time of the end of the predel exit of the target job is
stored.

postfree_start_time

uint64_t

out

The time of the start of the postfree exit of the target job is
stored.

postfree_end_time

uinté4_t

out

The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind

uint8_t

out

The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

1: Job start timing

predel_exec_kind

uint8_t

out

The predel exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

3: pjdel command execution timing

4: pjhold command execution timing

5: Timing of a deletion request from the job manager
function or job scheduler function

6: Timing of a compute node error

7: Timing when the CPU time is exceeded

8: Timing when the elapsed time is exceeded

9: Timing when the memory use amount exceeded

postfree_exec_kind

uint8 t

out

The postfree exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

2: Job end timing

- 40 -

E.1.4 Notification Structure of Change to the RUNNING-A State
(PJM_CHANGE RUNNING A)

The function PJM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_RUNNING_A. The
following is the notification structure of change to the RUNNING-A state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_running_a {
uintl16_t j ob_nodel ; /* Job nodel */
uint16_t job_fl ags; /* Job additional information */
uint16_t numretry; /* Retry count */
intl6_t pre_j obst at us; /* Previous job status */
ui nt 32_t j ob_type; /* Job type */
ui nt32_t j obi d; /* Job ID */
ui nt32_t bl kno; /* Bul k nunber */
ui nt32_t st epno; /* Step nunber */
time_t runa_dat e; /* Time of RUNNING A transition */
time_t al | _prec_subjob_exit_date; /* Preceding sub job end tine */
ui nt 64_t sumwait_time; /* Currul ative wait tine */
ui nt node_num /* Number of allocated nodes */
ui nt node_x; /* Al ocated node shape x */
ui nt node_y; /* Al ocated node shape y */
ui nt node_z; /* Al ocated node shape z */
ui nt 32_t vn_cpu_req; /* Requested number of CPU cores
by virtual node */
uint32_t num al | oc_vnode; /* Number of allocated virtual nodes */
ui nt sum cpu_preal | oc_num /* Total nunber of scheduler allocation CPUs */
ui nt pad2;
time_t sched_dat e; /* Job execution start time */
ui nt 64_t mem j ob_preall oc; /* Schedul er allocation menory anount */
struct timespec | ast _sched_dat e; /* Scheduling start time */
uint8_t backfill _flg; /* Backfill flag */
} Pj mapi _change_running_a_t;

Table E.7 Members of Notification Structure of Change to the RUNNING-A State

Member Type Input- Description
Output
job_maodel uintl6 _t out The bit indicated by any one of the following macros is set

according to the job model.

PIJIM_JOBMODEL_NORMAL: Normal job
PIJIM_JOBMODEL_BULK: Bulk job
PIM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uint16_t out The retry count of the target job is stored.

pre_jobstatus intl6 _t out The previous status of the target job before the current status
is stored.

job_type uint32_t out The job type of the target job is stored.

The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.
blkno uint32_t out The bulk number of the target job is stored.
stepno uint32_t out The step number of the target job is stored.

-41-

Member Type Input- Description
Output

runa_date time_t out The time of the transition of the target job to RUNNING-A
is stored.

all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.

sum_wait_time uinté4_t out The cumulative wait time of the target job is stored.

node_num uint out The number of the allocated nodes of the target job is stored.

node_x uint out The allocated shape of the target job is stored.

node_y uint

node_z uint

vn_cpu_req uint32_t out The number of allocated cores of the target job by virtual
node is stored.

num_alloc_vnode uint32_t out The number of allocated virtual nodes of the target job is
stored.

sum_cpu_prealloc_num uint out The total number of CPUs allocated by the scheduler
function is stored.

sched_date time_t out The job execution start time of the target job is stored.

mem_job_prealloc uinté4_t out The allocated memory amount of the target job is stored.

last_sched_date struct timespec out The scheduling start time of the target job is stored.

backfill_flg uint8_t out The flag of a backfilled job

E.1.5 Notification Structure of Change to the RUNNING State
(PIJIM_CHANGE_RUNNING)

The function PIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_RUNNING. The
following is the notification structure of change to the RUNNING state of the job reported by the argument data_p of the function

PJM_read_data().

typedef struct Pjmapi_change_running {
uint16_t j ob_nodel ; /*
uint16_t job_flags; /*
uint16_t numretry; /*
intl6_t pre_j obst at us; /*
ui nt 32_t j ob_type; /*
ui nt 32_t j obi d; I *
uint32_t bl kno; /*
uint32_t st epno; /*
int run_count; /*
ui nt pro_exit_code; /*
time_t start_date; /*
time_t run_dat e; /*
time_t fst_start_date; /*
ui nt 64_t sumruna_time; /*
time_t prol ogue_end_date; /*

} Pj mapi _change_running_t;

Job nodel */

Job addi tional
Retry count */
Previous job status */

Job type */
Job ID */

Bul k nunber
Step nunber
RERUN count
Prol ogue exit

Job start time */

Tinme of RUNNING transition */

job execution start tine */
Cunmul ati ve RUNNING A tine (seconds) */
Prol ogue end tine */

Initial

*/
*/
*/

informati on */

code */

Table E.8 Members of Notification Structure of Change to the RUNNING State

-42-

Member Type Input- Description
Output
job_maodel uintl6_t out The bit indicated by any one of the following macros is set
according to the job model.

Member Type Input- Description
Output

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uintl6_t out The retry count of the target job is stored.

pre_jobstatus intl6_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

run_count int out The number of times when the target job is re-executed is stored.

pro_exit_code uint out The end code of the prologue script of the target job is stored.

start_date time_t out The job start time of the target job is stored.

run_date time_t out The time of the transition of the target job to RUNNING is
stored.

fst_start_date time_t out The time when the target job transition to the RUNNING state
occurred for the first time is stored.

sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.

E.1.6 Notification Structure of Change to the RUNOUT State

(PIJM_CHANGE_RUNOUT)

The function PJM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_RUNOUT. The
following is the notification structure of change to the RUNOUT state of the job reported by the argument data_p of the function

PJM_read_data().

typedef struct Pjnmapi_change_runout {
uint16_t j ob_nodel ;
uint16_t job_flags;
uint16_t numretry;
intl16_t pre_j obst at us
ui nt32_t job_type
uint32_t j obi d;
uint32_t bl kno
ui nt32_t st epno;
ui nt exit_code
ui nt used_nodenum
int32_t si gnal _no
int pj m code;
ui nt unavai | abl e_nodenum

/* Job nodel */
/* Job additional
/* Retry count */

information */

/* Previous job status */

/* Job type */

/* Job ID */

/* Bul k nunber */
/* Step nunber */

/* exitcode of the user script */
/* Number of nodes used */
/* Signal nunber of the user script */

/* PJM code */

/* Nunber of unavail abl e nodes */

-43-

ui nt sum cpu_al | oc_num /*
ui nt32_t used_cpunum /*
ui nt epi _exit_code; /*
ui nt 64_t sum usr_cputm /*
ui nt 64_t sum sys_cput m /*
time_t end_dat e; /*
time_t el apse; /*
time_t el apse_of f _acc; /*
char last _rscunit [PJM RSCUNAME_MAX]; /*
char last _rscgrp [PIM RSCGROUP_MAX]; [/ *
time_t runout _date; /*
ui nt 64 _t sumrun_time; /*
ui nt64_t mem j ob_al | oc; /*
ui nt 64_t max_used_nmem /*
ui nt 64_t usct nut ; /*
time_t snapshotti me; /*
time_t epi | ogue_end_dat e; /*
ui nt64_t sumvm j ob_use; /*
ui nt32_t af fected_ni d; /*
ui nt 32_t preal | oc_rnexit_exitcode; /*
uint32_t predel _rmexit_exitcode; /*
uint32_t postfree_rnexit_exitcode; /*
ui nt 64_t preal loc_start_tine; /*
ui nt 64_t preal l oc_end_tie; /*
ui nt 64_t predel _start _tinme; /*
ui nt 64_t predel _end_ti me; /*
ui nt 64_t postfree_start_tine; /*
ui nt 64 _t postfree_end_ti ne; /*
uint8_t preal | oc_exec_ki nd; /*
uint8_t predel _exec_ki nd; /*
uint8_t postfree_exec_kind; /*
uint8_t pad[5] ;

ui nt 64_t job_env_boot _time; /*
ui nt 64 _t j ob_env_shut down_ti ne; /*
int64_t fj_profiler; /*
time_t total _node_down_ti mre; /*
char arch_i nfo[16] ; /*
of f _t reqg_cstnrsc_ofs; /*
of f _t hw_i nfo_ofs; /*

} Pj mapi _change_runout _t;

Total nunber of allocated CPUs
Nunmber of CPUs used */
Epi | ogue exit code */

*/

Total user CPU tine */
Total system CPU time */
Job end tinme */

Job execution el apse tinme */
Job execution el apse tine that
to billing

Submit resource unit name */
Submit resource group nane */
Time of RUNOQUT transition */
Currul ative RUNNING time */

Al'l ocated nmenory amount */
Maxi mum nmenory use anount (byte)*/

is not subject

Total user CPU tine and total system CPU tine
(seconds) */
Data col | ection year/nonth/day */

Epi | ogue end time */

Total used menory anount by virtual
Node ID that affected job result */
prealloc exit end code */

predel exit end code */

postfree exit end code */

prealloc exit start time */
prealloc exit end time */

node */

predel exit start time */
predel exit end tine */
postfree exit start time */

postfree exit end time */
prealloc exit execution timng */
predel exit execution timng */
postfree exit execution timng */

Job execution environment boot tinme */
Job execution environnent shutdown time */
Fujitsu profiler use count */

For expansion */

Machi ne type */

Offset to customresource information

(Pj mapi _req_cstnrsc_t) */

O fset to hardware specific information */

typedef enum {
PJM_CSTMRSC_VALUE_TYPE_NUMERI C = 1,
PJM CSTMRSC_VALUE_TYPE_STRING = 2
} Pj mapi _cstnrsc_val ue_type_t;

typedef struct Pjnmapi_reqg_cstnrsc {
of f _t next _ofs; /*
char name[PIM_MAX_CSTM NAME_LEN] ;
Pj mapi _cstnrsc_info_t cstnrsc_info;

} Pjmapi _req_cstnrsc_t;

O f set where next customresource information
(Pj mapi _req_cstnmrsc_t)
/*
/* Custom resource type structure */

is stored */
Cust om resource nane */

typedef struct Pjmapi_cstnrsc_info {

pj mapi _cstnrsc_val ue_type_t)

uint8_t i s_pernode; /* \Whet her
uint8_t val ue_type; /* Val ue type of
uint8_t pad[6] ;
uni on {

int64_t num val ue;

- 44 -

Nodel D is specified, 1 if specified */

custom resource (specifiable with
*/

/* Requested anpunt of customresource */

char
} val ue_rsc;
} Pjmapi _cstmrsc_info_t;

string_val ue[PIM_MAX_CSTM NAME_LEN] ;

/* Requested type of customresource */

typedef struct Pjmapi_info_hwspecific_fx {
ui nt 64_t

tof u_user_commrecv_byte;

/*

Tofu user communi cation receive
data size (bytes) */

ui nt64_t tof u_user_comm send_byte; /* Tofu user conmunication send
data size (bytes) */

ui nt 64_t tof u_sys_commrsv_byte; /* Tofu system communi cati on receive
data size (bytes) */

ui nt 64_t tof u_sys_comm send_byte; /* Tofu system communi cati on send
data size (bytes) */

ui nt 32_t sum al | oc_assi st cpunum /* Nunber of allocated assistant cores */

ui nt32_t sum used_assi st cpunum /* Nunmber of assistant cores used */

ui nt 64_t sum usr_assi stcputm /* Total user CPU use tinme of
assi stant core */

ui nt 64_t sum sys_assi st cputm /* Total system CPU use tine of
assi stant core */

ui nt64_t sum used_assi stant _core_nax_nmem /* Maxi mum use menory anount of
assistant core */

ui nt 64_t sect or _cache_usi ng_program count; /* Start count of sector cache using
program */

ui nt 64_t i ntra_node_barrier_using_programcount; /* Count of chip internal barrier using

program */

Pj mapi _j ob_power _consunption_t power_consunpti on; /* Power consunption-rel ated
information */

Pj mapi _reserved_paramt reserved_param /* For future extension */

Pj mapi _reserved_info_t reserved_info; /* For future extension */

} Pj mapi _i nfo_hwspecific_fx_t;
typedef struct Pjmapi _i nfo_hwspecific_pcc {
Pj mapi _j ob_power _consunpti on_pcc_t power_consunption; /* PC cluster power consunption-related

} Pjmapi _i nfo_hwspecific_pcc_t;

information */

typedef struct Pjmapi_job_power_consunption {

uint16_t power _consunpti on_st at e; /* Acquisition state of power information */

uint8_t utilization_info_of_ power_api; /* Power knob use information */

uint8_t pad[1] ;

ui nt32_t num cng; /* Nurmber of CM3Zs */

of f _t cngs_of s; /* Offset to power consunption structure
by CMG */

Pj mapi _power _consunption_t ideal _cpu_peripherals; /* Peripheral power consunption
information in CPU (estimation) */

Pj mapi _power _consunption_t ideal _optical nodul e; /* Optical nodul e power consunption
information (estimation) */

Pj mapi _power _consunption_t ideal _tofu; /* Tofu power consunption information
(estimation) */

Pj mapi _power _consunption_t ideal _pcie; /* PCl-E power consunption infornation
(estimation) */

Pj mapi _power _consunption_t ideal _node; /* Node power consunption infornation
(estimation) */

Pj mapi _power _consunpti on_t measured_node; /* Node power consunption information
(result) */

struct timespec neasure_start_date; /* Power measurenent start tinme */

struct tinespec neasure_end_date; /* Power measurenment end tine */

} Pj mapi _j ob_power _consunption_t;
typedef struct Pjmapi_job_power_consunption_pcc {

uint16_t power _consunpti on_state; /* Acquisition state of power information */

ui nt8_t pad[2] ;

ui nt32_t num pkg; /* Nurmber of packages */

- 45-

of f _t pkgs_ofs;
Pj mapi _power _consunption_t measured_node;
struct tinespec neasure_start_date;

struct timespec neasure_end_date;
} Pj mapi _j ob_power _consunption_pcc_t;

/*

/*

/*
/*

O fset to power consunption structure by
package */

Node power consunption information
(result) */

Power neasurenent start tine */

Power neasurenent end tine */

typedef struct Pjmapi_cng_power_consunption {

int32_t cmgno;

uint8_t pad[4];

Pj mapi _power _consunption_t ideal _core;

Pj mapi _power _consunption_t ideal _| 2cache;

Pj mapi _power _consunption_t ideal _nem

} Pj mapi _cng_power _consunption_t;

/*

/*

/*

/*

CMG NUMBER */

Conpute core power consunption
informati on by CM5G (estimation) */
L2 cache power consunption
informati on by CMG (estinmation) */
Menory power consunption

informati on by CMG (estination) */

typedef struct Pjmapi_pkg_power_consunption {

int32_t pkgno;

uint8_t pad[4];

Pj mapi _power _consunption_t cpu;
Pj mapi _power _consunption_t nem

Pj mapi _power _consunption_t ppO;

} Pj mapi _pkg_power _consunption_t;

/*

/*

/*

/*

Package nunber */

CPU power consunption information by
package */

Menory power consunption infornmation by
package */

PPO power consunption information by
package */

typedef struct Pjmapi_power_consunption {

doubl e avg_power ;
doubl e max_power ;
doubl e m n_power ;
doubl e ener gy;

} Pj mapi _power _consunption_t;

/*
/*
/*
/*

Aver age power consunption */
Maxi mum power consunption */
M ni num power consunption */
Power consunption anount */

typedef struct Pjmapi_reserved_param {

ui nt 64_t reservedl;
ui nt64_t reserved2;
ui nt 64_t reserved3;
ui nt 64_t reserved4;
ui nt 64_t reserved5;
int32_t reservede6;
int32_t reserved7;
int32_t reserveds;
int32_t reserved9;
ui nt 64_t reservedlo;
ui nt 64_t reservedl1l;
of f _t reservedl2;
of f _t reservedl13;

} Pjmapi _reserved_paramt;

| *
/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *

For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */

typedef struct Pjnmapi_reserved_info {

struct tinespec reservedl;
struct tinespec reserved2;
struct tinespec reserved3;
struct timespec reserved4;
struct tinespec reserved5;
struct tinespec reserved6;
ui nt 64_t reserved7;
doubl e reserveds;

- 46 -

/*
/*
/*
/*
/*
/*
/*
/*

For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */

doubl e reserved9;

ui nt64_t reservedlo;
ui nt 64_t reservedll
ui nt 64_t reservedl2
ui nt 64_t reservedl3
ui nt 64_t reservedl4
ui nt 64_t reservedls;
ui nt64_t reservedlé6;
doubl e reservedl?
ui nt 64_t reservedl8
ui nt 64_t reservedl9
ui nt 64_t reserved20
ui nt 64_t reserved2l;
doubl e reserved22;
ui nt 64_t reserved23
ui nt 64_t reserved24
ui nt 64_t reserved25
ui nt 64_t reserved26

} Pjmapi _reserved_info_t;

/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *

For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */
For future extension */

Table E.9 Members of Naotification Structure of Change to the RUNOUT State

Member Type Input- Description
Output

job_model uintl6_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.
PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uintl16_t out The retry count of the target job is stored.

pre_jobstatus intl6_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

exit_code uint out The exit code of the shell script of the target job is stored.

used_nodenum uint out The number of nodes used is stored.

signal_no int32_t out The signal number of the shell script of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

unavailable_nodenum uint out The number of available nodes in the allocated scope of the
target job is stored.

sum_cpu_alloc_num uint out The total number of the allocated CPUs is stored.

used_cpunum uint32_t out The number of CPUs used by the target job is stored.

-47 -

- 48 -

Member Type Input- Description
Output

epi_exit_code uint out The end code of the epilogue script of the target job is stored.

sum_usr_cputm uinté4 t out The total user CPU use time is stored.

sum_sys_cputm uint64_t out The total system CPU use time is stored.

end_date time_t out The job end time of the target job is stored.

elapse time_t out The job elapse time of the target job is stored.

elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.

last_rscunit[PJIM_RSCUNAME char[] out The submit resource unit name of the target job is stored.

_MAX]

last_rscgrp[PIM_RSCGROUP charf] out The submit resource group name of the target job is stored.

_MAX]

runout_date time_t out The time of the transition of the target job to RUNOUT is
stored.

sum_run_time uinté4_t out The cumulative time of the RUNNING state of the target job
(seconds, rounded up to the nearest whole digit) is stored.

mem_job_alloc uint64_t out The memory amount allocated in the node of the target job
(bytes) is stored.

max_used_mem uint64_t out The maximum memory usage of the target job is stored.

usctmut uint64_t out The total user CPU time and total system CPU time of the target
job (seconds) are stored.

snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.

epilogue_end_date time_t out The prologue end time in the compute node of the target job is
stored.

sum_vm_job_use uint64_t out The total memory amount of the target job by virtual node
(bytes) is stored.

affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.

prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above

predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.

The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit

Member

Type

Input-
Output

Description

script
255: Error other than the above

postfree_rmexit_exitcode

uint32_t

out

The end code of the postfree exit of the target job is stored.
The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

prealloc_start_time

uint64_t

out

The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time

uinté4 _t

out

The time of the end of the prealloc exit of the target job is
stored.

predel_start_time

uint64_t

out

The time of the start of the predel exit of the target job is stored.

predel_end_time

uinté4 t

out

The time of the end of the predel exit of the target job is stored.

postfree_start_time

uint64_t

out

The time of the start of the postfree exit of the target job is
stored.

postfree_end_time

uinté4_t

out

The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind

uint8_t

out

The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

1: Job start timing

predel_exec_kind

uint8_t

out

The predel exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

3: pjdel command execution timing

4: pjhold command execution timing

5: Timing of a deletion request from the job manager function
or job scheduler function

6: Timing of a compute node error

7: Timing when the CPU time is exceeded

8: Timing when the elapsed time is exceeded

9: Timing when the memory use amount exceeded

postfree_exec_kind

uint8 t

out

The postfree exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

2: Job end timing

job_env_boot_time

uint64_t

out

The time taken for the boot processing of the job execution
environment is stored.

job_env_shutdown_time

uinté4 t

out

The time taken for the shutdown processing of the job
execution environment is stored.

fj_profiler

inté4_t

out

The number of times of Fujitsu profiler use by the target job is
stored.

total_node_down_time

time_t

out

For extension

arch_info[16]

char[]

out

The character string indicating a machine type is stored.

-49-

Member

Type

Input-
Output

Description

req_cstmrsc_ofs

off_t

out

The offset to the requested custom resource information
(Pjmapi_req_cstmrsc_t) is stored.

The following expression can be used to obtain the pointer to
the requested custom resource information.
Pjmapi_req_cstmrsc_t* req_cstm_p = (Pjmapi_req_cstmrsc_t
*) PIMAPI_OFF_TO_PTR(req_cstmrsc_ofs)

If the requested custom resource information does not exist, 0
is stored.

hw_info_ofs

off t

out

The offset to the hardware specific information is stored.

The following expression can be used to obtain the pointer to
the hardware specific information by machine type.

For machine type FX:

Pjmapi_info_hwspecific_fx_t *hw_fx_info_p =
(Pjmapi_info_hwspecific_fx_t*)
PIMAPI_OFF_TO_PTR(hw_info_ofs)

If the hardware specific information does not exist, 0 is stored.
For machine type PG:

Pjmapi_info_hwspecific_pcc_t *hw_pcc_info_p =
(Pjmapi_info_hwspecific_pcc_t*)
PIMAPI_OFF_TO_PTR(hw_info_ofs)

If the hardware specific information does not exist, 0 is stored.

next_ofs

off_t

out

The offset to the next custom resource information
(Pjmapi_reqg_cstmrsc_t) is stored.

If the next custom resource information does not exist, 0 is
stored.

name[PIM_MAX_CSTM_
NAME_LEN]

char[]

out

The custom resource name is stored.

cstmrsc_info

Pjmapi_cstmrsc_
info_t

out

The requested amount or requested type of the custom resource
information is stored.

is_pernode

uint8_t

out

If the custom resource is a resource by node, 1 is set.
If the custom resource is not a resource by node, O is set.

value_type

uint8_t

out

The value type of the custom resource (value that can be
specified by pjmapi_cstmrsc_value_type_t)

Either numeric specification
(PIM_CSTMRSC_VALUE_TYPE_NUMERIC) or type
specification(PJIM_CSTMRSC_VALUE_TYPE_STRING) is
stored.

value_rsc

union

out

The requested amount or requested type of the custom resource
information is stored.

num_value

inté4 _t

out

The requested amount of the custom resource information is
set.

string_value[PIM_MAX_CSTM
_NAME_LEN]

char[]

out

The requested amount of the custom resource information is
set.

tofu_user_comm_recv_byte

uinté4 t

out

The receive data size used for user level communication of the
target job via the Tofu interconnect (bytes) is stored.

tofu_user_comm_send_hyte

uint64_t

out

The send data size used for user level communication of the
target job via the Tofu interconnect (bytes) is stored.

tofu_sys_comm_rsv_byte

uinté4 _t

out

The receive data size used for system communication of the
target job via the Tofu interconnect (bytes) is stored.

-50 -

Member Type Input- Description
Output
tofu_sys_comm_send_byte uinté4_t out The send data size used for system communication of the target
job via the Tofu interconnect (bytes) is stored.
sum_alloc_assistcpunum uint32_t out The number of allocated assistant cores set for the job is stored.
sum_used_assistcpunum uint32_t out The number of used assistant cores set for the job is stored.
sum_usr_assistcputm uint64_t out The total CPU use time of the system of the assistant cores set
for the job is stored.
sum_sys_assistcputm uint64_t out The total CPU use time of the system of the assistant cores set
for the job is stored.
sum_used_assistant_core_ uint64_t out The maximum use amount of the memory used by the assistant
max_mem cores of the target job (bytes) is stored.
sector_cache_using_program_ uint64_t out The number of times when programs that use the sector cache
count of the target job are started is stored.
intra_node_barrier_using_ uinté4_t out The number of times when programs that use the chip internal
program_count barrier of the target job are started is stored.
power_consumption Pjmapi_job_power out The power consumption-related information is stored.
_consumption_t
reserved_param Pjmapi_reserved_ out It is used for future extension.
param_t
reserved_info Pjmapi_reserved_ out It is used for future extension.
info_t
power_consumption Pjmapi_job_power_ | out Power consumption-related information of the PC cluster is
consumption_pcc_t stored.
power_consumption_state uintl6_t out The acquisition status of power information of the target job is
stored as a value of logical addition flags.
The value is as follows.
0x0: The obtained information does not include nodes affected
by node-sharing jobs.
0x1: The obtained information includes nodes affected by
node-sharing jobs.
0x2: There are nodes whose information failed to be obtained.
0x4: Since there are preceding jobs, information of some nodes
was not obtained.
utilization_info_of_power_api uint8_t out Whether the target job uses the Power APl and whether the
power knob is operated are stored with the corresponding bits
set on or off.
The value is as follows.
0b00(0): The API is not used and the knob is not operated.
0b01(1): The API is used and the knob is not operated.
0b03(3): The API is used and the knob is operated.
num_cmg uint32_t out The number of CMGs of the target job is stored.
cmgs_ofs off _t out The offset to the power consumption structure by CMG is

stored.

The following expression can be used to obtain the pointer to
the power consumption structure by CMG.
Pjmapi_cmg_power_consumption_t *cmgs_p
=(Pjmapi_cmg_power_consumption_t
*)PIMAPI_OFF_TO_PTR(cmgs_ofs)

-51-

Member Type Input- Description
Output
ideal_cpu_peripherals Pjmapi_power_ out Peripheral power consumption information in the CPU
consumption_t (estimation) is stored.
ideal_opticalmodule Pjmapi_power_ out Optical module power consumption information (estimation)
consumption_t is stored.
ideal_tofu Pjmapi_power_ out Tofu power consumption information (estimation) is stored.
consumption_t
ideal_pcie Pjmapi_power_ out PCI-E power consumption information (estimation) is stored.
consumption_t
ideal_node Pjmapi_power_ out Node power consumption information (estimation) is stored.
consumption_t
measured_node Pjmapi_power_ out Node power consumption information (result) is stored.
consumption_t
measure_start_date struct timespec out The power measurement start time is stored.
measure_end_date struct timespec out The power measurement end time is stored.
num_pkg uint32_t out The number of packages of the target job is stored.
pkgs_ofs off t out The offset to the power consumption structure by package is
stored.
cmgno int32_t out The CMG number is stored.
ideal_core Pjmapi_power_ out The compute core power consumption information by CMG
consumption_t (estimation) is stored.
ideal_l2cache Pjmapi_power_ out The L2 cache power consumption information by CMG
consumption_t (estimation) is stored.
ideal_mem Pjmapi_power_ out The memory power consumption information by CMG
consumption_t (estimation) is stored.
pkgno int32_t out Package number is stored.
cpu Pjmapi_power_ out The CPU power consumption information by package is
consumption_t stored.
mem Pjmapi_power_ out The memory power consumption information by package is
consumption_t stored.
ppO Pjmapi_power_ out The pp0 power consumption information by package is stored.
consumption_t
avg_power double out The average power consumption of the target power items is
stored.
max_power double out The maximum power consumption of the target power items is
stored.
min_power double out The minimum power consumption of the target power items is
stored.
energy double out The power consumption amount of the target power items is

stored.

(*) The member reservedn is for future expansion.

-52-

E.1.7 Notification Structure of Change to the EXIT State
(PIJM_CHANGE_EXIT)

The function PJIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_EXIT. The following

is the notification structure of change to the EXIT state of the job reported by the argument data_p of the function PJM_read_data().

uint16_t
uint16_t
uint16_t
intl6_t
uint32_t
uint32_t
ui nt 32_t
ui nt 32_t
i nt
uid_t
int
time_t
time_t
time_t

char

ui nt 64_t
ui nt 64_t
ui nt 64_t
time_t

ui nt 32_t
ui nt 32_t
ui nt32_t
ui nt32_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
uint8_t
uint8_t
uint8_t
uint8_t

} Pj mapi _change_exit_t;

typedef struct Pjmapi_change_exit {

j ob_nodel ;
job_flags;
numretry;
pre_j obst at us;
j ob_type;

j obi d;

bl kno;

st epno;

pj m code;

| ast hol d_ui d;
mai | f1 ag;
exit_date;

el apse;

el apse_of f _acc;

reason[64] ;

sumruna_ti me;

sum hol d_ti me;
sumwait_time;

snhapshotti me;

af fected_nid;

preal | oc_rnexit_exitcode;
predel _rmexit_exitcode;
postfree_rnmexit_exitcode;
prealloc_start_tine;
preall oc_end_time;

predel _start _tinme;

predel _end_ti me;
postfree_start_tine;
postfree_end_ti ne;

preal | oc_exec_ki nd;
predel _exec_ki nd;

post free_exec_kind;
padl[5];

/*
/*
/*
| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*

| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*
/*

Job nodel */
Job addi tional
Retry count */

information */

Previous job status */
Job type */

Job ID */

Bul k nunber */

Step nunber */
PJM code */

User ID held/cancelled in the |ast state */
Mai |l send flag */
Time of EXIT transition */

Job execution el apse tine */
Job execution elapse tinme that
to billing */

REASON */

Cunul ative RUNNING A time (seconds) */
Cunul ative HOLD ti me (seconds) */
Currul ative wait tine (seconds) */
Data col |l ection year/ nonth/day */
Node ID that affected job result */
prealloc exit end code */

predel exit end code */

postfree exit end code */

prealloc exit start time */

prealloc exit end tim?*/

predel exit start time */

predel exit end tine */

postfree exit start time */

postfree exit end time */

prealloc exit execution timng */
predel exit execution timng */
postfree exit execution timng */

is not subject

Table E.10 Members of Notification Structure of Change to the EXIT State

Member Type Input- Description
Output

job_model uintl6_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.
PIJIM_JOBMODEL_NORMAL: Normal job
PIM_JOBMODEL_BULK: Bulk job
PIJIM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uintl6_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

-53-

Member Type Input- Description
Output
job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PIJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job
jobid uint32_t out The job ID of the target job is stored.
blkno uint32_t out The bulk number of the target job is stored.
stepno uint32_t out The step number of the target job is stored.
pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.
lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.
mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)
exit_date time_t out The time of the transition of the target job to EXIT is stored.
elapse time_t out The job elapse time of the target job is stored.
elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.
reason[64] char[] out The REASON of the target job is stored.
sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.
sum_hold_time uinté4_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.
sum_wait_time uinté4 _t out The cumulative wait time of the target job is stored.
snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.
affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.
prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.

-54-

The value to be set is as follows.
0: Normal end

Member Type Input- Description
Output
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
prealloc_start_time uinté4_t out The time of the start of the prealloc exit of the target job is
stored.
prealloc_end_time uint64_t out The time of the end of the prealloc exit of the target job is
stored.
predel_start_time uinté4_t out The time of the start of the predel exit of the target job is stored.
predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.
postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.
postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.
prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing
predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded
postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.

The value to be set is as follows.
0: Not executed
2: Job end timing

-55-

E.1.8 Notification Structure of Change to the CANCEL State
(PJM_CHANGE CANCEL)

The function PJM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_CANCEL. The

following is the notification structure of change to the CANCEL state of the job reported by the argument data_p of the function
PJM_read_data().

typedef struct Pjmapi_change_cancel {
uint16_t j ob_nodel ; /* Job nodel */
uint16_t job_fl ags; /* Job additional information */
uint16_t numretry; /* Retry count */
intl6_t pre_j obst at us; /* Previous job status */
ui nt 32_t j ob_type; /* Job type */
ui nt32_t j obi d; /* Job ID */
ui nt32_t bl kno; /* Bul k nunber */
uint32_t st epno; /* Step nunber */
i nt pj m code; /* PJM code */
uid_t | ast hol d_ui d; /* User ID held/cancelled in the |ast state */
int mai | f1 ag; /* Mail send flag */
ui nt pro_exit_code; /* Prol ogue exit code */
time_t cancel _date; /* Time of CANCEL transition */
time_t el apse; /* Job execution elapse time */
time_t el apse_of f _acc; /* Job execution elapse tine that is not subject

to billing */

char reason[64] ; /* REASON */
ui nt 64_t sumruna_ti me; /* Curul ati ve RUNNING A tinme (seconds) */
ui nt 64_t sum hol d_ti ne; /* Cunul ative HOLD tinme (seconds) */
ui nt 64_t sumwait_time; /* Cunul ative wait time (seconds) */
time_t pj del _date; /* Job deletion request tine *./
time_t del et e_dat e; /* Job deletion time */
time_t snapshotti nme; /* Data collection year/nmonth/day */
time_t pr ol ogue_end_dat e; /* Prologue end time */
time_t al | _prec_subjob_exit_date; /* Preceding sub job end tine */
ui nt32_t affected_nid; /* Node ID that affected job result */
ui nt 32_t prealloc_rnexit_exitcode; /* prealloc exit end code */
ui nt 32_t predel _rmexit_exitcode; /* predel exit end code */
ui nt32_t postfree_rmexit_exitcode; /* postfree exit end code */
ui nt 64_t preal loc_start_tine; /* prealloc exit start time */
ui nt64_t preal l oc_end_tine; /* prealloc exit end tim?*/
ui nt 64_t predel _start_tine; /* predel exit start time */
ui nt 64_t predel _end_ti me; /* predel exit end tine */
ui nt 64_t postfree_start_tine; /* postfree exit start time */
ui nt 64_t postfree_end_ti ne; /* postfree exit end time */
uint8_t preal | oc_exec_ki nd; /* prealloc exit execution timng */
ui nt8_t predel _exec_ki nd; /* predel exit execution timng */
uint8_t post free_exec_ki nd; /* postfree exit execution timng */
uint8_t padl[5] ;

} Pj mapi _change_cancel _t;

Table E.11 Members of Notification Structure of Change to the CANCEL State

Member Type Input- Description
Output

job_model uint16_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.

-56 -

Member Type Input- Description
Output
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job
num_retry uintl6_t out The retry count of the target job is stored.
pre_jobstatus intl6_t out The previous status of the target job before the current status is
stored.
job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job
jobid uint32_t out The job ID of the target job is stored.
blkno uint32_t out The bulk number of the target job is stored.
stepno uint32_t out The step number of the target job is stored.
pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.
lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.
mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)
pro_exit_code uint out The end code of the prologue script of the target job is stored.
cancel_date time_t out The time of the transition of the target job to CANCEL is
stored.
all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.
elapse time_t out The job elapse time of the target job is stored.
elapse_off_acc time_t out Of the job elapse time of the target job, the time that is not
subject to billing is stored.
reason[64] char[] out The REASON of the target job is stored.
sum_runa_time uinté4_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.
sum_hold_time uint64_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.
sum_wait_time uinté4_t out The cumulative wait time of the target job is stored.
pjdel_date time_t out The job deletion request time of the target job is stored.
delete_date time_t out The job deletion time of the target job is stored.
snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.
prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.
affected_nid uint32_t out The node ID that affected the job result of the target job is

stored.

-57 -

Member Type Input- Description
Output
prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.
prealloc_end_time uinté4_t out The time of the end of the prealloc exit of the target job is
stored.
predel_start_time uint64_t out The time of the start of the predel exit of the target job is stored.
predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.
postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.
postfree_end_time uinté4_t out The time of the end of the postfree exit of the target job is
stored.
prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing
predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.

-58 -

The value to be set is as follows.

0: Not executed

3: pjdel command execution timing

4: pjhold command execution timing

5: Timing of a deletion request from the job manager function
or job scheduler function

Member

Type

Input-

Outp

Description
ut

6: Timing of a compute node error

7: Timing when the CPU time is exceeded

8: Timing when the elapsed time is exceeded

9: Timing when the memory use amount exceeded

postfree_exec_kind

uint8 t 0

ut

The postfree exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

2: Job end timing

E.1.9 Notification Structure of Change to the HOLD State
(PJM_CHANGE HOLD)

The function PIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_HOLD. The following
is the notification structure of change to the HOLD state of the job reported by the argument data_p of the function PIM_read_data().

uint16_t
uint16_t
uint16_t
int16_t
ui nt32_t
ui nt32_t
ui nt 32_t
ui nt32_t
uid_t
ui nt
i nt
ui nt
time_t
ui nt 64_t
ui nt 64_t
time_t
time_t
char
ui nt 32_t
ui nt32_t
ui nt32_t
ui nt32_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64_t
ui nt 64 _t
ui nt 64_t
uint8_t
uint8_t
uint8_t
uint8_t
} Pj mapi _change_hol d_t;

typedef struct Pjmapi_change_hol d {

j ob_nodel ;

job_fl ags;

numretry;

pre_j obst at us;

j ob_type;

j obi d;

bl kno;

st epno;

| ast hol d_ui d;

hol d_count;

mai | fl ag;
pro_exit_code;

hol d_dat e;

sumruna_ti me;
sumwait_time;

prol ogue_end_dat e;

al | _prec_subjob_exit_date;
reason[64] ;

af fected_nid;

preal | oc_rmexit_exitcode;
predel _rnexit_exitcode;
postfree_rnexit_exitcode;
prealloc_start_tine;
preal l oc_end_ti e;
predel _start _time;
predel _end_ti ne;
postfree_start_tine;
postfree_end_tine;
preal | oc_exec_ki nd;
predel _exec_ki nd;
postfree_exec_kind;
padl[5];

| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*
/*
| *

Job nodel */

Job additional
Retry count */
Previ ous job status */

informati on */

Job type */
Job I D */
Bul k nunber */

Step nunber */

User I D held/cancelled in the |last state */
HOLD count */

Mai | send flag */

Prol ogue exit code */

Tinme of HOLD transition */

Curul ative RUNNING A tinme (seconds) */
Cunul ative wait tinme (seconds) */
Prol ogue end tine */

Preceding sub job end time */
REASON */

Node ID that affected job result
prealloc exit end code */

predel exit end code */

postfree exit end code */
prealloc exit start time */
prealloc exit end tim?*/

predel exit start time */

predel exit end time */

postfree exit start time */
postfree exit end time */
prealloc exit execution timng */
predel exit execution timng */
postfree exit execution timng */

*/

Table E.12 Members of Notification Structure of Change to the HOLD State

-59-

Member Type Input- Description
Output
job_model uintl6_t out The job model of the target job is stored.

The bit indicated by any one of the following macros is set
according to the job model.

Member Type Input- Description
Output
PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job
job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job
num_retry uintl6_t out The retry count of the target job is stored.
pre_jobstatus intl6 t out The previous status of the target job before the current status is
stored.
job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job
jobid uint32_t out The job ID of the target job is stored.
blkno uint32_t out The bulk number of the target job is stored.
stepno uint32_t out The step number of the target job is stored.
lasthold_uid uid_t out If the target job has ever been held, the user ID of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.
hold_count uint out The number of times when the target job was held is stored.
mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)
pro_exit_code uint out The end code of the prologue script of the target job is stored.
hold_date time_t out The time of the transition of the target job to HOLD is stored.
sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.
sum_wait_time uint64_t out The cumulative wait time of the target job is stored.
prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.
all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.
reason[64] char[] out The REASON of the target job is stored.
affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.
prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.

-60 -

The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state
4: Specification of deleting the job

Member Type Input- Description
Output
102: Failure in execution of the resource management exit
script
255: Error other than the above
predel_rmexit_exitcode uint32_t out The end code of the predel exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
postfree_rmexit_exitcode uint32_t out The end code of the postfree exit of the target job is stored.
The value to be set is as follows.
0: Normal end
1: Specification of setting the job in an error state
2: Specification of re-execution of the job
3: Specification of setting the job in the HOLD state
4: Specification of deleting the job
102: Failure in execution of the resource management exit
script
255: Error other than the above
prealloc_start_time uint64_t out The time of the start of the prealloc exit of the target job is
stored.
prealloc_end_time uinté4_t out The time of the end of the prealloc exit of the target job is
stored.
predel_start_time uint64_t out The time of the start of the predel exit of the target job is stored.
predel_end_time uint64_t out The time of the end of the predel exit of the target job is stored.
postfree_start_time uint64_t out The time of the start of the postfree exit of the target job is
stored.
postfree_end_time uint64_t out The time of the end of the postfree exit of the target job is
stored.
prealloc_exec_kind uint8_t out The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
1: Job start timing
predel_exec_kind uint8_t out The predel exit execution timing of the target job is stored.
The value to be set is as follows.
0: Not executed
3: pjdel command execution timing
4: pjhold command execution timing
5: Timing of a deletion request from the job manager function
or job scheduler function
6: Timing of a compute node error
7: Timing when the CPU time is exceeded
8: Timing when the elapsed time is exceeded
9: Timing when the memory use amount exceeded
postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.

-61-

The value to be set is as follows.

Member Type

Input-
Output

Description

0: Not executed
2: Job end timing

E.1.10 Notification Structure of Change to the ERROR State

(PJM_CHANGE_ERROR)

The function PJM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_ERROR. The
following is the notification structure of change to the ERROR state of the job reported by the argument data_p of the function

PJM_read_data().

typedef struct Pjmapi_change_error {
uint16_t j ob_nodel ;
uint16_t job_flags;
uint16_t numretry;
intl6_t pre_j obst at us;
ui nt 32_t j ob_type;
uint32_t j obi d;
uint32_t bl kno;
ui nt32_t st epno;
int pj m code;
uid_t | ast hol d_ui d;
int mai | f1 ag;
ui nt pro_exit_code;
time_t err_date;
time_t al | _prec_subj ob_exit_date;
char reason[64] ;
ui nt 64_t sum runa_ti me;
ui nt 64_t sum hol d_ti me;
ui nt64_t sumwait_time;
time_t shapshotti me;
time_t prol ogue_end_dat e;
ui nt 32_t af fected_ni d;
uint32_t preal | oc_rnexit_exitcode;
ui nt32_t predel _rmexit_exitcode;
uint32_t postfree_rnmexit_exitcode;
ui nt64_t prealloc_start_tine;
ui nt64_t preal l oc_end_ti e;
ui nt 64_t predel _start _time;
ui nt 64_t predel _end_ti me;
ui nt 64_t postfree_start_tine;
ui nt64_t postfree_end_tine;
uint8_t preal | oc_exec_ki nd;
uint8_t predel _exec_ki nd;
uint8_t postfree_exec_kind;
ui nt 8_t padl[5] ;

} Pj mapi _change_error _t;

/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *
/*
/*

/*
| *
| *
/*
/*
/*
/*
| *
| *
/*
/*
/*
/*
| *
| *
/*
/*
/*
/*

Job nodel */
Job additional
Retry count */

information */

Previ ous job status */
Job type */

Job ID */

Bul k nunber */

Step nunber */

PIM code */

User I D held/cancelled in the |ast state */
Mail send flag */

Prol ogue exit code */

Time of ERR transition */

Preceding sub job end tine */
REASON */

Currul ative RUNNING A tine (seconds)
Cunul ative HOLD ti me (seconds) */
Currul ative wait tine (seconds) */
Data col |l ection year/ nonth/day */
Prol ogue end tine */

Node ID that affected job result
prealloc exit end code */

predel exit end code */

postfree exit end code */
prealloc exit start time */
prealloc exit end tim?*/

predel exit start time */

predel exit end tine */

postfree exit start time */
postfree exit end time */
prealloc exit execution timng */
predel exit execution timng */
postfree exit execution timng */

*/

*/

Table E.13 Members of Notification Structure of Change to the ERROR State

Member Type Input- Description
Output
job_model uintl6_t out The job model of the target job is stored.

The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

-62 -

Member Type Input- Description
Output
job_flags uint16_t out Job additional information of the target job is stored.
The job additional information is as follows.
PIM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job
num_retry uintl6_t out The retry count of the target job is stored.
pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.
job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PIM_JOBTYPE_BATCH: Batch job
PIM_JOBTYPE_INTARACT: Interactive job
jobid uint32_t out The job ID of the target job is stored.
blkno uint32_t out The bulk number of the target job is stored.
stepno uint32_t out The step number of the target job is stored.
pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.
lasthold_uid uid_t out If the target job has ever been held, the user 1D of the last user
who held it is stored. If the job was canceled, the user ID of the
user who canceled it is stored.
mailflag int out The flag about whether there is mail transfer of the target job is
stored.
The value is as follows.
1: Job start
2: Job end
4: Error occurrence
8: Statistical information output (without node information)
16: Statistical information output (with node information)
pro_exit_code uint out The end code of the prologue script of the target job is stored.
err_date time_t out The time of the transition of the target job to ERROR is stored.
all_prec_subjob_exit_date time_t out The preceding sub job end time of the target job is stored.
reason[64] char out The REASON of the target job is stored.
sum_runa_time uint64_t out The cumulative time of the RUNNING-A state of the target job
(seconds, rounded up to the nearest whole digit) is stored.
sum_hold_time uinté4_t out The cumulative time of the HOLD state of the target job
(seconds, rounded up to the nearest whole digit) is stored.
sum_wait_time uint64 _t out The cumulative wait time of the target job is stored.
snapshottime time_t out The data collection date (year/month/day) of the target job is
stored.
prologue_end_date time_t out The prologue end time in the compute node of the target job is
stored.
affected_nid uint32_t out The node ID that affected the job result of the target job is
stored.
prealloc_rmexit_exitcode uint32_t out The end code of the prealloc exit of the target job is stored.

-63-

The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state
2: Specification of re-execution of the job

Member

Type

Input-
Output

Description

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

predel_rmexit_exitcode

uint32_t

out

The end code of the predel exit of the target job is stored.
The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

postfree_rmexit_exitcode

uint32_t

out

The end code of the postfree exit of the target job is stored.
The value to be set is as follows.

0: Normal end

1: Specification of setting the job in an error state

2: Specification of re-execution of the job

3: Specification of setting the job in the HOLD state

4: Specification of deleting the job

102: Failure in execution of the resource management exit
script

255: Error other than the above

prealloc_start_time

uinté4 _t

out

The time of the start of the prealloc exit of the target job is
stored.

prealloc_end_time

uint64_t

out

The time of the end of the prealloc exit of the target job is
stored.

predel_start_time

uinté4 _t

out

The time of the start of the predel exit of the target job is stored.

predel_end_time

uint64_t

out

The time of the end of the predel exit of the target job is stored.

postfree_start_time

uinté4._t

out

The time of the start of the postfree exit of the target job is
stored.

postfree_end_time

uint64 _t

out

The time of the end of the postfree exit of the target job is
stored.

prealloc_exec_kind

uint8_t

out

The prealloc exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

1: Job start timing

predel_exec_kind

uint8 t

out

The predel exit execution timing of the target job is stored.
The value to be set is as follows.

0: Not executed

3: pjdel command execution timing

4: pjhold command execution timing

5: Timing of a deletion request from the job manager function
or job scheduler function

6: Timing of a compute node error

7: Timing when the CPU time is exceeded

8: Timing when the elapsed time is exceeded

9: Timing when the memory use amount exceeded

-64 -

Member Type Input- Description
Output
postfree_exec_kind uint8_t out The postfree exit execution timing of the target job is stored.

The value to be set is as follows.
0: Not executed
2: Job end timing

E.1.11 Notification Structure of Change to the REJECT State

(PJM_CHANGE_REJECT)

The function PJIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_REJECT. The
following is the notification structure of change to the REJECT state of the job reported by the argumaent data_p of the function

PJM_read_data().

typedef struct Pjmapi_change_reject {
uint16_t j ob_nodel ;
uint16_t job_flags;
ui nt 32_t j ob_type;
ui nt 32_t j obi d;
ui nt32_t bl kno;
uint32_t st epno;
int pj m code;
time_t rej ect_date;

} Pj mapi _change_reject _t;

/* Job nodel */

/* Job additional information */
/* Job type */

/* Job ID */

/* Bul k nunber */

/* Step nunber */

/* PJM code */

/* Reject transition time */

Table E.14 Members of Notification Structure of Change to the REJECT State

Member Type Input- Description
Output

job_model uintl6_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.
PJM_JOBMODEL_NORMAL: Normal job
PIJM_JOBMODEL_BULK: Bulk job
PIJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

pjm_code int out A code indicating the processing result of the job manager
function in job execution of the target job is stored.

reject_date time_t out The transition time to REJECT is stored.

-65-

E.1.12 Notification Structure of Change to the RUNNING-P State
(PJM_CHANGE_RUNNING P)

The function PJIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_RUNNING_P. The
following is the notification structure of change to the RUNNING-P state of the job reported by the argument data_p of the function

PJM_read_data().

typedef struct Pjmapi_change_running_p {
uintl16_t j ob_nodel ;
uint16_t job_flags;
uint16_t numretry;
intl6_t pre_j obst at us;
ui nt 32_t j ob_type;
ui nt32_t j obi d;
uint32_t bl kno;
uint32_t st epno;
time_t prol ogue_start_date;
time_t runp_dat e;

} Pj mapi _change_running_p_t;

/* Job nodel */

/* Job additional information */
/* Retry count */

/* Previous job status */

/* Job type */

/* Job ID */

/* Bul k nunber */

/* Step nunber */

/* Prologue start tine */

/* Time of RUNNING P transition */

Table E.15 Members of Notification Structure of Change to the RUNNING-P State

Member Type Input- Description
Output

job_model uintl6_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.
PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uintl6_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

prologue_start_date time_t out The prologue start time in the compute node of the target job is
stored.

runp_date time_t out The time of the transition of the state of the PJM of the target
job to RUNNING_P is stored.

- 66 -

E.1.13 Notification Structure of Change to the RUNNING-E State
(PJM_CHANGE_RUNNING E)

The function PJIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_RUNNING_E. The
following is the notification structure of change to the RUNNING-E state of the job reported by the argument data_p of the function

PJM_read_data().

typedef struct Pjmapi_change_running_e {
uintl16_t j ob_nodel ;
uint16_t job_flags;
uint16_t numretry;
intl6_t pre_j obst at us;
ui nt 32_t j ob_type;
ui nt32_t j obi d;
uint32_t bl kno;
ui nt 32_t st epno;
time_t epi |l ogue_start _date;
time_t rune_date;

} Pj mapi _change_running_e_t;

/* Job nodel */

/* Job additional information */
/* Retry count */

/* Previous job status */

/* Job type */

/* Job ID */

/* Bul k nunber */

/* Step nunber */

/* Epilogue start tine */

/* Time of RUNNING E transition */

Table E.16 Members of Notification Structure of Change to the RUNNING-E State

Member Type Input- Description
Output

job_model uintl6_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.
PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uintl6_t out The retry count of the target job is stored.

pre_jobstatus int16_t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

epilogue_start_date time_t out The epilogue start time in the compute node of the target job is
stored.

rune_date time_t out The time of the transition of the state of the PJM of the target
job to RUNNING_E is stored.

E.1.14 Notification Structure of Scheduling Result (PIM_CHANGE SCHED)

The function PIM_read_data() reads notification data that is received when the notification type isPIM_CHANGE_SCHED. The following
is the notification structure of the scheduling result of the job reported by the argument data_p of the function PJIM_read_data().

-67 -

typedef struct

uint16_t
uint16_t
uint16_t
intl1l6_t
ui nt32_t
ui nt 32_t
ui nt32_t
ui nt32_t
ui nt

ui nt

ui nt

ui nt

ui nt32_t

ui nt 32_t

ui nt

ui nt

time_t

ui nt 64_t

of f _t

of f _t

struct tinespec
uint8_t

uint8_t

Pj mapi _change_sched {

j ob_nodel ;
job_flags;
numretry;
pre_j obst at us;
j ob_type;

j obi d;

bl kno;

st epno;
node_num
node_Xx;
node_y;
node_z;
vn_cpu_req;

num al | oc_vnode;

sum cpu_preal | oc_num
pad2;

sched_dat e;

mem j ob_preall oc;

ndl i st_ofs;
tofulist_ofs;

| ast _sched_dat e;
backfill _flg;

padl[7];

} Pj mapi _change_sched_t;

/*
/*
| *
| *
| *
/*
/*
/*
| *
| *
| *
/*
/*

/*
/*

/*
/*
/*
| *
| *
| *

Job nodel */
Job addi tional
Retry count */
Previ ous job status */

Job type */

Job ID */

Bul k nunber */

Step nunber */

Number of all ocated nodes */

Al'l ocat ed node shape x */

Al | ocated node shape y */

Al'l ocat ed node shape z */

Request ed nunber of CPU cores

by virtual node */

Nunmber of allocated virtual nodes */

Total nunber of schedul er allocation CPUs */

information */

Job execution start time */

Schedul er allocation nmenory amount (bytes) */
Offset to node ID list */

Offset to Tofu coordinate list */

Schedul ing start tine */

Backfill flag */

Table E.17 Members of Notification Structure of Scheduling Result

Member Type Input- Description
Output

job_maodel uintl6_t out The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.
PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.
PIM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

num_retry uintl16_t out The retry count of the target job is stored.

pre_jobstatus intl6 t out The previous status of the target job before the current status is
stored.

job_type uint32_t out The job type of the target job is stored.
The job type is as follows.
PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.

stepno uint32_t out The step number of the target job is stored.

node_num uint out The number of the allocated nodes of the target job is stored.

node_x uint out The allocated shape of the target job is stored.

node_y uint

node_z uint

-68 -

Member Type Input- Description
Output
vn_cpu_req uint32_t out The number of allocated cores of the target job by virtual node is
stored.
num_alloc_vnode uint32_t out The number of allocated virtual nodes of the target job is stored.
sum_cpu_prealloc_num uint out The total number of CPUs allocated by the scheduler function is
stored.
sched_date time_t out The job execution start time of the target job is stored.
mem_job_prealloc uint64_t out The allocated memory amount of the target job is stored.
ndlist_ofs off t out The offset to the character string, in which the node ID list set for
the job is stored, is stored.
The following expression can be used to obtain the pointer to the
character string.
int nolist= (int *) PIMAPI_OFF_TO_PTR(ndlist_ofs)
tofulist_ofs off t out The offset to the character string, in which the Tofu coordinate list
set for the job is stored, is stored.
The following expression can be used to obtain the pointer to the
character string.
tofu_3d_t tofulist= (tofu_3d_t *)
PIMAPI_OFF_TO_PTR(tofulist_ofs)
(*1) The Tofu coordinates are stored in the structure of the Tofu
coordinates. For details, see "Table E.4 Members of Tofu
coordinate Structure." in " E.1.1 Job Information Notification
Structure (PJIM_INFO_JOB)."
last_sched_date struct timespec out The scheduling start time of the target job is stored.
backfill_flg uint8_t out The flag of a backfilled job

E.1.15 Notification Structure of Attribute Change (PJM_CHANGE ALTER)

The function PIM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_ALTER. The following
is the notification structure of attribute change of the job reported by the argument data_p of the function PIM_read_data().

typedef struct Pjmapi_change_alter {
uint16_t j ob_nodel ;
uint16_t job_fl ags;
uintl16_t pad[2] ;
uint32_t j ob_type;
ui nt32_t j obi d;
ui nt32_t bl kno;
ui nt 32_t st epno;
char rscuni t _nanme[PJIM_RSCUNAVE_MAX] ;
char rscgr p_name[PIM_RSCGROUP_MAX] ;
ui nt64_t elapse_ limt;
intl6_t j ob_apri o;
intl6_t job_uprio;
of f _t reg_cstnrsc_ofs;
} Pj mapi _change_al ter _t;

/* Job nodel */
/* Job additional information */

/* Job type */

/* Job ID */

/* Bul k nunmber */

/* Step nunber */

/* Resource unit name */

/* Resource group nane */

/* Limt value of job elapse tinme */

/* Job priority level within
the resource unit */

/* Job priority level within the same user */

/* Offset to customresource infornation
(Pjmapi _req_cstnrsc_t) */

-69 -

Table E.18 Members of Notification Structure of Attribute Change

Member

Type

Input-
Output

Description

job_model

uintl6_t

out

The job model of the target job is stored.
The bit indicated by any one of the following macros is set
according to the job model.

PJM_JOBMODEL_NORMAL: Normal job
PJM_JOBMODEL_BULK: Bulk job
PJM_JOBMODEL_STEP: Step job

job_flags

uintl6_t

out

Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

job_type

uint32_t

out

The job type of the target job is stored.
The job type is as follows.

PJM_JOBTYPE_BATCH: Batch job
PJM_JOBTYPE_INTARACT: Interactive job

jobid

uint32_t

out

The job ID of the target job is stored.

blkno

uint32_t

out

The bulk number of the target job is stored.

stepno

uint32_t

out

The step number of the target job is stored.

rscunit_name

[PIM_RSCUNAME_MAX]

char

out

The resource unit name of the job is stored.

rscgrp_name

[PIM_RSCGROUP_MAX]

char

out

The resource group name of the job is stored.

elapse_limit

uint64_t

out

The limit value of the elapsed time is stored.

In case of UNLIMITED, PJM_RLIM_INFINITY (~OULL) is
stored.

If limit values of the elapsed time are specified as a range, the
maximum time of the limit of the elapse time (seconds) is set.

job_aprio

intl6 t

out

The job priority level within the resource unit is stored.

job_uprio

intl6 _t

out

The job priority level within the same user is stored.

req_cstmrsc_ofs

off t

out

The offset to the requested custom resource information
(Pjmapi_req_cstmrsc_t) is stored.

The following expression can be used to obtain the pointer to the
requested custom resource information.

Pjmapi_req_cstmrsc_t* req_cstm_p = (Pjmapi_req_cstmrsc_t *)
PJIMAPI_OFF_TO_PTR(req_cstmrsc_ofs)

If the requested custom resource information does not exist, 0 is
stored.

E.1.16 Simple Data Notification Structure (PJM_CHANGE_ SIMPLE DATA)

The function PJM_read_data() reads notification data that is received when the notification type is PIM_CHANGE_SIMPLE_DATA. The
following is the notification structure of simple data of the job reported by the argument data_p of the function PJM_read_data().

typedef struct Pjmapi_change_sinple_data {

uint16_t
uint16_t
ui nt 32_t
uint32_t
uint32_t

j ob_nodel ;
job_flags;
j obi d;

bl kno;

st epno;

/*
/*
/*
/*
/*

Job nodel */

Job additional information */
Job ID */

Bul k nunber */

Step nunber */

-70 -

time_t accept _dat e; /* Job subm ssion tine */
} Pj mapi _change_sinple_data_t;

Table E.19 Members of Simple Data Notification Structure

Member Type Input- Description
Output
job_maodel uintl6_t out The job model of the target job is stored.

The bit indicated by any one of the following macros is set
according to the job model.

PIJIM_JOBMODEL_NORMAL: Normal job
PIJIM_JOBMODEL_BULK: Bulk job
PIJIM_JOBMODEL_STEP: Step job

job_flags uintl6_t out Job additional information of the target job is stored.
The job additional information is as follows.

PJM_JOBFLAGS_BULK_SUBJOB: Sub job of a bulk job

jobid uint32_t out The job ID of the target job is stored.

blkno uint32_t out The bulk number of the target job is stored.
stepno uint32_t out The step humber of the target job is stored.
accept_date time_t out The submission time of the target job is stored.

The data structure for simple data notification Pjmapi_change_simple_data_t is common to all the notification events.

Each parameter of Pjmapi_change_simple_data_t is the minimum needed information for obtaining detailed information from the
notification information of this simple data by using the pmdumpjobinfo command. accept_date (job submission time) is used to identify
the job when jobid exceeds UINT32_MAX and makes a circuit.

-71-

	Title Page
	Preface
	Update history
	Contents
	Chapter 1 Overview of the Job Information Notification API
	Chapter 2 Use of Job Information Notification API
	2.1 How to Create a Program
	2.2 Processing Flow
	2.3 Job-Related Information Obtained by a Program
	2.4 Example of the Job Information Notification API

	Appendix A Notes Relevant to Bulk Job Information Reported With the Job Information Notification API
	A.1 Bulk Job Information Reported
	A.2 How to Set the End Code of a Job That is Not Subject to Billing

	Appendix B Reference: APIs Relevant to Connection to Job Manager Function
	B.1 PJM_connect()
	B.2 PJM_disconnect()

	Appendix C Reference: APIs Relevant to Setting of Monitoring Target Information
	C.1 PJM_set_target_jobinfo()
	C.2 PJM_unset_target_jobinfo()

	Appendix D Reference: APIs Relevant to Reading of Header Information
	D.1 PJM_read_head()

	Appendix E Reference: APIs Relevant to Data Information
	E.1 PJM_read_data()
	E.1.1 Job Information Notification Structure (PJM_INFO_JOB)
	E.1.2 Notification Structure of Change to the ACCEPT State (PJM_CHANGE_ACCEPT)
	E.1.3 Notification Structure of Change to the QUEUED State (PJM_CHANGE_QUEUED)
	E.1.4 Notification Structure of Change to the RUNNING-A State (PJM_CHANGE_RUNNING_A)
	E.1.5 Notification Structure of Change to the RUNNING State (PJM_CHANGE_RUNNING)
	E.1.6 Notification Structure of Change to the RUNOUT State (PJM_CHANGE_RUNOUT)
	E.1.7 Notification Structure of Change to the EXIT State (PJM_CHANGE_EXIT)
	E.1.8 Notification Structure of Change to the CANCEL State (PJM_CHANGE_CANCEL)
	E.1.9 Notification Structure of Change to the HOLD State (PJM_CHANGE_HOLD)
	E.1.10 Notification Structure of Change to the ERROR State (PJM_CHANGE_ERROR)
	E.1.11 Notification Structure of Change to the REJECT State (PJM_CHANGE_REJECT)
	E.1.12 Notification Structure of Change to the RUNNING-P State (PJM_CHANGE_RUNNING_P)
	E.1.13 Notification Structure of Change to the RUNNING-E State (PJM_CHANGE_RUNNING_E)
	E.1.14 Notification Structure of Scheduling Result (PJM_CHANGE_SCHED)
	E.1.15 Notification Structure of Attribute Change (PJM_CHANGE_ALTER)
	E.1.16 Simple Data Notification Structure (PJM_CHANGE_SIMPLE_DATA)

