
FUJITSU Software
Compiler Package V1.0L20

FUJITSU

C-SSL II Thread-Parallel Capabilities
User's Guide

J2UL-2593-02ENZ0(00)
July 2020

 ii

Preface
 This manual describes the functions and usage of the C Scientific Function Library II Thread-Parallel Capabilities.

 C-SSL II Thread-Parallel Capabilities provide the computational functionality to efficiently compute or solve large-scale

problems on a shared-memory parallel computer with scalar processors. New algorithms for parallel processing have been

adopted.

 When using the C-SSL II Thread-Parallel Capabilities for the first time, the user should read the General Descriptions

first.

 The contents of the C-SSL II Thread-Parallel Capabilities may be amended to keep up with the latest technology. That is,

if new, revised or updated routines include or surpass the functionality of the current routines, then the current routines may

then be deleted from the library.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your

resident country and/or US export control laws.

Date of Publication and Version
Version Manual code

July 2020, 2nd Version J2UL-2593-02ENZ0(00)
February 2020, 1st Version J2UL-2593-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020

 iii

Update History

Changed the look according to product upgrades. - 2nd Version

• All rights reserved.
• The information in this manual is subject to change without notice.

 v

Acknowledgements
 SSL II Thread-Parallel Capabilities include some functions using codes and algorithms, with appropriate modifications,

which have been developed for SSL II/VPP. SSL II/VPP is the library developed in collaboration with the Australian

National University (ANU). Development at the ANU has been led by professors Mike Osborne and Richard Brent and

coordinated by Dr. Bob Gingold, Head, ANU Supercomputer Facility. The following is a complete list of those ANU

experts involved in the design and implementation of SSL II/VPP. Fujitsu acknowledges their cooperation.

People

Professor Richard Peirce Brent

Dr Andrew James Cleary

Dr Murray Leslie Dow

Mr Christopher Robert Dun

Dr Lutz Grosz

Dr David Lawrence Harrar II

Dr Markus Hegland

Ms Judith Helen Jenkinson

Dr Margaret Helen Kahn

Dr Zbigniew Leyk

Mr David John Miron

Professor Michael Robert Osborne

Dr Peter Frederick Price

Dr Stephen Gwyn Roberts

Dr David Barry Singleton

Dr David Edward Stewart

Dr Bing Bing Zhou

 vi

How to use this manual
 It is strongly recommended that the General Descriptions is read carefully by first time users of the C-SSL II Thread-

Parallel Capabilities, even if they are familiar with the Fortran SSL II Thread-Parallel Capabilities. The General

Descriptions provides:

 an overview of the library,

 the library design,

 information on using the library,

 an annotated sample calling program,

 the array storage formats employed,

 an annotated example of what is contained in each routine description.

 The Selection of routines chapter gives an overview of the functionality covered by the library and allows the user to

select an appropriate routine for his/her own calculation. Each major section of the library, e.g. linear algebra, is covered

separately to allow users to locate the relevant section more quickly.

 After the Selection of routines chapter are Tables of routines, which contain summary information for every routine in the

library, with cross references to the detailed routine descriptions. This is intended to allow experienced users to quickly

locate the routine they require. The routines are listed by section and then by generality, e.g. general solution routines are

listed before routines for more specific cases.

 The bulk of the manual contains the routine descriptions. The routine descriptions are arranged in alphabetical order.

Each description contains an overview, argument descriptions, sample calling program and important information on how

to use each routine.

 Detailed descriptions of the underlying numerical methods can be found in the manuals for the Fortran SSL II library

and in the references specified in the Bibliography.

Further sources of information

 Following manual describes underlying Fortran routines.

 SSL II Thread-Parallel Capabilities User's Guide II.

 There are extensive further references provided in the Bibliography.

Typographic conventions

Courier and Times fonts are used as follows:

 Courier regular font – used for routine names, arguments, program objects, such as arrays and code.

 Times regular font – standard font for text.

 Times italic font – emphasis, book titles, manual section references, e.g. See Comments on use, components of

matrix and vector objects, e.g. aij.

 Times bold font – Whole matrix and vector objects, e.g. Ax = b, as well as section titles.

 vii

Mathematical conventions

 Throughout this manual, the distinction is made between matrices and arrays.

 Matrices and vectors are mathematical objects that are indexed from one, so the first element of a matrix A

is a11.

 2-D and 1-D arrays are C objects indexed from 0, so that the first element of 2-D array a is a[0][0].

 When used in mathematical expressions, i is usually used to denote the imaginary part of a complex number, for example

in z = 5  i10, 1i .

 The modulus function || x is used to denote absolute value, including complex absolute value. Unless otherwise

delimited, norms such as x are the 2-norm (so xxx T).

 viii

Tables of routines

Linear algebra

1. Matrix operations

Routine name Description Page

c_dm_vmggm Matrix multiplication (real matrix). 133

c_dm_vmvscc Multiplication of a real sparse matrix and a real vector

(compressed column storage method)

148

c_dm_vmvsccc Multiplication of a complex sparse matrix and a complex vector (compressed column

storage method)

152

c_dm_vmvsd Multiplication of a real sparse matrix and a real vector (diagonal format storage method). 157

c_dm_vmvse Multiplication of a real sparse matrix and a real vector (ELLPACK format storage

method).

160

2. Linear equations (Direct method)

Routine name Description Page

c_dm_vlax A system of linear equations with real matrices (blocked LU decomposition method). 93

c_dm_valu LU decomposition of real matrices (blocked LU decomposition method). 12

c_dm_vlux A system of linear equations with LU-decomposed real matrices. 131

c_dm_vlsx A system of linear equations with symmetric positive definite matrices (blocked

modified Cholesky decomposition method).

128

c_dm_vsldl LDLT decomposition of symmetric positive definite matrices (blocked modified

Cholesky decomposition method).

301

c_dm_vldlx A system of linear equations with LDLT -decomposed symmetric positive definite

matrices.

112

c_dm_vlcx A system of linear equations with complex matrices (blocked LU decomposition

method).

109

c_dm_vclu LU decomposition of complex matrices (blocked LU decomposition method). 56

c_dm_vclux A system of linear equations with LU-decomposed complex matrix. 59

c_dm_vlbx A system of linear equations with banded real matrices (Gaussian elimination). 96

c_dm_vblu LU decomposition of banded real matrices (Gaussian elimination). 37

c_dm_vblux A system of linear equations with LU-decomposed banded real matrices. 42

c_dm_vschol LDLT decomposition of a symmetric positive definite sparse matrices (Left-looking

Cholesky decomposition method)

212

c_dm_vscholx A system of linear equations with LDLT-decomposed symmetric positive definite sparse

matrices

224

c_dm_vssps A system of linear equations with symmetric positive definite sparse matrices (Left-

looking LDLT decomposition method)

362

c_dm_vsrs A system of linear equations with unsymmetric real sparse matrices (LU decomposition

method)

341

 ix

Routine name Description Page

c_dm_vsrlu LU decomposition of an unsymmetric real sparse matrix 304

c_dm_vsrlux A system of linear equations with LU-decomposed unsymmetric real sparse matrices 324

c_dm_vscs A system of linear equations with unsymmetric complex sparse matrices (LU

decomposition method)

273

c_dm_vsclu LU decomposition of an unsymmetric complex sparse matrix 233

c_dm_vsclux A system of linear equations with LU-decomposed unsymmetric complex sparse

matrices

255

c_dm_vssss * A system of linear equations with structurally symmetric real sparse matrices (LU

decomposition method)

411

c_dm_vssslu * LU decomposition of a structurally symmetric real sparse matrix 375

c_dm_vssslux

*

A system of linear equations with LU-decomposed structurally symmetric real sparse

matrices

394

3. Linear equations (Iterative method)

Routine name Description Page

c_dm_vcgd A system of linear equations with symmetric positive definite sparse matrices

(preconditional CG method, diagonal format storage method).

46

c_dm_vcge A system of linear equations with symmetric positive definite sparse matrices

(preconditional CG method, ELLPACK format storage method).

51

c_dm_vbcscc A system of linear equations with unsymmetric positive definite sparse matrices

(BICGSTAB(l) method, compressed column storage method)

24

c_dm_vbcsd System of linear equations with unsymmetric or indefinite sparse matrices

(BICGSTAB(l) method, diagonal format storage method).

30

c_dm_vbcse System of linear equations with unsymmetric or indefinite sparse matrices

(BICGSTAB(l) method, ELLPACK format storage method).

34

c_dm_vtfqd A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR

method, diagonal format storage method).

436

c_dm_vtfqe A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR

method, ELLPACK format storage method).

439

c_dm_vamlid System of linear equations with sparse matrices of M-matrix (Algebraic multilevel

iteration method [ALMI Method], diagonal format storage method).

15

c_dm_vmlbife System of linear equations with sparse matrices (Multilevel iteration method based on

incomplete block factorization, ELLPACK format storage method).

137

c_dm_vlcspsxc

r1

System of linear equations with non-Hermitian symmetric complex sparse matrices

 (Conjugate A-Orthogonal Conjugate Residual method with preconditioning by

incomplete LDLT decomposition, symmetric compressed row storage method)

101

c_dm_vlspaxcr

2

System of linear equations with unsymmetric real sparse matrices

(Induced Dimension Reduction method with preconditioning by sparse approximate

inverse, compressed row storage method)

115

 x

4. Differential equations

Routine name Description Page

c_dm_vradau5 System of stiff ordinary differential equations or differential-algebraic equations

(Implicit Runge-Kutta method)

174

5. Discretization of partial differential equation

Routine name Description Page

c_dm_vpde2d Generation of System of linear equations with sparse matrices by the finite difference

discretization of a two dimensional boundary value problem for second order partial

differential equation.

163

c_dm_vpde3d Generation of System of linear equations with sparse matrices by the finite difference

discretization of a three dimensional boundary value problem for second order partial

differential equation.

168

6. Inverse matrices

Routine name Description Page

c_dm_vminv Inverse of real matrices (blocked Gauss-Jordan method). 135

c_dm_vcminv Inverse of complex matrices (blocked Gauss-Jordan method). 61

Eigenvalue problem

Routine name Description Page

c_dm_vsevph Eigenvalues and eigenvectors of real symmetric matrices (tridiagonalization,

multisection method, and inverse iteration).

296

c_dm_vhevp Eigenvalues and eigenvectors of Hermite matrices. 68

c_dm_vtdevc Eigenvalues and eigenvectors of real tridiagonal matrices. 431

c_dm_vgevph Generalized eigenvalue problem for real symmetric matrices

(eigenvalues and eigenvectors) (tridiagonalization, multisection method, inverse

iteration).

63

c_dm_vtrid Tridiagonalization of real symmetric matrices. 442

c_dm_vhtrid Tridiagonalization of Hermite matrices. 72

c_dm_vjdhecr Eigenvalues and eigenvectors of an Hermitian sparse matrix (Jacobi-Davidson
method, compressed row storage method)

75

c_dm_vjdnhcr Eigenvalues and eigenvectors of a complex sparse matrix (Jacobi-Davidson
method, compressed row storage method)

84

Fourier transforms

Routine name Description Page

c_dm_v1dcft One-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 445

c_dm_v1dcft2 One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7). 449

 xi

Routine name Description Page

c_dm_v1dmcft One-dimensional multiple discrete complex Fourier transforms (mixed radix of 2, 3, 5

and 7).

451

c_dm_v2dcft Two-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 461

c_dm_v3dcft Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 468

c_dm_v3dcft2 Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 471

c_dm_v1drcf One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 454

c_dm_v1drcf2 One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 458

c_dm_v2drcf Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 464

c_dm_v3drcf Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 477

c_dm_v3drcf2 Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 481

c_dm_v3dcpf Three-dimensional prime factor discrete complex Fourier transforms. 474

Random numbers

Routine name Description Page

c_dm_vranu4 Generation of uniform random numbers [0,1). 204

c_dm_vranu5 Generation of uniform random numbers [0,1) (MRG8). 207

c_dm_vrann3 Generation of normal random numbers. 196

c_dm_vrann4 Generation of normal random numbers (Wallace’s method). 200

 xiii

Contents
General Descriptions .. 1

Outline.. 1
General rules .. 1
How to Use C-SSL II Thread Parallel Capabilities .. 4
Array storage formats ... 6

Description of the C-SSL II Routines ... 11
c_dm_valu .. 12
c_dm_vamlid ... 15
c_dm_vbcscc ... 24
c_dm_vbcsd ... 30
c_dm_vbcse .. 34
c_dm_vblu ... 37
c_dm_vblux ... 42
c_dm_vcgd ... 46
c_dm_vcge ... 51
c_dm_vclu .. 56
c_dm_vclux .. 59
c_dm_vcminv .. 61
c_dm_vgevph .. 63
c_dm_vhevp ... 68
c_dm_vhtrid .. 72
c_dm_vjdhecr .. 75
c_dm_vjdnhcr ... 84
c_dm_vlax .. 93
c_dm_vlbx ... 96
c_dm_vlcspsxcr1 ... 101
c_dm_vlcx .. 109
c_dm_vldlx .. 112
c_dm_vlspaxcr2 .. 115
c_dm_vlsx .. 128
c_dm_vlux .. 131
c_dm_vmggm ... 133
c_dm_vminv ... 135
c_dm_vmlbife ... 137
c_dm_vmvscc.. 148
c_dm_vmvsccc .. 152
c_dm_vmvsd .. 157
c_dm_vmvse .. 160
c_dm_vpde2d .. 163
c_dm_vpde3d .. 168
c_dm_vradau5 ... 174
c_dm_vrann3 ... 196
c_dm_vrann4 ... 200
c_dm_vranu4 .. 204
c_dm_vranu5 ... 207
c_dm_vschol ... 212
c_dm_vscholx ... 224
c_dm_vsclu ... 233
c_dm_vsclux ... 255
c_dm_vscs ... 273
c_dm_vsevph ... 296
c_dm_vsldl ... 301
c_dm_vsrlu .. 304

 xiv

c_dm_vsrlux .. 324
c_dm_vsrs ... 341
c_dm_vssps ... 362
c_dm_vssslu .. 375 *
c_dm_vssslux .. 394 *
c_dm_vssss ... 411 *
c_dm_vtdevc .. 431
c_dm_vtfqd ... 436
c_dm_vtfqe ... 439
c_dm_vtrid .. 442
c_dm_v1dcft .. 445
c_dm_v1dcft2 .. 449
c_dm_v1dmcft ... 451
c_dm_v1drcf .. 454
c_dm_v1drcf2 .. 458
c_dm_v2dcft .. 461
c_dm_v2drcf .. 464
c_dm_v3dcft .. 468
c_dm_v3dcft2 ... 471
c_dm_v3dcpf ... 474
c_dm_v3drcf .. 477
c_dm_v3drcf2 ... 481

Bibliography .. 485

 General Descriptions

 1

General Descriptions

Outline

 C-SSL II Thread-Parallel Capabilities is a parallel mathematical function library to execute on a shared-memory parallel

computer with scalar processors. The library provides functions to efficiently compute such large-scale problems by

parallel processing that are intractable on a single processor.

 The mechanism of "Thread-Parallel" means that multiple execution flows, each of which is called a thread, share the

calculation where each thread is responsible for undertaking pieces of calculation using one CPU in the shared memory

system. If the number of created threads is less or equal to the number of CPU available, the process can be executed by

threads in parallel with all threads carried out by separated CPU. This Thread-Parallel mechanism enables a calculation to

be divided into multiple parallel executions (as far as the algorithm could be parallelized).

 Each function of C-SSL II Thread-Parallel Capabilities creates multiple threads internally and solves the problem with a

parallel algorithm with these threads. Where, the creation and extinction of the threads, work-sharing constructs and

synchronization are directed with OpenMP C/C++ specifications. Therefore C-SSL II Thread-Parallel Capabilities need

the run-time execution environment of the OpenMP C/C++.

 The number of the threads used by a function of C-SSL II Thread-Parallel Capabilities can be assigned by the user with

OpenMP environment variables or run-time library routines. With these, the function can be executed by as any number

of threads as specified.

 The C-SSL II Thread-Parallel Capabilities only supports double precision double functionality; Double precision

complex numbers are also supported via a special dcomplex type definition. In addition, all integer arguments and

results are of type int.

 The scope of functionality, function names, and calling interface of C-SSL II Thread-Parallel Capabilities are different

from those used in the mathematical library C-SSL II or C-SSL II/VP.

General rules

1. Details on the C-SSL II Thread-Parallel Capabilities interface

 Routines in the C library have names consistent with the Fortran library with the C function name constructed by adding

the prefix c_ to the underlying Fortran routine name in lower case. As all of the routines deal with double precision

arguments, this means that the all routines start with c_dm_v.

From the users’ viewpoint the C-SSL II Thread-Parallel Capabilities consists of C routines using standard C conventions

for argument passing, argument types and return values. Input-only scalars are passed by value; output and input / output

arguments are passed by pointer. Input-only arguments are not altered and can be reused by the user. Output arguments do

not have to be initialized by the user before the function call. Input / output arguments need to be defined before function

calls and are altered as a result of the call. The values are not necessarily meaningful to the user. Work arrays are labelled

as such, which implies that no user action is required on the initial call, but their output contents may be significant. It is

General Descriptions

 2

often possible to recall a function to carry on with a computation (for instance, a new end point can be specified in one of

the differential equation routines) and in almost all such cases, work arguments must remain unchanged between calls.

 Argument names follow the traditional Fortran implicit typing conventions, so that arguments of type int begin with the

letters i to n. Arguments of type double or dcomplex start with the letters a to h and o to z.

 Every library routine returns a standard int error value. If the routine completed successfully then 0 is returned; if there

was some error detected in the routine, or if the results may not be reliable, 1 is returned. The user program can check the

error return value and if an error occurred more information about the error condition can be obtained from the icon

parameter.

 As much as possible, the arguments in each C library routine are identical to the arguments in the Fortran library routine,

and they are specified in the same order. Generally, main arguments are listed first, control arguments are in the middle

and workspaces are located towards the last of the arguments. The last argument is always icon, the error condition code.

Some argument types are described more fully elsewhere in this document: multidimensional-arrays (Section 2), and

complex numbers (Section 3).

 Notice that where temporary work array arguments are required by a Fortran library routine, the C interface routine also

includes these arguments. This is not normal C programming, where work space is generally allocated within a routine

using malloc. However, as mentioned above, there are several instances where data stored in the work area is actually

required on subsequent calls to the same function.

 The C-SSL II Thread-Parallel Capabilities is provided with a header file cssl.h which contains prototypes for all of

the user-accessible functions, and other information such as the dcomplex data type definition. Every user program which

calls the C library must include this header file. The function name of the user main program is main or MAIN__ (two

underscores after MAIN).

2. Multidimensional arrays

 As shown in the above example, the library expects users to declare matrices as 2-D arrays. These arrays must be recast

as a pointer to type double in calls to a library routines and it is also necessary to specify the C fixed dimension of the

array.

 The approach taken incurs a small performance penalty. This is because the user’s code will use C row-ordered arrays,

but before these are passed to the Fortran code, they must be transformed to Fortran column-ordered format. Also, before

exiting from the C wrapper, the arrays may need to be transformed back again to C row-ordered format if the user is

expected to access the array data.

 See the Array storage formats section for further details about arrays.

3. Complex numbers

 ANSI C does not provide a complex data type, but it is common C practice to define a complex type using a typedef:

typedef struct {
 double re, im;
} dcomplex;

 General Descriptions

 3

 The C-SSL II Thread-Parallel Capabilities supports complex numbers defined in this manner. Only double precision real

and imaginary parts are supported. An example of user code to handle such complex numbers is:

/* include C-SSL II header file */
#include "cssl.h"
#define N1 4000
#define N2 3000
#define KX (N1+1)
#define KY (N2+1)

MAIN__()
{
 int isn, i, j, icon, ierr;
 dcomplex x[N2][KX], y[N1][KY];

 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 x[i][j].re = N1*i+j+1;
 x[i][j].im = 0.0;
 }
 }

 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v1dcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon);
 ...
}

4. Condition codes

 The icon argument indicates the resultant status after execution of the library function (the condition code) and should

always be checked on output. To make this slightly easier, the C library routines also provide a return code. As suggested

in Section 1, the error return value is 0 only if the result is considered to be reliable (i.e. icon < 10000). A value of 1 is

returned if the result may be unreliable (20000  icon < 30000) or if the routine detected an error in the input

arguments (icon  30000).

 The following table shows the range into which the icon value normally falls, and how users should interpret the

reliability of the processing results. A small number of routines return icon values that are negative or larger than 30000.

With such routines, it is important that the user checks the routine documentation for the range of such icon values and

their meaning.

Code Explanation Reliability of result Result

0 Processing terminated normally. Result is reliable as far as the routine

can determine.

Normal

1 - 9999 Processing terminated normally, but additional

information is included.

10000 -

19999

Processing terminated due to an internal restriction

imposed during processing.

The result is reliable, subject to

restrictions.

Warning

20000 -

29999

Processing is stopped due to an error that occurred

during processing.

The result is not to be relied upon. Error

30000 Processing is bypassed due to an error in the input

argument(s).

General Descriptions

 4

How to Use C-SSL II Thread Parallel Capabilities

1. Positions of the CALL statements

 C-SSL II Thread-Parallel Capabilities consist of OpenMP functions which can be called from both inside and outside of

the OpenMP parallel regions in user programs. And these functions also can be called from serial programs without

OpenMP directives, and also they can be called from programs that are auto-parallelized by the C/C++ compiler.

 In cases where the function is called from inside of the parallel region, it is necessary that every actual argument as input

and output, output and work areas which is dealt with by each thread must be mapped to different memory area

respectively.

 In every calling case above, the fcc/FCC command option "-Kopenmp" must be specified at the time the compiled user

program is to be linked with C-SSL II Thread-Parallel Capabilities. The load module can be OpenMP executable with this

option. Refer to "C User’s Guide" for details.

2. How to specify the number of threads

 A function of C-SSL II Thread-Parallel Capabilities is executed by multiple threads in parallel within parallel region

which is created internal of the function. The number of threads used by the function can be assigned by the user with an

OpenMP environment variable "OMP_NUM_THREADS" or a run-time library routine

"omp_set_num_threads()". Usually, specify the number of threads in the former way.

 The run-time library routine can be used in situations where the user wants to assign a specific number of threads for the

parallel region. Specifying the number of threads with this run-time routine just before the C-SSL II Thread-Parallel

function makes it possible to execute the function with a specific number of threads.

 Refer to "C User’s Guide" and "OpenMP Application Program Interface Version2.5 (May 2005)" for details about

OpenMP environment variables and run-time library routines.

3. Size of stack area for each thread

 Some functions of C-SSL II Thread-Parallel Capabilities takes work area internally as auto allocatable array on "stack"

area for each thread. Suppose that the number of threads to be generated is NT and the total available memory size is M, it

is recommended to set the environmental variable OMP_STACKSIZE to about M/(5*NT) as the stack size for each

thread before the execution. When compiler option -Nfjomplib is specified, the environmental variable

THREAD_STACK_SIZE can be set as the stack size. Refer to "C User’s Guide" for details about setting the stack size for

OpenMP executables.

4. Example programs

To call a function from outside of the parallel region
 The example program below solves a system of linear equations with input of a real coefficient matrix of 40004000. If

the environment variable OMP_NUM_THREADS is set to be 4 on the system of 4 processors, execution will be with 4

threads in parallel.

 General Descriptions

 5

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX (4000)
#define LDA (NMAX+1)

MAIN__()
{
 int ip[NMAX];
 int n, is, isw, icon, ierr, i, j;
 double a[NMAX][LDA], b[NMAX];
 double epsz, c, t, s;

 n = NMAX;
 c = sqrt(2.0/(n+1));
 t = atan(1.0)*4.0/(n+1);

 for(i=1; i<=n; i++) {
 for(j=1; j<=n; j++) {
 a[i-1][j-1] = c*sin(t*i*j);
 }
 }

 for(i=1; i<=n; i++) {
 s = 0.0;
 for(j=1; j<=n; j++) {
 s = s+sin(t*i*j);
 }
 b[i-1] = s*c;
 }

 epsz = 0.0;
 isw = 1;
 ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon);

 printf("icon = %d, return code = %d\n", icon, ierr);
 printf("n = %d, b[0] = %f, b[n-1] = %f\n", n, b[0], b[n-1]);

}

To call function from inside of the parallel region
 The example program below solves two independent systems of linear equations. One input of a real coefficient matrix is

40004000, and the other is 42004200. If the environment variable OMP_NUM_THREADS is set to be 2 and

OMP_NESTED is set to be TRUE on the system of 4 processors, each system of linear equation is solved with 2 threads

respectively. The execution will be parallelized with 4 threads total.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX1 (4000)
#define NMAX2 (4200)
#define LDA1 (NMAX1+1)
#define LDA2 (NMAX2+1)

MAIN__()
{
 int ip1[NMAX1], ip2[NMAX2], i, j, num;
 int n1, is1, isw1, icon1, ierr1;
 int n2, is2, isw2, icon2, ierr2;
 double a1[NMAX1][LDA1], b1[NMAX1];
 double a2[NMAX2][LDA2], b2[NMAX2];
 double epsz1, epsz2, c, t, s;

 n1 = NMAX1;
 c = sqrt(2.0/(n1+1));
 t = atan(1.0)*4.0/(n1+1);

 for(i=1; i<=n1; i++) {
 for(j=1; j<=n1; j++) {
 a1[i-1][j-1] = c*sin(t*i*j);
 }
 }

General Descriptions

 6

 for(i=1; i<=n1; i++) {
 s = 0.0;
 for(j=1; j<=n1; j++) {
 s = s+sin(t*i*j);
 }
 b1[i-1] = s*c;
 }

 n2 = NMAX2;
 c = sqrt(2.0/(n2+1));
 t = atan(1.0)*4.0/(n2+1);

 for(i=1; i<=n2; i++) {
 for(j=1; j<=n2; j++) {
 a2[i-1][j-1] = c*sin(t*i*j);
 }
 }

 for(i=1; i<=n2; i++) {
 s = 0.0;
 for(j=1; j<=n2; j++) {
 s = s+sin(t*i*j);
 }
 b2[i-1] = s*c;
 }

#pragma omp parallel default(shared) private(num)
 {
 num = omp_get_thread_num();

 if(num == 0) {
 epsz1 = 0.0;
 isw1 = 1;
 ierr1 = c_dm_vlax((double*)a1, LDA1, n1, b1, epsz1, isw1, &is1, ip1, &icon1);
 } else {
 epsz2 = 0.0;
 isw2 = 1;
 ierr2 = c_dm_vlax((double*)a2, LDA2, n2, b2, epsz2, isw2, &is2, ip2, &icon2);
 }
 }

 printf("icon1 = %d, return code = %d\n", icon1, ierr1);
 printf("n1 = %d, b1[0] = %f, b1[n1-1] = %f\n", n1, b1[0], b1[n1-1]);
 printf("icon2 = %d, return code = %d\n", icon2, ierr2);
 printf("n2 = %d, b2[0] = %f, b2[n2-1] = %f\n", n2, b2[0], b2[n2-1]);
}

Array storage formats

 The methods for storing matrices in arrays depends on the structure and form of the matrices as well as the computation

in which it is involved.

1. Storage formats for general matrices

 When an argument is defined as a matrix, all of the elements of a matrix are assumed significant. A standard 2-D array is

used to store the matrix, so that matrix element aij is stored in array element a[i1][j1]. Matrices are indexed from 1,

which is standard mathematical usage, while array dimensions are indexed from 0, which is standard C. This also applies

to vectors. Again, the mathematical tradition numbers the elements from 1, so that vector element yi would be stored in

array element y[i1].

 Another feature of the 2-D arrays used in the C-SSL II Thread-Parallel Capabilities library is that most routines are

designed so that users can specify a larger memory area for a 2-D array than is required for a particular problem. Consider

the example in Figure 1, where a 5 by 5 matrix A has been stored in an m by k array a. In order for this matrix to be used

in a function call, in addition to the matrix size (in this case 5), it is also necessary to specify k, the number of columns of

a. In the documentation, this is referred to as the C fixed dimension.

 General Descriptions

 7

2524232221

2019181716

1514131211

109876

54321

2524232221

2019181716

1514131211

109876

54321
























A
m

k

5

double a[m][k]

Figure 1 Storage format for general matrices

2. Storage formats for general sparse matrices

ELLPACK storage format
 The ELLPACK storage format is a sparse matrix format that is best suited to those situations where either the matrix

non-zeros are spread over a wide range of the matrix or the matrix diagonals are themselves very sparse (see [40] and [57]

for further details on ELLPACK). Two 2-D arrays are used to represent the matrix. The array referred to as coef in

Figure 2 contains the non-zeros of the matrix, stored so that the i-th column of the array contains the non-zeros on the

matrix row i1 and the array icol contains the matrix column index of the corresponding non-zero element in coef.

Another input variable is iwidt, the maximum number of non-zeros in any row of A. If a row has fewer than iwidt

non-zeros, then the associated column of coef must be padded with zeros. The corresponding elements of icol must

contain the row number of the row in question.

 In Figure 2, row 1 of A has non-zeros in columns 1 and 4. Therefore, coef[0][0] has the value 1 and icol[0][0]

has the value 1, because a11 = 1. Similarly, coef[1][0] has the value 2 and icol[1][0] = 4 , because a14 = 2. Row 3

of matrix A has fewer than iwidt non-zeros. Therefore, coef[1][2] is zero and icol[1][2] = 3. Row 4 of matrix

A is treated similarly. Although not illustrated in the example, the ordering of non-zero elements within a column of coef

is not important, provided that the same ordering is used in icol.

2

4334

1321

0042

6531

0006

0500

0430

2001













































iwidt

icol

coef

A

Figure 2 ELLPACK storage format for sparse matrices

General Descriptions

 8

Diagonal storage format
 The diagonal storage format is effective for those sparse matrices where the non-zero elements all lie along a small

number of diagonals. This format is intended to be used with preconditioned iterative linear equation solvers and it only

stores the main diagonal and those off-diagonals that contain non-zeros. Notice however that all of such diagonals are

stored, including the zero elements.

 Two arrays are used to store this matrix. The first array, referred to as diag in Figure 3, is a 2-D array whose rows contain

the diagonal elements and the second is a 1-D array, referred to as nofst whose i-th element contains the offset of the

diagonal stored in the i-th row of diag. The upper diagonals have a positive offset, the main diagonal an offset of zero

and the lower diagonals a negative offset. There is no special restriction on the order in which the diagonals are stored,

although it is essential that the elements within a diagonal are stored consecutively.

 Also notice that leading zeros on the lower diagonals and trailing zeros on the upper diagonals must be explicitly

included. The reason for these is illustrated in figure 3. For further information, see [49] and [54].

 1210

10740

 0063

 0902

11851

00

0

111000

9870

6054

03210





















































nofst

diag

A

Figure 3 Diagonal storage format for sparse matrices

3. Storage formats for symmetric positive definite sparse matrices

ELLPACK storage format
This version of the ELLPACK storage format is intended to be used with symmetric positive definite matrices, where the

main diagonal has been normalized to ones. There are some important differences between the way elements are stored

for this matrix sub-class and its parent class. In particular, the main diagonal elements are not stored, because they are

assumed to be 1 and the upper triangular non-zeros are stored separately from the lower triangular non-zeros. Both the

upper and lower triangular elements are stored, even though one could be determined from the other. The maximum

number of non-zeros in each row vector of the upper triangular matrix is nsu and the maximum number of non-zeros in

each row vector of the lower triangular matrix is nsl. If nsh = max(nsl, nsu), then the non-zeros of the upper

triangular matrix are stored in rows 0 to nsh  1 and the non-zeros of the lower triangular matrix are stored in rows nsh

to 2 * nsh  1. In other words, occasionally, one or other of the sub-matrix entries will be padded by zeros.

The indexing for non-zeros (and row numbers for explicit zeros in coef) is still in terms of the original matrix. For

instance, in Figure 4, coef[2][2] has the value 6, icol[2][2] has the value 2, so that we know a32 = 6. Similarly,

coef[0][2] has the value 7, icol[0][2] has the value 4, so that a34 = 7.

It is the user’s responsibility to ensure that the normalization of the matrix and right hand sides are correct. To obtain the

solution to Ax = b, obtain the solution to the normalized problem A*y = b*, where A* = D1/2AD1/2 and b* = D1/2b and then

obtain the solution from x = D1/2y, where D is the diagonal matrix containing the inverse of the diagonal elements of A.

 General Descriptions

 9



































































21321

43211

54354

55432

43000

87650

00043

08765

18040

81703

07160

40615

03051

icol

coef

A

Figure 4 ELLPACK storage format for normalized symmetric positive definite sparse matrices

Diagonal storage format
The data structures used for symmetric positive definite matrices is similar to those in the general case. As with the

ELLPACK storage format, only normalized matrices are supported, where the main diagonal of the matrix is assumed to

consist of ones. Therefore, the main diagonal is not explicitly stored because its values are known. An example is

provided in Figure 5. The order in which the diagonals are stored is now important, with the upper diagonals being stored

first in diag. Diagonals are given in order from nearest to the main diagonal for both of the upper and lower triangular

matrices. The entries for the upper diagonals have trailing zeros, so diagonal j will have j trailing zeros. The entries for the

lower diagonals have leading zeros, so diagonal –j will have j leading zeros.

 3131

43000

87650

00043

08765

18040

81703

07160

40615

03051

















































ndlt

diag

A

Figure 5 Diagonal storage format for normalized symmetric positive definite sparse matrices

11

Description of the C-SSL II Routines

c_dm_valu

 12

c_dm_valu

LU decomposition of real matrices (blocked LU decomposition method).

ierr = c_dm_valu(a, k, n, epsz, ip, &is,

&icon);

1. Function

An n  n non-singular matrix A is decomposed by blocked outer product Gaussian elimination.

 PA = LU (1)

where, P is the permutation matrix which exchanges the rows of A by partial pivoting, L is the lower triangular matrix,

and U is the unit upper triangular matrix (n  1).

2. Arguments

The routine is called as follows:

ierr = c_dm_valu((double*)a, k, n, epsz, ip, &is, &icon);

where:

a double

a[n][k]

Input

Output

Matrix A.

Matrices L and U.

k int Input C fixed dimension of array a ( n).

n int Input Order n of matrix A.

epsz double Input Tolerance for relative zero test of pivots during the decomposition of A

( 0). When epsz is zero, a standard value is used. See Comments on

use.

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred

during partial pivoting. See Comments on use.

is int Output Information for obtaining the determinant of matrix A. When the n

elements of the calculated diagonal of array a are multiplied together,

and the result multiplied by is, the determinant is obtained.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 Either all of the elements of some row were zero

or the pivot became relatively zero. It is highly

probable that the coefficient matrix is singular.

Discontinued.

30000 One of the following has occurred:

 k < n

 n < 1

 epsz < 0

Bypassed.

 c_dm_valu

 13

3. Comments on use

epsz
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A = (aij), that is:

epsz ij
k
kk aa max

then the relative pivot value is assumed to be zero and processing terminates with icon = 20000. The standard value of

epsz is 16µ, where µ is the unit round off. If the processing is to proceed at a lower pivot value, epsz will be given the

minimum value but the result is not always guaranteed.

ip
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting. In this

function, the elements of the array a are actually exchanged in partial pivoting. In the J-th stage (J = 1, ... , n) of

decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-

th row are exchanged. Then, in order to record the history of this exchange, I is stored in ip[j-1].

How to use this function
The linear equation can be solved by calling function c_dm_vlux following this function. Normally, the linear equation

can be solved in one step by calling function c_dm_vlax.

4. Example program

LU decomposition is executed by inputting a real 4000  4000 matrix.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)

MAIN__()
{
 int n, is, isw, i, j, icon, ierr;
 int ip[NMAX];
 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;

 n = NMAX;
 epsz = 0.0;
 isw = 1;

#pragma omp parallel for shared(a,n) private(i,j)
 for(i=0; i<n; i++)
 for(j=0; j<n; j++) a[i][j] = min(i,j)+1;

#pragma omp parallel for shared(b,n) private(i)
 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);

 ierr = c_dm_valu((double*)a, LDA, n, epsz, ip, &is, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_valu failed with icon = %d\n", icon);
 exit(1);
 }

 ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, &icon);

c_dm_valu

 14

 if (icon != 0) {
 printf("ERROR: c_dm_vlux failed with icon = %d\n", icon);
 exit(1);
 }

 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
 for(i=0; i<n; i++) s *= a[i][i];

 printf("solution vector:\n");
 for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

 det = is*s;
 printf("\ndeterminant of the matrix = %e\n", det);
 return(0);
}

5. Method

Consult the entry for DM_VALU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and

[52].

 c_dm_vamlid

 15

c_dm_vamlid

System of linear equations with sparse matrices of M-matrix

(Algebraic multilevel iteration method [AMLI Method], diagonal format

storage method).

ierr = c_dm_vamlid(a, k, ndiag, n, nofst, b,

isw, iguss, info, epsot, epsin, x,

w, nw, iw, niw, &icon);

1. Function

This routine solves, using the iterative method, a system of linear equations with sparse matrices of M-matrix as

coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the diagonal format storage method. Vectors b and x are n-dimensional

vectors.

The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-symmetric. The iteration (called outer

iteration) is preconditioned by the algebraic multilevel iteration method (called AMLI) which requires the solution of

small linear system that is also solved iteratively (called inner iteration), and stable. (In the preconditioner of the algebraic

multilevel iteration method, the generated linear system becomes smaller as the level is deeper.)

2. Arguments

The routine is called as follows:

ierr = c_dm_vamlid((double*)a, k, ndiag, n, nofst, b, isw, iguss, info, epsot,

epsin, x, w, nw, iw, niw, &icon);

where:

a double

a[n][k]

Input The nonzero elements of a coefficient matrix A are stored in a.

k int Input C fixed dimension of array a ( n).

ndiag int Input Number of columns in array a and size of array nofst. Must be equal

to the number of nonzero diagonals in matrix A.

n int Input Order n of matrix A.

nofst int

nofst[ndiag]

Input Offsets of diagonals of A stored in array a. Main diagonal has offset 0,

subdiagonals have negative offsets, and superdiagonals have positive

offsets.

b double b[n] Input The right-side constant vectors of a system of linear equations are stored.

isw int Input Control information. See Comments on use.

 1 Initial calling.

 2 Second or subsequent calling.

The arrays, a, iw and w, must NOT be changed if the routine is

called again with isw = 2.

iguss int Input Control information specifying whether iterative computation is to be

c_dm_vamlid

 16

performed using the approximate values of the solution vectors specified

in array x.

 iguss = 0 the approximate values of the solution vectors are not

specified and set to zero by c_dm_vamlid.

 iguss  0 the iterative computation is performed using the

approximate values of the solution vectors specified in

array x.

info int info[14] Input /

Output

The control information of the iteration.

For example, for symmetric coefficient matrix A, info is set as follows;

 info[0] = 1; info[1] = NTHRD*100; info[2] = 0;

 info[4] = 1; info[5] = 2000; info[9] = 1;

 info[10]= 1000;

For example, for unsymmetric coefficient matrix A, info is set as

follows;

 info[0] = 1; info[1] = NTHRD*100; info[2] = 0;

 info[4] = 2; info[5] = 2000; info[6] = 5;

 info[7] = 20; info[9] = 2; info[10]= 1000;

 info[11]= 10; info[12]= 0;

Where NTHRD is the number of threads which are executed in parallel.

See Comments on use.

 info[0] Input MAXLVL.

Maximal number of levels in the algebraic

multilevel iteration method.

MAXLVL < 0 The optimal level evaluated

internally is used.

MAXLVL = 0 The multi-level method is not

used.

MAXLVL > 0 The coarser level than the

specified depth is not used.

 info[1] Input MINUK.

Minimal number of unknowns for the smallest

linear system in the deepest level in the inner

iteration. It is recommendable to set MINUK

very larger than the number of threads NTHRD

and very smaller than n. For example,

100NTHRD.

 info[2] Input NORM.

The type of normalization.

NORM < 1 The matrix is normalized from the

right and the left by the inverse of the square

root of the main diagonal of A. This effects that

the main diagonal of the normalized matrix A

is equal to one and the matrix is symmetric if A

is symmetric.

It is recommendable to use symmetrical

normalization. However, in some cases the

 c_dm_vamlid

 17

non-symmetrical normalization can produce

faster convergence. Criterion value for

judgment of convergency.

NORM  1 The matrix is normalized from the

left by the inverse of the main diagonal of A.

This effects that the main diagonal is equal to

one but the normalized matrix will be non-

symmetric even if the matrix A is symmetric.

 info[3] Output Number of levels.

 info[4] Input METHOT.

The iterative method used in the outer iteration.

METHOT = 1 Preconditioned ORTHOMIN is

used. It should be used if the matrix A is

symmetric and a symmetrical normalization is

used.

METHOT  1 Restarted and truncated

GMRES is used. It should be used if the matrix

A is non-symmetric or a non-symmetrical

normalization is used.

 info[5] Input ITMXOT.

The maximal number of iteration steps in the

outer iteration, for example 2000. If the

maximum iteration number of outer iteration is

reached the processing is terminated and the

returned solution does not fulfill the stopping

criterion.

 info[6] Input NRESOT.

The number of residuals in the

orthogonalization procedure of the outer

iteration, i.e. truncation after NRESOT

residuals. For example , 5. Only used if

GMRES is applied.

 info[7] Input NRSTOT.

After NRSTOT iteration steps the outer

iteration is restarted. For example , 20. If it is

NRSTOT < 1 there is no restart. Only used if

GMRES is applied.

 info[8] Output ITEROT.

The number of iteration steps in the outer

iteration procedure.

 info[9] Input METHIN.

The iterative method used in the inner iteration.

METHIN = 1 Preconditioned ORTHOMIN is

used. It should be used if the matrix A is

symmetric and a symmetrical normalization is

used.

c_dm_vamlid

 18

METHIN  1 Restarted and truncated

GMRES is used. It should be used if the matrix

A is non-symmetric or a non-symmetrical

normalization is used.

 info[10] Input ITMXIN.

The maximal number of iteration steps in the

inner iteration, for example 1000.

If ITMXIN is reached the processing is

continued on the outer iteration.

 info[11] Input NRESIN.

The number of residuals in the

orthogonalization procedure of the inner

iteration, ie. truncation after NRESIN

residuals. For example, 10. Only used if

GMRES is applied.

 info[12] Input NRSTIN.

After NRSTIN iteration steps the inner iteration

is restarted.

Only used if GMRES is applied. If it is

NRSTIN < 1 there is no restart.

 info[13] Output The average number of the inner iteration.

epsot double Input The desired accuracy for the solution. The outer iteration is stopped in

the k-th iteration step if the normalized kkk bxAr ˆˆˆ  residual of the

current approximation xk satisfies the condition br ˆˆ epsotk

where yyy T2  denotes the Euclidean norm Â and b̂ are the

coefficient matrix and the right hand side of the normalized linear

system.

epsin double Input The tolerance for the inner iteration. Normally 103 is optimal.

x double x[n] Input The approximate values of solution vectors can be specified.

 Output Solution vectors are stored.

w double w[nw] Work

nw int Input Size of the work array w.

nw  NT  (3  NAMAX  5)  3  (NLVL  1)  NBAND  MAXT 

max(NAMAX  NT, 7  NT + LR0)

MAXT is the maximum number of threads which are created in this

routine.

NT = n  MAXT.

NBAND is the maximum of the lower and upper bandwidth of the matrix.

NLVL is the number of levels in the algebraic multilevel iteration

method.

When MAXLVL < 0, NLVL is 10.

NAMAX  ndiag.

if ORTHOMIN is used:

 LR0 = 4  NT.

if GMRES is used:

 NRES = max(NRESOT, NRESIN).

 c_dm_vamlid

 19

 LR0 = (2  NRES  1)  NT.

See Comments on use.

iw int iw[niw] Work

niw int Input Size of the work array iw.

niw  MAXT  ((6  MAXT  12  NAMAX)  (NLVL  1)  8  NBAND

 3000)  4  (n  MAXT)

MAXT is the maximum number of threads which are created in this

routine.

NT = n  MAXT.

NBAND is the maximum of the lower and upper bandwidth of the matrix.

NLVL is the number of levels in the algebraic multilevel iteration

method.

When MAXLVL < 0, NLVL is 10.

NAMAX  ndiag.

See Comments on use.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

10700 Vector v pos could not be found. Processing is used with v pos = (1, 1, ... , 1).

10800 Curable break down in GMRES. Processing is continued.

20001 Stopping criterion could not be reached within the

given number of iteration steps.

Processing is discontinued.

The approximate value obtained is output in array

x, but the precision is not assured.

20003 Non-curable break down in GMRES. Processing is discontinued.

20005 Non-curable break down in ORTHOMIN by

pT A p = 0 with p  0.

20006 Non-curable break down in ORTHOMIN by

pT r = 0.

30000 One of the following has occurred:

 n < 1

 n > k

 ndiag < 1

 isw  1, 2

30104 |nofst[i]| > n1

30105 Main diagonal is missed.

30200 Matrix is not an M-matrix.

30210 Matrix condensation fails by non-positive value.

30212 There is a zero entry on the main diagonal.

30310 Too small integer work array.

30320 Too small real work array.

c_dm_vamlid

 20

3. Comments on use

M-matrix
A coefficient matrix arising from order two finite difference discretization or, in some cases, from order one finite element

discretization of an elliptical boundary value problem is an M-matrix. It can be produced using the routines for

discretization of a boundary value problem for second order partial differential equation (c_dm_vpde2d, c_dm_vpde3d).

To be an M-matrix means that

 All main diagonal entries are positive ai, i > 0 for all i = 1, ... , n and all other entries are non-positive ai, j  0

for all i, j = 1, ... , n with i  j.

 There is a positive vector v pos so Av pos is positive.

If the first condition is not fulfilled, processing is not continued with icon = 30200. This routine can not find the vector

vpos (icon = 10700) it is set v pos = (1, ... , 1) the matrix A is assumed and processing is continued with the risk of a

breakdown in AMLI with icon = 30212, 30210 or slow convergence or breakdowns in the outer or inner iteration.

To define the coarse levels the rectangular grid used to assemble the coefficient matrix is recovered. If the recovering is

not successful there can be a breakdown in AMLI with icon = 30212, 30210, a disproportionately increase of the

number of diagonals in the coarser levels or slow convergence or breakdowns in the outer or inner iteration.

isw
When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isw =

1 in the first call and isw = 2 in the second and all subsequent calls. Then the coarse level matrices assembled in the first

call are reused.

NAMAX
Normally it is sufficient to set NAMAX = ndiag in the formulas for the length for the work arrays. It can happen that the

number of diagonals in the coarse level matrices is larger than the number of diagonals in the given matrix. In this case

NAMAX has to be increased.

ORTHOMIN
It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine

removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration

matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical

normalization first if there is a chance that the iteration matrix is symmetric.

GMRES
If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES.

Normally it is sufficient to truncate after NRESOT = 5 residuals and to restart after 20 steps in the outer iteration. In the

inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of

iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required.

Then it is necessary to increase NRES in the formula for the length workspace nw but, NRES can be set to a smaller value

than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger.

But it requires longer computation time and larger amount of memory.

The optimal number of levels
This routine tries to find the optimal number of levels. In some rare applications the computing time can be reduced by

setting the number of levels by hand but normally the improvements are not significant.

 c_dm_vamlid

 21

Preconditioning
The preconditioner bases on a nested incomplete block factorizations using the Schur complement. The matrix An(n=

1, ... , MAXLVL1) of each level can be blocked as follows choosing the sets of eliminated unknown from the

coordination in a virtual grid:











2221

1211

AA

AA
An

And define a matrix 12
1

112122 AAAAS  , which is called Schur complement. An can be factorized as follows:
























S0

AAI
IA

0A
A 12

1
11

21

11
n

The matrix An+1of next level n+1 can be regarded as a Schur complement matrix with approximating the 1
11
A to a

diagonal matrix. These incomplete factorization are used for preconditioning in this routine.

4. Example program

The partial differential equation

1
2

2

2

1
2

2



















 cu
x

u

x

u

is solved on the domain [0, 1]2. Dirichlet boundary conditions are set to u = 0.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define MAXT 4
#define N1 1281
#define N2 1537
#define NLVL 10
#define L1 (N1)
#define L2 (N2)
#define KA (N1*N2)
#define NA 5
#define NW ((3*NA+5)*(KA+MAXT)+3*(NLVL+1)*N1*MAXT+11*(KA+MAXT))
#define NIW (((6*MAXT+12*NA)*(NLVL+1)+8*N1+2000)*MAXT+4*(KA+MAXT))

int MAIN__()
{
 double a[NA][KA], b[KA], u[KA], sol[3*N1*N2], rhs[N1*N2], rhsc[N1*N2];
 double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1];
 double c[L2][L1], f[L2][L1], w[NW], epsin, epsot, tmp;
 int nofst[NA], info[100], iw[NIW];
 int z1, z2, ndiag, n, isw, iguss, nband, i, z, icon;

 /* CREATE NODE COORDINATES */
 for (z1=0; z1<N1; z1++) {
 x1[z1] = (double)(z1)/(double)(N1-1);
 }

 for (z2=0; z2<N2; z2++) {
 x2[z2] = (double)(z2)/(double)(N2-1);
 }

 /* COEFFICIENTS IN THE PARTIAL DIFFERENTIAL EQUATION : */
 for (z2=0; z2<N2; z2++) {
 for (z1=0; z1<N1; z1++) {
 a1[z2][z1] = 1.0;
 a2[z2][z1] = 1.0;
 b1[z2][z1] = 0.0;

c_dm_vamlid

 22

 b2[z2][z1] = 0.0;
 c[z2][z1] = 1.0;
 f[z2][z1] = 1.0;
 }

 /* DIRICHLET BOUNDARY CONDITIONS: */
 c[z2][0] = 1.0;
 f[z2][0] = 0.0;
 c[z2][N1-1] = 1.0;
 f[z2][N1-1] = 0.0;

 if (z2 == 0) {
 for (z1=0; z1<N1; z1++) {
 c[0][z1] = 1.0;
 f[0][z1] = 0.0;
 }
 }

 if (z2 == N2-1) {
 for (z1=0; z1<N1; z1++) {
 c[N2-1][z1] = 1.0;
 f[N2-1][z1] = 0.0;
 }
 }
 }

 n = N1*N2;
 c_dm_vpde2d((double*)a1, L1, N1, N2, (double*)a2, x1, x2, (double*)b1,
 (double*)b2, (double*)c, (double*)f, (double*)a, KA, NA, n,
 &ndiag, nofst, b, &icon);
 printf("icon of c_dm_vpde2d = %d\n", icon);

 for (z=0; z<n; z++) {
 rhs[z] = b[z];
 }

 nband = 0;
 for (i=0; i<ndiag; i++) {
 nband = max(nband,fabs(nofst[i]));
 }

 /* CALL DAMLI: */
 isw = 1;
 iguss = 0;

 info[0] = -1;
 info[1] = MAXT*100;
 info[2] = 0;
 info[4] = 1;
 info[5] = 2000;
 info[9] = 1;
 info[10] = 1000;

 epsot = 1e-6;
 epsin = 1e-3;

 c_dm_vamlid((double*)a, KA, ndiag, n, nofst, b, isw, iguss, info, epsot, epsin, u,
 w, NW, iw, NIW, &icon);
 printf("icon of c_dm_vamlid = %d\n", icon);

 for (i=0; i<nband; i++) {
 sol[i] = 0.0;
 sol[nband+n+i-1] = 0.0;
 }

 for (z=0; z<n; z++) {
 sol[nband+z] = u[z];
 }

 c_dm_vmvsd((double*)a, KA, ndiag, n, nofst, nband, sol, rhsc, &icon);

 tmp = 0.0;
 for (z=0; z<n; z++) {
 tmp = max(tmp,fabs((rhs[z]-rhsc[z])/(rhs[z]+1.0)));
 }

 printf("error = %e\n", tmp);
 return(0);
}

 c_dm_vamlid

 23

5. Method

Consult the entry for DM_VAMLID in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vbcscc

 24

c_dm_vbcscc

System of linear equations with unsymmetric or indefinite sparse

matrices (Bi-Conjugate Gradient Stabilized (l) [BICGSTAB(l)] method,

compressed column storage method)

ierr = c_dm_vbcscc(a, nz, nrow, nfcnz, n, b,

itmax, eps, iguss, l, x, &iter, w,

(int*)iw, &icon);

1. Function

 This routine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient Stabilized(l) method, a system of linear

equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the compressed column storage method. Vectors b and x are n-dimensional

vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 "Iterative linear equation

solvers and Convergence," in Part I, "Outline," in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

ierr = c_dm_vbcscc(a, nz, nrow, nfcnz, n, b, itmax, eps, iguss, l, x, &iter,

w, (int*)iw, &icon);

where:

a double a[nz] Input The non-zero elements of a coefficient matrix are stored. The non-zero

elements of a sparse matrix are stored in a[i], i=0, …, nz-1. For an

explanation of the compressed column storage method, see Figure

c_dm_vmvscc-1 in the description of a c_dm_vmvscc routine,

"Multiplication of a real sparse matrix and a real vector (compressed

column storage method)".

nz int Input The total number of the nonzero elements belong to a coefficient matrix

A.

nrow int nrow[nz] Input The row indices used in the compressed column storage method, which

indicate the row number of each nonzero element stored in an array a.

nfcnz int

nfcnz[n+1]

Input The position of the first nonzero element stored in an array a by the

compressed column storage method which stores the nonzero elements

column by column.

nfcnz[n] = nz + 1

n int Input Order n of matrix A.

b double b[n] Input Constant vector b.

itmax int Input Upper limit of iterations in BICGSTAB(l).(> 0) The value of

itmax should usually be set to about 2000.

 c_dm_vbcscc

 25

eps double Input Criterion value for judgment of convergence.

When eps is zero or less, eps is set to 106. See Comments on use.

iguss int Input Control information specifying whether iterative computation is to be

performed using the approximate values of the solution vectors specified

in array x.

iguss = 0 : Approximate value of the solution vector is not specified.

iguss  0 : The iterative computation starts from the approximate value

of the solution vector specified in array x.

l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8)

The value of l should usually be set to 1 or 2. See Comments on use.

x double x[n] Input The approximate values of solution vectors can be specified in x[i-1],

1  i  n.

 Output Solution vector x.

iter int Output Number of iteration performed using the BICGSTAB(l) method.

w double w[nz] Work

iw int iw[nz][2] Work

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 Break-down occurred. Processing stopped.

20001 Reached the set maximum number of iterations. Processing is discontinued. The already calculated

approximate value is output to array x, but its

precision is not assured.

30000 One of the following has occurred:

 n < 1

 nz < 0

 nfcnz[n] nz+1

 itmax  0

 l < 1

 l > 8

Bypassed.

3. Comments on use

Convergent criterion
When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the

value of eps, it is assumed that the solution converged. The error between the correct solution and the calculated

approximate solution is roughly equal to the product of the matrix A condition number and the value of eps.

l
When l is set to one, the algorithm is same as that of BICGSTAB method. As the value of l is lager, the cost of one

iteration becomes larger however the total number of iteration is reduced. Consequently in some cases it becomes faster

with larger l.

c_dm_vbcscc

 26

4. Example program

The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic

equation.

fuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 and a3 are some constants. The

matrix A in Diagonal format is generated by the function init_mat_diag. Then it is converted into the storage scheme in

compressed column storage.

 #include <stdlib.h>
 #include <stdio.h>
 #include <math.h>
 #include "cssl.h" /* standard C-SSL header file */

 #define NORD (60)
 #define NX (NORD)
 #define NY (NORD)
 #define NZ (NORD)
 #define N (NX*NY*NZ)
 #define K (N+1)
 #define NDIAG (7)
 #define L (4)

 MAIN__()
 {
 int ierr, icon, iguss, iter, itmax;
 int nord, n, l, i, j, k;
 int nx, ny, nz, nnz;
 int length, nbase, ndiag;
 int numnz, ntopcfg, ncol;
 int nofst[NDIAG];
 int nrow[K*NDIAG];
 int nfcnz[N+1];
 int iw[K*NDIAG][2];

 double eps;
 double va1, va2, va3, vc;
 double err1, err2, err3, err4;
 double xl, yl, zl;
 double diag[NDIAG][K];
 double diag2[NDIAG][K];
 double a[K*NDIAG];
 double b[N];
 double w[K*NDIAG];
 double x[N];
 double solex[N];
 double y[N];

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl,double zl, int ndiag, int len, int ndivp);

 double errnrm(double *x1, double *x2, int len);

 nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG, l=L;

 printf(" BICGSTAB(L) METHOD\n");
 printf(" COMPRESSED COLUMN STORAGE\n");
 printf("\n");

 for (i=1; i<=n; i++){
 solex[i-1]=1.0;
 }
 printf(" EXPECTED SOLUTIONS\n");
 printf(" X(1) = %f X(N) = %f\n", solex[0], solex[n-1]);
 printf("\n");

 va1 = 3.0;
 va2 = 1.0/3.0;
 va3 = 5.0;
 vc = 1.0;
 xl = 1.0;
 yl = 1.0;

 c_dm_vbcscc

 27

 zl = 1.0;
 init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
 nx, ny, nz, xl, yl, zl, ndiag, n, k);

 for (i=1; i<=ndiag; i++){
 if (nofst[i-1] < 0){
 nbase=-nofst[i-1];
 length=n-nbase;
 for (j=1; j<=length; j++){
 diag2[i-1][j-1]=diag[i-1][nbase+j-1];
 }
 }
 else{
 nbase=nofst[i-1];
 length=n-nbase;
 for (j=nbase+1; j<=n; j++){
 diag2[i-1][j-1]=diag[i-1][j-nbase-1];
 }
 }
 }

 numnz=1;
 for (j=1; j<=n; j++){
 ntopcfg = 1;
 for (i=ndiag; i>=1; i--){
 if (diag2[i-1][j-1]!=0.0){
 ncol=j-nofst[i-1];
 a[numnz-1]=diag2[i-1][j-1];
 nrow[numnz-1]=ncol;
 if (ntopcfg==1){
 nfcnz[j-1]=numnz;
 ntopcfg=0;
 }
 numnz=numnz+1;
 }
 }
 }
 nfcnz[n]=numnz;
 nnz=numnz-1;

 for (i=1; i<=n; i++){
 x[i-1]=0.0;
 }

 ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, solex, b, w, (int*)iw, &icon);
 err1 = errnrm(solex,x,n);

 ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon);
 err2 = errnrm(y,b,n);

 iguss = 0;
 itmax = 2000;
 eps = 1.0e-8;

 ierr = c_dm_vbcscc(a, nnz, nrow, nfcnz, n, b, itmax, eps, iguss, l,
 x, &iter, w, (int*)iw, &icon);
 err3 = errnrm(solex,x,n);

 ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon);
 err4 = errnrm(y,b,n);

 printf(" COMPUTED VALUES\n");
 printf(" X(1) = %f X(N) = %f\n", x[0], x[n-1]);
 printf("\n");
 printf(" c_dm_vbcscc ICON = %d\n", icon);
 printf("\n");
 printf(" N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
 printf(" ITER MAX = %d\n",itmax);
 printf(" ITER = %d\n",iter);
 printf("\n");
 printf(" EPS = %e\n",eps);
 printf("\n");
 printf(" INITIAL ERROR = %f\n",err1);
 printf(" INITIAL RESIDUAL ERROR = %f\n",err2);
 printf(" CRITERIA RESIDUAL ERROR = %e\n",err2 * eps);
 printf("\n");
 printf(" ERROR = %e\n",err3);
 printf(" RESIDUAL ERROR = %e\n",err4);
 printf("\n");
 printf("\n");

c_dm_vbcscc

 28

 if (err4<=(err2*eps*1.1) && icon==0){
 printf("********** OK **********\n");
 }
 else{
 printf("********** NG **********\n");
 }
 }

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl, double zl, int ndiag, int len, int ndivp)
 {
 int i, l, j;
 int length, numnz, js;
 int i0, j0, k0;
 int ndiag_loc;
 int nxy;

 double hx, hy, hz;
 double x1, x2;
 double base;
 double ret, remark;

 if (ndiag<1){
 printf("FUNCTION INIT_MAT_DIAG:\n");
 printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
 return;
 }
 ndiag_loc = ndiag;
 if (ndiag>7){
 ndiag_loc=7;
 }

 hx = xl / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);

 for (i=1; i<=ndivp; i++){
 for (j=1; j<=ndiag; j++){
 d_l[i-1+(j-1)*ndivp]= 0.;
 }
 }

 nxy = nx * ny;
 l = 1;
 if (ndiag_loc >= 7) {
 offset[l-1] = -nxy;
 ++l;
 }
 if (ndiag_loc >= 5) {
 offset[l-1] = -nx;
 ++l;
 }
 if (ndiag_loc >= 3) {
 offset[l-1] = -1;
 ++l;
 }
 offset[l-1] = 0;
 ++l;
 if (ndiag_loc >= 2) {
 offset[l-1] = 1;
 ++l;
 }
 if (ndiag_loc >= 4) {
 offset[l-1] = nx;
 ++l;
 }
 if (ndiag_loc >= 6) {
 offset[l-1] = nxy;
 }

 for (j = 1; j <= len; ++j) {
 js=j;
 k0 = (js - 1) / nxy + 1;
 if (k0 > nz) {
 printf("ERROR; K0.GH.NZ\n");
 return;
 }
 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 c_dm_vbcscc

 29

 l = 1;
 if (ndiag_loc >= 7) {
 if (k0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
 }
 ++l;
 }

 if (ndiag_loc >= 5) {
 if (j0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 3) {
 if (i0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
 }
 ++l;
 }

 d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
 if (ndiag_loc >= 5) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
 if (ndiag_loc >= 7) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
 }
 }
 ++l;
 if (ndiag_loc >= 2) {
 if (i0 < nx) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
 }
 ++l;
 }

 if (ndiag_loc >= 4) {
 if (j0 < ny) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 6) {
 if (k0 < nz) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
 }
 }
 }
 return;
 }

 double errnrm(double *x1, double *x2, int len)
 {
 double ret_val;

 int i;
 double s, ss;

 s = 0.;
 for (i = 1; i <= len; ++i) {
 ss = x1[i-1] - x2[i-1];
 s += ss * ss;
 }
 ret_val = sqrt(s);
 return ret_val;
 }

5. Method

Consult the entry for DM_VBCSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67]

and [73].

c_dm_vbcsd

 30

c_dm_vbcsd

System of linear equations with unsymmetric or indefinite sparse

matrices

(BICGSTAB(l) method, diagonal format storage method).

ierr = c_dm_vbcsd(a, k, ndiag, n, nofst, b,

itmax, eps, iguss, l, x, &iter,

&icon);

1. Function

This function solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient Stabilized(l) method, a system of linear

equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the diagonal format storage method. Vectors b and x are n-dimensional

vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

ierr = c_dm_vbcsd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x,

&iter, &icon);

where:

a double

a[ndiag][k]

Input Sparse matrix A stored in diagonal storage format. See Comments on

use.

k int Input C fixed dimension of array a ( n).

ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements.

n int Input Order n of matrix A.

nofst int

nofst[ndiag]

Input Distance from the main diagonal vector corresponding to diagonal

vectors in array a. Super-diagonal vector rows have positive values.

Sub-diagonal vector rows have negative values. See Comments on use.

b double b[n] Input Constant vector b.

itmax int Input Upper limit of iterations in BICGSTAB(l).(> 0)

eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 106. See Comments on use.

iguss int Input Control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array x.

iguss = 0 : Approximate value of the solution vector is not specified.

iguss  0 : The iterative computation starts from the approximate value

of the solution vector specified in array x.

 c_dm_vbcsd

 31

l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8)

The value of l should usually be set to 1 or 2. See Comments on use.

x double x[n] Input The starting values for the computation. This is optional and relates to

argument iguss.

 Output Solution vector x.

iter int Output Number of iteration performed using the BICGSTAB(l) method.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 Break-down occurred. Processing stopped.

20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this

stage is returned, but its precision is not

guaranteed.

30000 One of the following has occurred:

 n < 1

 k < 1

 n > k

 l < 1

 l > 8

 ndiag < 1

 ndiag > k

 itmax  0

Bypassed.

32001 abs(nofst[i]) > n1; 0  i < ndiag

3. Comments on use

Convergent criterion
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual

Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and the obtained

approximation is roughly equal to the product of the condition number of Matrix A and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

l
The maximum value of l is set to 8. For l=1, this algorithm coincides with BiCGSTAB. Using smaller l usually results

in faster speed, but in some situations larger l brings a good convergence, although the steps of an iteration are more

expensive for larger l.

Notes on using the diagonal format
A diagonal vector element outside coefficient matrix A must be set to zero.

There is no restriction in the order in which diagonal vectors are stored in array a.

c_dm_vbcsd

 32

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of

indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this

method.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the

resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX (1000)
#define UBANDW (2)
#define LBANDW (1)
#define NDIAG (UBANDW + LBANDW + 1)
#define L (2)

MAIN__()
{
 double one=1.0, bcoef=10.0, eps=1.e-6;
 int ierr, icon, nub, nlb, n, i, j, k;
 int itmax, iguss, iter;
 int nofst[NDIAG];
 double a[NDIAG][NMAX], b[NMAX], x[NMAX];

 nub = UBANDW;
 nlb = LBANDW;
 n = NMAX;
 k = NMAX;

 /* Set A-mat & b */
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }

 for (i=1; i<=nlb; i++) {
 for (j=0 ; j<i+1; j++) a[nub+i][j] = 0.0;
 for (j=i+1; j<n ; j++) a[nub+i][j] = -2.0;
 nofst[nub+i] = -i;
 }
 nofst[0] = 0;

 for (j=0; j<n; j++) {
 b[j] = bcoef;
 a[0][j] = bcoef;
 for (i=1; i<NDIAG; i++) b[j] += a[i][j];
 }

 /* solve the nonsymmetric system of linear equations */
 itmax = n;
 iguss = 0;
 ierr = c_dm_vbcsd ((double*)a, k, NDIAG, n, nofst, b, itmax, eps,
 iguss, L, x, &iter, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vbcsd failed with icon = %d\n", icon);
 exit(1);
 }

 /* check result */
 for (i=0;i<n;i++) {
 if (fabs(x[i]-one) > eps*10.0) {
 printf("WARNING: result maybe inaccurate\n");
 exit(1);
 }
 }
 printf("Result OK\n");
 return(0);
}

 c_dm_vbcsd

 33

5. Method

Consult the entry for DM_VBCSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67]

and [73]

c_dm_vbcse

 34

c_dm_vbcse

System of linear equations with unsymmetric or indefinite sparse

matrices

(BICGSTAB(l) method, ELLPACK format storage method).

ierr = c_dm_vbcse(a, k, iwidt, n, icol, b,

itmax, eps, iguss, l, x, &iter,

&icon);

1. Function

This function solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient Stabilized(l) method, a system of linear

equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the ELLPACK format storage method. Vectors b and x are n-dimensional

vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

ierr = c_dm_vbcse((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss,

l, x, &iter, &icon);

where:

a double

a[iwidt][k]

Input Sparse matrix A stored in ELLPACK storage format.

k int Input C fixed dimension of array a and icol ( n).

iwidt int Input The maximum number of non-zero elements in any row vectors of A

( 0).

n int Input Order n of matrix A.

icol int

icol[iwidt][k]

Input Column indices used in the ELLPACK format, showing to which

column the elements corresponding to a belong.

b double b[n] Input Constant vector b.

itmax int Input Upper limit of iterations in BICGSTAB(l) method.(> 0)

eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 106. See Comments on use.

iguss int Input Control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array x.

iguss = 0 : Approximate value of the solution vector is not set.

iguss  0 : The iterative computation starts from the approximate

value of the solution vector specified in array x.

l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8)

 c_dm_vbcse

 35

The value of l should usually be set to 1 or 2. See Comments on use

x double x[n] Input The starting values for the computation. This is optional and relates to

argument iguss.

 Output Solution vector x.

iter int Output The real number of iteration steps in BICGSTAB(l) method.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 Break-down occurred Processing stopped.

20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this

stage is returned, but its precision is not

guaranteed.

30000 One of the following has occurred:

 n < 1

 k < 1

 n > k

 l < 1

 l > 8

 iwidt < 1

 iwidt > k

 itmax  0

Bypassed.

30001 The band width is zero.

3. Comments on use

Convergent criterion
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual

Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and obtained

approximate solution is equal to the product of the condition number of matrix A and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

l
The maximum value of l is set to 8. For l=1, this algorithm coincides with BiCGSTAB. Using smaller l usually results

in faster speed, but in some situations larger l brings a convergence, although the steps of a iteration are more expensive

for larger l.

4. Example program

This example program initializes A and x, and calculates b by multiplication. The library routine is then called and the

resulting x vector is checked against the original version.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

c_dm_vbcse

 36

#include "cssl.h" /* standard C-SSL header file */

#define NMAX (1000)
#define UBANDW (2)
#define LBANDW (1)
#define IWIDT (UBANDW + LBANDW + 1)
#define L (2)

MAIN__()
{
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
 int ierr, icon, nlb, nub, n, k, itmax, iguss, iter, i, j, ix;
 int icol[IWIDT][NMAX];
 double a[IWIDT][NMAX], b[NMAX], x[NMAX];

 nub = UBANDW;
 nlb = LBANDW;
 n = NMAX;
 k = NMAX;
 for (i=0; i<IWIDT; i++)
 for (j=0; j<n; j++) {
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }

 /* Set A-mat & b */
 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = bcoef;
 b[j] = bcoef+(double)j*lcf+(double)nub*ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }

 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef;
 b[j] = bcoef+(double)nlb*lcf+(double)nub*ucf;
 for (i=nlb+1; i<IWIDT; i++) a[i][j] = ucf;
 for (i=0; i<IWIDT; i++) icol[i][j] = i+1+j-nlb;
 }

 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef;
 b[j] = bcoef+(double)nlb*lcf+(double)(n-j-1)*ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }

 /* solve the nonsymmetric system of linear equations */
 itmax = 2000;
 iguss = 0;
 ierr = c_dm_vbcse ((double*)a, k, IWIDT, n, (int*)icol, b, itmax,
 eps, iguss, L, x, &iter, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vbcse failed with icon = %d\n", icon);
 exit(1);
 }

 /* check result */
 for (i=0; i<n; i++) {
 if (fabs(x[i]-one) > eps*10.0) {
 printf("WARNING: result maybe inaccurate\n");
 exit(1);
 }
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for DM_VBCSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67]

and [73].

 c_dm_vblu

 37

c_dm_vblu

LU decomposition of banded real matrices (Gaussian elimination).

ierr = c_dm_vblu(a, k, n, nh1, nh2, epsz, &is,

ip, &icon);

1. Function

This routine executes LU decomposition for banded matrix A of n  n, lower bandwidth h1, and upper bandwidth h2 using

Gaussian elimination.

 PA = LU

where, P is the permutation matrix of the row vector, L is the unit lower banded matrix, and U is the upper banded matrix.

n > h1  0, n > h2  0.

2. Arguments

The routine is called as follows:

ierr = c_dm_vblu((double*)a, k, n, nh1, nh2, epsz, &is, ip, &icon);

where:

a double

a[n][k]

Input Store banded coefficient matrix A.

See Figure c_dm_vblu-1.

 Output LU-decomposed matrices L and U are stored.

See Figure c_dm_vblu-2.

The value of a is not assured after operation.

k int Input C fixed dimension of array a ( 2  nh1 + nh2 + 1).

n int Input Order n of matrix A.

nh1 int Input Lower bandwidth size h1.

nh2 int Input Upper bandwidth size h2.

epsz double Input Judgment of relative zero of the pivot ( 0.0). When epsz is zero, the

standard value is set. See Comments on use.

is int Output Indicates row vector exchange count. See Comments on use.

 1 exchange count is even.

 1 exchange count is odd.

ip int ip[n] Output The transposition vector to contain row exchange information is stored.

See Comments on use.

icon int Output Condition code. See below.

c_dm_vblu

 38

nh2 nh1 nh1 1

n

k

a11

a22

a33

ann

an1 n1

a12

a23 a13

* *

*

a1 nh2+1 *

*

*

* *

0

0

0

0 0 an1 n annh2 n

a21 a31 anh11 1

anh12 2

an nnh1

an n1

*

* *

a32 a42

...

...

*

...........

..............

...........

......

........

Figure c_dm_vblu-1. Storing matrix A in array a

The column vector of matrix A is continuously stored in columns of array a in the same manner as diagonal elements of

banded matrix A aii, i = 1, ... , n, are stored in a[i1][h1h2].

Upper banded matrix part:

aji, j, i = 1, ... , h2, j = 1, ... , n, j  i  1 is stored in a[i][j], i = 0, ... , n1, j = h1, ... , h1h21.

Lower banded matrix part:

aji, j, i = 1, ... , h1, j = 1, ... , n, j  i  n is stored in a[i][j], i = 0, ... , n1, j = h1h21, ... , 2h1h2.

For a[i][j], i = 0, ... , n  1, j = 0, ... , h11, set zero for the elements of matrix A outside the band.

* indicates undefined values.

 c_dm_vblu

 39

nh2 nh1 nh1 1

n

k

l11

l22

l33

lnn

ln1 n1

u12

u23 u13

* *

*

u1 nh1+nh21

*

*

*

* *

un1 n unnh2 n

l21 l31 lnh11 1

lnh12 2

ln nnh1

ln n1

*

* *

l32 l42

...

...

*

...........

..............

...........

......

........ unnh1nh2 n

Figure c_dm_vblu-2. Storing LU-decomposed matrix L and U in array a

LU-decomposed unit upper banded matrix except diagonal elements uji1, j, i = 1, ... , h1h2, j = 1, ... , n, j  i  1  1 is

stored in a[i][j], i = 0, ... , n1, j = 0 , ... , h1h2.

Lower banded matrix part:

lji, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in a[i][j], i = 0, ... , n1, j = h1h2, ... , 2h1h2.

* indicates undefined values.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 All elements in some row of array a were zero, or

the pivot became relatively zero. Matrix A may

be singular.

Discontinued.

30000 One of the following has occurred:

 n < 1

 nh1  n

 nh1 < 0

 nh2  n

 nh2 < 0

 k < 2  nh1 + nh2  1

 epsz < 0

Bypassed.

c_dm_vblu

 40

3. Comments on use

epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case,

however, the result is not assured.

ip
In this routine, the row vector is exchanged using partial pivoting. That is, when the I-th row (I  J) is selected as the

pivot row in the J-th stage (J = 1, ... , n) of decomposition, the contents of the I-th row and J-th row are exchanged. To

indicate this exchange, I is stored in ip[J 1].

How to use this function
The linear equation can be solved by calling function c_dm_vblux following this function. Normally, the linear

equation can be solved in one step by calling function c_dm_vlbx.

is
The determinant can be obtained by multiplying is and a[i][h1  h2], where i = 0, ... , n  1.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, nh1 =

2000, nh2 = 3000.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

#define NH1 2000
#define NH2 3000
#define N 10000
#define KA (2*NH1+NH2+1)
#define NWORK 4500

int MAIN__()
{
 double a[N][KA], b[N], dwork[NWORK];
 double tt1, tt2, tmp, epsz;
 int ip[N], i, j, is, ix, icon, nptr, nbase, nn;

 ix = 123;
 nn = NH1+NH2+1;
 for (i=0; i<N; i++) {
 c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
 }

 printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);

 /* zero clear */
 for (j=0; j<N; j++) {
 for (i=0; i<NH1; i++) {
 a[j][i] = 0.0;
 }
 }

 /* left upper triangular part */
 for (j=0; j<NH2; j++) {

 c_dm_vblu

 41

 for (i=0; i<NH2-j; i++) {
 a[j][i+NH1] = 0.0;
 }
 }

 /* right rower triangular part */
 nbase = 2*NH1+NH2+1;
 for (j=0; j<NH1; j++) {
 for (i=0; i<j; i++) {
 a[N-NH1+j][nbase-i-1] = 0.0;
 }
 }

 /* set right hand constant vector */
 for (i=0; i<N; i++) {
 b[i] = 0.0;
 }

 for (i=0; i<N; i++) {
 nptr = i;
 for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {
 b[j] += a[i][j-i+NH1+NH2];
 }
 }

 epsz = 0.0;
 c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon);
 c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon);

 tmp = 0.0;
 for (i=0; i<N; i++) {
 tmp = max(tmp,fabs(b[i]-1));
 }

 printf("maximum error = %e\n", tmp);
 return(0);
}

5. Method

Consult the entry for DM_VBLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vblux

 42

c_dm_vblux

A system of linear equations with LU-decomposed banded real matrices.

ierr = c_dm_vblux(b, fa, k, n, nh1, nh2, ip,

&icon);

1. Function

This routine solves a linear equation having an LU-decomposed banded matrix as coefficient.

 LUx = b

where, L is a unit lower banded matrix of lower bandwidth h1, U is an upper banded matrix of upper bandwidth h(= min

(h1+h2, n1)), and b is an n-dimensional real constant vector. The order of matrix A before LU decomposition, lower

bandwidth, and upper bandwidth is n, h1, and h2. n > h1  0, n > h2  0.

2. Arguments

The routine is called as follows:

ierr = c_dm_vblux(b, (double*)fa, k, n, nh1, nh2, ip, &icon);

where:

b double b[n] Input Constant vector b.

 Output Solution vector x.

fa double

fa[n][k]

Input LU-decomposed matrices L and U are stored.

See Figure c_dm_vblux-1.

The value of fa[i][j], i = 0, ... , n1, j = 2  nh1 + nh2 + 1, ... ,

k1, is not assured after operation.

k int Input C fixed dimension of array a ( 2  nh1 + nh2 + 1).

n int Input Order n of matrix A.

nh1 int Input Lower bandwidth size h1.

nh2 int Input Upper bandwidth size h2.

ip int ip[n] Output The transposition vector to contain row exchange information is stored.

See Comments on use.

icon int Output Condition code. See below.

 c_dm_vblux

 43

nh2 nh1 nh1 1

n

k

l11

l22

l33

lnn

ln1 n1

u12

u23 u13

* *

*

u1 nh1+nh21

*

*

*

* *

un1 n unnh2 n

l21 l31 lnh11 1

lnh12 2

ln nnh1

ln n1

*

* *

l32 l42

...

...

*

...........

..............

...........

......

........ unnh1nh2 n

Figure c_dm_vblux-1. Storing LU-decomposed matrices L and U into array fa

LU-decomposed unit upper banded matrix except diagonal elements uji1, j, i = 1, ... , h1h2, j = 1, ... , n, j  i  1  1 is

stored in a[i][j], i = 0, ... , n1, j = 0 , ... , h1h2.

Lower banded matrix part:

lji, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in a[i][j], i = 0, ... , n1, j = h1h2, ... , 2h1h2.

* indicates undefined values.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 n < 1

 nh1  n

 nh1 < 0

 nh2  n

 nh2 < 0

 k < 2  nh1 + nh2  1

 Diagonal element of lower banded matrix

was zero.

 Contents of ip are invalid.

Bypassed.

c_dm_vblux

 44

3. Comments on use

How to use this function
A system of linear equations with banded matrices can be solved by calling this routine following the routine

c_dm_vblu. In this case, specify the output parameters of the routine c_dm_vblu without modification of the input

parameters (except the constant vector) of this routine. Normally, a solution can be obtained in one step by calling the

routine c_dm_vlbx.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, nh1 =

2000, nh2 = 3000.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

#define NH1 2000
#define NH2 3000
#define N 10000
#define KA (2*NH1+NH2+1)
#define NWORK 4500

int MAIN__()
{
 double a[N][KA], b[N], dwork[NWORK];
 double tt1, tt2, tmp, epsz;
 int ip[N], i, j, is, ix, icon, nptr, nbase, nn;

 ix = 123;
 nn = NH1+NH2+1;
 for (i=0; i<N; i++) {
 c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
 }

 printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);

 /* zero clear */
 for (j=0; j<N; j++) {
 for (i=0; i<NH1; i++) {
 a[j][i] = 0.0;
 }
 }

 /* left upper triangular part */
 for (j=0; j<NH2; j++) {
 for (i=0; i<NH2-j; i++) {
 a[j][i+NH1] = 0.0;
 }
 }

 /* right rower triangular part */
 nbase = 2*NH1+NH2+1;
 for (j=0; j<NH1; j++) {
 for (i=0; i<j; i++) {
 a[N-NH1+j][nbase-i-1] = 0.0;
 }
 }

 /* set right hand constant vector */
 for (i=0; i<N; i++) {
 b[i] = 0.0;
 }

 for (i=0; i<N; i++) {
 nptr = i;
 for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {

 c_dm_vblux

 45

 b[j] += a[i][j-i+NH1+NH2];
 }
 }

 epsz = 0.0;
 c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon);
 c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon);

 tmp = 0.0;
 for (i=0; i<N; i++) {
 tmp = max(tmp,fabs(b[i]-1));
 }

 printf("maximum error = %e\n", tmp);
 return(0);
}

5. Method

Consult the entry for DM_VBLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vcgd

46

c_dm_vcgd

A system of linear equations with symmetric positive definite sparse

matrices (preconditional CG method, diagonal format storage method)

ierr = c_dm_vcgd(a, k, nw, n, ndlt, b, ipc,

itmax, isw, omega, eps, iguss, x,

&iter, &rz, w, iw, &icon);

1. Function

This routine solves a linear equation having an n  n normalized symmetric positive definite sparse matrix as coefficient

matrix using the preconditioned CG method.

 Ax = b (1)

The n  n matrix coefficient is normalized so that its diagonal elements are 1, and non-zero elements except the diagonal

elements are stored using the diagonal format spares matrix storage method.

2. Arguments

The routine is called as follows:

ierr = c_dm_vcgd((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw, omega, eps,

iguss, x, &iter, &rz, (double*)w, (int*)iw, &icon);

where:

a double a[nw][k] Input Sparse matrix A stored in diagonal normalized symmetric positive

definite storage format.

The value of a is not assured after operation.

k int Input C fixed dimension of array a ( n).

nw int Input Number of vectors in the diagonal direction where the coefficient matrix

A is stored using the diagonal format storage method. Even number. The

size of the second dimension of array a

n int Input Order n of matrix A.

ndlt int ndlt[nw] Input Indicate the distance from the main diagonal vector.

b double b[n] Input Constant vector b.

ipc int Input Preconditioner control information. See Comments on use.

1 No preconditioner.

2 Neumann preconditioner.

3 Preconditioner using block incomplete Cholesky decomposition.

In this case, omega needs to be specified.

itmax int Input Upper limit of iterations.

isw int Input Control information. See Comments on use.

1 Initial call.

2 Subsequent calls.

The arrays, a, ndlt, w and iw, must NOT be changed as the values

set on the initial call are reused.

omega double Input Modification factor for incomplete Cholesky decomposition, 0  omega

 c_dm_vcgd

47

 1. Only use when ipc=3. See Comments on use.

eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to   b , with   10 6 . See

Comments on use.

iguss int Input Sets the information indicating whether the iteration is started from an

approximate value of solution vector specified in array x.

When 0 is set, the approximate value of solution vector is not specified.

When non-zero is set, the iterative computation is started from an

approximate value of the solution vector specified in array x.

x double x[n] Input An approximate value of the solution vector of the linear equation can be

specified in x.

 Output The solution vector linear equation is stored in x.

iter int Output The actual iteration count.

rz double Output The square root of the residual rz after the convergency judgment.

See Comments on use.

w double

w[Wlen1][Wlen2]

Work When ipc = 3, Wlen1 = nw  8, Wlen2 = n  maxt.

When ipc  3, Wlen1 = 7, Wlen2 = n  maxt, where maxt is the

maximum number of threads executed in parallel.

iw int

iw[Iwlen1][Iwlen2]

Work When ipc = 3, Iwlen1 = 4, Iwlen2 = n  2  maxt.

When ipc  3, Iwlen1 = 2, Iwlen2 = maxt, where maxt is the maximum

number of threads executed in parallel.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

10000 Diagonal vectors in a were reordered as U/L in

ascending distance order.

Processing is continued.

20001 The upper iteration count limit was reached. Processing stopped.

The approximate value obtained is output in array

x, but the precision is not assured.

20003 Break down occurred.

30003 itmax  0 Processing stopped.

30005 k < n

30006 Incomplete LLT decomposition could not be

performed.

30007 The pivot became minus.

30089 nw is not an even number.

30091 nband = 0

30092 nw  0

30093 k  0, n  0

30096 omega < 0 or omega > 1

30097 ipc < 1 or ipc > 3

30102 Upper triangular part is not correctly stored.

30103 Lower triangular part is not correctly stored.

c_dm_vcgd

48

Code Meaning Processing

30104 The number of diagonal vectors in the upper

triangular does not equal that in the lower

triangular.

Processing stopped.

30105 isw  1 or 2

30200 abs(ndlt[i]) > n  1 or

ndlt[i] = 0; 0  i < nw

3. Comments on use

isw
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc

= 3, the solution on the first call is with isw = 1, and solutions on subsequent calls are with isw = 2. In subsequent calls,

the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

eps and rz
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set

tolerance, eps:

 rz eps  rz (2)

 r b Ax  m (3)

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix
M, rz is calculated by equation (4).

 rz  r M rT 1 (4)

ipc and omega
Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a

preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If A = I  N, the preconditioner M of the linear equation (I  N)x = b is as follows for the different values of ipc:

1. No preconditioner, M = I.

2. Neumann, M1 = (I  N).

3. Incomplete Cholesky decomposition, M = LLT.

When ipc = 2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix

(I + N) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not

improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such

that the maximum absolute value of the eigenvalues of the matrix N is larger than one.

When ipc=3, the user must provide a value for omega (0  omega  1). For values of omega, 0 gives the incomplete

Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the

two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was

found empirically to be in the range of 0.92 to 1.00.

 c_dm_vcgd

49

4. Example program

This example solves a system of linear equations with symmetric positive definition matrices.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define MAXT (4)
#define ND (20)
#define N (ND*ND*ND)
#define K (N)
#define NW (6)

MAIN__()
{
 double a[NW][K], b[N], x[N], w[7][N+MAXT];
 double omega, eps, rz;
 int ndlt[NW], iw[2][MAXT];
 int k, nw, n, ipc, itmax, isw, iguss, iter, icon;
 int i, j, nx, ny, iy, iz, l;
 int rhs(double*, int, int, int, double*, int*, double*);

 for(j=0; j<NW; j++) {
 for(i=0; i<N; i++) {
 a[j][i] = 0.0;
 }
 }

 for(i=0; i<NW; i++) {
 ndlt[i] = 0;
 }

 nx = ND;
 ny = ND;
 for(i=0; i<N; i++) {
 l = i+1;
 iz = (l-1)/(nx*ny);
 iy = (l-1-iz*nx*ny)/nx;

 if ((l/nx)*nx != l && l <= N-1) {
 a[0][i] = -1.0/6.0;
 }
 if (l <= N-nx && iy != ny-1) {
 a[1][i] = -1.0/6.0;
 }
 if (l <= N-nx*ny) {
 a[2][i] = -1.0/6.0;
 }
 if (((l-1)/nx)*nx != l-1 && l >= 2 && l <= N) {
 a[3][i] = -1.0/6.0;
 }
 if (l >= nx+1 && l <= N && iy != 0) {
 a[4][i] = -1.0/6.0;
 }
 if (l >= nx*ny+1 && l <= N) {
 a[5][i] = -1.0/6.0;
 }
 }

 ndlt[0] = 1, ndlt[1] = nx, ndlt[2] = nx*ny;
 ndlt[3] = -1, ndlt[4] = -nx, ndlt[5] = -nx*ny;

 rhs((double*)a, N, K, NW, (double*)w, ndlt, b);

 eps = 1e-6;
 itmax = 2000;
 isw = 1;
 iguss = 0;
 ipc = 2;

 c_dm_vcgd((double*)a, K, NW, N, ndlt, b, ipc, itmax, isw, omega, eps, iguss, x,
 &iter, &rz, (double*)w, (int*)iw, &icon);

 printf("icon = %d\n", icon);
 printf("x[0] = %e, x[n-1]= %e\n", x[0], x[N-1]);

c_dm_vcgd

50

 return(0);
}

int rhs(double *a, int n, int k, int ndiag, double *dp, int *ndlt, double *b)
{
 int i, nlb, icon;

 nlb = 0;
 for (i=0; i < ndiag; i++) {
 nlb = max(fabs(ndlt[i]), nlb);
 }

 for (i=0; i < n*3; i++) {
 dp[i] = 0.0;
 }

 for (i=0; i < n; i++) {
 dp[i + nlb] = 1.0;
 b[i] = 0.0;
 }

 c_dm_vmvsd((double*)a, k, ndiag, n, ndlt, nlb, dp, b, &icon);

 for (i = 0; i < n; i++) {
 b[i] += dp[i+nlb];
 }

 return(0);
}

5. Method

Consult the entry for DM_VCGD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43],

[50], [51] and [55].

 c_dm_vcge

51

c_dm_vcge

A system of linear equations with symmetric positive definite sparse

matrices (preconditional CG method, ELLPACK format storage method)

ierr = c_dm_vcge(a, k, nw, n, icol, b, ipc,

itmax, isw, omega, eps, iguss, x,

&iter, &rz, w, iw, &icon);

1. Function

This routine solves a linear equation having an n  n normalized symmetric positive definite sparse matrix as a coefficient

matrix using the preconditioned CG method.

 Ax = b (1)

The n  n coefficient matrix is normalized so that the diagonal elements are 1, and the non-zero elements except the

diagonal elements are stored by the ELLPACK format storage method.

2. Arguments

The routine is called as follows:

ierr = c_dm_vcge((double*)a, k, nw, n, (int*)icol, b, ipc, itmax, isw, omega,

eps, iguss, x, &iter, &rz, (double*)w, (int*)iw, &icon);

where:

a double a[nw][k] Input Sparse matrix A stored in the ELLPACK normalized symmetric positive

definite storage format.

k int Input C fixed dimension of array a ( n).

nw int Input When the maximum numbers of non-zero elements of row vectors of

upper and lower triangular matrices are NSU and NSL, respectively, 2 

max (NSU, NSL).

n int Input Order n of matrix A.

icol int icol[nw][k] Input The information on the column vector to which non-zero elements

belong is stored in icol.

b double b[n] Input Constant vector b.

ipc int Input Preconditioner control information. See Comments on use.

1 No preconditioner.

2 Neumann preconditioner.

3 Preconditioner with incomplete Cholesky decomposition.

In this case, omega must be specified.

itmax int Input Upper limit of iterations.

isw int Input Control information. See Comments on use.

1 Initial call.

2 Subsequent calls.

The arrays, a, icol, w and iw, must NOT be changed as the values

set on the initial call are reused.

omega double Input Modification factor for incomplete Cholesky decomposition, 0  omega

c_dm_vcge

52

 1. Only use when ipc=3. See Comments on use.

eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to   b , with   10 6 . See

Comments on use.

iguss int Input Sets the information indicating whether the iteration is started from an

approximate value of solution vector specified in array x.

When 0 is set, the approximate value of solution vector is not specified.

When non-zero is set, the iterative computation is started from an

approximate value of the solution vector specified in array x.

x double x[n] Input An approximate value of the solution vector of the linear equation can be

specified in x.

 Output The solution vector linear equation is stored in x.

iter int Output The actual iteration count.

rz double Output The square root of the residual rz after the convergency judgment.

See Comments on use.

w double

w[Wlen1][Wlen2]

Work When ipc = 3, Wlen1 = nw  8, Wlen2 = n  maxt.

When ipc  3, Wlen1 = 7, Wlen2 = n  maxt, where maxt is the

maximum number of threads executed in parallel.

iw int

iw[Iwlen1][Iwlen2]

Work When ipc = 3, Iwlen1 = nw  5, Iwlen2 = n  2  maxt.

When ipc  3, Iwlen1 = 2, Iwlen2 = maxt, where maxt is the maximum

number of threads executed in parallel.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

10000 Elements of a and icol are rearranged as U/L. Processing continues.

20001 The iteration count reaches the upper limit. Processing stopped.

The approximate solution obtained up to this

stage is returned, but its precision is not

guaranteed.

20003 Break down occurred.

30003 itmax  0 Processing stopped.

30005 k < n

30006 Incomplete LLT decomposition could not be

executed.

30007 Pivot became minus.

30092 nw  0

30093 k  0, n  0

30096 omega < 0 or omega > 1

30097 ipc < 1 or ipc > 3

30098 isw  1 or 2

30100 nw  2  max(NSU, NSL)

30104 The upper triangular part or the lower triangular

part is not correctly stored.

negative

number

The non-diagonal element is present in the

icon row.

 c_dm_vcge

53

3. Comments on use

a, nw and icol
The sparse matrix A is normalized in such a way that the main diagonal elements are ones. The non-zero elements other

than the main diagonal elements are stored using the ELLPACK storage format. For details on normalization of systems

of linear equations and ELLPACK normalized symmetric positive definite storage format, see the Array storage formats

section of the General description.

Apart from the incomplete Cholesky decomposition preconditioner (ipc = 3), both the storage formats for ELLPACK,

normalized and unnormalized, are acceptable for the function. In the standard case (unnormalized), nw = 2  max(NSU,

NSL) is not required.

isw
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc

= 3, the solution on the first call is with isw = 1, and solutions on subsequent calls are with isw = 2. In subsequent calls,

the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

eps and rz
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set

tolerance, eps:

 rz eps  rz (2)

 r b Ax  m (3)

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix M, rz is

calculated by equation (4).

 rz  r M rT 1 (4)

ipc and omega
Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a

preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If A = I  N, the preconditioner M of the linear equation (I  N)x = b is as follows for the different values of ipc:

1. No preconditioner, M = I.

2. Neumann, M1 = (I  N).

3. Incomplete Cholesky decomposition, M = LLT.

When ipc=2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix

(I + N) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not

improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such

that the maximum absolute value of the eigenvalues of the matrix N is larger than one.

When ipc=3, the user must provide a value for omega (0  omega  1). For values of omega, 0 gives the incomplete

Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the

two decompositions.

c_dm_vcge

54

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was

found empirically to be in the range of 0.92 to 1.00.

4. Example program

This example solves the system of linear equations with symmetric positive definition matrix.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define MAXT (4)
#define ND (80)
#define N (ND*ND*ND)
#define K (N)
#define NW (6)

MAIN__()
{
 double a[NW][K], b[N], x[N], xx[N], w[7][N+MAXT];
 double omega, eps, rz;
 int icol[NW][K], iw[2][MAXT];
 int ipc, itmax, isw, iguss, iter, icon;
 int i, j, nx, ny, iy, iz, l;

 for(j=0; j<NW; j++) {
 for(i=0; i<N; i++) {
 a[j][i] = 0.0;
 icol[j][i] = j+1;
 }
 }

 nx = ND;
 ny = ND;
 for(i=0; i<N; i++) {
 l = i+1;
 iz = i/(nx*ny);
 iy = (i-iz*nx*ny)/nx;

 if ((l/nx)*nx != l && l <= N-1) {
 a[0][i] = -1.0/6.0;
 icol[0][i] = l+1;
 }
 if (l <= N-nx && iy != ny-1) {
 a[1][i] = -1.0/6.0;
 icol[1][i] = l+nx;
 }
 if (l <= N-nx*ny) {
 a[2][i] = -1.0/6.0;
 icol[2][i] = l+nx*ny;
 }
 if (((l-1)/nx)*nx != l-1 && l >= 2 && l <= N) {
 a[3][i] = -1.0/6.0;
 icol[3][i] = l-1;
 }
 if (l >= nx+1 && l <= N && iy != 0) {
 a[4][i] = -1.0/6.0;
 icol[4][i] = l-nx;
 }
 if (l >= nx*ny+1 && l <= N) {
 a[5][i] = -1.0/6.0;
 icol[5][i] = l-nx*ny;
 }
 }

 for (i=0; i<N; i++) {
 xx[i] = 1.0;
 }

 c_dm_vmvse((double*)a, K, NW, N, (int*)icol, xx, b, &icon);

 for (i=0; i<N; i++) {
 b[i] += 1.0;
 }

 c_dm_vcge

55

 itmax = 2000;
 eps = 1e-6;
 isw = 1;
 ipc = 2;
 iguss = 0;

 c_dm_vcge((double*)a, K, NW, N, (int*)icol, b, ipc, itmax, isw, omega, eps, iguss,
 x, &iter, &rz, (double*)w, (int*)iw, &icon);

 printf("icon = %d\n", icon);
 printf("x[0] = %e, x[n-1]= %e\n", x[0], x[N-1]);

 return(0);
}

5. Method

Consult the entry for DM_VCGE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43]

and [51].

c_dm_vclu

56

c_dm_vclu

LU decomposition of complex matrices (blocked LU decomposition

method)

ierr = c_dm_vclu(za, k, n, epsz, ip, &is,

&icon);

1. Function

This routine executes LU decomposition for non-singular complex n  n matrices using blocked outer product type

Gaussian elimination.

 PA = LU (1)

where, P is the permutation matrix which exchanges rows by partial pivoting, L is the lower triangular matrix, and U is

unit upper triangular matrix (n  1).

2. Arguments

The routine is called as follows:

ierr = c_dm_vclu((dcomplex*)za, k, n, epsz, ip, &is, &icon);

where:

za dcomplex

za[n][k]

Input

Output

Matrix A.

Matrices L and U.

k int Input C fixed dimension of array za ( n).

n int Input Order n of matrix A.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

When epsz is 0.0, the standard value is assumed. See Comments on

use.

ip int ip[n] Output The transposition vector indicating the history of row exchange by

partial pivoting. One-dimensional array of size n. See Comments on use.

is int Output Information to obtain the determinant of matrix A. The determinant is

obtained by multiplying the n diagonal elements of array za by the value

of is after the operation.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 All elements in some row of array za were zero,

or the pivot became relatively zero. Matrix A

may be singular.

Discontinued.

30000 One of the following has occurred:

 k < n

 n < 1

 epsz < 0.0

Bypassed.

 c_dm_vclu

57

3. Comments on use

epsz
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If both the real and imaginary parts of the pivot value lose more than s significant digits during LU-decomposition by

Crout’s method, the pivot value is assumed to be zero and computation is discontinued with icon = 20000.

The standard value of epsz is normally 16µ, where µ is the unit round off. If processing is to proceed at a low pivot

value, epsz will be given the minimum value but the result is not always guaranteed.

ip
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting. In this

function, the elements of the array za are actually exchanged in partial pivoting. In the J-th stage (J = 1, ... , n) of

decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-

th row are exchanged. Then, in order to record the history of this exchange, I is stored in ip[j1].

How to use this function
The linear equation can be solved by calling routine c_dm_vclux following this routine. Normally, the linear equation

can be solved in one step by calling routine c_dm_vlcx.

4. Example program

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N (2000)
#define K (N+1)

MAIN__()
{
 dcomplex za[N][K], zb[N];
 double epsz, c, t, s, error;
 int ip[N];
 int is, icon, i, j;

 c = sqrt(1.0/(double)(N+1));
 t = atan(1.0)*8.0/(N+1);

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 za[j][i].re = c*cos(t*(i+1)*(j+1));
 za[j][i].im = c*sin(t*(i+1)*(j+1));
 }
 }

 for (i=0; i<N; i++) {
 s = 0.0;
 for (j=0; j<N; j++) {
 s += cos(t*(i+1)*(j+1));
 zb[i].re = s*c;
 zb[i].im = 0.0;
 }
 }

 epsz = 0.0;
 c_dm_vclu((dcomplex*)za, K, N, epsz, ip, &is, &icon);
 c_dm_vclux(zb, (dcomplex*)za, K, N, ip, &icon);

c_dm_vclu

58

 printf("icon = %d\n", icon);

 error = 0.0;

 for (i=0; i<N; i++) {
 error = max(fabs(1.0-zb[i].re), error);
 }

 printf("error = %f\n", error);
 printf("ORDER = %d\n", N);
 printf("zb[0] = %e\n", zb[0].re);
 printf("zb[n-1] = %e\n", zb[N-1].re);

 return(0);
}

5. Method

Consult the entry for DM_VCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and

[52].

 c_dm_vclux

59

c_dm_vclux

A system of linear equations with LU-decomposed complex matrix

ierr = c_dm_vclux(zb, zfa, kfa, n, ip, &icon);

1. Function

This routine solves a linear equation with an LU-decomposed complex coefficient matrices.

 LUx = Pb (1)

where, L is a lower triangular matrix of n  n, U is a unit upper triangular matrix of n  n, and P is a permutation matrix.

(Rows are exchanged by partial pivoting when the coefficient matrix is LU-decomposed.) b is an n-dimensional complex

constant vector, and x is an n-dimensional solution vector (n  1).

2. Arguments

The routine is called as follows:

ierr = c_dm_vclux(zb, (dcomplex*)zfa, kfa, n, ip, &icon);

where:

zb dcomplex Input Constant vector b.

 zb[n] Output Solution vector x.

zfa dcomplex

zfa[n][kfa]

Input Matrices L and U.

kfa int Input C fixed dimension of array zfa ( n).

n int Input Order of matrices L and U.

ip int ip[n] Input The transposition vector which indicates the history of row exchange by

partial pivoting.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 The coefficient matrix was singular. Discontinued.

30000 One of the following occurred:

 n < 1

 kfa < n

 ip was invalid.

Bypassed.

3. Comments on use

The linear equations can be solved by calling routine c_dm_vclu, LU-decomposing the coefficient matrix, then calling

this routine. Normally, the solution can be obtained in one step by calling routine c_dm_vlcx.

c_dm_vclux

60

4. Example program

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N (2000)
#define K (N+1)

MAIN__()
{
 dcomplex za[N][K], zb[N];
 double epsz, c, t, s, error;
 int ip[N];
 int is, icon, i, j;

 c = sqrt(1.0/(double)(N+1));
 t = atan(1.0)*8.0/(N+1);

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 za[j][i].re = c*cos(t*(i+1)*(j+1));
 za[j][i].im = c*sin(t*(i+1)*(j+1));
 }
 }

 for (i=0; i<N; i++) {
 s = 0.0;
 for (j=0; j<N; j++) {
 s += cos(t*(i+1)*(j+1));
 zb[i].re = s*c;
 zb[i].im = 0.0;
 }
 }

 epsz = 0.0;
 c_dm_vclu((dcomplex*)za, K, N, epsz, ip, &is, &icon);
 c_dm_vclux(zb, (dcomplex*)za, K, N, ip, &icon);

 printf("icon = %d\n", icon);

 error = 0.0;

 for (i=0; i<N; i++) {
 error = max(fabs(1.0-zb[i].re), error);
 }

 printf("error = %f\n", error);
 printf("ORDER = %d\n", N);
 printf("zb[0] = %e\n", zb[0].re);
 printf("zb[n-1] = %e\n", zb[N-1].re);

 return(0);
}

5. Method

Consult the entry for DM_VCLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52].

 c_dm_vcminv

61

c_dm_vcminv

Inverse of complex matrix (blocked Gauss-Jordan method)

ierr = c_dm_vcminv(za, k, n, epsz, &icon);

1. Function

This routine obtains the inverse A1 of the n  n non-singular complex matrix A using the Gauss-Jordan method.

2. Arguments

The routine is called as follows:

ierr = c_dm_vcminv((dcomplex*)za, k, n, epsz, &icon);

where:

za dcomplex Input Matrix A.

 za[n][k] Output Matrix A1.

k int Input C fixed dimension of array za ( n).

n int Input Order of matrix A.

epsz double Input Judgment of relative zero of the pivot. ( 0.0)

When epsz is 0.0, the standard value is assumed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 All row elements in matrix A are zero or the pivot

becomes a relatively zero. Matrix A may be

singular.

Discontinued.

30000 One of the following occurred:

 n < 1

 k < n

 epsz < 0.0

3. Comments on use

epsz
When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be

relatively zero. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value

of epsz is 16u. If the minimum value is assigned to epsz, processing is continued, but the result is not assured.

4. Example program

The inverse of a matrix is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

c_dm_vcminv

62

#define max(a,b) ((a) > (b) ? (a) : (b))

#define N 2000
#define K (N+1)

int MAIN__()
{
 dcomplex a[N][K], as[N][K], tmpz;
 double c, t, error, epsz;
 int i, j, icon;

 c = sqrt(1.0/(double)N);
 t = atan(1.0)*8.0/N;

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 a[j][i].re = c*cos(t*i*j);
 a[j][i].im = c*sin(t*i*j);
 as[j][i].re = a[j][i].re;
 as[j][i].im = -a[j][i].im;
 }
 }

 epsz = 0.0;
 c_dm_vcminv((dcomplex*)a, K, N, epsz, &icon);

 error = 0.0;
 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 tmpz.re = fabs(a[j][i].re-as[j][i].re);
 tmpz.im = fabs(a[j][i].im-as[j][i].im);
 error = max(error,tmpz.re+tmpz.im);
 }
 }

 printf("order = %d, error = %e\n", N, error);
 return(0);
}

5. Method

Consult the entry for DM_VCMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_vgevph

63

c_dm_vgevph

Generalized eigenvalue problem for real symmetric matrices

(eigenvalues and eigenvectors)

(Tridiagonalization, multisection method, and inverse iteration)

ierr = c_dm_vgevph(a, k, n, b, epsz, nf, nl,

ivec, &etol, &ctol, nev, e, maxne,

m, ev, &icon);

1. Function

This routine obtains all the eigenvalues and eigenvectors to solve a generalized eigenvalue problem.

 Ax = Bx

where, A is an n  n real symmetric matrix and B is an n  n positive definite matrix.

2. Arguments

The routine is called as follows:

ierr = c_dm_vgevph((double*)a, k, n, (double*)b, epsz, nf, nl, ivec, &etol,

&ctol, nev, e, maxne, (int*)m, (double*)ev, &icon);

where:

a double a[n][k] Input The upper triangular part {aij | i  j} of real symmetric matrix A is

stored in the upper triangular part {a[i1][j1], i  j} of a.

The value of a is not assured after operation.

k int Input C fix dimension of matrix A. (k  n)

n int Input Order n of matrix A.

b double b[n][k] Input The upper triangular part {bij | i  j}of the positive definite symmetric

matrix B is stored in the upper triangular part {b[i1][j1], i  j}

of b.

 Output The LLT-decomposed matrix is stored.

The upper triangular matrix L { lij | i  j} is stored in the upper

triangular part {b[i1][j1], i  j} of b.

epsz double Input The zero judgment value of the pivot when B is LLT-decomposed. (

0.0)

When epsz is 0.0, the standard value is assumed.

nf int Input Number assigned to the first eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

nl int Input Number assigned to the last eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

ivec int Input Control information.

ivec = 1 if both the eigenvalues and eigenvectors are sought.

ivec  1 if only the eigenvalues are sought.

c_dm_vgevph

64

etol double Input Criterion value for checking whether the eigenvalues are numerically

different from each other or are multiple.

 Output When etol is less than 3.01016 this value is used as the standard

value. See Comments on use.

ctol double Input Criterion value for checking whether the adjacent eigenvalues can be

considered to be approximately equal to each other. This value is used

to assure the linear independence of the eigenvector corresponding to

the eigenvalue belonging to approximately multiple eigenvalues

(clusters).

The value of ctol should be generally 5.01012. For a very large

cluster, a large ctol value is required.

106  ctol  etol.

 Output When condition ctol > 106 occurs, ctol is set to 106.

When condition ctol < etol occurs, ctol = 10  etol is set as the

standard value. See Comments on use.

nev int nev[5] Output Number of eigenvalues calculated.

Details are given below.

nev[0] indicates the number of different eigenvalues calculated.

nev[1] indicates the number of approximately multiple different

eigenvalues (different clusters) calculated.

nev[2] indicates the total number of eigenvalues (including multiple

eigenvalues) calculated.

nev[3] indicates the number representing the first of the eigenvalues

calculated.

nev[4] indicates the number representing the last of the eigenvalues

calculated.

e double

e[maxne]

Output Eigenvalues. Stored in e[i1], i = 1, ..., nev[2].

maxne int Input Maximum number of eigenvalues that can be computed.

When it can be considered that there are two or more eigenvalues with

multiplicity m, maxne must be set to a larger value than nl  nf  1 

2  m that is bounded by n. When condition nev[2] > maxne occurs,

the eigenvectors cannot be calculated. See Comments on use.

m int

m[2][maxne]

Output Information about multiplicity of eigenvalues calculated.

m[0][i1] indicates the multiplicity of the i-th eigenvalue i.

m[1][i1] indicates the multiplicity of the i-th cluster when the

adjacent eigenvalues are regarded as clusters. See Comments on use.

ev double

ev[maxne][k]

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are

stored in ev.

The eigenvectors are stored in ev[i1][j1], i = 1, ... , nev[2], j

= 1, ..., n.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

 c_dm_vgevph

65

Code Meaning Processing

20000 The pivot becomes negative at LLT

decomposition of matrix B. Matrix B is not

positive.

Discontinued.

20100 The pivot becomes relatively zero at LLT

decomposition of matrix B. Matrix B may be

singular.

20200 During calculation of clustered eigenvalues, the

total number of eigenvalues exceeded the value of

maxne.

Discontinued. The eigenvectors cannot be

calculated, but the different eigenvalues

themselves are already calculated.

A suitable value for maxne to allow calculation

to proceed is returned in nev[2].

See Comments on use.

30000 One of the following has occurred:

 n < 1

 k < n

 nf < 1

 nl > n

 nl < nf

 maxne < nl  nf  1

 epsz < 0

Bypassed.

3. Comments on use

epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LLT decomposition.

In this case, processing is discontinued with icon = 20100. When unit round off is u, the standard value of epsz is 16u.

When the computation is to be continued even if the pivot is small, assign, the minimum value to epsz. In this case,

however, the result is not assured.

etol and ctol
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets

(parallel processing).

When  = etol, the following condition is satisfied for consecutive eigenvalues  j (j = s  1, s, ..., s  k, (k  0)):

 








|)||,max(|1

||

1

1

ii

ii , (1)

If formula (1) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple.

The standard value of etol is 3.01016 (about the unit round off). In this case, the eigenvalues are refined up to the

maximum machine precision.

If formula (1) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues.

c_dm_vgevph

66

When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ..., t  k (k  0)) are different eigenvalues. Also,

when  = ctol, assume that formula (1) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t

 k  1. In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ... , t  k) are approximately multiple (i.e.,

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors

corresponding to m (m = t  1, t, ... , t  k) are reorthogonalized.

maxne
The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased,

the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne.

In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20200 is returned. In this case, the

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not

stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in e[i1], i=1, ... ,nev[0]. The multiplicity of the corresponding

eigenvalues is stored in m[0][i1], i=1, ... ,nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne

value can be nt(nt = nl  nf  1 is the total number of eigenvalues calculated). However, when there are multiple

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the

calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value

and by calling the routine again.

4. Example program

This example calculates the specified eigenvalues and eigenvectors of a generalized eigenvalue problem whose

eigenvalues and eigenvectors are known.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))

#define N 2000
#define K (N+1)
#define NF 1
#define NL N
#define MAXNE (NL-NF+1)

int MAIN__()
{
 double a[N][K], b[N][K], b2[N][K], c[N][K], d[N][K];
 double e[MAXNE], ev[MAXNE][K];
 double pai, coef, ctol, etol, epsz, temp;
 int nev[5], m[2][MAXNE];
 int i, j, k, ivec, icon;

 pai = atan(1.0) * 4.0;
 coef = sqrt(2.0/(N+1));

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {

 c_dm_vgevph

67

 d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1));
 }
 }

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 if (i==j) { c[j][i] = (double)(j+1); }
 else { c[j][i] = 0.0; }
 }
 }

 c_dm_vmggm((double*)d, K, (double*)c, K, (double*)b, K, N, N, N, &icon);
 c_dm_vmggm((double*)b, K, (double*)d, K, (double*)a, K, N, N, N, &icon);

 /* B = LL^t , A <- LALt */
 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 b[i][j] = 1.0/sqrt(1.0);
 b2[i][j] = min(i+1,j+1)/1.0;
 }
 }

 for (j=0; j<N; j++) {
 for (k=N-1; k>=0; k--) {
 temp = a[j][k];
 a[j][k] *= b[k][k];
 for (i=k+1; i<N; i++) {
 a[j][i] += temp*b[k][i];
 }
 }
 }

 for (j=N-1; j>=0; j--) {
 temp = b[j][j];
 for (i=0; i<N; i++) {
 a[j][i] *= temp;
 }
 for (k=0; k<j; k++) {
 temp=b[j][k];
 for (i=0; i<N; i++) {
 a[j][i] += temp*a[k][i];
 }
 }
 }

 ivec = 1;
 etol = 1.0e-15;
 ctol = 1.0e-10;
 epsz = 0;

 c_dm_vgevph((double*)a, K, N, (double*)b2, epsz, NF, NL, ivec, &etol, &ctol,
 nev, e, MAXNE, (int*)m, (double*)ev, &icon);

 for (i=0; i<nev[2]; i+=nev[2]/10) {
 printf("eigen value in e[%d] = %f\n", i, e[i]);
 }

 return(0);
}

5. Method

Consult the entry for DM_VGEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vhevp

68

c_dm_vhevp

Eigenvalues and eigenvectors of Hermite matrices

ierr = c_dm_vhevp(za, k, n, nf, nl, ivec,

&etol, &ctol, nev, eh, maxne, m,

zev, &icon);

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of an n-dimensional Hermite matrix.

 Ax = x. (1)

2. Arguments

The routine is called as follows:

ierr = c_dm_vhevp((dcomplex*)za, k, n, nf, nl, ivec, &etol, &ctol, nev, eh,

maxne, (int*)m, (dcomplex*)zev, &icon);

where:

za dcomplex

za[n][k]

Input The upper triangular part {aij | i  j } of Hermite matrix A whose

eigenvalues and eigenvectors are to be calculated is stored in the upper

triangular part {za[i1][j1], i  j } of za. The value of a is not

assured after operation.

k int Input C fix dimension of matrix A. (k  n)

n int Input Order n of matrix A.

nf int Input Number assigned to the first eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

nl int Input Number assigned to the last eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

ivec int Input Control information.

ivec = 1 if both the eigenvalues and eigenvectors are sought.

ivec  1 if only the eigenvalues are sought.

etol double Input Criterion value for checking whether the eigenvalues are different from

each other or equal to each other.

 Output When etol is less than 31016, this value is used as the standard

value.

See Comments on use.

ctol double Input Criterion value for checking whether the adjacent eigenvalues are

approximately equal to each other. ctol is used to assure the linear

independence of the eigenvector corresponding to the eigenvalue

belonging to approximately multiple eigenvalues (clusters).

The ctol value should generally be 5.01012. For a very large cluster,

a large ctol value is required.

10-6  ctol  etol.

 c_dm_vhevp

69

 Output When condition ctol > 106 occurs, ctol is set to 106.

When condition ctol < etol occurs, ctol = 10  etol is set as the

standard value. See Comments on use.

nev int nev[5] Output Number of eigenvalues calculated.

Details are given below.

nev[0] indicates the number of different eigenvalues calculated.

nev[1] indicates the number of approximately multiple different

eigenvalues (different clusters) calculated.

nev[2] indicates the total number of eigenvalues (including multiple

eigenvalues) calculated.

nev[3] indicates the number representing the first of the eigenvalues

calculated.

nev[4] indicates the number representing the last of the eigenvalues

calculated.

eh double

eh[maxne]

Output Eigenvalues. Stored in eh[i1], i = 1, ... , nev[2].

maxne int Input Maximum number of eigenvalues that can be computed. See Comments

on use.

m int

m[2][maxne]

Output Information about the multiplicity of eigenvalues calculated.

m[0][i1] indicates the multiplicity of the i-th eigenvalue i

calculated.

m[1][i1] indicates the multiplicity of the i-th cluster calculated

when the adjacent eigenvalues are regarded as approximately multiple

eigenvalues (clusters).

zev dcomplex

zev[maxne][k]

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are

stored in zev.

The eigenvectors are stored in zev[i1][j1], i = 1, ... , nev[2],

j = 1,...,n.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 During calculation of clustered eigenvalues, the

total number of eigenvalues exceeded maxne.

Discontinued. The eigenvectors cannot be

calculated, but the different eigenvalues

themselves are already calculated.

A suitable value for maxne to allow calculation

to proceed is returned in nev[2].

See Comments on use.

30000 One of the following has occurred:

 n < 1

 k < n

 nf < 1

 nl > n

 nl < nf

 maxne < nl  nf  1

Bypassed.

c_dm_vhevp

70

3. Comments on use

etol and ctol
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets

(parallel processing).

When  = etol, the following condition is satisfied for consecutive eigenvalues  j (j = s  1, s, ... , s  k, (k  0)):

 








|)||,max(|1

||

1

1

ii

ii , (2)

If formula (2) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple.

The standard value of etol is 3.0  1016 (about the unit round off). In this case, the eigenvalues are refined up to the

maximum machine precision.

If formula (2) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues.

When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ... , t  k (k  0)) are different eigenvalues. Also,

when  = ctol, assume that formula (2) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t

 k  1. In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ... , t  k) are approximately multiple (i.e.,

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors

corresponding to m (m = t  1, t, ... , t  k) are reorthogonalized.

maxne
The maximum number of eigenvalues calculated can be specified in maxne. When the ctol value is increased, the

cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the maxne value. In this

case, decrease the ctol value or increase the maxne value.

If the total number of eigenvalues calculated exceeds the maxne value, icon = 20000 is returned. In this case, the

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not

stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in eh[i1], i=1, ... , nev[0]. The multiplicity of the corresponding

eigenvalues is stored in m[0][i1], i=1, ... , nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne

value can be nt(nt = nlnf1 is the total number of eigenvalues calculated). However, when there are multiple

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the

calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value

and by calling the routine again.

4. Example program

This program obtains eigenvalues and prints the results.

#include <stdio.h>

 c_dm_vhevp

71

#include <stdlib.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 512
#define K N
#define NF 1
#define NL 28
#define MAXNE NL-NF+1

MAIN__()
{
 dcomplex za[N][K], zev[MAXNE][K];
 double eh[MAXNE];
 double etol, ctol;
 int nev[5], m[2][MAXNE];
 int ierr, icon;
 int i, j, k, n, nf, nl, maxne, ivec;

 n = N;
 k = K;
 nf = NF;
 nl = NL;
 ivec = 1;
 maxne = MAXNE;
 etol = 1.0e-14;
 ctol = 5.0e-12;

 printf(" Number of data points = %d\n", n);
 printf(" Parameter k = %d\n", k);
 printf(" Eigenvalue calculation tolerance = %12.4e\n", etol);
 printf(" Cluster tolerance = %12.4e\n", ctol);
 printf(" First eigenvalue to be found is %d\n", nf);
 printf(" Last eigenvalue to be found is %d\n", nl);

 /* Set up real and imaginary parts of matrix in AR and AI */
 for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 za[i][j].re = (double)(i+j+2)/(double)n;
 if(i==j) {
 za[i][j].im = 0.0;
 za[i][j].re = (double)(j+1);
 } else {
 za[i][j].im = (double)((i+1)*(j+1))/(double)(n*n);
 }
 }
 }
 for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 if(i > j) za[i][j].im = -za[i][j].im;
 }
 }
 /* Call complex eigensolver */
 ierr = c_dm_vhevp ((dcomplex*)za, k, n, nf, nl, ivec, &etol, &ctol, nev, eh,
 maxne, (int*)m, (dcomplex*)zev, &icon);
 if (icon > 20000) {
 printf("ERROR: c_dm_vhevp failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */
 printf(" Number of Hermitian eigenvalues = %d\n", nev[2]);
 printf(" Eigenvaluse of complex Hermitian matrix\n");
 for(i=0; i<nev[2]; i++) {
 printf(" eh[%d] = %12.4e\n", i, eh[i]);
 }
 return(0);
}

5. Method

Consult the entry for DM_VHEVP in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [57].

c_dm_vhtrid

72

c_dm_vhtrid

Tridiagonalization of Hermite matrices

ierr = c_dm_vhtrid(za, k, n, d, sl, zs,

&icon);

1. Function

This routine reduces an Hermite matrix into an Hermite tridiagonal matrix and this matrix is transformed into a
real tridiagonal matrix using diagonal unitary transform.

 H = P*AP

 T = V*HV

A is an n  n Hermite matrix, P is an n  n unitary matrix. V is an n  n diagonal unitary matrix and T is a real tridiagonal

matrix.

2. Arguments

The routine is called as follows:

ierr = c_dm_vhtrid((dcomplex*)za, k, n, d, sl, zs, &icon);

where:

za dcomplex

za[n][k]

Input The upper triangular part {aij | i  j} of Hermite matrix A is stored in the

upper triangular part {za[i1][j1], i  j} of za.

 Output The information on Householder transforms used for Hermite

tridiagonalization is stored in the upper triangular part

{za[i1][j1], i  j} of za. The values in the lower triangular part

of za is not assured after operation.

See Comments on use.

k int Input C fixed dimension of matrix za. (k  n)

n int Input Order n of Hermite matrix A.

d double d[n] Output The diagonal elements of the reduced tridiagonal matrix are stored.

sl double sl[n] Output The subdiagonal elements of reduced tridiagonal matrix are stored in

sl[i1], i = 2, ... , n. sl[0] = 0.

zs dcomplex zs[n] Output Diagonal elements of the diagonal unitary matrix are stored in zs[i-

1], i=1, … ,n.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 k < n, n < 2. Processing is discontinued.

 c_dm_vhtrid

73

3. Comments on use

za
Hermite tridiagonalization is performed by the repeated transforms varying k = 1, ... , n-2.

AAPAPA   01 ,k
k*

k
k

Put bT = (0, ... , 0, A k (k+1, k) , ... , Ak(n, k)) . (Ak-1(i , j) means i,j element of Ak-1)

bT = (0, ... , 0, bk+1, ... , bn)

b*∙b = S2 and put wT = (0, ... , 0, 














1
1

S
1

k
k b

b , bk+2, ... , bn).

Then the transform matrix is represented as follows.

SS

1
,I

1
2

*




k
k

b
 wwP

w(i-1) (i=k+1, ... , n) and  are stored in za[k-1][i-1]and za[k-1][k-1]respectively.

4. Example program

This example calculates the tridiagonalization of a Hermite matrix with the known eigenvalues.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2000
#define K N
#define NE N
#define MAX_NEV NE

MAIN__()
{
 dcomplex a[N][K],b[N][K],c[N][K],d[N][K],dh[N][K];
 dcomplex alpha,beta,tr[N];
 double eval[MAX_NEV],evec[MAX_NEV][K],dd[N],sld[N],sud[N];
 double pai2, coef, part1, part2, eval_tol, clus_tol;
 int nev[5],mult[2][MAX_NEV];
 int i, j, k, n, nf, nl, ivec, icon ,in, im, ik;

 n = N;
 k = K;

 pai2 = 8.0 * atan(1.0);
 coef = sqrt(1.0/(N));
 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 part1 = coef * cos(pai2/N*i*j);
 part2 = coef * sin(pai2/N*i*j);
 d[i][j].re = part1;
 d[i][j].im = part2;
 dh[i][j].re = part1;
 dh[i][j].im = -part2;
 }
 }

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 if (i == j) {
 c[i][j].re = (double)(i+1);
 c[i][j].im = 0.0;

c_dm_vhtrid

74

 }
 else {
 c[i][j].re = 0.0;
 c[i][j].im = 0.0;
 }
 }
 }

 /* d x c -> b */
 for (im=0; im<N; im++) {
 for (in=0; in<N; in++) {
 b[im][in].re = 0.0;
 b[im][in].im = 0.0;
 }
 for (ik=0; ik<N; ik++) {
 for (in=0; in<N; in++) {
 b[im][in].re = b[im][in].re + d[im][ik].re * c[ik][in].re
- d[im][ik].im * c[ik][in].im;
 b[im][in].im = b[im][in].im + d[im][ik].re * c[ik][in].im
+ c[ik][in].re * d[im][ik].im;
 }
 }
 }

 /* b x dh -> a */
 for (im=0; im<N; im++) {
 for (in=0; in<N; in++) {
 a[im][in].re = 0.0;
 a[im][in].im = 0.0;
 }
 for (ik=0; ik<N; ik++) {
 for (in=0; in<N; in++) {
 a[im][in].re = a[im][in].re + b[im][ik].re * dh[ik][in].re
- b[im][ik].im * dh[ik][in].im;
 a[im][in].im = a[im][in].im + b[im][ik].re * dh[ik][in].im
+ dh[ik][in].re * b[im][ik].im;
 }
 }
 }

 c_dm_vhtrid((dcomplex*)a, K, N, dd, sld, tr, &icon);

 if (icon != 0) {
 printf(" icon of c_dm_vhtrid =%d\n", icon);
 exit(0);
 }

 for (i=1; i<N; i++) {
 sud[i-1]=sld[i];
 }
 sud[N-1]=0.0;

 nf=1;
 nl=N;
 ivec=0;
 eval_tol=1.0e-15;
 clus_tol=1.0e-10;
 c_dm_vtdevc(dd, sld, sud, N, nf, nl, ivec, &eval_tol, &clus_tol,
 nev, eval, MAX_NEV, (double*)evec, K, (int*)mult, &icon);

 for (i=0; i<NE; i=i+N/20) {
 printf("eigen value in eval(%d) = %f\n",i+1,eval[i]);
 }

 return(0);
}

5. Method

Consult the entry for DM_VHTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vjdhecr

75

c_dm_vjdhecr

Eigenvalues and eigenvectors of an Hermitian sparse matrix(Jacobi-

Davidson method, compressed row storage method)

ierr = c_dm_vjdhecr(zh, nz, ncol, nfrnz, n,

 itrgt, dtrgt, nsel, &nev, itmax,

 &iter, iflag, dprm, deval, zevec, kv, dhis,

 kh, &icon);

1. Function

This routine computes a few of selected eigenvalues and corresponding eigenvectors of an Hermitian sparse
eigenvalue problem

 Ax =  x

using the Jacobi-Davidson method, where A is an n  n Hermitian sparse matrix, the lower triangular part of which is

stored using the compressed row storage method, and x is an n-dimensional vector.

2. Arguments

The routine is called as follows:

ierr = c_dm_vjdhecr(zh, nz, ncol, nfrnz, n, itrgt, dtrgt, nsel, &nev, itmax,

&iter, iflag, dprm, deval, (dcomplex*)zevec, kv, (double*)dhis,

kh, &icon);

where:

zh dcomplex

zh[nz]

Input The non-zero elements of the lower triangular part of the sparse matrix

A are stored.

For the compressed row storage method, refer to Figure c_dm_vjdhecr-

1.

nz int Input The total number of the nonzero elements which belong to the lower

triangular part of the matrix A.

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which

indicate the column number of each nonzero element stored in the array

zh.

nfrnz int nfrnz[n+1] Input The position of the first nonzero element of each row stored in the array

zh in the compressed row storage method which stores the lower part

of the nonzero elements row by row. Specify nfrnz[n] = nz + 1.

n int Input Order n of matrix A.

itrgt int Input Select a way of specifying the eigenvalues to be sought

 (0  itrgt  4).

Specify itrgt = 0 to compute eigenvalues closest to a target value

dtrgt.

Specify itrgt = 1 to compute eigenvalues with largest magnitude.

Specify itrgt = 2 to compute eigenvalues with smallest magnitude.

c_dm_vjdhecr

76

Specify itrgt = 3 to compute eigenvalues with largest real part.

Specify itrgt = 4 to compute eigenvalues with smallest real part.

See Comments on use.

dtrgt double Input The target value  is specified when itrgt = 0. In the following

cases, the convergence might be improved by specifying a value near

the seeking eigenvalue even when itrgt  0.

1) The value  is used as a shift of the test subspace <W> = <(A 

I)V> when dprm[2] = 1 which indicates that the harmonic

algorithm is to be used. See Comments on use.

2) When dprm[8]  1, the value  is used as an approximated

eigenvalue in the Jacobi-Davidson correction equation while the

initial phase of the iteration is proceeding. See Comments on use.

3) When dprm[14]  1, the value  is used as a shift value of the

preconditioner for the Jacobi-Davidson correction equation. See

Comments on use.

In other cases, dtrgt is not referred in this routine.

nsel int Input The number of eigenvalues to be computed (1  nsel  n). See

Comments on use.

nev int Output The number of eigenvalues converged.

itmax int Output Upper limit of iterative count for the Jacobi-Davidson method ( 0).

iter int Output Actual iterative count for the Jacobi-Davidson method.

iflag int iflag[32] Input Control information array specifying whether the auxiliary parameter is

specified explicitly in dprm array.

When iflag[i]  0, the parameter specified in dprm[i] is to be

used.

When iflag[i] = 0, a default parameter is used and dprm[i] is not

referred.

Set iflag[15] to [31] to be all zero since these area are preserved

for future enhanced functionality.

dprm double

dprm[32]

Input Auxiliary parameters are specified as for the iflag[i] denotes that

the user specified value is to be used.

For definition of each parameter in the algorithm, see "Method" of

DM_VJDHECR in the Fortran SSL II Thread-Parallel Capabilities

User's Guide

If all of iflag[0] to [31] are set to be zero, dprm[0] to [31] are

not referred and default parameters are used. Changing the parameter is

recommended when the iteration did not converge with default

parameters.
dprm[0]: The dimension mmin of shrunk subspace when
restarting

(1  mmin  n). The default value is mmin = 50.
dprm[1]: Upper limit of the dimension mmax of subspace (mmin 

mmax  n). The default value is mmax = mmin + 30.
See Comments on use.

dprm[2]: The type of the algorithm, which is associated with
setting of a test subspace.
When dprm[2] = 0, the standard algorithm is
adopted. The algorithm is appropriate for seeking the

 c_dm_vjdhecr

77

extreme eigenvalues in the spectrum.
When dprm[2] = 1, the harmonic algorithm is
adopted. The algorithm is appropriate for seeking the
internal eigenvalues in the spectrum.
The default value is the harmonic algorithm for itrgt
= 0 or 2, or the standard algorithm in other cases.

dprm[3]: The criterion value for judgment of acceptable
convergence. The default value is 10-6.
See Comments on use.

dprm[4]: The way how to calculate the residual norm with
respect to the approximated eigenvalue  and
eigenvector u.
When dprm[4] = 0, the residual norm relative to the
absolute value of approximated eigenvalue |Auu|/||
is adopted.
When dprm[4] = 1, the residual norm relative to the
1-norm of the matrix |Auu|/|A|1 is adopted.
When dprm[4] = 2, the residual norm relative to the
Frobenius norm of the matrix |Auu|/|A|F is adopted.
When dprm[4] = 3, the residual norm relative to the
infinity-norm of the matrix |Auu|/|A| is adopted.
When dprm[4] = 4, the absolute residual norm
|Auu| is adopted.
The default is dprm[4] = 0. See Comments on use.

dprm[5]: A criterion value for a delay-deflation scheme ( 1.0).
The default value is dprm[5] = 0.9.
See Comments on use.

dprm[6]: Control information indicating whether the iteration is
started from a vector specified in the array
zevec[0][i-1], i = 1, ... , n.
When dprm[6] = 0, the iteration is started from a
random vector generated in this routine internally.
When dprm[6] = 1, set an initial vector in the array
zevec[0][i-1], i = 1, ... , n.
The default setting is using a random vector.

dprm[7]: A seed to generate a random vector ( 1.0). The default
value is 1.

dprm[8]: While the iteration count is less or equal to dprm[8],
the process is regarded as an initial phase of the
iteration. Then the fixed value of  is used as an
approximated eigenvalue instead of the value of  in
the Jacobi-Davidson correction equation.
When dprm[2] = 0, the default value is dprm[8] =
0.
When dprm[2] = 1, the default value is dprm[8]=
mmax. See Comments on use.

dprm[9]: The method to solve the Jacobi-Davidson correction
equation.
When dprm[9] = 0, t=r is set without using the
correction equation.
When dprm[9] = 1, the GMRES method is adopted.
When dprm[9] = 2, the BiCGstab(L) method is
adopted.
When dprm[9] = 11, the MINRES method is
adopted. The default is using the MINRES method.
See Comments on use.

dprm[10]: A parameter for the solver of the correction equation.

c_dm_vjdhecr

78

When the BiCGstab(L) is used, specify the value of L
( 10). The default value is 4.

dprm[11]: Upper limit of the iteration count of the solver for the
Jacobi-Davidson correction equation ( 1). The default
value is 30.

dprm[12]: A parameter to determine the stopping criterion for the
iterative solver of the correction equation (> 0.0).
The default value is 0.7. See Comments on use.

dprm[13]: A parameter to determine the stopping criterion for the
iterative solver of the correction equation (0.0 <
dprm[13]  1.0). The stopping criterion is set to
dprm[12]  dprm[13]l, where l is an iteration
counter of the outer loop which is reset in each
deflation.
The default value is 0.7. See Comments on use.

dprm[14]: The type of preconditioning of the correction equation
( 1).
When dprm[14] = 0, no preconditioning is used.
When dprm[14] = 1, the diagonal left
preconditioning is exploited. See Comments on use.
The default is dprm[14] = 0.

dprm[15] to [31]: Preserved area for future enhanced
functionality.

deval double

deval[nsel]

Output Detected eigenvalues are stored in deval[i-1], i = 1, ... , nev.

zevec dcomplex

zevec[nsel][kv]

Output Detected eigenvectors are stored in zevec[i-1][j-1], i = 1, ... ,

nev, j = 1, ... , n.

 Input Set the initial vector in zevec[i-1][j-1], i = 1, ... , nev, j =

1, ... , n when iflag[6]  0 and dprm[6] = 1.0.

kv int Input C fixed dimension of array zevec ( n).

dhis double

dhis[2][kh]

Output The convergence history of the residuals of the eigenproblem are stored

in dhis[0][i-1], i = 1, ... , min(kh, iter). The final relative

residual norm of the each correction equation are stored in

dhis[1][i-1], i = 1, ... , min(kh, iter).

kh int Input C fixed dimension of array dhis ( 0). Setting kh = itmax is enough.

If kh = 0 is set, the outputs to the array dhis are suppressed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

1000 Breakdown occurred in the iterative linear

equations solver.

Processing is continued with the approximated

solution until the point.

2000 A null vector is detected in a sort of process of the

orthogonalization.

Processing is continued with the subspace

expanded by a random vector.

3000 A recovery procedure is activated in a sort of

restorative process of the delay deflation.

Processing is continued.

10000 The iteration count reached the maximum limit

before nsel-th eigenvalue is obtained.

The calculated eigenpairs up to nev are correct.

 c_dm_vjdhecr

79

Code Meaning Processing

20000 The projected dense eigenproblem can not be

solved.

Processing is discontinued.

The calculated eigenpairs up to nev are correct if

nev >0.

21000 The iteration count reached the maximum limit

without a single convergence.

Processing is discontinued.

The approximate values obtained up to this point

are output in array deval[0] and

zevec[0][0] to [0][n-1], but their

precision cannot be guaranteed.

29000 An internal error occurred. Processing is discontinued.

30000 One of the following has occurred:

• n < 1

• itrgt < 0

• itrgt > 4

• nsel < 1

• nsel > n

• itmax < 0

• kv < n

• kh < 0.

30001 to

30032

The value of iflag or dprm is not correct.

31000 The value of nz, ncol or nfrnz is not correct.










A

1 2+4i 0 0

2-4i 5 7-3i 6+9i

0 7+3i 8 0

0 6-9i 0 10



































































































4

2

3

2

2

1

1

,

10

96

8

37

5

42

1

,

8

6

4

2

1

ncolzhnfrnz

i

i

i

Figure c_dm_vjdhecr-1 Storing a matrix A in compressed row storage method

c_dm_vjdhecr

80

3. Comments on use

Robustness of the Jacobi-Davidson algorithm
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices

based on the reduction of matrix elements. The results obtained using the Jacobi-Davidson method depends on choice of

the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified.

This method is applicable when the seeking eigenvalues are only a few of the entire spectrum.

The convergence behavior of this routine is affected by various auxiliary parameters. For description of these parameters,

refer to "Comments on use."

ITRGT and DTRGT parameter
The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of

itrgt, which specifies a way of selecting eigenvalues. However, an explicit specification of the value in dprm[2] by

setting iflag[2]  0 is prior to the default value of course. Which means that the standard algorithm can be used with

itrgt = 0 or 2, and that the harmonic algorithm can be used with itrgt = 1, 3, 4, 5 or 6, as long as user knows its

adaptivity.

Note that the dtrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just

setting itrgt = 2, which specifies to compute eigenvalues with smallest magnitude. Define the dtrgt to be 0.0 if other

appropriate value is not known.

Calculating the residual norm
In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to absolute value of

the approximated eigenvalue. When the absolute value of the seeking eigenvalue is far smaller than the norm of the

matrix, however, it is difficult to satisfy the convergence condition |Auu|/||< dprm[3]. In that case, adjust the

convergence criterion dprm[3], or change the way of calculating the residual norm which can be specified by

dprm[4] parameter.

Delay deflation procedure
This routine adopts an ingenious scheme to improve the precision of the results. After the residual becomes below the

convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the

residual remains valid. This procedure is called delay-deflation here. The decrease ratio is regarded valid if the ratio of

the residual norm relative to the preceding residual is less than the parameter dprm[5]. If the residual deteriorates while

this extra iteration, the better previous variables are restored and the deflation with the vector takes place. With setting

dprm[5] = 0.0, this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary

convergence criterion.

Approximated eigenvalue in the correction equation
In the initial few steps of the process, the values of  are usually poor approximations of the wanted eigenvalue. This

routine takes the target value  specified in the dtrgt as an approximated eigenvalue instead of  in the initial phase,

since the validity of the expansion vector t is affected by the closeness to the approximated eigenvalue in the Jacobi-

Davidson correction equation. The process is regarded as the initial phase of the iteration while the iteration count is less

than or equal to dprm[8]. However, the default value of this parameter is dprm[8] = 0 when dprm[2] = 0 is

adopted, because it is difficult to determine a value of  in advance when the standard algorithm is specified.

 c_dm_vjdhecr

81

Stopping criterion for inner iteration
The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm

consists of two nested iterations. In the outer iteration the approximation for the eigenproblem is constructed, and in the

inner iteration the correction equation is approximately solved. If the residual of the eigenproblem still not be small in the

outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary. Therefore, the

stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration. The

criterion is set to be dprm[12]  dprm[13]l, where l is the outer iteration counter which is reset to zero at each

deflation. Incidentally, the upper limit count for the inner iteration is specified by dprm[11].

Precondition for the correction equation
It is known that a good preconditioner improves the convergence of the iterative method for linear equations. The

preconditioner to be applied is controlled by the parameter dprm[14] in this routine. Note that the value of DTRGT is

used for constructing a matrix M  (A   I), which approximates a part of the coefficient matrix in some way. The

preconditioner is derived from the inverse procedure of the matrix M and projections on both sides. If the preconditioner

does not approximate the coefficient matrix of the correction equation properly or the parameter dtrgt is far from the

seeking eigenvalue, the convergence may deteriorate. Additionally, dprm[9] must specify a kind of the iterative method

that is applicable to nonsymmetric linear systems, because the coefficient matrix becomes nonsymmetric with a left

preconditioner adopted in this routine.

Memory usage
This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when

the available area of the memory runs out. The necessary size for the outer iteration is at least n  (2  mmax  2  nsel)

 16 bytes for the standard algorithm and n  (3  mmax  2  nsel)  16 bytes for the harmonic algorithm. And when

the GMRES method is used as the solver of the correction equation, the additional necessary area is n  dprm[11]  16

bytes for the inner iteration.

4. Example program

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem Ax =  x are sought, where A is

a 10000  10000 example Hermitian matrix of the random sparsity pattern with about 20 nonzero entries in each row.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4

processors.

/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include "cssl.h"

#define NMAX 10000
#define NZC 20
#define NNZMAX NMAX*NZC
#define LDK 10

int mkspmat(int, int, dcomplex*, int*, int*);
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
dcomplex d_c_mult(dcomplex, double);

c_dm_vjdhecr

82

int MAIN__() {

 static dcomplex zh[NNZMAX], zevec[LDK][NMAX];
 dcomplex rvec[NMAX], zw[NMAX], zh_w;
 double dtrgt, deval[LDK], derr, dprm[32], dhis[2][NMAX];
 int nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt;
 int iflag[32], nsel, nev, itmax, iter, ldx, ldh, icon;
 int i, j, k, ncolj;

 n = NMAX;
 mkspmat(n, NZC, zh, ncol, nfrnz);
 nz = nfrnz[n] - 1;

 itmax = 500;
 nsel = 10;
 for (i = 0; i < 32; i++) {
 iflag[i] = 0;
 }
 ldx = NMAX;
 ldh = NMAX;
 dtrgt = 0.0;
 itrgt = 1;

 c_dm_vjdhecr(zh, nz, ncol, nfrnz, n, itrgt, dtrgt, nsel,
 &nev, itmax, &iter, iflag, dprm,
 deval, (dcomplex *)zevec, ldx, (double *)dhis, ldh, &icon);

 printf(" C_DM_VJDHECR ICON= %d\n", icon);
 printf(" ITER= %d\n", iter);
 for (k = 0; k < nev; k++) {
#pragma omp parallel private(i, j, ncolj, zw, zh_w)
{
 for (i = 0; i < n; i++) {
 zw[i].re = 0.0;
 zw[i].im = 0.0;
 }
#pragma omp for
 for (i = 0; i < n; i++) {
 rvec[i].re = 0.0;
 rvec[i].im = 0.0;
 for (j = nfrnz[i]-1; j < nfrnz[i+1]-1; j++) {
 ncolj = ncol[j] - 1;
 rvec[i] = comp_add(rvec[i], comp_mult(zh[j], zevec[k][ncolj]));
 if (i != ncolj) {
 zh_w = zh[j];
 zh_w.im = -zh_w.im;
 zw[ncolj] = comp_add(zw[ncolj], comp_mult(zh_w, zevec[k][i]));
 }
 }
 }
#pragma omp critical
 for (i = 0; i < n; i++) {
 rvec[i] = comp_add(rvec[i], zw[i]);
 }
}
 derr = 0.0;
 for (i = 0; i < n; i++) {
 rvec[i] = comp_sub(rvec[i], d_c_mult(zevec[k][i], deval[k]));
 derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im);
 }
 derr = sqrt(derr);
 printf(" EIGEN VALUE %d =%18.14lf\n", k+1, deval[k]);
 printf(" ERROR= %22.16le\n", derr/fabs(deval[k]));
 }
 return(0);
}

int mkspmat(int n, int nzc, dcomplex *zh, int *ncol, int *nfrnz) {
#define LDW 1350
 int i, ic, ict, j, k, iseed, icon, nnz;
 double *dwork, rndwork[LDW];

 dwork = (double *)malloc(nzc * sizeof(double));

 iseed = 1;
 nnz = 0;
 for (i = 1; i <= n; i++) {
 nfrnz[i-1] = nnz + 1;
label_10: c_dvrau4(&iseed, dwork, nzc, rndwork, LDW, &icon);
 ic = 0;

 c_dm_vjdhecr

83

 for (j = 1; j <= nzc; j++) {
 ict = n * fabs(dwork[j-1]) + 1;
 if (ict <= i) {
 for (k = 1; k <= ic; k++) {
 if (ict == ncol[nnz - k]) {
 nnz = nnz - ic;
 goto label_10;
 }
 }
 ic++;
 ncol[nnz] = ict;
 nnz++;
 }
 }
 }
 nfrnz[n] = nnz + 1;
 iseed = 1;
 c_dvran4(0.0, 1.0, &iseed, (double *)zh, 2 * nnz, rndwork, LDW,
 &icon);
 for (i = 0; i < n; i++) {
 for (j = nfrnz[i]-1; j < nfrnz[i+1]-1; j++) {
 if (i == ncol[j]-1) {
 zh[j].re = zh[j].re + zh[j].im;
 zh[j].im = 0.0;
 }
 }
 }
 free(dwork);
 return(0);
}

dcomplex comp_add(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re + so2.re;
 obj.im = so1.im + so2.im;
 return obj;
}

dcomplex comp_sub(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re - so2.re;
 obj.im = so1.im - so2.im;
 return obj;
}

dcomplex comp_mult(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re * so2.re - so1.im * so2.im;
 obj.im = so1.re * so2.im + so1.im * so2.re;
 return obj;
}

dcomplex d_c_mult(dcomplex so1, double so2) {

 dcomplex obj;

 obj.re = so1.re * so2;
 obj.im = so1.im * so2;
 return obj;
}

5. Method

Consult the entry for DM_VJDHECR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7].

c_dm_vjdnhcr

84

c_dm_vjdnhcr

Eigenvalues and eigenvectors of a complex sparse matrix(Jacobi-

Davidson method, compressed row storage method)

ierr = c_dm_vjdnhcr(za, nz, ncol, nfrnz, n,

itrgt, ztrgt, nsel, &nev, itmax, &iter,

iflag, dprm, zeval, zevec, kv, dhis, kh,

&icon);

1. Function

This routine computes a few of selected eigenvalues and corresponding eigenvectors of a complex sparse
eigenvalue problem

 Ax =  x

using the Jacobi-Davidson method, where A is an n  n complex sparse matrix stored using the compressed row storage

method and x is an n-dimensional vector.

2. Arguments

The routine is called as follows:

ierr = c_dm_vjdnhcr (za, nz, ncol, nfrnz, n, itrgt, ztrgt, nsel, &nev, itmax,

&iter, iflag, dprm, zeval, (dcomplex*)zevec, kv, (double*)dhis,

kh, &icon);

where:

za dcomplex

za[nz]

Input The non-zero elements of the sparse matrix A are stored.

For the compressed row storage method, refer to Figure c_dm_vjdnhcr-

1.

nz int Input The total number of the nonzero elements of the matrix A.

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which

indicate the column number of each nonzero element stored in the array

za.

nfrnz int nfrnz[n+1] Input The position of the first nonzero element of each row stored in the array

za in the compressed row storage method which stores the nonzero

elements row by row. Specify nfrnz[n] = nz + 1.

n int Input Order n of matrix A.

itrgt int Input Select a way of specifying the eigenvalues to be sought (0  itrgt 

6).

Specify itrgt = 0 to compute eigenvalues closest to a target value

ztrgt.

Specify itrgt = 1 to compute eigenvalues with largest magnitude.

Specify itrgt = 2 to compute eigenvalues with smallest magnitude.

Specify itrgt = 3 to compute eigenvalues with largest real part.

Specify itrgt = 4 to compute eigenvalues with smallest real part.

 c_dm_vjdnhcr

85

Specify itrgt = 5 to compute eigenvalues with largest imaginary part.

Specify itrgt = 6 to compute eigenvalues with smallest imaginary

part. See Comments on use.

ztrgt dcomplex Input The target value  is specified as a complex variable when itrgt = 0.

In the following cases, the convergence might be improved by

specifying a value near the seeking eigenvalue even when itrgt  0.

1) The value  is used as a shift of the test subspace <W> = <(A 

I)V> when dprm[2] = 1 which indicates that the harmonic

algorithm is to be used. See Comments on use.

2) When dprm[8]  1, the value  is used as an approximated

eigenvalue in the Jacobi-Davidson correction equation while the

initial phase of the iteration is proceeding. See Comments on use.

3) When dprm[14]  1, the value  is used as a shift value of the

preconditioner for the Jacobi-Davidson correction equation. See

Comments on use.

In other cases, ztrgt is not referred in this routine.

nsel int Input The number of eigenvalues to be computed (1  nsel  n). See

Comments on use.

nev int Output The number of eigenvalues converged.

itmax int Input Upper limit of iterative count for the Jacobi-Davidson method ( 0).

iter int Output Actual iterative count for the Jacobi-Davidson method.

iflag int iflag[32] Input Control information array specifying whether the auxiliary parameter is

specified explicitly in dprm array.

When iflag[i]  0, the parameter specified in dprm[i] is to be

used.

When iflag[i] = 0, a default parameter is used and dprm[i] is not

referred.

Set iflag[15] to [31] to be all zero since these area are preserved

for future enhanced functionality.

dprm double

dprm[32]

Input Auxiliary parameters are specified as for the iflag [i] denotes that

the user specified value is to be used.

For definition of each parameter in the algorithm, see "Method" of

DM_VJDNHCR in the Fortran SSL II Thread-Parallel Capabilities

User's Guide

If all of iflag[0] to [31] are set to be zero, dprm[0] to [31] are

not referred and default parameters are used. Changing the parameter is

recommended when the iteration did not converge with default

parameters.
dprm[0]: The dimension mmin of shrunk subspace when
restarting

(1  mmin  n). The default value is mmin = 50.
dprm[1]: Upper limit of the dimension mmax of subspace (mmin 

mmax  n). The default value is mmax = mmin + 30.
See Comments on use.

dprm[2]: The type of the algorithm, which is associated with
setting of a test subspace.
When dprm[2] = 0, the standard algorithm is
adopted. The algorithm is appropriate for seeking the

c_dm_vjdnhcr

86

extreme eigenvalues in the spectrum.
When dprm[2] = 1, the harmonic algorithm is
adopted. The algorithm is appropriate for seeking the
internal eigenvalues in the spectrum.
The default value is the harmonic algorithm for itrgt
= 0 or 2, or the standard algorithm in other cases.

dprm[3]: The criterion value for judgment of acceptable
convergence. The default value is 10-6.
See Comments on use.

dprm[4]: The way how to calculate the residual norm with
respect to the approximated eigenvalue  and
eigenvector u.
When dprm[4] = 0, the residual norm relative to the
absolute value of approximated eigenvalue |Auu|/||
is adopted.
When dprm[4] = 1, the residual norm relative to the
1-norm of the matrix |Auu|/|A|1 is adopted.
When dprm[4] = 2, the residual norm relative to the
Frobenius norm of the matrix |Auu|/|A|F is adopted.
When dprm[4] = 3, the residual norm relative to the
infinity-norm of the matrix |Auu|/|A| is adopted.
When dprm[4] = 4, the absolute residual norm
|Auu| is adopted.
The default is dprm[4] = 0. See Comments on use.

dprm[5]: A criterion value for a delay-deflation scheme ( 1.0).
The default value is dprm[5] = 0.9.
See Comments on use.

dprm[6]: Control information indicating whether the iteration is
started from a vector specified in the array
zevec[0][i-1], i = 1, ... , n.
When dprm[6] = 0, the iteration is started from a
random vector generated in this routine internally.
When dprm[6] = 1, set an initial vector in the array
zevec[0][i-1], i = 1, ... , n.
The default setting is using a random vector.

dprm[7]: A seed to generate a random vector ( 1.0). The default
value is 1.

dprm[8]: While the iteration count is less or equal to dprm[8],
the process is regarded as an initial phase of the
iteration. Then the fixed value of  is used as an
approximated eigenvalue instead of the value of  in
the Jacobi-Davidson correction equation.
When dprm[2] = 0, the default value is
dprm[8] = 0.
When dprm[2] = 1, the default value is dprm[8] =
mmax. See Comments on use.

dprm[9]: The method to solve the Jacobi-Davidson correction
equation.
When dprm[9] = 0, t = r is set without using the
correction equation.
When dprm[9] = 1, the GMRES method is adopted.
When dprm[9] = 2, the BiCGstab(L) method is
adopted.
The default is using the GMRES method. See
Comments on use.

dprm[10]: A parameter for the solver of the correction equation.
When the BiCGstab(L) is used, specify the value of L

 c_dm_vjdnhcr

87

( 10). The default value is 4.
dprm[11]: Upper limit of the iteration count of the solver for the

Jacobi-Davidson correction equation ( 1). The default
value is 30.

dprm[12]: A parameter to determine the stopping criterion for the
iterative solver of the correction equation (> 0.0).
The default value is 0.7. See Comments on use.

dprm[13]: A parameter to determine the stopping criterion for the
iterative solver of the correction equation (0.0 <
dprm[13]  1.0). The stopping criterion is set to
dprm[12]  dprm[13]l, where l is an iteration
counter of the outer loop which is reset in each
deflation.
The default value is 0.7. See Comments on use.

dprm[14]: The type of preconditioning of the correction equation
( 1).
When dprm[14] = 0, no preconditioning is used.
When dprm[14] = 1, the diagonal left
preconditioning is exploited. See Comments on use.
The default is dprm[14] = 0.

dprm[15] to [31]: Preserved area for future enhanced
functionality.

zeval dcomplex

zeval[nsel]

Output Detected eigenvalues are stored in zeval[i-1] , i = 1, ... , nev.

zevec dcomplex

zevec[nsel][kv]

Output Detected eigenvectors are stored in zevec[i-1][j-1], i = 1, ... ,

nev, j = 1, ... , n.

 Input Set the initial vector in zevec[0][i-1], i = 1, ... , n when

iflag[6]  0 and dprm[6] = 1.0.

kv int Input C fixed dimension of array zevec ( n).

dhis double

dhis[2][kh]

Output The convergence history of the residuals of the eigenproblem are stored

in dhis[0][i-1], i = 1, ... , min(kh, iter). The final relative

residual norm of the each correction equation are stored in

dhis[1][i-1], i = 1, ... , min(kh, iter).

kh int Input C fixed dimension of array dhis (0). Setting kh = itmax is enough.

If kh = 0 is set, the outputs to the array dhis are suppressed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

1000 Breakdown occurred in the iterative linear

equations solver.

Processing is continued with the approximated

solution until the point.

2000 A null vector is detected in a sort of process of the

orthogonalization.

Processing is continued with the subspace

expanded by a random vector.

3000 A recovery procedure is activated in a sort of

restorative process of the delay deflation.

Processing is continued.

10000 The iteration count reached the maximum limit

before nsel-th eigenvalue is obtained.

The calculated eigenpairs up to nev are correct.

c_dm_vjdnhcr

88

Code Meaning Processing

20000 The projected dense eigenproblem can not be

solved.

Processing is discontinued.

The calculated eigenpairs up to nev are correct if

nev >0.

21000 The iteration count reached the maximum limit

without a single convergence.

Processing is discontinued.

The approximate values obtained up to this point

are output in array zeval[0] and

zevec[0][0] to [0][n-1], but their

precision cannot be guaranteed.

29000 An internal error occurred. Processing is discontinued.

30000 One of the following has occurred:

• n < 1

• itrgt < 0

• itrgt > 6

• nsel < 1

• nsel > n

• itmax < 0

• kv < n

• kh < 0.

30001 to

30032

The value of iflag or dprm is not correct.

31000 The value of nz, ncol or nfrnz is not correct.










A

1 2+4i 0 0

2-4i 5 7-3i 6+9i

0 7+3i 8 0

0 6-9i 0 10



































































































4

2

3

2

2

1

1

,

10

96

8

37

5

42

1

,

8

6

4

2

1

zcolzhnfrnz

i

i

i

Figure c_dm_vjdnhcr-1 Storing a matrix A in compressed row storage method

 c_dm_vjdnhcr

89

3. Comments on use

Robustness of the Jacobi-Davidson algorithm
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices

based on the reduction of matrix elements. The results obtained using the Jacobi-Davidson method depends on choice of

the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified.

This method is applicable when the seeking eigenvalues are only a few of the entire spectrum.

The convergence behavior of this routine is affected by various auxiliary parameters. For description of these parameters,

refer to "Comments on use."

itrgt and ztrgt parameter
The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of

itrgt, which specifies a way of selecting eigenvalues. However, an explicit specification of the value in dprm[2] by

setting iflag[2]  0 is prior to the default value of course. Which means that the standard algorithm can be used with

itrgt = 0 or 2, and that the harmonic algorithm can be used with itrgt = 1, 3, 4, 5 or 6, as long as user knows its

adaptivity.

Note that the ztrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just

setting itrgt = 2, which specifies to compute eigenvalues with smallest magnitude. Define the ztrgt to be (0.0,0.0) if

other appropriate value is not known.

Calculating the residual norm
In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to the absolute value

of the approximated eigenvalue. When the absolute value of the seeking eigenvalue is far smaller than the norm of the

matrix, however, it is difficult to satisfy the convergence condition |Auu|/|| < dprm[3]. In that case, adjust the

convergence criterion dprm[3], or change the way of calculating the residual norm which can be specified by

dprm[4] parameter.

Delay deflation procedure
This routine adopts an ingenious scheme to improve the precision of the results. After the residual becomes below the

convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the

residual remains valid. This procedure is called delay-deflation here. The decrease ratio is regarded valid if the ratio of

the residual norm relative to the preceding residual is less than the parameter dprm[5]. If the residual deteriorates while

this extra iteration, the better previous variables are restored and the deflation with the vector takes place. With setting

dprm[5] = 0.0, this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary

convergence criterion.

Approximated eigenvalue in the correction equation
In the initial few steps of the process, the values of  are usually poor approximations of the wanted eigenvalue. This

routine takes the target value  specified in the ztrgt as an approximated eigenvalue instead of  in the initial phase,

since the validity of the expansion vector t is affected by the closeness to the approximated eigenvalue in the Jacobi-

Davidson correction equation. The process is regarded as the initial phase of the iteration while the iteration count is less

than or equal to dprm[8]. However, the default value of this parameter is dprm[8] = 0 when dprm[2] = 0 is

adopted, because it is difficult to determine a value of  in advance when the standard algorithm is specified.

c_dm_vjdnhcr

90

Stopping criterion for inner iteration
The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm

consists of two nested iterations. In the outer iteration the approximation for the eigenproblem is constructed , and in the

inner iteration the correction equation is approximately solved. If the residual of the eigenproblem still not be small in the

outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary. Therefore, the

stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration. The

criterion is set to be dprm[12]  dprm[13]l, where l is the outer iteration counter which is reset to zero at each

deflation. Incidentally, the upper limit count for the inner iteration is specified by dprm[11].

Precondition for the correction equation
It is known that a good preconditioner improves the convergence of the iterative method for linear equations. The

preconditioner to be applied is controlled by the parameter dprm[14] in this routine. Note that the value of ztrgt is

used for constructing a matrix M  (A   I), which approximates a part of the coefficient matrix in some way. The

preconditioner is derived from the inverse procedure of the matrix M and projections on both sides. If the preconditioner

does not approximate the coefficient matrix of the correction equation properly or the parameter ztrgt is far from the

seeking eigenvalue, the convergence may deteriorate.

Memory usage
This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when

the available area of the memory runs out. The necessary size for the outer iteration is at least n  (3  mmax  2  nsel)

 16 bytes for the standard algorithm and n  (4  mmax  2  nsel)  16 bytes for the harmonic algorithm. And when

the GMRES method is used as the solver of the correction equation, the additional necessary area is n  dprm[11]  16

bytes for the inner iteration.

4. Example program

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem Ax =  x are sought, where A is

a 10000  10000 example matrix of the random sparsity pattern with 20 nonzero entries in each row.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4

processors.

/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"

#define NMAX 10000
#define NZC 20
#define NNZMAX NMAX*NZC
#define LDK 10

int mkspmat(int, int, dcomplex*, int*, int*);
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
double cdabs(dcomplex);

int MAIN__() {

 c_dm_vjdnhcr

91

 static dcomplex za[NNZMAX], ztrgt, zeval[LDK], zevec[LDK][NMAX];
 dcomplex rvec[NMAX];
 double derr, dprm[32], dhis[2][NMAX];
 int nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt, iflag[32];
 int nsel, nev, itmax, iter, i, j, k, icon, ldx, ldh;

 n = NMAX;
 mkspmat(n, NZC, za, ncol, nfrnz);
 nz = nfrnz[n] - 1;
 itmax = 500;
 nsel = 10;
 for (i=0; i<32; i++) {
 iflag[i] = 0;
 }
 ldx = NMAX;
 ldh = NMAX;
 ztrgt.re = 0.0;
 ztrgt.im = 0.0;
 itrgt = 1;
 c_dm_vjdnhcr(za, nz, ncol, nfrnz, n, itrgt, ztrgt, nsel, &nev,
 itmax, &iter, iflag, dprm, zeval, (dcomplex*)zevec, ldx,
 (double*)dhis, ldh, &icon);

 printf(" C_DM_VJDNHCR ICON= %d\n", icon);
 printf(" ITER= %d\n", iter);
 for (k=0; k<nev; k++) {
 for (i=0; i<n; i++) {
 rvec[i].re = 0.0;
 rvec[i].im = 0.0;
 }
#pragma omp parallel for private(j)
 for (i=0; i<n; i++) {
 for (j=nfrnz[i]-1; j<nfrnz[i+1]-1; j++) {
 rvec[i] = comp_add(rvec[i], comp_mult(za[j], zevec[k][ncol[j]-1]));
 }
 rvec[i] = comp_sub(rvec[i], comp_mult(zeval[k], zevec[k][i]));
 }
 derr = 0.0;
 for (i=0; i<n; i++) {
 derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im);
 }
 derr = sqrt(derr);
 printf(" EIGEN VALUE %d = (%.15lf,%.15lf)\n", k+1, zeval[k].re, zeval[k].im);
 printf(" ERROR= %3.15le\n", derr/cdabs(zeval[k]));
 }
 return(0);
}

int mkspmat(int n, int nzc, dcomplex *za, int *ncol, int *nfrnz) {
#define LDW 1350

 int i, ic, ict, j, k, iseed, icon;
 double *dwork, rndwork[LDW];

 dwork = (double *)malloc(nzc * sizeof(double));

 iseed = 1;
 c_dvran4(0.0, 1.0, &iseed, (double*)za, (2*n*nzc), rndwork, LDW, &icon);
 iseed = 1;
 for (i=0; i<n; i++) {
 nfrnz[i] = i * nzc + 1;
LABEL_10: c_dvrau4(&iseed, dwork, nzc, rndwork, LDW, &icon);
 ic = i * nzc;
 for (j=0; j<nzc; j++) {
 ict = n * fabs(dwork[j]) + 1;
 for (k=0; (k<=j) && (j!=0); k++) {
 if (ict == ncol[ic-k]) goto LABEL_10;
 }
 ic = ic + 1;
 ncol[ic-1] = ict;
 }
 }
 nfrnz[n] = ic + 1;
 free(dwork);
 return 0;
}

dcomplex comp_add(dcomplex so1, dcomplex so2) {

 dcomplex obj;

c_dm_vjdnhcr

92

 obj.re = so1.re + so2.re;
 obj.im = so1.im + so2.im;
 return obj;
}

dcomplex comp_sub(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re - so2.re;
 obj.im = so1.im - so2.im;
 return obj;
}

dcomplex comp_mult(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re * so2.re - so1.im * so2.im;
 obj.im = so1.re * so2.im + so1.im * so2.re;
 return obj;
}

double cdabs(dcomplex so) {
 double obj;

 obj = sqrt(so.re * so.re + so.im * so.im);
 return obj;
}

5. Method

Consult the entry for DM_VJDNHCR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7].

 c_dm_vlax

93

c_dm_vlax

A system of linear equations with a real matrix (blocked LU

decomposition method).

ierr = c_dm_vlax(a, k, n, b, epsz, isw, &is,

ip, &icon);

1. Function

This function solves a system of real coefficient linear equations using the blocked LU-decomposition method of outer

product type.

 Ax = b

where, A is a non-singular real matrix of n  n, b is an n-dimensional real constant vector, and x is an n-dimensional

solution vector. (n  1)

2. Arguments

The routine is called as follows:

ierr = c_dm_vlax((double*)a, k, n, b, epsz, isw, &is, ip, &icon);

where:

a double

a[n][k]

Input

Output

Matrix A.

Matrices L and U.

k int Input C fixed dimension of array a ( n).

n int Input Order n of matrix A.

b double b[n] Input Constant vector b.

 Output Solution vector x.

epsz double Input Tolerance for relative zero test of pivots in decomposition process of A

( 0). When epsz is zero, a standard value is used. See Comments on

use.

isw int Input Control information.

When solving several sets of equations that have the same coefficient

matrix, set isw=1 for the first set, and isw=2 for the second and

subsequent sets. Only argument b is assigned a new constant vector b

and the others are unchanged. See Comments on use.

is int Output Information for obtaining the determinant of matrix A. When the n

elements of the calculated diagonal of array a are multiplied together,

and the result is then multiplied by is, the determinant is obtained.

ip int ip[n] Work The transposition vector which indicates the history of row exchange by

partial pivoting. A one-dimensional array of size n.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

c_dm_vlax

94

Code Meaning Processing

20000 Either all of the elements of some row are zero or

the pivot became relatively zero. It is highly

probable that the coefficient matrix is singular.

Discontinued.

30000 One of the following has occurred:

 k < n

 n < 1

 epsz < 0

 isw  1 or 2

Bypassed.

3. Comments on use

epsz
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A = (aij), that is:

epsz ij
k
kk aa max

then the relative pivot value is assumed to be zero and processing terminates with icon = 20000. The standard value of

epsz is 16µ, where µ is the unit round-off. If the processing is to proceed at a lower pivot value, epsz will be given the

minimum value but the result is not always guaranteed.

isw
When solving several sets of linear equations with same coefficient matrix, specify isw = 2 for any second and

subsequent sets after successfully completing the first with isw = 1. This will bypass the LU-decomposition section and

go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than

otherwise. The value of is is identical for all sets and any valid isw.

4. Example program

A system of linear equations having on 1000  1000 coefficient matrix is solved.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)

MAIN__()
{
 int n, is, isw, i, j, icon, ierr;
 int ip[NMAX];
 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;

 n = NMAX;
 epsz = 0.0;
 isw = 1;

#pragma omp parallel for shared(a,n) private(i,j)
 for(i=0; i<n; i++)
 for(j=0; j<n; j++) a[i][j] = min(i,j)+1;

#pragma omp parallel for shared(b,n) private(i)

 c_dm_vlax

95

 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);

 ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vlax failed with icon = %d\n", icon);
 exit(1);
 }

 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
 for(i=0; i<n; i++) s *= a[i][i];

 printf("solution vector:\n");
 for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

 det = is*s;
 printf("\ndeterminant of the matrix = %e\n", det);
 return(0);
}

5. Method

Consult the entry for DM_VLAX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vlbx

96

c_dm_vlbx

A system of linear equations with banded real matrices (Gaussian

elimination).

ierr = c_dm_vlbx(a, k, n, nh1, nh2, b, epsz,

isw, &is, ip, &icon);

1. Function

This routine solves a system of linear equations with the banded real matrix using Gaussian elimination.

 Ax = b

where, A is an n  n banded matrix, with the lower bandwidth h1, and upper bandwidth h2, b is an n-dimensional real

constant vector, and x is an n-dimensional solution vector. n > h1  0, n > h2  0.

2. Arguments

The routine is called as follows:

ierr = c_dm_vlbx((double*)a, k, n, nh1, nh2, b, epsz, isw, &is, ip, &icon);

where:

a double

a[n][k]

Input Store banded coefficient matrix A.

See Figure c_dm_vlbx-1.

 Output LU-decomposed matrices L and U are stored.

See Figure c_dm_vlbx-2.

The value of a is not assured after operation.

k int Input C fixed dimension of array a ( 2  nh1 + nh2 + 1).

n int Input Order n of matrix A.

nh1 int Input Lower bandwidth size h1.

nh2 int Input Upper bandwidth size h2.

b double b[n] Input Constant vector b.

 Output Solution vector x.

epsz double Input Judgment of relative zero of the pivot ( 0.0). When epsz is zero, the

standard value is set. See Comments on use.

isw int Input Control information.

When solving k (k  1) sets of equations having the same coefficient

matrix, specify as follows.

 1 the first set of equations.

 2 the second and subsequent sets of equations.

When specifying isw = 2, change only the value of b into a new

constant vector b and do not change any other parameters.

is int Output Indicates row vector exchange count. See Comments on use.

 1 exchange count is even.

 1 exchange count is odd.

ip int ip[n] Output The transposition vector to contain row exchange information is stored.

See Comments on use.

 c_dm_vlbx

97

icon int Output Condition code. See below.

nh2 nh1 nh1 1

n

k

a11

a22

a33

ann

an1 n1

a12

a23 a13

* *

*

a1 nh2+1 *

*

*

* *

0

0

0

0 0 an1 n annh2 n

a21 a31 anh11 1

anh12 2

an nnh1

an n1

*

* *

a32 a42

...

...

*

...........

..............

...........

......

........

Figure c_dm_vlbx-1. Storing matrix A in array a

The column vector of matrix A is continuously stored in columns of array a in the same manner as diagonal elements of

banded matrix A aii, i = 1, ... , n, are stored in a[i1][h1h2].

Upper banded matrix part:

aji, j, i = 1, ... , h2, j = 1, ... , n, j  i  1 is stored in a[i][j], i = 0, ... , n1, j = h1, ... , h1h21.

Lower banded matrix part:

aji, j, i = 1, ... , h1, j = 1, ... , n, j  i  n is stored in a[i][j], i = 0, ... , n1, j = h1h21, ... , 2h1h2.

For a[i][j], i = 0, ... , n  1, j = 0, ... , h11, set zero for the elements of matrix A outside the band.

* indicates undefined values.

c_dm_vlbx

98

nh2 nh1 nh1 1

n

k

l11

l22

l33

lnn

ln1 n1

u12

u23 u13

* *

*

u1 nh1+nh21

*

*

*

* *

un1 n unnh2 n

l21 l31 lnh11 1

lnh12 2

ln nnh1

ln n1

*

* *

l32 l42

...

...

*

...........

..............

...........

......

........ unnh1nh2 n

Figure c_dm_vlbx-2. Storing LU-decomposed matrix L and U in array a

LU-decomposed unit upper banded matrix except diagonal elements uji1, j, i = 1, ... , h1  h2, j = 1, ... , n, j  i  1  1 is

stored in a[i][j], i = 0, ... , n1, j = 0 , ... , h1  h2.

Lower banded matrix part:

lji, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in a[i][j], i = 0, ... , n1, j = h1  h2, ... , 2  h1  h2.

* indicates undefined values.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 All elements in some row of array a were zero, or

the pivot became relatively zero. Matrix A may

be singular.

Discontinued.

30000 One of the following has occurred:

 n < 1

 nh1  n

 nh1 < 0

 nh2  n

 nh2 < 0

 k < 2  nh1 + nh2  1

 epsz < 0

Bypassed.

 c_dm_vlbx

99

3. Comments on use

epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case,

however, the result is not assured.

ip
In this routine, the row vector is exchanged using partial pivoting. That is, when the I-th row (I  J) is selected as the

pivot row in the J-th stage (J = 1, ... , n) of decomposition, the contents of the I-th row and J-th row are exchanged. To

indicate this exchange, I is stored in ip[J 1].

is
The determinant can be obtained by multiplying is and a[i][h1  h2], where i = 0, ... , n  1.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, nh1 =

2000, nh2 = 3000.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))

#define NH1 2000
#define NH2 3000
#define N 10000
#define KA (2*NH1+NH2+1)
#define NWORK 4500

int MAIN__()
{
 double a[N][KA], b[N], dwork[NWORK];
 double tt1, tt2, tmp, epsz;
 int ip[N], i, j, is, ix, isw, icon, nptr, nbase, nn;

 ix = 123;
 nn = NH1+NH2+1;
 for (i=0; i<N; i++) {
 c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
 }

 printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);

 /* zero clear */
 for (j=0; j<N; j++) {
 for (i=0; i<NH1; i++) {
 a[j][i] = 0.0;
 }
 }

 /* left upper triangular part */
 for (j=0; j<NH2; j++) {
 for (i=0; i<NH2-j; i++) {
 a[j][i+NH1] = 0.0;
 }
 }

 /* right rower triangular part */
 nbase = 2*NH1+NH2+1;

c_dm_vlbx

100

 for (j=0; j<NH1; j++) {
 for (i=0; i<j; i++) {
 a[N-NH1+j][nbase-i-1] = 0.0;
 }
 }

 /* set right hand constant vector */
 for (i=0; i<N; i++) {
 b[i] = 0.0;
 }

 for (i=0; i<N; i++) {
 nptr = i;
 for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {
 b[j] += a[i][j-i+NH1+NH2];
 }
 }

 epsz = 0.0;
 isw = 1;
 c_dm_vlbx((double*)a, KA, N, NH1, NH2, b, epsz, isw, &is, ip, &icon);

 tmp = 0.0;
 for (i=0; i<N; i++) {
 tmp = max(tmp,fabs(b[i]-1));
 }

 printf("maximum error = %e\n", tmp);
 return(0);
}

5. Method

Consult the entry for DM_VLBX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vlcspsxcr1

101

c_dm_vlcspsxcr1

System of linear equations with non-Hermitian symmetric complex

sparse matrices (Conjugate A-Orthogonal Conjugate Residual method

with preconditioning by incomplete LDLT decomposition, symmetric

compressed row storage method)

ierr = c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz,

n, zb, isw, zx, ipar, rpar, zvw,

&icon);

1. Function

This routine solves, using Conjugate A-Orthogonal Conjugate Residual method, COCR method, a system of linear
equations with non-Hermitian symmetric complex sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix A is stored using the symmetric compressed row storage method. Vectors b and x are n-

dimensional vectors.

2. Arguments

The routine is called as follows:

ierr = c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, n zb, isw, zx, ipar, rpar, zvw,

&icon);

where:

zsa dcomplex

zsa[nz]

Input The nonzero elements of the coefficient matrix are stored.

Regarding the symmetric compressed row storage method, see Fig.

c_dm_vlcspsxcr1-1.

nz int Input Total number of the nonzero elements belong to the coefficient matrix

A ( 1).

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which

indicate the column number of each nonzero element stored in the array

zsa.

nfrnz int nfrnz[n+1] Input The position of the first nonzero element stored in array zsa by the

symmetric compressed row storage methods which stores the nonzero

elements row by row of upper triangular portion of matrix A.

nfrnz[n] = nz + 1.

n int Input Order n of the matrix A ( 1).

zb dcomplex zb[n] Input The right-side constant vector of the system of linear equations is

stored.

isw int Input Control information.

When solving multiple sets of equations having the same coefficient

matrix, specify as follows;

Specify isw = 1 for the first set of equations.

Specify isw = 3 for the second and subsequent sets with the same

c_dm_vlcspsxcr1

102

coefficient matrix and different constant vector b.

When specifying isw = 3, change only the value of zb and zx into a

new constant vector b and initial vector x and do not change other

parameters.

zx dcomplex zx[n] Input The initial value of solution can be specified.

 Output The solution vector is stored.

ipar int ipar[20] Control parameters having integer values. Some parameters may be

modified on output. When specify 0 for any parameter, it will be

assumed to specify default value on it. If no convergence is met by

using default parameters, it is recommended to try again by making

parameters change.

 Input ipar[0] to [4]: Reserved for future extensions. Specify 0 for each,

just in case.

 Input ipar[5]: Specify the upper limit of iteration counts for the COCR

 method ( 0). Default value is 2000.

 Output ipar[6]: Actual iteration counts.

 Output ipar[7]: Actual evaluation counts of matrix-vector multiplications

Av

 where A is the coefficient matrix and v is iterative vector in

the COCR method.

 Input ipar[8] to [9]: Reserved for future extensions. Specify 0 for each,

just in case.

 Input ipar[10]: Specify control parameter how to make compensation for

dropped new nonzero elements which are filled in during

incomplete LDLT decomposition. If specify as

ipar[10] = 0, no compensation will be made. If

specify as ipar[10] = 1, compensation will be made

by

reflecting dropped entries into diagonal elements. Default

value is 0.

For more detail, See Comments on use.

 Output ipar[11]: Actual number of dropped new nonzero elements.

 Input ipar[12] to [19]: Reserved for future extensions. Specify 0 for

each, just in case.

rpar double

rpar[20]

 Control parameters having real values. Some parameters may be

modified on output. When specify 0.0 for any parameter, it will be

assumed to specify default value on it. If no convergence is met by

using default parameters, it is recommended to try again by making

parameters change.

 Input rpar[0]: Reserved for future extensions. Specify 0.0 for each, just in

case.

 Input rpar[1]: Specify convergence criteria epst for iterative solution of

given a system of linear equations by COCR method

 ( 0.0).

 Output rpar[2]: Relative residual norm for residual vector of the solution.

 Output rpar[3]: Real part of the accumulated sum of dropped new nonzero

 c_dm_vlcspsxcr1

103

elements which are filled in during incomplete LDLT

decomposition.

 For more detail, See Comments on use.

 Output rpar[4]: Imaginary part of the accumulated sum of dropped new

nonzero elements which are filled in during incomplete

LDLT decomposition.

 For more detail, See Comments on use.

 Input rpar[5] to [19]: Reserved for future extensions. Specify 0.0 for

each, just in case.

zvw dcomplex

zvw[nz]

Work

area

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 The iteration counts reached the upper limit. Processing is discontinued.

The already calculated approximate value is

output to array zx along with relative residual

error.

29000 Matrix A is singular. Processing is discontinued.

30000 Parameter error(s).

• n < 1

• nz < 1

• nz ≠ nfrnz[n] - 1

• isw < 1

• isw = 2

• isw > 3

• ipar[5] < 0

• ipar[10] < 0

• ipar[10] > 1

• rpar[1] < 0.0.

c_dm_vlcspsxcr1

104























11960

9803

6052

0321

A

 Figure c_dm_vlcspsxcr1-1 Storing matrix A in symmetric compressed row storage method

3. Comments on use

About drop of the new nonzero and its compensation
In this routine, the new nonzero elements which are filled in during incomplete LDLT decomposition will be dropped in

general. In order to ease up effect of such dropping, this routine attempts to compensate such dropping according to

ipar[10]. If specify as ipar[10] = 1, it makes compensation for each diagonal elements by adding certain value

which is accumulated sum of dropped new nonzero elements which are filled in on the row. By this compensation, it may

affect to improve characteristic of the preconditioning matrix.

Further, this routine outputs the accumulated sum zdrp as an index regardless of ipar[10] specification. The real part

and imaginary part of zdrp are stored in rpar[3] and rpar[4] respectively.

4. Example program

Read a symmetric complex matrix, then solve a linear system of equations Ax = b by this routine.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* ==
 TEST PROGRAM FOR KRYLOV ITERATION METHODS
 FOR SPARSE LINEAR EQUATIONS





























































































4

4

3

4

2

3

2

1

,

11

9

8

6

5

3

2

1

,

9

8

6

4

1

ncolzsanfrnz

 c_dm_vlcspsxcr1

105

 WITH NON-HERMIT COMPLEX SYMMETRIC MATRIX.
 == */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define NZMAX 500000
#define NMAX 10000

dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
void cmsvcr1(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, int);
void creadmat(char*, double*, int*, int*, int*, double*);
void cmatcopy(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, dcomplex*,
 int*, int*, dcomplex*, dcomplex*);
void cvecgen(dcomplex*, int, int*, int*, dcomplex*, dcomplex*);
double cnorm(dcomplex*, int);

int MAIN__() {

 dcomplex zsa[NZMAX], zx[NMAX], zb[NMAX], zsat[NZMAX], zxt[NMAX],
 zbt[NMAX], zvw[NZMAX];
 int nfrnz[NMAX+1], ncol[NZMAX], nfrnzt[NMAX+1], ncolt[NZMAX], ipar[20];
 double rpar[20];
 char title[74];

 int n, nz, isw, ii, ic, icmav, mdrp, nzdrp, icon;
 double epst, relres, drpr, drpi,rel, relerr;
/* --
 INPUT MATRIX FROM UF SPARSE MATRIX COLLECTION
 -- */
 creadmat(title, (double *)zsat, &n, nfrnzt, ncolt, (double *)zsa);
 cvecgen(zsat, n, nfrnzt, ncolt, zxt, zbt);
 cmatcopy(zsat, n, nfrnzt, ncolt, zxt, zbt, zsa, nfrnz, ncol, zx, zb);

 printf(
 "\n--\n");
 printf("TEST MATRIX : \n%s\n", title);
/* -- */
 isw = 1;
 for (ii = 0; ii < 20; ii++) {
 ipar[ii] = 0;
 rpar[ii] = 0.0;
 }
 nz = nfrnz[n] - 1;
 c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, n, zb,
 isw, zx, ipar, rpar, zvw, &icon);

 ic = ipar[6];
 icmav = ipar[7];
 mdrp = ipar[10];
 nzdrp = ipar[11];
 epst = rpar[1];
 relres = rpar[2];
 drpr = rpar[3];
 drpi = rpar[4];
 rel = cnorm(zb, n);
 cmsvcr1(zsa, n, nfrnz, ncol, zx, zb, 0);
 relerr = cnorm(zb, n) / rel;

 printf(
 "\n--\n");
 printf(" SOLUTION RESULTS BY \"C_DM_VLCSPSXCR1\"\n\n");
 printf(" N =%12d\n", n);
 printf(" NZ =%12d\n", nfrnz[n]-1);
 printf(" MDRP =%12d\n\n", mdrp);
 printf(" ICON =%12d\n", icon);
 printf(" IC =%12d\n", ic);
 printf(" ICMAV =%12d\n", icmav);
 printf(" NZDRP =%12d\n", nzdrp);
 printf(" DRPR =%12.2le\n", drpr);
 printf(" DRPI =%12.2le\n", drpi);
 printf(" EPST =%12.2le\n", epst);
 printf(" RELRES =%12.2le\n", relres);
 printf(" RELERR =%12.2le\n", relerr);
 printf(
 "--\n");
 if ((relerr <= epst * 1.1) && (icon == 0)) {
 printf(" ********** OK **********\n");
 } else {

c_dm_vlcspsxcr1

106

 printf(" ********** NG **********\n");
 }
 return(0);
}

dcomplex comp_add(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re + so2.re;
 obj.im = so1.im + so2.im;
 return obj;
}

dcomplex comp_mult(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re * so2.re - so1.im * so2.im;
 obj.im = so1.re * so2.im + so1.im * so2.re;
 return obj;
}

/* ===
 MATRIX VECTOR MULTIPLICATION.
 COMPLEX SYMMETRIC MATRIX STORED IN CSR FORM.
 === */
void cmsvcr1(dcomplex *zsa, int n, int *nfrnz, int *ncol, dcomplex *zx,
 dcomplex *zb, int isw) {
 int i, j, k1, k2;
 dcomplex zsa_w;

 if (isw == 1) { /* *** MULTIPLICATION (AX=>B) */
 for (i = 0; i < n; i++) {
 zb[i].re = 0.0;
 zb[i].im = 0.0;
 }
 for (i = 0; i < n; i++) {
 k1 = nfrnz[i] - 1;
 k2 = nfrnz[i+ 1] - 1;
 if (zx[i].re != 0.0 || zx[i].im != 0.0) {
 for (j = k1; j < k2; j++) {
 zb[ncol[j] - 1] = comp_add(comp_mult(zsa[j], zx[i]),
 zb[ncol[j] - 1]);

 if (ncol[j] != i + 1)
 zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] -1]), zb[i]);
 }
 } else {
 for (j = k1; j < k2; j++) {
 zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] - 1]), zb[i]);
 }
 }
 }
 } else { /* *** RESIDUAL VECTOR (B-AX=>B) */
 for (i = 0; i < n; i++) {
 k1 = nfrnz[i] - 1;
 k2 = nfrnz[i + 1] - 1;
 if (zx[i].re != 0.0 || zx[i].im != 0.0) {
 for (j = k1; j < k2; j++) {
 zsa_w = zsa[j];
 zsa_w.re = -zsa_w.re;
 zsa_w.im = -zsa_w.im;
 zb[ncol[j] - 1] = comp_add(comp_mult(zsa_w, zx[i]), zb[ncol[j] - 1]);
 if (ncol[j] != i + 1) {
 zsa_w = zsa[j];
 zsa_w.re = -zsa_w.re;
 zsa_w.im = -zsa_w.im;
 zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]);
 }
 }
 } else {
 for (j = k1; j < k2; j++) {
 zsa_w = zsa[j];
 zsa_w.re = -zsa_w.re;
 zsa_w.im = -zsa_w.im;
 zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]);
 }
 }
 }
 }

 c_dm_vlcspsxcr1

107

 return;
}

/* ===
 READ TEST MATRIX FOR COMPLEX SYMMETRIC MATRIX.
 === */
void creadmat(char *title, double *a, int *ncol, int *is, int *js, double *w) {

/* THIS ROUTINE READS MATRIX DATA OF RB SPARSE FORM.
 THE FOLLOWING SAMPLE CODE IS ORIGINATED FROM MATRIX
 MARKET; */

 char key[11], mxtype[4], rhstyp[4],
 ptrfmt[17], indfmt[17], valfmt[21], rhsfmt[23];
 char dummy[12];
 int totcrd, ptrcrd, indcrd, valcrd, rhscrd,
 nrow, nnzero, neltvl,
 nrhs, nrhsix;
 int i;
/* ------------------------
 READ IN HEADER BLOCK
 ------------------------ */
 scanf("%72c%8c", title, key);
 title[72] ='\0';
 scanf("%14d%14d%14d%14d%14d", &totcrd, &ptrcrd, &indcrd,
 &valcrd, &rhscrd);
 scanf("%3c%11c%14d%14d%14d%14d", mxtype, dummy, &nrow, ncol,
 &nnzero, &neltvl);
 scanf("%16c%16c%20c%20c", ptrfmt, indfmt, valfmt, rhsfmt);
 if (rhscrd > 0) {
 scanf("%3c%11c%14d%14d", rhstyp, dummy, &nrhs, &nrhsix);
 }
/* -------------------------
 READ MATRIX STRUCTURE
 ------------------------- */
 for (i = 0; i <= *ncol; i++) {
 scanf("%5d", &is[i]);
 }
 for (i = 0; i < nnzero; i++) {
 scanf("%4d", &js[i]);
 }

 if (valcrd > 0) {
/* ----------------------
 READ MATRIX VALUES
 ---------------------- */
 if (mxtype[0] == 'R') {
 for (i = 0; i < nnzero; i++) {
 scanf("%le", &a[i]);
 }
 } else {
 for (i = 0; i < 2 * nnzero; i++) {
 scanf("%le", &a[i]);
 }
 }
 }
 return;
}

/* ===
 COPY COMPLEX MATRIX AND VECTORS.
 === */
void cmatcopy(dcomplex *zsat, int n, int *nfrnzt, int *ncolt,
 dcomplex *zxt, dcomplex *zbt, dcomplex *zsa, int *nfrnz, int *ncol,
 dcomplex *zx, dcomplex *zb) {
 int nz, i;

 nz = nfrnzt[n] - 1;
 for (i = 0; i <= n; i++) {
 nfrnz[i] = nfrnzt[i];
 }
 for (i = 0; i < nz; i++) {
 zsa[i] = zsat[i];
 ncol[i] = ncolt[i];
 }

 for (i = 0; i < n; i++) {
 zx[i] = zxt[i];
 zb[i] = zbt[i];
 }
 return;

c_dm_vlcspsxcr1

108

}

/* ===
 GENERATE COMPLEX B AND X VECTORS.
 === */
void cvecgen(dcomplex *zsat, int n, int *nfrnzt, int *ncolt, dcomplex *zxt,
 dcomplex *zbt) {
 int ii;

/* COMPUTE RIGHT HAND SIDE VECTOR B. */
 for (ii = 1; ii <= n; ii++) {
 zxt[ii - 1].re = 1.0 + (double)ii / (double)n;
 zxt[ii - 1].im = 0.0;
 }
 cmsvcr1(zsat, n, nfrnzt, ncolt, zxt, zbt, 1);

/* SET INITIAL VALUE */
 for (ii = 0; ii < n; ii++) {
 zxt[ii].re = 0.0;
 zxt[ii].im = 0.0;
 }
 return;
}

/* ===
 L2 NORM OF A COMPLEX VECTOR.
 === */
double cnorm(dcomplex *zx, int n) {
 int i;
 double cnorm_ret;

 cnorm_ret = 0.0;
 for (i = 0; i < n; i++) {
 cnorm_ret += (zx[i].re * zx[i].re + zx[i].im * zx[i].im);
 }
 if (cnorm_ret != 0.0)
 cnorm_ret = sqrt(cnorm_ret);
 return(cnorm_ret);
}

5. Method

Consult the entry for DM_VLCSPSXCR1 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as

[62] , [70].

 c_dm_vlcx

109

c_dm_vlcx

A system of linear equations with complex matrices (blocked LU

decomposition method)

ierr = c_dm_vlcx(za, k, n, zb, epsz, isw, &is,

ip, &icon);

1. Function

This routine solves a system of complex coefficient linear equations using blocked LU-decomposition method of an outer

product type.

 Ax = b (1)

where, A is a non-singular n  n complex matrix, b is an n-dimensional complex constant vector, and x is an n-

dimensional solution vector (n  1).

2. Arguments

The routine is called as follows:

ierr = c_dm_vlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, ip, &icon);

where:

za dcomplex

za[n][k]

Input

Output

Matrix A.

Matrices L and U are stored in za.

k int Input C fixed dimension of array za ( n).

n int Input Order n of matrix A.

zb dcomplex

zb[n]

Input Constant vector b.

 Output Solution vector x.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

When epsz is 0.0, the standard value is assumed. See Comments on

use.

isw int Input Control information.

When solving k ( 1) sets of equations having identical coefficient

matrices, specify as follows.

Specify isw = 1 for the first set of equations.

Specify isw = 2 for the second and the subsequent sets of equations.

When specifying isw = 2, change only the value of zb into a new

constant vector. Do not change any other parameters.

See Comments on use.

is int Output Information to obtain the determinant of matrix A.

The determinant is obtained by multiplying n diagonal elements of array

za by the value of is after the operation.

ip int ip[n] Output The transposition vector which indicates the history of the row exchange

by partial pivoting. A one-dimensional array of size n.

icon int Output Condition code. See below.

c_dm_vlcx

110

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 All the elements in some row of matrix A are

zero, or the pivot becomes relatively zero. Matrix

A may be singular.

Stopped.

30000 One of the following has occurred:

 k < n

 n < 1

 epsz < 0.0

 isw  1 or 2

Bypassed.

3. Comments on use

epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz. In this case, processing is discontinued

with icon = 20000. When unit round off is µ, the standard value of epsz is 16µ. When the computation is to be

continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

isw
When several sets of linear equations with an identical coefficient matrix are successively solved, the value of isw should

be 2 from the second time on. This reduces the execution time because LU decomposition of coefficient matrix A is

bypassed. The value of is does not change from the time isw = 1.

4. Example program

A system of linear equations having an n  n complex coefficient matrix is solved.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N (2000)
#define K (N+1)

MAIN__()
{
 dcomplex za[N][K], zb[N];
 double epsz, c, t, s, error;
 int ip[N];
 int isw, is, icon, i, j;

 c = sqrt(1.0/(double)(N+1));
 t = atan(1.0)*8.0/(N+1);

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 za[j][i].re = c*cos(t*(i+1)*(j+1));
 za[j][i].im = c*sin(t*(i+1)*(j+1));
 }
 }

 for (i=0; i<N; i++) {
 s = 0.0;
 for (j=0; j<N; j++) {
 s += cos(t*(i+1)*(j+1));
 zb[i].re = s*c;

 c_dm_vlcx

111

 zb[i].im = 0.0;
 }
 }

 epsz = 0.0;
 isw = 1;
 c_dm_vlcx((dcomplex*)za, K, N, zb, epsz, isw, &is, ip, &icon);

 printf("icon = %d\n", icon);

 error = 0.0;

 for (i=0; i<N; i++) {
 error = max(fabs(1.0-zb[i].re), error);
 }

 printf("error = %f\n", error);
 printf("ORDER = %d\n", N);
 printf("zb[0] = %e\n", zb[0].re);
 printf("zb[n-1] = %e\n", zb[N-1].re);

 return(0);
}

c_dm_vldlx

112

c_dm_vldlx

A system of linear equations with LDLT -decomposed symmetric

positive definite matrices.

ierr = c_dm_vldlx(b, fa, kfa, n, &icon);

1. Function

This routine solves a system of linear equations with LDLT - decomposed symmetric positive definite coefficient matrix.

 LDLTx = b

Where, L and D are a unit lower triangular matrix and an n  n diagonal matrix respectively, b is an n-dimensional real

constant vector, x is an n-dimensional solution vector, and n  1.

This routine receives the LDLT-decomposed matrix from routine c_dm_vsldl and calculates the solution of a system of

linear equations.

2. Arguments

The routine is called as follows:

ierr = c_dm_vldlx(b, (double*)fa, kfa, n, &icon);

where:

b double b[n] Input Constant vector b.

 Output Solution vector x.

fa double

fa[n][n]

Input The LDLT-decomposed matrices L, D1 , and LT are stored.

The upper triangular matrix L, D1 and LT is stored in the upper

triangular part {fa[i1][j1] , i  j} of fa.

See Figure c_dm_vldlx-1.

kfa int Input A fixed dimension of array fa. ( n)

n int Input Order n of matrices L and D.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

10000 Coefficient matrix is not positive definite. Continued.

30000 n < 1, kfa < n Bypassed.

 c_dm_vldlx

113

Array fa

n

n
kfa

1
11
d

1
22
d

1
nnd

12l nl1

nl2

Figure c_dm_vldlx-1. Storing matrices L, D1 into array fa

After LDLT decomposition, matrix D1 is stored in diagonal elements and L (excluding the diagonal elements) are
stored in the upper triangular part respectively.

3. Comments on use

A system of linear equations with a positive definite coefficient matrix can be solved by calling this function after calling

function c_dm_vsldl. However, function c_dm_vlsx should be usually used to solve a system of linear equations in

one step.

4. Example program

A 1000  1000 coefficient matrix is decomposed into LDLT-decomposed matrix, then the system of linear equations is

solved.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)

MAIN__()
{
 int n, i, j, icon, ierr;
 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;

 n = NMAX;
 epsz = 0.0;

#pragma omp parallel for shared(a,n) private(i,j)
 for(i=0; i<n; i++)
 for(j=0; j<n; j++) a[i][j] = min(i,j)+1;

#pragma omp parallel for shared(b,n) private(i)
 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);

 ierr = c_dm_vsldl((double*)a, LDA, n, epsz, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon);

c_dm_vldlx

114

 exit(1);
 }

 ierr = c_dm_vldlx(b, (double*)a, LDA, n, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon);
 exit(1);
 }

 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
 for(i=0; i<n; i++) s *= a[i][i];

 printf("solution vector:\n");
 for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

 det = 1.0/s;
 printf("\ndeterminant of the matrix = %e\n", det);
 return(0);
}

5. Method

Consult the entry for DM_VLDLX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52].

c_dm_vlspaxcr2

115

c_dm_vlspaxcr2

System of linear equations with unsymmetric real sparse matrices

(Induced Dimension Reduction method with preconditioning by sparse

approximate inverse, compressed row storage method)

ierr = c_dm_vlspaxcr2(a, nz, ncol, nfrnz, n,

b, isw, x, am, nzm, ncolm, nfrnzm,

nwm, ipar, rpar, vw1, ivw1, vw2,

ivw2, lmmax, lnmax, numt, &icon);

1. Function

This routine solves, using IDR method with stabilization, IDRstab(s,l) method, a system of linear equations with
unsymmetric real sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix A is stored using the compressed row storage method. Vectors b and x are n-dimensional

vectors. The parameter s is the order of shadow residual and l is the order of acceleration polynomial.

2. Arguments

The routine is called as follows:

ierr = c_dm_vlspaxcr2(a, nz, ncol, nfrnz, n b, isw, x, am, &nzm, ncolm,

nfrnzm, nwm, ipar, rpar, vw1, ivw1, (double*)vw2, (int*)ivw2,

lmmax, lnmax, numt, &icon);

where:

a double a[nz] Input The nonzero elements of the coefficient matrix are stored.

The compressed row storage method is to store transposed matrix of the

coefficient matrix A in the compressed column storage method.

Regarding the compressed column storage method, see Fig.

c_dm_vmvscc-1.

nz int Input Total number of the nonzero elements belong to the coefficient matrix

( 1).

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which

indicate the column number of each nonzero element stored in the array

a.

nfrnz int nfrnz[n+1] Input The position of the first nonzero element stored in array A by the

compressed row storage methods which stores the nonzero elements

row by row. nfrnz[n] = nz + 1.

n int Input Order n of the matrix A ( 1).

b double b[n] Input The right-side constant vector of the system of linear equations is

stored.

isw int Input Control information.

When solving multiple sets of equations having the same sparse

structure and /or the same coefficient matrix, specify as follows;

c_dm_vlspaxcr2

116

Specify isw = 1 for the first set of equations.

Specify isw = 2 for the second and subsequent sets with the same

sparse structure and different coefficient matrix A and constant vector

b.

Specify isw = 3 for the second and subsequent sets with different

constant vector b.

When specifying isw = 2 or 3, change only the parameters necessary to

be changed such as a, b and/or x and do not change other parameters.

x double x[n] Input The initial value of solution can be specified.

 Output The solution vector is stored.

am double am[nwm] Input If any, the nonzero elements of the initial approximate inverse matrix

M0 are stored in am[i-1], i = 1, ... , nzm using the compressed row

storage method.

The compressed row storage method is the same with matrix A.

 Output The approximate inverse matrix M.

nzm int Input If any, total number of the nonzero elements belong to the initial

approximate inverse matrix M0 ( 1).

If not, specify as nzm = 0. In this case, this routine employs the unit

matrix as the initial approximate inverse internally.

 Output Total number of the nonzero elements of approximate inverse matrix

M.

ncolm int ncolm[nwm] Input If any, the column indices used in the compressed row storage method,

which indicate the column number of each nonzero element stored in

the array am.

 Output The column indices of approximate inverse matrix M.

nfrnzm int

nfrnzm[n+1]

Input If any, the position of the first nonzero element stored in array am by the

compressed row storage method which stores the nonzero elements row

by row. nfrnzm[n] = nzm + 1.

 Output The position of the first nonzero element of each row of approximate

inverse matrix M.

nwm int Input Specify the maximum size of areas used for computation of

approximate inverse matrix M ( 1).

Total number of the nonzero elements of approximate inverse matrix M

is calculated by the formula below where nzk is number of nonzero

elements in the k-th column of matrix A.





n

k
k iparnznzm

1

)100/]1[,1max(

Then nwm is specified as follows;

),max(nznzmnwm  .

For more detail, See Comments on use.

ipar int ipar[20] Control parameters having integer values. Some parameters may be

modified on output. When specify 0 for any parameter, it will be

assumed to specify default value on it. If no convergence is met by

using default parameters, it is recommended to try again by making

parameters change.

 Input ipar[0]: Reserved for future extensions. Specify 0 for each, just in

 c_dm_vlspaxcr2

117

case.

 Input ipar[1]: Input. Specify percentage(%) which is the ratio of nonzero

elements of approximate inverse against that of the

coefficient matrix A ( 0).

It is used as upper limit control for nonzero elements

generations.

For instance, if specify as ipar[1] = 50, approximate

inverse matrix will be generated having total nonzero

number which is about 50% of that of coefficient matrix as

an upper limit. Default value is 100.

For more detail, See Comments on use.

 Input ipar[2]: Specify incremental number which is number of adding

new indices during computation of column vector of

approximate inverse matrix (n  ipar[2]  0). For

instance, if specify as ipar[2] = 2, the number of

indices within each column of approximate inverse will be

incremented by 2 indices which are the most effective

indices in term of the norm minimization.

Default value is 1.

For more detail, See Comments on use.

 Input ipar[3]: Specify the order of shadow residual s of Induced

Dimension Reduction method IDRstab(s,l) (n  s  0).

Default value is 4.

 Input ipar[4]: Specify the order of acceleration polynomial l of Induced

Dimension Reduction method IDRstab(s,l) (n  l  0).

Default value is 1.

 Input ipar[5]: Specify the upper limit of iteration counts for IDRstab(s,l)

 method ( 0). Default value is 2000.

 Output ipar[6]: Actual iteration counts.

 Output ipar[7]: Actual evaluation counts of matrix-vector multiplications

 Av where A is the coefficient matrix and v is iterative

vector in IDRstab(s,l) method.

 Output ipar[8]: Estimated size nwm for am, ncolm etc.

 For more detail, See Comments on use.

 Input ipar[9] to [11]: Reserved for future extensions. Specify 0 for each,

just in case.

 Output ipar[12]: Actual size lmmax used for vw2 and ivw2.

 Output ipar[13]: Actual size lnmax used for vw2.

 Input ipar[14] to [19]: Reserved for future extensions. Specify 0 for

each, just in case.

rpar double

rpar[20]

 Control parameters having real values. Some parameters may be

modified on output. When specify 0.0 for any parameter, it will be

assumed to specify default value on it. If no convergence is met by

using default parameters, it is recommended to try again by making

parameters change.

 Input rpar[0]: Specify convergence criteria eps with iterative computation

c_dm_vlspaxcr2

118

for each column of approximate inverse matrix ( 0.0).

Default value is 0.3.

 Input rpar[1]: Specify convergence criteria epst for iterative solution of

given a system of linear equations by COCR method

 ( 0.0).

 Output rpar[2]: Specify convergence criteria epst for iterative solution of

given a system of linear equations by IDRstab(s,l) method

( 0.0).

 Default value is 10-8.

 Input rpar[3] to [19]: Reserved for future extensions. Specify 0.0 for

each, just in case.

vw1 double

vw1[nwm]

Work

area

ivw1 int ivw1[nwm] Work

area

vw2 double

vw2[numt][lnma

x+3][lmmax]

Work

area

ivw2 int

ivw2[numt][3][

lmmax]

Work

area

lmmax int Input The third dimension of working array ( 1).

lmmax is a certain value related to the number of nonzero elements of

matrix A. Lets see certain column of matrix A, we defines the total

number of nonzero elements in the column and another columns which

are relatives of the nonzero elements of the column. Specify the

maximum number of the total number between columns. In general, it

is adequate to specify as lmmax = 1000. If no solution is met, it is

recommended to try again by making parameters change.

For more detail, See Comments on use.

lnmax int Input The second dimension of working array ( 1).

lnmax is a certain value proportional to the maximum number of

nonzero elements between columns of matrix A. In general, specify the

maximum number of nonzero elements for regular use with ipar[1]

= 100. If no solution is met, it is recommended to try again by making

parameters change.

For more detail, See Comments on use.

numt int Input The first dimension of working array ( 1).

Specify maximum number of threads for parallel processing.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

11000 Matrix A may be near singular. Processing is continued.

 c_dm_vlspaxcr2

119

Code Meaning Processing

19000 Non diagonal element(s) is detected in matrix A.

20000 The iteration counts reached the upper limit. Processing is discontinued.

The already calculated approximate value is

output to array x along with relative residual

error.

25000 Array am and ncolm overflow due to too small

value nwm.

Processing is discontinued.

Estimated minimum size is output to ipar[8].

26000 Work area vw2, ivw2 overflow due to too small

value lmmax.

Processing is discontinued.

27000 Work area vw2 overflow due to too small value

lnmax.

29000 Matrix A is singular.

30000 Parameter error(s).

• n < 1

• nz < 1

• nz ≠ nfrfz[n] - 1

• isw < 1

• isw > 3

• nwm < n

• nzm < 0

• ipar[1] < 0

• ipar[2] < 0

• ipar[3] < 0

• n < ipar[3]

• ipar[4] < 0

• n < ipar[4]

• ipar[5] < 0

• lmmax < 1

• lnmaz < 1

• numt < 1

• rpar[0] < 0.0

• rpar[1] < 0.0.

30011 Parameter error(s) related to matrix A.

Some parameter value show following relation.

nfrnz[k] > nfrnz[k+1], k = 0, ..., n-1.

30012 Parameter error(s) related to matrix A.

Some parameter value show following relation.

ncol[l] > ncol[l+1],

 l = nfrnz[k], ..., nfrnz[k+1], k = 0, ..., n-1.

30021 Parameter error(s) related to matrix M0.

Some parameter value show following relation.

nfrnz[k] > nfrnz[k+1], k = 0, ..., n-1.

c_dm_vlspaxcr2

120

Code Meaning Processing

30022 Parameter error(s) related to matrix M0.

Some parameter value show following relation.

ncol[l] > ncol[l+1],

l = nfrnz[k], ..., nfrnz[k+1], k = 0, ..., n-1.

3. Comments on use

About the size of arrays for approximate inverse matrix
The size nzm of approximate inverse matrix M is calculated by the formula below where nzk is number of nonzero

elements in the k-th column of matrix A.





n

k
knznzm

1

)100/]1[,1max(ipar

Then the size of array nwm is specified as follows;

),max(nznzmnwm 

In general, if you use default value for ipar[1], that is ipar[1] = 0, which specifies upper limit of percentage of

nonzero elements generations, it is adequate to specify as nwm = nz. When it is difficult to calculate nwm by above

formula, it is recommended to specify enough big size such as nwm = 2 × nz. As a result of operation of this routine, the

suggested size is output on ipar[8]. This resultant value gives good suggestion for subsequent call to solve a system

with a similar sparse matrix. If you solve another system having the same sparse structure and the equivalent nonzero

percentage of approximate inverse, you can take ipar[8] as a suggestion. On the other hand, if you solve another

system having much more nonzero elements than previous, or increasing percentage of nonzero elements in approximate

inverse, you can take ipar[8] multiplied by each increasing ratio as a suggestion.

About the initial approximate inverse matrix
If you have a good approximate inverse matrix M0, you can specify it as an initial value on relevant parameters. You can

specify total nonzero number of the matrix M0 on nzm, and specify the initial approximate inverse matrix on am, ncolm

and nfrnzm respectively.

Such usage is recommended for user who would process following type of problems in efficient manner.

#1 to solve multiple set of equations with the same sparse structure and different coefficient matrix A and constant vector

b.

#2 to solve multiple set of equations with similar sparse structure.

Process is controlled along with parameter isw. In these cases, change only the value of a and/or related parameters and

b, x, and do not change other parameters such as am and work areas in which previous results are stored.

In this case, it is possible to increase the upper limit by making parameter ipar[1] change.

About total nonzero number of approximate inverse matrix M
This routine solves a system of linear equations with preconditioning based on approximate inverse matrix,

 c_dm_vlspaxcr2

121

AMy = b, x = My.

Approximate inverse matrix M is computed so as to be satisfied AM ≒ I . The total number of nonzero elements of M

affects not only accuracy of inverse but also performance of matrix vector multiplication which is appeared frequently

during iterations. In this routine, it is able to control the total number of nonzero elements of matrix M via parameter

ipar[1]. In general, it is recommended the nonzero number take the same order with that of matrix A.

That is, ipar[1] = 100 is recommended.

This routine computes inverse matrix M column by column, mk , k = 1, …, n.

The iterate mk of inverse matrix M is accepted as a minimum solution if

epskk 
2eAm

is satisfied even if nonzero number in mk does not reach upper limit

nzk × ipar[1] / 100.

Where nzk is number of nonzero elements in k-th column of matrix A.

About incremental number during computation of column vector of inverse
This routine computes column vector mk of matrix M by solving least squares problems as follows;

,...,n,k
m

kk
k

1min
2

 eAm

Where ek is unit vector. Residual vector based on the solution above may lead candidates of new nonzeros in next step mk.

This routine selects new indices automatically from candidates in terms of the most profitable one which minimizes

coming residual vector. Key point of this algorithm lies in determining a good sparsity structure of the column of

approximate inverse. In order to increase nonzero elements gradually, it is recommended to specify as ipar[2] = 1

which is number of adding new indices during computation of column vector.

About work area vw2, ivw2
Work area vw2 and ivw2 are three dimensional array respectively. These areas are used for solving least squares

problems in order to compute column vector mk of approximate inverse matrix M. In general, column vector mk is sparse

vector and its density of nonzero elements is varied during computation. The least squares problems are defined

corresponding to the formula of previous section 4).

The residual vector Amk - ek can be formulated only by nonzero elements of mk and certain columns of A related with

nonzero elements of mk. From such point of view, rectangular system which is constructed by nonzero elements is derived.

You can specify lmmax and lnmax as maximum number of rectangular matrix and allocate array vw2 and ivw2. Actual

number of rectangular matrix desired in this routine depend on characteristics of matrix a and value of parameters such as

ipar[1]. Therefore you can try to call this routine by using suggested manner below. If no solution is met, it is

recommended to try again by making parameters change.

c_dm_vlspaxcr2

122

lmmax is a certain value related to the number of nonzero elements of matrix A. Lets see k-th column of matrix A, we

defines the total number of nonzero elements in k-th column and another columns which are relatives of the nonzero

elements of k-th column. You can specify the maximum number of the total number between columns. In general, it is

adequate to specify as lmmax = 1000.

In case that density of nonzero elements is rather high or relation between elements tend to be strong or certain columns

have more nonzero elements than others, it is recommended to increase lmmax.

lnmax is a certain value proportional to the maximum number of nonzero elements between columns of matrix A. The

maximum number of nonzero is calculated by the formula below where nzk is number of nonzero elements in the k-th

column of matrix A.

 100]1[,1max(max ipark
k

nz　

You can specify lnmax as this maximum number multiplied by 1.2.

After computation, this routine output the actual size in ipar[12] and ipar[13] corresponding to lmmax and

lnmax respectively.

4. Example program

The linear system of equations Ax = f is solved, where A results from the finite difference method applied to the elliptic

equation

-  u+a u+u= f

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3) where a1, a2 and a3 are some constants. The matrix

A in Diagonal format is generated by the routine init_mat_diag. Then it is converted into the storage scheme in

compressed storage.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"

#define NORD 60
#define NX NORD
#define NY NORD
#define NZ NORD
#define N (NX * NY * NZ)
#define K (N + 1)
#define NDIAG 7
#define L 4
#define LMMAX 1000
#define LNMAX 200
#define NUMT 4

double errnrm(double*, double*, int);
void init_mat_diag(double, double, double, double, double*, int*, int, int,
 int, double, double, double, int, int, int);
void convgcr(double*, int, int*, int*, double*, int*, int*, int*);

 c_dm_vlspaxcr2

123

int MAIN__() {
 int nofst[NDIAG];
 int nrow[K * NDIAG], nfcnz[K], iw[K * NDIAG][2];
 int ivw[N];
 int *ivw2;
 int ipar[20];
 int nfrnz[K], nfrnzm[K];
 int j, l, nbase, length, numnz, ncoll, ntopcfg, nnz, icon, isw, nwm,
 nzm, itmax, icont;
 int i;
 double diag[NDIAG][K], diag2[NDIAG][K];
 double a[K * NDIAG], w[K * NDIAG];
 double x[N], b[N], solex[N], y[N];
 double *vw2;
 double rpar[20];
 double va1, va2, va3, vc, xl, yl, zl, err1, err2, err3, err4, eps;

 double *aa, *am, *vw1;
 int *ncol, *ncolm, *ivw1;

 vw2 = (double *)malloc(LMMAX * (LNMAX + 3) * NUMT * sizeof(double));
 ivw2 = (int *)malloc(LMMAX * 3 * NUMT * sizeof(int));
 if (vw2 == NULL || ivw2 == NULL)
 exit(-1);

 printf(" *** SPARSE LINEAR EQUATIONS BY IDR METHOD");
 printf(" WITH PRECONDITIONING\n");
 printf(" *** COMPRESSED ROW STORAGE.\n");
 printf("\n");

 for (i = 0; i < N; i++)
 solex[i] = 1.0;

 printf(" *** EXPECTED SOLUTIONS\n");
 printf(" X(1) = %18.15lf X(N) = %18.15lf\n", solex[0], solex[N-1]);
 printf("\n");

 va1 = 3.0;
 va2 = 1.0/3.0;
 va3 = 5.0;
 vc = 1.0;
 xl = 1.0;
 yl = 1.0;
 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
 NX, NY, NZ, xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {
 if (nofst[i] < 0) {
 nbase = -nofst[i];
 length = N - nbase;
 for (j = 0,l = nbase; j < length; j++,l++)
 diag2[i][j] = diag[i][l];
 } else {
 nbase = nofst[i];
 length = N - nbase;
 for (j = 0,l = nbase; j < length; j++,l++)
 diag2[i][l] = diag[i][j];
 }
 }

 numnz = 1;

 for (j = 0; j < N; j++) {
 ntopcfg = 1;
 for (i = NDIAG; i > 0; i--) {
 if (diag2[i-1][j] != 0.0) {
 ncoll = (j+1) - nofst[i-1];
 a[numnz-1] = diag2[i-1][j];
 nrow[numnz-1] = ncoll;
 if (ntopcfg == 1) {
 nfcnz[j] = numnz;
 ntopcfg = 0;
 }
 numnz++;
 }
 }
 }

c_dm_vlspaxcr2

124

 nfcnz[N] = numnz;
 nnz = numnz - 1;
 c_dm_vmvscc(a, nnz, nrow, nfcnz, N, solex, b, w, (int *)iw, &icon);
 err1 = errnrm(solex, x, N);

 for (i = 0; i < N; i++)
 x[i] = 0.0;
 c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icon);
 err2 = errnrm(y, b, N);

 aa = (double *)malloc(sizeof(double) * nnz);
 am = (double *)malloc(sizeof(double) * nnz);
 vw1 = (double *)malloc(sizeof(double) * nnz);
 ncol = (int *)malloc(sizeof(int) * nnz);
 ncolm = (int *)malloc(sizeof(int) * nnz);
 ivw1 = (int *)malloc(sizeof(int) * nnz);
 if (aa == NULL || am == NULL || vw1 == NULL ||
 ncol == NULL || ncolm == NULL || ivw1 == NULL)
 exit(-1);
 isw = 1;
 for (i = 0; i < 20; i++) {
 ipar[i] = 0;
 rpar[i] = 0.0;
 }
 nwm = nnz;
 nzm = 0;

 convgcr(a, N, nfcnz, nrow, aa, nfrnz, ncol, ivw);
 c_dm_vlspaxcr2(aa, nnz, ncol, nfrnz, N, b, isw, x,
 am, &nzm, ncolm, nfrnzm, nwm, ipar, rpar,
 vw1, ivw1, vw2, ivw2, LMMAX, LNMAX, NUMT, &icon);

 eps = rpar[1];
 itmax = 2000;
 err3 = errnrm(solex, x, N);
 c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icont);
 err4 = errnrm(y, b, N);
 printf(" *** COMPUTED SOLUTIONS\n");
 printf(" X(1) = %19.16lf X(N) = %19.16lf\n", x[0], x[N-1]);
 printf("\n");
 printf(" C_DM_VLSPAXCR2 ICON = %d\n", icon);
 printf("\n");
 printf(" N = %d\n", N);
 printf(" NX = %d\n", NX);
 printf(" NY = %d\n",NY);
 printf(" NZ = %d\n", NZ);
 printf(" ITER MAX = %d\n", itmax);
 printf(" ITER = %d\n", ipar[6]);
 printf(" ICMAV = %d\n", ipar[7]);
 printf("\n");
 printf(" EPS = %21.15le\n", rpar[1]);
 printf("\n");
 printf(" INITIAL ERROR = %18.13lf\n", err1);
 printf(" INITIAL RESIDUAL ERROR = %18.10lf\n", err2);
 printf(" CRITERIA RESIDUAL ERROR = %20.15le\n", err2*eps);
 printf("\n");
 printf(" ERROR = %20.15le\n", err3);
 printf(" RESIDUAL ERROR = %20.15le\n", err4);
 printf("\n");
 printf("\n");
 if (err4 <= err2*eps*1.1 && icon == 0) {
 printf(" ********** OK **********\n");
 } else {
 printf(" ********** NG **********\n");
 }
 free(vw2);
 free(ivw2);
 free(aa);
 free(am);
 free(vw1);
 free(ncol);
 free(ncolm);
 free(ivw1);
 return(0);
}

/* ==
 ABSOLUTE ERROR : | X1 - X2 |
 == */
double errnrm(double *x1, double *x2, int len) {
 int i;

 c_dm_vlspaxcr2

125

 double s, ss, errnrm_ret;

 s = 0;
 for (i = 0; i < len; i++) {
 ss = x1[i] - x2[i];
 s = s + ss * ss;
 }
 errnrm_ret = sqrt(s);
 return(errnrm_ret);
}

/* ==
 INITIALIZE COEFFICIENT MATRIX
 == */
void init_mat_diag(double va1, double va2, double va3, double vc,
 double *d_l, int *offset, int nx, int ny, int nz,
 double xl, double yl, double zl, int ndiag, int len,
 int ndivp) {

 if (ndiag < 1) {
 printf("FUNCTION INIT_MAT_DIAG:\n");
 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
 return;
 }
#pragma omp parallel default(shared)
{
 int j, l, ndiag_loc, nxy, js, i0, j0, k0;
 int i;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7)
 ndiag_loc = 7;
/* INITIAL SETTING */
 hx = xl / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp; i++) {
 for (j = 0; j < ndiag; j++) {
 d_l[(j * ndivp) + i] = 0.0;
 }
 }
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
 l = 0;
 if (ndiag_loc >= 7) {
 offset[l] = -nxy;
 l++;
 }
 if (ndiag_loc >= 5) {
 offset[l] = -nx;
 l++;
 }
 if (ndiag_loc >= 3) {
 offset[l] = -1;
 l++;
 }
 offset[l] = 0;
 l++;
 if (ndiag_loc >= 2) {
 offset[l] = 1;
 l++;
 }
 if (ndiag_loc >= 4) {
 offset[l] = nx;
 l++;
 }
 if (ndiag_loc >= 6) {
 offset[l] = nxy;
 }
 }
/* MAIN LOOP */
#pragma omp for
 for (j = 1; j <= len; j++) {
 js = j;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
 k0 = (js - 1) / nxy + 1;
 if (k0 > nz) {

c_dm_vlspaxcr2

126

 printf("ERROR; K0.GH.NZ \n");
 continue;
 }
 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
 l = 0;
 if (ndiag_loc >= 7) {
 if (k0 > 1)
 d_l[(l * ndivp) + (j-1)] = -(1.0 / hz + 0.5 * va3) / hz;
 l++;
 }
 if (ndiag_loc >= 5) {
 if (j0 > 1)
 d_l[(l * ndivp) + (j-1)] = -(1.0 / hy + 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 3) {
 if (i0 > 1)
 d_l[(l * ndivp) + (j-1)] = -(1.0 / hx + 0.5 * va1) / hx;
 l++;
 }
 hx2 = hx * hx;
 hy2 = hy * hy;
 hz2 = hz * hz;
 d_l[(l * ndivp) + (j-1)] = 2.0 / hx2 + vc;
 if (ndiag_loc >= 5) {
 d_l[(l * ndivp) + (j-1)] += 2.0 / hy2;
 if (ndiag_loc >= 7) {
 d_l[(l * ndivp) + (j-1)] += 2.0 / hz2;
 }
 }
 l++;
 if (ndiag_loc >= 2) {
 if (i0 < nx)
 d_l[(l * ndivp) + (j-1)] = -(1.0 / hx -0.5 * va1) / hx;
 l++;
 }
 if (ndiag_loc >= 4) {
 if (j0 < ny)
 d_l[(l * ndivp) + (j-1)] = -(1.0 / hy - 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 6) {
 if (k0 < nz)
 d_l[(l * ndivp) + (j-1)] = -(1.0 / hz - 0.5 * va3) / hz;
 }
 }
}
 return;
}

/* ===
 MODE CONV UNSYM MATRIX FROM COMPRESSED COLUMN TO ROW.
 === */
void convgcr(double *ac, int n, int *ic, int *jc, double *ar,
 int *ir, int *jr, int *iw) {
 int j, icol, nz;
 int i;

 nz = ic[n] - 1;
 for (i = 0; i <= n; i++) {
 ir[i] = 0;
 }
 for (j = 0; j < nz; j++) {
 ir[jc[j]] = ir[jc[j]]+1;
 }
 ir[0] = 1;
 for (i = 1; i <= n; i++) {
 ir[i] = ir[i] + ir[i-1];
 }
 for (i=0; i < n; i++) {
 iw[i] = ir[i];
 }
 icol = 1;
 for (j = 0; j < nz; j++) {
 if (j == ic[icol]-1)
 icol++;
 jr[iw[jc[j]-1]-1] = icol;
 ar[iw[jc[j]-1]-1] = ac[j];
 iw[jc[j]-1] = iw[jc[j]-1] + 1;
 }

 c_dm_vlspaxcr2

127

 return;
}

5. Method

Consult the entry for DM_VLSPAXCR2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [29],

[31] , [68].

c_dm_vlsx

128

c_dm_vlsx

A system of linear equations with symmetric positive definite matrices

(blocked modified Cholesky decomposition method).

ierr = c_dm_vlsx(a, k, n, b, epsz, isw,

&icon);

1. Function

This function solves a system of linear equations (1) with a real coefficient matrix by blocked modified Cholesky’s

method.

 Ax = b (1)

In (1), A is an n  n positive definite symmetric real matrix, b is a real constant vector, and x is the real solution vector.

Both the real vectors are of size n (n  1).

2. Arguments

The routine is called as follows:

ierr = c_dm_vlsx((double*)a, k, n, b, epsz, isw, &icon);

where:

a double

a[n][k]

Input The upper triangular part {aij, i  j} of A is stored in the upper triangular

part {a[i1][j1], ij} of a for input.

See Figure c_dm_vlsx-1.

The contents of the array are altered on output.

 Output Decomposed matrix. After the first set of equations has been solved, the

upper triangular part of a[i1][j1] (ij) contains lij (i  j) of the

upper triangular matrix L, D1 and LT.

k int Input C fixed dimension of array a. ( n)

n int Input Order n of matrix A.

b double b[n] Input Constant vector b.

 Output Solution vector x.

epsz double Input Tolerance for relative zero test ( 0).

When epsz is zero, a standard value is assigned. See Comments on use.

isw int Input Control information.

When solving several sets of equations that have the same coefficient

matrix, set isw=1 for the first set, and isw=2 for the second and

subsequent sets. Only argument b is assigned a new constant vector b

and the others are unchanged. See Comments on use.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

 c_dm_vlsx

129

Code Meaning Processing

10000 Pivot became negative.

Coefficient matrix is not positive definite.

Processing continues.

20000 Pivot became smaller then relative zero value.

Coefficient matrix might be singular.

Discontinued.

30000 One of the following has occurred:

 n < 1

 epsz < 0

 isw  1 or 2

 k < n

Bypassed.

Input Array a

n

n

11a

k

unnecessary

12a na1

22a na2

nna

Output Array a

n

n
1

11
d

1
22
d

1
nnd

12l nl1

nl2

k

Altered

Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method

The diagonal elements and upper triangular part (aij) of the LDLT-decomposed positive definite matrix are stored in array

a[i1][j1] , i=1,...,n, j=i,...,n.

After LDLT decomposition, matrix D1 is stored in diagonal elements and L (excluding the diagonal elements) are stored

in the upper triangular part respectively.

3. Comments on use

epsz
If the value 10s is given for epsz as the tolerance for relative zero test then it has the following meaning:

If the pivot value loses more than s significant digits during LDLT decomposition in the modified Cholesky’s method, the

value is assumed to be zero and decomposition is discontinued with icon=20000. The standard value of epsz is

normally 16µ, where µ is the unit round-off.

Decomposition can be continued by assigning the smallest value (e.g. 1070) to epsz even when pivot values become

smaller than the standard value, however the result obtained may not be of the desired accuracy.

isw
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and

subsequent sets after successfully completing the first with isw=1. This will bypass the LDLT decomposition section and

c_dm_vlsx

130

go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than

otherwise.

Negative pivot during the solution
If the pivot value becomes negative during decomposition, it means the coefficient matrix is no longer positive definite.

The calculation is to continued and icon = 10000 is returned on exit. Note, however, that the resulting calculation error

may be significant, because no pivoting is performed.

Calculation of determinant
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array a together(i.e.,

diagonal elements of D1) after calculation is completed, and take the reciprocal of this result.

4. Example program

A system of linear equations with a 1000  1000 coefficient matrix is solved.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)

MAIN__()
{
 int n, isw, i, j, icon, ierr;
 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;

 n = NMAX;
 epsz = 0.0;
 isw = 1;

#pragma omp parallel for shared(a,n) private(i,j)
 for(i=0; i<n; i++)
 for(j=0; j<n; j++)
 a[i][j] = min(i,j)+1;

#pragma omp parallel for shared(b,n) private(i)
 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);

 ierr = c_dm_vlsx((double*)a, LDA, n, b, epsz, isw, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vlsx failed with icon = %d\n", icon);
 exit(1);
 }

 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
 for(i=0; i<n; i++) s *= a[i][i];

 printf("solution vector:\n");
 for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

 det = 1.0/s;
 printf("\ndeterminant of the matrix = %e\n", det);
 return(0);
}

5. Method

Consult the entry for DM_VLSX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [52].

 c_dm_vlux

131

c_dm_vlux

A system of linear equations with LU-decomposed real matrices.

ierr = c_dm_vlux(b, fa, kfa, n, ip, &icon);

1. Function

This routine solves a system of linear equations having LU-decomposed real coefficient matrices.

 LUx = Pb (1)

where, L and U are respectively a unit lower triangular matrix and a unit upper triangular n  n matrix, P is a permutation

matrix (interchanging rows of the coefficient matrix for partial pivoting in LU-decomposition), b is an n-dimensional real

constant vector, and x is an n-dimensional solution vector (n  1).

2. Arguments

The routine is called as follows:

ierr = c_dm_vlux(b, (double*)fa, kfa, n, ip, &icon);

where:

b double b[n] Input Constant vector b.

 Output Solution vectors x.

fa double

fa[n][kfa]

Input Matrix L  (U  I). See Comments on use.

kfa int Input C fixed dimension of array fa ( n).

n int Input Order of matrices L and U.

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred

during partial pivoting. See Comments on use.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 Coefficient matrix was singular. Discontinued.

30000 One of the following occurred:

 n < 1

 kfa < n

 error found in ip

Bypassed.

3. Comments on use

A system of linear equations with a real coefficient matrix can be solved by calling the routine c_dm_valu to LU-

decompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of this routine are the same

as the output arguments a and ip of routine c_dm_valu. Alternatively, the system of linear equations can be solved by

calling the single routine c_dm_vlax.

c_dm_vlux

132

4. Example program

A system of linear equations is solved by LU-decomposing the coefficient 1000  1000 matrix.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)

MAIN__()
{
 int n, is, isw, i, j, icon, ierr;
 int ip[NMAX];
 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;

 n = NMAX;
 epsz = 0.0;
 isw = 1;

#pragma omp parallel for shared(a,n) private(i,j)
 for(i=0; i<n; i++)
 for(j=0; j<n; j++) a[i][j] = min(i,j)+1;

#pragma omp parallel for shared(b,n) private(i)
 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);

 ierr = c_dm_valu((double*)a, LDA, n, epsz, ip, &is, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_valu failed with icon = %d\n", icon);
 exit(1);
 }

 ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vlux failed with icon = %d\n", icon);
 exit(1);
 }

 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
 for(i=0; i<n; i++) s *= a[i][i];

 printf("solution vector:\n");
 for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

 det = is*s;
 printf("\ndeterminant of the matrix = %e\n", det);
 return(0);
}

5. Method

Consult the entry for DM_VLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_vmggm

133

c_dm_vmggm

Matrix multiplication (real matrix).

ierr = c_dm_vmggm(a, ka, b, kb, c, kc, m, n,

l, &icon);

1. Function

This function obtains product C by multiplying a real matrix A (m  n) by a real matrix B (n  l).

 C = AB

where C is a real matrix (m  l), where m, n, l  1.

2. Arguments

The routine is called as follows:

ierr = c_dm_vmggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, l,

&icon);

where:

a double

a[m][ka]

Input Matrix A.

ka int Input C fixed dimension of array a ( n).

b double

b[n][kb]

Input Matrix B.

kb int Input C fixed dimension of array b ( l).

c double

c[m][kc]

Output Matrix C. See Comments on use.

kc int Input C fixed dimension of array c ( l).

m int Input The number of rows m in matrices A and C.

n int Input The number of columns n in matrix A and number of rows n in matrix B.

l int Input The number of columns l in matrices B and C.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 m < 1

 n < 1

 l < 1

 ka < n

 kb < l

 kc < l

Bypassed.

c_dm_vmggm

134

3. Comments on use

Storage space
Storing the solution matrix C in the same memory area used for matrix A or B is NOT permitted. C must be stored in a

separate array otherwise the result will be incorrect.

4. Example program

This example program performs a matrix-matrix multiplication and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX (100)

MAIN__()
{
 int ierr, icon;
 int n, i, j;
 double eps;
 double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];

 /* initialize matrices */
 n = NMAX;
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 a[i][j] = j+1;
 b[j][i] = 1.0/(j+1);
 }
 }

 /* matrix matrix multiply */
 ierr = c_dm_vmggm((double*)a, NMAX, (double*)b, NMAX,
 (double*)c, NMAX, n, n, n, &icon);

 /* check result */
 eps = 1e-5;
 for (i=0; i<n; i++) {
 for (j=0; j<n; j++) {
 if (fabs((c[i][j]-n)/n) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for DM_VMGGM in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30].

 c_dm_vminv

135

c_dm_vminv

Inverse of real matrix (blocked Gauss-Jordan method)

ierr = c_dm_vminv(a, k, n, epsz, &icon);

1. Function

This routine obtains the inverse A1 of the n  n non-singular real matrix A using the Gauss-Jordan method.

2. Arguments

The routine is called as follows:

ierr = c_dm_vminv((double*)a, k, n, epsz, &icon);

where:

a double Input Matrix A.

 a[n][k] Output Matrix A1.

k int Input C fixed dimension of array a ( n).

n int Input Order of matrix A.

epsz double Input Judgment of relative zero of the pivot. ( 0.0)

When epsz is 0.0, the standard value is assumed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 All row elements in matrix A are zero or the pivot

becomes a relatively zero. Matrix A may be

singular.

Discontinued.

30000 One of the following occurred:

 n < 1

 k < n

 epsz < 0.0

3. Comments on use

epsz
When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be

relatively zero. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value

of epsz is 16u. If the minimum value is assigned to epsz, processing is continued, but the result is not assured.

4. Example program

The inverse of a matrix is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

c_dm_vminv

136

#define max(a,b) ((a) > (b) ? (a) : (b))

#define N 2000
#define K (N+1)

int MAIN__()
{
 double a[N][K], as[N][K];
 double c, t, error, epsz;
 int i, j, icon;

 c = sqrt(2.0/(N+1));
 t = atan(1.0)*4.0/(N+1);

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 as[j][i] = a[j][i] = c*sin(t*(i+1)*(j+1));
 }
 }

 epsz = 0.0;
 c_dm_vminv((double*)a, K, N, epsz, &icon);

 error = 0.0;
 for (i=0; i<N; i++) {
 for (j=0; j<N; ++j) {
 error = max(error,fabs(a[j][i]-as[j][i]));
 }
 }

 printf("order = %d, error = %e\n", N, error);
 return(0);
}

5. Method

Consult the entry for DM_VMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_vmlbife

137

c_dm_vmlbife

System of linear equations with sparse matrices

(Multilevel iteration method based on incomplete block factorization,

ELLPACK format storage method)

ierr = c_dm_vmlbife(a, k, iwidt, n, icol, b,

isw, iguss, info, infoep, epsot,

epsin, epsep, x, w, nw, iw, niw,

&icon);

1. Function

This routine solves, using the iterative method, a system of linear equations with sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the ELLPACK format storage method. Vectors b and x are n-dimensional

vectors.

The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-symmetric. The iteration (called outer

iteration) is preconditioned by the multilevel incomplete block factorizations and stable. The iteration procedure is

preconditioned by repeated elimination of certain sets of unknowns. The elimination procedure uses approximative

inverses of the sub-matrices produced by the sets of eliminated unknowns. The elimination procedure is repeated until on

the so-called coarsest level a smaller linear system is produced. For every step of the outer iteration this linear system is

solved iteratively (called inner iteration).

2. Arguments

The routine is called as follows:

ierr = c_dm_vmlbife((double*)a, k, iwidt, n, (int*)icol, b, isw, iguss, info,

infoep, epsot, epsin, epsep, x, w, nw, iw, niw, &icon);

where:

a double

a[iwidt][k]

Input The nonzero elements of a coefficient matrix A are stored in a.

k int Input C fixed dimension of array a ( n).

iwidt int Input Maximum number of row-vector-direction nonzero elements of

coefficient matrix A. Size of first-dimension of a and icol.

n int Input Order n of matrix A.

icol int icol

[iwidt][k]

Input Column index used in ELLPACK format. Used to indicate to which

column vector the corresponding element of a belongs.

b double b[n] Input The right-side constant vectors of a system of linear equations are stored.

isw int Input Control information. See Comments on use.

 1 Initial calling.

 2 Second or subsequent calling.

The arrays, a, icol, iw and w, must NOT be changed if the

routine is called again with isw = 2.

c_dm_vmlbife

138

iguss int Input Control information specifying whether iterative computation is to be

performed using the approximate values of the solution vectors specified

in array x.

 iguss = 0 the approximate values of the solution vectors are not

specified and set to zero.

 iguss  0 the iterative computation is performed using the

approximate values of the solution vectors specified in

array x.

info int info[14] Input /

Output

The control information of the iteration.

For example, for symmetric coefficient matrix A, info is set as follows;

 info[0] = 10; info[1] = NTHRD*100; info[2] = 0;

 info[4] = 1; info[5] = 2000; info[9] = 1;

 info[10]= 1000;

For example, for unsymmetric coefficient matrix A, info is set as

follows;

 info[0] = 10; info[1] = NTHRD*100; info[2] = 0;

 info[4] = 2; info[5] = 2000; info[6] = 5;

 info[7] = 20; info[9] = 2; info[10]= 1000;

 info[11]= 10; info[12]= 0;

Where NTHRD is the number of threads which are executed in parallel.

See Comments on use.

 info[0] Input MAXLVL.

Maximal number of levels in the algebraic

multilevel iteration method.

MAXLVL < 0 The optimal level evaluated

internally is used.

MAXLVL = 0 The multi-level method is not

used.

MAXLVL > 0 The coarser level than the

specified depth is not used.

 info[1] Input MINUK.

Minimal number of unknowns for the smallest

linear system in the deepest level in the inner

iteration. It is recommendable to set MINUK

very larger than the number of threads NTHRD

and very smaller than n. For example,

100NTHRD.

 info[2] Input NORM.

The type of normalization.

NORM < 1 The matrix is normalized from the

right and the left by the inverse of the square

root of the main diagonal of A. This effects that

the main diagonal of the normalized matrix A

is equal to one and the matrix is symmetric if A

is symmetric.

It is recommendable to use symmetrical

 c_dm_vmlbife

139

normalization. However, in some cases the

non-symmetrical normalization can produce

faster convergence. Criterion value for

judgment of convergency.

NORM  1 The matrix is normalized from the

left by the inverse of the main diagonal of A.

This effects that the main diagonal is equal to

one but the normalized matrix will be non-

symmetric even if the matrix A is symmetric.

 info[3] Output Number of levels.

 info[4] Input METHOT.

The iterative method used in the outer iteration.

METHOT = 1 Preconditioned ORTHOMIN is

used. It should be used if the matrix A is

symmetric and a symmetrical normalization is

used.

METHOT  1 Restarted and truncated

GMRES is used. It should be used if the matrix

A is non-symmetric or a non-symmetrical

normalization is used.

 info[5] Input ITMXOT.

The maximal number of iteration steps in the

outer iteration, for example 2000. If the

maximum iteration number of outer iteration is

reached the processing is terminated and the

returned solution does not fulfill the stopping

criterion.

 info[6] Input NRESOT.

The number of residuals in the

orthogonalization procedure of the outer

iteration, i.e. truncation after NRESOT

residuals. For example , 5. Only used if

GMRES is applied.

 info[7] Input NRSTOT.

After NRSTOT iteration steps the outer

iteration is restarted. For example , 20. If it is

NRSTOT < 1 there is no restart. Only used if

GMRES is applied.

 info[8] Output ITEROT.

The number of iteration steps in the outer

iteration procedure.

 info[9] Input METHIN.

The iterative method used in the inner iteration.

METHIN = 1 Preconditioned ORTHOMIN is

used. It should be used if the matrix A is

symmetric and a symmetrical normalization is

c_dm_vmlbife

140

used.

METHIN  1 Restarted and truncated

GMRES is used. It should be used if the matrix

A is non-symmetric or a non-symmetrical

normalization is used.

 info[10] Input ITMXIN.

The maximal number of iteration steps in the

inner iteration, for example 1000.

If ITMXIN is reached the processing is

continued on the outer iteration.

 info[11] Input NRESIN.

The number of residuals in the

orthogonalization procedure of the inner

iteration, ie. truncation after NRESIN residuals.

For example, 10. Only used if GMRES is

applied.

 info[12] Input NRSTIN.

After NRSTIN iteration steps the inner iteration

is restarted.

Only used if GMRES is applied. If it is

NRSTIN < 1 there is no restart.

 info[13] Output The average number of the inner iteration.

infoep int infoep[3] Input The control information for the block matrix of the removed unknowns

and the reduced matrix.

For example, infoep is set as follows to specify the method for

approximating the inverse matrix of a matrix block, which is used for

calculating the Schur complement in each level:

In case of approximating the inverse matrix with a diagonal matrix.

 infoep[0] = 1;

 infoep[1] = 5;

 infoep[2] = 2*nrow;

In case of seeking an approximative inverse matrix with an iterative

method.

 infoep[0] = nrow;

 infoep[1] = 5;

 infoep[2] = 2*nrow;

Where, nrow indicates the representative number of nonzero entries per

row in the coefficient matrix A.

 infoep[0] Input MAXNCV.

Maximal number of nonzero entries per row

in the approximative inverse of the eliminated

matrix block. Typically it is set MAXNCV

=1 or MAXNCV=MAXNC. Notice that

MAXNCV=1 effects that the matrix block is

approximated by its main diagonal.

 infoep[1] Input MAXITV.

 c_dm_vmlbife

141

Maximal number of approximative inverse

steps. MAXITV specifies the maximal

number of iteration steps which are allowed

to calculate the approximative inverse matrix

with accuracy TAUV. If the number of

iteration steps reaches MAXITV the

procedure is terminated. Notice that in any

case the approximation procedure will need

less than
)LAMBDAlog(

)TAUVlog(
 steps.

If MAXITV  1 the matrix block is

approximated by its main diagonal.

 infoep[2] Input MAXNC.

MAXNC limits the entries remaining in the

reduced matrix as Schur complement in block

decomposition. If MAXNC < 2 small entries

of the reduces system less than TAU are

dropped. If MAXNCV > 1 the number of

non-zero entries per row is limited by

MAXNCV. In this case only the MAXNCV

largest entries in every row are kept. Other

entries are dropped even if they are greater

than TAU.

epsot double Input The desired accuracy for the solution. The outer iteration is stopped in

the k-th iteration step if the normalized kkk bxAr ˆˆˆ  residual of the

current approximation xk satisfies the condition br ˆˆ epsotk

where yyy T2  denotes the Euclidean norm Â and b̂ are the

coefficient matrix and the right hand side of the normalized linear

system.

epsin double Input The tolerance for the inner iteration. Normally 103 is optimal.

epsep double

epsep[4]

Input The control information for the approximation of the reduced system and

the inverse of the eliminated matrix block.

For example, set as follows:

 epsep[0] = 1.0e-2;

 epsep[1] = 1.0e-2;

 epsep[2] = 0.2;

 epsep[2] = 1.0e-3;

 epsep[0] Input TAU.

The dropping tolerance. In the reduced

systems as Schur complement in block

decomposition, entries less than TAU are

dropped to keep the sparsity. As larger TAU as

faster is the iterative solver on the lowest level.

But on the other hand there is a larger loss of

information, which deteriorates the quality of

the preconditioner.

c_dm_vmlbife

142

It has to be 0  TAU < 1.

 epsep[1] Input TAUV.

The tolerance of the approximative inverse. A

small value for TAUV will increase the time for

the elimination procedure but improve the

quality of the preconditioner. Normally

epsin = TAUV is optimal.

 epsep[2] Input LAMBDA.

Diagonal threshold for the block matrix. The

entries in the block matrix of the removed

unknowns are selected such that the absolute

sum per row is less than LAMBDA times the

main diagonal entry. A larger value for

LAMBDA will produce a smaller set of

removed unknowns but will increase the costs

for the calculation of the approximative inverse

of the block. Recommendation:

LAMBDA = 0.2. It should be TAUV 

LAMBDA < 1 or LAMBDA = 0.

 epsep[3] Input RHO.

Unknowns with small entries in their main

diagonal are not considered in the elimination

procedure. A main diagonal entry is small if it

is smaller than RHO times the absolute sum of

the row entries.

Recommendation: RHO = 1.0e-3. It has to be

0 < RHO < 1.

x double x[n] Input The approximate values of solution vectors can be specified.

 Output Solution vectors are stored.

w double w[nw] Work

nw int Input Size of the work array w.

nw  max(2  MAXLVL  2, 10)  NBAND  MAXT  (4  NC  6)  (n

 MAXT)  max(2  NC  (n  MAXT), LR0(n))  max(LR0(nf)  n 

MAXT, 6  (n  MAXT)))

MAXT is the maximum number of threads which are created in this

routine.

NBAND denotes the bandwidth of the matrix.

NC an upper bound for the number of non-zero entries per row (typically

NC = MAXNC).

nf the number of unknowns in the final level (typically nf = 2MAXLVL 

(n + MAXT).

Moreover it is









method GMRES:N)12(

method ORTHOMIN :N4
)N(

NRES
LR0 ,

where NRES denotes the number of residuals used in GMRES.

Normally the term LR0(nf) can be neglected.

 c_dm_vmlbife

143

iw int iw[niw] Work

niw int Input Size of the work array iw.

niw  ((4  MAXLVL  10)  MAXT  12  NBAND)  3400)  MAXT

 (6  NC  11)  (n  MAXT)

MAXT is the maximum number of threads which are created in this

routine.

NBAND denotes the bandwidth of the matrix.

NC an upper bound for the number of non-zero entries per row (typically

NC = MAXNC).

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

10100 Inverse matrix could not be calculated with

sufficient accuracy.

Processing is continued.

10800 Curable break down in GMRES.

20001 Stopping criterion could not be reached within the

given number of iteration steps.

Processing is discontinued.

The approximate value obtained is output in array

x, but the precision is not assured.

20003 Non-curable break down in GMRES. Processing is discontinued.

20005 Non-curable break down in ORTHOMIN by

pT A p = 0 with p  0.

20006 Non-curable break down in ORTHOMIN by

pT r = 0.

30000 One of the following has occurred:

 n < 1

 n > k

 iwidt < 1

 isw  1, 2

30103 Incorrect entry in column list icol.

30105 Main diagonal is missed.

30210 Matrix condensation fails by non-positive value.

30213 There is a row with only non-zero entries.

30310 Too small integer work array.

30320 Too small real work array.

3. Comments on use

isw
When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isw =

1 in the first call and isw = 2 in the second and all subsequent calls. Then the coarse level matrices assembled in the first

call are reused.

c_dm_vmlbife

144

nw, niw
Normally it is sufficient to set NC = iwidt1.5 in the formulas for the length for the work arrays. In general, if the work

arrays are too small it is recommendable to increase NC. If the given matrix has a very large bandwidth it is

recommendable to increase NBAND first.

ORTHOMIN
It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine

removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration

matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical

normalization first if there is a chance that the iteration matrix is symmetric.

GMRES
If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES.

Normally it is sufficient to truncate after NRESOT = 5 residuals and to restart after 20 steps in the outer iteration. In the

inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of

iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required.

Then it is necessary to increase NRES in the formula for the length workspace nw but, NRES can be set to a smaller value

than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger.

But it requires longer computation time and larger amount of memory.

The elimination of unknowns
The elimination of unknowns is stopped if one of the following conditions is fulfilled:

 the number of level is greater or equal MAXLVL.

 the coefficient matrix of the final level is a diagonal matrix.

 the number of eliminated unknowns is less than 10% of the number of unknowns in the final level.

classical ILUM preconditioner
When setting TAU = 0, LAMBDA = 0, RHO = 0.99, MAXNC = iwidt the routine is (similar to) the classical ILUM

preconditioner with wavefront ordering. For TAU > 0, LAMBDA = 0, RHO < 1, and MAXNC >> iwidt the routine is

the ILUM preconditioner with threshold.

parameters
It is emphasized that not every setting of the parameters produces necessarily an efficient preconditioner. So it can be

necessary to test some values for the parameters till an optimal selection has been found.

Preconditioning
The preconditioner bases on nested incomplete block factorizations using the Schur complement. The matrix An, n=1 ,...,

MAXLVL1 in each level can be blocked as follows choosing the appropriate sets of eliminated unknowns:











2221

1211

AA

AA
An

And define a matrix 12
1

112122 AAAAS  , which is called Schur complement. An can be factorized as follows:
























S0

AAI
IA

0A
A 12

1
11

21

11
n

The matrix An+1of next level n+1 can be regarded as a Schur complement matrix with approximating the 1
11
A . These

incomplete factorization are used for preconditioning in this routine.

 c_dm_vmlbife

145

4. Example program

The partial differential equation

f
x

u
xx

x

u
xx

x

u
xxtu

x
u

x
u

x











































3

21
2

13
1

32
3

2

2

2
2

2

1
2

2

)()()(

is solved on the domain [0, 1]2. Dirichlet boundary condition u = 0 is imposed and the value of t is set to 1.0.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define MAXT 2
#define N1 39
#define N2 (N1)
#define N3 (N1)
#define L1 (N1)
#define L2 (N2)
#define L3 (N3)
#define KA (N1*N2*N3)
#define NA 7
#define NLBMAX (N1*N2)
#define MAXNC 11
#define NW ((KA+MAXT)*(6*MAXNC+11)+(85*NLBMAX+100)*MAXT)
#define NIW ((KA+MAXT)*(6*MAXNC+11)+(13*NLBMAX+200+61*51+13)*MAXT)

int MAIN__()
{
 double a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1];
 double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1];
 double x1[L1], x2[L2], x3[L3], c[L3][L2][L1], f[L3][L2][L1];
 double w[NW], epsin, epsot, epsep[4], mat[NA][KA], rhs[KA], v[KA];
 double sol[KA*3], rhsx[KA], rhsc[KA];
 double tmp, t, hr1, hr2, hr3, hr4, hr6, hr7, hr13, one=1.0;
 int ndlt[NA], iw[NIW], info[14], infoep[3], icol[NA][KA];
 int isw, iguss, nband, ndiag, icon;
 int z, z1, z2, z3, n, i, nc;

 /* THESE ARE PARAMETERS OF THE TEST PDES. CHANGES OF THE */
 /* VALUES CAN PRODUCE DIVERGENCE IN THE ITERATIVE SOLVER. */
 t = 1.0;

 /* CREATE NODE COORDINATES */
 for (z1=0; z1<N1; z1++) {
 x1[z1] = (double)z1/(double)(N1-1);
 }
 for (z2=0; z2<N2; z2++) {
 x2[z2] = (double)z2/(double)(N2-1);
 }
 for (z3=0; z3<N3; z3++) {
 x3[z3] = (double)z3/(double)(N3-1);
 }

 /* -UX1X1-UX2X2-UX3X3+T*((X2-X3)*UX1+(X3-X1)*UX2+(X1-X2)*UX3)=F */
 /* */
 /* REMARK: IF T IS TO LARGE THE PDE IS SINGULAR. */
 for (z3=0; z3<N3; z3++) {
 for (z2=0; z2<N2; z2++) {
 for (z1=0; z1<N1; z1++) {
 a1[z3][z2][z1] = 1.0;
 a2[z3][z2][z1] = 1.0;
 a3[z3][z2][z1] = 1.0;
 b1[z3][z2][z1] = t*(x2[z2]-x3[z3]);
 b2[z3][z2][z1] = t*(x3[z3]-x1[z1]);
 b3[z3][z2][z1] = t*(x1[z1]-x2[z2]);
 c[z3][z2][z1] = 0.0;
 hr1 = one-x2[z2];
 hr2 = x2[z2]*hr1;
 hr3 = one-x3[z3];
 hr4 = x3[z3]*hr3;
 hr6 = one-x1[z1];
 hr7 = x1[z1]*hr6;

c_dm_vmlbife

146

 hr13 = hr1*x3[z3]*hr3;
 f[z3][z2][z1] = 2*hr2*hr4+2*hr7*hr4+2*hr7*hr2+
 t*((x2[z2]-x3[z3])*(hr6*x2[z2]*hr13-x1[z1]*x2[z2]*hr13)
 +(x3[z3]-x1[z1])*(hr7*hr13-hr7*x2[z2]*x3[z3]*hr3)
 +(x1[z1]-x2[z2])*(hr7*hr2*hr3-hr7*hr2*x3[z3]));
 }
 }
 }

 /* DIRICHLET CONDITIONS: */
 for (z3=0; z3<N3; z3++) {
 for (z2=0; z2<N2; z2++) {
 c[z3][z2][0] = 1.0;
 b1[z3][z2][0] = 0.0;
 b2[z3][z2][0] = 0.0;
 b3[z3][z2][0] = 0.0;
 f[z3][z2][0] = 0.0;
 c[z3][z2][N1-1] = 1.0;
 b1[z3][z2][N1-1] = 0.0;
 b2[z3][z2][N1-1] = 0.0;
 b3[z3][z2][N1-1] = 0.0;
 f[z3][z2][N1-1] = 0.0;

 if (z2 == 0) {
 for (z1=0; z1<N1; z1++) {
 c[z3][0][z1] = 1.0;
 b1[z3][0][z1] = 0.0;
 b2[z3][0][z1] = 0.0;
 b3[z3][0][z1] = 0.0;
 f[z3][0][z1] = 0.0;
 }
 } else if (z2 == N2-1) {
 for (z1=0; z1<N1; z1++) {
 c[z3][N2-1][z1] = 1.0;
 b1[z3][N2-1][z1] = 0.0;
 b2[z3][N2-1][z1] = 0.0;
 b3[z3][N2-1][z1] = 0.0;
 f[z3][N2-1][z1] = 0.0;
 }
 }

 if (z3 == 0) {
 for (z1=0; z1<N1; z1++) {
 c[0][z2][z1] = 1.0;
 b1[0][z2][z1] = 0.0;
 b2[0][z2][z1] = 0.0;
 b3[0][z2][z1] = 0.0;
 f[0][z2][z1] = 0.0;
 }
 } else if (z3 == N3-1) {
 for (z1=0; z1<N1; z1++) {
 c[N3-1][z2][z1] = 1.0;
 b1[N3-1][z2][z1] = 0.0;
 b2[N3-1][z2][z1] = 0.0;
 b3[N3-1][z2][z1] = 0.0;
 f[N3-1][z2][z1] = 0.0;
 }
 }
 }
 }

 n = N1*N2*N3;
 c_dm_vpde3d((double*)a1, L1, L2, N1, N2, N3, (double*)a2, (double*)a3, x1, x2, x3,
 (double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f,
(double*)mat,
 KA, NA, n, &ndiag, ndlt, rhs, &icon);
 printf("icon of c_dm_vpde3d = %d\n", icon);

 for (z =0; z<n; z++) {
 rhsx[z] = rhs[z];
 }

 nband = 0;
 for (i=0; i<ndiag; i++) {
 nband=max(nband,fabs(ndlt[i]));
 }

 /* CHANGE TO ELLPACK FORMAT: */
 nc = ndiag;
 for (i=0; i<nc; i++) {
 for (z=0; z<KA; z++) {

 c_dm_vmlbife

147

 icol[i][z] = z+ndlt[i]+1;
 }
 }

 /* CALL THE ITERATIVE SOLVER: */
 isw = 1;
 iguss = 0;
 epsot = 1.0e-6;
 epsin = 1.0e-3;
 info[0] = 10;
 info[1] = MAXT*100;
 info[2] = 1;
 info[4] = 2;
 info[5] = 5000;
 info[6] = 5;
 info[7] = 20;
 info[9] = 2;
 info[10] = 5000;
 info[11] = 20;
 info[12] = 0;
 infoep[0] = 1;
 infoep[1] = 5;
 infoep[2] = 14;
 epsep[0] = 1.0e-2;
 epsep[1] = 1.0e-2;
 epsep[2] = 0.2;
 epsep[3] = 1.0e-3;

 c_dm_vmlbife((double*)mat, KA, nc, n, (int*)icol, rhs, isw, iguss, info,
 infoep, epsot, epsin, epsep, v, w, NW, iw, NIW, &icon);
 printf("icon of c_dm_vmlbife = %d\n", icon);

 for (i=0; i<nband; i++) {
 sol[i] = 0.0;
 sol[nband+n+i] = 0.0;
 }

 for (z=0; z<n; z++) {
 sol[nband+z] = v[z];
 }

 c_dm_vmvsd((double*)mat, KA, ndiag, n, ndlt, nband, sol, rhsc, &icon);

 tmp = 0.0;
 for (z=0; z<n; z++) {
 tmp = max(tmp,fabs((rhsx[z]-rhsc[z])/(rhsx[z]+1.0)));
 }

 printf("error = %e\n", tmp);
 return(0);
}

5. Method

Consult the entry for DM_VMLBIFE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmvscc

148

c_dm_vmvscc

Multiplication of a real sparse matrix and a real vector (compressed

column storage method)

ierr = c_dm_vmvscc(a, nz, nrow, nfcnz, n, x,

y, w, iw, &icon);

1. Function

This routine obtains a product by multiplying an n  n sparse matrix by a vector.

 y = Ax

The sparse matrix A is stored by the compressed column storage method. Vectors x and y are n-dimensional vectors.

2. Arguments

The routine is called as follows:

ierr = c_dm_vmvscc(a, nz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon);

where:

a double a[nz] Input The non-zero elements of a coefficient matrix are stored. The non-zero

elements of a sparse matrix are stored in a[i], i = 0, …, nz-1. For the

compressed column storage method, refer to Figure c_dm_vmvscc-1.

nz int Input The total number of the nonzero elements belong to a coefficient matrix

A.

nrow int nrow[nz] Input The row indices used in the compressed column storage method, which

indicate the row number of each nonzero element stored in an array a.

nfcnz int

nfcnz[n+1]

Input The position of the first nonzero element stored in an array a by the

compressed column storage method which stores the nonzero elements

column by column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

x double x[n] Input Vector x is stored in x[i-1], 1  i  n.

y double y[n] Output The product of a matrix and vector is stored in y[i-1], 1  i  n.

w double w[nz] Work

iw int iw[nz][2] Work

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 n < 1

 nz < 0

 nfcnz[n]  nz+1

Bypassed.

 c_dm_vmvscc

149























111000

9870

6054

0321

A













































































































4

3

2

4

3

1

3

2

1

2

1

,

11

9

6

10

8

3

7

5

2

4

1

,

12

9

6

3

1

nrowanfcnz

Figure c_dm_vmvscc-1 Storing a coefficient matrix A in compressed column storage method

The way how to store a coefficient matrix A in compressed column storage method is explained.

The nonzero elements of each column vector of a matrix A are stored in compressed mode into a one-dimensional array a

column by column. The position in the array a where the first nonzero element in the i-th column vector is stored is set

into nfcnz[i-1].

The value of nfcnz[n] is set to nz+1, where n is an order of the matrix A and nz is the total number of the nonzero

elements in this matrix.

The row number of the nonzero element of the matrix A stored in the i-th array element a[i-1] is set into nrow[i-1].

3. Example program

A product is obtained by multiplying the sparse matrix by a vector.

 #include <stdlib.h>
 #include <stdio.h>
 #include <math.h>
 #include "cssl.h" /* standard C-SSL header file */

 #define max(a,b) ((a) > (b) ? (a) : (b))

 #define NORD (60)
 #define NX (NORD)
 #define NY (NORD)
 #define NZ (NORD)
 #define N (NX*NY*NZ)
 #define K (N+1)
 #define NDIAG (7)

 MAIN__()
 {

c_dm_vmvscc

150

 int ierr, icon;
 int i, ii, j;
 int ne, ns, nnz;
 int numnz, ntopcfg, ncol;
 int length, nbase;
 int nofst[NDIAG];
 int nrow[K*NDIAG];
 int nfcnz[N+1];
 int iw[K*NDIAG][2];

 double s;
 double diag[NDIAG][K];
 double a[K*NDIAG];
 double w[K*NDIAG];
 double x[N];
 double b[N];
 double y[N];

 for (i=1; i<=N; i++){
 x[i-1]=1.0;
 }

 nofst[1]=-NX*NY;
 nofst[2]=-NX;
 nofst[3]=-1;
 nofst[4]=0;
 nofst[5]=1;
 nofst[6]=NX;
 nofst[7]=NX*NY;

 for (i=1; i<=NDIAG; i++){
 if (nofst[i-1] < 0){
 nbase=-nofst[i-1];
 length=N-nbase;
 for (j=1; j<=length; j++){
 diag[i-1][j-1]=(double)(i-1);
 }
 }
 else{
 nbase=nofst[i-1];
 length=N-nbase;
 for (j=nbase+1; j<=N; j++){
 diag[i-1][j-1]=(double)(i-1);
 }
 }
 }

 numnz = 1;
 for (j=1; j<=N; j++){
 ntopcfg = 1;
 for (i=NDIAG; i>=1; i--){
 if (diag[i-1][j-1] != 0){
 ncol = j-nofst[i-1];
 a[numnz-1] = diag[i-1][j-1];
 nrow[numnz-1] = ncol;
 if (ntopcfg == 1){
 nfcnz[j-1] = numnz;
 ntopcfg = 0;
 }
 numnz = numnz+1;
 }
 }
 }
 nfcnz[N] = numnz;
 nnz = numnz-1;

 ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int*)iw, &icon);
 for (i=1; i<=N; i++){
 b[i-1]=0.0;
 }

 for (i=1; i<=N; i++){
 ns = nfcnz[i-1];
 ne = nfcnz[i]-1;
 for (j=ns; j<=ne; j++){
 ii = nrow[j-1];
 b[ii-1] = b[ii-1]+a[j-1]*x[i-1];
 }
 }

 s = 0.0;

 c_dm_vmvscc

151

 for (i=1; i<=N; i++){
 s=max(s,fabs(y[i-1]-b[i-1]));
 }

 printf("ERROR=%e\n", s);

 }

4. Method

Consult the entry for DM_VMVSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmvsccc

152

c_dm_vmvsccc

Multiplication of a complex sparse matrix and a complex vector

(compressed column storage method)

ierr = c_dm_vmvsccc(za, nz, nrow, nfcnz, n,

zx, zy, zw, iw, &icon);

1. Function

This routine obtains a product by multiplying an n  n complex sparse matrix by a complex vector.

 y = Ax

The sparse matrix A is stored by the compressed column storage method. Vectors x and y are n-dimensional vectors.

2. Arguments

The routine is called as follows:

ierr = c_dm_vmvsccc(za, nz, nrow, nfcnz, n, zx, zy, zw, (int*)iw, &icon);

where:

za dcomplex

za[nz]

Input The non-zero elements of a coefficient matrix are stored. The non-zero

elements of a sparse matrix are stored in za[i], i=0, …, nz-1. For the

compressed column storage method, refer to Figure c_dm_vmvscc-1.

For a complex matrix , the real array a in this Figure is replaced with

complex array.

nz int Input The total number of the nonzero elements belong to a coefficient matrix

A.

nrow int nrow[nz] Input The row indices used in the compressed column storage method, which

indicate the row number of each nonzero element stored in an array za.

nfcnz int

nfcnz[n+1]

Input The position of the first nonzero element stored in an array za by the

compressed column storage method which stores the nonzero elements

column by column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

zx dcomplex

zx[n]

Input Vector x is stored in zx[i-1], 1  i  n.

zy dcomplex

zy[n]

Output The product of a matrix and vector is stored in zy[i-1], 1  i  n.

zw dcomplex

zw[nz]

Work

iw int iw[nz][2] Work

icon int Output Condition code. See below.

The complete list of condition codes is given below.

 c_dm_vmvsccc

153

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 n < 1

 nz < 0

 nfcnz[n]  nz+1

Bypassed.

3. Example program

A product is obtained by multiplying the complex sparse matrix by a complex vector.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "cssl.h"

#define NORD 60

#define NX NORD

#define NY NORD

#define NZ NORD

#define N NX * NY * NZ

#define K (N + 1)

#define NDIAG 7

dcomplex comp_add(dcomplex, dcomplex);

dcomplex comp_sub(dcomplex, dcomplex);

dcomplex comp_mult(dcomplex, dcomplex);

double cdabs(dcomplex);

int MAIN__() {

 int nofst[NDIAG];

 dcomplex zdiag[NDIAG][K], za[K * NDIAG], zw[K * NDIAG];

 int nrow[K * NDIAG], nfcnz[N + 1],

 iw[K * NDIAG][2];

 dcomplex zx[N], zb[N], zy[N];

 int i, ii, j, icon, nbase, length, ncol, numnz, ntopcfg, nnz, ns, ne;

 double s;

 for (i = 0; i < N; i++) {

 zx[i].re = 1.0;

c_dm_vmvsccc

154

 zx[i].im = 0.0;

 }

 nofst[0] = -NX * NY;

 nofst[1] = -NX;

 nofst[2] = -1;

 nofst[3] = 0;

 nofst[4] = 1;

 nofst[5] = NX;

 nofst[6] = NX * NY;

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 zdiag[i][j].re = (double)i;

 zdiag[i][j].im = 0.0;

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = nbase; j < N; j++) {

 zdiag[i][j].re = (double)i;

 zdiag[i][j].im = 0.0;

 }

 }

 }

 numnz = 1;

 for (j = 0; j < N; j++) {

 ntopcfg = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (zdiag[i][j].re != 0.0 || zdiag[i][j].im != 0.0) {

 ncol = (j + 1) - nofst[i];

 za[numnz - 1] = zdiag[i][j];

 nrow[numnz - 1] = ncol;

 if (ntopcfg == 1) {

 nfcnz[j] = numnz;

 ntopcfg = 0;

 }

 numnz++;

 }

 }

 c_dm_vmvsccc

155

 }

 nfcnz[N] = numnz;

 nnz = numnz - 1;

 c_dm_vmvsccc(za, nnz, nrow, nfcnz, N, zx,

 zy, zw, (int *)iw, &icon);

 for (i = 0; i < N; i++) {

 zb[i].re = 0.0;

 zb[i].im = 0.0;

 }

 for (i = 0; i < N; i++) {

 ns = nfcnz[i];

 ne = nfcnz[i + 1] - 1;

 for (j = ns - 1; j < ne; j++) {

 ii = nrow[j];

 zb[ii - 1] = comp_add(zb[ii - 1], comp_mult(za [j], zx[i]));

 }

 }

 s = 0.0;

 for (i = 0; i < N; i++) {

 s = fmax(s, cdabs(comp_sub(zy[i], zb[i])));

 }

 printf("ERROR=%18.15lf\n", s);

 return(0);

}

dcomplex comp_add(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re + so2.re;

 obj.im = so1.im + so2.im;

 return obj;

}

dcomplex comp_sub(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re - so2.re;

c_dm_vmvsccc

156

 obj.im = so1.im - so2.im;

 return obj;

}

dcomplex comp_mult(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re * so2.re - so1.im * so2.im;

 obj.im = so1.re * so2.im + so1.im * so2.re;

 return obj;

}

double cdabs(dcomplex so) {

 double obj;

 obj = sqrt(so.re * so.re + so.im * so.im);

 return obj;

}

4. Method

Consult the entry for DM_VMVSCCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_vmvsd

157

c_dm_vmvsd

Multiplication of a real sparse matrix and a real vector (diagonal format

storage method).

ierr = c_dm_vmvsd(a, k, ndiag, n, nofst, nlb,

x, y, &icon);

1. Function

This function obtains a product by multiplying an n  n sparse matrix by a vector.

 y = Ax

The sparse matrix A is stored by the diagonal format storage method. Vectors x and y are n-dimensional vectors.

2. Arguments

The routine is called as follows:

ierr = c_dm_vmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, &icon);

where:

a double

a[ndiag][k]

Input Sparse matrix A stored in diagonal storage format. See Comments on

use.

k int Input C fixed dimension of array a ( n).

ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements.

n int Input Order n of matrix A.

nofst int

nofst[ndiag]

Input Distance from the main diagonal vector corresponding to diagonal

vectors in array a. Super-diagonal vectors have positive values. Sub-

diagonal vectors have negative values. See Comments on use.

nlb int Input Lower bandwidth of matrix A.

x double x[Xlen] Input Vector x is stored in x[i], nlb  i < nlb  n.

Xlen = n  nlb  nub. Where nlb is the lower band width and nub is

the upper band width.

y double y[n] Output Product vector y.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 k < 1

 n < 1

 n > k

 ndiag < 1

 nlb  max(nofst[i]); 0  i < ndiag

 abs(nofst[i]) > n  1; 0  i < ndiag

Bypassed.

c_dm_vmvsd

158

3. Comments on use

a and nofst
The coefficients of matrix A are stored in two arrays using the diagonal storage format. For full details, see the Array

storage formats section of the General Descriptions.

The advantage of this method lies in the fact that the matrix-vector product can be computed without the use of indirect

indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

4. Example program

This example program calculates a matrix-vector multiplication and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX (100)
#define UBANDW (2)
#define LBANDW (1)
#define NDIAG (UBANDW + LBANDW + 1)

MAIN__()
{
 double one=1.0, eps=1.e-6;
 int ierr, icon;
 int nlb, nub, n, i, j, k;
 int nofst[UBANDW + LBANDW + 1];
 double a[NDIAG][NMAX], x[NMAX + UBANDW + LBANDW], y[NMAX];

 /* initialize matrix and vector */
 nlb = LBANDW;
 nub = UBANDW;
 n = NMAX;
 k = NMAX;

 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }

 for (i=1; i<=nlb; i++) {
 for (j=0; j<i; j++) a[nub+i][j] = 0.0;
 for (j=i; j<n; j++) a[nub+i][j] = -2.0;
 nofst[nub+i] = -i;
 }

 for (i=0; i<n+nlb+nub; i++) x[i] = 0.0;

 nofst[0] = 0;
 for (j=0; j<n; j++) {
 a[0][j] = one;
 for (i=1; i<NDIAG; i++) a[0][j] -= a[i][j];
 x[nlb+j] = one;
 }

 /* perform matrix-vector multiply */
 ierr = c_dm_vmvsd((double*)a, k, NDIAG, n, nofst, nlb, x, y, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_vmvsd failed with icon = %d\n", icon);
 exit(1);
 }

 /* check vector */
 for (i=0;i<n;i++) {
 if (fabs(y[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }

 c_dm_vmvsd

159

 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for DM_VMVSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vmvse

160

c_dm_vmvse

Multiplication of a real sparse matrix and a real vector (ELLPACK

format storage method).

ierr = c_dm_vmvse(a, k, nw, n, icol, x, y,

&icon);

1. Function

This function obtains a product by multiplying an n  n sparse matrix by a vector.

 y = Ax

The coefficient matrix (n  n) is stored by the ELLPACK format storage method using two arrays. Vectors x and y are n-

dimensional vectors.

2. Arguments

The routine is called as follows:

ierr = c_dm_vmvse((double*)a, k, nw, n, (int*)icol, x, y, &icon);

where:

a double

a[nw][k]

Input Sparse matrix A stored in ELLPACK storage format. See Comments on

use.

k int Input C fixed dimension of array a ( n).

nw int Input The maximum number of non-zero elements in any row of matrix A

( 0).

n int Input Order n of matrix A.

icol int

icol[nw][k]

Input Column indices used in the ELLPACK format, showing to which

column the elements corresponding to a belong. See Comments on use.

x double x[n] Input Vector x.

y double y[n] Output Solution vector y.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 k < 1

 n  0

 nw < 1

 n > k

Bypassed.

 c_dm_vmvse

161

3. Comments on use

a and icol
The coefficients of matrix A are stored in two arrays using the ELLPACK storage format. For full details, see the Array

storage formats section of the General Descriptions.

Before storing data in the ELLPACK format, it is recommended that the user initialize the arrays a and icol with zero

and the row number, respectively.

4. Example program

This example program calculates a matrix-vector multiplication and checks the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX (1000)
#define UBANDW (2)
#define LBANDW (1)
#define NW (UBANDW + LBANDW + 1)

MAIN__()
{
 double lcf=-2.0, ucf=-1.0, one=1.0, eps=1.e-6;
 int ierr, icon;
 int nlb, nub, n, i, j, k, ix;
 int icol[NW][NMAX];
 double a[NW][NMAX], x[NMAX], y[NMAX];

 /* initialize matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 n = NMAX;
 k = NMAX;

 for (i=0; i<n; i++) x[i] = one;

 for (i=0; i<NW; i++) {
 for (j=0; j<n; j++) {
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }
 }

 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = one-(double)j*lcf-(double)nub*ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }

 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = one-(double)nlb*lcf-(double)nub*ucf;
 for (i=nlb+1; i<NW; i++) a[i][j] = ucf;
 for (i=0; i<NW; i++) icol[i][j] = i+1+j-nlb;
 }

 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = one-(double)nlb*lcf-(double)(n-j-1)*ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n-(j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }

 /* perform matrix-vector multiply */
 ierr = c_dm_vmvse((double*)a, k, NW, n, (int*)icol, x, y, &icon);
 if (icon != 0) {

c_dm_vmvse

162

 printf("ERROR: c_dm_vmvse failed with icon = %d\n", icon);
 exit(1);
 }

 /* check vector */
 for (i=0; i<n; i++) {
 if (fabs(y[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 }
 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for DM_VMVSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_vpde2d

163

c_dm_vpde2d

Generation of System of linear equations with sparse matrices by the

finite difference discretization of a two dimensional boundary value

problem for second order partial differential equation.

ierr = c_dm_vpde2d(a1, l1, n1, n2, a2, x1, x2,

b1, b2, c, f, a, k, na, n, &ndiag,

nofst, r, &icon);

1. Function

This routine assembles the system of linear equations by the finite difference discretization of the linear, two dimensional

boundary value problem on the rectangular domain B:

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is

satisfied.

 fcu
x

u
b

x

u
b

x

u
a

xx

u
a

x































2

2
1

1
2

2
21

1
1

 (1)

 







 u
x

u

x

u

2
2

1
1 (2)

a1, a2, b1, b2, c and f are given functions on the domain and 1, 2,  and  are given functions on the boundary of the

domain.

The n1  n2 grid is defined by xi, j = (x1[i1], x2[j1])

i = 1, ... , n1, j = 1, ... , n2 with

B = [x1[0], x1[n11]]  [x2[0], x2[n21]];

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the

grid points. The returned coefficient matrix is stored by the diagonal format storage method.

2. Arguments

The routine is called as follows:

ierr = c_dm_vpde2d((double*)a1, l1, n1, n2, (double*)a2, x1, x2, (double*)b1,

(double*)b2, (double*)c, (double*)f, (double*)a, k, na, n, &ndiag,

nofst, r, &icon);

where:

a1 double

a1[n2][l1]

Input The coefficients of a1(xij) are stored in a1[j  1][i  1], i = 1, ... , n1, j

= 1, ... , n2.

l1 int Input Size of second-dimension of array a1, a2, b1, b2, c and f (l1  n1).

n1 int Input Number of grid points in the x1-direction (n1 > 2).

n2 int Input Number of grid points in the x2-direction (n2 > 2).

c_dm_vpde2d

164

a2 double

a2[n2][l1]

Input The coefficients of a2(xij) are stored in a2[j  1][i  1], i = 1, ... , n1, j

= 1, ... , n2.

x1 double x1[n1] Input The x1-coordinates of the grid points are stored in x1[i], i = 0, ... ,

n11. The coordinates of the grid points have to be increasing:

x1[i] < x1[i1], i = 0, ... , n12.

x2 double x2[n2] Input The x2-coordinates of the grid points are stored in x2[i], i = 0, ... ,

n21. The coordinates of the grid points have to be increasing:

x2[i] < x2[i1], i = 0, ... , n22.

b1 double

b1[n2][l1]

Input The coefficients of b1(xi, j) and the boundary condition 1 are stored in b1.





















else;)(

)(

1)(

)(

1)(

,1

,1

1,1

,1

,11

ji

i

i

j

j

xb

jx

jx

ix

ix

n2

n1

1]-1][i-b1[j

n2

n1

b2 double

b2[n2][l1]

Input The coefficients of b2(xi, j) and the boundary condition 2 are stored in b2.





















else;)(

)(

1)(

)(

1)(

,2

,2

1,2

,2

,12

ji

i

i

j

j

xb

jx

jx

ix

ix

n2

n1

1]-1][i-b2[j

n2

n1

c double

c[n2][l1]

Input The coefficients of c(xi, j) and the boundary condition  are stored in c.





















else;)(

)(

1)(

)(

1)(

,

,

1,

,

,1

ji

i

i

j

j

xc

jx

jx

ix

ix

n2

n1

1]-1][i-c[j

n2

n1

f double

f[n2][l1]

Input The coefficients of f(xi, j) and the boundary condition  are stored in f.





















else;)(

)(

1)(

)(

1)(

,

,

1,

,

,1

ji

i

i

j

j

xf

jx

jx

ix

ix

n2

n1

1]-1][i-f[j

n2

n1

a double

a[na][k]

Output The nonzero elements of a coefficient matrix are stored in a.

k int Input Size of second-dimension of array a ( n).

na int Input Size of first-dimension of array a ( ndiag).

n int Input Order n of matrix A (n = n1  n2).

ndiag int Output Number of columns in array a and size of array nofst (= 5).

nofst int

nofst[ndiag]

Output Offsets of diagonals of A stored a. Main diagonal has offset 0,

subdiagonals have negative offsets, and superdiagonals have positive

offsets.

r double r[k] Output The right-side constant vectors of a system of linear equations are stored

in r.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

 c_dm_vpde2d

165

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 l1 < n1

 n1 < 3

 n2 < 3

 na < 5

 k < n1  n2

Bypassed.

30001 The coordinates of the grid points is not

increasing.

3. Comments on use

The value of the solution at the grid points
The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue

problem solver depends strictly on the number and the location of the grid points.

The grid points to their nearest neighbor
The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in x1-direction

the condition

 1,...,2,25.0 



 n1
1]x1[]x1[

2]x1[1]x1[
i

ii

ii

should be met (for the x2-direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of

the coefficient matrix is not only determined by the grid but also by the coefficient functions.

4. Example program

The domain is the box [1,1] 2. The partial differential equation is

 0
2

2
1

1
2

2

2

1
2

2




























x

u
v

x

u
v

x

u

x

u

modeling a diffusion of the quantity u through the cannel driven by the rotating velocity field






















2
2

2
1

1

2
2

2
1

2
021 ,),(

xx

x

xx

x
vvvv

where v0 is real constant (e.g. v0=1). The boundary conditions are set as follows:

else0

11

10

2

2








n

u
xu

xu

where n denotes the outer normal field at the boundary of the box.

c_dm_vpde2d

166

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define N1 49
#define N2 (N1)
#define L1 (N1)
#define L2 (N2)
#define KA (N1*N2)
#define NA 5

int MAIN__()
{
 double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1];
 double c[L2][L1], f[L2][L1], a[NA][KA], r[KA], v0;
 int nofst[NA], z1, z2, i, j, n, ndiag, icon;

 v0 = 1.0;

 /* create grid nodes nodes: */
 for (z1=0; z1<N1; z1++) {
 x1[z1] = 2*(double)(z1)/(double)(N1-1)-1.0;
 }

 for (z2=0; z2<N2; z2++) {
 x2[z2] = 2*(double)(z2)/(double)(N2-1)-1.0;
 }

 /* coefficient functions: */
 for (z2=0; z2<N2; z2++) {
 for (z1=0; z1<N1; z1++) {
 a1[z2][z1] = 1.0;
 a2[z2][z1] = 1.0;
 }

 for (z1=1; z1<N1-1; z1++) {
 b1[z2][z1] = v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
 b2[z2][z1] = -v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
 c[z2][z1] = 0.0;
 f[z2][z1] = 0.0;
 }

 /* boundary conditions at faces X1=-1 and X1=1: */
 b1[z2][0] = -1.0;
 b2[z2][0] = 0.0;
 c[z2][0] = 0.0;
 f[z2][0] = 0.0;
 b1[z2][N1-1] = 1.0;
 b2[z2][N1-1] = 0.0;
 c[z2][N1-1] = 0.0;
 f[z2][N1-1] = 0.0;

 /* boundary conditions at faces X2=-1 and X2=1: */
 if (z2 == 0) {
 for (z1=0; z1<N1; z1++) {
 b1[z1][0] = 0.0;
 b2[z1][0] = 0.0;
 c[z1][0] = 1.0;
 f[z1][0] = 0.0;
 }
 } else if (z2 == N2-1) {
 for (z1=0; z1<N1; z1++) {
 b1[z1][N2-1] = 0.0;
 b2[z1][N2-1] = 0.0;
 c[z1][N2-1] = 1.0;
 f[z1][N2-1] = 1.0;
 }
 }
 }

 /* build the linear system: */
 n = N1*N2;
 c_dm_vpde2d((double*)a1, L1, N1, N2, (double*)a2, x1, x2, (double*)b1, (double*)b2,
 (double*)c, (double*)f, (double*)a, KA, NA, n, &ndiag, nofst, r, &icon);
 printf("icon of c_dm_vpde2d = %d\n", icon);

 /* write the matrix to a file: */
 for (j=0; j<ndiag; j++) {

 c_dm_vpde2d

167

 for (i=0; i<n; i+=100) {
 if(i%3 == 0) { printf("\n");};
 printf("%23.16e ", a[j][i]);
 }
 }

 for (i=0; i<ndiag; i++) {
 if(i%3 == 0) { printf("\n");};
 printf("%10d ", nofst[i]);
 }

 for (i=0; i<n; i+=100) {
 if(i%3 == 0) { printf("\n");};
 printf("%23.16e ", r[i]);
 }
 return(0);
}

5. Method

Consult the entry for DM_VPDE2D in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vpde3d

168

c_dm_vpde3d

Generation of System of linear equations with sparse matrices by the

finite difference discretization of a three dimensional boundary value

problem for second order partial differential equation.

ierr = c_dm_vpde3d(a1, l1, l2, n1, n2, n3, a2,

a3, x1, x2, x3, b1, b2, b3, c, f,

a, k, na, n, &ndiag, nofst, r,

&icon);

1. Function

This routine assembles the system of linear equations by the finite difference discretization of the linear, three dimensional

boundary value problem on the rectangular domain B:

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is

satisfied.

 fcu
x

u
b

x

u
b

x

u
b

x

u
a

xx

u
a

xx

u
a

x










































3

3
2

2
1

1
3

3
32

2
21

1
1

 (1)

 











 u
x

u

x

u

x

u

3
3

2
2

1
1 (2)

a1, a2, a3, b1, b2, b3, c and f are given functions on the domain and 1, 2, 3,  and  are given functions on the boundary

of the domain.

The n1  n2  n3 grid is defined by xi, j, k = (x1[i1], x2[j1] , x3[k1])

i = 1, ... , n1, j = 1, ... , n2, k = 1, ... , n3

B = [x1[0], x1[n11]]  [x2[0], x2[n21]]  [x3[0], x3[n31]];

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the

grid points. The returned coefficient matrix is stored by the diagonal format storage method.

2. Arguments

The routine is called as follows:

ierr = c_dm_vpde3d((double*)a1, l1, l2, n1, n2, n3, (double*)a2, (double*)a3,

x1, x2, x3, (double*)b1, (double*)b2, (double*)b3, (double*)c,

(double*)f, (double*)a, k, na, n, &ndiag, nofst, r, &icon);

where:

a1 double

a1[n3][l2][l1]

Input The coefficients of a1(xi, j, k) are stored in a1[k  1][j  1][i  1], i =

1, ... , n1, j = 1, ... , n2, k = 1, ... , n3.

l1 int Input Size of second-dimension of array a1, a2, a3, b1, b2, b3, c and f

(l1  n1).

 c_dm_vpde3d

169

l2 int Input Size of second-dimension of array a1, a2, a3, b1, b2, b3, c and f

(l2  n2).

n1 int Input Number of grid points in the x1-direction (n1 > 2).

n2 int Input Number of grid points in the x2-direction (n2 > 2).

n3 int Input Number of grid points in the x3-direction (n3 > 2).

a2 double

a2[n3][l2][l1]

Input The coefficients of a2(xi, j, k) are stored in a2[k  1][j  1][i  1], i =

1, ... , n1, j = 1, ... , n2, k = 1, ... , n3.

a3 double

a3[n3][l2][l1]

Input The coefficients of a3(xi, j, k) are stored in a3[k  1][j  1][i  1], i =

1, ... , n1, j = 1, ... , n2, k = 1, ... , n3.

x1 double x1[n1] Input The x1-coordinates of the grid points are stored in x1[i], i = 0, ... ,

n11. The coordinates of the grid points have to be increasing:

x1[i] < x1[i1], i = 0, ... , n12.

x2 double x2[n2] Input The x2-coordinates of the grid points are stored in x2[i], i = 0, ... ,

n21. The coordinates of the grid points have to be increasing:

x2[i] < x2[i1], i = 0, ... , n22.

x3 double x3[n3] Input The x3-coordinates of the grid points are stored in x3[i], i = 0, ... ,

n31. The coordinates of the grid points have to be increasing:

x3[i] < x3[i1], i = 0, ... , n32.

b1 double

b1[n3][l2][l1]

Input The coefficients of b1(xi, j, k) and the boundary condition 1 are stored in

b1.


























else;)(

)(

1)(

)(

1)(

)(

1)(

,,1

,,1

1,,1

,,1

,1,1

,,1

,,11

kji

ji

ji

ki

ki

kj

kj

xb

kx

kx

jx

jx

ix

ix

n3

n2

n1

1]1][i1][jb1[k

n3

n2

n1

b2 double

b2[n3][l2][l1]

Input The coefficients of b2(xi, j, k) and the boundary condition 2 are stored in

b2.


























else;)(

)(

1)(

)(

1)(

)(

1)(

,,2

,,2

1,,2

,,2

,1,2

,,2

,,12

kji

ji

ji

ki

ki

kj

kj

xb

kx

kx

jx

jx

ix

ix

n3

n2

n1

1]1][i1][jb2[k

n3

n2

n1

b3 double

b3[n3][l2][l1]

Input The coefficients of b3(xi, j, k) and the boundary condition 3 are stored in

b3.


























else;)(

)(

1)(

)(

1)(

)(

1)(

,,3

,,3

1,,3

,,3

,1,3

,,3

,,13

kji

ji

ji

ki

ki

kj

kj

xb

kx

kx

jx

jx

ix

ix

n3

n2

n1

1]1][i1][jb3[k

n3

n2

n1

c_dm_vpde3d

170

c double

c[n3][l2][l1]

Input The coefficients of c(xi, j, k) and the boundary condition  are stored in c.


























else;)(

)(

1)(

)(

1)(

)(

1)(

,,

,,

1,,

,,

,1,

,,

,,1

kji

ji

ji

ki

ki

kj

kj

xc

kx

kx

jx

jx

ix

ix

n3

n2

n1

1]1][i1][jc[k

n3

n2

n1

f double

f[n3][l2][l1]

Input The coefficients of f(xi, j, k) and the boundary condition  are stored in f.


























else;)(

)(

1)(

)(

1)(

)(

1)(

,,

,,

1,,

,,

,1,

,,

,,1

kji

ji

ji

ki

ki

kj

kj

xf

kx

kx

jx

jx

ix

ix

n3

n2

n1

1]1][i1][jf[k

n3

n2

n1

a double

a[na][k]

Output The nonzero elements of a coefficient matrix are stored in a.

k int Input Size of second-dimension of array a ( n).

na int Input Size of first-dimension of array a ( ndiag).

n int Input Order n of matrix A (n = n1  n2  n3).

ndiag int Output Number of columns in array a and size of array nofst (= 7).

nofst int

nofst[ndiag]

Output Offsets of diagonals of A stored a. Main diagonal has offset 0,

subdiagonals have negative offsets, and superdiagonals have positive

offsets.

r double r[n] Output The right-side constant vectors of a system of linear equations are

stored in r.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 l1 < n1

 l2 < n2

 n1 < 3

 n2 < 3

 n3 < 3

 na < 7

 k < n1  n2  n3

Bypassed.

30001 The coordinates of the grid points is not

increasing.

 c_dm_vpde3d

171

3. Comments on use

The value of the solution at the grid points
The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue

problem solver depends strictly on the number and the location of the grid points.

The grid points to their nearest neighbor
The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in x1-direction

the condition

 1,...,2,25.0 



 n1
1]x1[]x1[

2]x1[1]x1[
i

ii

ii

should be met (for the x2-direction and x3-direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of

the coefficient matrix is not only determined by the grid but also by the coefficient functions.

4. Example program

The domain is the channel[-1, 1]2  [0, 5]. The partial differential equation is

 0
2

2
1

1
3

2

2

2
2

2

1
2

2
































x

u
v

x

u
v

x

u

x

u

x

u

modeling a diffusion of the quantity u through the cannel driven by the rotating velocity field




















 0,,),,(

2
2

2
1

1

2
2

2
1

2
0321

xx

x

xx

x
vvvvv

where v0 is real constant (e.g. v0=1). The boundary conditions are set as follows:

else0

51

00

3

3








n

u
xu

xu

where n denotes the outer normal field at the boundary of the channel.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define N1 49
#define N2 49
#define N3 25
#define L1 (N1)
#define L2 (N2)
#define L3 (N3)
#define KA (N1*N2*N3)
#define NA 7

int MAIN__()
{
 double x1[L1], x2[L2], x3[L3], a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1];
 double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1], c[L1][L2][L3];

c_dm_vpde3d

172

 double f[L3][L2][L1], a[NA][KA], r[KA], v0;
 int nofst[NA], z1, z2, z3, i, j, n, ndiag, icon;

 v0 = 1.0;

 for (z1=0; z1<N1; z1++) {
 x1[z1] = 2*(double)z1/(double)(N1-1)-1.0;
 }
 for (z2=0; z2<N2; z2++) {
 x2[z2] = 2*(double)z2/(double)(N2-1)-1.0;
 }
 for (z3=0; z3<N3; z3++) {
 x3[z3] = (double)z3/(double)(N3-1);
 }

 /* coefficient functions: */
 for (z3=0; z3<N3; z3++) {
 for (z2=0; z2<N2; z2++) {
 for (z1=0; z1<N1; z1++) {
 a1[z3][z2][z1] = 1.0;
 a2[z3][z2][z1] = 1.0;
 a3[z3][z2][z1] = 1.0;
 }
 }

 for (z2=1; z2<N2-1; z2++) {
 for (z1=1; z1<N1-1; z1++) {
 b1[z3][z2][z1] = v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
 b2[z3][z2][z1] = v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
 b3[z3][z2][z1] = 0.0;
 c[z3][z2][z1] = 0.0;
 f[z3][z2][z1] = 0.0;
 }
 }

 /* boundary conditions at faces X1=-1 and X1=1: */
 for (z2=0; z2<N2; z2++) {
 b1[z3][z2][0] = -1.0;
 b2[z3][z2][0] = 0.0;
 b3[z3][z2][0] = 0.0;
 c[z3][z2][0] = 0.0;
 f[z3][z2][0] = 0.0;

 b1[z3][z2][N1-1] = 1.0;
 b2[z3][z2][N1-1] = 0.0;
 b3[z3][z2][N1-1] = 0.0;
 c[z3][z2][N1-1] = 0.0;
 f[z3][z2][N1-1] = 0.0;
 }

 /* boundary conditions at faces X2=-1 and X2=1: */
 for (z1=0; z1<N1; z1++) {
 b1[z3][0][z1] = 0.0;
 b2[z3][0][z1] = -1.0;
 b3[z3][0][z1] = 0.0;
 c[z3][0][z1] = 0.0;
 f[z3][0][z1] = 0.0;

 b1[z3][N2-1][z1] = 0.0;
 b2[z3][N2-1][z1] = 1.0;
 b3[z3][N2-1][z1] = 0.0;
 c[z3][N2-1][z1] = 0.0;
 f[z3][N2-1][z1] = 0.0;
 }

 /* boundary conditions at faces X3=0 and X3=5: */
 if (z3==0) {
 for (z1=0; z1<N1; z1++) {
 for (z2=0; z2<N2; z2++) {
 b1[0][z2][z1] = 0.0;
 b2[0][z2][z1] = 0.0;
 b3[0][z2][z1] = 0.0;
 c[0][z2][z1] = 1.0;
 f[0][z2][z1] = 0.0;
 }
 }
 } else if (z3==N3-1) {
 for (z1=0; z1<N1; z1++) {
 for (z2=0; z2<N2; z2++) {
 b1[N3-1][z2][z1] = 0.0;
 b2[N3-1][z2][z1] = 0.0;

 c_dm_vpde3d

173

 b3[N3-1][z2][z1] = 0.0;
 c[N3-1][z2][z1] = 1.0;
 f[N3-1][z2][z1] = 1.0;
 }
 }
 }
 }

 /* build the linear system: */
 n = N1*N2*N3;
 c_dm_vpde3d((double*)a1, L1, L2, N1, N2, N3, (double*)a2, (double*)a3, x1, x2, x3,
 (double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f, (double*)a,
 KA, NA, n, &ndiag, nofst, r, &icon);
 printf("c_dm_vpde3d : icon = %d\n", icon);

 /* write the matrix to a file: */
 for (j=0; j<ndiag; j++) {
 for (i=0; i<n; i+=1000) {
 if(i%3 == 0) { printf("\n");};
 printf("%23.16e ", a[j][i]);
 }
 }

 for (i=0; i<ndiag; i++) {
 if(i%3 == 0) { printf("\n");};
 printf("%10d ", nofst[i]);
 }

 for (i=0; i<n; i+=1000) {
 if(i%3 == 0) { printf("\n");};
 printf("%23.16e ", r[i]);
 }
 return(0);
}

5. Method

Consult the entry for DM_VPDE3D in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vradau5

174

c_dm_vradau5

System of stiff ordinary differential equations or differential-algebraic

equations (Implicit Runge-Kutta method)

ierr = c_dm_vradau5(n, fcn, &x, y, xend, &h,

rtol, Atol, itol, jac, ijac,

mljac, mujac, mas, imas, mlmas,

mumas, solout, iout, work, lwork,

iwork, liwork, rpar, &ipar,

&icon);

1. Function

This routine solves a system of stiff ordinary differential equations or differential-algebraic equations of the
following form:

 My′ = y(x0) = y0

, where M is a constant n-by-n matrix (called mass-matrix) , y is the solution vector of size n (with components

nyyy ,...,, 21), f(x,y) is function vector of size n (with components nfff ,...,, 21) and 0y is the initial value at 0xx  (with

components nyyy 00201 ,...,,) .

When M is a non-singular matrix other than identity matrix, the system becomes an implicit system of ordinary

differential equations. When M is a singular matrix, the system becomes a system of differential-algebraic equations.

This routine returns to the caller program when a numerical solution at)(0xxend  is obtained. When integrating the

system from 0x toward endx , a numerical solution after each successful step can be provided to a user’s routine (its

routine name is given as parameter solout).

This routine calls DM_VRADAU5 in Fortran SSL II which is based on RADAU5, a free software developed by E. Haier

and G. Wanner (Universite de Geneve, as of March 2011). The license of RADAU5 is listed in Appendix 2 of "FUJITSU

SSL II Thread-Parallel Capabilities User's Guide".

2. Arguments

The routine is called as follows:

ierr = c_dm_vradau5(n, fcn, &x, y, xend, &h, rtol, Atol, itol, jac, ijac,

mljac, mujac, mas, imas, mlmas, mumas, solout, iout, work, lwork,

iwork, liwork, rpar, &ipar, &icon);

where:

n int Input Dimension of the system(n  1).

fcn int Input Name of user function computing the value of f(x,y). Its prototype is:

void fcn(int n, double x, double y[],

 double f[], double *rpar, int *ipar);

n int Input Original number of

an equation

)yf (x,

 c_dm_vradau5

175

x double Input Autonomous

variable x

y double

y[n]

Input Solution vector y

f double

f[n]

Output)(yf x, .

f[0]= 1f ,

f[1]= 2f ,…..

f[n-1]= nf

rpar, ipar (see below)

x double Input Initial x-value x0.

 Output x-value for which the solution has been computed (after successful

return x = xend).

y double y[n] Input Initial values for y: y[0] = 01y , y[1]= 02y ,…, y[n-1] = ny0 .

 Output Numerical solution at x (= xend on successful return).

xend double Input Final x-value endx (0xxend  may be positive or negative)

h double Input Initial step size guess;

For stiff equations with initial transient, h = 1.0 / (norm of  yf x,'),

usually 10-3 or 10-5, is good. This choice is not very important, the step

size is quickly adapted (if h = 0.0, the code puts h = 10-6).

 Output Predicted step size of the last accepted step.

rtol

Atol

double Input Relative and absolute error tolerances. They can be both scalars (must

be variables) or else both vectors of length n. Atol (or Atol[i]) > 0

and rtol (or rtol[i]) > 10u, where u is the round off unit.

itol int Input Switch for rtol and Atol:

itol = 0: Both rtol and Atol are scalars. The code keeps, roughly,

the local error of y[i] below rtol * abs(y[i]) + Atol.

itol  0: Both rtol and Atol are vectors. The code keeps,

roughly, the local error of y[i] below rtol[i] * abs(y[i]) +

Atol[i].

jac int Input Name of the user function which computes the partial derivatives of

f(x,y) with respect to y (This routine is only called if ijac  0; Supply

a dummy routine in the case ijac = 0).

For ijac  0, this function must have the form

Its prototype is:

void jac(int n, double x, double y[],

 double dfy[], int ldfy, double *rpar,

int *ipar);

ldfy, the row-length of the array, is furnished by the calling program.

If mljac = n the Jacobian is supposed to be full and the partial

derivatives are stored in dfy as

dfy[(i-1)*ldfy+j-1] =
j

i

y

f




else, the Jacobian is taken as banded and the partial derivatives are

stored diagonal-wise as

dfy[(i-j+mujac)*ldfy+j-1] =
j

i

y

f




c_dm_vradau5

176

Fig. c_dm_vradau5-1 shows how a banded Jacobian is stored in dfy in

the case of n = 6, mljac = 3, and mujac = 1.

ijac int Input Switch for the computation of the Jacobian:

ijac = 0: Jacobian is computed internally by finite differences, user

function " jac " is never called.

ijac  0: Jacobian is supplied by user function jac.

mljac int Input Switch for the banded structure of the Jacobian:

mljac = n: Jacobian is a full matrix. The linear algebra is done by

full-matrix Gauss-elimination.

0  mljac < n: mljac is the lower bandwidth of Jacobian matrix

( number of non-zero diagonals below the main diagonal).

mujac int Input Upper bandwidth of Jacobian matrix ( number of non-zero diagonals

above the main diagonal). Need not be defined if mljac = n.

mas int Input Name of user function computing the mass-matrix M.

If imas = 0, the matrix is assumed to be the identity matrix and needs

not to be defined; Supply a dummy routine in this case.

If imas  0, the routine mas is of the form.

Its prototype is:

void mas(int n, double am[], int lmas,

 double *rpar, int *ipar);

If mlmas = n the mass-matrix is stored as full matrix like

am[(i-1)*lmas+j-1] = ijM

else, the matrix is taken as banded and stored diagonal-wise as

am[(i-j+mumas)*lmas+j-1] = ijM

imas int Input Information on the mass-matrix;

imas = 0: M is supposed to be the identity matrix, mas is never called.

imas  0: Mass-matrix is supplied.

mlmas int Input Switch for the banded structure of the mass-matrix:

mlmas = n: the full matrix case. The linear algebra is done by full-

matrix Gauss-elimination.

0  mlmas < n: mlmas is the lower bandwidth of the matrix

( number of non-zero diagonals below the main diagonals).

 mlmas  mljac.

mumas int Input Upper bandwidth of mass-matrix ( number of non-zero diagonals

above the main diagonal). Need not be defined if mlmas = n.

mumas  mujac.

solout int Input Name of user function providing the numerical solution during

integration.

If iout  0, it is called after every successful step. Supply a dummy

function if iout = 0.

It must have the form. Its prototype is:

void solout(int nr, double xold, double x,

 double y[], double cont[], int lrc, int n,

 double *rpar, int *ipar, int irtrn,

double *work2, int *iwork2);

solout furnishes the solution "y" at the nr-th grid-point "x" (thereby

 c_dm_vradau5

177

the initial value is the first grid-point with nr = 1 and xend is the final

grid-point).

"xold" is the preceding grid-point. "irtan" serves to interrupt the

integration. If irtan is set < 0, c_dm_vradau5 returns to the calling

program.

----- CONTINUOUS OUTPUT: -----

During calls to " solout ", a continuous solution for the interval

[xold,x] is available through the function of type double:

 c_dm_vcontr5(i, s, cont, lrc, work2, iwork2)

which provides an approximation to the I-th component of the solution

(1  i  n) at the point S. The value S should lie in the interval

[xold,x]. Do not change the entries of cont[lrc], work2[*], and

iwork2[*].

iout int Input Switch for calling the routine solout:

iout = 0: Routine is never called

iout  0: Routine is available for output.

work double

work[lwork]

Work

area

work[0], work[1], ..., work[19] serve as parameters for the code.

For standard use of the code work[0], ..., work[19] must be set to

zero before calling. See below for a more sophisticated use.

work[20], ..., work[lwork-1] serve as working space for all

vectors and matrices.

"lwork " must be at least

n * (ljac + lmas + 3 * le * 12) + 20

where

 ljac = n if mljac = n (full Jacobian)

 ljac = mljac + mujac + 1 if mljac < n (banded jac.)

and

 lmas = 0 if imas = 0

 lmas = n if imas  0 and mlmas = n (full)

 lmas = mlmas + mumas + 1 if mlmas < n (banded mass-M.)

and

 le = n if mljac = n (full Jacobian)

 le = 2 * mljac + mujac + 1 if mljac < n (banded jac.)

In the usual case where the Jacobian is full and the mass-matrix is the

identity (imas =0), the minimum storage requirement is

 lwork = 4 * n * n + 12 * n + 20.

If iwork[8] = M1 > 0 then " lwork " must be at least

 n * (ljac + 12) + (n - M1) * (lmas + 3 * le) + 20

where in the definitions of ljac, lmas and le the number n can be

replaced by n - M1.

lwork int Input Declared length of array “work”.

iwork int

iwork[liwork]

Work

area

iwork[0], iwork[1], ..., iwork[19] serve as parameters for the

code. For standard use, set iwork[0], ..., iwork[19] to zero before

calling.

iwork[20], ..., iwork[liwork-1] serve as working space.

c_dm_vradau5

178

"liwork" must be at least 3 * n + 20.

 Output iwork[13] through iwork[19] contain statistics at completion of

integration up to xend.

iwork[13] NFCN Number of function evaluations(those for

numerical evaluation of the Jacobian are not counted)

iwork[14] NJAC Number of Jacobian evaluations (either

analytically or numerically)

iwork[15] NSTEP Number of computed steps

iwork[16] NACCPT Number of accepted steps

iwork[17] NREJCT Number of rejected steps(due to error

test) ,(step rejections in the first step are not counted)

iwork[18] NDEC Number of LU-decompositions of both matrices

iwork[19] NSOL Number of forward-backward substitutions, of

both systems; The NSTEP forward-backward

substitutions,

needed for step size selection, are not counted

liwork int Input Declared length of array “iwork”.

rpar

ipar

double*

int*

paramet

ers

which can be used for communication between your calling program

and functions fcn, jac, mas, and solout.

icon int Output Condition code. See below.



























66656463

5655545352

4544434241

34333231

232221

1211

aaaa

aaaaa

aaaaa

aaaa

aaa

aa

where jiij yfa  The elements marked *are not used.

Fig. c_dm_vradau5-1

Sophisticated Setting of Parameters:
Several parameters of the code are tuned to make it work well. They may be defined by setting work[0], ... as well as

iwork[0], ... different from zero. For zero input, the code chooses default values:

iwork[0] Input If iwork[0]  0, the code transforms the Jacobian matrix to Hessenberg

form. This is particularly advantageous for large systems with full Jacobian. It

does not work for banded Jacobian (mljac < n) and not for implicit systems

(imas  0).

iwork[1] Input This is the maximal number of allowed steps. The default value (for

* 12a 23a 34a 45a 56a

11a 22a 33a 44a 55a 66a

21a 32a 43a 54a 65a *

31a 42a 53a 64a * *

41a 52a 63a * * *

 c_dm_vradau5

179

iwork[1] = 0) is 100000.

iwork[2] Input The maximum number of Newton iterations for the solution of the implicit

system in each step. The default value (for iwork[2] = 0) is 7.

iwork[3] Input If iwork[3] = 0 the extrapolated collocation solution is taken as starting

value for Newton’s method. If iwork[3]  0 zero starting values are used.

The latter is recommended if Newton’s method has difficulties with

convergence (This is the case when NSTEP is larger than NACCPT +

NREJCT; See output parameters). Default is iwork[3] = 0.

The following 3 parameters are important for differential-algebraic systems of index > 1. The function-routine should be

written such that the index 1, 2, 3 variables appear in this order. In estimating the error the index 2 variables are multiplied

by h, the index 3 variables by h2. (In the cases where M is the identity matrix or non-singular, the system is just ordinary

differential equations, so all variables are index 1 variables and it is sufficient to set 3 parameters to zero.)

If the user sets any of these 3 parameters different from 0, the sum of 3 parameters must be n.

iwork[4] Input Dimension of the index 1 variables.

iwork[5] Input Dimension of the index 2 variables. Default iwork[5] = 0.

iwork[6] Input Dimension of the index 3 variables. Default iwork[6] = 0.

iwork[7] Input Switch for step size strategy.

If iwork[7] = 1 modified predictive controller (Gustafsson)

If iwork[7] > 1 classical step size control

The default value (for iwork[7] = 0) is iwork[7] = 1. The choice

iwork[7] = 1 seems to produce safer results. For simple problems, the

choice iwork[7] > 1 produces often slightly faster runs.

If the differential system has the special structure that

 y(i)' = y [i+M2] for i = 0, ... , M1,

with M1 a multiple of M2, a substantial gain in computer time can be achieved by setting the parameters iwork[8] and

iwork[9]. For example, second order systems)',,(ppgp" x can be rewritten as

),,(' vpgv

vp

x

'




, where p and v are vectors of dimension n / 2. In this case one has to put M1 = M2 = n / 2. For M1 > 0 some of the input

parameters have different meanings:

jac Input Only the elements of the non-trivial part of the Jacobian have to be stored. For

example, with the above first order system reduced from the second order

system, routine jac has to store only

 













v

g

p

g

, which is n / 2  n non-trivial matrix.

Suppose y and f are solution vector and right hand side function vector ,

respectively, of resulting first order system.

If mljac = n - M1 the Jacobian is supposed to be full;

 dfy[(i-1)*ldfy+j-1] =
y(j)

M1)f(i




 , i = 1,…, n - M1, j = 1,…,

n

c_dm_vradau5

180

If 0  mljac < n - M1 the Jacobian is banded (M1 = M2 * MM);

dfy[(i-j+mujac)*ldfy+(j+k×M2-1)]=
M2)KY(J

M1)F(I




 i = 1, .., n - M1, j = 1, …, M2, k = 0,.., MM

In the banded case, n = M1 + M2 has to be met.

mljac Input mljac = n - M1 : if the non-trivial part of the Jacobian is full.

0  mljac < n - M1: if the (MM + 1) submatrices (M1 = M2 * MM),

M2)ky(j

M1)f(i




 , i = 0,…, n - M1 , j = 1,…, M2, k = 0,…,MM

are all banded , and mljac is the maximal lower bandwidth of these MM + 1

submatrices.

mujac Input Maximal upper bandwidth of these MM+1 submatrices. Need not be defined if

mujac = n- M1.

mas Input If imas = 0 this matrix is assumed to be the identity and need not be defined.

Supply a dummy routine in this case.

If imas  0 it is assumed that only the elements of right lower block of

dimension n - M1 differ from that of the identity matrix and only the elements

of right lower block of dimension n - M1 must be given in routine mas. For

example , consider the following system.

)',,(ppgMp" x

This can be rewritten as

),,(' vpgMv

vp'
x



and expressed in the following form.

 
























),,(vg

v
vM p

p

0

0I
'

'

x

In this case the coefficient matrix of the left hand side corresponds to M in

(1.1). Denoting by M the coefficient matrix of the left hand side, if mlmas = n

- M1 the right lower block is supposed to be full; the array am in the routine

mas should be set as

 am[(i-1)*lmas +j-1] = M(j+M1,i+M1), i = 1,…, n - M1 , j =

1,…,n - M1.

If mlmas ≠ n - M1 the right low block is supposed to be banded:

 am[(i-j+mumas+1)*lmas+j-1] = M(j+M1,i+M1)

mlmas Input mlmas = n- M1: If the non-trivial part of M is full.

0  mlmas < n- M1: Lower bandwidth of the mass matrix.

 mlmas  mljac must be met.

mumas Input Upper bandwidth of the mass matrix. mumas  mujac must be met. Need

not be defined if mlmas = n - M1.

iwork[8] Input The value of M1 ( 0). Default M1 = 0.

iwork[9] Input The value of M2 ( 0). Default M2 = M1.

If iwork[8] > 0, iwork[8] + iwork[9]  n must be met.

work[0] Input The round off unit u. c_dmach()  work[0] < 1.0 must be met. Default

u = c_dmach().

work[1] Input The safety factor in step size prediction.

0.001 < work[1] < 1.0 must be met. Default 0.9.

 c_dm_vradau5

181

work[2] Input Decides whether the Jacobian should be recomputed; increase work[2], to

0.1 say, when Jacobian evaluations are costly. For small systems work[2]

should be smaller (0.001, say). Negative work[2] forces the code to compute

the Jacobian after every accepted step.

Default 0.001. work[2] < 1.0 must be met.

work[3] Input Stopping criterion for Newton’s method, usually chosen < 1. Smaller values of

work[3] make the code slower, but safer.

DEFAULT MAX(10u/TOLST, MIN(0.03, TOLST)) , where u is the round

off unit, TOLST = 0.1∙ rtol**(2/3) , and rtol = rtol[0] when rtol is

vector. work[3] > u / TOLST must be met.
work[4],

work[5]
Input If work[4] < HNEW / HOLD < work[5], then the step size is not changed.

This saves, together with a large work[2], LU-decompositions and

computing time for large systems. For smaller systems one may have

work[4] = 1.0, work[5] = 1.2, for large full systems work[4] = 0.99,

work[5] = 2.0 might be good.

DEFAULTS work[4] = 1.0, work[5] = 1.2 .

work[4]  1.0 and work[5]  1.0 must be met.
work[6] Input Maximal step size. Default 0xxend  .
work[7],
work[8]

Input Parameters for step size selection.

The new step size is chosen subject to the restriction

 work[7]  HNEW / HOLD  work[8]

Default values : work[7] = 0.20, work[8] = 8.0.

work[7]  1.0 and work[8]  1.0 must be met.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

100 In routine solout, parameter irtrn was set to

be negative.

Processing is discontinued. Solutions obtained so

far were correct.

10000 Number of steps exceeded the value specified in

iwork[1].

Processing is discontinued. Integration did not

reach xend. The user can try a larger value for

iwork[1].

21000 Step size became too small. Processing is discontinued.

22000 Matrix was repeatedly singular.

30000 There was an inconsistent input.

3. Comments on use

Role of SOLOUT
During integration from 0x to endx this routine provides numerical solutions after every accepted step to the routine

solout when iout  0.
Namely, when endxx 0 , every accepted step results in a sequence of grid-point such as

c_dm_vradau5

182

 endxxxx  210

and ix and solutions at ix are passed to solout (0x and endx included). ix is determined under step size control to meet

required accuracies.

If the user requires solutions at intended grid-points, the function subprogram c_dm_vcontr5 can be used for dense

output. For instance, if solutions are required at equally spaced grid-points one can refer to Example 1 below.

Note that repeated calls to c_dm_vradau5 by incrementing xend is inefficient way for that purpose.

Thread parallelization of user’s routines
In any of user’s routines fcn, jac, mas, and solout, the user can use OpenMP parallelization when necessary.

Index and initial values for differential-algebraic equations
In the model),(yfMy' x if M is non-singular the system is just ordinary differential equations, and “index” of

variables in y is 1. In this case iwork[4] to iwork[6] should be set to 0.

If M is singular, the system becomes a differential-algebraic equations, and iwork[4] to iwork[6] and initial values

should be given carefully. Here is a brief guideline.

For singular M, we can decompose the matrix (e.g., by Gaussian elimination with total pivoting) as

 T
I

SM 









00

0

where S and T are n-by-n non-singular matrices , and I is the identity matrix of smaller size. Inserting this into (1.1),

multiplying by S-1, and using the transformed variables

 









w

u
Ty

gives

 
































 

),(

),(
:),(11

wuh

wug

w

u
TfS

w

uI
'

'

,x

,x
x

00

0

or

),(

),(

wuh

wugu'

,x

,x




0

These are called Hessenberg form of the differential-algebraic equations, where the system is split into a smaller ordinary

differential equations and a smaller algebraic equations. The Hessenberg forms are often encountered in practice, and can

be said as differential equations with algebraic constraints. Below, we give some typical Hessenberg forms which

illustrate index 1,2 and 3 variables.

We omit, from now on, the independent variable in equations to simplify mathematical expressions.

a)System of index 1

Let us consider the following system

)(zyfy' , (3.1a)

)(zyg ,0 (3.1b)

, where y and z are unknown function vectors, and sum of each size is n.

The mass-matrix M here is

 









00

0I
M

Differentiating (3.1b) and using (3.1a) we get

 '
zy zzygzyfzyg),()()( ,,0 (3.1c)

, where)(zy,g y and)(zy,g z are yzy,g )(and zzy,g )(respectively. If)(zy,g z , the coefficient of 'z , is non-

singular in a neighborhood of the solution we get

 c_dm_vradau5

183

),(),()(1 zyfzygzy,gz yz
' 

In this case, y and z are index 1 variables. Initial values 0y and 0z should be given to satisfy (3.1b).

b) System of index 2

Next, we consider the following

),(zyfy'  (3.2a)

)(0 yg (3.2b)

, where z is absent in the algebraic constraint and M is as follows.

 









00

0I
M

Differentiating (3.2b) gives
),()(0 zyfyg y (3.2c)

Differentiating (3.2c) gives the coefficient of 'z as
),()(zyfyg zy (3.2d)

If (3.2d) is non-singular in a neighborhood of the solution, y is index 1 variable and z is index 2 variable. Initial values

0y and 0z should be given to satisfy not only (3.2b) but (3.2c).

c) System of index 3
Finally, we consider the following system.
),(zyfy'  (3.3a)

),,(uzykz'  (3.3b)
)(0 yg (3.3c)
Here the sum of length of y , z , and u is n. M is written as


















000

00

00

I

I

M .

Differentiating (3.3c) and using (3.3a) we get
 fg y0 (3.3d)

Differentiating (3.3d) and using (3.3a,b) we get
 kfgffgf)(f,g zyyyyy 0 (3.3e)

, where the first term of the right hand side means matrix vector multiplication with the matrix yg y obtained by

differentiating matrix yg and the vector f . Furthermore, differentiating (3.3e) brings about 'u . If its coefficient, written

as

uzy kfg , is non-singular in a neighborhood of the solution, y is index 1 variable, z is index 2 variable, and u is index 3

variable in the original system (3.3a,b,c). Initial values 0y , 0z and 0u should be given to satisfy the three constraints (3.3

c,d,e).

4. Example program

■ Example 1:Ordinary differential equations of the form),(yfy' x

Let us consider a simple system:

0)0(,2)0(

10,
))1((

21

612
2
1'

2

2
'
1












yy

yyy
y

yy




　　

c_dm_vradau5

184

Suppose we want to find solutions at 11,,2,1 x and print them out. In this problem, the Jacobian matrix yf  is as

follows.










































)1()12(

10
2
121

2

2

1

2

2

1

1

1

yyy
y

f

y

f
y

f

y

f

We provide routine jvpol as real argument of jac.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define ND 2
#define LWORK (4 * ND * ND + 12 * ND + 20) /* 60 */
#define LIWORK (3 * ND + 20) /* 26 */

void solout(int, double, double, double*, double*, int, int,
 double*, int*, int*, double*, int*);
void jvpol(int, double, double*, double*, int, double*, int*);
void fvpol(int, double, double*, double*, double*, int*);
void dummy(int, double*, int, double*, int*);

int MAIN__() {
 double y[ND], work[LWORK];
 int iwork[LIWORK];
 double rpar[2];

 int i, n, ijac, mljac, imas, itol, mujac, iout, icon, mlmas, mumas;
 int ipar;
 double x, xend, rtol, Atol, h;

 rpar[0] = 1.0e-6;
 rpar[1] = 0.2;
 n = ND;
 ijac = 1;
 mljac = n;
 imas = 0;
 iout = 1;
 x = 0.0;
 y[0] = 2.0;
 y[1] = -0.66;
 xend = 11.0;
 rtol = 1.0e-4;
 Atol = 1.0 * rtol;
 itol = 0;
 h = 1.0e-6;
 for (i = 0; i < 20; i++) {
 iwork[i] = 0;
 work[i] = 0.0;
 }
 c_dm_vradau5(n, fvpol, &x, y, xend, &h,
 rtol, Atol, itol,
 jvpol, ijac, mljac, mujac,
 dummy, imas, mlmas, mumas,
 solout, iout,
 work, LWORK, iwork, LIWORK,
 rpar, &ipar, &icon);
 printf(" ICON= %d\n", icon);
 printf(" X =%5.2lf Y =%18.10e%18.10e\n", x, y[0], y[1]);
 return(0);
}

void solout(int nr, double xold, double x, double *y, double *cont,
 int lrc, int n, double *rpar, int *ipar, int *irtrn,
 double *work2, int *iwork2) {

 double prm1, prm2;

 if (nr == 1) {

 c_dm_vradau5

185

 printf(" X =%5.2lf Y =%18.10le%18.10le NSTEP =%4d\n",
 x, y[0], y[1], nr - 1);
 } else {
label_10: ;
 if (x >= rpar[1]) {
/* --- CONTINUOUS OUTPUT FOR RADAU5 */
 prm1 = c_dm_vcontr5(1, rpar[1], cont, lrc, work2, iwork2);
 prm2 = c_dm_vcontr5(2, rpar[1], cont, lrc, work2, iwork2);
 printf(" X =%5.2lf Y =%18.10le%18.10le NSTEP =%4d\n",
 rpar[1], prm1, prm2, nr - 1);
 rpar[1] = rpar[1] + 0.2;
 goto label_10;
 }
 }
 return;
}

void fvpol(int n, double x, double *y, double *f, double *rpar, int *ipar) {

 f[0] = y[1];
 f[1] = ((1 - (y[0] * y[0])) * y[1] - y[0]) / rpar[0];
 return;
}

void jvpol(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
 int *ipar) {

 dfy[0] = 0.0;
 dfy[1] = 1.0;
 dfy[ldfy] = (-2.0 * y[0] * y[1] - 1.0) / rpar[0];
 dfy[ldfy + 1] = (1.0 - (y[0] * y[0])) / rpar[0];
 return;
}

void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {

 return;
}

■ Example 2:),(yfy' x with banded Jacobian.

Consider the following partial differential equations. “t” means time and “x” is scalar space variable.

2

2
2)1(

x

u
uBvuA

t

u






 

2

2
2

x

v
vuBu

t

v






 

501,3,1,10  BAx

Boundary conditions : 3),1(),0(,1),1(),0( tvtvtutu

Initial values : 3)0,(),2sin(
2

1
1)0,( xvxxu 

We replace the second spatial derivatives by finite differences on a grid of N points,)1( Nixi (1  i N),

)1(1  Nx and then obtain a system of ordinary differential equations with independent variable “t” and 2N

unknowns

),(ii xtuu  and),(ii xtvv  .

)2()(41 11
22'

  iiiiiii uuuxuvuu 

)2()(3 11
22'

  iiiiiii vvvxvuuv 

3)()(,1)()(1010   tvtvtutu NN

Nivxu iii ,,2,1,3)0(),2sin(
2

1
1)0( 

c_dm_vradau5

186

When using this routine we define y as T),,,,,,(2211 NN vuvuvu y . Then the Jacobian becomes a banded matrix with

the upper and lower bandwidth 2. In the following example, we set n = 500, xend = 10, and iout = 0 and print some

components of the solutions at xend.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define ND 1000
#define NL 2
#define NU 2
#define LWORK ((7 * NL + 4 * NU + 16) * ND + 20) /* 38020 */
#define LIWORK (3 * ND + 20) /* 3020 */

void fbrus(int, double, double*, double*, double*, int*);
void jbrus(int, double, double*, double*, int, double*, int*);
void solout(int, double, double, double*, double*, int, int,
 double*, int*, int*, double*, int*);
void dummy(int, double*, int, double*, int*);

int MAIN__() {
 double x, xend, y[ND], work[LWORK];
 int iwork[LIWORK];
 double rpar[2];
 int ipar;
 double pi, usdelq, gamma, gamma2, anp1, xi, rtol, Atol, h;
 int i, n, n2, ijac, mljac, mujac, mlmas, mumas, imas, iout, itol, icon;

 pi = 3.14159265358979324;
 n = 500;
 n2 = 2 * n;
 usdelq = ((double)(n + 1)) * ((double)(n + 1));
 gamma = 0.02 * usdelq;
 gamma2 = 2.0 * gamma;
 rpar[0] = gamma;
 rpar[1] = gamma2;
 x = 0.0;
 xend = 10.0;
 anp1 = n + 1;
 for (i = 1; i <= n; i++) {
 xi = i / anp1;
 y[(2 * i) - 1] = 3.0;
 y[(2 * i) - 2] = 1.0 + 0.5 * sin(2.0 * pi * xi);
 }
 ijac = 1;
/* Jacobian is a banded matrix. */
 mljac = NL;
 mujac = NU;
 imas = 0;
/* Output Routine is not used. */
 iout = 0;
 rtol = 1.0e-6;
 Atol = rtol;
 itol = 0;
 h = 1.0e-6;
 for (i = 0; i < 20; i++) {
 work[i] = 0.0;
 iwork[i] = 0;
 }
 mlmas = 0;
 mumas = 0;
 c_dm_vradau5(n2, fbrus, &x, y, xend, &h,
 rtol, Atol, itol,
 jbrus, ijac, mljac, mujac,
 dummy, imas, mlmas, mumas,
 solout, iout,
 work, LWORK, iwork, LIWORK,
 rpar, &ipar, &icon);
 printf(" ICON= %d\n", icon);
 printf(" %18.10e%18.10e%18.10e%18.10e\n", y[0], y[1], y[n2 - 2], y[n2 - 1]);
 return(0);
}

void solout(int nr, double xold, double x, double *y, double *cont,

 c_dm_vradau5

187

 int lrc, int n, double *rpar, int *ipar, int *irtrn,
 double *work2, int *iwork2) {
 return;
}

void fbrus(int n2, double x, double *y, double *f, double *rpar, int *ipar) {
 int i, n, iu, iv;
 double gamma, ui, vi, uim, vim, uip, vip, prod;

 n = n2 / 2;
 gamma = rpar[0];
 i = 1;
 iu = 2 * i - 1;
 iv = 2 * i;
 ui = y[iu -1];
 vi = y[iv - 1];
 uim = 1.0;
 vim = 3.0;
 uip = y[iu + 1];
 vip = y[iv + 1];
 prod = ui * ui * vi;
 f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip);
 f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
 for (i = 2; i <= n-1; i++) {
 iu = 2 * i - 1;
 iv = 2 * i;
 ui = y[iu - 1];
 vi = y[iv - 1];
 uim = y[iu - 3];
 vim = y[iv - 3];
 uip = y[iu + 1];
 vip = y[iv + 1];
 prod = ui * ui * vi;
 f[iu - 1] = 1.0 + prod -4.0 * ui + gamma * (uim - 2.0 * ui + uip);
 f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
 }
 i = n;
 iu = 2 * i - 1;
 iv = 2 * i;
 ui = y[iu - 1];
 vi = y[iv - 1];
 uim = y[iu - 3];
 vim = y[iv - 3];
 uip = 1.0;
 vip = 3.0;
 prod = ui * ui * vi;
 f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip);
 f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
 return;
}

void jbrus(int n2, double x, double *y, double *dfy, int ldfy, double *rpar,
 int *ipar) {

 int i, n, iu, iv;
 double gamma, gamma2, ui, ui2, vi, uivi;

 n = n2 / 2;
 gamma = rpar[0];
 gamma2 = rpar[1];
 for (i = 1; i <= n; i++) {
 iu = 2 * i - 1;
 iv = 2 * i;
 ui = y[iu - 1];
 vi = y[iv - 1];
 uivi = ui * vi;
 ui2 = ui * ui;
 dfy[(2 * ldfy) + (iu - 1)] = 2.0 * uivi - 4.0 - gamma2;
 dfy[ldfy + (iv - 1)] = ui2;
 dfy[(3 * ldfy) + (iu - 1)] = 3.0 - 2.0 * uivi;
 dfy[(2 * ldfy) + (iv - 1)] = -ui2 - gamma2;
 dfy[ldfy + (iu - 1)] = 0.0;
 dfy[(3 * ldfy) + (iv - 1)] = 0.0;
 }
 for (i = 1; i <= n2 - 2; i++) {
 dfy[i + 1] = gamma;
 dfy[(4 * ldfy) + (i - 1)] = gamma;
 }
 return;
}

c_dm_vradau5

188

void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {

 return;
}

■ Example 3:Second order system),,(''' yyfy x

Next , we consider a partial differential equations defined in rectangular plate }340,20);,{( yxyx :

　),,,(
2

2

tyxfu
t

u

t

u







  where

2

2

2

2

yx 








 Boundary conditions: 0|,0|   uu

 Initial conditions : 0)0,,(,0)0,,(



 yx
t

u
yxu

The plate  is discretized on a grid 8  5 interior points

5,,2,1,8,,2,1,,  jijhyihx ji , 92h .

We replace the special derivatives by finite differences, then setting '
jiji uv  gives the following ordinary differential

system.

),,()22

228820(

22221111

1111114

'

'

tyxfuuuuuu

uuuuu
h

vv

vu

jijijijijijiji

jijijijijijiji

jiji













With mapping k = i + 8(j - 1) from (i,j) , we set jik uy  and jik vy 40 .Then we obtain system with
T),,,,,,(80414021 yyyyy  as unknown vector. In the following program we set iwork[8] = 40 and routine jplatsb

computes only non-trivial part of the Jacobian.

100,1000  





 



0

(2000
),,(

2)5(52)2(5)ee xtxt

tyxf

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define MX 8
#define MY 5
#define ND (2 * MX * MY) /* 80 */
#define LWORK (4 * ND * ND + 12 * ND + 20) /* 26580 */
#define LIWORK (3 * ND + 20) /* 260 */

void fplate(int, double, double*, double*, double*, int*);
void jplatsb(int, double, double*, double*, int, double*, int*);
void solout(int, double, double, double*, double*, int, int,
 double*, int*, int*, double*, int*);
void dummy(int, double*, int, double*, int*);

int MAIN__() {
 double y[ND], work[LWORK];
 int iwork[LIWORK];

if 2yy  or 4y

for all other y

 c_dm_vradau5

189

 double rpar[4];
 int ipar[9];
 int i, k, n, nx, ny, nachs1, nachs2, nxm1, nym1, ndemi, imas, iout;
 int itol, ijac, mljac, mujac, mlmas, mumas, icon;
 double omega, stiffn, weight, denom, delx, ush4, fac, x, rtol, Atol;
 double h, xend;

 nx = MX;
 ny = MY;
 nachs1 = 2;
 nachs2 = 4;
 nxm1 = nx - 1;
 nym1 = ny - 1;
 ndemi = nx * ny;
 omega = 1000.0;
 stiffn = 100.0;
 weight = 200.0;
 denom = nx + 1;
 delx = 2.0 / denom;
 ush4 = 1.0 / ((delx * delx) * (delx * delx));
 fac = stiffn * ush4;
 n = ND;
 imas = 0;
/* --- OUTPUT ROUTINE IS USED DURING INTEGRATION */
 iout = 1;
/* --- INITIAL VALUES */
 x = 0.0;
 for (i = 0; i < n; i++) {
 y[i] = 0.0;
 }
/* --- REQUIRED TOLERANCE */
 rtol = 1.0e-6;
 Atol = rtol * 1.0e-3;
 itol = 0;
/* --- INITIAL STEP SIZE */
 h = 1.0e-2;
/* --- SET DEFAULT VALUES */
 for (i = 0; i < 20; i++) {
 work[i] = 0.0;
 iwork[i] = 0;
 }
/* --- SECOND ORDER OPTION AND BANDED */
 ijac = 1;
 iwork[8] = n / 2;
 mljac = 2 * MX;
 mujac = 2 * MX;
/* --- ENDPOINT OF INTEGRATION */
 xend = 7.0;
/* --- COMMUNICATION VALUES */
 ipar[0] = nx;
 ipar[1] = nxm1;
 ipar[2] = ny;
 ipar[3] = nym1;
 ipar[4] = ndemi;
 ipar[5] = nachs1;
 ipar[6] = nachs2;
 ipar[7] = mljac;
 ipar[8] = mujac;
 rpar[0] = omega;
 rpar[1] = delx;
 rpar[2] = fac;
 rpar[3] = weight;

/* --- CALL OF THE FUNCTION RADAU5 */
 c_dm_vradau5(n, fplate, &x, y, xend, &h,
 rtol, Atol, itol,
 jplatsb, ijac, mljac, mujac,
 dummy, imas, mlmas, mumas,
 solout, iout,
 work, LWORK, iwork, LIWORK,
 rpar, ipar, &icon);
 printf(" ICON= %d\n", icon);
 for (k = 0; k < n; k++) {
 printf(" %-22.15le\n", y[k]);
 }
 return(0);
}

void solout(int nr, double xold, double x, double *y, double *cont,
 int lrc, int n, double *rpar, int *ipar, int *irtrn,
 double *work2, int *iwork2) {

c_dm_vradau5

190

 int nhalf;

 nhalf = n / 2;
 printf(" X =%9.5lf Y(1) and Y(%3d)=%18.10lf%18.10lf NSTEP =%4d\n",
 x, nhalf, y[0], y[nhalf - 1], nr - 1);
 return;
}

void fplate(int n, double x, double *y, double *f, double *rpar, int *ipar) {
 int i, j, k, nx, nxm1, ny, nym1, ndemi, nachs1, nachs2;
 double omega, delx, fac, weight, uc, xi, force;

 nx = ipar[0];
 nxm1 = ipar[1];
 ny = ipar[2];
 nym1 = ipar[3];
 ndemi = ipar[4];
 nachs1 = ipar[5];
 nachs2 = ipar[6];
 omega = rpar[0];
 delx = rpar[1];
 fac = rpar[2];
 weight = rpar[3];

 for (i = 1; i <= nx; i++) {
 for (j = 1; j <= ny; j++) {
 k = i + nx * (j - 1);
/* -------- SECOND DERIVATIVE ---- */
 f[k - 1] = y[(k - 1) + ndemi];
/* ------ CENTRAL POINT--- */
 uc = 16.0 * y[k - 1];
 if (i > 1) {
 uc = uc + y[k - 1];
 uc = uc - 8.0 * y[k - 2];
 }
 if (i < nx) {
 uc = uc + y[k - 1];
 uc = uc - 8.0 * y[k];
 }
 if (j > 1) {
 uc = uc + y[k - 1];
 uc = uc - 8.0 * y[(k - 1) - nx];
 }
 if (j < ny) {
 uc = uc + y[k - 1];
 uc = uc - 8.0 * y[(k - 1) + nx];
 }
 if (i > 1 && j > 1)
 uc = uc + 2.0 * y[k - nx - 2];
 if (i < nx && j > 1)
 uc = uc + 2.0 * y[k - nx];
 if (i > 1 && j < ny)
 uc = uc + 2.0 * y[k + nx - 2];
 if (i < nx && j < ny)
 uc = uc + 2.0 * y[k + nx];
 if (i > 2)
 uc = uc + y[k - 3];
 if (i < nxm1)
 uc = uc + y[k + 1];
 if (j > 2)
 uc = uc + y[(k - 2 * nx) - 1];
 if (j < nym1)
 uc = uc + y[(k + 2 * nx) - 1];
 if (j == nachs1 || j == nachs2) {
 xi = i * delx;
 force = exp(-5.0 * ((x - xi - 2.0) * (x - xi - 2.0))) +
 exp(-5.0 * ((x - xi - 5.0) * (x - xi - 5.0)));
 } else {
 force = 0.0;
 }
 f[k + ndemi - 1] = -omega * y[k + ndemi - 1] - fac * uc + force * weight;
 }
 }
 return;
}

void jplatsb(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
 int *ipar) {
 int i, j, k, nx, nxm1, ny, nym1, ndemi, mu, mljac, mujac;
 double omega, fac, fac2, fac8, fac16;

 c_dm_vradau5

191

 nx = ipar[0];
 nxm1 = ipar[1];
 ny = ipar[2];
 nym1 = ipar[3];
 ndemi = ipar[4];
 mljac = ipar[7];
 mujac = ipar[8];
 omega = rpar[0];
 fac = rpar[2];

 for (i = 0; i < mljac + mujac + 1; i++) {
 for (j = 0; j < ldfy; j++) {
 dfy[(i * ldfy) + j] = 0.0;
 }
 }
 mu = 2 * nx + 1;
 fac2 = fac * 2.0;
 fac8 = fac * 8.0;
 fac16 = fac * 16.0;
 for (i = 1; i <= nx; i++) {
 for (j = 1; j <= ny; j++) {
 k = i + nx * (j - 1);
 dfy[((mu - 1) * ldfy) + (k - 1)] = -fac16;
 if (i > 1) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[(mu * ldfy) + (k - 2)] = fac8;
 }
 if (i < nx) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[((mu - 2) * ldfy) + k] = fac8;
 }
 if (j > 1) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[((mu + nx - 1) * ldfy) + (k - nx - 1)] = fac8;
 }
 if (j < ny) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[((mu - nx - 1) * ldfy) + (k + nx - 1)] = fac8;
 }
 if (i > 1 && j > 1)
 dfy[((mu + nx) * ldfy) + (k - nx - 2)] = -fac2;
 if (i < nx && j > 1)
 dfy[((mu + nx - 2) * ldfy) + (k - nx)] = -fac2;
 if (i > 1 && j < ny)
 dfy[((mu - nx) * ldfy) + (k + nx - 2)] = -fac2;
 if (i < nx && j < ny)
 dfy[((mu - nx - 2) * ldfy) + (k + nx)] = -fac2;
 if (i > 2)
 dfy[((mu + 1) * ldfy) + (k - 3)] = -fac;
 if (i < nxm1)
 dfy[((mu - 3) * ldfy) + (k + 1)] = -fac;
 if (j > 2)
 dfy[((mu + 2 * nx - 1) * ldfy) + (k - 2 * nx - 1)] = -fac;
 if (j < nym1)
 dfy[((mu - 2 * nx - 1) * ldfy) + (k + 2 * nx - 1)] = -fac;
 dfy[((mu - 1) * ldfy) + (k + ndemi - 1)] = -omega;
 }
 }
 return;
}

void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {

 return;
}

■ Example 4:Differential-algebraic system),(yfMy' x .

Finally, we consider the following system with independent variable t and 8 unknowns 821 ,,, yyy  .

c_dm_vradau5

192

008
'
8

'
71

672172
'
7

'
81

6736
'
62

67454
'
4

'
53

346546
'
4

'
53

3473
'
34

82834
'
1

'
25

91
'
1

'
25

)()(

)()1()11()(

)(

)()(

)()1()11()(

)(

)()(

)(

RtURyyyC

yyfRRyRUyyC

yyfRyyC

yyfRyRUyyC

yyfRRyRUyyC

yyfRyyC

RyRUyyfyyC

RyyyC

e

b

b

b

b

























 where

)200sin(1.0)(

6,10,99.0,026.0

)1()(

9,,2,1,9000,1000

5,,2,1,10

6

)

0

6

ttU

UU

yyf

kRR

kkC

e

bF

FUjy

ji

k

k




















i(y
e

With T),,,(821 yyy y the left hand side of the above 8 equations can be written as My’, where M is a tridiagonal

matrix.















































11

11

2

33

33

4

55

55

CC

CC

C

CC

CC

C

CC

CC

M

Obviously, M is singular and its rank is 5. Because of this, the system is a differential-algebraic system. According to a

detailed analysis this system is index 1 problem.

We integrate from t = 0 through t = 0.2. Initial values y(0) must be chosen so that the vector with 8 components from the

right hand side of the above equations lies in the range of the matrix M. Such initial values are as follows.

0)0(,)1()0()0(,)0(

)1()0()0(,)0()0(,0)0(

812765

564398121




yRRUyyUy

RRUyyRRyUyy

bb

bb

The Jacobian matrix in this model becomes a banded matrix with upper bandwidth 2 and lower bandwidth 1. Additionally,

all the unknown variables can be proved to be index 1.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

 c_dm_vradau5

193

#include "cssl.h"

#define ND 8
#define LJAC 4
#define LMAS 3
#define LE 5
#define LWORK (ND * (LJAC + LMAS + 3 * LE + 12) + 20) /* 292 */
#define LIWORK (3 * ND + 20) /* 44 */

void fampl(int, double, double*, double*, double*, int*);
void jbampl(int, double, double*, double*, int, double*, int*);
void bbampl(int, double*, int, double*, int*);
void solout(int, double, double, double*, double*, int, int,
 double*, int*, int*, double*, int*);

int MAIN__() {
 double y[ND], work[LWORK], rpar[16];
 int iwork[LIWORK];
 double ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
 double x, xend, rtol, Atol, h;
 int i, n, ijac, mljac, mujac, imas, mlmas, mumas, iout, itol, ipar;
 int icon;

 ue = 0.1;
 rpar[0] = ue;
 ub = 6.0;
 rpar[1] = ub;
 uf = 0.026;
 rpar[2] = uf;
 alpha = 0.99;
 rpar[3] = alpha;
 beta = 1.0e-6;
 rpar[4] = beta;
 r0 = 1000.0;
 rpar[5] = r0;
 r1 = 9000.0;
 rpar[6] = r1;
 r2 = 9000.0;
 rpar[7] = r2;
 r3 = 9000.0;
 rpar[8] = r3;
 r4 = 9000.0;
 rpar[9] = r4;
 r5 = 9000.0;
 rpar[10] = r5;
 r6 = 9000.0;
 rpar[11] = r6;
 r7 = 9000.0;
 rpar[12] = r7;
 r8 = 9000.0;
 rpar[13] = r8;
 r9 = 9000.0;
 rpar[14] = r9;
 rpar[15] = 0.0025;
 ipar = 0;
 n = 8;
 ijac = 1;
 mljac = 1;
 mujac = 2;
 imas = 1;
 mlmas = 1;
 mumas = 1;
 iout = 1;
 x = 0.0;
 y[0] = 0.0;
 y[1] = ub - y[0] * r8 / r9;
 y[2] = ub / (r6 / r5 + 1.0);
 y[3] = ub / (r6 / r5 + 1.0);
 y[4] = ub;
 y[5] = ub / (r2 / r1 + 1.0);
 y[6] = ub / (r2 / r1 + 1.0);
 y[7] = 0.0;
 xend = 0.2;
 rtol = 1.0e-5;
 Atol = 1.0e-6 * rtol;
 itol = 0;
 h = 1.0e-6;
 for (i = 0; i < 20; i++) {
 iwork[i] = 0;
 work[i] = 0.0;
 }

c_dm_vradau5

194

 c_dm_vradau5(n, fampl, &x, y, xend, &h,
 rtol, Atol, itol,
 jbampl, ijac, mljac, mujac,
 bbampl, imas, mlmas, mumas,
 solout, iout,
 work, LWORK, iwork, LIWORK, rpar, &ipar, &icon);
 printf(" ICON= %d\n", icon);
 printf(" X =%7.4lf Y =%18.10le%18.10le\n", x, y[0], y[1]);
 return(0);
}

void solout(int nr, double xold, double x, double *y, double *cont,
 int lrc, int n, double *rpar, int *ipar, int *irtrn,
 double *work2, int *iwork2) {
 double prm1, prm2;

 if (nr == 1) {
 printf(" X =%7.4lf Y =%18.10le%18.10le NSTEP =%4d\n",
 x, y[0], y[1], nr - 1);
 } else {
Label_10: ;
 if (x >= rpar[15]) {
 prm1 = c_dm_vcontr5(1, rpar[15], cont, lrc, work2, iwork2);
 prm2 = c_dm_vcontr5(2, rpar[15], cont, lrc, work2, iwork2);
 printf(" X =%7.4lf Y =%18.10le%18.10le NSTEP =%4d\n",
 rpar[15], prm1, prm2, nr - 1);
 rpar[15] = rpar[15] + 0.0025;
 goto Label_10;
 }
 }
 return;
}

void fampl(int n, double x, double *y, double *f, double *rpar, int *ipar) {
 double ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
 double w, uet, fac1, fac2;

 ue = rpar[0];
 ub = rpar[1];
 uf = rpar[2];
 alpha = rpar[3];
 beta = rpar[4];
 r0 = rpar[5];
 r1 = rpar[6];
 r2 = rpar[7];
 r3 = rpar[8];
 r4 = rpar[9];
 r5 = rpar[10];
 r6 = rpar[11];
 r7 = rpar[12];
 r8 = rpar[13];
 r9 = rpar[14];
 w = 2.0 * 3.141592654 * 100.0;
 uet = ue * sin(w * x);
 fac1 = beta * (exp((y[3] - y[2]) / uf) - 1.0);
 fac2 = beta * (exp((y[6] - y[5]) / uf) - 1.0);
 f[0] = y[0] / r9;
 f[1] = (y[1] - ub) / r8 + alpha * fac1;
 f[2] = y[2] / r7 - fac1;
 f[3] = y[3] / r5 + (y[3] - ub) / r6 + (1.0 - alpha) * fac1;
 f[4] = (y[4] - ub) / r4 + alpha * fac2;
 f[5] = y[5] / r3 - fac2;
 f[6] = y[6] / r1 + (y[6] - ub) / r2 + (1.0 - alpha) * fac2;
 f[7] = (y[7] - uet) / r0;
 return;
}

void jbampl(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
 int *ipar) {
 double uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
 double fac14, fac27;
 int j;

 uf = rpar[2];
 alpha = rpar[3];
 beta = rpar[4];
 r0 = rpar[5];
 r1 = rpar[6];
 r2 = rpar[7];
 r3 = rpar[8];
 r4 = rpar[9];

 c_dm_vradau5

195

 r5 = rpar[10];
 r6 = rpar[11];
 r7 = rpar[12];
 r8 = rpar[13];
 r9 = rpar[14];
 fac14 = beta * exp((y[3] - y[2]) / uf) / uf;
 fac27 = beta * exp((y[6] - y[5]) / uf) / uf;
 for (j = 0; j < 8; j++) {
 dfy[j] = 0.0;
 dfy[ldfy + j] = 0.0;
 dfy[3 * ldfy + j] = 0.0;
 }
 dfy[2 * ldfy] = 1.0 / r9;
 dfy[2 * ldfy + 1] = 1.0 / r8;
 dfy[ldfy + 2] = -alpha * fac14;
 dfy[3] = alpha * fac14;
 dfy[2 * ldfy + 2] = 1.0 / r7 + fac14;
 dfy[ldfy + 3] = -fac14;
 dfy[2 * ldfy + 3] = 1.0 / r5 + 1.0 /r6 + (1.0 - alpha) * fac14;
 dfy[3 * ldfy + 2] = -(1.0 - alpha) * fac14;
 dfy[2 * ldfy + 4] = 1.0 / r4;
 dfy[ldfy + 5] = -alpha * fac27;
 dfy[6] = alpha * fac27;
 dfy[2 * ldfy + 5] = 1.0 / r3 + fac27;
 dfy[ldfy + 6] = -fac27;
 dfy[2 * ldfy + 6] = 1.0 / r1 + 1.0/ r2 + (1.0 - alpha) * fac27;
 dfy[3 * ldfy + 5] = -(1.0 - alpha) * fac27;
 dfy[2 * ldfy + 7] = 1.0 / r0;
 return;
}

void bbampl(int n, double *b, int lb, double *rpar, int *ipar) {
 int i;
 double c1, c2, c3, c4, c5;

 for (i = 0; i < 8; i++) {
 b[i] = 0.0;
 b[2 * lb + i] = 0.0;
 }
 c1 = 1.0e-6;
 c2 = 2.0e-6;
 c3 = 3.0e-6;
 c4 = 4.0e-6;
 c5 = 5.0e-6;
 b[lb] = -c5;
 b[1] = c5;
 b[2 * lb] = c5;
 b[lb + 1] = -c5;
 b[lb + 2] = -c4;
 b[lb + 3] = -c3;
 b[4] = c3;
 b[2 * lb + 3] = c3;
 b[lb + 4] = -c3;
 b[lb + 5] = -c2;
 b[lb + 6] = -c1;
 b[7] = c1;
 b[2 * lb + 6] = c1;
 b[lb + 7] = -c1;
 return;
}

5. Method

Consult the entry for DM_VRADAU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [34]

and [69].

c_dm_vrann3

196

c_dm_vrann3

Generation of normal random numbers.

ierr = c_dm_vrann3(dam, dsd, &ix, da, k, n,

dwork, nwork, &icon);

1. Function

This routine generates normal random numbers from a normal-distribution density function (1) with given mean m and

standard deviation .

    

















2

2

2
exp

2

1 mx
xf (1)

2. Arguments

The routine is called as follows:

ierr = c_dm_vrann3(dam, dsd, &ix, (double*)da, k, n, (double*)dwork, nwork,

&icon);

where:

dam double Input Mean m of normal distribution.

dsd double Input Standard deviation  of normal distribution. (>0)

ix int Input Starting point.

On the first call, the value of ix must be positive. On the second and

later calls, return value 0 must be used. When a different starting point is

specified for the initial call, a different random number sequence is

created.

 Output Return value is 0.

da double

da[NUMT][k]

Output n normal pseudorandom numbers generated by each thread.

Where, NUMT is the number of threads.

n pseudo random numbers generated by thread number p (which is from

0 to NUMT1) are stored in da[P][0], ... , da[P][n1].

k int Input C fixed dimension of array da ( n).

n int Input Number of normally distributed pseudorandom numbers to be returned

by each thread in da. Comments on use.

dwork double

dwork[NUMT]

[nwork]

Work When this routine is called repeatedly, the contents and NUMT must not

be changed. dwork contains all the current information required to

restart this routine from its current point.

nwork int Input Size of second-dimension of workspace. nwork  1156.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

 c_dm_vrann3

197

Code Meaning Processing

0 No error. Completed.

30000 k > n or k < 1 Bypassed.

30001 One of the following has occurred:

 nwork is too small.

 ix < 0

 dsd  0

30002 The internal check failed.

30003 to 30008 dwork overwritten or ix = 0 on first call.

30009 ix is too large.

3. Comments on use

ix
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random

input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed

ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random

numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call

to this function.

This function appends the thread number 1, omp_get_thread_num() 1, to the seed, as in seed = seed *

omp_get_num_threads()  omp_get_thread_num() 1. Thus the seeds used on different threads are assured

to be distinct, and hence subsequences of length less than 1018 will not overlap.

n
This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If n 

0, no pseudo random numbers are returned.

For efficiency, n should be large (for example, n = 100,000). This reduces the overhead of function calls. n may be

different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than

the maximum value of n.

dwork
When this routine is to be called two or more times, dwork is used as the work area for storing the information for the

next call. While this routine is called, the contents of dwork must not be changed by the called program.

nwork
dwork[i][0], ... , dwork[i][nwork1] (i = 0, ... , NUMT1) are used by this routine. The value of nwork must

not be changed at any call of this routine. For efficient processing, nwork must be set to 1,156 or higher. When this

routine is to be used on a vector processor, the value of nwork must be 100,000 or higher.

Regeneration of the same random numbers
When dwork[i][0], ... , dwork[i][nwork1] (i = 0, ... , NUMT1) are saved, the same random number sequence

as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition ix = 0.

c_dm_vrann3

198

NUMT
The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment

variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the

number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first

calling immediately before the second or later calling also with omp_set_num_threads().

4. Example program

10,000,000  4 normal pseudo random numbers are generated, and their mean and standard deviation are calculated.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))

#define NUMT 4
#define NRAN 10000000
#define SEED 12345
#define NWMAX 100000
#define NBUF 120000
#define K (NBUF)

int MAIN__()
{
 double da[NUMT][K], dwork[NUMT][NWMAX];
 double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd;
 int ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon;

 /* Initialize ix,n and nwork */
 ix = SEED;
 n = NBUF;
 nwork = NWMAX;
 dam = 0.0;
 dsd = 1.0;
 dsum = 0.0;
 dssum = 0.0;

 printf("Seed = %d\n", ix);
 printf("Mean = %e\n", dam);
 printf("Standard deviation = %e\n", dsd);

 /* ngen counts down to 0 */
 ngen = NRAN;
 ntot = NRAN*NUMT;

 /* Generate ngen numbers with maximum NBUF at a time. */
 krpt = (NRAN+NBUF-1)/NBUF;

 printf("Generating %d numbers with %d calls to c_dm_vrann3 on %d threads.\n",
 ntot, krpt, NUMT);

 omp_set_num_threads(NUMT);

 for (iz=0; iz<krpt; iz++) {
 n = min(NBUF,ngen);
 c_dm_vrann3(dam, dsd, &ix, (double*)da, K, n, (double*)dwork, nwork, &icon);

 if(icon != 0) printf("c_dm_vrann3 : icon = %d\n", icon);

 /* Accumulate sum of numbers */
 dsum2 = 0.0;
 for (j=0; j<NUMT; j++) {
 for (i=0; i<n; i++) {
 dsum2 += da[j][i];
 }
 }

 /* Accumulate sum of numbers globally. */
 dssum2 = 0.0;
 for (j=0; j<NUMT; j++) {

 c_dm_vrann3

199

 for (i=0; i<n; i++) {
 dssum2 += da[j][i]*da[j][i];
 }
 }

 dsum += dsum2;
 dssum += dssum2;

 /* Count down numbers still to generate on each processor */
 ngen -= n;
 }

 /* Compute overall mean. */
 dmean = dsum / (double)ntot;
 printf("Sample mean %e\n", dmean);

 /* Compute overall sample standard deviation. */
 dsig = dssum / (double)ntot;
 printf("Sample standard deviation %e\n", dsig);
 return(0);
}

5. Method

Consult the entry for DM_VRANN3 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vrann4

200

c_dm_vrann4

Generation of normal random numbers (Wallace’s method)

ierr = c_dm_vrann4(dam, dsd, &ix, da, k, n,

dwork, nwork, &icon);

1. Function

This routine generates normal random numbers from a normal-distribution density function (1) with given mean m and

standard deviation .

    

















2

2

2
exp

2

1 mx
xf (1)

2. Arguments

The routine is called as follows:

ierr = c_dm_vrann4(dam, dsd, &ix, (double*)da, k, n, (double*)dwork, nwork,

&icon);

where:

dam double Input Mean m of normal distribution.

dsd double Input Standard deviation  of normal distribution. (>0)

ix int Input Starting point.

On the first call, the value of ix must be positive. On the second and

later calls, return value 0 must be used. When a different starting point is

specified for the initial call, a different random number sequence is

created.

 Output Return value is 0.

da double

da[NUMT][k]

Output n normal pseudorandom numbers generated by each thread.

Where, NUMT is the number of threads.

n pseudo random numbers generated by thread number p (which is from

0 to NUMT1) are stored in da[P][0], ... , da[P][n1].

k int Input C fixed dimension of array da ( n).

n int Input Number of normally distributed pseudorandom numbers to be returned

by each thread in da. Comments on use.

dwork double

dwork[NUMT]

[nwork]

Work When this routine is called repeatedly, the contents and NUMT must not

be changed. dwork contains all the current information required to

restart this routine from its current point.

nwork int Input Size of second-dimension of workspace. nwork  1350.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

 c_dm_vrann4

201

Code Meaning Processing

0 No error. Completed.

30000 k > n or k < 1 Bypassed.

30001 One of the following has occurred:

 nwork is too small.

 ix < 0

 dsd  0

30002 The internal check failed.

30003 to 30008 dwork overwritten or ix = 0 on first call.

30009 ix is too large.

40000 to 40002 dwork overwritten or ix = 0 on first call.

3. Comments on use

ix
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random

input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed

ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random

numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call

to this function.

n
This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If n 

0, no pseudo random numbers are returned.

For efficiency, n should be large (for example, n = 100,000). This reduces the overhead of function calls. n may be

different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than

the maximum value of n.

dwork
When this routine is to be called two or more times, dwork is used as the work area for storing the information for the

next call. While this routine is called, the contents of dwork must not be changed by the called program.

nwork
dwork[i][0], ... , dwork[i][nwork1] (i = 0, ... , NUMT1) are used by this routine. The value of nwork must

not be changed at any call of this routine. For efficient processing, nwork must be set to 1,350 or higher. When this

routine is to be used on a vector processor, the value of nwork must be 500,000 or higher.

Regeneration of the same random numbers
When dwork[i][0], ... , dwork[i][nwork1] (i = 0, ... , NUMT1) are saved, the same random number sequence

as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition ix = 0.

NUMT
The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment

variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the

number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first

calling immediately before the second or later calling also with omp_set_num_threads().

c_dm_vrann4

202

Wallece’s method
The implementation of Wallece’s method in this routine is about three times faster than the implementation of the Polar

method in c_dm_vrann3.

4. Example program

10,000,000  4 normal pseudo random numbers are generated, and their mean and standard deviation are calculated.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))

#define NUMT 4
#define NRAN 10000000
#define SEED 12345
#define NWMAX 100000
#define NBUF 120000
#define K (NBUF)

int MAIN__()
{
 double da[NUMT][K], dwork[NUMT][NWMAX];
 double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd;
 int ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon;

 /* Initialize ix,n and nwork */
 ix = SEED;
 n = NBUF;
 nwork = NWMAX;
 dam = 0.0;
 dsd = 1.0;
 dsum = 0.0;
 dssum = 0.0;

 printf("Seed = %d\n", ix);
 printf("Mean = %e\n", dam);
 printf("Standard deviation = %e\n", dsd);

 /* ngen counts down to 0 */
 ngen = NRAN;
 ntot = NRAN*NUMT;

 /* Generate ngen numbers with maximum NBUF at a time. */
 krpt = (NRAN+NBUF-1)/NBUF;

 printf("Generating %d numbers with %d calls to c_dm_vrann4 on %d threads.\n",
 ntot, krpt, NUMT);

 omp_set_num_threads(NUMT);

 for (iz=0; iz<krpt; iz++) {
 n = min(NBUF,ngen);
 c_dm_vrann4(dam, dsd, &ix, (double*)da, K, n, (double*)dwork, nwork, &icon);

 if(icon != 0) printf("c_dm_vrann4 : icon = %d\n", icon);

 /* Accumulate sum of numbers */
 dsum2 = 0.0;
 for (j=0; j<NUMT; j++) {
 for (i=0; i<n; i++) {
 dsum2 += da[j][i];
 }
 }

 /* Accumulate sum of numbers globally. */
 dssum2 = 0.0;
 for (j=0; j<NUMT; j++) {
 for (i=0; i<n; i++) {
 dssum2 += da[j][i]*da[j][i];
 }

 c_dm_vrann4

203

 }

 dsum += dsum2;
 dssum += dssum2;

 /* Count down numbers still to generate on each processor */
 ngen -= n;
 }

 /* Compute overall mean. */
 dmean = dsum / (double)ntot;
 printf("Sample mean %e\n", dmean);

 /* Compute overall sample standard deviation. */
 dsig = dssum / (double)ntot;
 printf("Sample standard deviation %e\n", dsig);
 return(0);
}

5. Method

Consult the entry for DM_VRANN4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vranu4

204

c_dm_vranu4

Generation of uniform random numbers [0,1).

ierr = c_dm_vranu4(&ix, da, k, n, dwork,

nwork, &icon);

1. Function

This function generates different sequences of pseudo random numbers from a uniform distribution on [0,1) on each

thread.

2. Arguments

The routine is called as follows:

ierr = c_dm_vranu4(&ix, (double*)da, k, n, (double*)dwork, nwork, &icon);

where:

ix int Input Starting point.

On the first call, ix should be positive. ix is returned as zero and

should remain zero for subsequent calls. ix < 8000000. See Comments

on use.

 Output Return value is 0.

da double

da[NUMT][k]

Output n uniform pseudo random numbers on [0,1) generated by each thread.

Where, NUMT is the number of threads. n pseudo random numbers

generated by thread number P (which is from 0 to NUMT1) are stored in

da[P][0], ... , da[P][n1].

k int Input C fixed dimension of array da ( n).

n int Input The number of uniformly distributed pseudo random numbers on each

processor to be returned in da. Comments on use.

dwork double

dwork[NUMT]

[nwork]

Work When this function is called repeatedly, the contents and NUMT must not

be changed. dwork contains all the current information required to

restart this function from its current point.

nwork int Input Size of second-dimension of workspace. nwork  388.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 k > n or k < 1 Bypassed.

30001 nwork is too small.

30002 The internal check failed.

30003 to 30008 dwork overwritten or ix = 0 on first call.

30009 ix is too large.

 c_dm_vranu4

205

3. Comments on use

ix
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random

input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed

ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random

numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call

to this function.

This function appends the thread number 1, omp_get_thread_num() 1, to the seed, as in seed = seed *

omp_get_num_threads()  omp_get_thread_num() 1. Thus the seeds used on different threads are assured

to be distinct, and hence subsequences of length less than 1018 will not overlap.

n
This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If n 

0, no pseudo random numbers are returned.

For efficiency, n should be large (for example, n = 100,000). This reduces the overhead of function calls. n may be

different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than

the maximum value of n.

dwork
dwork is used as a work area to store state information between calls to this function. The calling program must not

change the contents of the array dwork between calls.

nwork
dwork[i][0], ... , dwork[i][nwork1] (i = 0, ... , NUMT1) are used by this function. nwork should be the same

on each call to this function. nwork should be at least 388.

Checkpointing
If dwork[i][0], ... , dwork[i][nwork1] (i = 0, ... , NUMT1) are saved, the same sequence of random numbers

can be generated again (from the point where dwork was saved) by restoring dwork and calling this routine with argument

ix = 0.

NUMT
The number of the threads or NUMT, used with this function can be assigned by user with an OpenMP environment

variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the

number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first

calling immediately before the second or later calling also with omp_set_num_threads().

4. Example program

1,000,000  4 uniform pseudo random numbers are generated and their mean value is calculated.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))

c_dm_vranu4

206

#define NT (4)
#define RAN (1000000)
#define NWMAX (5000)
#define BUF (25000)

MAIN__()
{
 double da[NT][BUF], dwork[NT][NWMAX];
 double sum, sum2, mean, sig;
 unsigned int gen, tot, rpt, i, j;
 int tno, ix, n, nwork, icon, ierr;

 /* Initialize ix, n and nwork */
 ix = 123;
 printf("Seed = %d\n", ix);

/* n = BUF;*/
 nwork = NWMAX;
 sum = 0.0;

 /* gen counts down to 0 */
 gen = RAN;
 tot = RAN*NT;

 /* Generate ngen numbers on each thread with maximum BUF at a time */
 rpt = (RAN+BUF-1)/BUF;
 printf("Generating %d numbers with %d calls to c_dm_vranu4 on %d threads.\n",
 tot, rpt, NT);

 for(j=0; j<rpt; j++) {
 n = min(BUF,gen);
 sum2 = 0.0;

 omp_set_num_threads(NT);
 ierr = c_dm_vranu4(&ix, (double*)da, BUF, n, (double*)dwork, nwork, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vranu4 failed with icon = %d\n", icon);
 exit(1);
 }

 /* Accumulate sum of numbers locally */
 for(tno=0; tno<NT; tno++)
 for(i=0; i<n; i++) sum2 += da[tno][i];

 /* Accumulate sum of numbers globally */
 sum += sum2;

 /* Count down numbers still to generate on each processor */
 gen -= n;
 }

 /* Compute overall mean */
 mean = sum/tot;
 printf("mean = %e\n", mean);

 /* Compute deviation from 0.5 normalized by expected value 1/sqrt(12*ntot). */
 /* This should be (approximately) normally distributed with mean 0, variance 1. */
 sig = (mean-0.50)*sqrt(12.0*tot);
 printf("Normalized deviation = %e\n", sig);
 return(0);
}

5. Method

Consult the entry for DM_VRANU4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [4], [9],

[10], [24], [40] and [51].

 c_dm_vranu5

207

c_dm_vranu5

Generation of uniform random numbers [0,1) (MRG8).

ierr = c_dm_vranu5(&ix, da, n, j, dwork,

&icon);

1. Function

This routine generates sequence of pseudo random numbers from a uniform distribution on [0,1) by Multiple Recursive

Generator with 8th-order full primitive polynomials (MRG8).

This function generates same sequence of random number in any thread numbers. When the reproducibility is needed, use

this function instead of c_dm_vranu4. The interface of this function is different from the interface of c_dm_vranu4.

This function supports jumping-ahead method, which jumps j steps in a sequence of pseudo random numbers. This is

useful to generate distinct sub sequence in parallel execution.

The performance of c_dm_vranu4 is better than this function.

Both this function and c_dm_vranu4 passed the bigCrush test of TESTU01 which is the statistical testing program of

uniform random number generators.

2. Arguments

The routine is called as follows:

ierr = c_dm_vranu5(&ix, da, n, j, dwork, &icon);

where:

ix int Input Starting point.

On the first call, ix should be positive. ix is returned as zero and

should remain zero for subsequent calls. See Comments on use.

 Output Return value is 0.

da double da[n] Output n uniform pseudo random numbers on [0,1).

n int Input The number of uniformly distributed pseudo random numbers to be

returned in da.

j long Input Number of jumping steps in the sequence of pseudo random numbers.

0 is to be set to generate pseudo random numbers just after the sequence.

See Comments on use.

dwork double

dwork[8]

Work When this function is called repeatedly, the contents must not be

changed. dwork contains all the current information required to restart

this function from its current point. See Comments on use.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

30000 ix < 0, n < 1 or j < 0 Bypassed.

c_dm_vranu5

208

3. Comments on use

ix
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random

input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed

ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random

numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call

to this function.

j
This function supports jumping-ahead method, which jumps j steps in a sequence of pseudo random numbers by setting

j  0.

This function generates distinct sub sequence of pseudo random numbers in each process by setting same ix and different

j in parallel execution.

dwork
dwork is used as a work area to store state information between calls to this function. The calling program must not

change the contents of the array dwork between calls.

Checkpointing
If dwork are saved, the same sequence of random numbers can be generated again (from the point where dwork was

saved) by restoring dwork and calling this function with argument ix = 0.

4. Example program

Example 1.

1,000,000 uniform pseudo random numbers are generated and their mean value is calculated. The starting point is 123.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE 1** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"

#define NRAN 10000000
#define NSEED 123
#define NBUF 25000

#define min(x,y) ((x)>(y)?(y):(x))

int MAIN__() {

 double da[NBUF];
 double dwork[8];
 double dsum, dsum2;
 double dmean;
 int ix, n, icon;
 int i, j;

/* Generate NRAN numbers with maximum NBUF at a time */
 ix = NSEED;
 printf(" Seed %d\n", ix);
 printf(" Generating %d numbers\n", NRAN);

 c_dm_vranu5

209

 dsum = 0.0;
 for (j = 1; j <= NRAN; j += NBUF) {
 n = min(NBUF, NRAN - j + 1);
 c_dm_vranu5(&ix, da, n, (long)0, dwork, &icon);
 if (icon != 0) {
 printf(" Error return ICON %d\n", icon);
 }
 dsum2 = 0.0;
 for (i = 0; i < n; i++) {
 dsum2 += da[i];
 }
 dsum += dsum2;
 }
/* Compute mean */
 dmean = dsum / (double)NRAN;
 printf(" Mean %20.16lf\n", dmean);

 return(0);
}

Example 2.

Distinct 100,000 uniform pseudo random numbers are generated in each MPI processes and their mean value is calculated.

The starting point is 123.

In this program, j is set to 231-1. As far as the length of each sub sequences is smaller than 231-1 they are not overlapping.

/* **EXAMPLE 2** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <mpi.h>
#include "cssl.h"

#define N 10000

int MAIN__(int argc, char *argv[]) {

 const long jump = (long)2147483647; /* =2**31-1 */
 double x[N];
 double dnall;
 int irank, np;
 int ix, icon;
 int i;
 long j;
 double work[8];
 double dsum, dsumall, dmean;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &irank);
 MPI_Comm_size(MPI_COMM_WORLD, &np);

 ix = 123;
 j = irank * jump;
 c_dm_vranu5(&ix, x, N, j, work, &icon);
 if (icon != 0) {
 printf("C_DM_VRANU5 ERROR ICON= %d\n", icon);
 }

 dsum = 0.0;
 for (i = 0; i < N; i++) {
 dsum += x[i];
 }
 MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
/* Compute overall mean */
 dnall = (double)N * (double)np;
 if (irank == 0) {
 dmean = dsumall / dnall;
 printf(" Mean %19.16lf\n", dmean);
 }

 MPI_Finalize();
 return(0);
}

c_dm_vranu5

210

Example 3.

Two uniform pseudo random number sequences x and y are generated by four MPI process and their mean values are

calculated. The total number of each vector is 1,000,000 and the starting point is 123.

In this program, 1,000,000 pseudo random numbers are split into NP blocks, where NP is the number of processes, and

each of the sequences is generated by each of the processes. Even if NP is changed, the whole sequence of pseudo

random numbers is the same.

/* **EXAMPLE 3** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h"
#include <mpi.h>

#define NX 100000
#define NY 100000
#define NP 4 /* NUMBER OF PROCESS */

#define min(x,y) ((x)>(y)?(y):(x))

int MAIN__(int argc, char *argv[]) {

 double x[(NX + NP - 1) / NP], y[(NY + NP - 1) / NP];
 int irank, nsize;
 int ix, nl, icon, jump;
 int i;
 long j0, j;
 double work[8];
 double dsum, dsumall, dmean;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &irank);
 MPI_Comm_size(MPI_COMM_WORLD, &nsize);
 if (NP != nsize) {
 MPI_Finalize();
 return(-1);
 }

 ix = 123;
 jump = (NX + NP - 1) / NP;
 j = min(irank * jump, NX);
 nl = min(jump, NX - j);
 if (nl >= 1) {
 c_dm_vranu5(&ix, x, nl, j, work, &icon);
 if (icon != 0) {
 printf("DM_VRANU5 ERROR ICON= %d\n", icon);
 }
 j0 = NX - (j + nl);
 } else {
 j0 = NX;
 }

 dsum = 0.0;
 for (i = 0; i < nl; i++) {
 dsum += x[i];
 }
 MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);

/* Compute overall mean of X */
 if (irank == 0) {
 dmean = dsumall / (double)NX;
 printf(" Mean of X %19.16lf\n", dmean);
 }

 jump = (NY + NP - 1) / NP;
 j = min(irank * jump, NY);
 nl = min(jump, NY - j);
 j += j0;
 if (nl >= 1) {
 c_dm_vranu5(&ix, y, nl, j, work, &icon);
 if (icon != 0) {
 printf("C_DM_VRANU5 ERROR ICON= %d\n", icon);

 c_dm_vranu5

211

 }
 }

 dsum = 0.0;

 for (i = 0; i < nl; i++) {

 dsum += y[i];

 }

 MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,

 MPI_COMM_WORLD);

/* Compute overall mean of Y */

 if (irank == 0) {

 dmean = dsumall / (double) NY;

 printf(" Mean of Y %19.16lf\n", dmean);

 }

 MPI_Finalize();

 return(0);

}

5. Method

Consult the entry for DM_VRANU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [78], [79],

and [80].

c_dm_vschol

212

c_dm_vschol

LDLT decomposition of a symmetric positive definite sparse matrix

(Left-looking Cholesky decomposition method)

ierr = c_dm_vschol(a, nz, nrow, nfcnz, n,

iordering, nperm, isw, &epsz,

nassign, &nsupnum, nfcnzfactor,

panelfactor, &nsizefactor,

nfcnzindex,npanelindex,

&nsizeindex, ndim, nposto, w, iw1,

iw2, iw3, &icon);

1. Function

This routine executes LDLT decomposition for an n × n symmetric positive definite sparse matrix using modified

Cholesky decomposition method, so that

QPAPTQT = LDLT,

 where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering. P and Q are orthogonal

matrices, L is a unit lower triangular matrix, and D is a diagonal matrix.

2. Arguments

The routine is called as follows:

ierr = c_dm_vschol(a, nz, nrow, nfcnz, n, iordering, nperm, isw, &epsz,

nassign, &nsupnum, nfcnzfactor, panelfactor, &nsizefactor,

nfcnzindex, npanelindex, &nsizeindex,(int*)ndim, nposto, w, iw1,

iw2, iw3, &icon);

where:

a double a[nz] Input The non-zero elements of the lower triangular part {aij | i

 j} of a symmetric sparse matrix A are stored in a[i],

i=0, …, nz-1.

For the compressed column storage method, refer to
Figure c_dm_vmvscc-1 in the description for
c_dm_vmvscc routine (multiplication of a real sparse
matrix and a real vector).

nz int Input The total number of the nonzero elements belong to the

lower triangular part of a symmetric sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array a.

nfcnz int

nfcnz[n+1]

Input The position of the first nonzero element of each
column stored in an array a in the compressed
column storage method which stores the nonzero
elements column by column.
nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

 c_dm_vschol

213

iordering int Input Control information whether to decompose the
reordered matrix PAPT permuted by the matrix P of
ordering or to decompose the matrix A.

Specify iordering=1 for the decomposition of the
matrix PAPT.

Specify the other value for the decomposition of the

matrix A as it is.

nperm int nperm[n] Input The permutation matrix P is stored as a vector.

See Comments on use.

isw int Input Control information.

 1 Initial calling.

 2 Subsequent call if the previous call has

failed with icon=31000, that means the

size of panelfactor or npanelindex

were not enough. In this case, the

panelfactor or npanelindex must

be reallocated with the necessary sizes

which are returned in the nsizefactor

or nsizeindex at the precedent call.

Besides, the values of a, nz, nrow,
nfcnz, n, iordering, nperm,
nassign, nsupnum, nfcnzfactor,
nfcnzindex, npanelindex,
nposto, ndim, w, iw1, iw2, and iw3
must be unchanged after the first call.

 3 Second and subsequent calls when
solving another system of equations
which have the same non-zero pattern of
the matrix A but the values of its
elements are different. In this case, the
information obtained in symbolic
decomposition and the array
panelfactor and npanelindex of
the same size required in previous call
can be reused. Then numerical LDLT
decomposition will proceed with that
information and the new linear equations
can be solved efficiently. Store the
values of the matrix elements in the array
a, or store in another array b and let it be
as the parameter a.

Besides, the values of nz, nrow,
nfcnz, n, iordering, nperm,
nassign, nsupnum, nfcnzfactor,
nsizefactor, nfcnzindex,
npanelindex, nsizeindex,
nposto, ndim, w, iw1, iw2, and iw3
must be unchanged as the previous call.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

When epsz is 0.0, the standard value is assumed. Output

c_dm_vschol

214

See Comments on use.

nassign int nassign[n] Output Each supernode consists of multiple column vectors, and

the supernodes are stored in two-dimensional panel by

compressing rows containing nonzero elements with a

common row indices vector. The elements of this array

indicate the position, where this panel is allocated as a

part of the one-dimensional array panelfactor.

When j = nassign[i-1], the i-th supernode is

allocated at j-th position.

 Input The values of the first call are reused when isw  1
specified.

For the storage method of the decomposed results,
refer to Figure c_dm_vschol-1.

See Comments on use.

nsupnum int Output The total number of supernodes.

 Input The values of the first call are reused when isw  1
specified. ( n)

nfcnzfactor long long int

nfcnzfactor

[n+1]

Output Each supernode consists of multiple column vectors, and

the factorized matrix of supernodes are stored in two-

dimensional panel by compressing rows containing

nonzero elements with a common row indices vector.

The elements of this array indicate the position of the

first element panel[0][0] of the i-th panel, where

this panel is allocated as a part of the one-dimensional

array panelfactor.

 Input The values set by the first call are reused when isw
 1 specified.
For the storage method of the decomposed results,
refer to Figure c_dm_vschol-1.

panelfactor double

panelfactor

[nsizefactor]

Output Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. These
panels are stored in this matrix.

The positions of the panel corresponding to the i-th
supernode are indicated as j = nassign[i-1].
The first position is stored in nfcnzfactor[j-
1]. The decomposed result is stored in each panel.

The size of the i-th panel can be considered to be
two-dimensional array of ndim[i -1][1]×ndim
[i -1][0]. The corresponding part where the
lower triangular unit matrix except the diagonal part
is transposed and is stored in panel[t-1][s-1],
s>t, s=1,…,ndim[i-1][0], t=1,…,ndim[i-
1][1] of the i-th panel. The corresponding part of
the diagonal matrix D is stored in panel[t-1][t-
1].

For the storage method of the decomposed results, refer

to Figure c_dm_vschol-1.

 c_dm_vschol

215

See Comments on use.

nsizefactor long long int Input The size of the array panelfactor.

 Output The necessary size for the array panelfactor is

returned.

See Comments on use.

nfcnzindex long long int

nfcnzindex

[n+1]

Output Each supernode consists of multiple column vectors, and

the supernodes are stored in two-dimensional panel by

compressing rows containing nonzero elements with a

common row indices vector. The elements of this array

indicate the position of the first element of the i-th row

indices vector, where this panel is allocated as a part of

the one-dimensional array npanelindex.

 Input The values set by the first call are reused when isw
 1 specified.

For the storage method of the decomposed results,
refer to Figure c_dm_vschol-1.

npanelindex int npanelindex

[nsizeindex]

Output Each supernode consists of multiple column vectors, and

the supernodes are stored in two-dimensional panel by

compressing rows containing nonzero elements with a

common row indices vector. These row indices vectors

are stored in this matrix. The positions of the row

pointer vector corresponding to the i-th supernode are

indicated as j = nassign[i-1]. The first position is

stored in nfcnzindex[j-1]. The row indices vector

is stored by each panel. This row indices are the row

indices of the matrix QAQT to which the matrix A is

permuted by post ordering.

For the storage method of the decomposed results,
refer to Figure c_dm_vschol-1.

See Comments on use.

nsizeindex long long int Input The size of the array npanelindex.

 Output The necessary size is returned.

See Comments on use.

ndim int ndim[n][2] Output The size of first and second dimension of the i-th
panel are stored in ndim[i-1][0] and
ndim[i-1][1] respectively.

 Input The values set by the first call are reused when isw
 1 specified.

For the storage method of the decomposed results, refer

to Figure c_dm_vschol-1.

nposto int nposto[n] Output The one dimensional vector is stored which indicates

what column index of A the i-th node in post ordering

corresponds to.

 Input The values set by the first call are reused when isw  1

specified.

See Comments on use.

c_dm_vschol

216

w double w[Iwlen1] Work area When this routine is called repeatedly with isw =
1,2,3, This work area is used for preserving
information among calls. The contents must not be
changed.
When iordering = 1, Iwlen1 = nz.
When iordering  1, Iwlen1 = 1.

 Output/Input

iw1 int iw1[Iwlen2]

Work area When this routine is called repeatedly with isw = 1,2,3,

This work area is used for preserving information among

calls. The contents must not be changed.

When iordering = 1, Iwlen2 = nz+n+1.

When iordering  1, Iwlen2 = 1.

 Output/Input

iw2 int iw2[nz+n+1] Work area When this routine is called repeatedly with isw = 1,2,3,

This work area is used for preserving information among

calls. The contents must not be changed.

 Output/Input

iw3 int

iw3[n*35+35]

Work area When this routine is called repeatedly with isw = 1,2,3,

This work area is used for preserving information among

calls. The contents must not be changed.

 Output/Input

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

10000 The coefficient matrix is not positive definite. Processing is continued.

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

Processing is discontinued.

30000 One of the following has occurred:

 n < 1

 nz < 0

 nfcnz[n]nz+1

 nsizefactor<1

 nsizeindex<1

 epsz<0.0

 isw<0

 isw>3

30100 The permutation matrix specified in nprem is
not correct.

30200 The row pointer k stored in nrow[j-1] is k
< i or k > n.

30300 The number of row indices belong to i-th
column is nfcnz[i]-nfcnz[i-1]>n-
i+1.

30400 There is a column without a diagonal element.

31000 The value of nsizefactor is not enough as
the size of panelfactor, or the value of
nsizeindex is not enough as the size of
npanelindex.

Reallocate the panelfactor or
npanelindex with the necessary size which
are returned in the nsizefactor or
nsizeindex, and call this routine again with
isw=2.

 c_dm_vschol

217

panel row pointer vector

row indices of post ordering .

Figure c_dm_vschol-1 concept of storing the data for decomposed result

j = nassign[i-1]  The i-th supernode is stored at the j-th position.

p = nfcnzfactor[j-1]  The j-th panel occupies the area with a length
ndim[j-1][1] × ndim[j-1][0] from the p-th element of
panelfactor.

q = nfcnzindex[j-1]  The row pointer vector of the j-th panel occupies the area with a
 length ndim[j-1][0] from the q-th element of panelindex.

A panel is regarded as an array of the size ndim[j-1][1] × ndim[j-1][0].

The lower triangular unit matrix L except the diagonal part is transposed and is stored in

panel[t-1][s-1] , s > t , s=1 , … , ndim[j-1][0],
 t=1 , … , ndim[j-1][1]

The corresponding part of the diagonal matrix D is stored in panel[t-1][t-1].

The row pointers indicate the column indices of the matrix QAQT to which the node of the matrix A is
permuted by post ordering.

3. Comments on use

nperm
When the element pij=1 of the permutation matrix P, set nperm[i-1]=j.

The inverse of the matrix can be obtained as follows:

 for(i=1; i<=n; i++){
 j=nperm[i-1];
 perminv[j-1]=i;
 }

epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LDLT decomposition.

In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16

 u. When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case,

however, the result is not assured.

c_dm_vschol

218

 When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite. In this case,

processing is continued as icon=10000, but the numerical error may be large because of no pivoting.

c_dm_vscholx
The linear equations LDLTPQx = PQb which is a derived form from Ax = b can be solved by calling routine

c_dm_vscholx following this routine with the decomposed result data such as nassign, nsupnum, nfcnzfactor,

nsizefactor, nfcnzindex, npanelindex, nsizeindex, nposto, ndim, iw3 unchanged.

nsizefactor and nsizeindex
The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be

determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after

the first call of this routine, or allocate large enough arrays at first call.

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values

such as one in the size specifying in nsizefactor and nsizeindex. This routine ends with icon = 31000, and the

necessary sizes for nsizefactor and nsizeindex are returned. Then the suspended process can be resumed by

calling it with isw = 2 after reallocating the arrays with the necessary sizes.

nposto
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note nperm above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

for(i=1; i<=n; i++){
 j=nposto[i-1];
 npostoinv[j-1]=i;
 }

4. Example program

The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic

equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1, a2, a3) where a1, a2, a3 and c are zero constants, that

means the operator is Laplacian. The matrix A in Diagonal format is generated by the routine init_mat_diag, and

transferred into compressed column storage format.

 The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

 #include <stdlib.h>
 #include <stdio.h>
 #include <math.h>
 #include <malloc.h>

 c_dm_vschol

219

 #include "cssl.h" /* standard C-SSL header file */

 #define NORD (39)
 #define NX (NORD)
 #define NY (NORD)
 #define NZ (NORD)
 #define N (NX*NY*NZ)
 #define K (N+1)
 #define NDIAG (7)
 #define NDIAGH (4)

 MAIN__()
 {
 int ierr, icon, iguss, iter, itmax;
 int nord, n, l, i, j, k;
 int nx, ny, nz, nnz, nnzc;
 int length, nbase, ndiag, ntopcfgc;
 int numnz, numnzc, nsupnum, ntopcfg, ncol;
 int iordering, isw;
 int *npanelindex;
 int ndummyi;
 int nofst[NDIAG];
 int nrow[NDIAG*K];
 int nrowc[NDIAG*K];
 int nfcnz[N+1];
 int nfcnzc[N+1];
 int nperm[N];
 int nassign[N];
 int nposto[N];
 int ndim[N][2];
 int iw1[N*NDIAGH+N+1];
 int iw2[N*NDIAGH+N+1];
 int iw3[N*35+35];
 int iwc[NDIAG*K][2];

 double err, epsz;
 double t0, t1, t2;
 double va1, va2, va3, vc;
 double xl, yl, zl;
 double dummyf;
 double *panelfactor;
 double diag[NDIAG][K];
 double diag2[NDIAG][K];
 double a[N*NDIAGH];
 double b[N];
 double c[NDIAG*K];
 double w[N*NDIAGH];
 double wc[NDIAG*K];
 double x[N];
 double solex[N];

 long long int nsizefactor;
 long long int nsizeindex;
 long long int nfcnzfactor[N+1];
 long long int nfcnzindex[N+1];

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl,double zl, int ndiag, int len, int ndivp);

 double errnrm(double *x1, double *x2, int len);

 nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;

 printf(" LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
 printf(" FOR SPARSE POSITIVE DEFINITE MATRICES\n");
 printf(" IN COMPRESSED COLUMN STORAGE\n");
 printf("\n");

 for (i=1; i<=n; i++){
 solex[i-1]=1.0;
 }
 printf(" EXPECTED SOLUTIONS\n");
 printf(" X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
 printf("\n");

 va1 = 0.0;
 va2 = 0.0;
 va3 = 0.0;
 vc = 0.0;
 xl = 1.0;

c_dm_vschol

220

 yl = 1.0;
 zl = 1.0;
 init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
 nx, ny, nz, xl, yl, zl, ndiag, n, k);

 for (i=1; i<=ndiag; i++){
 if (nofst[i-1] < 0){
 nbase=-nofst[i-1];
 length=n-nbase;
 for (j=1; j<=length; j++){
 diag2[i-1][j-1]=diag[i-1][nbase+j-1];
 }
 }
 else{
 nbase=nofst[i-1];
 length=n-nbase;
 for (j=nbase+1; j<=n; j++){
 diag2[i-1][j-1]=diag[i-1][j-nbase-1];
 }
 }
 }

 numnzc=1;
 numnz=1;
 for (j=1; j<=n; j++){
 ntopcfgc = 1;
 ntopcfg = 1;
 for (i=ndiag; i>=1; i--){
 if (diag2[i-1][j-1]!=0.0){
 ncol=j-nofst[i-1];
 c[numnzc-1]=diag2[i-1][j-1];
 nrowc[numnzc-1]=ncol;
 if (ncol>=j){
 a[numnz-1]=diag2[i-1][j-1];
 nrow[numnz-1]=ncol;
 }
 if (ntopcfgc==1){
 nfcnzc[j-1]=numnzc;
 ntopcfgc=0;
 }
 if (ntopcfg==1){
 nfcnz[j-1]=numnz;
 ntopcfg=0;
 }
 if (ncol>=j){
 numnz=numnz+1;
 }
 numnzc=numnzc+1;
 }
 }
 }

 nfcnzc[n]=numnzc;
 nnzc=numnzc-1;
 nfcnz[n]=numnz;
 nnz=numnz-1;

 ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon);

 for(i=1; i<=n; i++){
 x[i-1]=b[i-1];
 }
 iordering=0;
 isw=1;
 epsz=0;
 nsizefactor=1;
 nsizeindex=1;

 ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);

 printf("\n");
 printf(" ICON = %d NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon,
nsizefactor, nsizeindex);
 printf("\n");

 panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
 npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
 isw=2;

 c_dm_vschol

221

 ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);

 ierr=c_dm_vscholx(n, iordering, nperm, x, nassign, nsupnum,
 nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex,
nsizeindex, (int*)ndim, nposto, iw3, &icon);

 err = errnrm(solex,x,n);

 printf(" COMPUTED VALUES\n");
 printf(" X(1) = %.15lf X(N) = %.15lf\n", x[0], x[n-1]);
 printf("\n");
 printf(" ICON = %d\n", icon);
 printf("\n");
 printf(" N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
 printf("\n");
 printf(" ERROR = %.15e\n",err);
 printf("\n");
 printf("\n");
 if (err<(1.0e-8) && icon==0){
 printf(" ********** OK **********\n");
 }
 else{
 printf(" ********** NG **********\n");
 }
 free(panelfactor);
 free(npanelindex);
 return 0;
 }

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl, double zl, int ndiag, int len, int ndivp)
 {
 int i, l, j;
 int length, numnz, js;
 int i0, j0, k0;
 int ndiag_loc;
 int nxy;

 double hx, hy, hz;
 double x1, x2;
 double base;
 double ret, remark;

 if (ndiag<1){
 printf("FUNCTION INIT_MAT_DIAG:\n");
 printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
 return;
 }
 ndiag_loc = ndiag;
 if (ndiag>7){
 ndiag_loc=7;
 }

 hx = xl / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);

 for (i=1; i<=ndivp; i++){
 for (j=1; j<=ndiag; j++){
 d_l[i-1+(j-1)*ndivp]= 0.;
 }
 }

 nxy = nx * ny;
 l = 1;
 if (ndiag_loc >= 7) {
 offset[l-1] = -nxy;
 ++l;
 }
 if (ndiag_loc >= 5) {
 offset[l-1] = -nx;
 ++l;
 }
 if (ndiag_loc >= 3) {
 offset[l-1] = -1;
 ++l;
 }

c_dm_vschol

222

 offset[l-1] = 0;
 ++l;
 if (ndiag_loc >= 2) {
 offset[l-1] = 1;
 ++l;
 }
 if (ndiag_loc >= 4) {
 offset[l-1] = nx;
 ++l;
 }
 if (ndiag_loc >= 6) {
 offset[l-1] = nxy;
 }

 for (j = 1; j <= len; ++j) {
 js=j;
 k0 = (js - 1) / nxy + 1;
 if (k0 > nz) {
 printf("ERROR; K0.GH.NZ\n");
 return;
 }
 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 1;
 if (ndiag_loc >= 7) {
 if (k0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
 }
 ++l;
 }

 if (ndiag_loc >= 5) {
 if (j0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 3) {
 if (i0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
 }
 ++l;
 }

 d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
 if (ndiag_loc >= 5) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
 if (ndiag_loc >= 7) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
 }
 }
 ++l;
 if (ndiag_loc >= 2) {
 if (i0 < nx) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
 }
 ++l;
 }

 if (ndiag_loc >= 4) {
 if (j0 < ny) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 6) {
 if (k0 < nz) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
 }
 }
 }
 return;
 }

 double errnrm(double *x1, double *x2, int len)
 {
 double ret_val;

 c_dm_vschol

223

 int i;
 double s, ss;

 s = 0.;
 for (i = 1; i <= len; ++i) {
 ss = x1[i-1] - x2[i-1];
 s += ss * ss;
 }
 ret_val = sqrt(s);
 return ret_val;
 }

5. Method

Consult the entry for DM_VSCHOL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19].

c_dm_vscholx

224

c_dm_vscholx

A system of linear equations with LDLT-decomposed symmetric positive

definite sparse matrices

ierr = c_dm_vscholx(n, iordering, nperm, b,

nassign, nsupnum, nfcnzfactor,

 panelfactor, nsizefactor,

nfcnzindex, npanelindex,

nsizeindex,ndim, nposto, iw3,

&icon);

1. Function

This routine solves a system of equations with a LDLT-decomposed symmetric positive definite sparse coefficient n  n

matrix.

LDLTQPx = QPb,

 where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering. P and Q are orthogonal

matrices, L is a unit lower triangular matrix, D is a diagonal matrix, b is a constant vector, and x is a solution vector.

2. Arguments

The routine is called as follows:

ierr = c_dm_vscholx(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactor,

panelfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex,

 (int*)ndim, nposto, iw3, &icon);

where:

n int Input Order n of matrix.

iordering int Input Control information whether the coefficient matrix
was permuted into PAPT by the permutation matrix
P before decomposition.

Specify iordering=1 for the LDLT decomposed
from PAPT.

Specify the other value for the LDLT decomposed
matrix from A as it is.

nperm int nperm[n] Input The permutation matrix P is specified as a vector
when iordering=1.

See Comments on use.

b double b[n] Input The right-hand side constant vector b of a system of
linear equations Ax = b.

 Output Solution vector x.

nassign int nassign[n] Input Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. The
elements of this array indicate the position, where

 c_dm_vscholx

225

this panel is allocated as a part of the one-
dimensional array panelfactor. When j =
nassign[i-1], the i-th supernode is allocated at
j-th position.

For the storage method of the decomposed results,
refer to Figure c_dm_vscholx-1.

nsupnum int Input The total number of supernodes.

nfcnzfactor long long int

nfcnzfactor

[n+1]

Input Each supernode consists of multiple column vectors,
and the factorized matrix of supernodes are stored in
two-dimensional panel by compressing rows
containing nonzero elements with a common row
indices vector. The elements of this array indicate
the position of the first element panel[0][0] of the
i-th panel, where this panel is allocated as a part of
the one-dimensional array panelfactor.

For the storage method of the decomposed results,
refer to Figure c_dm_vscholx-1.

See Comments on use.

panelfactor double

panelfactor

[nsizefactor]

Input Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. These
panels are stored in this matrix.

The positions of the panel corresponding to the i-th
supernode are indicated as j = nassign[i-1].
The first position is stored in nfcnzfactor[j-
1]. The decomposed result is stored in each
panel.

The size of the i-th panel can be considered to be
two-dimensional array of ndim[i-1][1]×ndim
[i-1][0]. The corresponding part where the
lower triangular unit matrix except the diagonal part
is transposed and is stored in panel[t-1][s-1],
s>t, s=1, …, ndim[i-1][0], t=1, …,
ndim[i-1][1] of the i-th panel. The
corresponding part of the diagonal matrix D is stored
in panel[t-1][t-1].

For the storage method of the decomposed results,
refer to Figure c_dm_vscholx-1.

nsizefactor long long int Input The size of the array panelfactor.

nfcnzindex long long int

nfcnzindex

[n+1]

Input Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. The
elements of this array indicate the position of the
first element of the i-th row indices vector, where
this panel is allocated as a part of the one-
dimensional array npanelindex.

For the storage method of the decomposed results,
refer to Figure c_dm_vscholx-1.

c_dm_vscholx

226

npanelindex int npanelindex

[nsizeindex]

Input Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. These
row pointer vectors are stored in this matrix. The
positions of the row pointer vector corresponding to
the i-th supernode are indicated as j =
nassign[i-1]. The first position is stored in
nfcnzindex[j-1]. The row indices vector is
stored by each panel. This row indices are the row
indices of the matrix QAQT to which the matrix A is
permuted by post ordering.

For the storage method of the decomposed results,
refer to Figure c_dm_vscholx-1.

nsizeindex long long int Input The size of the array panelindex.

ndim int ndim[n][2] Input The size of first and second dimension of the i-th
panel are stored in ndim[i-1][0] and
ndim[i-1][1] respectively.

nposto int nposto[n] Input The one dimensional vector is stored which indicates
what column index of A the i-th node in post
ordering corresponds to.

 See Comments on use.

iw3 int

iw3[n*35+35]

Input Specify the iw3 which is used by c_dm_vschol
before calling this routine. The contents must not be
changed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 n < 1

 nsizefactor < 1

 nsizeindex < 1

 nsupnum < 1

Processing is discontinued.

30100 The permutation matrix specified in nprem is not

correct.

 c_dm_vscholx

227

panel row pointer vector

row indices of post ordering .

Figure c_dm_vscholx-1 concept of storing the data for decomposed result

j = nassign[i-1]  The i-th supernode is stored at the j-th position.

p = nfcnzfactor[j-1]  The j-th panel occupies the area with a length
ndim[j-1][1]×ndim[j-1][0] from the p-th element of
panelfactor.

q = nfcnzindex[j-1]  The row pointer vector of the j-th panel occupies the area with a length
ndim[j-1][0] from the q-th element of panelindex.

A panel is regarded as an array of the size ndim[j-1][1]×ndim[j-1][0].

The lower triangular unit matrix L except the diagonal part is transposed and is stored in

panel[t-1][s-1] , s > t , s=1 , … , ndim[j-1][0],
 t=1 , … , ndim[j-1][1]

The corresponding part of the diagonal matrix D is stored in panel[t-1][t-1].

The row pointers indicate the column indices of the matrix QAQT to which the node of the matrix A is
permuted by post ordering.

3. Comments on use

nperm
When the element pij=1 of the permutation matrix P, set nperm[i-1]=j.

The inverse of the matrix can be obtained as follows:

 for(i=1; i<=n; i++){
 j=nperm[i-1];
 nperminv[j-1]=i;
 }

nposto
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j=nposto[i-1].

c_dm_vscholx

228

This array represents a permutation matrix Q which is an orthogonal matrix also as well as note nperm above, and

corresponds to permute the matrix A into QAQT.

The inverse matrix QT can be obtained as follows:

for(i=1; i<=n; i++){
 j=nposto[i-1];
 npostoinv[j-1]=i;
 }

The linear system of equations
The linear system of equations can be solved by calling this routine with specifying the LDLT-decomposed results which

are calculated by c_dm_vschol routine.

4. Example program

 The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic

equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1, a2, a3) where a1, a2, a3 and c are zero constants, that

means the operator is Laplacian. The matrix A in Diagonal format is generated by the routine init_mat_diag, and

transferred into compressed column storage format.

 The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

 #include <stdlib.h>
 #include <stdio.h>
 #include <math.h>
 #include <malloc.h>
 #include "cssl.h" /* standard C-SSL header file */

 #define NORD (39)
 #define NX (NORD)
 #define NY (NORD)
 #define NZ (NORD)
 #define N (NX*NY*NZ)
 #define K (N+1)
 #define NDIAG (7)
 #define NDIAGH (4)

 MAIN__()
 {
 int ierr, icon, iguss, iter, itmax;
 int nord, n, l, i, j, k;
 int nx, ny, nz, nnz, nnzc;
 int length, nbase, ndiag, ntopcfgc;
 int numnz, numnzc, nsupnum, ntopcfg, ncol;
 int iordering, isw;
 int *npanelindex;
 int ndummyi;
 int nofst[NDIAG];
 int nrow[NDIAG*K];
 int nrowc[NDIAG*K];
 int nfcnz[N+1];
 int nfcnzc[N+1];
 int nperm[N];
 int nassign[N];
 int nposto[N];
 int ndim[N][2];
 int iw1[N*NDIAGH+N+1];

 c_dm_vscholx

229

 int iw2[N*NDIAGH+N+1];
 int iw3[N*35+35];
 int iwc[NDIAG*K][2];

 double err, epsz;
 double t0, t1, t2;
 double va1, va2, va3, vc;
 double xl, yl, zl;
 double dummyf;
 double *panelfactor;
 double diag[NDIAG][K];
 double diag2[NDIAG][K];
 double a[N*NDIAGH];
 double b[N];
 double c[NDIAG*K];
 double w[N*NDIAGH];
 double wc[NDIAG*K];
 double x[N];
 double solex[N];

 long long int nsizefactor;
 long long int nsizeindex;
 long long int nfcnzfactor[N+1];
 long long int nfcnzindex[N+1];

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl,double zl, int ndiag, int len, int ndivp);

 double errnrm(double *x1, double *x2, int len);

 nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;

 printf(" LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
 printf(" FOR SPARSE POSITIVE DEFINITE MATRICES\n");
 printf(" IN COMPRESSED COLUMN STORAGE\n");
 printf("\n");

 for (i=1; i<=n; i++){
 solex[i-1]=1.0;
 }
 printf(" EXPECTED SOLUTIONS\n");
 printf(" X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
 printf("\n");

 va1 = 0.0;
 va2 = 0.0;
 va3 = 0.0;
 vc = 0.0;
 xl = 1.0;
 yl = 1.0;
 zl = 1.0;
 init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
 nx, ny, nz, xl, yl, zl, ndiag, n, k);

 for (i=1; i<=ndiag; i++){
 if (nofst[i-1] < 0){
 nbase=-nofst[i-1];
 length=n-nbase;
 for (j=1; j<=length; j++){
 diag2[i-1][j-1]=diag[i-1][nbase+j-1];
 }
 }
 else{
 nbase=nofst[i-1];
 length=n-nbase;
 for (j=nbase+1; j<=n; j++){
 diag2[i-1][j-1]=diag[i-1][j-nbase-1];
 }
 }
 }

 numnzc=1;
 numnz=1;
 for (j=1; j<=n; j++){
 ntopcfgc = 1;
 ntopcfg = 1;
 for (i=ndiag; i>=1; i--){
 if (diag2[i-1][j-1]!=0.0){
 ncol=j-nofst[i-1];
 c[numnzc-1]=diag2[i-1][j-1];

c_dm_vscholx

230

 nrowc[numnzc-1]=ncol;
 if (ncol>=j){
 a[numnz-1]=diag2[i-1][j-1];
 nrow[numnz-1]=ncol;
 }
 if (ntopcfgc==1){
 nfcnzc[j-1]=numnzc;
 ntopcfgc=0;
 }
 if (ntopcfg==1){
 nfcnz[j-1]=numnz;
 ntopcfg=0;
 }
 if (ncol>=j){
 numnz=numnz+1;
 }
 numnzc=numnzc+1;
 }
 }
 }

 nfcnzc[n]=numnzc;
 nnzc=numnzc-1;
 nfcnz[n]=numnz;
 nnz=numnz-1;

 ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon);

 for(i=1; i<=n; i++){
 x[i-1]=b[i-1];
 }
 iordering=0;
 isw=1;
 epsz=0;
 nsizefactor=1;
 nsizeindex=1;

 ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);

 printf("\n");
 printf(" ICON = %d NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon,
nsizefactor, nsizeindex);
 printf("\n");

 panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
 npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
 isw=2;

 ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign,
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);

 ierr=c_dm_vscholx(n, iordering, nperm, x, nassign, nsupnum,
 nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex,
nsizeindex, (int*)ndim, nposto, iw3, &icon);

 err = errnrm(solex,x,n);

 printf(" COMPUTED VALUES\n");
 printf(" X(1) = %.15lf X(N) = %.15lf\n", x[0], x[n-1]);
 printf("\n");
 printf(" ICON = %d\n", icon);
 printf("\n");
 printf(" N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
 printf("\n");
 printf(" ERROR = %.15e\n",err);
 printf("\n");
 printf("\n");
 if (err<(1.0e-8) && icon==0){
 printf(" ********** OK **********\n");
 }
 else{
 printf(" ********** NG **********\n");
 }
 free(panelfactor);
 free(npanelindex);
 return 0;
 }

 c_dm_vscholx

231

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl, double zl, int ndiag, int len, int ndivp)
 {
 int i, l, j;
 int length, numnz, js;
 int i0, j0, k0;
 int ndiag_loc;
 int nxy;

 double hx, hy, hz;
 double x1, x2;
 double base;
 double ret, remark;

 if (ndiag<1){
 printf("FUNCTION INIT_MAT_DIAG:\n");
 printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
 return;
 }
 ndiag_loc = ndiag;
 if (ndiag>7){
 ndiag_loc=7;
 }

 hx = xl / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);

 for (i=1; i<=ndivp; i++){
 for (j=1; j<=ndiag; j++){
 d_l[i-1+(j-1)*ndivp]= 0.;
 }
 }

 nxy = nx * ny;
 l = 1;
 if (ndiag_loc >= 7) {
 offset[l-1] = -nxy;
 ++l;
 }
 if (ndiag_loc >= 5) {
 offset[l-1] = -nx;
 ++l;
 }
 if (ndiag_loc >= 3) {
 offset[l-1] = -1;
 ++l;
 }
 offset[l-1] = 0;
 ++l;
 if (ndiag_loc >= 2) {
 offset[l-1] = 1;
 ++l;
 }
 if (ndiag_loc >= 4) {
 offset[l-1] = nx;
 ++l;
 }
 if (ndiag_loc >= 6) {
 offset[l-1] = nxy;
 }

 for (j = 1; j <= len; ++j) {
 js=j;
 k0 = (js - 1) / nxy + 1;
 if (k0 > nz) {
 printf("ERROR; K0.GH.NZ\n");
 return;
 }
 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 1;
 if (ndiag_loc >= 7) {
 if (k0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
 }
 ++l;
 }

c_dm_vscholx

232

 if (ndiag_loc >= 5) {
 if (j0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 3) {
 if (i0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
 }
 ++l;
 }

 d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
 if (ndiag_loc >= 5) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
 if (ndiag_loc >= 7) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
 }
 }
 ++l;
 if (ndiag_loc >= 2) {
 if (i0 < nx) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
 }
 ++l;
 }

 if (ndiag_loc >= 4) {
 if (j0 < ny) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 6) {
 if (k0 < nz) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
 }
 }
 }
 return;
 }

 double errnrm(double *x1, double *x2, int len)
 {
 double ret_val;

 int i;
 double s, ss;

 s = 0.;
 for (i = 1; i <= len; ++i) {
 ss = x1[i-1] - x2[i-1];
 s += ss * ss;
 }
 ret_val = sqrt(s);
 return ret_val;
 }

 c_dm_vsclu

233

c_dm_vsclu

LU decomposition of an unsymmetric complex sparse matrix.

ierr = c_dm_vsclu(za, nz, nrow, nfcnz, n,

ipledsm, mz, isclitermax,

&iordering, nperm, isw,

nrowsym, nfcnzsym,

nassign, &nsupnum,

nfcnzfactorl, zpanelfactorl,

&nsizefactorl, nfcnzindexl,

npanelindexl,

&nsizeindexl, ndim,

nfcnzfactoru, zpanelfactoru,

&nsizefactoru,

nfcnzindexu, npanelindexu,

&nsizeindexu, nposto,

sclrow, sclcol,

&epsz, &thepsz, ipivot, istatic,

&spepsz, nfcnzpivot,

npivotp, npivotq, zw, w, iw1, iw2,

&icon);

1. Function

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the diagonal and then it is scaled in

order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as

specified within the block diagonal portion belonging to each supernode.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its

imaginary part for the permutation of elements, scaling and pivot.

The unsymmetric complex sparse matrix is transformed as below.

 A1 = DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a

diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for

SYM = A1 + A1
T and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower

triangular matrix and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of

a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU

c_dm_vsclu

234

specifying an appropriate small value as a static pivot in place of the candidate sought.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsclu(za, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,

&iordering, nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum,

nfcnzfactorl, zpanelfactorl, &nsizefactorl, nfcnzindexl,

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,

zpanelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,

istatic, &spepsz, nfcnzpivot, npivotp, npivotq, zw, w, iw1, iw2,

&icon);

where:

za dcomplex za[nz] Input The nonzero elements of an unsymmetric sparse matrix A

are stored.

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector). For a complex matrix , a real

array a in this Figure is replaced with a complex array.

nz int Input The total number of the nonzero elements belong to an

unsymmetric complex sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array za.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array za in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

ipledsm int Input Control information whether to permute the large entries

to the diagonal of a matrix A.

When ipledsm = 1 is specified, a matrix A is

transformed internally permuting large entries to the

diagonal.

Otherwise no permutation is performed.

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a

permutation of columns. mz[i-1] = j indicates that the

j-th column which the element of aij belongs to is

permutated to i-th column. The element of aij is the large

entry to be permuted to the diagonal.

isclitermax int Input The upper limit for the number of iteration to seek scaling

matrices of Dr and Dc to equilibrate both rows and

 c_dm_vsclu

235

columns of matrix A.

When isclitermax ≤ 0 is specified no scaling is

done. In this case Dr and Dc are assumed as unit matrices.

When isclitermax ≥ 10 is specified, the upper limit

for the number of iteration is considered as 10.

iordering int Input Control information whether to decompose the reordered

matrix PA1PT permuted by the matrix P of ordering or to

decompose the matrix A.

When iordering = 10 is specified, calling this routine

with isw = 1 produces the informations which is needed

to generate an ordering regarding A1 and they are set in

nrowsym and nfcnzsym.

When iordering 11 is specified, it is indicated that

after an ordering is set in nperm, the computation is

resumed.

Using the informations obtained in nrowsym and

nfcnzsym after calling this routines with isw = 1 and

iordering = 10, an ordering is determined. After

specifying this ordering in nperm, this routine is called

again with isw = 1and iordering = 11 and the

computation is resumed.

LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is

decomposed into LU.

 Output iordering is set to 11 after this routine is called with

iordering = 10 and isw = 1. Therefore after an

ordering is set in nperm the computation is resumed in

the subsequent call without iordering = 11 being

specified explicitly. See Comments on use.

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See

Comments on use.

isw int Input Control information.

1) When isw = 1 is specified.

After symmetrization of a matrix and symbolic

decomposition, checking whether the sufficient

amount of memory for storing data are allocated the

computation is performed.

Call with iordering = 10 produces the

informations needed for seeking an ordering in

nrowsym and nfcnzsym. Using these

informations an ordering for SYM is determined.

After an ordering is set in nperm, calling this

routine with iordering = 11 and also isw = 1

again resumes the computation.

When iordering is neither 10 nor 11, no

ordering is specified.

c_dm_vsclu

236

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that

means that the sizes of zpanelfactorl or

zpanelfactoru or npanelindexl or

npanelindexu were not enough, the suspended

computation is resumed.

Before calling again with isw = 2, the

zpanelfactorl or zpanelfactoru or

npanelindexl or npanelindexu must be

reallocated with the necessary sizes which are

returned in the nsizefactorl nsizefactoru

or nsizeindexl or nsizeindezu at the

precedent call and specified in corresponding

arguments.

Besides, except these arguments and isw as control

information, the values in the other augments must

not be changed between the previous and following

calls.

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices

of nonzero pattern of the lower triangular part of

SYM = A1 + A1
T in the compressed column storage

method are generated.

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of

the first row index of each column stored in array

nrowsym in the compressed column storage method

which stores the nonzero pattern of the lower part of a

matrix SYM column by column.

nfcnzsym[n] = nsymz + 1 where nsymz is the total

nonzero elements in the lower triangular part.

nassign int nassign[n] Output L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in zpanelfactorl and

zpanelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign[i-1].

 Input When isw ≠ 1, the values stored in the first call are

reused. Regarding

the storage methods of decomposed matrices, refer to

Figure c_dm_vsclu-1.

nsupnum int Output The total number of supernodes.

 Input The values in the first call are reused when isw  1

specified. ( n)

nfcnzfactorl long Output The decomposed matrices L and U of an unsymmetric

 c_dm_vsclu

237

nfcnzfactorl[n+1] complex sparse matrix are computed for each supernode

respectively. The columns of L belonging to each

supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is

mapped into zpanelfactorl consecutively or the

location of panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1.

 Input The values set by the first call are reused when isw  1

specified.

zpanelfactor

l

dcomplex

zpanelfactorl

[nsizefactorl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign

[i-1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[i-1][0] 

ndim[i-1][1] The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1,...,ndim[i-1][0], t = 1

,..., ndim[i-1][1]. The corresponding block diagonal

portion of the unit upper triangular matrix U except its

diagonals is stored in the panel[t-1][s-1], s < t, t

= 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1. See Comments on use.

nsizefactorl long Input The size of the array zpanelfactorl.

 Output The necessary size for the array zpanelfactorl is

returned. See Comments on use.

nfcnzindexl long

nfcnzindexl[n+1]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

c_dm_vsclu

238

refer to Figure c_dm_vsclu-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexl int npanelindexl

[nsizeindexl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix into which

SYM is permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1. See Comments on use.

nsizeindexl long Input The size of the array npanelindexl.

 Output The necessary size is returned. See Comments on use.

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][2] indicates the total amount of the size of

the first dimension of the panel where a matrix U is

transposed and stored and the size of its block diagonal

portion.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1.

 Input When isw  1, the values set by the first call are reused.

nfcnzfactoru long

nfcnzfactoru[n+1]

Output Regarding a matrix U derived from LU decomposition of

an unsymmetric complex sparse matrix, the rows of U

except the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into zpanelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1.

 Input When isw  1, the values set by the first call are reused.

zpanelfactor

u

dcomplex

zpanelfactoru

[nsizefactoru]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

 c_dm_vsclu

239

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

i-th block can be considered to be two dimensional array

of { ndim[i-1][2] - ndim[i-1][1] }  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

transposed and stored in this panel[t-1][s-1], s =

1,..., ndim[i-1][2] – ndim[i-1][1], t = 1

,..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1. See Comments on use.

nsizefactoru long Input The size of the array zpanelfactoru.

 Output The necessary size for the array zpanelfactoru is

returned. See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexu int npanelindexu

[nsizeindexu]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix into which SYM is

permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclu-1. See Comments on use.

nsizeindexu long Input The size of the array npanelindexu.

 Output The necessary size is returned. See Comments on use.

nposto int nposto[n] Output The information about what column number of A the i-th

node in post order corresponds to is stored.

 Input When isw  1, the values set by the first call are reused.

c_dm_vsclu

240

See Comments on use.

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

 Input When isw  1, the values set by the first call are reused.

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

 Input The values set by the first call are reused when isw  1

specified.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

 Output When epsz ≤ 0.0, it is set to the standard value.

See Comments on use.

thepsz double Input Threshold used in judgement for a pivot. Immediately

after a candidate in pivot search is considered to have the

value greater than or equal to the threshold specified, it is

accepted as a pivot and the search of a pivot is broken off.

For example, 10-2.

 Output When thepsz ≤ 0.0, 10-2 is set.

When epsz ≥ thepsz > 0.0, it is set to the value of

epsz.

ipivot int Input Control information on pivoting which indicates whether

a pivot is searched and what kind of pivoting is chosen if

any.

For example, 40 for complete pivoting.

ipivot < 10 or ipivot ≥ 50, no pivoting.

10 ≤ ipivot < 20, partial pivoting

20 ≤ ipivot < 30, diagonal pivoting

21 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting.

22 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting. If Rook pivoting fails, it is

changed to complete pivoting.

30 ≤ ipivot < 40, Rook pivoting

32 : When within a supernode Rook pivoting fails, it is

changed to complete pivoting.

40 ≤ ipivot < 50, complete pivoting

istatic int Input Control information indicating whether Static pivoting is

taken.

1) When istatic =1 is specified.
When the pivot searched within a supernode is not
greater than spepsz, it is replaced with its
approximate value of a complex number with the
absolute value of spepsz.
If its value is 0.0, spepsz is used as an
approximation value.
The following conditions must be satisfied.
a) epsz must be less than or equal to the standard
value of epsz.
b) Scaling must be performed with isclitermax

 c_dm_vsclu

241

=10.
c) thepsz ≥ spepsz must hold.

2) When istatic ≠ 1 is specified.

No static pivot is performed.

spepsz double Input The approximate value used in Static pivoting when

istatic = 1 is specified.

The following conditions must hold.

thepsz ≥ spepsz ≥ epsz

 Output When spepsz < epsz, it is set to 10-10.

nfcnzpivot int nfcnzpivot

[nsupnum+1]

Output The location for the storage where the history of relative

row and column exchanges for pivoting within each

supernode is stored.

The block number of the section where the information

on the i-th supernode is assigned is known by j =

nassign[i-1]. The position of the first element of

that section is stored in nfcnzpivot[j-1]. The

information of exchange rows and columns within the i-th

supernode is stored in the elements of is =

nfcnzpivot[j-1], …, ie = nfcnzpivot[j-1] +

ndim[j-1][1] - 1 in npivotp and npivotq

respectively.

npivotp int npivotp[n] Output The information on exchanges of rows within each

supernode is stored.

npivotq int npivotq[n] Output The information on exchanges of columns within each

supernode is stored.

zw dcomplex zw[2*nz] Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

w double

w[4*nz+6*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw1 int

iw1[2*nz+2*

(n+1)+16*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw2 int

iw2[47*n+47+nz+4*

(n+1)+2*(nz+n)]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

10000 When istatic = 1 is specified, Static pivot

which replaces the pivot candidate with too small

value with spepsz is made.

Continued.

c_dm_vsclu

242

Code Meaning Processing

20000 The pivot became relatively zero. The coefficient

matrix A may be singular.

Processing is discontinued.

20100 When ipledsm is specified, maximum

matching with the length n is sought in order to

permute large entries to the diagonal but can not

be found. The coefficient matrix A may be

singular.

20200 When seeking diagonal matrices for equilibrating

both rows and columns, there is a zero vector in

either rows or columns of the matrix A. The

coefficient matrix A may be singular.

Processing is discontinued.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindexl < 1

• nsizeindexu < 1

• isw < 1

• isw > 2

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

30500 When istatic = 1 is specified, the required

conditions are not satisfied.

epsz is greater than 16u of the standard value

or isclitermax < 10

or spepsz > thepsz

31000 The value of nsizefactorl is not enough as

the size of zpanelfactorl,

or the value of nsizeindexl is not enough as

the size of npanelindexl,

or the value of nsizefactoru is not enough as

the size of zpanelfactoru,

 or the value of nsizeindexu is not enough as

the size of npanelindexu.

Reallocate the zpanelfactorl or

npanelindexl or

zpanelfactoru or npanelindexu

with the necessary size which are returned in the

nsizefactorl or nsizeindexl or

nsizefactoru or nsizeindexu

respectively

and call this routine again with isw =2 specified.

 c_dm_vsclu

243

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vsclu-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim

[j-1][1] from the p-th element of zpanelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length ndim

[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1,..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of zpanelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][2] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

for (i = 1; i <= n; i++) {

c_dm_vsclu

244

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix , “References.” in detail.

b)
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its

imaginary part for pivot.

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum

value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is

approximately continued replacing it with spepsz.

c)
The necessary sizes for the array zpanelfactorl, npanelindexl, zpanelfactoru and npanelindexu that

store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of

the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such

as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw = 1.

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after

reallocating the arrays with the necessary sizes.

d)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

e)
A system of equations Ax = b can be solved by calling c_dm_vsclux subsequently in use of the results of LU
decomposition obtained by this routine.
The following arguments used in this routine are specified.

za, nz, nrow, nfcnz, n,

ipledsm, mz, iordering, nperm,

nassign, nsupnum,

nfcnzfactorl, zpanelfactorl,

nsizefactorl, nfcnzindexl, npanelindexl,

 c_dm_vsclu

245

nsizeindexl, ndim,

nfcnzfactoru, zpanelfactoru, nsizefactoru,

nfcnzindexu, npanelindexu, nsizeindexu, nposto,

sclrow,sclcol,

nfcnzpivot,

npivotp, npivotq, iw2

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real

sparse matrix A built in this way is stored into a complex sparse array and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 40

#define KX NORD

#define KY NORD

#define KZ NORD

#define N KX * KY * KZ

#define NBORDER (N + 1)

#define NOFFDIAG 6

#define K (N + 1)

#define NDIAG 7

#define NALL NDIAG * N

#define ZWL 2 * NALL

#define WL 4 * NALL + 6 * N

#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N

#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)

c_dm_vsclu

246

void init_mat_diag(double, double, double, double, double*, int*, int, int, int,

 double, double, double, int, int, int);

double errnrm(dcomplex*, dcomplex*, int);

dcomplex comp_sub(dcomplex, dcomplex);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 dcomplex za[K * NDIAG], zwc[K * NDIAG],

 zw[ZWL], zone;

 int nrow[K * NDIAG], nfcnz[N + 1],

 nrowsym[K * NDIAG + N], nfcnzsym[N + 1],

 iwc[K * NDIAG][2];

 int nperm[N],

 nposto[N], ndim[N][3],

 nassign[N],

 mz[N],

 iw1[IW1L], iw2[IW2L];

 double w[WL];

 dcomplex *zpanelfactorl, *zpanelfactoru;

 int *npanelindexl, *npanelindexu;

 dcomplex zdummyfl, zdummyfu;

 int ndummyil,

 ndummyiu;

 long nsizefactorl,

 nsizeindexl,

 nsizeindexu,

 nsizefactoru,

 nfcnzfactorl[N + 1],

 nfcnzfactoru[N + 1],

 nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 dcomplex zb[N], zsolex[N];

 double epsz, thepsz, spepsz,

 sclrow[N], sclcol[N];

 int ipivot, istatic, nfcnzpivot[N + 1],

 npivotp[N], npivotq[N],

 irefine, itermax, iter, ipledsm;

 double err, va1, va2, va3, vc, xl, yl, zl, epsr;

 int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,

 isclitermax, isw, nsupnum;

 zone.re = 1.0;

 zone.im = 0.0;

 c_dm_vsclu

247

 printf(" LU DECOMPOSITION METHOD\n");

 printf(" FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n\n");

 for (i = 0; i < N; i++) {

 zsolex[i] = zone;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n",

 zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);

 va1 = 1.0;

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,

 KX, KY, KZ, xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

c_dm_vsclu

248

 numnz = 1;

 for (j = 0; j < N; j++) {

 ntopcfg = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (ntopcfg == 1) {

 nfcnz[j] = numnz;

 ntopcfg = 0;

 }

 if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {

 continue;

 } else {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 za[numnz - 1].re = diag2[i][j];

 za[numnz - 1].im = 0.0;

 nrow[numnz - 1] = ncol;

 numnz++;

 }

 }

 }

 }

 nfcnz[N] = numnz;

 nz = numnz - 1;

 c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,

 zb, zwc, (int *)iwc, &icon);

/* INITIAL CALL WITH IORDER=1 */

 iordering = 0;

 ipledsm = 1;

 isclitermax = 10;

 isw = 1;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindexl = 1;

 nsizeindexu = 1;

 c_dm_vsclu

249

 epsz = 1.0e-16;

 thepsz = 1.0e-2;

 spepsz = 0.0;

 ipivot = 40;

 istatic = 0;

 irefine = 1;

 epsr = 0.0;

 itermax = 10;

 c_dm_vsclu(za, nz, nrow, nfcnz, N,

 ipledsm, mz, isclitermax, &iordering,

 nperm, isw,

 nrowsym, nfcnzsym,

 nassign,

 &nsupnum,

 nfcnzfactorl, &zdummyfl,

 &nsizefactorl,

 nfcnzindexl,

 &ndummyil, &nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, &zdummyfu,

 &nsizefactoru,

 nfcnzindexu,

 &ndummyiu, &nsizeindexu,

 nposto,

 sclrow, sclcol,

 &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot,

 npivotp, npivotq,

 zw, w, iw1, iw2, &icon);

 printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",

 icon, nsizefactorl, nsizefactoru, nsizeindexl);

 printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);

 zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));

 zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));

 npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));

 npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));

 isw = 2;

 c_dm_vsclu(za, nz, nrow, nfcnz, N,

 ipledsm, mz, isclitermax, &iordering,

 nperm, isw,

 nrowsym, nfcnzsym,

c_dm_vsclu

250

 nassign,

 &nsupnum,

 nfcnzfactorl, zpanelfactorl,

 &nsizefactorl,

 nfcnzindexl,

 npanelindexl, &nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, zpanelfactoru,

 &nsizefactoru,

 nfcnzindexu,

 npanelindexu, &nsizeindexu,

 nposto,

 sclrow, sclcol,

 &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot,

 npivotp, npivotq,

 zw, w, iw1, iw2, &icon);

 c_dm_vsclux(N,

 iordering,

 nperm,

 zb,

 nassign,

 nsupnum,

 nfcnzfactorl, zpanelfactorl,

 nsizefactorl,

 nfcnzindexl,

 npanelindexl, nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, zpanelfactoru,

 nsizefactoru,

 nfcnzindexu,

 npanelindexu, nsizeindexu,

 nposto,

 ipledsm, mz,

 sclrow, sclcol,

 nfcnzpivot,

 npivotp, npivotq,

 irefine, epsr, itermax, &iter,

 za, nz, nrow, nfcnz,

 iw2, &icon);

 err = errnrm(zsolex, zb, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]);

 c_dm_vsclu

251

 printf(" ICON = %d\n\n", icon);

 printf(" N = %d\n\n", N);

 printf(" ERROR = %lf\n", err);

 printf(" ITER=%d\n\n\n", iter);

 if (err < 1.0e-8 && icon == 0) {

 printf("********** OK **********\n");

 } else {

 printf("********** NG **********\n");

 }

 free(zpanelfactorl);

 free(zpanelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc,

 double *d_l, int *offset,

 int nx, int ny, int nz, double xl, double yl, double zl,

 int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

{

 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;

 double hx, hy, hz, hx2, hy2, hz2;

/* NDIAG CANNOT BE GREATER THAN 7 */

 ndiag_loc = ndiag;

 if (ndiag > 7)

 ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

c_dm_vsclu

252

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp; i++) {

 for (j = 0; j < ndiag; j++) {

 d_l[(j * ndivp) + i] = 0.0;

 }

 }

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

 c_dm_vsclu

253

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */

 k0 = (js -1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 goto label_100;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[(l * ndivp) + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[(l * ndivp) + j] += 2.0 / hz2;

 }

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

label_100: ;

c_dm_vsclu

254

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

 * | Z1 - Z2 |

 == */

double errnrm(dcomplex *z1, dcomplex *z2, int len) {

 double rtc, s;

 dcomplex ss;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = comp_sub(z1[i], z2[i]);

 s += ss.re * ss.re + ss.im * ss.im;

 }

 rtc = sqrt(s);

 return(rtc);

}

dcomplex comp_sub(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re - so2.re;

 obj.im = so1.im - so2.im;

 return obj;

}

5. Method

Consult the entry for DM_VSCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as[2], [13] ,

[17] , [19] , [22] , [23] , [46] ,[53] , [59] , [64] and [65].

 c_dm_vsclux

255

c_dm_vsclux

A system of linear equations with LU-decomposed unsymmetric

complex sparse matrices

ierr = c_dm_vsclux(n, iordering, nperm

zb, nassign, nsupnum,

nfcnzfactorl, zpanelfactorl,

nsizefactorl, nfcnzindexl,

npanelindexl,

nsizeindexl, ndim,

nfcnzfactoru, zpanelfactoru,

nsizefactoru,

nfcnzindexu, npanelindexu,

nsizeindexu, nposto,

ipledsm, mz,

sclrow, sclcol, nfcnzpivot,

npivotp, npivotq, irefine, epsr,

itermax, &iter,

za, nz, nrow, nfcnz,

iw2, &icon);

1. Function

An n × n unsymmetric complex sparse matrix A of which LU decomposition is made as below is given. In this

decomposition the large entries of an n × n unsymmetric complex sparse matrix A are permutated to the diagonal and then

it is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is

taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following

form. This routine solves the following linear equation in use of these results of LU decomposition.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its

imaginary part for the permutation of elements, scaling and pivot.

 Ax = b

A matrix A is decomposed into as below.

 PrsQPDrAPcDcPTQTPcs = LU

The unsymmetric complex sparse matrix A is transformed as below.

 A1 = DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a

diagonal matrix for scaling columns.

 A2 = QPA1PTQT

c_dm_vsclux

256

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 +

A1
T and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower triangular matrix

and U is a unit upper triangular matrix.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsclux(n, iordering, nperm, zb, nassign, nsupnum, nfcnzfactorl,

zpanelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,

nsizeindexl, (int *)ndim, nfcnzfactoru, zpanelfactoru,

nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,

ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,

irefine, epsr, itermax, &iter, za, nz, nrow, nfcnz, iw2, &icon);

where:

n int Input Order n of matrix A.

iordering int Input When iordering 11 is specified, it is indicated that LU

decomposition is performed with an ordering

specified in nperm.

The matrix PA1PT is decomposed into LU decomposition.

Otherwise. No ordering is specified.

See Comments on use.

nperm int nperm[n] Input When iordering = 11 is specified, a vector presenting

the permutation matrix P used is stored.

See Comments on use.

zb dcomplex zb[n] Input The right-hand side constant vector b of a system of

linear equations Ax = b.

 Output Solution vector x.

nassign int nassign[n] Input L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in zpanelfactorl and

zpanelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign[i-1].

Regarding the storage methods of decomposed matrices,

refer to Figure c_dm_vsclux-1.

nsupnum int Input The total number of supernodes.( n)

nfcnzfactorl long Input The decomposed matrices L and U of an unsymmetric

 c_dm_vsclux

257

nfcnzfactorl[n+1] complex sparse matrix are computed for each supernode

respectively. The columns of L belonging to each

supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is mapped

into zpanelfactorl consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

zpanelfactor

l

dcomplex

zpanelfactorl

[nsizefactorl]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign

[i-1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[j-1][0] 

ndim[j-1][1]. The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1,..., ndim[i-1][0], t = 1,

..., ndim[i-1][1]. The corresponding block diagonal

portion of the unit upper triangular matrix U except its

diagonals is stored in the panel[t-1][s-1], s < t,

 t = 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

nsizefactorl long Input The size of the array zpanelfactorl.

nfcnzindexl long

nfcnzindexl[n+1]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

npanelindexl int npanelindexl

[nsizeindexl]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

c_dm_vsclux

258

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix into which

SYM is permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

nsizeindexl long Input The size of the array npanelindexl.

ndim int ndim[n][3] Input ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][2] indicates the total amount of the size of

the first dimension of the panel where a matrix U is

transposed and stored and the size of its block diagonal

portion.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

nfcnzfactoru long

nfcnzfactoru[n+1]

Input Regarding a matrix U derived from LU decomposition of

an unsymmetric complex sparse matrix, the rows of U

except the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into zpanelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

zpanelfactor

u

dcomplex

zpanelfactoru

[nsizefactoru]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the i-th

block can be considered to be two dimensional array of

{ndim[i-1][2] – ndim[i-1][1]}  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

 c_dm_vsclux

259

transposed and stored in this panel[t-1][s-1], s =

1,...,ndim[i-1][2] – ndim[i-1][1], t = 1,

..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

nsizefactoru long Input The size of the array zpanelfactoru.

See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

npanelindexu int npanelindexu

[nsizeindexu]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix into which SYM is

permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsclux-1.

nsizeindexu long Input The size of the array npanelindexu.

nposto int nposto[n] Input The information about what column number of A the i-th

node in post order corresponds to is stored.

See Comments on use.

ipledsm int Input Information indicating whether for LU decomposition it

is specified to permute the large entries to the diagonal of

a matrix A.

When ipledsm = 1 is specified, a matrix A is

transformed internally permuting large entries to the

diagonal.

Otherwise no permutation is performed.

mz int mz[n] Input When ipledsm = 1 is specified, it indicates a

permutation of columns. mz[i-1] = j indicates that the

j-th column which the element of aij belongs to is

permutated to i-th column. The element of aij is the large

c_dm_vsclux

260

entry to be permuted to the diagonal.

sclrow double sclrow[n] Input The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

sclcol double sclcol[n] Input The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

nfcnzpivot int nfcnzpivot

[nsupnum+1]

Input The location for the storage where the history of relative

row and column exchanges for pivoting within each

supernode is stored.

The block number of the section where the information

on the i-th supernode is assigned is known by j =

nassign[i-1]. The position of the first element of

that section is stored in nfcnzpivot[j-1]. The

information of exchange rows and columns within the i-th

supernode is stored in the elements of is =

nfcnzpivot[j-1],…, ie = nfcnzpivot[j-1] +

ndim[j-1][1] - 1 in npivotp and npivotq

respectively

npivotp int npivotp[n] Input The information on exchanges of rows within each

supernode is stored.

npivotq int npivotq[n] Input The information on exchanges of columns within each

supernode is stored.

irefine int Input Control information indicating whether iterative

refinement is performed when the solution is computed in

use of results of LU decomposition. A residual vector is

computed in quadruple precision.

When irefine = 1 is specified.

The iterative refinement is performed. It is iterated until in

the sequences of the solutions obtained in refinement the

difference of the absolute values of their corresponding

residual vectors become larger than a fourth of that of

immediately previous ones.

When irefine ≠ 1is specified.

No iterative refinement is performed.

epsr double Input Criterion value to judge if the absolute value of the

residual vector

b-Ax is sufficiently smaller compared with the absolute

value of b.

When epsr ≤ 0.0, it is set to 10-6.

itermax int Input Upper limit of iterative count for refinement ( 1).

iter int Output Actual iterative count for refinement.

za dcomplex za[nz] Input The nonzero elements of an unsymmetric complex sparse

matrix A are stored.

For the compressed column storage method, refer to

Figure c_dm_vmvsccc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector). For a complex matrix , a real

 c_dm_vsclux

261

array a in this Figure is replaced with a complex array.

nz int Input The total number of the nonzero elements belong to an

unsymmetric complex sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array za.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array za in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

iw2 int

iw2[47*n+47+nz+4*

(n+1)+2*(nz+n)]

Work

area

The data derived from calling c_dm_vsclu of LU

decomposition of an unsymmetric complex sparse matrix

is transferred in this work area. The contents must not be

changed among calls.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20400 There is a zero element in diagonal of resultant

matrices of LU decomposition.

Processing is discontinued.

20500 The norm of residual vector for the solution

vector is greater than that of b multiplied by

epsr, which is the right term constant vector in

Ax = b. The coefficient matrix A may be close to

a singular matrix.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindexl < 1

• nsizeindexu < 1

• itermax < 1 when irefine = 1.

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] - nfcnz[i-1] > n.

c_dm_vsclux

262

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vsclux-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim

[j-1][1] from the p-th element of zpanelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length ndim

[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of zpanelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][2] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1,…, ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

The results of LU decomposition obtained by c_dm_vsclu is used.

See note c), "Comments on use." of c_dm_vsclu and Example program of c_dm_vsclux.

 c_dm_vsclux

263

b)
When the element pij=1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

c)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real

sparse matrix A built in this way is stored into a complex sparse matrix and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 40

#define KX NORD

#define KY NORD

#define KZ NORD

c_dm_vsclux

264

#define N KX * KY * KZ

#define NBORDER (N + 1)

#define NOFFDIAG 6

#define K (N + 1)

#define NDIAG 7

#define NALL NDIAG * N

#define ZWL 2 * NALL

#define WL 4 * NALL + 6 * N

#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N

#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)

void init_mat_diag(double, double, double, double, double*, int*, int, int, int,

 double, double, double, int, int, int);

double errnrm(dcomplex*, dcomplex*, int);

dcomplex comp_sub(dcomplex, dcomplex);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 dcomplex za[K * NDIAG], zwc[K * NDIAG],

 zw[ZWL], zone;

 int nrow[K * NDIAG], nfcnz[N + 1],

 nrowsym[K * NDIAG + N], nfcnzsym[N + 1],

 iwc[K * NDIAG][2];

 int nperm[N],

 nposto[N], ndim[N][3],

 nassign[N],

 mz[N],

 iw1[IW1L], iw2[IW2L];

 double w[WL];

 dcomplex *zpanelfactorl, *zpanelfactoru;

 int *npanelindexl, *npanelindexu;

 dcomplex zdummyfl, zdummyfu;

 int ndummyil,

 ndummyiu;

 long nsizefactorl,

 nsizeindexl,

 nsizeindexu,

 nsizefactoru,

 nfcnzfactorl[N + 1],

 nfcnzfactoru[N + 1],

 nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 dcomplex zb[N], zsolex[N];

 c_dm_vsclux

265

 double epsz, thepsz, spepsz,

 sclrow[N], sclcol[N];

 int ipivot, istatic, nfcnzpivot[N + 1],

 npivotp[N], npivotq[N],

 irefine, itermax, iter, ipledsm;

 double err, va1, va2, va3, vc, xl, yl, zl, epsr;

 int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,

 isclitermax, isw, nsupnum;

 zone.re = 1.0;

 zone.im = 0.0;

 printf(" LU DECOMPOSITION METHOD\n");

 printf(" FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n\n");

 for (i = 0; i < N; i++) {

 zsolex[i] = zone;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n",

 zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);

 va1 = 1.0;

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,

 KX, KY, KZ, xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

c_dm_vsclux

266

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnz = 1;

 for (j = 0; j < N; j++) {

 ntopcfg = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (ntopcfg == 1) {

 nfcnz[j] = numnz;

 ntopcfg = 0;

 }

 if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {

 continue;

 } else {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 za[numnz - 1].re = diag2[i][j];

 za[numnz - 1].im = 0.0;

 nrow[numnz - 1] = ncol;

 numnz++;

 }

 }

 }

 }

 nfcnz[N] = numnz;

 nz = numnz - 1;

 c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,

 c_dm_vsclux

267

 zb, zwc, (int *)iwc, &icon);

/* INITIAL CALL WITH IORDER=1 */

 iordering = 0;

 ipledsm = 1;

 isclitermax = 10;

 isw = 1;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindexl = 1;

 nsizeindexu = 1;

 epsz = 1.0e-16;

 thepsz = 1.0e-2;

 spepsz = 0.0;

 ipivot = 40;

 istatic = 0;

 irefine = 1;

 epsr = 0.0;

 itermax = 10;

 c_dm_vsclu(za, nz, nrow, nfcnz, N,

 ipledsm, mz, isclitermax, &iordering,

 nperm, isw,

 nrowsym, nfcnzsym,

 nassign,

 &nsupnum,

 nfcnzfactorl, &zdummyfl,

 &nsizefactorl,

 nfcnzindexl,

 &ndummyil, &nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, &zdummyfu,

 &nsizefactoru,

 nfcnzindexu,

 &ndummyiu, &nsizeindexu,

 nposto,

 sclrow, sclcol,

 &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot,

 npivotp, npivotq,

 zw, w, iw1, iw2, &icon);

 printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",

 icon, nsizefactorl, nsizefactoru, nsizeindexl);

 printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);

c_dm_vsclux

268

 zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));

 zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));

 npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));

 npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));

 isw = 2;

 c_dm_vsclu(za, nz, nrow, nfcnz, N,

 ipledsm, mz, isclitermax, &iordering,

 nperm, isw,

 nrowsym, nfcnzsym,

 nassign,

 &nsupnum,

 nfcnzfactorl, zpanelfactorl,

 &nsizefactorl,

 nfcnzindexl,

 npanelindexl, &nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, zpanelfactoru,

 &nsizefactoru,

 nfcnzindexu,

 npanelindexu, &nsizeindexu,

 nposto,

 sclrow, sclcol,

 &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot,

 npivotp, npivotq,

 zw, w, iw1, iw2, &icon);

 c_dm_vsclux(N,

 iordering,

 nperm,

 zb,

 nassign,

 nsupnum,

 nfcnzfactorl, zpanelfactorl,

 nsizefactorl,

 nfcnzindexl,

 npanelindexl, nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, zpanelfactoru,

 nsizefactoru,

 nfcnzindexu,

 npanelindexu, nsizeindexu,

 nposto,

 c_dm_vsclux

269

 ipledsm, mz,

 sclrow, sclcol,

 nfcnzpivot,

 npivotp, npivotq,

 irefine, epsr, itermax, &iter,

 za, nz, nrow, nfcnz,

 iw2, &icon);

 err = errnrm(zsolex, zb, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]);

 printf(" ICON = %d\n\n", icon);

 printf(" N = %d\n\n", N);

 printf(" ERROR = %lf\n", err);

 printf(" ITER=%d\n\n\n", iter);

 if (err < 1.0e-8 && icon == 0) {

 printf("********** OK **********\n");

 } else {

 printf("********** NG **********\n");

 }

 free(zpanelfactorl);

 free(zpanelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc,

 double *d_l, int *offset,

 int nx, int ny, int nz, double xl, double yl, double zl,

 int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

c_dm_vsclux

270

{

 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;

 double hx, hy, hz, hx2, hy2, hz2;

/* NDIAG CANNOT BE GREATER THAN 7 */

 ndiag_loc = ndiag;

 if (ndiag > 7)

 ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp; i++) {

 for (j = 0; j < ndiag; j++) {

 d_l[(j * ndivp) + i] = 0.0;

 }

 }

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 c_dm_vsclux

271

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */

 k0 = (js -1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 goto label_100;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[(l * ndivp) + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[(l * ndivp) + j] += 2.0 / hz2;

 }

 }

 l++;

c_dm_vsclux

272

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

label_100: ;

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

 * | Z1 - Z2 |

 == */

double errnrm(dcomplex *z1, dcomplex *z2, int len) {

 double rtc, s;

 dcomplex ss;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = comp_sub(z1[i], z2[i]);

 s += ss.re * ss.re + ss.im * ss.im;

 }

 rtc = sqrt(s);

 return(rtc);

}

dcomplex comp_sub(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re - so2.re;

 obj.im = so1.im - so2.im;

 return obj;

}

 c_dm_vscs

273

c_dm_vscs

A system of linear equations with unsymmetric complex sparse matrices

(LU decomposition method)

ierr = c_dm_vscs(za, nz, nrow, nfcnz, n,

ipledsm, mz, isclitermax,

&iordering, nperm, isw,

nrowsym, nfcnzsym, zb,

nassign, &nsupnum,

nfcnzfactorl, zpanelfactorl,

&nsizefactorl, nfcnzindexl,

npanelindexl,

&nsizeindexl, ndim,

nfcnzfactoru, zpanelfactoru,

&nsizefactoru,

nfcnzindexu, npanelindexu,

&nsizeindexu, nposto,

sclrow, sclcol,

&epsz, &thepsz, ipivot, istatic,

&spepsz, nfcnzpivot,

npivotp, npivotq, irefine, epsr,

itermax, &iter,

zw, w, iw1, iw2, &icon);

1. Function

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the diagonal and then it is scaled in

order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations Ax = b in use

of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each

supernode.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its

imaginary part for the permutation of elements, scaling and pivot.

 Ax = b

The unsymmetric complex sparse matrix is transformed as below.

 A1 = DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a

diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 +

c_dm_vscs

274

A1
T and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower triangular matrix

and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of

a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU

specifying an appropriate small value as a static pivot in place of the candidate sought.

The solution is computed using LU decomposition.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c_dm_vscs(za, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,

&iordering, nperm, isw, nrowsym, nfcnzsym, zb, nassign, &nsupnum,

nfcnzfactorl, zpanelfactorl, &nsizefactorl, nfcnzindexl,

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,

zpanelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,

istatic, &spepsz, nfcnzpivot, npivotp, npivotq, irefine, epsr,

itermax, &iter, zw, w, iw1, iw2, &icon);

where:

za dcomplex za[nz] Input The nonzero elements of an unsymmetric complex sparse

matrix A are stored.

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector). For a complex matrix, a real

array a in this Figure is replaced with a complex array.

nz int Input The total number of the nonzero elements belong to an

unsymmetric complex sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array za.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array za in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

ipledsm int Input Control information whether to permute the large entries

to the diagonal of a matrix A.

When ipledsm = 1 is specified, a matrix A is

transformed internally permuting large entries to the

diagonal.

 c_dm_vscs

275

Otherwise no permutation is performed.

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a

permutation of columns. mz[i-1] = j indicates that the

j-th column which the element of aij belongs to is

permutated to i-th column. The element of aij is the large

entry to be permuted to the diagonal.

isclitermax int Input The upper limit for the number of iteration to seek scaling

matrices of Dr and Dc to equilibrate both rows and

columns of matrix A.

When isclitermax ≤ 0 is specified no scaling is

done. In this case Dr and Dc are assumed as unit matrices.

When isclitermax ≥ 10 is specified, the upper limit

for the number of iteration is considered as 10.

iordering int Input Control information whether to decompose the reordered

matrix PA1PT permuted by the matrix P of ordering or to

decompose the matrix A.

When iordering = 10 is specified, calling this routine

with isw = 1 produces the informations which is needed

to generate an ordering regarding A1 and they are set in

nrowsym and nfcnzsym.

When iordering 11 is specified, it is indicated that

after an ordering is set in nperm, the computation is

resumed.

Using the informations obtained in nrowsym and

nfcnzsym after calling this routines with isw = 1 and

iordering = 10, an ordering is determined. After

specifying this ordering in nperm, this routine is called

again with isw = 1and iordering = 11 and the

computation is resumed.

LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is

decomposed into LU.

 Output iordering is set to 11 after this routine is called with

iordering = 10 and isw = 1. Therefore after an

ordering is set in nperm the computation is resumed in

the subsequent call without iordering = 11 being

specified explicitly. See Comments on use.

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See

Comments on use.

isw int Input Control information.

1) When isw = 1 is specified.

After symmetrization of a matrix and symbolic

decomposition, checking whether the sufficient

amount of memory for storing data are allocated the

computation is performed.

Call with iordering = 10 produces the

c_dm_vscs

276

informations needed for seeking an ordering in

nrowsym and nfcnzsym. Using these

informations an ordering for SYM is determined.

After an ordering is set in nperm, calling this

routine with iordering =11 and also isw = 1

again resumes the computation.

When iordering is neither 10 nor 11, no ordering

is specified.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that

means that the sizes of zpanelfactorl or

zpanelfactoru or npanelindexl or

npanelindexu were not enough, the suspended

computation is resumed.

Before calling again with isw = 2, the

zpanelfactorl or zpanelfactoru or

npanelindexl or npanelindexu must be

reallocated with the necessary sizes which are

returned in the nsizefactorl nsizefactoru

or nsizeindexl or nsizeindezu at the

precedent call and specified in corresponding

arguments.

Besides, except these arguments and isw as control

information, the values in the other augments must

not be changed between the previous and following

calls.

3) When isw = 3 specified.

The subsequent call with isw = 3 solves another

system of equations of which the coefficient matrix is

as same as previous call but the right-hand side

vector b is changed. In this case, the information

obtained by the previous LU decomposition can be

reused.

Besides, except isw as control information and zb

for storing the new right-hand side b, the values in

the other arguments must not be changed between

the previous and following calls.

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices

of nonzero pattern of the lower triangular part of SYM =

A1 + A1
T in the compressed column storage method are

generated.

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of

the first row index of each column stored in array

nrowsym in the compressed column storage method

which stores the nonzero pattern of the lower part of a

matrix SYM column by column.

 c_dm_vscs

277

nfcnzsym[n] = nsymz + 1 where nsymz is the total

nonzero elements in the lower triangular part.

zb dcomplex zb[n] Input The right-hand side constant vector b of a system of

linear equations Ax = b.

 Output Solution vector x.

nassign int nassign[n] Output L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in zpanelfactorl and

zpanelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign [i-1].

 Input When isw ≠ 1, the values stored in the first call are

reused. Regarding

the storage methods of decomposed matrices, refer to

Figure c_dm_vscs-1.

nsupnum int Output The total number of supernodes.

 Input The values in the first call are reused when isw  1

specified. ( n)

nfcnzfactorl long

nfcnzfactorl[n+1]

Output The decomposed matrices L and U of an unsymmetric

complex sparse matrix are computed for each supernode

respectively. The columns of L belonging to each

supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is

mapped into zpanelfactorl consecutively or the

location of panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1.

 Input The values set by the first call are reused when isw  1

specified.

zpanelfactor

l

dcomplex

zpanelfactorl

[nsizefactorl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel with

the corresponding parts of the decomposed matrix U in its

block diagonal portion. The block number of the section

where the panel corresponding to the i-th supernode is

assigned is known from j = nassign[i-1]. The

location of its top of subarray including the portion of

decomposed matrices is stored in nfcnzfactorl

[j-1].

The size of the panel in the i-th block can be considered

c_dm_vscs

278

to be two dimensional array of ndim[i-1][0] 

ndim[i-1][1]. The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1, ..., ndim[i-1][0],

 t = 1, ..., ndim[i-1][1]. The corresponding block

diagonal portion of the unit upper triangular matrix U

except its diagonals is stored in the panel

[t-1][s-1], s < t, t = 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1. See Comments on use.

nsizefactorl long Input The size of the array panelfactorl.

 Output The necessary size for the array panelfactorl is

returned. See Comments on use.

nfcnzindexl long

nfcnzindexl[n+1]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel with

the corresponding parts of the decomposed matrix U in its

block diagonal portion. The index number of the top array

element of the one dimensional subarray where the i-th

row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexl int npanelindexl

[nsizeindexl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix into which

SYM is permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1. See Comments on use.

nsizeindexl long Input The size of the array npanelindexl.

 Output The necessary size is returned. See Comments on use.

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][2] indicates the total amount of the size of

the first dimension of the panel where a matrix U is

 c_dm_vscs

279

transposed and stored and the size of its block diagonal

portion.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1.

 Input When isw  1, the values set by the first call are reused.

nfcnzfactoru long

nfcnzfactoru[n+1]

Output Regarding a matrix U derived from LU decomposition of

an unsymmetric complex sparse matrix, the rows of U

except the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into zpanelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1.

 Input When isw  1, the values set by the first call are reused.

zpanelfactor

u

dcomplex

zpanelfactoru

[nsizefactoru]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

i-th block can be considered to be two dimensional array

of {ndim[i-1][2] – ndim[i-1][1]}  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

transposed and stored in this panel[t-1][s-1], s =

1,...,ndim[i-1][2] – ndim[i-1][1], t = 1,

..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1. See Comments on use.

nsizefactoru long Input The size of the array zpanelfactoru.

 Output The necessary size for the array zpanelfactoru is

returned. See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

c_dm_vscs

280

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexu int npanelindexu

[nsizeindexu]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix into which SYM is

permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vscs-1. See Comments on use.

nsizeindexu long Input The size of the array npanelindexu.

 Output The necessary size is returned. See Comments on use.

nposto int nposto[n] Output The information about what column number of A the i-th

node in post order corresponds to is stored.

 Input When isw  1, the values set by the first call are reused.

See Comments on use.

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

 Input When isw  1, the values set by the first call are reused.

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

 Input The values set by the first call are reused when isw  1

specified.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

 Output When epsz ≤ 0.0, it is set to the standard value.

See Comments on use.

thepsz double Input Threshold used in judgement for a pivot. Immediately

after a candidate in pivot search is considered to have the

value greater than or equal to the threshold specified, it is

accepted as a pivot and the search of a pivot is broken off.

For example, 10-2.

 Output When thepsz ≤ 0.0, 10-2 is set.

When epsz ≥ thepsz > 0.0, it is set to the value of

epsz.

ipivot int Input Control information on pivoting which indicates whether

a pivot is searched and what kind of pivoting is chosen if

any.

For example, 40 for complete pivoting.

ipivot < 10 or ipivot ≥ 50, no pivoting.

 c_dm_vscs

281

10 ≤ ipivot < 20, partial pivoting

20 ≤ ipivot < 30, diagonal pivoting

21 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting.

22 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting. If Rook pivoting fails, it is

changed to complete pivoting.

30 ≤ ipivot < 40, Rook pivoting

32 : When within a supernode Rook pivoting fails, it is

changed to complete pivoting.

40 ≤ ipivot < 50, complete pivoting

istatic int Input Control information indicating whether Static pivoting is

taken.

1) When istatic = 1 is specified.
When the pivot searched within a supernode is not
greater than spepsz, it is replaced with its
approximate value of a complex number with the
absolute value of spepsz.
If its value is 0.0, spepsz is used as an
approximation value.
The following conditions must be satisfied.
a) epsz must be less than or equal to the standard
value of epsz.
b) Scaling must be performed with isclitermax
=10.
c) thepsz ≥ spepsz must hold.
d) irefine = 1 must be specified for the iterative
refinement of the solution.

2) When istatic ≠ 1 is specified.

No static pivot is performed.

spepsz double Input The approximate value used in Static pivoting when

istatic = 1 is specified.

The following conditions must hold.

10-8 ≥ spepsz ≥ epsz

 Output When spepsz < epsz, it is set to 10-10.

nfcnzpivot int nfcnzpivot

[nsupnum+1]

Output The location for the storage where the history of relative

row and column exchanges for pivoting within each

supernode is stored.

The block number of the section where the information

on the i-th supernode is assigned is known by j =

nassign[i-1]. The position of the first element of

that section is stored in nfcnzpivot[j-1]. The

information of exchange rows and columns within the i-th

supernode is stored in the elements of is =

nfcnzpivot[j-1],

…, ie = nfcnzpivot[j-1] + ndim[j-1][1] - 1

in npivotp and npivotq respectively.

npivotp int npivotp[n] Output The information on exchanges of rows within each

supernode is stored.

c_dm_vscs

282

npivotq int npivotq[n] Output The information on exchanges of columns within each

supernode is stored.

irefine int Input Control information indicating whether iterative

refinement is performed when the solution is computed in

use of results of LU decomposition. A residual vector is

computed in quadruple precision.

When irefine = 1 is specified.

The iterative refinement is performed. It is iterated until in

the sequences of the solutions obtained in refinement the

difference of the absolute values of their corresponding

residual vectors become larger than a fourth of that of

immediately previous ones.

When irefine ≠ 1 is specified.

No iterative refinement is performed.

When istatic = 1 is specified, irefine = 1 must be

specified.

epsr double Input Criterion value to judge if the absolute value of the

residual vector b - Ax is sufficiently smaller compared

with the absolute value of b.

When epsr ≤ 0.0, it is set to 10-6.

itermax int Input Upper limit of iterative count for refinement ( 1).

iter int Output Actual iterative count for refinement.

zw dcomplex zw[2*nz] Work

area

When this routine is called repeatedly with isw =1, 2 this

work area is used for preserving information among calls.

The contents must not be changed.

w double

w[4*nz+6*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw1 int

iw1[2*nz+2*

(n+1)+16*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw2 int

iw2[47*n+47+nz+4*

(n+1)+2*(nz+n)]

Work

area

When this routine is called repeatedly with isw = 1, 2, 3

this work area is used for preserving information among

calls. The contents must not be changed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 The pivot became relatively zero. The coefficient

matrix A may be singular.

Processing is discontinued.

20100 When ipledsm is specified, maximum

matching with the length n is sought in order to

permute large entries to the diagonal but can not

be found. The coefficient matrix A may be

singular.

 c_dm_vscs

283

Code Meaning Processing

20200 When seeking diagonal matrices for equilibrating

both rows and columns, there is a zero vector in

either rows or columns of the matrix A. The

coefficient matrix A may be singular.

20400 There is a zero element in diagonal of resultant

matrices of LU decomposition.

20500 The norm of residual vector for the solution

vector is greater than that of b multiplied by

epsr, which is the right term constant vector in

Ax = b. The coefficient matrix A may be close to

a singular matrix.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindexl < 1

• nsizeindexu < 1

• isw < 1

• isw > 3

• itermax < 1 when irefine = 1.

Processing is discontinued.

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

30500 When istatic =1 is specified, the required

conditions are not satisfied.

epsz is greater than 16u of the standard value

or isclitermax < 10

or irefine ≠ 1

or spepsz > thepsz

or spepsz > 10-8

31000 The value of nsizefactorl is not enough as

the size of zpanelfactorl,

or the value of nsizeindexl is not enough as

the size of npanelindexl,

or the value of nsizefactoru is not enough as

the size of zpanelfactoru,

or the value of nsizeindexu is not enough as

the size of npanelindexu.

Reallocate the zpanelfactorl or

npanelindexl or

zpanelfactoru or npanelindexu

with the necessary size which are returned in the

nsizefactorl or nsizeindexl or

nsizefactoru or nsizeindexu

respectively

and call this routine again with isw = 2 specified.

c_dm_vscs

284

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vscs-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] ×

ndim[j-1][1] from the p-th element of zpanelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length

ndim[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of zpanelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][2] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

for (i = 1; i <= n; i++) {

 c_dm_vscs

285

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix , “References.” in detail.

b)
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its

imaginary part for pivot. When the computation is to be continued even if the absolute value of diagonal element is small,

assign the minimum value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is

approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

c)
The necessary sizes for the array zpanelfactorl, npanelindexl, zpanelfactoru and npanelindexu that

store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of

the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such

as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw = 1.

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after

reallocating the arrays with the necessary sizes.

d)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

e)
Instead of this routine, a system of equations Ax = b can be solved by calling both c_dm_vsclu to perform LU
decomposition of an unsymmetric complex sparse matrix A and c_dm_vsclux to solve the linear equation in use of
decomposed results.

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

c_dm_vscs

286

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real

sparse matrix A built in this way is stored into a complex sparse matrix and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 40

#define KX NORD

#define KY NORD

#define KZ NORD

#define N KX * KY * KZ

#define NBORDER (N + 1)

#define NOFFDIAG 6

#define K (N + 1)

#define NDIAG 7

#define NALL NDIAG * N

#define ZWL 2 * NALL

#define WL 4 * NALL + 6 * N

#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N

#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)

void init_mat_diag(double, double, double, double, double*, int*, int, int, int,

 double, double, double, int, int, int);

double errnrm(dcomplex*, dcomplex*, int);

dcomplex comp_sub(dcomplex, dcomplex);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 dcomplex za[K * NDIAG], zwc[K * NDIAG],

 zw[ZWL], zone;

 int nrow[K * NDIAG], nfcnz[N + 1],

 nrowsym[K * NDIAG + N], nfcnzsym[N + 1],

 c_dm_vscs

287

 iwc[K * NDIAG][2];

 int nperm[N],

 nposto[N], ndim[N][3],

 nassign[N],

 mz[N],

 iw1[IW1L], iw2[IW2L];

 double w[WL];

 dcomplex *zpanelfactorl, *zpanelfactoru;

 int *npanelindexl, *npanelindexu;

 dcomplex zdummyfl, zdummyfu;

 int ndummyil,

 ndummyiu;

 long nsizefactorl,

 nsizeindexl,

 nsizeindexu,

 nsizefactoru,

 nfcnzfactorl[N + 1],

 nfcnzfactoru[N + 1],

 nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 dcomplex zb[N], zsolex[N];

 double epsz, thepsz, spepsz,

 sclrow[N], sclcol[N];

 int ipivot, istatic, nfcnzpivot[N + 1],

 npivotp[N], npivotq[N],

 irefine, itermax, iter, ipledsm;

 double err, va1, va2, va3, vc, xl, yl, zl, epsr;

 int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,

 isclitermax, isw, nsupnum;

 zone.re = 1.0;

 zone.im = 0.0;

 printf(" LU DECOMPOSITION METHOD\n");

 printf(" FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n\n");

 for (i = 0; i < N; i++) {

 zsolex[i] = zone;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n",

 zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);

 va1 = 1.0;

c_dm_vscs

288

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,

 KX, KY, KZ, xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnz = 1;

 for (j = 0; j < N; j++) {

 ntopcfg = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (ntopcfg == 1) {

 nfcnz[j] = numnz;

 ntopcfg = 0;

 }

 if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {

 continue;

 } else {

 c_dm_vscs

289

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 za[numnz - 1].re = diag2[i][j];

 za[numnz - 1].im = 0.0;

 nrow[numnz - 1] = ncol;

 numnz++;

 }

 }

 }

 }

 nfcnz[N] = numnz;

 nz = numnz - 1;

 c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,

 zb, zwc, (int *)iwc, &icon);

/* INITIAL CALL WITH IORDER=1 */

 iordering = 0;

 ipledsm = 1;

 isclitermax = 10;

 isw = 1;

 epsz = 1.0e-16;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindexl = 1;

 nsizeindexu = 1;

 thepsz = 1.0e-2;

 spepsz = 0.0;

 ipivot = 40;

 istatic = 0;

 irefine = 1;

 epsr = 0.0;

 itermax = 10;

 c_dm_vscs(za, nz, nrow, nfcnz, N,

 ipledsm, mz, isclitermax, &iordering,

 nperm, isw,

 nrowsym, nfcnzsym,

 zb,

 nassign,

 &nsupnum,

c_dm_vscs

290

 nfcnzfactorl, &zdummyfl,

 &nsizefactorl,

 nfcnzindexl,

 &ndummyil, &nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, &zdummyfu,

 &nsizefactoru,

 nfcnzindexu,

 &ndummyiu, &nsizeindexu,

 nposto,

 sclrow, sclcol,

 &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot,

 npivotp, npivotq,

 irefine, epsr, itermax, &iter,

 zw, w, iw1, iw2, &icon);

 printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",

 icon, nsizefactorl, nsizefactoru, nsizeindexl);

 printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);

 zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));

 zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));

 npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));

 npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));

 isw = 2;

 c_dm_vscs(za, nz, nrow, nfcnz, N,

 ipledsm, mz, isclitermax, &iordering,

 nperm, isw,

 nrowsym, nfcnzsym,

 zb,

 nassign,

 &nsupnum,

 nfcnzfactorl, zpanelfactorl,

 &nsizefactorl,

 nfcnzindexl,

 npanelindexl, &nsizeindexl,

 (int *)ndim,

 nfcnzfactoru, zpanelfactoru,

 &nsizefactoru,

 nfcnzindexu,

 npanelindexu, &nsizeindexu,

 nposto,

 sclrow, sclcol,

 c_dm_vscs

291

 &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot,

 npivotp, npivotq,

 irefine, epsr, itermax, &iter,

 zw, w, iw1, iw2, &icon);

 err = errnrm(zsolex, zb, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]);

 printf(" ICON = %d\n\n", icon);

 printf(" N = %d\n\n", N);

 printf(" ERROR = %lf\n", err);

 printf(" ITER=%d\n\n\n", iter);

 if (err < 1.0e-8 && icon == 0) {

 printf("********** OK **********\n");

 } else {

 printf("********** NG **********\n");

 }

 free(zpanelfactorl);

 free(zpanelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc,

 double *d_l, int *offset,

 int nx, int ny, int nz, double xl, double yl, double zl,

 int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

{

 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;

 double hx, hy, hz, hx2, hy2, hz2;

c_dm_vscs

292

 ndiag_loc = ndiag;

 if (ndiag > 7)

 ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp; i++) {

 for (j = 0; j < ndiag; j++) {

 d_l[(j * ndivp) + i] = 0.0;

 }

 }

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 c_dm_vscs

293

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */

 k0 = (js -1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 goto label_100;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[(l * ndivp) + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[(l * ndivp) + j] += 2.0 / hz2;

 }

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

c_dm_vscs

294

 if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

label_100: ;

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

 * | Z1 - Z2 |

 == */

double errnrm(dcomplex *z1, dcomplex *z2, int len) {

 double rtc, s;

 dcomplex ss;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = comp_sub(z1[i], z2[i]);

 s += ss.re * ss.re + ss.im * ss.im;

 }

 rtc = sqrt(s);

 return(rtc);

}

dcomplex comp_sub(dcomplex so1, dcomplex so2) {

 dcomplex obj;

 obj.re = so1.re - so2.re;

 obj.im = so1.im - so2.im;

 return obj;

}

 c_dm_vscs

295

5. Method

Consult the entry for DM_VSCS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2], [13] ,

[17] , [19] , [22] , [23] , [46] , [53] , [59] , [64] and [65].

c_dm_vsevph

296

c_dm_vsevph

Eigenvalues and eigenvectors of real symmetric matrices

(tridiagonalization, multisection method, and inverse iteration)

ierr = c_dm_vsepvh(a, k, n, nf, nl, ivec,

&etol, &ctol, nev, e, maxne, m,

ev, &icon);

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of n-dimensional real symmetric matrix
A.

 Ax = x (1)

where, A is an n  n real symmetric matrix.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsevph((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e,

maxne, (int*)m, (double*)ev, &icon);

where:

a double a[n][k] Input The upper triangular part {aij | i  j} of real symmetric matrix A is

stored in the upper triangular part {a[i1][j1], i  j} of a.

The value of a is not assured after operation.

k int Input C fix dimension of matrix A. (k  n)

n int Input Order n of matrix A.

nf int Input Number assigned to the first eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

nl int Input Number assigned to the last eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

ivec int Input Control information.

ivec = 1 if both the eigenvalues and eigenvectors are sought.

ivec  1 if only the eigenvalues are sought.

etol double Input Criterion value for checking whether the eigenvalues are numerically

different from each other or are multiple.

 Output When etol is less than 3.01016 this value is used as the standard

value. See Comments on use.

ctol double Input Criterion value for checking whether the adjacent eigenvalues can be

considered to be approximately equal to each other. This value is used

to assure the linear independence of the eigenvector corresponding to

the eigenvalue belonging to approximately multiple eigenvalues

(clusters).

 c_dm_vsevph

297

The value of ctol should be generally 5.01012. For a very large

cluster, a large ctol value is required.

106  ctol  etol.

 Output When condition ctol > 106 occurs, ctol is set to 106.

When condition ctol < etol occurs, ctol = 10  etol is set as the

standard value. See Comments on use.

nev int nev[5] Output Number of eigenvalues calculated.

Details are given below.

nev[0] indicates the number of different eigenvalues calculated.

nev[1] indicates the number of approximately multiple different

eigenvalues (different clusters) calculated.

nev[2] indicates the total number of eigenvalues (including multiple

eigenvalues) calculated.

nev[3] indicates the number representing the first of the eigenvalues

calculated.

nev[4] indicates the number representing the last of the eigenvalues

calculated.

e double

e[maxne]

Output Eigenvalues. Stored in e[i1], i = 1, ..., nev[2].

maxne int Input Maximum number of eigenvalues that can be computed.

When it can be considered that there are two or more eigenvalues with

multiplicity m, maxne must be set to a larger value than nl  nf  1 

2  m that is bounded by n. When condition nev[2] > maxne occurs,

the eigenvectors cannot be calculated. See Comments on use.

m int

m[2][maxne]

Output Information about multiplicity of eigenvalues calculated.

m[0][i1] indicates the multiplicity of the i-th eigenvalue i.

m[1][i1] indicates the multiplicity of the i-th cluster when the

adjacent eigenvalues are regarded as clusters. See Comments on use.

ev double

ev[maxne][k]

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are

stored in ev.

The eigenvectors are stored in ev[i1][j1], i = 1, ... , nev[2], j

= 1, ..., n.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 During calculation of clustered eigenvalues, the

total number of eigenvalues exceeded the value of

maxne.

Discontinued. The eigenvectors cannot be

calculated, but the different eigenvalues

themselves are already calculated.

A suitable value for maxne to allow calculation

to proceed is returned in nev[2].

See Comments on use.

c_dm_vsevph

298

Code Meaning Processing

30000 One of the following has occurred:

 n < 1

 k < n

 nf < 1

 nl > n

 nl < nf

 maxne < nl  nf  1

Bypassed.

3. Comments on use

etol and ctol
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets

(parallel processing).

When  = etol, the following condition is satisfied for consecutive eigenvalues  j (j = s  1, s, ..., s  k, (k  0)):

 








|)||,max(|1

||

1

1

ii

ii , (2)

If formula (2) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple.

The standard value of etol is 3.01016 (about the unit round off). In this case, the eigenvalues are refined up to the

maximum machine precision.

If formula (2) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues.

When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ..., t  k (k  0)) are different eigenvalues. Also,

when  = ctol, assume that formula (2) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t

 k  1. In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ..., t  k) are approximately multiple (i.e.,

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors

corresponding to m (m = t  1, t, ... , t  k) are reorthogonalized.

maxne
The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased,

the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne.

In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20000 is returned. In this case, the

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not

stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in e[i1], i=1, ..., nev[0]. The multiplicity of the corresponding

eigenvalues is stored in m[0][i1], i=1, ..., nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne

value can be nt(nt = nl  nf  1 is the total number of eigenvalues calculated). However, when there are multiple

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m.

 c_dm_vsevph

299

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the

calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value

and by calling the routine again.

4. Example program

This program obtains eigenvalues and prints the results.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 500
#define K N
#define NF 1
#define NL 100
#define MAXNE NL-NF+1

MAIN__()
{
 double a[N][K], ab[N][K];
 double e[MAXNE], ev[MAXNE][K];
 double vv[N][K];
 double etol, ctol, pi;
 int nev[5], m[2][MAXNE];
 int ierr, icon;
 int i, j, k, n, nf, nl, maxne, ivec;

 n = N;
 k = K;
 nf = NF;
 nl = NL;
 ivec = 1;
 maxne = MAXNE;
 etol = 3.0e-16;
 ctol = 5.0e-12;

 /* Generate real symmetric matrix with known eigenvalues */
 /* Initialization */
 pi = 4.0 * atan(1.0);
 for(i=0; i<n; i++) {
 for(j=0; j<n; j++) {
 vv[i][j] = sqrt(2.0/(double)(n+1))*sin((double)(i+1)*pi*
 (double)(j+1)/(double)(n+1));
 a[i][j] = 0.0;
 }
 }

 for(i=0; i<n; i++) {
 a[i][i] = (double)(-n/2+(i+1));
 }

 printf(" Input matrix size is %d\n", n);
 printf(" Matrix calculations use k = %d\n", k);
 printf(" Desired eigenvalues are nf to nl %d %d\n", nf, nl);
 printf(" That is, request %d eigenvalues.\n", maxne) ;
 printf(" True eigenvalues are as follows\n");
 for(i=nf-1; i<nl; i++) {
 printf("a(%d,%d) = %12.4e\n", i, i, a[i][i]);
 }

 ierr = c_dm_vmggm ((double*)a, k, (double*)vv, k, (double*)ab, k, n, n, n, &icon);
 ierr = c_dm_vmggm ((double*)vv, k, (double*)ab, k, (double*)a, k, n, n, n, &icon);

 /* Calculate the eigendecomposition of A */
 ierr = c_dm_vsevph ((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne,
 (int*)m, (double*)ev, &icon);
 if (icon > 0) {
 printf("ERROR: c_dvsevp failed with icon = %d\n", icon);
 exit(1);
 }
 printf("icon = %i\n", icon);
 /* print eigenvalues */

c_dm_vsevph

300

 printf(" Number of eigenvalues %d\n", nev[2]);
 printf(" Number of distinct eigenvalues %d\n", nev[0]);
 printf(" Solution to eigenvalues\n");
 for(i=0; i<nev[2]; i++) {
 printf(" e[%d] = %12.4e\n", i, e[i]);
 }
 return(0);
}

5. Method

Consult the entry for DM_VSEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and

[57].

 c_dm_vsldl

301

c_dm_vsldl

LDLT decomposition of symmetric positive definite matrices (blocked

modified Cholesky decomposition method).

ierr = c_dm_vsldl(a, k, n, epsz, &icon);

1. Function

This function executes LDLT decomposition for an n  n positive definite matrix A using the blocked modified Cholesky

decomposition method of outer product type, so that

 A = LDLT

where, L is a unit lower triangular matrix and D is a diagonal matrix.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsldl((double*)a, k, n, epsz, &icon);

where:

a double

a[n][k]

Input The upper triangular part {aij, i  j} of A is stored in the upper triangular

part {a[i1][j1], ij} of a for input.

See Figure c_dm_vsldl-1.

The contents of the array are altered on output.

 Output Decomposed matrix. After the first set of equations has been solved, the

upper triangular part of a[i1][j1] (ij) contains lij (i  j) of the

upper triangular matrix L, D1 and LT.

k int Input C fixed dimension of array a. ( n)

n int Input Order n of matrix A.

epsz double Input Tolerance for relative zero test ( 0).

When epsz is zero, a standard value is assigned. See Comments on use.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

10000 A pivot was negative. Matrix A is not positive

definite.

Continued.

20000 A pivot is relatively zero. It is probable that

matrix A is singular.

Discontinued.

30000 One of the following has occurred:

 n < 1

 k < n

 epsz < 0

Bypassed.

c_dm_vsldl

302

Input Array a

n

n

11a

k

unnecessary

12a na1

22a na2

nna

Output Array a

n

n
1

11
d

1
22
d

1
nnd

12l nl1

nl2

k

Altered

Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method

The diagonal elements and upper triangular part (aij) of the LDLT-decomposed positive definite matrix are stored in array

a[i1][j1] , i=1,...,n, j=i,...,n.

After LDLT decomposition, matrix D1 is stored in diagonal elements and L (excluding the diagonal elements) are stored

in the upper triangular part respectively.

3. Comments on use

epsz
The standard value of epsz is 16µ, where µ is the unit round-off. If, during the decomposition process, a pivot value fails

the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000. Decomposition

can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

icon
If a pivot is negative during decomposition, the matrix A is not positive definite and icon = 10000 is set. Processing is

continued, however no further pivoting is performed and the resulting calculation error may be significant.

Calculation of determinant
The determinant of matrix A is the same as the determinant of matrix D, and can be calculated by forming the product of

the elements of output array a corresponding to the diagonal elements of D1 , and then taking the reciprocal of the result.

4. Example program

LDLT decomposition is executed for a 1000  1000 matrix.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)

MAIN__()
{
 int n, i, j, icon, ierr;

 c_dm_vsldl

303

 double a[NMAX][LDA], b[NMAX];
 double epsz, s, det;

 n = NMAX;
 epsz = 0.0;

#pragma omp parallel for shared(a,n) private(i,j)
 for(i=0; i<n; i++)
 for(j=0; j<n; j++) a[i][j] = min(i,j)+1;

#pragma omp parallel for shared(b,n) private(i)
 for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);

 ierr = c_dm_vsldl((double*)a, LDA, n, epsz, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon);
 exit(1);
 }

 ierr = c_dm_vldlx(b, (double*)a, LDA, n, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon);
 exit(1);
 }

 s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
 for(i=0; i<n; i++) s *= a[i][i];

 printf("solution vector:\n");
 for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);

 det = 1.0/s;
 printf("\ndeterminant of the matrix = %e\n", det);
 return(0);
}

5. Method

Consult the entry for DM_VSLDL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and

[52].

c_dm_vsrlu

304

c_dm_vsrlu

LU decomposition of an unsymmetric real sparse matrix.

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n,

ipledsm, mz, isclitermax,

&iordering, nperm, isw,

nrowsym, nfcnzsym,

nassign, &nsupnum,

nfcnzfactorl, panelfactorl,

&nsizefactorl, nfcnzindexl,

npanelindexl,

&nsizeindexl, ndim,

nfcnzfactoru, panelfactoru,

&nsizefactoru,

nfcnzindexu, npanelindexu,

&nsizeindexu, nposto,

sclrow, sclcol,

&epsz, &thepsz, ipivot, istatic,

&spepsz, nfcnzpivot,

npivotp, npivotq, w, iw1, iw2,

&icon);

1. Function

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal and then it is scaled in order

to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified

within the block diagonal portion belonging to each supernode.

The unsymmetric real sparse matrix is transformed as below.

 A1 = DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a

diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for

SYM = A1 + A1
T and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower

triangular matrix and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of

a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU

specifying an appropriate small value as a static pivot in place of the candidate sought.

 c_dm_vsrlu

305

2. Arguments

The routine is called as follows:

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,

&iordering, nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum,

nfcnzfactorl, panelfactorl, &nsizefactorl, nfcnzindexl,

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,

panelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,

istatic, spepsz, nfcnzpivot, npivotp, npivotq, w, iw1, iw2,

&icon);

where:

a double a[nz] Input The nonzero elements of an unsymmetric real sparse

matrix A are stored.

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector).

nz int Input The total number of the nonzero elements belong to an

unsymmetric real sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array A.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array A in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

ipledsm int Input Control information whether to permute the large entries

to the diagonal of a matrix A.

When ipledsm = 1 is specified, a matrix A is

transformed internally permuting large entries to the

diagonal.

Otherwise no permutation is performed.

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a

permutation of columns. mz[i-1] = j indicates that the

j-th column which the element of aij belongs to is

permutated to i-th column. The element of aij is the large

entry to be permuted to the diagonal.

isclitermax int Input The upper limit for the number of iteration to seek scaling

matrices of Dr and Dc to equilibrate both rows and

columns of matrix A.

When isclitermax ≤ 0 is specified no scaling is

done. In this case Dr and Dc are assumed as unit matrices.

When isclitermax ≥ 10 is specified, the upper limit

c_dm_vsrlu

306

for the number of iteration is considered as 10.

iordering int Input Control information whether to decompose the reordered

matrix PA1PT permuted by the matrix P of ordering or to

decompose the matrix A.

When iordering = 10 is specified, calling this routine

with isw = 1 produces the informations which is needed

to generate an ordering regarding A1 and they are set in

nrowsym and nfcnzsym.

When iordering 11 is specified, it is indicated that

after an ordering is set in nperm, the computation is

resumed.

Using the informations obtained in nrowsym and

nfcnzsym after calling this routines with isw = 1 and

iordering = 10, an ordering is determined. After

specifying this ordering in nperm, this routine is called

again with isw = 1and iordering = 11 and the

computation is resumed.

LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is

decomposed into LU.

 Output iordering is set to 11 after this routine is called with

iordering = 10 and isw = 1. Therefore after an

ordering is set in nperm the computation is resumed in

the subsequent call without iordering = 11 being

specified explicitly. See Comments on use.

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See

Comments on use.

isw int Input Control information.

1) When isw = 1 is specified.

After symmetrization of a matrix and symbolic

decomposition, checking whether the sufficient

amount of memory for storing data are allocated the

computation is performed.

Call with iordering = 10 produces the

informations needed for seeking an ordering in

nrowsym and nfcnzsym. Using these

informations an ordering for SYM is determined.

After an ordering is set in nperm, calling this

routine with iordering = 11 and also isw = 1

again resumes the computation.

When iordering is neither 10 nor 11, no

ordering is specified.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that

means that the sizes of panelfactorl or

panelfactoru or npanelindexl or

 c_dm_vsrlu

307

npanelindexu were not enough, the suspended

computation is resumed.

Before calling again with isw = 2, the

panelfactorl or panelfactoru or

npanelindexl or npanelindexu must be

reallocated with the necessary sizes which are

returned in the nsizefactorl nsizefactoru

or nsizeindexl or nsizeindezu at the

precedent call and specified in corresponding

arguments.

Besides, except these arguments and isw as control

information, the values in the other augments must

not be changed between the previous and following

calls.

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices

of nonzero pattern of the lower triangular part of

SYM = A1 + A1
T in the compressed column storage

method are generated.

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of

the first row index of each column stored in array

nrowsym in the compressed column storage method

which stores the nonzero pattern of the lower part of a

matrix SYM column by column.

nfcnzsym[n] = nsymz + 1 where nsymz is the total

nonzero elements in the lower triangular part.

nassign int nassign[n] Output L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in panelfactorl and

panelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign[i-1].

 Input When isw ≠ 1, the values stored in the first call are

reused. Regarding

the storage methods of decomposed matrices, refer to

Figure c_dm_vsrlu-1.

nsupnum int Output The total number of supernodes.

 Input The values in the first call are reused when isw  1

specified. ( n)

nfcnzfactorl long

nfcnzfactorl[n+1]

Output The decomposed matrices L and U of an unsymmetric

real sparse matrix are computed for each supernode

respectively. The columns of L belonging to each

supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

c_dm_vsrlu

308

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is

mapped into panelfactorl consecutively or the

location of panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1.

 Input The values set by the first call are reused when isw  1

specified.

panelfactorl double

panelfactorl

[nsizefactorl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign

[i-1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[i-1][0] 

ndim[i-1][1] The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1, ..., ndim[i-1][0], t = 1

, ..., ndim[i-1][1]. The corresponding block diagonal

portion of the unit upper triangular matrix U except its

diagonals is stored in the panel[t-1][s-1], s < t, t

= 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1. See Comments on use.

nsizefactorl long Input The size of the array panelfactorl.

 Output The necessary size for the array panelfactorl is

returned. See Comments on use.

nfcnzindexl long

nfcnzindexl[n+1]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexl int npanelindexl

[nsizeindexl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

 c_dm_vsrlu

309

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix into which

SYM is permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1. See Comments on use.

nsizeindexl long Input The size of the array npanelindexl.

 Output The necessary size is returned. See Comments on use.

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][2] indicates the total amount of the size of

the first dimension of the panel where a matrix U is

transposed and stored and the size of its block diagonal

portion.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1.

 Input When isw  1, the values set by the first call are reused.

nfcnzfactoru long

nfcnzfactoru[n+1]

Output Regarding a matrix U derived from LU decomposition of

an unsymmetric real sparse matrix, the rows of U except

the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into panelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1.

 Input When isw  1, the values set by the first call are reused.

panelfactoru double

panelfactoru

[nsizefactoru]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

c_dm_vsrlu

310

i-th block can be considered to be two dimensional array

of { ndim[i-1][2] - ndim[i-1][1] }  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

transposed and stored in this panel[t-1][s-1], s =

1, ..., ndim[i-1][2] – ndim[i-1][1], t = 1,...,

ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1. See Comments on use.

nsizefactoru long Input The size of the array panelfactoru.

 Output The necessary size for the array panelfactoru is

returned. See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexu int npanelindexu

[nsizeindexu]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix into which SYM is

permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlu-1. See Comments on use.

nsizeindexu long Input The size of the array npanelindexu.

 Output The necessary size is returned. See Comments on use.

nposto int nposto[n] Output The information about what column number of A the i-th

node in post order corresponds to is stored.

 Input When isw  1, the values set by the first call are reused.

See Comments on use.

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

 Input When isw  1, the values set by the first call are reused.

 c_dm_vsrlu

311

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

 Input The values set by the first call are reused when isw  1

specified.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

 Output When epsz ≤ 0.0, it is set to the standard value.

See Comments on use.

thepsz double Input Threshold used in judgement for a pivot. Immediately

after a candidate in pivot search is considered to have the

value greater than or equal to the threshold specified, it is

accepted as a pivot and the search of a pivot is broken off.

For example, 10-2.

 Output When thepsz ≤ 0.0, 10-2 is set.

When epsz ≥ thepsz > 0.0, it is set to the value of

epsz.

ipivot int Input Control information on pivoting which indicates whether

a pivot is searched and what kind of pivoting is chosen if

any.

For example, 40 for complete pivoting.

ipivot < 10 or ipivot ≥ 50, no pivoting.

10 ≤ ipivot < 20, partial pivoting

20 ≤ ipivot < 30, diagonal pivoting

21 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting.

22 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting. If Rook pivoting fails, it is

changed to complete pivoting.

30 ≤ ipivot < 40, Rook pivoting

32 : When within a supernode Rook pivoting fails, it is

changed to complete pivoting.

40 ≤ ipivot < 50, complete pivoting

istatic int Input Control information indicating whether Static pivoting is

taken.

1) When istatic = 1 is specified.
When the pivot searched within a supernode is not
greater than spepsz, it is replaced with its
approximate value of copysign(spepsz, pivot).
If its value is 0.0, spepsz is used as an
approximation value.
The following conditions must be satisfied.
a) epsz must be less than or equal to the standard
value of epsz.
b) Scaling must be performed with isclitermax
= 10.
c) thepsz ≥ spepsz must hold.

2) When istatic ≠ 1 is specified.

No static pivot is performed.

spepsz double Input The approximate value used in Static pivoting when

c_dm_vsrlu

312

istatic = 1 is specified.

The following conditions must hold.

thepsz ≥ spepsz ≥ epsz

 Output When spepsz < epsz, it is set to 10-10.

nfcnzpivot int nfcnzpivot

[nsupnum+1]

Output The location for the storage where the history of relative

row and column exchanges for pivoting within each

supernode is stored.

The block number of the section where the information

on the i-th supernode is assigned is known by j =

nassign[i-1]. The position of the first element of

that section is stored in nfcnzpivot[j-1]. The

information of exchange rows and columns within the i-th

supernode is stored in the elements of is=

nfcnzpivot[j-1], …, ie = nfcnzpivot[j-1] +

ndim[j-1][2] - 1 in npivotp and npivotq

respectively.

npivotp int npivotp[n] Output The information on exchanges of rows within each

supernode is stored.

npivotq int npivotq[n] Output The information on exchanges of columns within each

supernode is stored.

w double

w[4*nz+6*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw1 int

iw1[2*nz+2*

(n+1)+16*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw2 int

iw2[47*n+47+nz+4*

(n+1)+2*(nz+n)]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

10000 When istatic = 1 is specified, Static pivot

which replaces the pivot candidate with too small

value with spepsz is made.

Continued.

20000 The pivot became relatively zero. The coefficient

matrix A may be singular.

Processing is discontinued.

20100 When ipledsm is specified, maximum

matching with the length n is sought in order to

permute large entries to the diagonal but can not

be found. The coefficient matrix A may be

singular.

 c_dm_vsrlu

313

Code Meaning Processing

20200 When seeking diagonal matrices for equilibrating

both rows and columns, there is a zero vector in

either rows or columns of the matrix A. The

coefficient matrix A may be singular.

Processing is discontinued.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindexl < 1

• nsizeindexu < 1

• isw < 1

• isw > 2

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

30500 When istatic = 1 is specified, the required

conditions are not satisfied.

epsz is greater than 16u of the standard value

or isclitermax < 10

or spepsz > thepsz

31000 The value of nsizefactorl is not enough as

the size of panelfactorl,

or the value of nsizeindexl is not enough as

the size of npanelindexl,

or the value of nsizefactoru is not enough as

the size of panelfactoru,

 or the value of nsizeindexu is not enough as

the size of npanelindexu.

Reallocate the panelfactorl or

npanelindexl or

panelfactoru or npanelindexu

with the necessary size which are returned in the

nsizefactorl or nsizeindexl or

nsizefactoru or nsizeindexu

respectively

and call this routine again with isw =2 specified.

c_dm_vsrlu

314

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vsrlu-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim

[j-1][1] from the p-th element of panelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length ndim

[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][2] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

for (i = 1; i <= n; i++) {

 c_dm_vsrlu

315

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix , “References.” in detail.

b)
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum

value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is

approximately continued replacing it with spepsz.

c)
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such

as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw = 1.

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after

reallocating the arrays with the necessary sizes.

d)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

e)
A system of equations Ax = b can be solved by calling c_dm_vsrlux subsequently in use of the results of LU
decomposition obtained by this routine.
The following arguments used in this routine are specified.

a, nz, nrow, nfcnz, n,

ipledsm, mz, iordering, nperm,

nassign, nsupnum,

nfcnzfactorl, panelfactorl,

nsizefactorl, nfcnzindexl, npanelindexl,

nsizeindexl, ndim,

nfcnzfactoru, panelfactoru, nsizefactoru,

c_dm_vsrlu

316

nfcnzindexu, npanelindexu, nsizeindexu, nposto,

sclrow,sclcol,

nfcnzpivot,

npivotp, npivotq, iw2

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real

sparse matrix A built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 40

#define KX NORD

#define KY NORD

#define KZ NORD

#define N (KX * KY * KZ)

#define NBORDER (N + 1)

#define NOFFDIAG 6

#define K (N + 1)

#define NDIAG 7

#define NALL (NDIAG*N)

#define WL (4 * NALL + 6 * N)

#define IW1L (2 * NALL + 2 * (N + 1) + 16 * N)

#define IW2L (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))

void init_mat_diag(double, double, double, double, double*, int*, int, int, int,

 double, double, double, int, int, int);

double errnrm(double*, double*, int);

 c_dm_vsrlu

317

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 double a[K * NDIAG], wc[K * NDIAG];

 int nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG + N], nfcnzsym[N + 1],

 iwc[K * NDIAG][2];

 int nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],

 iw2[IW2L];

 double w[WL];

 double *panelfactorl, *panelfactoru;

 int *npanelindexl, *npanelindexu;

 double dummyfl, dummyfu;

 int ndummyil, ndummyiu;

 long nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,

 nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 double b[N], solex[N];

 double thepsz, epsz, spepsz, sclrow[N], sclcol[N];

 int ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,

 itermax, iter, ipledsm;

 int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,

 isclitermax, isw, nsupnum;

 double va1, va2, va3, vc, xl, yl, zl, err, epsr;

 printf(" LU DECOMPOSITION METHOD\n");

 printf(" FOR SPARSE UNSYMMETRIC REAL MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n \n");

 for (i = 0; i < N; i++) {

 solex[i] = 1.0;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", solex[0], solex[N-1]);

 va1 = 1.0;

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,

 xl, yl, zl, NDIAG, N, K);

c_dm_vsrlu

318

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnz = 1;

 for (j = 0; j < N; j++) {

 ntopcfg = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (ntopcfg == 1) {

 nfcnz[j] = numnz;

 ntopcfg = 0;

 }

 if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {

 continue;

 } else {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 a[numnz - 1] = diag2[i][j];

 nrow[numnz - 1] = ncol;

 numnz++;

 }

 }

 }

 c_dm_vsrlu

319

 }

 nfcnz[N] = numnz;

 nz = numnz - 1;

 c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon);

/* INITIAL CALL WITH IORDER=1 */

 iordering = 0;

 ipledsm = 1;

 isclitermax = 10;

 isw = 1;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindexl = 1;

 nsizeindexu = 1;

 epsz = 1.0e-16;

 thepsz = 1.0e-2;

 spepsz = 0.0;

 ipivot = 40;

 istatic = 0;

 irefine = 1;

 epsr = 0.0;

 itermax = 10;

 c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering,

 nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl,

 &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl,

 (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu,

 &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, w, iw1,

 iw2, &icon);

 printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",

 icon, nsizefactorl, nsizefactoru, nsizeindexl);

 printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);

 panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));

 panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));

 npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));

 npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));

 isw = 2;

 c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, &iordering, nperm,

c_dm_vsrlu

320

 isw, nrowsym, nfcnzsym, nassign, &nsupnum,nfcnzfactorl,

 panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,

 &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,

 &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto,

 sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,

 nfcnzpivot, npivotp, npivotq, w, iw1, iw2, &icon);

 c_dm_vsrlux(N, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,

 panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,

 nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,

 nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,

 ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,

 irefine, epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon);

 err = errnrm(solex, b, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", b[0], b[N-1]);

 printf(" ICON = %d\n \n", icon);

 printf(" N = %6d\n \n", N);

 printf(" ERROR = %18.15lf\n", err);

 printf(" ITER= %d\n \n \n", iter);

 if (err < 1.0e-8 && icon == 0) {

 printf(" ********** OK **********\n");

 } else {

 printf(" ********** NG **********\n");

 }

 free(panelfactorl);

 free(panelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,

 int *offset, int nx, int ny, int nz, double xl, double yl,

 double zl, int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("FUNCTION INIT_MAT_DIAG:\n");

 c_dm_vsrlu

321

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

{

 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;

 double hx, hy, hz, hx2, hy2, hz2;

 ndiag_loc = ndiag;

 if (ndiag > 7) ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp; i++) {

 for (j = 0; j < ndiag; j++) {

 d_l[(j * ndivp) + i] = 0.0;

 }

 }

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

c_dm_vsrlu

322

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

 k0 = (js - 1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 goto label_100;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[(l * ndivp) + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[(l * ndivp) + j] += 2.0 / hz2;

 }

 c_dm_vsrlu

323

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

label_100: ;

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

 * | X1 - X2 |

 == */

double errnrm(double *x1, double *x2, int len) {

 double rtc, s, ss;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = x1[i] - x2[i];

 s = s + ss * ss;

 }

 rtc = sqrt(s);

 return(rtc);

}

5. Method

Consult the entry for DM_VSRLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [13] ,

[17] , [19] , [22] , [23] , [46] ,[53] , [59] , [64] and [65].

c_dm_vsrlux

324

c_dm_vsrlux

A system of linear equations with LU-decomposed unsymmetric real

sparse matrices

ierr = c_dm_vsrlux(n, iordering, nperm

b, nassign, nsupnum,

nfcnzfactorl, panelfactorl,

nsizefactorl, nfcnzindexl,

npanelindexl,

nsizeindexl, ndim,

nfcnzfactoru, panelfactoru,

nsizefactoru,

nfcnzindexu, npanelindexu,

nsizeindexu, nposto,

ipledsm, mz,

sclrow, sclcol, nfcnzpivot,

npivotp, npivotq, irefine, epsr,

itermax, &iter,

a, nz, nrow, nfcnz,

iw2, &icon);

1. Function

An n × n unsymmetric real sparse matrix A of which LU decomposition is made as below is given. In this decomposition

the large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal and then it is scaled in order

to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified

within the block diagonal portion belonging to each supernode is performed and results in the following form. This

routine solves the following linear equation in use of these results of LU decomposition.

 Ax = b

A matrix A is decomposed into as below.

 PrsQPDrAPcDcPTQTPcs = LU

The unsymmetric real sparse matrix A is transformed as below.

 A1 = DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a

diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.

 c_dm_vsrlux

325

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 +

A1
T and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower triangular matrix

and U is a unit upper triangular matrix.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,

panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,

nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,

nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,

ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,

irefine, &epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon);

where:

n int Input Order n of matrix A.

iordering int Input When iordering 11 is specified, it is indicated that LU

decomposition is performed with an ordering

specified in nperm.

The matrix PA1PT is decomposed into LU decomposition.

Otherwise. No ordering is specified.

See Comments on use.

nperm int nperm[n] Input When iordering = 11 is specified, a vector presenting

the permutation matrix P used is stored.

See Comments on use.

b double b[n] Input The right-hand side constant vector b of a system of

linear equations Ax = b.

 Output Solution vector x.

nassign int nassign[n] Input L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in panelfactorl and

panelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign[i-1].

Regarding the storage methods of decomposed matrices,

refer to Figure c_dm_vsrlux-1.

nsupnum int Input The total number of supernodes.( n)

nfcnzfactorl long

nfcnzfactorl[n+1]

Input The decomposed matrices L and U of an unsymmetric

real sparse matrix are computed for each supernode

respectively. The columns of L belonging to each

supernode are compressed to have the common row

c_dm_vsrlux

326

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is

mapped into panelfactorl consecutively or the

location of panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

panelfactorl double

panelfactorl

[nsizefactorl]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign

[i-1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[j-1][0] 

ndim[j-1][1]. The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1,..., ndim[i-1][0], t = 1,

..., ndim[i-1][1]. The corresponding block diagonal

portion of the unit upper triangular matrix U except its

diagonals is stored in the panel[t-1][s-1], s < t,

 t = 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

nsizefactorl long Input The size of the array panelfactorl.

nfcnzindexl long

nfcnzindexl[n+1]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

npanelindexl int npanelindexl

[nsizeindexl]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

 c_dm_vsrlux

327

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix into which

SYM is permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

nsizeindexl long Input The size of the array npanelindexl.

ndim int ndim[n][3] Input ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][2] indicates the total amount of the size of

the first dimension of the panel where a matrix U is

transposed and stored and the size of its block diagonal

portion.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

nfcnzfactoru long

nfcnzfactoru[n+1]

Input Regarding a matrix U derived from LU decomposition of

an unsymmetric real sparse matrix, the rows of U except

the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into panelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

panelfactoru double

panelfactoru

[nsizefactoru]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

i-th block can be considered to be two dimensional array

of {ndim[i-1][2] – ndim[i-1][1]}  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

transposed and stored in this panel[t-1][s-1], s =

1,...,ndim[i-1][2] – ndim[i-1][1], t = 1,

..., ndim[i-1][1].

c_dm_vsrlux

328

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

nsizefactoru long Input The size of the array panelfactoru.

See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

npanelindexu int npanelindexu

[nsizeindexu]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix into which SYM is

permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrlux-1.

nsizeindexu long Input The size of the array npanelindexu.

nposto int nposto[n] Input The information about what column number of A the i-th

node in post order corresponds to is stored.

See Comments on use.

ipledsm int Input Information indicating whether for LU decomposition it

is specified to permute the large entries to the diagonal of

a matrix A.

When ipledsm = 1 is specified, a matrix A is

transformed internally permuting large entries to the

diagonal.

Otherwise no permutation is performed.

mz int mz[n] Input When ipledsm = 1 is specified, it indicates a

permutation of columns. mz[i-1] = j indicates that the

j-th column which the element of aij belongs to is

permutated to i-th column. The element of aij is the large

entry to be permuted to the diagonal.

sclrow double sclrow[n] Input The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

 c_dm_vsrlux

329

sclcol double sclcol[n] Input The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

nfcnzpivot int nfcnzpivot

[nsupnum+1]

Input The location for the storage where the history of relative

row and column exchanges for pivoting within each

supernode is stored.

The block number of the section where the information

on the i-th supernode is assigned is known by j =

nassign[i-1]. The position of the first element of

that section is stored in nfcnzpivot[j-1]. The

information of exchange rows and columns within the i-th

supernode is stored in the elements of is =

nfcnzpivot[j-1],…, ie = nfcnzpivot[j-1] +

ndim[j-1][2] - 1 in npivotp and npivotq

respectively

npivotp int npivotp[n] Input The information on exchanges of rows within each

supernode is stored.

npivotq int npivotq[n] Input The information on exchanges of columns within each

supernode is stored.

irefine int Input Control information indicating whether iterative

refinement is performed when the solution is computed in

use of results of LU decomposition. A residual vector is

computed in quadruple precision.

When irefine = 1 is specified.

The iterative refinement is performed. It is iterated until in

the sequences of the solutions obtained in refinement the

difference of the absolute values of their corresponding

residual vectors become larger than a fourth of that of

immediately previous ones.

When irefine ≠ 1is specified.

No iterative refinement is performed.

epsr double Input Criterion value to judge if the absolute value of the

residual vector

b-Ax is sufficiently smaller compared with the absolute

value of b.

When epsr ≤ 0.0, it is set to 10-6.

itermax int Input Upper limit of iterative count for refinement ( 1).

iter int Output Actual iterative count for refinement.

a double a[nz] Input The nonzero elements of an unsymmetric real sparse

matrix A are stored in a[0] to [nz-1]

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector).

nz int Input The total number of the nonzero elements belong to an

unsymmetric real sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

c_dm_vsrlux

330

method, which indicate the row number of each nonzero

element stored in an array a.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array a in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

iw2 int

iw2[47*n+47+nz+4*

(n+1)+2*(nz+n)]

Work

area

The data derived from calling c_dm_vsrlu of LU

decomposition of an unsymmetric real sparse matrix is

transferred in this work area. The contents must not be

changed among calls.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20400 There is a zero element in diagonal of resultant

matrices of LU decomposition.

Processing is discontinued.

20500 The norm of residual vector for the solution

vector is greater than that of b multiplied by

epsr, which is the right term constant vector in

Ax = b. The coefficient matrix A may be close to

a singular matrix.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindexl < 1

• nsizeindexu < 1

• itermax < 1 when irefine = 1.

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

 c_dm_vsrlux

331

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vsrlux-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim

[j-1][1] from the p-th element of panelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length ndim

[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][2] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1, …, ndim[j-1][2] – ndim[j-1][1], y = 1, …, ndim[j-1][1].

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

The results of LU decomposition obtained by c_dm_vsrlu is used.

See note c), "Comments on use." of c_dm_vsrlu and Example program of c_dm_vsrlux.

c_dm_vsrlux

332

b)
When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

c)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real

sparse matrix A built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 40

#define KX NORD

#define KY NORD

#define KZ NORD

 c_dm_vsrlux

333

#define N (KX * KY * KZ)

#define NBORDER (N + 1)

#define NOFFDIAG 6

#define K (N + 1)

#define NDIAG 7

#define NALL (NDIAG*N)

#define WL (4 * NALL + 6 * N)

#define IW1L (2 * NALL + 2 * (N + 1) + 16 * N)

#define IW2L (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))

void init_mat_diag(double, double, double, double, double*, int*, int, int, int,

 double, double, double, int, int, int);

double errnrm(double*, double*, int);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 double a[K * NDIAG], wc[K * NDIAG];

 int nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG + N], nfcnzsym[N + 1],

 iwc[K * NDIAG][2];

 int nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],

 iw2[IW2L];

 double w[WL];

 double *panelfactorl, *panelfactoru;

 int *npanelindexl, *npanelindexu;

 double dummyfl, dummyfu;

 int ndummyil, ndummyiu;

 long nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,

 nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 double b[N], solex[N];

 double thepsz, epsz, spepsz, sclrow[N], sclcol[N];

 int ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,

 itermax, iter, ipledsm;

 int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,

 isclitermax, isw, nsupnum;

 double va1, va2, va3, vc, xl, yl, zl, err, epsr;

 printf(" LU DECOMPOSITION METHOD\n");

 printf(" FOR SPARSE UNSYMMETRIC REAL MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n \n");

 for (i = 0; i < N; i++) {

 solex[i] = 1.0;

 }

c_dm_vsrlux

334

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", solex[0], solex[N-1]);

 va1 = 1.0;

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,

 xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnz = 1;

 for (j = 0; j < N; j++) {

 ntopcfg = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (ntopcfg == 1) {

 nfcnz[j] = numnz;

 ntopcfg = 0;

 c_dm_vsrlux

335

 }

 if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {

 continue;

 } else {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 a[numnz - 1] = diag2[i][j];

 nrow[numnz - 1] = ncol;

 numnz++;

 }

 }

 }

 }

 nfcnz[N] = numnz;

 nz = numnz - 1;

 c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon);

/* INITIAL CALL WITH IORDER=1 */

 iordering = 0;

 ipledsm = 1;

 isclitermax = 10;

 isw = 1;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindexl = 1;

 nsizeindexu = 1;

 epsz = 1.0e-16;

 thepsz = 1.0e-2;

 spepsz = 0.0;

 ipivot = 40;

 istatic = 0;

 irefine = 1;

 epsr = 0.0;

 itermax = 10;

 c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering,

 nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl,

 &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl,

 (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu,

 &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, w, iw1,

c_dm_vsrlux

336

 iw2, &icon);

 printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",

 icon, nsizefactorl, nsizefactoru, nsizeindexl);

 printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);

 panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));

 panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));

 npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));

 npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));

 isw = 2;

 c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, &iordering, nperm,

 isw, nrowsym, nfcnzsym, nassign, &nsupnum,nfcnzfactorl,

 panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,

 &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,

 &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto,

 sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,

 nfcnzpivot, npivotp, npivotq, w, iw1, iw2, &icon);

 c_dm_vsrlux(N, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,

 panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,

 nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,

 nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,

 ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,

 irefine, epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon);

 err = errnrm(solex, b, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", b[0], b[N-1]);

 printf(" ICON = %d\n \n", icon);

 printf(" N = %6d\n \n", N);

 printf(" ERROR = %18.15lf\n", err);

 printf(" ITER= %d\n \n \n", iter);

 if (err < 1.0e-8 && icon == 0) {

 printf(" ********** OK **********\n");

 } else {

 printf(" ********** NG **********\n");

 }

 free(panelfactorl);

 free(panelfactoru);

 free(npanelindexl);

 c_dm_vsrlux

337

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,

 int *offset, int nx, int ny, int nz, double xl, double yl,

 double zl, int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

{

 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;

 double hx, hy, hz, hx2, hy2, hz2;

 ndiag_loc = ndiag;

 if (ndiag > 7) ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp; i++) {

 for (j = 0; j < ndiag; j++) {

 d_l[(j * ndivp) + i] = 0.0;

 }

 }

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

c_dm_vsrlux

338

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

 k0 = (js - 1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 goto label_100;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 c_dm_vsrlux

339

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[(l * ndivp) + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[(l * ndivp) + j] += 2.0 / hz2;

 }

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

label_100: ;

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

 * | X1 - X2 |

 == */

double errnrm(double *x1, double *x2, int len) {

 double rtc, s, ss;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

c_dm_vsrlux

340

 ss = x1[i] - x2[i];

 s = s + ss * ss;

 }

 rtc = sqrt(s);

 return(rtc);

}

 c_dm_vsrs

341

c_dm_vsrs

A system of linear equations with unsymmetric real sparse matrices (LU

decomposition method)

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n,

ipledsm, mz, isclitermax,

&iordering, nperm, isw,

nrowsym, nfcnzsym, b,

nassign, &nsupnum,

nfcnzfactorl, panelfactorl,

&nsizefactorl, nfcnzindexl,

npanelindexl,

&nsizeindexl, ndim,

nfcnzfactoru, panelfactoru,

&nsizefactoru,

nfcnzindexu, npanelindexu,

&nsizeindexu, nposto,

sclrow, sclcol,

&epsz, &thepsz, ipivot, istatic,

&spepsz, nfcnzpivot,

npivotp, npivotq, irefine, epsr,

itermax, &iter,

w, iw1, iw2, &icon);

1. Function

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal and then it is scaled in order

to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations Ax = b in use of LU

decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.

 Ax = b

The unsymmetric real sparse matrix is transformed as below.

 A1 = DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a

diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 +

A1
T and Q is a permutation matrix of postorder for SYM. P and Q are orthogonal matrices. L is a lower triangular matrix

and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold

c_dm_vsrs

342

specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a

supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU

specifying an appropriate small value as a static pivot in place of the candidate sought.

The solution is computed using LU decomposition.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,

&iordering, nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum,

nfcnzfactorl, panelfactorl, &nsizefactorl, nfcnzindexl,

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,

panelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,

istatic, &spepsz, nfcnzpivot, npivotp, npivotq, irefine, epsr,

itermax, iter, w, iw1, iw2, &icon);

where:

a double a[nz] Input The nonzero elements of an unsymmetric real sparse

matrix A are stored.

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector).

nz int Input The total number of the nonzero elements belong to an

unsymmetric real sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array A.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array A in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

ipledsm int Input Control information whether to permute the large entries

to the diagonal of a matrix A.

When ipledsm = 1 is specified, a matrix A is

transformed internally permuting large entries to the

diagonal.

Otherwise no permutation is performed.

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a

permutation of columns. mz[i-1] = j indicates that the

j-th column which the element of aij belongs to is

 c_dm_vsrs

343

permutated to i-th column. The element of aij is the large

entry to be permuted to the diagonal.

isclitermax int Input The upper limit for the number of iteration to seek scaling

matrices of Dr and Dc to equilibrate both rows and

columns of matrix A.

When isclitermax ≤ 0 is specified no scaling is

done. In this case Dr and Dc are assumed as unit matrices.

When isclitermax ≥ 10 is specified, the upper limit

for the number of iteration is considered as 10.

iordering int Input Control information whether to decompose the reordered

matrix PA1PT permuted by the matrix P of ordering or to

decompose the matrix A.

When iordering = 10 is specified, calling this routine

with isw = 1 produces the informations which is needed

to generate an ordering regarding A1 and they are set in

nrowsym and nfcnzsym.

When iordering 11 is specified, it is indicated that

after an ordering is set in nperm, the computation is

resumed.

Using the informations obtained in nrowsym and

nfcnzsym after calling this routines with isw = 1 and

iordering = 10, an ordering is determined. After

specifying this ordering in nperm, this routine is called

again with isw = 1and iordering = 11 and the

computation is resumed.

LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is

decomposed into LU.

 Output iordering is set to 11 after this routine is called with

iordering = 10 and isw = 1. Therefore after an

ordering is set in nperm the computation is resumed in

the subsequent call without iordering = 11 being

specified explicitly. See Comments on use.

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See

Comments on use.

isw int Input Control information.

1) When isw = 1 is specified.

After symmetrization of a matrix and symbolic

decomposition, checking whether the sufficient

amount of memory for storing data are allocated the

computation is performed.

Call with iordering = 10 produces the

informations needed for seeking an ordering in

nrowsym and nfcnzsym. Using these

informations an ordering for SYM is determined.

After an ordering is set in nperm, calling this

c_dm_vsrs

344

routine with iordering =11 and also isw = 1

again resumes the computation.

When iordering is neither 10 nor 11, no ordering

is specified.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that

means that the sizes of panelfactorl or

panelfactoru or npanelindexl or

npanelindexu were not enough, the suspended

computation is resumed.

Before calling again with isw = 2, the

panelfactorl or panelfactoru or

npanelindexl or npanelindexu must be

reallocated with the necessary sizes which are

returned in the nsizefactorl nsizefactoru

or nsizeindexl or nsizeindezu at the

precedent call and specified in corresponding

arguments.

Besides, except these arguments and isw as control

information, the values in the other augments must

not be changed between the previous and following

calls.

3) When isw = 3 specified.

The subsequent call with isw = 3 solves another

system of equations of which the coefficient matrix is

as same as previous call but the right-hand side

vector b is changed. In this case, the information

obtained by the previous LU decomposition can be

reused.

Besides, except isw as control information and b for

storing the new right-hand side b, the values in the

other arguments must not be changed between the

previous and following calls.

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices

of nonzero pattern of the lower triangular part of SYM =

A1 + A1
T in the compressed column storage method are

generated.

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of

the first row index of each column stored in array

nrowsym in the compressed column storage method

which stores the nonzero pattern of the lower part of a

matrix SYM column by column.

nfcnzsym[n] = nsymz + 1 where nsymz is the total

nonzero elements in the lower triangular part.

b double b[n] Input The right-hand side constant vector b of a system of

linear equations Ax = b.

 c_dm_vsrs

345

 Output Solution vector x.

nassign int nassign[n] Output L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in panelfactorl and

panelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign [i-1].

 Input When isw ≠ 1, the values stored in the first call are

reused. Regarding

the storage methods of decomposed matrices, refer to

Figure c_dm_vsrs-1.

nsupnum int Output The total number of supernodes.

 Input The values in the first call are reused when isw  1

specified. ( n)

nfcnzfactorl long

nfcnzfactorl[n+1]

Output The decomposed matrices L and U of an unsymmetric

real sparse matrix are computed for each supernode

respectively. The columns of L belonging to each

supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is

mapped into panelfactorl consecutively or the

location of panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1.

 Input The values set by the first call are reused when isw  1

specified.

panelfactorl double

panelfactorl

[nsizefactorl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign[i-

1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[i-1][0] 

ndim[i-1][1]. The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1, ..., ndim[i-1][0],

c_dm_vsrs

346

 t = 1, ..., ndim[i-1][1]. The corresponding block

diagonal portion of the unit upper triangular matrix U

except its diagonals is stored in the panel

[t-1][s-1], s < t, t = 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1. See Comments on use.

nsizefactorl long Input The size of the array panelfactorl.

 Output The necessary size for the array panelfactorl is

returned. See Comments on use.

nfcnzindexl long

nfcnzindexl[n+1]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexl int npanelindexl

[nsizeindexl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix into which

SYM is permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1. See Comments on use.

nsizeindexl long Input The size of the array npanelindexl.

 Output The necessary size is returned. See Comments on use.

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][2] indicates the total amount of the size of

the first dimension of the panel where a matrix U is

transposed and stored and the size of its block diagonal

portion.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1.

 c_dm_vsrs

347

 Input When isw  1, the values set by the first call are reused.

nfcnzfactoru long

nfcnzfactoru[n+1]

Output Regarding a matrix U derived from LU decomposition of

an unsymmetric real sparse matrix, the rows of U except

the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into panelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1.

 Input When isw  1, the values set by the first call are reused.

panelfactoru double

panelfactoru

[nsizefactoru]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

i-th block can be considered to be two dimensional array

of {ndim[i-1][2] – ndim[i-1][1]}  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

transposed and stored in this panel[t-1][s-1], s =

1, ..., ndim[i-1][2] – ndim[i-1][1], t = 1,

..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1. See Comments on use.

nsizefactoru long Input The size of the array panelfactoru.

 Output The necessary size for the array panelfactoru is

returned. See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexu int npanelindexu Output The rows of the decomposed matrix U belonging to each

c_dm_vsrs

348

[nsizeindexu] supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix into which SYM is

permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vsrs-1. See Comments on use.

nsizeindexu long Input The size of the array npanelindexu.

 Output The necessary size is returned. See Comments on use.

nposto int nposto[n] Output The information about what column number of A the i-th

node in post order corresponds to is stored.

 Input When isw  1, the values set by the first call are reused.

See Comments on use.

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

 Input When isw  1, the values set by the first call are reused.

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

 Input The values set by the first call are reused when isw  1

specified.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

 Output When epsz ≤ 0.0, it is set to the standard value.

See Comments on use.

thepsz double Input Threshold used in judgement for a pivot. Immediately

after a candidate in pivot search is considered to have the

value greater than or equal to the threshold specified, it is

accepted as a pivot and the search of a pivot is broken off.

For example, 10-2.

 Output When thepsz ≤ 0.0, 10-2 is set.

When epsz ≥ thepsz > 0.0, it is set to the value of

epsz.

ipivot int Input Control information on pivoting which indicates whether

a pivot is searched and what kind of pivoting is chosen if

any.

For example, 40 for complete pivoting.

ipivot < 10 or ipivot ≥ 50, no pivoting.

10 ≤ ipivot < 20, partial pivoting

20 ≤ ipivot < 30, diagonal pivoting

21 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting.

 c_dm_vsrs

349

22 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting. If Rook pivoting fails, it is

changed to complete pivoting.

30 ≤ ipivot < 40, Rook pivoting

32 : When within a supernode Rook pivoting fails, it is

changed to complete pivoting.

40 ≤ ipivot < 50, complete pivoting

istatic int Input Control information indicating whether Static pivoting is

taken.

1) When istatic = 1 is specified.
When the pivot searched within a supernode is not
greater than spepsz, it is replaced with its
approximate value of copysign(spepsz, pivot).
If its value is 0.0, spepsz is used as an
approximation value.
The following conditions must be satisfied.
a) epsz must be less than or equal to the standard
value of epsz.
b) Scaling must be performed with isclitermax
= 10.
c) thepsz ≥ spepsz must hold.
d)irefine = 1 must be specified for the iterative
refinement of the solution.

2) When istatic ≠ 1 is specified.

No static pivot is performed.

spepsz double Input The approximate value used in Static pivoting when

istatic = 1 is specified.

The following conditions must hold.

10-10 ≥ spepsz ≥ epsz

 Output When spepsz < epsz, it is set to 10-10.

nfcnzpivot int nfcnzpivot

[nsupnum+1]

Output The location for the storage where the history of relative

row and column exchanges for pivoting within each

supernode is stored.

The block number of the section where the information

on the i-th supernode is assigned is known by j =

nassign[i-1]. The position of the first element of

that section is stored in nfcnzpivot[j-1]. The

information of exchange rows and columns within the i-th

supernode is stored in the elements of is =

nfcnzpivot[j-1],

…, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1

in npivotp and npivotq respectively.

npivotp int npivotp[n] Output The information on exchanges of rows within each

supernode is stored.

npivotq int npivotq[n] Output The information on exchanges of columns within each

supernode is stored.

irefine int Input Control information indicating whether iterative

refinement is performed when the solution is computed in

c_dm_vsrs

350

use of results of LU decomposition. A residual vector is

computed in quadruple precision.

When irefine = 1 is specified.

The iterative refinement is performed. It is iterated until in

the sequences of the solutions obtained in refinement the

difference of the absolute values of their corresponding

residual vectors become larger than a fourth of that of

immediately previous ones.

When irefine ≠ 1 is specified.

No iterative refinement is performed.

When istatic = 1 is specified, irefine = 1 must be

specified.

epsr double Input Criterion value to judge if the absolute value of the

residual vector

b - Ax is sufficiently smaller compared with the absolute

value of b.

When epsr ≤ 0.0, it is set to 10-6.

itermax int Input Upper limit of iterative count for refinement ( 1).

iter int Output Actual iterative count for refinement.

w double

w[4*nz+6*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw1 int

iw1[2*nz+2*

(n+1)+16*n]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw2 int

iw2[47*n+47+nz+4*

(n+1)+2*(nz+n)]

Work

area

When this routine is called repeatedly with isw = 1, 2, 3

this work area is used for preserving information among

calls. The contents must not be changed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 The pivot became relatively zero. The coefficient

matrix A may be singular.

Processing is discontinued.

20100 When ipledsm is specified, maximum

matching with the length n is sought in order to

permute large entries to the diagonal but can not

be found. The coefficient matrix A may be

singular.

20200 When seeking diagonal matrices for equilibrating

both rows and columns, there is a zero vector in

either rows or columns of the matrix A. The

coefficient matrix A may be singular.

20400 There is a zero element in diagonal of resultant

matrices of LU decomposition.

 c_dm_vsrs

351

Code Meaning Processing

20500 The norm of residual vector for the solution

vector is greater than that of b multiplied by

epsr, which is the right term constant vector in

Ax = b. The coefficient matrix A may be close to

a singular matrix.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindexl < 1

• nsizeindexu < 1

• isw < 1

• isw > 3

• itermax < 1 when irefine = 1.

Processing is discontinued.

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

30500 When istatic =1 is specified, the required

conditions are not satisfied.

epsz is greater than 16u of the standard value

or isclitermax < 10

or irefine ≠ 1

or spepsz > thepsz

or spepsz > 10-10

31000 The value of nsizefactorl is not enough as

the size of panelfactorl,

or the value of nsizeindexl is not enough as

the size of npanelindexl,

or the value of nsizefactoru is not enough as

the size of panelfactoru,

 or the value of nsizeindexu is not enough as

the size of npanelindexu.

Reallocate the panelfactorl or

npanelindexl or

panelfactoru or npanelindexu

with the necessary size which are returned in the

nsizefactorl or nsizeindexl or

nsizefactoru or nsizeindexu

respectively

and call this routine again with isw = 2 specified.

c_dm_vsrs

352

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vsrs-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] ×

ndim[j-1][1] from the p-th element of panelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length

ndim[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][2] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

for (i = 1; i <= n; i++) {

 c_dm_vsrs

353

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, “References.” in detail.

b)
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum

value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is

approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

c)
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such

as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw = 1.

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after

reallocating the arrays with the necessary sizes.

d)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

e)
Instead of this routine, a system of equations Ax=b can be solved by calling both c_dm_vsrlu to perform LU
decomposition of an unsymmetric real sparse matrix A and c_dm_vsrlux to solve the linear equation in use of
decomposed results.

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

c_dm_vsrs

354

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real

sparse matrix A built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 40

#define KX NORD

#define KY NORD

#define KZ NORD

#define N (KX * KY * KZ)

#define NBORDER (N + 1)

#define NOFFDIAG 6

#define K (N + 1)

#define NDIAG 7

#define NALL (NDIAG * N)

#define WL (4 * NALL + 6 * N)

#define IW1L (2 * NALL + 2 * (N + 1) + 16 * N)

#define IW2L (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))

void init_mat_diag(double, double, double, double, double*, int*, int, int, int,

 double, double, double, int, int, int);

double errnrm(double*, double*, int);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 double a[K * NDIAG], wc[K * NDIAG];

 int nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG+N], nfcnzsym[N + 1],

 iwc[K * NDIAG][2];

 int nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],

 iw2[IW2L];

 double w[WL];

 double *panelfactorl, *panelfactoru;

 c_dm_vsrs

355

 int *npanelindexl, *npanelindexu;

 double dummyfl, dummyfu;

 int ndummyil, ndummyiu;

 long nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,

 nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 double b[N], solex[N];

 double epsz, thepsz, spepsz, sclrow[N], sclcol[N];

 int ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,

 itermax, iter, ipledsm;

 int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,

 isclitermax, isw, nsupnum;

 double va1, va2, va3, vc, xl, yl, zl, err, epsr;

 printf(" LU DECOMPOSITION METHOD\n");

 printf(" FOR SPARSE UNSYMMETRIC REAL MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n \n");

 for (i = 0; i < N; i++) {

 solex[i] = 1.0;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", solex[0], solex[N - 1]);

 va1 = 1.0;

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,

 xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][j] = diag[i][nbase + j];

c_dm_vsrs

356

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnz = 1;

 for (j = 0; j < N; j++) {

 ntopcfg = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (ntopcfg == 1) {

 nfcnz[j] = numnz;

 ntopcfg = 0;

 }

 if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {

 continue;

 } else {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 a[numnz - 1] = diag2[i][j];

 nrow[numnz - 1] = ncol;

 numnz++;

 }

 }

 }

 }

 nfcnz[N] = numnz;

 nz = numnz - 1;

 c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon);

/* INITIAL CALL WITH IORDER=1 */

 iordering = 0;

 ipledsm = 1;

 isclitermax = 10;

 isw = 1;

 epsz = 1.0e-16;

 nsizefactorl = 1;

 nsizefactoru = 1;

 c_dm_vsrs

357

 nsizeindexl = 1;

 nsizeindexu = 1;

 thepsz = 1.0e-2;

 spepsz = 0.0;

 ipivot = 40;

 istatic = 0;

 irefine = 1;

 epsr = 0.0;

 itermax = 10;

 c_dm_vsrs(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering,

 nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum, nfcnzfactorl,

 &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl,

 (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu,

 &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz,

 ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, irefine,

 epsr, itermax, &iter, w, iw1, iw2, &icon);

 printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",

 icon, nsizefactorl, nsizefactoru, nsizeindexl);

 printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);

 panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));

 panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));

 npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));

 npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));

 isw = 2;

 c_dm_vsrs(a, nz,nrow, nfcnz, N,ipledsm, mz, isclitermax, &iordering,

 nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum, nfcnzfactorl,

 panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,

 &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,

 &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto,

 sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,

 nfcnzpivot, npivotp, npivotq, irefine, epsr, itermax, &iter, w,

 iw1, iw2, &icon);

 err = errnrm(solex, b, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", b[0], b[N - 1]);

 printf(" ICON = %d\n \n", icon);

 printf(" N = %6d\n \n", N);

 printf(" ERROR = %18.15lf\n", err);

 printf(" ITER= %d\n \n \n", iter);

c_dm_vsrs

358

 if (err < 1.0e-8 && icon == 0) {

 printf(" ********** OK **********\n");

 } else {

 printf(" ********** NG **********\n");

 }

 free(panelfactorl);

 free(panelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,

 int *offset, int nx, int ny, int nz, double xl, double yl,

 double zl, int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

{

 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;

 double hx, hy, hz, hx2, hy2, hz2;

/* NDIAG CANNOT BE GREATER THAN 7 */

 ndiag_loc = ndiag;

 if (ndiag > 7) ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp; i++) {

 for (j = 0; j < ndiag; j++) {

 d_l[(j * ndivp) + i] = 0.0;

 c_dm_vsrs

359

 }

 }

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

 k0 = (js -1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 goto label_100;

 }

c_dm_vsrs

360

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[(l * ndivp) + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[(l * ndivp) + j] += 2.0 / hz2;

 }

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

label_100: ;

 }

}

 return;

}

 c_dm_vsrs

361

/* ==

 * SOLUTE ERROR

 * | X1 - X2 |

 == */

double errnrm(double *x1, double *x2, int len) {

 double rtc, s, ss;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = x1[i] - x2[i];

 s = s + ss * ss;

 }

 rtc = sqrt(s);

 return(rtc);

}

5. Method

Consult the entry for DM_VSRS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [13] ,

[17] , [19] , [22] , [23] , [46] , [53] , [59] , [64] and [65].

c_dm_vssps

362

c_dm_vssps

A system of linear equations with symmetric positive definite sparse

matrices (Left-looking LDLT decomposition method)

ierr = c_dm_vssps(a, nz, nrow, nfcnz, n,

iordering, nperm, isw, &epsz,

b,nassign, &nsupnum, nfcnzfactor,

panelfactor, &nsizefactor,

nfcnzindex,npanelindex,

&nsizeindex, ndim, nposto, w, iw1,

iw2, iw3, &icon);

1. Function

This routine solves a system of equations Ax=b using modified Cholesky LDLT decomposition, where A is a symmetric

positive definite sparse matrix (n × n).

 The positive definite sparse matrix is decomposed as

QPAPTQT = LDLT,

 where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering. P and Q are orthogonal

matrices, L is a unit lower triangular matrix, and D is a diagonal matrix.

2. Arguments

The routine is called as follows:

ierr = c_dm_vssps(a, nz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, b,

nassign, &nsupnum, nfcnzfactor, panelfactor, &nsizefactor,

nfcnzindex, npanelindex, &nsizeindex, (int *)ndim, nposto, w, iw1,

iw2, iw3, &icon);

where:

a double a[nz] Input The non-zero elements of the lower triangular part
{aij | i  j} of a symmetric sparse matrix A are stored
in a[i], i=0, …, nz-1.

For the compressed column storage method, refer to
Figure c_dm_vmvscc-1 in the description for
c_dm_vmvscc routine (multiplication of a real sparse
matrix and a real vector).

nz int Input The total number of the nonzero elements belong to
the lower triangular part of a symmetric sparse
matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column
storage method, which indicate the row number of
each nonzero element stored in an array a.

nfcnz int

nfcnz[n+1]

Input The position of the first nonzero element of each
column stored in an array a in the compressed

 c_dm_vssps

363

column storage method which stores the nonzero
elements column by column.

nfcnz[n] = nz+1.

n int Input Order n of matrix A.

iordering int Input Control information whether to decompose the
reordered matrix PAPT permuted by the matrix P of
ordering or to decompose the matrix A.

Specify iordering=1 for the decomposition of the
matrix PAPT.

Specify the other value for the decomposition of the
matrix A as it is.

nperm int nperm[n] Input The permutation matrix P is stored as a vector.

See Comments on use.

isw int Input Control information.

 1 Initial calling.

 2 Subsequent call if the previous call has
failed with icon=31000, that means the
size of panelfactor or
npanelindex were not enough. In
this case, the panelfactor or
npanelindex must be reallocated with
the necessary sizes which are returned in
the nsizefactor or nsizeindex at
the precedent call.

Besides, the values of a, nz, nrow,
nfcnz, n, iordering, nperm,
nassign, nsupnum, nfcnzfactor,
nfcnzindex, npanelindex,
nposto, ndim, w, iw1, iw2, and iw3
must be unchanged after the first call.

 3 Second and subsequent calls when
solving another system of equations
which have the same non-zero pattern of
the matrix A but the values of its
elements are different. In this case, the
information obtained in symbolic
decomposition and the array
panelfactor and npanelindex of
the same size required in previous call
can be reused. Then numerical LDLT
decomposition will proceed with that
information and the new linear equations
can be solved efficiently. Store the
values of the matrix elements in the array
a, or store in another array c and let it be
as the parameter a. The value of nrow
must be unchanged in both cases.

Besides, the values of nz, nrow,
nfcnz, n, iordering, nperm,
nassign, nsupnum, nfcnzfactor,
nsizefactor, nfcnzindex,
npanelindex, nsizeindex,

c_dm_vssps

364

nposto, ndim, w, iw1, iw2, and iw3
must be unchanged also as the previous
call.

 4 Second and subsequent calls when
solving another system of equations of
which the coefficient matrix is as same as
previous call but the right-hand side
vector b is changed. In this case, the
information obtained by the previous
LDLT decomposition can be reused.

Besides the values of n, iordering,

nperm, nassign, nsupnum,

nfcnzfactor, nsizefactor,

nfcnzindex, npanelindex,

nsizeindex, nposto, ndim, and iw3

must be unchanged as the previous call.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

When epsz is 0.0, the standard value is assumed.

See Comments on use.

Output

b double b[n] Input The right-hand side constant vector b of a system of
linear equations Ax = b.

 Output Solution vector x.

nassign int nassign[n] Output Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. The
elements of this array indicate the position, where
this panel is allocated as a part of the one-
dimensional array panelfactor. When
j=nassign[i-1], the i-th supernode is allocated
at j-th position.

 Input The values in the first call are reused when isw  1
specified.

For the storage method of the decomposed results,
refer to Figure c_dm_vssps-1.

See Comments on use.

nsupnum int Output The total number of supernodes.

 Input The values in the first call are reused when isw  1
specified. ( n)

nfcnzfactor long long int

nfcnzfactor

[n+1]

Output Each supernode consists of multiple column vectors,
and the factorized matrix of supernodes are stored in
two-dimensional panel by compressing rows
containing nonzero elements with a common row
indices vector. The elements of this array indicate
the position of the first element panel[0][0] of
the i-th panel, where this panel is allocated as a
part of the one-dimensional array panelfactor.

For the storage method of the decomposed results,
refer to Figure c_dm_vssps-1.

 c_dm_vssps

365

 Input The values set by the first call are reused when
isw  1 specified.

panelfactor double

panelfactor

[nsizefactor]

Output Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. These
panels are stored in this matrix.

The positions of the panel corresponding to the i-th
supernode are indicated as j=nassign[i-1].
The first position is stored in nfcnzfactor[j-
1]. The decomposed result is stored in each panel.

The size of the i-th panel can be considered to be
two-dimensional array of ndim[i-1][1]×ndim
[i-1][0]. The corresponding part where the
lower triangular unit matrix except the diagonal part
is transposed and is stored in panel[t-1][s-1],
s>t, s=1,…, ndim[i-1][0], t=1,…,
ndim[i-1][1]of the i-th panel. The
corresponding part of the diagonal matrix D is stored
in panel[t-1][t-1].

For the storage method of the decomposed results,
refer to Figure c_dm_vssps-1.

See Comments on use.

nsizefactor long long int Input The size of the array panelfactor.

 Output The necessary size for the array panelfactor is
returned.

See Comments on use.

nfcnzindex long long int

nfcnzindex

[n+1]

Output Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. The
elements of this array indicate the position of the
first element of the i-th row indices vector, where
this panel is allocated as a part of the one-
dimensional array npanelindex.

 Input The values set by the first call are reused when isw
 1 specified.

For the storage method of the decomposed results,
refer to Figure c_dm_vssps-1.

npanelindex int npanelindex

[nsizeindex]

Output Each supernode consists of multiple column vectors,
and the supernodes are stored in two-dimensional
panel by compressing rows containing nonzero
elements with a common row indices vector. These
row indices vectors are stored in this matrix. The
positions of the row pointer vector corresponding to
the i-th supernode are indicated as j=nassign[i-
1]. The first position is stored in
nfcnzindex[j-1]. The row indices vector is
stored by each panel. This row indices are the row
indices of the matrix QAQT to which the matrix A is
permuted by post ordering.

c_dm_vssps

366

For the storage method of the decomposed results,
refer to Figure c_dm_vssps-1.

See Comments on use.

nsizeindex long long int Input The size of the array panelindex.

 Output The necessary size is returned.

See Comments on use.

ndim int ndim[n][2] Output The size of first and second dimension of the i-th
panel are stored in ndim[i-1][0] and ndim[i-
1][1] respectively.

 Input The values set by the first call are reused when isw
 1 specified.

For the storage method of the decomposed results,
refer to Figure c_dm_vssps-1.

nposto int nposto[n] Output The one dimensional vector is stored which indicates
what column index of A the i-th node in post
ordering corresponds to.

 Input The values set by the first call are reused when isw
 1 specified.

See Comments on use.

w double w[Iwlen1] Work area When this routine is called repeatedly with isw =
1,2,3, This work area is used for preserving
information among calls. The contents must not be
changed.
When iordering=1, Iwlen1 = nz.
When iordering1, Iwlen1 = 1.

 Output/Input

iw1 int iw1[Iwlen2]

Work area When this routine is called repeatedly with isw =
1,2,3, This work area is used for preserving
information among calls. The contents must not be
changed.
When iordering=1, Iwlen2 = nz+n+1.
When iordering1, Iwlen2 = 1.

 Output/Input

iw2 int iw2[nz+n+1] Work area When this routine is called repeatedly with isw =
1,2,3, This work area is used for preserving
information among calls. The contents must not be
changed.

 Output/Input

iw3 int

iw3[n*35+35]

Work area When this routine is called repeatedly with isw =
1,2,3,4, This work area is used for preserving
information among calls. The contents must not be
changed.

 Output/Input

icon int Output Condition code. See below.

 c_dm_vssps

367

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

10000 The coefficient matrix is not positive definite. Processing is continued.

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

Processing is discontinued.

30000 One of the following has occurred:

 n < 1

 nz < 0

 nfcnz[n]  nz+1
 nsizefactor < 1
 nsizeindex < 1
 epsz < 0
 isw < 0
 isw > 4

30100 The permutation matrix specified in nprem is not

correct.

30200 The row pointer k stored in nrow[j-1] is k <
i or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i]-nfcnz[i-1] > n – i + 1.

30400 There is a column without a diagonal element.

31000 The value of nsizefactor is not enough as

the size of panelfactor,

or the value of nsizeindex is not enough as

the size of npanelindex.

Reallocate the panelfactor or

npanelindex with the necessary size which

are returned in the nsizefactor or

nsizeindex, and call this routine again.

c_dm_vssps

368

panel row pointer vector

row indices of post ordering .

Figure c_dm_vssps-1 concept of storing the data for decomposed result

j = nassign[i-1]  The i-th supernode is stored at the j-th position.

p = nfcnzfactor[j-1]  The j-th panel occupies the area with a length
ndim[j-1][1]  ndim[j-1][0] from the p-th element of
panelfactor.

q = nfcnzindex[j-1]  The row pointer vector of the j-th panel occupies the area with a
length ndim[j-1][0] from the q-th element of panelindex.

A panel is regarded as an array of the size ndim[j-1][1]  ndim[j-1][0].

The lower triangular unit matrix L except the diagonal part is transposed and is stored in

 panel[t-1][s-1], s > t, s=1 , … , ndim[j-1][0],

 t=1 , … , ndim[j-1][1].

The corresponding part of the diagonal matrix D is stored in panel[t-1][t-1].

The row pointers indicate the column indices of the matrix QAQT to which the node of the matrix A is
permuted by post ordering.

3. Comments on use

nperm
When the element pij=1 of the permutation matrix P, set nperm[i-1]=j.

The inverse of the matrix can be obtained as follows:
 for(i=1; i<=n; i++){
 j=nperm[i-1];
 perminv[j-1]=i;
 }

epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LDLT

decomposition. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard

value of epsz is 16  u. When the computation is to be continued even if the pivot is small, assign the minimum value

to epsz. In this case, however, the result is not assured.

 c_dm_vssps

369

When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite. In this case,

processing is continued as icon=10000, but the numerical error may be large because of no pivoting.

nsizefactor and nsizeindex
The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be

determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after

the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values

such as one in the size specifying in nsizefactor and nsizeindex. This routine ends with icon=31000, and the

necessary sizes for nsizefactor and nsizeindex are returned. Then the suspended process can be resumed by

calling it with isw=2 after reallocating the arrays with the necessary size.

nposto
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

This array represents a permutation matrix Q which is an orthogonal matrix also as well as note nperm above, and

corresponds to permute the matrix A into QAQT.

The inverse matrix QT can be obtained as follows:

 for(i=1; i<=n; i++){
 j=nposto[i-1];
 npostoinv[j-1]=i;
 }

4. Example program

The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic

equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1, a2, a3) where a1, a2, a3 and c are zero constants, that

means the operator is Laplacian. The matrix A in Diagonal format is generated by the routine init_mat_diag, and

transferred into compressed column storage format.

 The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

 #include <stdlib.h>
 #include <stdio.h>
 #include <math.h>
 #include <malloc.h>
 #include "cssl.h" /* standard C-SSL header file */

 #define NORD (39)
 #define NX (NORD)
 #define NY (NORD)
 #define NZ (NORD)
 #define N (NX*NY*NZ)
 #define K (N+1)
 #define NDIAG (7)

c_dm_vssps

370

 #define NDIAGH (4)

 MAIN__()
 {
 int ierr, icon, iguss, iter, itmax;
 int nord, n, l, i, j, k;
 int nx, ny, nz, nnz, nnzc;
 int length, nbase, ndiag, ntopcfgc;
 int numnz, numnzc, nsupnum, ntopcfg, ncol;
 int iordering, isw;
 int *npanelindex;
 int ndummyi;
 int nofst[NDIAG];
 int nrow[NDIAG*K];
 int nrowc[NDIAG*K];
 int nfcnz[N+1];
 int nfcnzc[N+1];
 int nperm[N];
 int nassign[N];
 int nposto[N];
 int ndim[N][2];
 int iw1[N*NDIAGH+N+1];
 int iw2[N*NDIAGH+N+1];
 int iw3[N*35+35];
 int iwc[NDIAG*K][2];

 double err, epsz;
 double t0, t1, t2;
 double va1, va2, va3, vc;
 double xl, yl, zl;
 double dummyf;
 double *panelfactor;
 double diag[NDIAG][K];
 double diag2[NDIAG][K];
 double a[N*NDIAGH];
 double b[N];
 double c[NDIAG*K];
 double w[N*NDIAGH];
 double wc[NDIAG*K];
 double x[N];
 double solex[N];

 long long int nsizefactor;
 long long int nsizeindex;
 long long int nfcnzfactor[N+1];
 long long int nfcnzindex[N+1];

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl,double zl, int ndiag, int len, int ndivp);

 double errnrm(double *x1, double *x2, int len);

 nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;

 printf(" LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
 printf(" FOR SPARSE POSITIVE DEFINITE MATRICES\n");
 printf(" IN COMPRESSED COLUMN STORAGE\n");
 printf("\n");

 for (i=1; i<=n; i++){
 solex[i-1]=1.0;
 }
 printf(" EXPECTED SOLUTIONS\n");
 printf(" X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
 printf("\n");

 va1 = 0.0;
 va2 = 0.0;
 va3 = 0.0;
 vc = 0.0;
 xl = 1.0;
 yl = 1.0;
 zl = 1.0;
 init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
 nx, ny, nz, xl, yl, zl, ndiag, n, k);

 for (i=1; i<=ndiag; i++){
 if (nofst[i-1] < 0){
 nbase=-nofst[i-1];
 length=n-nbase;

 c_dm_vssps

371

 for (j=1; j<=length; j++){
 diag2[i-1][j-1]=diag[i-1][nbase+j-1];
 }
 }
 else{
 nbase=nofst[i-1];
 length=n-nbase;
 for (j=nbase+1; j<=n; j++){
 diag2[i-1][j-1]=diag[i-1][j-nbase-1];
 }
 }
 }

 numnzc=1;
 numnz=1;
 for (j=1; j<=n; j++){
 ntopcfgc = 1;
 ntopcfg = 1;
 for (i=ndiag; i>=1; i--){
 if (diag2[i-1][j-1]!=0.0){
 ncol=j-nofst[i-1];
 c[numnzc-1]=diag2[i-1][j-1];
 nrowc[numnzc-1]=ncol;
 if (ncol>=j){
 a[numnz-1]=diag2[i-1][j-1];
 nrow[numnz-1]=ncol;
 }
 if (ntopcfgc==1){
 nfcnzc[j-1]=numnzc;
 ntopcfgc=0;
 }
 if (ntopcfg==1){
 nfcnz[j-1]=numnz;
 ntopcfg=0;
 }
 if (ncol>=j){
 numnz=numnz+1;
 }
 numnzc=numnzc+1;
 }
 }
 }

 nfcnzc[n]=numnzc;
 nnzc=numnzc-1;
 nfcnz[n]=numnz;
 nnz=numnz-1;

 ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon);

 for(i=1; i<=n; i++){
 x[i-1]=b[i-1];
 }
 iordering=0;
 isw=1;
 epsz=0;
 nsizefactor=1;
 nsizeindex=1;

 ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, x, nassign,
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);

 printf("\n");
 printf(" ICON = %d NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon,
nsizefactor, nsizeindex);
 printf("\n");

 panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
 npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
 isw=2;

 ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, x, nassign,
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon);

 err = errnrm(solex,x,n);

 printf(" COMPUTED VALUES\n");
 printf(" X(1) = %.15lf X(N) = %.15f\n", x[0], x[n-1]);

c_dm_vssps

372

 printf("\n");
 printf(" ICON = %d\n", icon);
 printf("\n");
 printf(" N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
 printf("\n");
 printf(" ERROR = %.15e\n",err);
 printf("\n");
 printf("\n");
 if (err<(1.0e-8) && icon==0){
 printf(" ********** OK **********\n");
 }
 else{
 printf(" ********** NG **********\n");
 }
 free(panelfactor);
 free(npanelindex);
 return 0;
 }

 void init_mat_diag(double va1, double va2, double va3, double vc,
 double d_l[], int offset[], int nx, int ny, int nz,
 double xl, double yl, double zl, int ndiag, int len, int ndivp)
 {
 int i, l, j;
 int length, numnz, js;
 int i0, j0, k0;
 int ndiag_loc;
 int nxy;

 double hx, hy, hz;
 double x1, x2;
 double base;
 double ret, remark;

 if (ndiag<1){
 printf("FUNCTION INIT_MAT_DIAG:\n");
 printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
 return;
 }
 ndiag_loc = ndiag;
 if (ndiag>7){
 ndiag_loc=7;
 }

 hx = xl / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);

 for (i=1; i<=ndivp; i++){
 for (j=1; j<=ndiag; j++){
 d_l[i-1+(j-1)*ndivp]= 0.;
 }
 }

 nxy = nx * ny;
 l = 1;
 if (ndiag_loc >= 7) {
 offset[l-1] = -nxy;
 ++l;
 }
 if (ndiag_loc >= 5) {
 offset[l-1] = -nx;
 ++l;
 }
 if (ndiag_loc >= 3) {
 offset[l-1] = -1;
 ++l;
 }
 offset[l-1] = 0;
 ++l;
 if (ndiag_loc >= 2) {
 offset[l-1] = 1;
 ++l;
 }
 if (ndiag_loc >= 4) {
 offset[l-1] = nx;
 ++l;
 }
 if (ndiag_loc >= 6) {
 offset[l-1] = nxy;
 }

 c_dm_vssps

373

 for (j = 1; j <= len; ++j) {
 js=j;
 k0 = (js - 1) / nxy + 1;
 if (k0 > nz) {
 printf("ERROR; K0.GH.NZ\n");
 return;
 }
 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 1;
 if (ndiag_loc >= 7) {
 if (k0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
 }
 ++l;
 }

 if (ndiag_loc >= 5) {
 if (j0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 3) {
 if (i0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
 }
 ++l;
 }

 d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
 if (ndiag_loc >= 5) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
 if (ndiag_loc >= 7) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
 }
 }
 ++l;
 if (ndiag_loc >= 2) {
 if (i0 < nx) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
 }
 ++l;
 }

 if (ndiag_loc >= 4) {
 if (j0 < ny) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
 }
 ++l;
 }

 if (ndiag_loc >= 6) {
 if (k0 < nz) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
 }
 }
 }
 return;
 }

 double errnrm(double *x1, double *x2, int len)
 {
 double ret_val;

 int i;
 double s, ss;

 s = 0.;
 for (i = 1; i <= len; ++i) {
 ss = x1[i-1] - x2[i-1];
 s += ss * ss;
 }
 ret_val = sqrt(s);
 return ret_val;
 }

c_dm_vssps

374

5. Method

Consult the entry for DM_VSSPS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19]

 c_dm_vssslu

375

c_dm_vssslu

LU decomposition of a structurally symmetric real sparse matrix

ierr = c_dm_vssslu(a, nz, nrow, nfcnz, n,

isclitermax,

iordering, nperm, isw,

nassign, &nsupnum,

nfcnzfactorl, panelfactorl,

&nsizefactorl, nfcnzindexl,

npanelindexl,

&nsizeindex, ndim,

nfcnzfactoru, panelfactoru,

&nsizefactoru,

nfcnzindexu, npanelindexu,

nposto,

sclrow, sclcol,

&epsz, &thepsz, ipivot, istatic,

&spepsz, w, iw, &icon);

1. Function

An n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both rows and columns norms. And

LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to

each supernode.

(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero elements in its symmetric position.

But the values of elements in a symmetric position are not necessarily same.)

The structurally symmetric real sparse matrix is transformed as below.

 A1 = DrADc

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

In the right term P is a permutation matrix of ordering which is sought for a pattern of elements for A and Q is a

permutation matrix of postorder. P and Q are orthogonal matrices.

Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices L and U respectively is also

symmetric to each other. L is a lower triangular matrix and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of

a supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU

specifying an appropriate small value as a static pivot in place of the candidate sought.

c_dm_vssslu

376

2. Arguments

The routine is called as follows:

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n, isclitermax, iordering,

nperm, isw, nassign, &nsupnum, nfcnzfactorl,

panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,

&nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,

&nsizefactoru, nfcnzindexu, npanelindexu, nposto,

sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, spepsz,

w, iw, &icon);

where:

a double a[nz] Input The nonzero elements of a structurally symmetric real

sparse matrix A are stored.

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector).

nz int Input The total number of the nonzero elements belong to a

structurally symmetric real sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array A.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array A in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

isclitermax int Input The upper limit for the number of iteration to seek scaling

matrices of Dr and Dc to equilibrate both rows and

columns of matrix A.

When isclitermax ≤ 0 is specified no scaling is

done. In this case Dr and Dc are assumed as unit matrices.

When isclitermax ≥ 10 is specified, the upper limit

for the number of iteration is considered as 10.

iordering int Input Control information whether to decompose the reordered

matrix PA1PT permuted by the matrix P of ordering or to

decompose the matrix A.

When iordering = 1 is specified, the matrix PA1PT is

decomposed into LU.

Otherwise. Without any ordering, the matrix A1 is

decomposed into LU. See Comments on use.

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See

Comments on use.

isw int Input Control information.

1) When isw = 1 is specified.

 c_dm_vssslu

377

A first call. After symbolic decomposition, checking

whether the sufficient amount of memory for storing

data are allocated the computation is performed.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that

means that the sizes of panelfactorl or

panelfactoru or npanelindexl or

npanelindexu were not enough, the suspended

computation is resumed.

Before calling again with isw = 2, the

panelfactorl or panelfactoru or

npanelindexl or npanelindexu must be

reallocated with the necessary sizes which are

returned in the nsizefactorl nsizefactoru

or nsizeindex at the precedent call and specified

in corresponding arguments.

Besides, except these arguments and isw as control

information, the values in the other augments must

not be changed between the previous and following

calls.

nassign int nassign[n] Output L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in panelfactorl and

panelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign[i-1].

 Input When isw ≠ 1, the values stored in the first call are

reused. Regarding

the storage methods of decomposed matrices, refer to

Figure c_dm_vssslu-1.

nsupnum int Output The total number of supernodes.

 Input The values in the first call are reused when isw  1

specified. ( n)

nfcnzfactorl long

nfcnzfactorl[n+1]

Output The decomposed matrices L and U of a structurally

symmetric real sparse matrix are computed for each

supernode respectively. The columns of L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is

mapped into panelfactorl consecutively or the

location of panel[0][0] is stored.

c_dm_vssslu

378

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1.

 Input The values set by the first call are reused when isw  1

specified.

panelfactorl double

panelfactorl

[nsizefactorl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign

[i-1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[i-1][0] 

ndim[i-1][1] The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1,...,ndim[i-1][0], t = 1

,..., ndim[i-1][1]. The corresponding block diagonal

portion of the unit upper triangular matrix U except its

diagonals is stored in the panel[t-1][s-1], s < t, t

= 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1. See Comments on use.

nsizefactorl long Input The size of the array panelfactorl.

 Output The necessary size for the array panelfactorl is

returned. See Comments on use.

nfcnzindexl long

nfcnzindexl[n+1]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexl int npanelindexl

[nsizeindex]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

 c_dm_vssslu

379

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix permuted in its

post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1. See Comments on use.

nsizeindex long Input The size of the arrays npanelindexl and

npanelindexu.

 Output The necessary size is returned. See Comments on use.

ndim int ndim[n][2] Output ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][0] - ndim[i-1][1] and ndim[i-

1][1] indicates the total amount of the size of the first

dimension and second dimension of the panel where a

matrix U is transposed and stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1.

 Input When isw  1, the values set by the first call are reused.

nfcnzfactoru long

nfcnzfactoru[n+1]

Output Regarding a matrix U derived from LU decomposition of

a structurally symmetric real sparse matrix, the rows of U

except the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into panelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1.

 Input When isw  1, the values set by the first call are reused.

panelfactoru double

panelfactoru

[nsizefactoru]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

i-th block can be considered to be two dimensional array

of { ndim[i-1][0] - ndim[i-1][1] }  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

c_dm_vssslu

380

transposed and stored in this panel[t-1][s-1], s =

1,..., ndim[i-1][0] – ndim[i-1][1], t = 1

,..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1. See Comments on use.

nsizefactoru long Input The size of the array panelfactoru.

 Output The necessary size for the array panelfactoru is

returned. See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexu int npanelindexu

[nsizeindex]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslu-1. See Comments on use.

nposto int nposto[n] Output The information about what column number of A the i-th

node in post order corresponds to is stored.

 Input When isw  1, the values set by the first call are reused.

See Comments on use.

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

 Input When isw  1, the values set by the first call are reused.

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

 Input The values set by the first call are reused when isw  1

specified.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

 Output When epsz ≤ 0.0, it is set to the standard value.

See Comments on use.

 c_dm_vssslu

381

thepsz double Input Threshold used in judgement for a pivot. Immediately

after a candidate in pivot search is considered to have the

value greater than or equal to the threshold specified, it is

accepted as a pivot and the search of a pivot is broken off.

For example, 10-2.

 Output When thepsz ≤ 0.0, 10-2 is set.

When epsz ≥ thepsz > 0.0, it is set to the value of

epsz.

ipivot int Input Control information on pivoting which indicates whether

a pivot is searched and what kind of pivoting is chosen if

any.

For example, 40 for complete pivoting.

ipivot < 10 or ipivot ≥ 50, no pivoting.

10 ≤ ipivot < 20, partial pivoting

20 ≤ ipivot < 30, diagonal pivoting

21 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting.

22 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting. If Rook pivoting fails, it is

changed to complete pivoting.

30 ≤ ipivot < 40, Rook pivoting

32 : When within a supernode Rook pivoting fails, it is

changed to complete pivoting.

40 ≤ ipivot < 50, complete pivoting

istatic int Input Control information indicating whether Static pivoting is

taken.

1) When istatic = 1 is specified.
When the pivot searched within a supernode is not
greater than spepsz, it is replaced with its
approximate value of copysign(spepsz, pivot).
If its value is 0.0, spepsz is used as an
approximation value.
The following conditions must be satisfied.
a) epsz must be less than or equal to the standard
value of epsz.
b) Scaling must be performed with isclitermax
= 10.
c) thepsz ≥ spepsz must hold.

2) When istatic ≠ 1 is specified.

No static pivot is performed.

spepsz double Input The approximate value used in Static pivoting when

istatic = 1 is specified.

The following conditions must hold.

thepsz ≥ spepsz ≥ epsz

 Output When spepsz < epsz, it is set to 10-10.

w double w[nz+n] Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

c_dm_vssslu

382

iw int

iw[36*n+36+2*nz+

3*(n+1)]

Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

10000 When istatic = 1 is specified, Static pivot

which replaces the pivot candidate with too small

value with spepsz is made.

Continued.

20000 The pivot became relatively zero. The coefficient

matrix A may be singular.

Processing is discontinued.

20200 When seeking diagonal matrices for equilibrating

both rows and columns, there is a zero vector in

either rows or columns of the matrix A. The

coefficient matrix A may be singular.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindex < 1

• isw < 1

• isw > 2

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

30500 When istatic = 1 is specified, the required

conditions are not satisfied.

epsz is greater than 16u of the standard value

or isclitermax < 10

or spepsz > thepsz

30700 The matrix A is not structurally symmetric.

31000 The value of nsizefactorl is not enough as

the size of panelfactorl,

or the value of nsizeindex is not enough as

the size of npanelindexl and

npanelindexu,

or the value of nsizefactoru is not enough as

the size of panelfactoru.

Reallocate the panelfactorl or

npanelindexl and npanelindexu or

panelfactoru or with the necessary size

which are returned in the nsizefactorl or

nsizeindex or

nsizefactoru respectively

and call this routine again with isw =2 specified.

 c_dm_vssslu

383

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vssslu-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim

[j-1][1] from the p-th element of panelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length ndim

[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][0] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][0] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][0] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1 , … , ndim[j-1][0] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

for (i = 1; i <= n; i++) {

c_dm_vssslu

384

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, “References.” in detail.

b)
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum

value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is

approximately continued replacing it with spepsz.

c)
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such

as one in the size specifying in nsizefactorl, nsizeindex and nsizefactoru with isw = 1. This routine ends

with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindex and nsizefactoru are returned. Then

the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

d)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

e)
A system of equations Ax = b can be solved by calling c_dm_vssslux subsequently in use of the results of LU
decomposition obtained by this routine.
The following arguments used in this routine are specified.

a, nz, nrow, nfcnz, n,

iordering, nperm,

nassign, nsupnum,

nfcnzfactorl, panelfactorl,

nsizefactorl, nfcnzindexl, npanelindexl,

nsizeindex, ndim,

nfcnzfactoru, panelfactoru, nsizefactoru,

nfcnzindexu, npanelindexu, nposto,

 c_dm_vssslu

385

sclrow,sclcol,

iw

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed

column storage format. The linear system of equations with a structurally symmetric real sparse matrix A built in this way

is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 39

#define NX NORD

#define NY NORD

#define NZ NORD

#define N (NX * NY * NZ)

#define NXY (NX * NY)

#define K (N + 1)

#define NDIAG 7

#define NALL (NDIAG * N)

#define IWL (36 * N + 36 + 2 * NALL + 3 * (N + 1))

#define IPRINT 0

void init_mat_diag(double, double, double, double, double*, int*, int, int,

 int, double, double, double, int, int, int);

double errnrm(double*, double*, int);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

c_dm_vssslu

386

 double c[K * NDIAG], wc[K * NDIAG];

 int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];

 double w[NDIAG * N + N];

 int nperm[N],

 nposto[N], ndim[N][2],

 nassign[N],

 iw[IWL];

 double *panelfactorl, *panelfactoru;

 int *npanelindexl,

 *npanelindexu;

 double dummyfl, dummyfu;

 int ndummyil, ndummyiu;

 long nsizefactorl, nsizeindex,

 nsizefactoru,

 nfcnzfactorl[N + 1],

 nfcnzfactoru[N + 1],

 nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 double x[N], b[N], solex[N];

 int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;

 double va1, va2, va3, vc, xl, yl, zl;

 double thepsz,

 epsr,

 sepsz,

 sclrow[N], sclcol[N];

 double epsz, err;

 int ipivot, istatic,

 isclitermax,

 irefine, itermax, iter, icon;

 int iordering, isw, nsupnum;

 printf(" DIRECT METHOD\n");

 printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n\n");

 for (i = 0; i < N; i++) {

 solex[i] = 1.0;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);

 va1 = 1.0;

 c_dm_vssslu

387

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,

 NX, NY, NZ, xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = - nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnzc = 0;

 for (j = 0; j < N; j++) {

 ntopcfgc = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 c[numnzc] = diag2[i][j];

 nrowc[numnzc] = ncol;

c_dm_vssslu

388

 if (ntopcfgc == 1) {

 nfcnzc[j] = numnzc + 1;

 ntopcfgc = 0;

 }

 numnzc++;

 }

 }

 }

 nfcnzc[N] = numnzc + 1;

 nnzc = numnzc;

 c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,

 b, wc, (int *)iwc, &icon);

 for (i = 0; i < N; i++) {

 x[i] = b[i];

 }

 iordering = 0;

 isclitermax = 10;

 isw = 1;

 epsz = 1.0e-16;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindex = 1;

 thepsz = 1.0e-2;

 epsr = 1.0e-8;

 sepsz = 1.0e-10;

 ipivot = 40;

 istatic = 1;

 irefine = 1;

 itermax = 10;

 c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,

 isclitermax, iordering,

 nperm, isw,

 nassign,

 &nsupnum,

 nfcnzfactorl, &dummyfl,

 &nsizefactorl, nfcnzindexl,

 &ndummyil, &nsizeindex, (int *)ndim,

 nfcnzfactoru, &dummyfu,

 &nsizefactoru,

 c_dm_vssslu

389

 nfcnzindexu, &ndummyiu,

 nposto,

 sclrow, sclcol,

 &epsz,

 &thepsz,

 ipivot, istatic, &sepsz,

 w, iw, &icon);

 printf(" ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n",

 icon, nsizefactorl, nsizefactoru, nsizeindex);

 printf(" NSUPNUM=%d\n\n", nsupnum);

 panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);

 panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);

 npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);

 npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);

 isw = 2;

 c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,

 isclitermax, iordering,

 nperm, isw,

 nassign,

 &nsupnum,

 nfcnzfactorl, panelfactorl,

 &nsizefactorl, nfcnzindexl,

 npanelindexl, &nsizeindex, (int *)ndim,

 nfcnzfactoru, panelfactoru,

 &nsizefactoru,

 nfcnzindexu, npanelindexu,

 nposto,

 sclrow, sclcol,

 &epsz,

 &thepsz,

 ipivot, istatic, &sepsz,

 w, iw, &icon);

 c_dm_vssslux(N,

 iordering,

 nperm,

 x,

 nassign,

 nsupnum,

 nfcnzfactorl, panelfactorl,

 nsizefactorl, nfcnzindexl,

 npanelindexl, nsizeindex, (int *)ndim,

 nfcnzfactoru, panelfactoru,

 nsizefactoru,

c_dm_vssslu

390

 nfcnzindexu, npanelindexu,

 nposto,

 sclrow, sclcol,

 irefine, epsr, itermax, &iter,

 c, nnzc, nrowc, nfcnzc,

 iw,

 &icon);

 err = errnrm(solex, x, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]);

 printf(" ICON = %6d\n\n", icon);

 printf(" N = %d :: NX = %d NY = %d NZ = %d\n\n", N, NX, NY, NZ);

 printf(" ERROR = %10.3le\n", err);

 printf(" ITER=%d\n\n\n", iter);

 if (err < 1.0e-8 && icon == 0) {

 printf(" ********** OK **********\n");

 } else {

 printf(" ********** NG **********\n");

 }

 free(panelfactorl);

 free(panelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,

 int *offset, int nx, int ny, int nz, double xl, double yl,

 double zl, int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("SUB FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

 c_dm_vssslu

391

{

 int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;

 double hx, hy, hz, hx2, hy2, hz2;

/* NDIAG CANNOT BE GREATER THAN 7 */

 ndiag_loc = ndiag;

 if (ndiag > 7) ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp * ndiag; i++) {

 d_l[i] = 0.0;

 }

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

c_dm_vssslu

392

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */

 k0 = (js - 1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 continue;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[l * ndivp + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[l * ndivp + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[l * ndivp + j] += 2.0 / hz2;

 }

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 c_dm_vssslu

393

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

 * | X1 - X2 |

 == */

double errnrm(double *x1, double *x2, int len) {

 double s, ss, rtc;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = x1[i] - x2[i];

 s += ss * ss;

 }

 rtc = sqrt(s);

 return(rtc);

}

5. Method

Consult the entry for DM_VSSSLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [19] ,

[22] , [46] , [59] , [64] and [65].

c_dm_vssslux

394

c_dm_vssslux

A system of linear equations with LU-decomposed structurally

symmetric real sparse matrices

ierr = c_dm_vssslux(n, iordering, nperm

b, nassign, nsupnum,

nfcnzfactorl, panelfactorl,

nsizefactorl, nfcnzindexl,

npanelindexl,

nsizeindex, ndim,

nfcnzfactoru, panelfactoru,

nsizefactoru,

nfcnzindexu, npanelindexu,

nposto,

sclrow, sclcol, irefine, epsr,

itermax, &iter,

a, nz, nrow, nfcnz,

iw, &icon);

1. Function

An n × n structurally symmetric real sparse matrix A of which LU decomposition is made as below is given. In this

decomposition an n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both rows and

columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal

portion belonging to each supernode is performed and results in the following form. This routine solves the following

linear equation in use of these results of LU decomposition.

 Ax = b

A matrix A is decomposed into as below.

 PrsQPDrADcPTQTPcs = LU

The structurally symmetric real sparse matrix A is transformed as below.

 A1 = DrADc

Where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for A and Q is a

permutation matrix of postorder. P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper

 c_dm_vssslux

395

triangular matrix.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,

panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,

nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,

nsizefactoru, nfcnzindexu, npanelindexu, nposto,

sclrow, sclcol, irefine, &epsr, itermax,

&iter, a, nz, nrow, nfcnz, iw2, &icon);

where:

n int Input Order n of matrix A.

iordering int Input When iordering 1 is specified, it is indicated that LU

decomposition is performed with an ordering

specified in nperm.

The matrix PA1PT is decomposed into LU decomposition.

Otherwise. No ordering is specified.

See Comments on use.

nperm int nperm[n] Input When iordering = 1 is specified, a vector presenting

the permutation matrix P used is stored.

See Comments on use.

b double b[n] Input The right-hand side constant vector b of a system of

linear equations Ax = b.

 Output Solution vector x.

nassign int nassign[n] Input L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in panelfactorl and

panelfactoru as one dimensional subarray

consecutively and its block number is stored. The

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign[i-1].

Regarding the storage methods of decomposed matrices,

refer to Figure c_dm_vssslux-1.

nsupnum int Input The total number of supernodes.( n)

nfcnzfactorl long

nfcnzfactorl[n+1]

Input The decomposed matrices L and U of a structurally

symmetric real sparse matrix are computed for each

supernode respectively. The columns of L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

c_dm_vssslux

396

one dimensional subarray where the i-th panel is

mapped into panelfactorl consecutively or the

location of panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

panelfactorl double

panelfactorl

[nsizefactorl]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign

[i-1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[j-1][0] 

ndim[j-1][1]. The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1, ..., ndim[i-1][0], t =

1, ..., ndim[i-1][1]. The corresponding block

diagonal portion of the unit upper triangular matrix U

except its diagonals is stored in the panel[t-1][s-

 1], s < t, t = 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

nsizefactorl long Input The size of the array panelfactorl.

nfcnzindexl long

nfcnzindexl[n+1]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

npanelindexl int npanelindexl

[nsizeindex]

Input The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

 c_dm_vssslux

397

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix permuted in its

post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

nsizeindex long Input The size of the arrays npanelindexl and

npanelindexu.

ndim int ndim[n][2] Input ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][0] – ndim[i-1][1] and ndim[i-

1][1] indicates the total amount of the size of the first

dimension and second dimension of the panel where a

matrix U is transposed and stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

nfcnzfactoru long

nfcnzfactoru[n+1]

Input Regarding a matrix U derived from LU decomposition of

a structurally symmetric real sparse matrix, the rows of U

except the of block diagonal portion belonging to each

supernode are compressed to have the common column

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into panelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

panelfactoru double

panelfactoru

[nsizefactoru]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

i-th block can be considered to be two dimensional array

of {ndim[i-1][0] – ndim[i-1][1]}  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

transposed and stored in this panel[t-1][s-1], s =

1,...,ndim[i-1][0] – ndim[i-1][1], t = 1,

..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

c_dm_vssslux

398

nsizefactoru long Input The size of the array panelfactoru.

See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

npanelindexu int npanelindexu

[nsizeindex]

Input The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssslux-1.

nposto int nposto[n] Input The information about what column number of A the i-th

node in post order corresponds to is stored.

See Comments on use.

sclrow double sclrow[n] Input The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

sclcol double sclcol[n] Input The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

irefine int Input Control information indicating whether iterative

refinement is performed when the solution is computed in

use of results of LU decomposition. A residual vector is

computed in quadruple precision.

When irefine = 1 is specified.

The iterative refinement is performed. It is iterated until in

the sequences of the solutions obtained in refinement the

difference of the absolute values of their corresponding

residual vectors become larger than a fourth of that of

immediately previous ones.

When irefine ≠ 1is specified.

No iterative refinement is performed.

epsr double Input Criterion value to judge if the absolute value of the

residual vector

 c_dm_vssslux

399

b-Ax is sufficiently smaller compared with the absolute

value of b.

When epsr ≤ 0.0, it is set to 10-6.

itermax int Input Upper limit of iterative count for refinement ( 1).

iter int Output Actual iterative count for refinement.

a double a[nz] Input The nonzero elements of a structurally symmetric real

sparse matrix A are stored in a[0] to [nz-1]

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector).

nz int Input The total number of the nonzero elements to belong to a

structurally symmetric real sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element to stored in an array a.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array a in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

iw int

iw[36*n+36+2*nz+

3*(n+1)]

Work

area

The data derived from calling c_dm_vssslu of LU

decomposition of a structurally symmetric real sparse

matrix is transferred in this work area. The contents must

not be changed among calls.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20400 There is a zero element in diagonal of resultant

matrices of LU decomposition.

Processing is discontinued.

20500 The norm of residual vector for the solution

vector is greater than that of b multiplied by

epsr, which is the right term constant vector in

Ax = b. The coefficient matrix A may be close to

a singular matrix.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindex < 1

• itermax < 1 when irefine = 1.

c_dm_vssslux

400

Code Meaning Processing

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vssslux-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim

[j-1][1] from the p-th element of panelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length ndim

[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][0] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][0] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][0] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1,…, ndim[j-1][0] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

 c_dm_vssslux

401

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

The results of LU decomposition obtained by c_dm_vssslu is used.

See note c), "Comments on use." of c_dm_vssslu and Example program of c_dm_vssslux.

b)
When the element pij=1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

c)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed

column storage format. The linear system of equations with a structurally symmetric real sparse matrix A built in this way

is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

c_dm_vssslux

402

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 39

#define NX NORD

#define NY NORD

#define NZ NORD

#define N (NX * NY * NZ)

#define NXY (NX * NY)

#define K (N + 1)

#define NDIAG 7

#define NALL (NDIAG * N)

#define IWL (36 * N + 36 + 2 * NALL + 3 * (N + 1))

#define IPRINT 0

void init_mat_diag(double, double, double, double, double*, int*, int, int,

 int, double, double, double, int, int, int);

double errnrm(double*, double*, int);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 double c[K * NDIAG], wc[K * NDIAG];

 int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];

 double w[NDIAG * N + N];

 int nperm[N],

 nposto[N], ndim[N][2],

 nassign[N],

 iw[IWL];

 double *panelfactorl, *panelfactoru;

 int *npanelindexl,

 *npanelindexu;

 double dummyfl, dummyfu;

 int ndummyil, ndummyiu;

 long nsizefactorl, nsizeindex,

 nsizefactoru,

 nfcnzfactorl[N + 1],

 nfcnzfactoru[N + 1],

 nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 double x[N], b[N], solex[N];

 int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;

 double va1, va2, va3, vc, xl, yl, zl;

 c_dm_vssslux

403

 double thepsz,

 epsr,

 sepsz,

 sclrow[N], sclcol[N];

 double epsz, err;

 int ipivot, istatic,

 isclitermax,

 irefine, itermax, iter, icon;

 int iordering, isw, nsupnum;

 printf(" DIRECT METHOD\n");

 printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n\n");

 for (i = 0; i < N; i++) {

 solex[i] = 1.0;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);

 va1 = 1.0;

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,

 NX, NY, NZ, xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = - nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

c_dm_vssslux

404

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnzc = 0;

 for (j = 0; j < N; j++) {

 ntopcfgc = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 c[numnzc] = diag2[i][j];

 nrowc[numnzc] = ncol;

 if (ntopcfgc == 1) {

 nfcnzc[j] = numnzc + 1;

 ntopcfgc = 0;

 }

 numnzc++;

 }

 }

 }

 nfcnzc[N] = numnzc + 1;

 nnzc = numnzc;

 c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,

 b, wc, (int *)iwc, &icon);

 for (i = 0; i < N; i++) {

 x[i] = b[i];

 }

 c_dm_vssslux

405

 iordering = 0;

 isclitermax = 10;

 isw = 1;

 epsz = 1.0e-16;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindex = 1;

 thepsz = 1.0e-2;

 epsr = 1.0e-8;

 sepsz = 1.0e-10;

 ipivot = 40;

 istatic = 1;

 irefine = 1;

 itermax = 10;

 c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,

 isclitermax, iordering,

 nperm, isw,

 nassign,

 &nsupnum,

 nfcnzfactorl, &dummyfl,

 &nsizefactorl, nfcnzindexl,

 &ndummyil, &nsizeindex, (int *)ndim,

 nfcnzfactoru, &dummyfu,

 &nsizefactoru,

 nfcnzindexu, &ndummyiu,

 nposto,

 sclrow, sclcol,

 &epsz,

 &thepsz,

 ipivot, istatic, &sepsz,

 w, iw, &icon);

 printf(" ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n",

 icon, nsizefactorl, nsizefactoru, nsizeindex);

 printf(" NSUPNUM=%d\n\n", nsupnum);

 panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);

 panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);

 npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);

 npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);

 isw = 2;

 c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,

 isclitermax, iordering,

 nperm, isw,

 nassign,

c_dm_vssslux

406

 &nsupnum,

 nfcnzfactorl, panelfactorl,

 &nsizefactorl, nfcnzindexl,

 npanelindexl, &nsizeindex, (int *)ndim,

 nfcnzfactoru, panelfactoru,

 &nsizefactoru,

 nfcnzindexu, npanelindexu,

 nposto,

 sclrow, sclcol,

 &epsz,

 &thepsz,

 ipivot, istatic, &sepsz,

 w, iw, &icon);

 c_dm_vssslux(N,

 iordering,

 nperm,

 x,

 nassign,

 nsupnum,

 nfcnzfactorl, panelfactorl,

 nsizefactorl, nfcnzindexl,

 npanelindexl, nsizeindex, (int *)ndim,

 nfcnzfactoru, panelfactoru,

 nsizefactoru,

 nfcnzindexu, npanelindexu,

 nposto,

 sclrow, sclcol,

 irefine, epsr, itermax, &iter,

 c, nnzc, nrowc, nfcnzc,

 iw,

 &icon);

 err = errnrm(solex, x, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]);

 printf(" ICON = %6d\n\n", icon);

 printf(" N = %d :: NX = %d NY = %d NZ = %d\n\n", N, NX, NY, NZ);

 printf(" ERROR = %10.3le\n", err);

 printf(" ITER=%d\n\n\n", iter);

 if (err < 1.0e-8 && icon == 0) {

 printf(" ********** OK **********\n");

 } else {

 c_dm_vssslux

407

 printf(" ********** NG **********\n");

 }

 free(panelfactorl);

 free(panelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,

 int *offset, int nx, int ny, int nz, double xl, double yl,

 double zl, int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("SUB FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

{

 int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;

 double hx, hy, hz, hx2, hy2, hz2;

/* NDIAG CANNOT BE GREATER THAN 7 */

 ndiag_loc = ndiag;

 if (ndiag > 7) ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp * ndiag; i++) {

 d_l[i] = 0.0;

 }

 nxy = nx * ny;

/* OFFSET SETTING */

c_dm_vssslux

408

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */

 k0 = (js - 1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 continue;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 l = 0;

 if (ndiag_loc >= 7) {

 c_dm_vssslux

409

 if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[l * ndivp + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[l * ndivp + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[l * ndivp + j] += 2.0 / hz2;

 }

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

 * | X1 - X2 |

 == */

double errnrm(double *x1, double *x2, int len) {

c_dm_vssslux

410

 double s, ss, rtc;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = x1[i] - x2[i];

 s += ss * ss;

 }

 rtc = sqrt(s);

 return(rtc);

}

 c_dm_vssss

411

c_dm_vssss

A system of linear equations with structurally symmetric real sparse

matrices (LU decomposition method)

ierr = c_dm_vssss(a, nz, nrow, nfcnz, n,

isclitermax,

iordering, nperm, isw, b,

nassign, &nsupnum,

nfcnzfactorl, panelfactorl,

&nsizefactorl, nfcnzindexl,

npanelindexl,

&nsizeindex, ndim,

nfcnzfactoru, panelfactoru,

&nsizefactoru, nfcnzindexu,

npanelindexu, nposto,

sclrow, sclcol,

&epsz, &thepsz, ipivot, istatic,

&spepsz, irefine, epsr,

itermax, &iter,

w, iw, &icon);

1. Function

An n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both rows and columns norms.

Subsequently this routine solves a system of equations Ax = b in use of LU decomposition in which the pivot is taken as

specified within the block diagonal portion belonging to each supernode.

 (Each nonzero element of a structurally symmetric real sparse matrix has the nonzero element in its symmetric position.

But the values of elements in a symmetric position are not necessarily same.)

 Ax = b

The structurally symmetric real sparse matrix is transformed as below.

 A1 = DrADc

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling columns.

 A2 = QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each

supernode according to specified pivoting.

In the right term P is a permutation matrix of ordering which is sought for a pattern of elements for A and Q is a

permutation matrix of postorder. P and Q are orthogonal matrices.

Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices L and U respectively is also

symmetric to each other. L is a lower triangular matrix and U is a unit upper triangular matrix.

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold

specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a

c_dm_vssss

412

supernode is regarded as a candidate.

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU

specifying an appropriate small value as a static pivot in place of the candidate sought.

The solution is computed using LU decomposition.

It can be specified to improve the precision of the solution by iterative refinement.

2. Arguments

The routine is called as follows:

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n, isclitermax, iordering,

nperm, isw, b, nassign, &nsupnum, nfcnzfactorl,

panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,

&nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,

&nsizefactoru, nfcnzindexu, npanelindexu, nposto,

sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,

irefine, epsr, itermax, &iter, w, iw, &icon);

where:

a double a[nz] Input The nonzero elements of a structurally symmetric real

sparse matrix A are stored.

For the compressed column storage method, refer to

Figure c_dm_vmvscc-1 in the description for

c_dm_vmvscc routine (multiplication of a real sparse

matrix and a real vector).

nz int Input The total number of the nonzero elements belong to a

structurally symmetric real sparse matrix A.

nrow int nrow[nz] Input The row indices used in the compressed column storage

method, which indicate the row number of each nonzero

element stored in an array A.

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column

stored in an array A in the compressed column storage

method which stores the nonzero elements column by

column.

nfcnz[n] = nz + 1.

n int Input Order n of matrix A.

isclitermax int Input The upper limit for the number of iteration to seek scaling

matrices of Dr and Dc to equilibrate both rows and

columns of matrix A.

When isclitermax ≤ 0 is specified no scaling is

done. In this case Dr and Dc are assumed as unit matrices.

When isclitermax ≥ 10 is specified, the upper limit

for the number of iteration is considered as 10.

iordering int Input Control information whether to decompose the reordered

matrix PA1PT permuted by the matrix P of ordering or to

decompose the matrix A.

When iordering = 1 is specified, the matrix PA1PT is

 c_dm_vssss

413

decomposed into LU.

Otherwise. Without any ordering, the matrix A1 is

decomposed into LU. See Comments on use.

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See

Comments on use.

isw int Input Control information.

1) When isw = 1 is specified.

A first call. Symbolic decomposition, checking

whether the sufficient amount of memory for storing

data are allocated the computation is performed.

2) When isw = 2 specified.

After the previous call ends with icon = 31000, that

means that the sizes of panelfactorl or

panelfactoru or npanelindexl or

npanelindexu were not enough, the suspended

computation is resumed.

Before calling again with isw = 2, the

panelfactorl or panelfactoru or

npanelindexl or npanelindexu must be

reallocated with the necessary sizes which are

returned in the nsizefactorl nsizefactoru

or nsizeindex at the precedent call and specified

in corresponding arguments.

Besides, except these arguments and isw as control

information, the values in the other augments must

not be changed between the previous and following

calls.

3) When isw = 3 specified.

The subsequent call with isw = 3 solves another

system of equations of which the coefficient matrix is

as same as previous call but the right-hand side

vector b is changed. In this case, the information

obtained by the previous LU decomposition can be

reused.

Besides, except isw as control information and b for

storing the new right-hand side b, the values in the

other arguments must not be changed between the

previous and following calls.

b double b[n] Input The right-hand side constant vector b of a system of

linear equations Ax = b.

 Output Solution vector x.

nassign int nassign[n] Output L and U belonging to each supernode are compressed and

stored in two dimensional panels respectively. These

panels are stored in panelfactorl and

panelfactoru as one dimensional subarray

consecutively and its block number is stored. The

c_dm_vssss

414

corresponding indices vectors are similarly stored

npanelindexl and npanelindexu respectively.

Data of the i-th supernode is stored into the j-th block of a

subarray, where j = nassign [i-1].

 Input When isw ≠ 1, the values stored in the first call are

reused. Regarding

the storage methods of decomposed matrices, refer to

Figure c_dm_vssss-1.

nsupnum int Output The total number of supernodes.

 Input The values in the first call are reused when isw  1

specified. ( n)

nfcnzfactorl long

nfcnzfactorl[n+1]

Output The decomposed matrices L and U of a structurally

symmetric real sparse matrix are computed for each

supernode respectively. The columns of L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of U in its block diagonal

portion. The index number of the top array element of the

one dimensional subarray where the i-th panel is

mapped into panelfactorl consecutively or the

location of panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1.

 Input The values set by the first call are reused when isw  1

specified.

panelfactorl double

panelfactorl

[nsizefactorl]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The block number of the

section where the panel corresponding to the i-th

supernode is assigned is known from j = nassign[i-

1]. The location of its top of subarray including the

portion of decomposed matrices is stored in

nfcnzfactorl[j-1].

The size of the panel in the i-th block can be considered

to be two dimensional array of ndim[i-1][0] 

ndim[i-1][1]. The corresponding parts of the lower

triangular matrix L are store in this panel

[t-1][s-1], s ≥ t, s = 1, ..., ndim[i-1][0],

 t = 1, ..., ndim[i-1][1]. The corresponding block

diagonal portion of the unit upper triangular matrix U

except its diagonals is stored in the panel

[t-1][s-1], s < t, t = 1, ..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1. See Comments on use.

 c_dm_vssss

415

nsizefactorl long Input The size of the array panelfactorl.

 Output The necessary size for the array panelfactorl is

returned. See Comments on use.

nfcnzindexl long

nfcnzindexl[n+1]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored in a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. The index number of the top

array element of the one dimensional subarray where the

i-th row indices vector is mapped into npanelindexl

consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexl int npanelindexl

[nsizeindex]

Output The columns of the decomposed matrix L belonging to

each supernode are compressed to have the common row

indices vector and stored into a two dimensional panel

with the corresponding parts of the decomposed matrix U

in its block diagonal portion. This column indices vector

is mapped into npanelindexl consecutively. The

block number of the section where the row indices vector

corresponding to the i-th supernode is assigned is known

from j = nassign[i-1]. The location of its top of

subarray is stored in nfcnzindexl[j-1]. This row

indices are the row numbers of the matrix permuted in its

post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1. See Comments on use.

nsizeindex long Input The size of the arrays npanelindexl and

npanelindexu.

 Output The necessary size is returned. See Comments on use.

ndim int ndim[n][2] Output ndim[i-1][0] and ndim[i-1][1] indicate the

sizes of the first dimension and second dimension of the

panel to store a matrix L respectively, which is

allocated in the i-th location.

ndim[i-1][0] – ndim[i-1][1] and ndim[i-

1][1] indicates the total amount of the size of the first

dimension and second dimension of the panel where a

matrix U is transposed and stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1.

 Input When isw  1, the values set by the first call are reused.

nfcnzfactoru long

nfcnzfactoru[n+1]

Output Regarding a matrix U derived from LU decomposition of

a structurally symmetric real sparse matrix, the rows of U

except the of block diagonal portion belonging to each

supernode are compressed to have the common column

c_dm_vssss

416

indices vector and stored into a two dimensional panel.

The index number of the top array element of the one

dimensional subarray where the i-th panel is mapped

into panelfactoru consecutively or the location of

panel[0][0] is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1.

 Input When isw  1, the values set by the first call are reused.

panelfactoru double

panelfactoru

[nsizefactoru]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The block

number of the section where the panel corresponding to

the i-th supernode is assigned is known from j =

nassign[i-1]. The location of its top of subarray

including the portion of decomposed matrices is stored in

nfcnzfactoru[j-1]. The size of the panel in the

i-th block can be considered to be two dimensional array

of {ndim[i-1][0] – ndim[i-1][1]}  ndim

[i-1][1]. The rows of the unit upper triangular matrix

U except the block diagonal portion are compressed,

transposed and stored in this panel[t-1][s-1], s =

1,...,ndim[i-1][0] – ndim[i-1][1], t = 1,

..., ndim[i-1][1].

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1. See Comments on use.

nsizefactoru long Input The size of the array panelfactoru.

 Output The necessary size for the array panelfactoru is

returned. See Comments on use.

nfcnzindexu long

nfcnzindexu[n+1]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed to have the common column

indices vector, transposed and stored in a two dimensional

panel without its block diagonal portion. The index

number of the top array element of the one dimensional

subarray where the i-th column indices vector including

indices of the block diagonal portion is mapped into

npanelindexu consecutively is stored.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1.

 Input When isw  1, the values set by the first call are reused.

npanelindexu int npanelindexu

[nsizeindex]

Output The rows of the decomposed matrix U belonging to each

supernode are compressed, transposed and stored in a two

dimensional panel without its block diagonal portion.

The column indices vector including indices of the block

diagonal portion is mapped into npanelindexu

consecutively. The block number of the section where the

 c_dm_vssss

417

column indices vector corresponding to the i-th supernode

is assigned is known from j = nassign[i-1]. The

location of its top of subarray is stored in

nfcnzindexu[j-1]. These column indices are the

column numbers of the matrix permuted in its post order.

Regarding the storage method of the decomposed results,

refer to Figure c_dm_vssss-1. See Comments on use.

nposto int nposto[n] Output The information about what column number of A the i-th

node in post order corresponds to is stored.

 Input When isw  1, the values set by the first call are reused.

See Comments on use.

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for

scaling rows are stored in one dimensional array.

 Input When isw  1, the values set by the first call are reused.

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for

scaling columns are stored in one dimensional array.

 Input The values set by the first call are reused when isw  1

specified.

epsz double Input Judgment of relative zero of the pivot ( 0.0).

 Output When epsz ≤ 0.0, it is set to the standard value.

See Comments on use.

thepsz double Input Threshold used in judgement for a pivot. Immediately

after a candidate in pivot search is considered to have the

value greater than or equal to the threshold specified, it is

accepted as a pivot and the search of a pivot is broken off.

For example, 10-2.

 Output When thepsz ≤ 0.0, 10-2 is set.

When epsz ≥ thepsz > 0.0, it is set to the value of

epsz.

ipivot int Input Control information on pivoting which indicates whether

a pivot is searched and what kind of pivoting is chosen if

any.

For example, 40 for complete pivoting.

ipivot < 10 or ipivot ≥ 50, no pivoting.

10 ≤ ipivot < 20, partial pivoting

20 ≤ ipivot < 30, diagonal pivoting

21 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting.

22 : When within a supernode diagonal pivoting fails, it is

changed to Rook pivoting. If Rook pivoting fails, it is

changed to complete pivoting.

30 ≤ ipivot < 40, Rook pivoting

32 : When within a supernode Rook pivoting fails, it is

changed to complete pivoting.

40 ≤ ipivot < 50, complete pivoting

istatic int Input Control information indicating whether Static pivoting is

c_dm_vssss

418

taken.

1) When istatic = 1 is specified.
When the pivot searched within a supernode is not
greater than spepsz, it is replaced with its
approximate value of copysign(spepsz, pivot).
If its value is 0.0, spepsz is used as an
approximation value.
The following conditions must be satisfied.
a) epsz must be less than or equal to the standard
value of epsz.
b) Scaling must be performed with isclitermax
= 10.
c) thepsz ≥ spepsz must hold.
d) irefine = 1 must be specified for the iterative
refinement of the solution.

2) When istatic ≠ 1 is specified.

No static pivot is performed.

spepsz double Input The approximate value used in Static pivoting when

istatic = 1 is specified.

The following conditions must hold.

10-10 ≥ spepsz ≥ epsz

 Output When spepsz < epsz, it is set to 10-10.

irefine int Input Control information indicating whether iterative

refinement is performed when the solution is computed in

use of results of LU decomposition. A residual vector is

computed in quadruple precision.

When irefine = 1 is specified.

The iterative refinement is performed. It is iterated until in

the sequences of the solutions obtained in refinement the

difference of the absolute values of their corresponding

residual vectors become larger than a fourth of that of

immediately previous ones.

When irefine ≠ 1 is specified.

No iterative refinement is performed.

When istatic = 1 is specified, irefine = 1 must be

specified.

epsr double Input Criterion value to judge if the absolute value of the

residual vector

b - Ax is sufficiently smaller compared with the absolute

value of b.

When epsr ≤ 0.0, it is set to 10-6.

itermax int Input Upper limit of iterative count for refinement ( 1).

iter int Output Actual iterative count for refinement.

w double w[nz+n] Work

area

When this routine is called repeatedly with isw = 1, 2

this work area is used for preserving information among

calls. The contents must not be changed.

iw int

iw[36*n+36+2*nz+

Work

area

When this routine is called repeatedly with isw = 1, 2, 3

this work area is used for preserving information among

 c_dm_vssss

419

3*(n+1)] calls. The contents must not be changed.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 The pivot became relatively zero. The coefficient

matrix A may be singular.

Processing is discontinued.

20200 When seeking diagonal matrices for equilibrating

both rows and columns, there is a zero vector in

either rows or columns of the matrix A. The

coefficient matrix A may be singular.

20400 There is a zero element in diagonal of resultant

matrices of LU decomposition.

20500 The norm of residual vector for the solution

vector is greater than that of b multiplied by

epsr, which is the right term constant vector in

Ax = b. The coefficient matrix A may be close to

a singular matrix.

30000 One of the following has occurred:

• n < 1

• nz < 0

• nfcnz[n] ≠ nz + 1

• nsizefactorl < 1

• nsizefactoru < 1

• nsizeindex < 1

• isw < 1

• isw > 3

• itermax < 1 when irefine = 1.

Processing is discontinued.

30100 The permutation matrix specified in nperm is not

correct.

30200 The row index k stored in nrow[j-1] is k < 1

or k > n.

30300 The number of row indices belong to i-th column

is nfcnz[i] – nfcnz[i-1] > n.

30500 When istatic =1 is specified, the required

conditions are not satisfied.

epsz is greater than 16u of the standard value

or isclitermax < 10

or irefine ≠ 1

or spepsz > thepsz

or spepsz > 10-10

30700 The matrix A is not structurally symmetric.

c_dm_vssss

420

Code Meaning Processing

31000 The value of nsizefactorl is not enough as

the size of panelfactorl,

or the value of nsizeindex is not enough as

the size of npanelindexl and

npanelindexu,

or the value of nsizefactoru is not enough as

the size of panelfactoru.

Reallocate the panelfactorl or

npanelindexl and npanelindexu or

panelfactoru or npanelindexu

with the necessary size which are returned in the

nsizefactorl or nsizeindex or

nsizefactoru respectively

and call this routine again with isw = 2 specified.

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure c_dm_vssss-1. Conceptual scheme for storing decomposed results

j = nassign[i-1]  The i-th supernode is stored at the j-th section.

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] ×

ndim[j-1][1] from the p-th element of panelfactorl.

q = nfcnzindexl[j-1]  The row indices vector of the j-th panel occupies the area with a length

ndim[j-1][0] from the q-th element of npanelindexl.

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1].

The lower triangular matrix L of decomposed results is stored in

 panel[t-1][s-1], s ≥ t, s = 1, ..., ndim[j-1][0],

 t = 1, ..., ndim[j-1][1].

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored
in

 panel[t-1][s-1], s < t, s = 1, ..., ndim[j-1][1],

 t = 1, ..., ndim[j-1][1].

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][0] –
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru.

v = nfcnzindexu[j-1]  The column indices vector of the j-th panel occupies the area with a length
ndim[j-1][0] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][0] – ndim[j-1][1]) × ndim[j-1][1].

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in

 panel[y-1][x-1] , x = 1 , … , ndim[j-1][0] – ndim[j-1][1], y = 1 , … , ndim[j-1][1].

 c_dm_vssss

421

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in
post ordering.

3. Comments on use

a)

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j.

The inverse of the matrix can be obtained as follows:

for (i = 1; i <= n; i++) {

 j = nperm[i-1];

 nperminv[j-1] = i;

 }

Fill-reduction Orderings are obtained in use of METIS and so on.

Refer to [41], [42] in Appendix, “References.” in detail.

b)
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u.

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum

value to epsz. In this case, however, the result is not assured.

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is

approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

c)
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such

as one in the size specifying in nsizefactorl, nsizeindex, and nsizefactoru with isw = 1. This routine ends

with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindex and nsizefactoru are returned. Then

the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes.

d)
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th

position when j = nposto[i-1].

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and

corresponds to permute the matrix A into QAQT.

 The inverse matrix QT can be obtained as follows:

 for (i = 1; i <= n; i++) {

 j = nposto[i-1];

 npostoinv[j-1] = i;

 }

e)
Instead of this routine, a system of equations Ax=b can be solved by calling both c_dm_vssslu to perform LU
decomposition of a structurally symmetric real sparse matrix A and c_dm_vssslux to solve the linear equation in
use of decomposed results.

c_dm_vssss

422

4. Example program

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method

applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed

column storage format. The linear system of equations with a structurally symmetric real sparse matrix A built in this way

is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4

processors.

/* **EXAMPLE** */

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <omp.h>

#include "cssl.h"

#define NORD 39

#define NX NORD

#define NY NORD

#define NZ NORD

#define N NX * NY * NZ

#define NXY NX * NY

#define K (N + 1)

#define NDIAG 7

#define NALL NDIAG * N

#define IWL 36 * N + 36 + 2 * NALL + 3 * (N + 1)

#define IPRINT 0

void init_mat_diag(double, double, double, double, double*, int*, int, int,

 int, double, double, double, int, int, int);

double errnrm(double*, double*, int);

int MAIN__() {

 int nofst[NDIAG];

 double diag[NDIAG][K], diag2[NDIAG][K];

 double c[K * NDIAG], wc[K * NDIAG];

 int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];

 double w[NDIAG * N + N];

 int nperm[N],

 c_dm_vssss

423

 nposto[N], ndim[N][2],

 nassign[N],

 iw[IWL];

 double *panelfactorl, *panelfactoru;

 int *npanelindexl,

 *npanelindexu;

 double dummyfl, dummyfu;

 int ndummyil, ndummyiu;

 long nsizefactorl, nsizeindex,

 nsizefactoru,

 nfcnzfactorl[N + 1],

 nfcnzfactoru[N + 1],

 nfcnzindexl[N + 1],

 nfcnzindexu[N + 1];

 double x[N], b[N], solex[N];

 int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;

 double va1, va2, va3, vc, xl, yl, zl;

 double thepsz,

 epsr,

 sepsz,

 sclrow[N], sclcol[N];

 double epsz, err;

 int ipivot, istatic,

 isclitermax,

 irefine, itermax, iter, icon;

 int iordering, isw, nsupnum;

 printf(" DIRECT METHOD\n");

 printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");

 printf(" IN COMPRESSED COLUMN STORAGE\n\n");

 for (i = 0; i < N; i++) {

 solex[i] = 1.0;

 }

 printf(" EXPECTED SOLUTIONS\n");

 printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);

 va1 = 1.0;

 va2 = 2.0;

 va3 = 3.0;

 vc = 4.0;

 xl = 1.0;

c_dm_vssss

424

 yl = 1.0;

 zl = 1.0;

 init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,

 NX, NY, NZ, xl, yl, zl, NDIAG, N, K);

 for (i = 0; i < NDIAG; i++) {

 for (j = 0; j < K; j++) {

 diag2[i][j] = 0;

 }

 }

 for (i = 0; i < NDIAG; i++) {

 if (nofst[i] < 0) {

 nbase = -nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][j] = diag[i][nbase + j];

 }

 } else {

 nbase = nofst[i];

 length = N - nbase;

 for (j = 0; j < length; j++) {

 diag2[i][nbase + j] = diag[i][j];

 }

 }

 }

 numnzc = 0;

 for (j = 0; j < N; j++) {

 ntopcfgc = 1;

 for (i = NDIAG - 1; i >= 0; i--) {

 if (diag2[i][j] != 0.0) {

 ncol = (j + 1) - nofst[i];

 c[numnzc] = diag2[i][j];

 nrowc[numnzc] = ncol;

 if (ntopcfgc == 1) {

 nfcnzc[j] = numnzc + 1;

 ntopcfgc = 0;

 }

 c_dm_vssss

425

 numnzc++;

 }

 }

 }

 nfcnzc[N] = numnzc + 1;

 nnzc = numnzc;

 c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,

 b, wc, (int *)iwc, &icon);

 for (i = 0; i < N; i++) {

 x[i] = b[i];

 }

 iordering = 0;

 isclitermax = 10;

 isw = 1;

 epsz = 1.0e-16;

 nsizefactorl = 1;

 nsizefactoru = 1;

 nsizeindex = 1;

 thepsz = 1.0e-2;

 epsr = 1.0e-8;

 sepsz = 1.0e-10;

 ipivot = 40;

 istatic = 1;

 irefine = 1;

 itermax = 10;

 c_dm_vssss(c, nnzc, nrowc, nfcnzc, N,

 isclitermax, iordering,

 nperm, isw,

 x,

 nassign,

 &nsupnum,

 nfcnzfactorl, &dummyfl,

 &nsizefactorl, nfcnzindexl,

 &ndummyil, &nsizeindex, (int *)ndim,

 nfcnzfactoru, &dummyfu,

 &nsizefactoru,

 nfcnzindexu, &ndummyiu,

 nposto,

 sclrow, sclcol,

c_dm_vssss

426

 &epsz,

 &thepsz,

 ipivot, istatic, &sepsz,

 irefine, epsr, itermax, &iter,

 w, iw, &icon);

 printf(" ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n",

 icon, nsizefactorl, nsizefactoru, nsizeindex);

 printf(" NSUPNUM=%d\n\n", nsupnum);

 panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);

 panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);

 npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);

 npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);

 isw = 2;

 c_dm_vssss(c, nnzc, nrowc, nfcnzc, N,

 isclitermax, iordering,

 nperm, isw,

 x,

 nassign,

 &nsupnum,

 nfcnzfactorl, panelfactorl,

 &nsizefactorl, nfcnzindexl,

 npanelindexl, &nsizeindex, (int *)ndim,

 nfcnzfactoru, panelfactoru,

 &nsizefactoru,

 nfcnzindexu, npanelindexu,

 nposto,

 sclrow, sclcol,

 &epsz,

 &thepsz,

 ipivot, istatic, &sepsz,

 irefine, epsr, itermax, &iter,

 w, iw, &icon);

 err = errnrm(solex, x, N);

 printf(" COMPUTED VALUES\n");

 printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]);

 printf(" ICON = %6d\n\n", icon);

 printf(" N = %d :: NX = %d NY = %d NZ = %d\n\n", N, NX, NY, NZ);

 printf(" ERROR = %19.16lf\n", err);

 printf(" ITER=%d\n\n\n", iter);

 c_dm_vssss

427

 if (err < 1.0e-8 && icon == 0) {

 printf(" ********** OK **********\n");

 } else {

 printf(" ********** NG **********\n");

 }

 free(panelfactorl);

 free(panelfactoru);

 free(npanelindexl);

 free(npanelindexu);

 return(0);

}

/* ==

 INITIALIZE COEFFICIENT MATRIX

 == */

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,

 int *offset, int nx, int ny, int nz, double xl, double yl,

 double zl, int ndiag, int len, int ndivp) {

 if (ndiag < 1) {

 printf("SUB FUNCTION INIT_MAT_DIAG:\n");

 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");

 return;

 }

#pragma omp parallel default(shared)

{

 int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;

 double hx, hy, hz, hx2, hy2, hz2;

/* NDIAG CANNOT BE GREATER THAN 7 */

 ndiag_loc = ndiag;

 if (ndiag > 7) ndiag_loc = 7;

/* INITIAL SETTING */

 hx = xl / (nx + 1);

 hy = yl / (ny + 1);

 hz = zl / (nz + 1);

#pragma omp for

 for (i = 0; i < ndivp * ndiag; i++) {

 d_l[i] = 0.0;

 }

c_dm_vssss

428

 nxy = nx * ny;

/* OFFSET SETTING */

#pragma omp single

 {

 l = 0;

 if (ndiag_loc >= 7) {

 offset[l] = -nxy;

 l++;

 }

 if (ndiag_loc >= 5) {

 offset[l] = -nx;

 l++;

 }

 if (ndiag_loc >= 3) {

 offset[l] = -1;

 l++;

 }

 offset[l] = 0;

 l++;

 if (ndiag_loc >= 2) {

 offset[l] = 1;

 l++;

 }

 if (ndiag_loc >= 4) {

 offset[l] = nx;

 l++;

 }

 if (ndiag_loc >= 6) {

 offset[l] = nxy;

 }

 }

/* MAIN LOOP */

#pragma omp for

 for (j = 0; j < len; j++) {

 js = j + 1;

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */

 k0 = (js - 1) / nxy + 1;

 if (k0 > nz) {

 printf("ERROR; K0.GH.NZ \n");

 goto label_100;

 }

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;

 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

 c_dm_vssss

429

 l = 0;

 if (ndiag_loc >= 7) {

 if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;

 l++;

 }

 if (ndiag_loc >= 5) {

 if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 3) {

 if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx;

 l++;

 }

 hx2 = hx * hx;

 hy2 = hy * hy;

 hz2 = hz * hz;

 d_l[l * ndivp + j] = 2.0 / hx2 + vc;

 if (ndiag_loc >= 5) {

 d_l[l * ndivp + j] += 2.0 / hy2;

 if (ndiag_loc >= 7) {

 d_l[l * ndivp + j] += 2.0 / hz2;

 }

 }

 l++;

 if (ndiag_loc >= 2) {

 if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx;

 l++;

 }

 if (ndiag_loc >= 4) {

 if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;

 l++;

 }

 if (ndiag_loc >= 6) {

 if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;

 }

label_100: ;

 }

}

 return;

}

/* ==

 * SOLUTE ERROR

c_dm_vssss

430

 * | X1 - X2 |

 == */

double errnrm(double *x1, double *x2, int len) {

 double s, ss, rtc;

 int i;

 s = 0.0;

 for (i = 0; i < len; i++) {

 ss = x1[i] - x2[i];

 s += ss * ss;

 }

 rtc = sqrt(s);

 return(rtc);

}

5. Method

Consult the entry for DM_VSSSS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [19] ,

[22] , [46] , [59] , [64] and [65].

 c_dm_vtdevc

431

c_dm_vtdevc

Eigenvalues and eigenvectors of real tridiagonal matrices

ierr = c_dm_vtdevc(d, sl, su, n, nf, nl, ivec,

&etol, &ctol, nev, e, maxne, ev,

k, m, &icon);

1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of a real tridiagonal matrix.

 Tx = x

where, T is an n-dimensional real tridiagonal matrix. Tridiagonal matrix T must satisfy the following condition:

 li ui1 > 0, where, i = 2, ... , n

When the element of tridiagonal matrix T is tij, di indicates a tridiagonal element, and li = ti,i1 and ui = ti,i1 indicate

subdiagonal elements, where, l1 = un = 0.

 (Tv)i = li vi1 + di vi + ui vi1, i = 1,2,...,n

2. Arguments

The routine is called as follows:

ierr = c_dm_vtdevc(d, sl, su, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne,

(double*)ev, k, (int*)m, &icon);

where:

d double d[n] Input Diagonal of matrix T.

sl double sl[n] Input Lower diagonal of matrix T, with sl[i1] = li, i = 1, ... , n.

su double su[n] Input Upper diagonal of matrix T, with su[i1] = ui.

n int Input Order n of matrix T.

nf int Input Number assigned to the first eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

nl int Input Number assigned to the last eigenvalue to be acquired by numbering

eigenvalues in ascending order. (Multiple eigenvalues are numbered so

that one number is assigned to one eigenvalue.)

ivec int Input Control information.

ivec = 1 if both the eigenvalues and eigenvectors are sought.

ivec  1 if only the eigenvalues are sought.

etol double Input Criterion value for checking whether the eigenvalues are numerically

different from each other or are multiple.

 Output When etol is less than 3.01016 this value is used as the standard

value. See Comments on use.

ctol double Input Criterion value for checking whether the adjacent eigenvalues can be

considered to be approximately equal to each other. This value is used

to assure the linear independence of the eigenvector corresponding to

c_dm_vtdevc

432

the eigenvalue belonging to approximately multiple eigenvalues

(clusters).

The value of ctol should be generally 5.01012. For a very large

cluster, a large ctol value is required.

106  ctol  etol.

 Output When condition ctol > 106 occurs, ctol is set to 106.

When condition ctol < etol occurs, ctol = 10  etol is set as the

standard value. See Comments on use.

nev int nev[5] Output Number of eigenvalues calculated.

Details are given below.

nev[0] indicates the number of different eigenvalues calculated.

nev[1] indicates the number of approximately multiple different

eigenvalues (different clusters) calculated.

nev[2] indicates the total number of eigenvalues (including multiple

eigenvalues) calculated.

nev[3] indicates the number representing the first of the eigenvalues

calculated.

nev[4] indicates the number representing the last of the eigenvalues

calculated.

e double

e[maxne]

Output Eigenvalues. Stored in e[i1], i = 1, ..., nev[2].

maxne int Input Maximum number of eigenvalues that can be computed.

When it can be considered that there are two or more eigenvalues with

multiplicity m, maxne must be set to a larger value than nl  nf  1 

2  m that is bounded by n. When condition nev[2] > maxne occurs,

the eigenvectors cannot be calculated. See Comments on use.

ev double

ev[maxne][k]

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are

stored in ev.

The eigenvectors are stored in ev[i1][j1], i = 1, ... ,nev[2], j

= 1,...,n.

k int Input C fixed dimension of array ev. (k  n)

m int

m[2][maxne]

Output Information about multiplicity of eigenvalues calculated.

m[0][i1] indicates the multiplicity of the i-th eigenvalue i.

m[1][i1] indicates the multiplicity of the i-th cluster when the

adjacent eigenvalues are regarded as clusters. See Comments on use.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 During calculation of clustered eigenvalues, the

total number of eigenvalues exceeded the value of

maxne.

Discontinued. The eigenvectors cannot be

calculated, but the different eigenvalues

themselves are already calculated.

A suitable value for maxne to allow calculation

to proceed is returned in nev[2].

See Comments on use.

 c_dm_vtdevc

433

Code Meaning Processing

30000 One of the following has occurred:

 n < 1

 k < 1

 k < n

 nf < 1

 nl > n

 nl < nf

 maxne < nl  nf  1

Bypassed.

30100 sl[i]  su[i1] 0

The matrix could not be converted into a

symmetrical form.

Bypassed.

3. Comments on use

Problems that can be solved using this function
This routine requires only that liui1 > 0, i = 2, ..., n. Thus it will also solve the generalized eigenvalue problem.

 Tx = Dx

where D > 0 (every diagonal element is positive) is diagonal by setting

T  D1T. Also, the eigenvalue problem for T can be reduced to a symmetric generalized problem

 DTv = Dv

where d1 = 1, di = ui1di1/li, i = 2, ..., n. If di can cause scaling problems then it is preferable to consider the symmetric

problem.

 D1/2 TD1/2 w = w

where w = D1/2v.

etol and ctol
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets

(parallel processing).

When  = etol, the following condition is satisfied for consecutive eigenvalues  j (j = s  1, s, ..., s  k, (k  0)):

 








|)||,max(|1

||

1

1

ii

ii , (1)

If formula (1) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple.

The standard value of etol is 3.01016 (about the unit round off). In this case, the eigenvalues are refined up to the

maximum machine precision.

If formula (1) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues.

When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ..., t  k (k  0)) are different eigenvalues. Also,

when  = ctol, assume that formula (2) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t

c_dm_vtdevc

434

 k  1. In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ..., t  k) are approximately multiple (i.e.,

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors

corresponding to m (m = t  1, t, ... , t  k) are reorthogonalized.

maxne
The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased,

the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne.

In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20000 is returned. In this case, the

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not

stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in e[i1], i = 1, ..., nev[0]. The multiplicity of the corresponding

eigenvalues is stored in m[0][i1], i = 1, ..., nev[0].

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne

value can be nt(nt = nl  nf  1 is the total number of eigenvalues calculated). However, when there are multiple

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the

calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value

and by calling the routine again.

4. Example program

This program obtains eigenvalues and prints the results.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define P1 (70)
#define Q1 (100)
#define N (P1*Q1)
#define K (N+1)
#define N0 (6001)
#define N1 (7000)
#define NE (N1-N0+1)
#define MAX_CLUS (2*Q1)
#define MAXNE (NE+MAX_CLUS)
#define NW (2*N+2)

MAIN__()
{
 double d[N], sl[N], su[N], e[MAXNE], ev[MAXNE][K], w[NW];
 double tmp, error, etol, ctol;
 int m[2][MAXNE], nev[5], nf, nl, ivec, icon;
 int i, j, l, ii;

 etol=3e-16;
 ctol=5e-12;
 j = (P1+1)/2;
 d[j-1] = 0.0;
 for (i=1; i<=j-1; i++) {
 sl[i+1-1] = 1.0;
 su[i-1] = 1.0;
 sl[j+i-1] = 1.0;
 su[j+i-2] = 1.0;

 c_dm_vtdevc

435

 d[i-1] = (double)(j-i);
 d[j*2-i-1] = d[i-1];
 }
 sl[0] = 0.0;
 su[P1-1] = 0.0;

 for (l=2; l<=Q1; l++) {
 ii = (l-1)*P1;
 for (i=1; i<=P1; i++) {
 sl[ii+i-1] = sl[i-1];
 su[ii+i-1] = su[i-1];
 d[ii+i-1] = d[i-1];
 }
 }
 sl[0] = 0.0;
 su[N-1] = 0.0;

 nf = N0;
 nl = N1;
 ivec = 1;

 c_dm_vtdevc(d, sl, su, N, nf, nl, ivec, &etol, &ctol, nev, e, MAXNE, (double*)ev, K,
 (int*)m, &icon);

 printf("icon = %d\n", icon);
 printf("nev[0] = %d\n", nev[0]);
 printf("nev[1] = %d\n", nev[1]);
 printf("nev[2] = %d\n", nev[2]);
 printf("nev[3] = %d\n", nev[3]);
 printf("nev[4] = %d\n", nev[4]);
 error = tmp = 0.0;
 for (i=0; i<nev[2]; i++) {
 for (j=0; j<N; j++) {
 w[j+1] = ev[i][j];
 }
 w[0] = 0.0;
 w[N+1] = 0.0;

 for (j=0; j<N; j++) {
 tmp = sl[j]*w[j]+d[j]*w[j+1]+su[j]*w[j+2]-e[i]*w[j+1];
 error = max(fabs(tmp/(fabs(e[i])+1)), error);
 }
 }

 printf("maximum element error in ||T*x-eig*x|| = %e\n", tmp);

 return(0);
}

5. Method

Consult the entry for DM_VTDEVC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [20], [57],

[66] and [76].

c_dm_vtfqd

436

c_dm_vtfqd

System of linear equations with unsymmetric or indefinite sparse

matrices (TFQMR method, diagonal format storage method)

ierr = c_dm_vtfqd(a, k, ndiag, n, nofst, b,

itmax, eps, iguss, x, &iter,

&icon);

1. Function

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with

unsymmetric or indefinite sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the diagonal format storage method. Vectors b and x are n-dimensional

vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

ierr = c_dm_vtfqd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, x,

&iter, &icon);

where:

a double

a[ndiag][k]

Input The nonzero elements of a coefficient matrix are stored in a.

k int Input C fixed dimension of array a ( n).

ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements.

n int Input Order n of matrix A.

nofst int

nofst[ndiag]

Input Distance from the main diagonal vector corresponding to diagonal

vectors in array a. Super-diagonal vector rows have positive values.

Sub-diagonal vector rows have negative values. See Comments on use.

b double b[n] Input Constant vector b.

itmax int Input Upper limit of iterative count for TFQMR method. The value of itmax

should usually be set to about 2000.

eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 106. See Comments on use.

 c_dm_vtfqd

437

iguss int Input Control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array x.

iguss = 0 : Approximate value of the solution vector is not specified.

iguss  0 : The iterative computation starts from the approximate value

of the solution vector specified in array x.

x double x[n] Input The starting values for the computation. This is optional and relates to

argument iguss.

 Output Solution vector x.

iter int Output Actual iterative count for TFQMR method.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 Break-down occurred. Processing stopped.

20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this

stage is returned, but its precision is not

guaranteed.

30000 One of the following has occurred:

 n < 1

 n > k

 ndiag < 1

 itmax  0

Bypassed.

32001 |nofst[i]| > n1

3. Comments on use

eps
When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the

value of eps, it is assumed that the solution converged. The error between the correct solution and the calculated

approximate solution is roughly equal to the product of the matrix A condition number and the value of eps.

Notes on using the diagonal format
A diagonal vector element outside coefficient matrix A must be set to zero.

There is no restriction in the order in which diagonal vectors are stored in array a.

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of

indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this

method.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>

c_dm_vtfqd

438

#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 1000
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX];
 double one=1.0, bcoef=10.0, eps=1.e-6;
 int ierr, icon, ndiag, nub, nlb, n, i, j, k;
 int itmax, iguss, iter;
 int nofst[UBANDW + LBANDW + 1];

 /* initialize nonsymmetric matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 ndiag = nub + nlb + 1;
 n = NMAX;
 k = NMAX;
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }

 for (i=1; i<=nlb; i++) {
 for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
 for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
 nofst[nub + i] = -(i + 1);
 }

 nofst[0] = 0;

 for (j=0; j<n; j++) {
 a[0][j] = bcoef;
 for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
 b[j] = bcoef;
 }

 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ierr = c_dm_vtfqd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
 iguss, x, &iter, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvtfqd failed with icon = %d\n", icon);
 exit(1);
 }

 /* check vector */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }

 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for DM_VTFQD in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_vtfqe

439

c_dm_vtfqe

System of linear equations with unsymmetric or indefinite sparse

matrices (TFQMR method, ELLPACK format storage method)

ierr = c_dm_vtfqe(a, k, iwidt, n, icol, b,

itmax, eps, iguss, x, &iter,

&icon);

1. Function

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with

unsymmetric or indefinite sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the ELLPACK format storage method. Vectors b and x are n-dimensional

vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

ierr = c_dm_vtfqe((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss,

x, &iter, &icon);

where:

a double

a[iwidt][k]

Input Sparse matrix A stored in ELLPACK storage format.

k int Input C fixed dimension of array a and icol ( n).

iwidt int Input The maximum number of non-zero elements in any row vectors of A

( 0).

n int Input Order n of matrix A.

icol int

icol[iwidt][k]

Input Column indices used in the ELLPACK format, showing to which

column the elements corresponding to a belong.

b double b[n] Input Constant vector b.

itmax int Input Upper limit of iterative count for TFQMR method. The value of itmax

should usually be set to about 2000.

eps double Input Tolerance for convergence test.

When eps is zero or less, eps is set to 106. See Comments on use.

iguss int Input Control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array x.

iguss = 0 : Approximate value of the solution vector is not set.

iguss  0 : The iterative computation starts from the approximate

value of the solution vector specified in array x.

x double x[n] Input The starting values for the computation. This is optional and relates to

c_dm_vtfqe

440

argument iguss.

 Output Solution vector x.

iter int Output Iterative count for TFQMR method.

icon int Output Condition code. See below.

The complete list of condition codes is given below.

Code Meaning Processing

0 No error. Completed.

20000 Break-down occurred Processing stopped.

20001 Reached the set maximum number of iterations. Processing stopped.

The approximate solution obtained up to this

stage is returned, but its precision is not

guaranteed.

30000 One of the following has occurred:

 n < 1

 n > k

 iwidt < 1

 itmax  0

Bypassed.

30001 The band width is zero.

3. Comments on use

eps
When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the eps,

it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution

is roughly equal to the product of the matrix A condition number and the eps.

4. Example program

This program solves a system of linear equations and checks the result.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define NMAX 1000
#define UBANDW 2
#define LBANDW 1

MAIN__()
{
 double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX];
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
 int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, iter, i, j, ix;
 int icol[UBANDW + LBANDW + 1][NMAX];

 /* initialize matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 iwidt = UBANDW + LBANDW + 1;
 n = NMAX;
 k = NMAX;

 for (i=0; i<n; i++) b[i] = bcoef;

 for (i=0; i<iwidt; i++)
 for (j=0; j<n; j++) {

 c_dm_vtfqe

441

 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }

 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }

 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf;
 for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
 for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
 }

 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }

 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ierr = c_dm_vtfqe ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
 eps, iguss, x, &iter, &icon);

 if (icon != 0) {
 printf("ERROR: c_dvtfqe failed with icon = %d\n", icon);
 exit(1);
 }

 /* check vector */
 for (i=0; i<n; i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }

 printf("Result OK\n");
 return(0);
}

5. Method

Consult the entry for DM_VTFQE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vtrid

442

c_dm_vtrid

Tridiagonalization of real symmetric matrices.

ierr = c_dm_vtrid (a, k, n, d, sl, &icon);

1. Function

This routine reduces the real symmetric matrix A to tridiagonal form using the Housholder reductions.

 T = QTAQ

where A is an n  n real symmetric matrix, Q is an n  n orthogonal matrix and T is a real tridiagonal matrix.

2. Arguments

The routine is called as follows:

ierr = c_dm_vtrid((double*)a, k, n, d, sl, &icon);

where:

a double a[n][k] Input The upper triangular part {aij | i  j}of real symmetric matrix A is stored

in the upper triangular part {a[i1][j1], i  j} of a.

 Output The information on Householder transforms used for tridiagonalization

is stored in the upper triangular part {a[i1][j1], i  j} of a. The

values in the lower triangular part of a is not assured after operation.

See Comments on use.

k int Input C fixed dimension of matrix a. (k  n)

n int Input Order n of real symmetric matrix A.

d double d[n] Input The diagonal elements of the reduced tridiagonal matrix are stored.

sl double sl[n] Input The subdiagonal elements of reduced tridiagonal matrix are stored in

sl[i1], i = 2, ..., n. sl[0] = 0.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 n < 2, k < n. Processing is discontinued.

3. Comments on use

a
Tridiagonalization is performed by the repeated transforms varying k = 1, ... , n-2.

AAQAQA   01T ,k
k

k
k

Put bT = (0, ... , 0, A k-1 (k+1, k) , ... , Ak-1(n, k)) . (Ak-1(i , j) means i, j element of Ak-1)

bT = (0, ... , 0, bk+1, ... , bn)

 c_dm_vtrid

443

bT∙b = S2 and put wT = (0, ... , 0, bk+1+S, bk+2, ... , bn).

The sign of S is chosen same as that of bk+1.

Then the transform matrix is represented as follow.

SS

1
,I

2
T

ik
k

b 
  wwQ

w(i-1) (i=k+1, ... , n) and  are stored in a[k-1][i-1]and a[k-1][k-1]respectively.

4. Example program

This example calculates the tridiagonalization of a real symmetric matrix whose eigenvalues are known.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */

#define N 2000
#define K N
#define NE N
#define MAX_NEV NE

MAIN__()
{
 double a[N][K], b[N][K], c[N][K], d[N][K], ac[N][K];
 double dd[N], sld[N], sud[N];
 double eval[MAX_NEV], evec[MAX_NEV][K];
 double pai, coef, eval_tol, clus_tol;
 int nev[5], mult[2][MAX_NEV];
 int i, j, nf, nl, ivec, icon;

 pai = 4.0 * atan(1.0);
 coef = sqrt(2.0/(N+1));

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1));
 }
 }

 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 if (i == j) { c[j][i]=i+1; }
 else { c[j][i]=0.0; }
 }
 }

 c_dm_vmggm ((double*)d, K, (double*)c, K, (double*)b, K, N, N, N, &icon);
 c_dm_vmggm ((double*)b, K, (double*)d, K, (double*)a, K, N, N, N, &icon);

 for (i=0; i<N; i++) {
 for (j=i; j<N; j++) {
 ac[i][j] = a[i][j];
 }
 }

 c_dm_vtrid ((double*)ac, K, N, dd, sld, &icon);
 if (icon != 0) {
 printf(" icon of c_dm_vtrid =%d\n", icon);
 exit(0);
 }

 for (i=1; i<N; i++) {
 sud[i-1]=sld[i];
 }
 sud[N-1]=0.0;

 nf = 1;

c_dm_vtrid

444

 nl = N;
 ivec = 0;
 eval_tol = 1.0e-15;
 clus_tol = 1.0e-10;

 c_dm_vtdevc(dd, sld, sud, N, nf, nl, ivec, &eval_tol, &clus_tol, nev, eval,
 MAX_NEV, (double*)evec, K, (int*)mult, &icon);

 for (i=0; i<NE; i=i+N/20) {
 printf("eigen value in eval(%d) = %f\n",i+1,eval[i]);
 }

 return(0);
}

5. Method

Consult the entry for DM_VTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30].

 c_dm_v1dcft

445

c_dm_v1dcft

One-dimensional discrete complex Fourier transforms (mixed radix of 2,

3, 5 and 7)

ierr = c_dm_v1dcft(x, kx, y, ky, n1, n2, isn,

&icon);

1. Function

The function c_dm_v1dcft performs a one-dimensional complex Fourier transform or its inverse transform using a mixed

radix FFT.

The length of data transformed n(= n1  n2) is a product of the powers of 2, 3, 5 and 7.

The one-dimensional Fourier transform
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}

)/2exp(,

1,...,1,0,
1

0

ni

nkxn

n

n

j

jk
njk



 






 (1)

The one-dimensional Fourier inverse transform
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj







 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v1dcft((dcomplex*)x, kx, (dcomplex*)y, ky, n1, n2, isn, &icon);

where:

x dcomplex

x[n2][kx]

Input The complex data.

See Comments on use.

kx int Input C fixed dimension of array x.

y dcomplex

y[n1][ky]

Output The complex transformed data.

See Comments on use.

ky int Input C fixed dimension of array y.

n1 int Input Assuming that the length of the data transformed (n = n1  n2) is two-

dimensional data, the size of first dimension n1 must be a product of

the powers of 2, 3, 5 and 7.

n2 int Input Assuming that the length of the data transformed (n = n1  n2) is two-

dimensional data, the size of the second dimension, n2 must be a

product of the powers of 2, 3, 5 and 7.

isn int Input Either the transform or the inverse transform is indicated.

c_dm_v1dcft

446

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30001 The dimensions of arrays less than or equal to 0. Bypassed.

30002 The C fixed dimensions are less than the actual

dimensions.

30008 The order of transform is not radix 2/3/5/7.

30016 The invalid value for the parameter isn.

3. Comments on use

x and y
If the one-dimensional data of n = n1  n2 is numbered k = 0 , ... , n  1,

 k = k1  k2  n1 , k1 = 0, ... , n1  1
 , k2 = 0, ... , n2  1
 i = i1  i2  n2 , i1 = 0, ... , n2  1
 , i2 = 0, ... , n1  1

The input and output data are regarded as two-dimensional arrays with subscripts of [k2][k1] and [i2][i1], respectively.

See Figure c_dm_v1dcft-1.

kx

n1

n2 *

x0 x1 xn1-1

x2n1-1 xn1

xn1(n2-1) xn1n2-1

ky

n2

*

y0 y1 yn2-1

y2n2-1 yn2

yn2(n1-1) yn2n1-1

Input Array x Output Array y

n1

Figure c_dm_v1dcft-1. The input/Output data storage method

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

 c_dm_v1dcft

447

 1,,1,0 ,
1 1

0

 



 n ... k = x

n
jk

n

n

j
jk (3)

 1...,,1,0,
1

0






 n jx jk
n

n

k
kj (4)

where, n = exp(2i/n).

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the

results may be required.

4. Example program

A one-dimensional FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 4000
#define N2 3000
#define KX (N1+1)
#define KY (N2+1)

MAIN__()
{
 int isn, i, j, icon, ierr;
 double error;
 dcomplex x[N2][KX], y[N1][KY];

 /* Set up the input data arrays */

#pragma omp parallel for shared(x) private(i,j)
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 x[i][j].re = N1*i+j+1;
 x[i][j].im = 0.0;
 }
 }

 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v1dcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_v1dcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v1dcft((dcomplex*)y, KY, (dcomplex*)x, KX, N2, N1, isn, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_v1dcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Find the error after the forward and inverse transform. */
 error = 0.0;

 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 error = max(fabs(x[i][j].re)/N2/N1-(N1*i+j+1), error);
 error = max(fabs(x[i][j].im)/N2/N1, error);
 }
 }

c_dm_v1dcft

448

 printf("error = %e\n", error);
 return(0);
}

5. Method

Consult the entry for DM_V1DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_v1dcft2

449

c_dm_v1dcft2

One-dimensional discrete complex Fourier transforms (mixed radices of

2, 3, 5 and 7)

ierr = c_dm_v1dcft2(x, n, y, isn, &icon);

1. Function

This routine performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

The one-dimensional Fourier transform
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}

)/2exp(,

1,...,1,0,
1

0

ni

nkxn

n

n

j

jk
njk



 






 (1)

The one-dimensional Fourier inverse transform
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj







 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v1dcft2(x, n, y, isn, &icon);

where:

x dcomplex x[n] Input Complex data.

n int Input The length of the data transformed. n must be a product of the powers

of 2, 3, 5 and 7.

y dcomplex y[n] Input Transformed complex data.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30008 The order of transform is not radix 2/3/5/7. Bypassed.

30016 The invalid notation parameter isn.

c_dm_v1dcft2

450

3. Comments on use

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

 1,,1,0 ,
1 1

0

 



 n ... k = x

n
jk

n

n

j
jk (3)

 1...,,1,0,
1

0






 n jx jk
n

n

k
kj (4)

where, n = exp(2i/n).

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the

results may be required.

4. Example program

A one-dimensional FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define N (N1*N2)

MAIN__()
{
 dcomplex x[N], y[N], xx[N];
 double tmp;
 int isn, icon, i;

 for (i=0; i<N; i++) {
 xx[i].re = x[i].re = (double)(i);
 xx[i].im = x[i].im = 0.0;
 }

 isn = 1;
 c_dm_v1dcft2(x, N, y, isn, &icon);
 printf("icon = %d\n", icon);

 isn = -1;
 c_dm_v1dcft2(y, N, x, isn, &icon);
 printf("icon = %d\n", icon);

 tmp = 0.0;
 for (i=0; i<N; i++) {
 tmp = max((fabs(x[i].re/(double)N-xx[i].re))
 +(fabs(x[i].im/(double)N-xx[i].im)),tmp);
 }

 printf("error = %e\n", tmp);

 return(0);
}

5. Method

Consult the entry for DM_V1DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_v1dmcft

451

c_dm_v1dmcft

One-dimensional multiple discrete complex Fourier transforms (mixed

radix of 2, 3, 5 and 7).

ierr = c_dm_v1dmcft(x, kx, n, m, isn, &icon);

1. Function

The function c_dm_v1dmcft performs multiple one-dimensional complex Fourier transforms or its inverse transforms

using a mixed radix FFT.

The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

The one-dimensional Fourier transform
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}

)/2exp(,

1,...,1,0,
1

0

ni

nkxn

n

n

j

jk
njk



 






 (1)

The one-dimensional Fourier inverse transform
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}.

)/2exp(,

1,...,1,0,
1

0
ni

njx

n

n

k

jk
nkj







 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v1dmcft((dcomplex*)x, kx, n, m, isn, &icon);

where:

x dcomplex

x[m][kx]

Input The complex data. Store the data in x[i][j], i = 0 , ... , m  1, j =

0, ... , n  1.

 Output The complex transformed data. The data is stored x[i][j], i = 0, ... ,

m  1, j = 0, ... , n  1.

kx int Input C fixed dimension of array x.

n int Input The length of the data transformed must be a product of the powers of

2, 3, 5 and 7.

m int Input The multiplicity of the data transformed.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

c_dm_v1dmcft

452

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30001 The dimensions of arrays less than or equal to 0. Bypassed.

30002 The leading dimensions are less than the actual

dimensions.

30008 The order of transform is not radix 2/3/5/7.

30016 The invalid value for the parameter isn.

3. Comments on use

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

 1,,1,0 ,
1 1

0

 



 n ... k = x

n
jk

n

n

j
jk (3)

 1...,,1,0,
1

0






 n jx jk
n

n

k
kj (4)

where, n = exp(2i/n).

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the

results may be required.

4. Example program

Multiple one-dimensional FFTs are computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N 2048
#define M 256
#define KX (N+1)

MAIN__()
{
 int isn, i, j, icon, ierr;
 double error;
 dcomplex x[N][KX];

 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(i=0; i<M; i++) {
 for(j=0; j<N; j++) {
 x[i][j].re = N*i+j+1;
 x[i][j].im = 0.0;
 }
 }

 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v1dmcft((dcomplex*)x, KX, N, M, isn, &icon);

 if (icon != 0) {

 c_dm_v1dmcft

453

 printf("ERROR: c_dm_v1dmcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v1dmcft((dcomplex*)x, KX, N, M, isn, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_v1dmcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Find the error after the forward and inverse transform. */
 error = 0.0;

 for(i=0; i<M; i++) {
 for(j=0; j<N; j++) {
 error = max(fabs(x[i][j].re)/N-(N*i+j+1), error);
 error = max(fabs(x[i][j].im)/N, error);
 }
 }

 printf("error = %e\n", error);
 return(0);
}

5. Method

Consult the entry for DM_V1DMCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v1drcf

454

c_dm_v1drcf

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5

and 7)

ierr = c_dm_v1drcf(x, kx, y, ky, n1, n2, isin,

isn, &icon);

1. Function

The routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT.

The data count n (= n1  n2) is a product of the powers of 2, 3, 5 and 7.

One-dimensional Fourier transform
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}.

1or1,

)/2exp(,

1,...,1,0,
1

0




 





rr

ni

nkxn

n

jkr
n

n

j
jk

 (1)

One-dimensional Fourier inverse transform
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}.

1or1,

)/2exp(,

1,...,1,0,
1

0









rr

ni

njx

n

jkr
n

n

k
kj

 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v1drcf((double*)x, kx, (dcomplex*)y, ky, n1, n2, isin, isn,

&icon);

where:

x double

x[n2][kx]

Input Real data.

Store the dara in x[i][j], i=0, ... , n21, j=0, ... , n11.

For the real to complex transform (isn = 1), data is input; for the

complex to real transform (isn = 1), data is output. For isn = 1, the

input data is not saved.

kx int Input C fixed dimension of array x.

y dcomplex

y[n1][ky]

Input Transformed complex data.

The data is stored in y[i][j], i=0, ... , n11, j=0, ... , n2/2.

For the real to complex transform (isn = 1), data is output; for the

complex to real transform (isn = 1), data is input.

The input data is not guaranteed when isn = 1.

 c_dm_v1drcf

455

The complex data obtained from real data by Fourier transformation has

the conjugate complex relation. About half data is stored.

ky int Input C fixed dimension of array y. (ky  n2/2  1)

n1 int Input The size of the first dimension assuming that the real data to be

transformed (n = n1  n2) is two-dimensional data.

n1 must be a product of the powers of 2, 3, 5 and 7.

n1n2 must be the length of the data sequence to be transformed.

n2 int Input The size of the second dimension assuming that the real data to be

transformed (n = n1  n2) is two-dimensional data.

n2 must be a product of the powers of 2, 3, 5 and 7.

n1n2 must be the length of the data sequence to be transformed.

isin int Input The direction of transformation.

isin = 1 for r = 1.

isin = 1 for r = 1.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 kx < n1

 ky < n2/2  1

 n1 < 1

 n2 < 1

 isin  1, 1

 isn  1, 1

Bypassed.

30008 The order of transform is not radix 2/3/5/7.

3. Comments on use

Input/Output array
If one-dimensional data of n = n1  n2 is numbered k = 0 , ..., n  1,

 k = k1  k2  n1 , k1 = 0, ... , n1  1

 , k2 = 0, ... , n2  1

 i = i1  i2  n2 , i1 = 0, ... , n2  1

 , i2 = 0, ... , n1  1

Real data and complex data are regarded as two-dimensional data with subscripts of [k2][k1] and [i2][i1], respectively.

However, i1 = 0 , ... , n2/2 are stored in y. (See Figure c_dm_v1drcf-1.)

c_dm_v1drcf

456

 kx

n1

n2 *

x0 x1 xn1-1

xn1 x2n1-1

xn1(n2-1) xn1n2-1

ky

n2/2+1

n1 *

y0 y1 yn2-1

yn2 y2+n2/2

yn2(n1-1) yn2n1-n2/2

Array x Array y

Figure c_dm_v1drcf-1. Input/Output data storage method

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

 1,,1,0 ,
1 1

0

 



 n ... k = x

n
jk

n

n

j
jk (3)

 1...,,1,0,
1

0






 n jx jk
n

n

k
kj (4)

where, n = exp(2i/n).

This routine calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the results

may be required.

complex conjugate relation
The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by ¯).

k = kn , k = 1, ..., n  1

n = n1  n2
i1 = 0, 1, ..., n2  1
i2 = 0, 1, ..., n1  1
If k = i1  i2  n2 is assumed,
n  k = n2  i1  (n1  1  i2)  n2

The rest of data can be obtained from data numbered i1 = 1, ..., n2 /2 (the first part excluding zeros).

performance
The performance of this routine will be the best when the n can be factorized into adequately large n1 and n2 which are

about the same size.

 c_dm_v1drcf

457

4. Example program

A one-dimensional real FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define KX (N1+1)
#define KY (N2/2+2)

MAIN__()
{
 dcomplex y[N1][KY];
 double x[N2][KX], xx[N2][KX], tmp;
 int isw, isin, icon, i, j;

 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 xx[i][j] = x[i][j] = N1*i+j+1;
 }
 }

 isin = 1;
 isw = 1;
 c_dm_v1drcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon);
 printf("icon = %d\n", icon);

 isw = -1;
 c_dm_v1drcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon);
 printf("icon = %d\n", icon);

 tmp = 0.0;
 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp);
 }
 }

 printf("error = %e\n", tmp);

 return(0);
}

5. Method

Consult the entry for DM_V1DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v1drcf2

458

c_dm_v1drcf2

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5

and 7)

ierr = c_dm_v1drcf2(x, n, y, isin, isn,

&icon);

1. Function

This routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT.

The data count n is a product of the powers of 2, 3, 5 and 7.

One-dimensional Fourier transform
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}.

1or1,

)/2exp(,

1,...,1,0,
1

0




 





rr

ni

nkxn

n

jkr
n

n

j
jk

 (1)

One-dimensional Fourier inverse transform
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}.

1or1,

)/2exp(,

1,...,1,0,
1

0









rr

ni

njx

n

jkr
n

n

k
kj

 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v1drcf2(x, n, y, isin, isn, &icon);

where:

x double x[n] Input

/Output

Real data. Store the dara in x[i], i=0, ..., n  1.

For the real to complex transform (isn = 1), data is input; for the

complex to real transform (isn = 1), data is output.

n int Input The size of the data to be transformed.

n must be an even number and a product of the powers of 2, 3, 5 and 7.

y dcomplex

y[n/2+1]

Output

/Input

Transformed complex data. About a half of the complex is stored in

y[i], i=0, ..., n2/2.

For the real to complex transform (isn = 1), data is output; for the

complex to real transform (isn = 1), data is input.

isin int Input The direction of transformation.

isin = 1 for r = 1.

isin = 1 for r = 1.

 c_dm_v1drcf2

459

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 n is not a multiple of 2

 n is not a product of the powers of 2, 3, 5

and 7.

 isin  1, 1

 isn  1, 1

Bypassed.

3. Comments on use

complex conjugate relation
The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by ¯).

k = kn , k = 1, ..., n  1 (excluding 0)

General definition of Fourier transform
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

 1,,1,0 ,
1 1

0

 



 n ... k = x

n
jk

n

n

j
jk (3)

 1...,,1,0,
1

0






 n jx jk
n

n

k
kj (4)

where, n = exp(2i/n).

This routine calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the results

may be required.

4. Example program

A one-dimensional real FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define N (N1*N2)

MAIN__()
{
 dcomplex y[N/2+1];
 double x[N], xx[N], tmp;

c_dm_v1drcf2

460

 int isin, isn, icon, i;

 for (i=0; i<N; i++) {
 xx[i] = x[i] = (double)(i+1);
 }

 isin = 1;
 isn = 1;
 c_dm_v1drcf2(x, N, y, isin, isn, &icon);
 printf("icon = %d\n", icon);

 isn = -1;
 c_dm_v1drcf2(x, N, y, isin, isn, &icon);
 printf("icon = %d\n", icon);

 tmp = 0.0;
 for (i=0; i<N; i++) {
 tmp = max(fabs(x[i]/(double)N-xx[i]),tmp);
 }

 printf("error = %e\n", tmp);

 return(0);
}

5. Method

Consult the entry for DM_V1DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_v2dcft

461

c_dm_v2dcft

Two-dimensional discrete complex Fourier transforms (mixed radices of

2, 3, 5 and 7).

ierr = c_dm_v2dcft(x, kx, n1, n2, isn, &icon);

1. Function

The function c_dm_v2cdft performs a two-dimensional complex Fourier transform or its inverse Fourier transform using

a mixed radix FFT.

The size of each dimension of two-dimensional data (n1, n2) is a product of the powers of 2, 3, 5 and 7.

The two-dimensional Fourier transform
When {xj1j2} is input, the transform defined by (1) below is calculated to obtain {n1n2k1k2}.

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

22

11

22

11

11

01

12

02

22
2

11
1212121

ni

ni

nk

nk

xnn

n

n

n

j

n

j

kj
n

kj
njjkk






 










 (1)

The two-dimensional Fourier inverse transform
When {k1k2} is input, the transform defined by (2) below is calculated to obtain {xj1j2}.

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

22

11

22

11

11

01

12

02

22
2

11
12121

ni

ni

nj

nj

x

n

n

n

k

n

k

kj
n

kj
nkkjj






 








 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v2dcft((dcomplex*)x, kx, n1, n2, isn, &icon);

where:

x dcomplex

x[n2][kx]

Input The complex data. The data is stored in x[i][j], i = 0 , ... , n2  1,

j = 0, ... , n1  1.

 Output The complex transformed data. The results are stored in x[i][j], i

= 0, ... , n2  1, j = 0, ... , n1  1.

kx int Input C fixed dimension of array x.

n1 int Input The size n1 of data in the first dimension of the two-dimensional array

to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

c_dm_v2dcft

462

n2 int Input The size n2 of data in the second dimension of the two-dimensional

array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30001 The dimensions of arrays less than or equal to 0. Bypassed.

30002 The leading dimensions are less than the actual

dimensions.

30008 The order of transform is not radix 2/3/5/7.

30016 The invalid value for the parameter isn.

3. Comments on use

General definition of Fourier transform
The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and

(4).

1,,1,0 ,

1,,1,0 ,

1

22

11

11

01

12

02

22
2

11
121

21
21




 










 n ... = k

 n ... = k

x
nn

n

j

n

j

kj
n

kj
njjkk

 (3)

1...,,1,0,

1...,,1,0,

22

11

11

01

12

02

22
2

11
12121













 n j

 n j

x
n

k

n

k

kj
n

kj
nkkjj

 (4)

where, n1 = exp(2i/n1), n2 = exp(2i/n2).

This function calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of (3) or (4), respectively. Normalization of

the results may be required.

4. Example program

A two-dimensional FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 4000
#define N2 3000
#define KX (N1+400)

 c_dm_v2dcft

463

MAIN__()
{
 int isn, i, j, icon, ierr;
 double error;
 dcomplex x[N2][KX];

 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 x[i][j].re = N1*i+j+1;
 x[i][j].im = 0.0;
 }
 }

 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Find the error after the forward and inverse transform. */
 error = 0.0;

 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 error = max(fabs(x[i][j].re)/(N2*N1)-(N1*i+j+1), error);
 error = max(fabs(x[i][j].im)/(N2*N1), error);
 }
 }

 printf("error = %e\n", error);
 return(0);
}

5. Method

Consult the entry for DM_V2DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v2drcf

464

c_dm_v2drcf

Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5

and 7)

ierr = c_dm_v2drcf(x, k, n1, n2, isin, isn,

&icon);

1. Function

The routine performs a two-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the two-dimensional data (n1, n2) can be a product of the powers of 2, 3, 5 and 7.

The two-dimensional Fourier transform
When {xj1j2} is input, the transform defined by (1) below is calculated to obtain {n1n2k1k2}.

1or1,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

22

11

22

11

11

01

12

02

22
2

11
1212121







 










rr

ni

ni

nk

nk

xnn

n

n

n

j

n

j

rkj
n

rkj
njjkk

 (1)

The two-dimensional Fourier inverse transform
When {k1k2} is input, the transform defined by (2) below is calculated to obtain {xj1j2}.

1or1,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

22

11

22

11

11

01

12

02

22
2

11
12121







 








rr

ni

ni

nj

nj

x

n

n

n

k

n

k

rkj
n

rkj
nkkjj

 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v2drcf((double*)x, k, n1, n2, isin, isn, &icon);

where:

x double

x[n2][k]

Input

/Output

Two-dimensional real data is stored in x[i][j], i=0, ... , n21,

j=0, ... , n11.

For the real to complex transform (isn = 1), data is input; for the

complex to real transform (isn = 1), data is output.

 Output

/Input

The real and imaginary parts of the transformed complex data are stored

as follows:

 c_dm_v2drcf

465

The real and imaginary parts are stored in x[i][j][0], i=0, ... ,

n21, j=0, ... , n1/2 and x[i][j][1], i=0, ... , n21, j=0, ... ,

n1/2 respectively assuming that the array x was a three-dimensional

array x[n2][k/2][2].

For the real to complex transform (isn = 1), data is output; for the

complex to real transform (isn = 1), data is input.

The complex data transformed Fourier has the complex conjugate

relation. And about half data is stored.

k int Input C fixed dimension of array x. ( 2  (n1/2  1))

k must be an even number.

n1 int Input The length n1 of data in the first dimension of the two- dimensional

array to be transformed.

n1 must be a value that can be a product of powers of 2, 3, 5 and 7.

n2 int Input The length n2 of data in the second dimension of the two- dimensional

array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

isin int Input The direction of transformation.

isin = 1 for r = 1.

isin = 1 for r = 1.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 k < 2  (n1/2  1)

 k is not an even number.

 n1 < 1

 n2 < 1

 isin  1, 1

 isn  1, 1

Bypassed.

30008 The order of transform is not radix 2/3/5/7.

3. Comments on use

General definition of Fourier transform
The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and

(4).

c_dm_v2drcf

466

1,,1,0 ,

1,,1,0 ,

1

22

11

11

01

12

02

22
2

11
121

21
21




 










 n ... = k

 n ... = k

x
nn

n

j

n

j

kj
n

kj
njjkk

 (3)

1...,,1,0,

1...,,1,0,

22

11

11

01

12

02

22
2

11
12121




 








 n j

 n j

x
n

k

n

k

kj
n

kj
nkkjj

 (4)

where, n1= exp(2i/n1), n2 = exp(2i/n2).

This routine calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of (3) or (4), respectively. Normalization of the

results is required, if necessary.

complex conjugate relation
The results of the two-dimensional real Fourier transform that has the following complex conjugate relation (indicated by

 ̄).

k1k2 = 2211 knkn 

The remainder of the data is obtained from the data in k1 = 0, ..., n1/2 and k2 = 0, ..., n21.

4. Example program

A two-dimensional real FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (2048)
#define N2 (N1)
#define K ((N1/2+1)*2)

MAIN__()
{
 double x[N2][K], xx[N2][K], tmp;
 int isin, isn, icon, i, j;

 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 xx[i][j] = x[i][j] = (double)(N2*i+j+1);
 }
 }

 isin = 1;
 isn = 1;
 c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon);
 printf("icon = %d\n", icon);

 isn = -1;
 c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon);
 printf("icon = %d\n", icon);

 tmp = 0.0;
 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp);
 }
 }

 c_dm_v2drcf

467

 printf("error = %e\n", tmp);

 return(0);
}

5. Method

Consult the entry for DM_V2DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v3dcft

468

c_dm_v3dcft

Three-dimensional discrete complex Fourier transforms (mixed radices

of 2, 3, 5 and 7).

ierr = c_dm_v3dcft(x, kx, n1, n2, n3, isn,

&icon);

1. Function

The function c_dm_v3dcft performs a three-dimensional complex Fourier transform or its inverse Fourier transform using

a mixed radix FFT.

The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}.

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321321

ni

ni

ni

nk

nk

nk

xnnn

n

n

n

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk








 














 (1)

The three-dimensional Fourier inverse transform
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}.

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321

ni

ni

ni

nj

nj

nj

xxx

n

n

n

n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj








 












 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v3dcft((dcomplex*)x, kx, n1, n2, n3, isn, &icon);

where:

x dcomplex

x[n3][n2][kx]

Input The complex data. Data is stored in x[i][j][k], i = 0 , ... , n3  1,

j = 0, ... , n2  1, k = 0, ... , n1  1.

 Output The complex transformed data. The results are stored in x[i][j][k],

 c_dm_v3dcft

469

i = 0, ... , n3  1, j = 0, ... , n2  1, k = 0, ... , n1  1.

kx int Input C fixed dimension of array x.

n1 int Input The length n1 of data in the first dimension of the three- dimensional

array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n2 int Input The length n2 of data in the second dimension of the three-

dimensional array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n3 int Input The length n3 of data in the third dimension of the three- dimensional

array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30001 The dimensions of arrays less than or equal to 0. Bypassed.

30002 The leading dimensions are less than the actual

dimensions.

30008 The order of transform is not radix 2/3/5/7.

30016 The invalid value for the parameter isn.

3. Comments on use

General definition of Fourier transform
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and

(4).

1,,1,0 ,

1,,1,0 ,

1,,1,0 ,

1

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321

321
321





 














 n ... = k

 n ... = k

 n ... = k

x
nnn

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk

 (3)

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321





 












 n j

 n j

 n j

x
n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj

 (4)

where,n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3).

This function calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-hand-side term of (3) or (4), respectively.

Normalization of the results may be required.

c_dm_v3dcft

470

4. Example program

A three-dimensional FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 400
#define N2 100
#define N3 200
#define KX (N1+40)

MAIN__()
{
 int isn, i, j, k, icon, ierr;
 double error;
 dcomplex x[N3][N2][KX];

 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(k=0; k<N3; k++) {
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 x[k][i][j].re = N1*i+j+1;
 x[k][i][j].im = 0.0;
 }
 }
 }

 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon);

 if (icon != 0) {
 printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon);
 exit(1);
 }

 /* Find the error after the forward and inverse transform. */
 error = 0.0;

 for(k=0; k<N3; k++) {
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 error = max(fabs(x[k][i][j].re)/(N3*N2*N1)-(N1*i+j+1), error);
 error = max(fabs(x[k][i][j].im)/(N3*N2*N1), error);
 }
 }
 }

 printf("error = %e\n", error);
 return(0);
}

5. Method

Consult the entry for DM_V3DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_v3dcft2

471

c_dm_v3dcft2

Three-dimensional discrete complex Fourier transforms (mixed radices

of 2, 3, 5 and 7).

ierr = c_dm_v3dcft2(x, k1, k2, n1, n2, n3,

isn, &icon);

1. Function

The function c_dm_v3dcft2 performs a three-dimensional complex Fourier transform or its inverse Fourier transform

using a mixed radix FFT.

The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}.

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321321

ni

ni

ni

nk

nk

nk

xnnn

n

n

n

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk








 














 (1)

The three-dimensional Fourier inverse transform
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}.

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321

ni

ni

ni

nj

nj

nj

xxx

n

n

n

n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj








 












 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v3dcft2((dcomplex*)x, k1, k2, n1, n2, n3, isn, &icon);

where:

x dcomplex

x[n3][k2][k1]

Input The complex data. Data is stored in x[i][j][k], i = 0 , ... , n3  1,

j = 0, ... , n2  1, k = 0, ... , n1  1.

 Output The complex transformed data. The results are stored in x[i][j][k],

c_dm_v3dcft2

472

i = 0, ... , n3  1, j = 0, ... , n2  1, k = 0, ... , n1  1.

k1 int Input The size of the third dimension of input data arrays x. ( n1)

k2 int Input The size of the second dimension of input data arrays x. ( n2)

n1 int Input The length n1 of data in the first dimension of the three- dimensional

array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n2 int Input The length n2 of data in the second dimension of the three-

dimensional array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n3 int Input The length n3 of data in the third dimension of the three- dimensional

array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 n1, n2 or n3 less than or equal to 0.

 k1 < n1

 k2 < n2

 invalid value for the parameter isn.

Bypassed.

30008 The order of transform is not radix 2/3/5/7.

3. Comments on use

General definition of Fourier transform
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and

(4).

1,,1,0 ,

1,,1,0 ,

1,,1,0 ,

1

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321

321
321





 














 n ... = k

 n ... = k

 n ... = k

x
nnn

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk

 (3)

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321





 












 n j

 n j

 n j

x
n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj

 (4)

where,n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3).

 c_dm_v3dcft2

473

This function calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-hand-side term of (3) or (4), respectively.

Normalization of the results may be required.

4. Example program

A three-dimensional FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define N1 128
#define N2 128
#define N3 128
#define K1 (N1+1)
#define K2 N2

int MAIN__()
{
 dcomplex x[N3][K2][K1];
 double error;
 int i, j, k, isn, icon;

#pragma omp parallel for shared(x) private(i,j)
 for (k=0; k<N3; k++) {
 for (j=0; j<N2; j++) {
 for (i=0; i<N1; i++) {
 x[k][j][i].re = N1*j+i+1;
 x[k][j][i].im = 0.0;
 }
 }
 }

 isn = 1;
 c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);

 isn = -1;
 c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);

 /* find the error after the forward and inverse transform. */
 error = 0.0;
 for(k=0; k<N3; k++) {
 for(j=0; j<N2; j++) {
 for(i=0; i<N1; i++) {
 error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), error);
 error = max(fabs(x[k][j][i].im)/(N3*N2*N1), error);
 }
 }
 }

 printf("error = %e\n", error);
 return(0);
}

5. Method

Consult the entry for DM_V3DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_v3dcpf

474

c_dm_v3dcpf

Three-dimensional prime factor discrete complex Fourier transforms.

ierr = c_dm_v3dcpf(x, k1, k2, n1, n2, n3, isn,

&icon);

1. Function

The function c_dm_v3dcpf performs a three-dimensional complex Fourier transform or its inverse Fourier transform.

The size of each dimension of three-dimensional data (n1, n2, n3) must satisfy the following condition.

 The size must be expressed by a product of a mutual prime factor p, selected from the following

numbers:

factor p (p  {2, 3, 4, 5, 7, 8, 9, 16, 25})

The three-dimensional Fourier transform
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}.

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321321

ni

ni

ni

nk

nk

nk

xnnn

n

n

n

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk








 














 (1)

The three-dimensional Fourier inverse transform
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}.

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321

ni

ni

ni

nj

nj

nj

xxx

n

n

n

n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj








 












 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v3dcpf((dcomplex*)x, k1, k2, n1, n2, n3, isn, &icon);

where:

 c_dm_v3dcpf

475

x dcomplex

x[n3][k2][k1]

Input The complex data. Data is stored in x[i][j][k], i = 0 , ... , n3  1,

j = 0, ... , n2  1, k = 0, ... , n1  1.

 Output The complex transformed data. The results are stored in x[i][j][k],

i = 0, ... , n3  1, j = 0, ... , n2  1, k = 0, ... , n1  1.

k1 int Input The size of the third dimension of input data arrays x. ( n1)

k2 int Input The size of the second dimension of input data arrays x. ( n2)

n1 int Input The length n1 of data in the first dimension of the three- dimensional

array to be transformed.

n2 int Input The length n2 of data in the second dimension of the three-

dimensional array to be transformed.

n3 int Input The length n3 of data in the third dimension of the three- dimensional

array to be transformed.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

20000 n1, n2 or n3 can not be factored into the product of

the factors in 2, 3, 4, 5, 7, 8, 9, 16 and 25.

Bypassed.

30000 One of the following has occurred:

 n1, n2 or n3 less than or equal to 0.

 k1 < n1

 k2 < n2

 invalid value for the parameter isn.

3. Comments on use

General definition of Fourier transform
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and

(4).

1,,1,0 ,

1,,1,0 ,

1,,1,0 ,

1

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321

321
321





 














 n ... = k

 n ... = k

 n ... = k

x
nnn

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk

 (3)

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321





 












 n j

 n j

 n j

x
n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj

 (4)

where,n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3).

c_dm_v3dcpf

476

This function calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-hand-side term of (3) or (4), respectively.

Normalization of the results may be required.

4. Example program

A three-dimensional FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))

#define N1 40
#define N2 240
#define N3 90
#define K1 N1
#define K2 N2

int MAIN__()
{
 dcomplex x[N3][K2][K1];
 double error;
 int i, j, k, isn, icon;

#pragma omp parallel for shared(x) private(i,j)
 for (k=0; k<N3; k++) {
 for (j=0; j<N2; j++) {
 for (i=0; i<N1; i++) {
 x[k][j][i].re = N1*j+i+1;
 x[k][j][i].im = 0.0;
 }
 }
 }

 isn = 1;
 c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);

 isn = -1;
 c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);

 /* find the error after the forward and inverse transform. */
 error = 0.0;
 for(k=0; k<N3; k++) {
 for(j=0; j<N2; j++) {
 for(i=0; i<N1; i++) {
 error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), error);
 error = max(fabs(x[k][j][i].im)/(N3*N2*N1), error);
 }
 }
 }

 printf("error = %e\n", error);
 return(0);
}

5. Method

Consult the entry for DM_V3DCPF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_v3drcf

477

c_dm_v3drcf

Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5

and 7)

ierr = c_dm_v3drcf(x, k, n1, n2, n3, isin,

isn, &icon);

1. Function

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}.

1or1,

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321321









 














rr

ni

ni

ni

nk

nk

nk

xnnn

n

n

n

n

j

n

j

n

j

rkj
n

rkj
n

rkj
njjjkkk

 (1)

The three-dimensional Fourier inverse transform
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}.

1or1,

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321









 












rr

ni

ni

ni

nj

nj

nj

x

n

n

n

n

k

n

k

n

k

rkj
n

rkj
n

rkj
nkkkjjj

 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v3drcf((double*)x, k, n1, n2, n3, isin, isn, &icon);

where:

x double

x[n3][n2][k]

Input

/Output

Three-dimensional real data is stored in x[i][j][k], i=0, ... , n3 

1, j=0, ... , n2  1, k=0, ... , n1  1.

c_dm_v3drcf

478

For the real to complex transform (isn = 1), data is input; for the

complex to real transform (isn = 1), data is output.

 Output

/Input

The real and imaginary parts of the transformed complex data are stored

as follows:

The real and imaginary parts are stored in x[i][j][k][0], i=0, ... ,

n3  1, j=0, ... , n2  1, k=0, ... , n1/2 and x[i][j][k][1],

i=0, ... , n3  1, j=0, ... , n2  1, k=0, ... , n1/2 respectively

assuming that the array x was a four-dimensional array

x[n3][n2][k/2][2].

For the real to complex transform (isn = 1), data is output; for the

complex to real transform (isn = 1), data is input.

The complex data obtained from real data by Fourier transformation has

the complex conjugate relation. And about half data is stored.

k int Input C fixed dimension of array x. ( 2  (n1/2  1))

k must be an even number.

n1 int Input The length n1 of real data in the first dimension to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n2 int Input The length n2 of real data in the second dimension to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n3 int Input The length n3 of real data in the third dimension to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

isin int Input The direction of transformation.

isin = 1 for r = 1.

isin = 1 for r = 1.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 k < 2  (n1/2  1)

 k is not an even number.

 n1 < 1

 n2 < 1

 n3 < 1

 isin  1, 1

 isn  1, 1

Bypassed.

30008 The order of transform is not radix 2/3/5/7.

3. Comments on use

General definition of Fourier transform
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and

(4).

 c_dm_v3drcf

479

1,,1,0 ,

1,,1,0 ,

1,,1,0 ,

1

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321

321
321





 














 n ... = k

 n ... = k

 n ... = k

x
nnn

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk

 (3)

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321





 












 n j

 n j

 n j

x
n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj

 (4)

where, n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3).

This routine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left term of (3) or (4), respectively. The

normalization of the results may be required.

complex conjugate relation
The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by ̄).

k1k2k3 = 332211 knknkn 

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2  1, and k3 = 0, ..., n3  1.

4. Example program

A three-dimensional real FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (128)
#define N2 (N1)
#define N3 (N1)
#define K ((N1/2+1)*2)

MAIN__()
{
 double x[N3][N2][K], xx[N3][N2][K], tmp;
 int isin, isn, icon, i, j, k;

 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++) {
 xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1);
 }
 }
 }

 isin = 1;
 isn = 1;
 c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);

 isn = -1;
 c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);

 tmp = 0.0;

c_dm_v3drcf

480

 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++) {
 tmp = max(fabs(x[i][j][k]/(double)N1/(double)N2/(double)N3-xx[i][j][k]),tmp);
 }
 }
 }

 printf("error = %e\n", tmp);

 return(0);
}

5. Method

Consult the entry for DM_V3DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 c_dm_v3drcf2

481

c_dm_v3drcf2

Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5

and 7)

ierr = c_dm_v3drcf2(x, k1, k2, n1, n2, n3,

isin, isn, &icon);

1. Function

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7.

The three-dimensional Fourier transform
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}.

1or1,

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321321









 














rr

ni

ni

ni

nk

nk

nk

xnnn

n

n

n

n

j

n

j

n

j

rkj
n

rkj
n

rkj
njjjkkk

 (1)

The three-dimensional Fourier inverse transform
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}.

1or1,

)/2exp(,

)/2exp(,

)/2exp(,

1,...,1,0,

1,...,1,0,

1,...,1,0,

33

22

11

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321









 












rr

ni

ni

ni

nj

nj

nj

x

n

n

n

n

k

n

k

n

k

rkj
n

rkj
n

rkj
nkkkjjj

 (2)

2. Arguments

The routine is called as follows:

ierr = c_dm_v3drcf2((double*)x, k1, k2, n1, n2, n3, isin, isn, &icon);

where:

x double

x[n3][k2][k1]

Input

/Output

Three-dimensional real data is stored in x[i][j][k], i=0, ... , n3 

1, j=0, ... , n2  1, k=0, ... , n1  1.

c_dm_v3drcf2

482

For the real to complex transform (isn = 1), data is input; for the

complex to real transform (isn = 1), data is output.

 Output

/Input

The real and imaginary parts of the transformed complex data are stored

as follows:

The real and imaginary parts are stored in x[i][j][k][0], i=0, ... ,

n3  1, j=0, ... , n2  1, k=0, ... , n1/2 and x[i][j][k][1],

i=0, ... , n3  1, j=0, ... , n2  1, k=0, ... , n1/2 respectively

assuming that the array x was a four-dimensional array

x[n3][k2][k1/2][2].

For the real to complex transform (isn = 1), data is output; for the

complex to real transform (isn = 1), data is input.

The complex data obtained from real data by Fourier transformation has

the complex conjugate relation. And about half data is stored.

k1 int Input The size of the third dimension of input data arrays x.( 2  (n1/2 

1))

k1 must be an even number.

k2 int Input The size of the second dimension of input data arrays x. ( n2)

n1 int Input The length n1 of real data in the first dimension to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n2 int Input The length n2 of real data in the second dimension to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

n3 int Input The length n3 of real data in the third dimension to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

isin int Input The direction of transformation.

isin = 1 for r = 1.

isin = 1 for r = 1.

isn int Input Either the transform or the inverse transform is indicated.

isn = 1 for the transform.

isn = 1 for the inverse transform.

icon int Output Condition code. See below.

The complete list of condition codes is:

Code Meaning Processing

0 No error. Completed.

30000 One of the following has occurred:

 k1 < 2  (n1/2  1)

 k1 is not an even number.

 k2 < n2

 n1 < 1

 n2 < 1

 n3 < 1

 isin  1, 1

 isn  1, 1

Bypassed.

30008 The order of transform is not radix 2/3/5/7.

 c_dm_v3drcf2

483

3. Comments on use

General definition of Fourier transform
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and

(4).

1,,1,0 ,

1,,1,0 ,

1,,1,0 ,

1

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321

321
321





 














 n ... = k

 n ... = k

 n ... = k

x
nnn

n

j

n

j

n

j

kj
n

kj
n

kj
njjjkkk

 (3)

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

11

01

12

02

13

03

33
3

22
2

11
1321321





 












 n j

 n j

 n j

x
n

k

n

k

n

k

kj
n

kj
n

kj
nkkkjjj

 (4)

where, n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3).

This routine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left term of (3) or (4), respectively. The

normalization of the results may be required.

complex conjugate relation
The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by ̄).

k1k2k3 = 332211 knknkn 

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2  1, and k3 = 0, ..., n3  1.

4. Example program

A three-dimensional real FFT is computed.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */

#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (128)
#define N2 (N1)
#define N3 (N1)
#define K1 ((N1/2+1)*2)
#define K2 (N2+1)

MAIN__()
{
 double x[N3][K2][K1], xx[N3][K2][K1], tmp;
 int isin, isn, icon, i, j, k;

 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++) {
 xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1);
 }
 }
 }

c_dm_v3drcf2

484

 isin = 1;
 isn = 1;
 c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);

 isn = -1;
 c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);

 tmp = 0.0;
 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++) {
 tmp = max(fabs(x[i][j][k]/(double)N1/(double)N2/(double)N3-xx[i][j][k]),tmp);
 }
 }
 }

 printf("error = %e\n", tmp);

 return(0);
}

5. Method

Consult the entry for DM_V3DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

 485

Bibliography
[1] P.AMESTOY, M.DAYDE and I.DUFF

Use of computational kernels in the solution of full and sparse linear equations, M.COSNARD, Y.ROBERT,

Q.QUINTON and M.RAYNAL, PARALLEL & DISTRIBUTED ALGORITHMS, North-Holland, 1989, pp.13-19.

[2] P.R.AMESTOY and C.PUGLISH

AN UNSYMMETRIZED MULTIFRONTAL LU FACTORIZATION, SIAM J. MATRIX ANAL. APPL. Vol. 24,

No. 2, pp. 553-569, 2002

[3] A.A.Anda and H.Park

Fast Plane Rotations with Dynamic Scaling, to appear in SIAM J. Matrix Analysis and Applications, 1994.

[4] S.L.Anderson

Random number generators on vector supercomputers and other advanced architectures, SIAM Rev. 32 (1990), 221-

251.

[5] C.Ashcraft

The distributed solution of linear systems using the torus wrap data mapping, Tech. Report ECA-TR-147, Boeing

Computer Services, October 1990.

[6] O.Axelsson and M.Neytcheva

Algebraic multilevel iteration method for Stieltjes matrices. Num. Lin. Alg. Appl., 1:213-236, 1994.

[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.

Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.

[8]
Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7:1-21,1967.

[9] R.P.Brent

Uniform random number generators for supercomputers, Proc. Fifth Australian Supercomputer Conference,

Melbourne, Dec. 1992, 95-104.

[10] R.P.Brent

Uniform random number generators for vector and parallel computers, Report TR-CS-92-02, Computer Sciences

Laboratory, Australian National University, Canberra, March 1992

[11] R.P.Brent

Fast normal random number generators on vector processors, Technical Report TR-CS-93-04, Computer Sciences

Laboratory, Australian National University, Canberra, March 1993.

[12] R.P.Brent

A Fast Vectorised Implementation of Wallace's Normal Random Number Generator, Technical Report, Computer

Sciences Laboratory, Australian National University, to appear.

[13] R.Burkard, M.Dell’Amico and S.Martello

Assignment Problems, SIAM Philadelphia, 2009

[14] J.Choi, J.Dongarra, R.Pozo, and D.Walker

ScaLAPACK : A scalable linear algebra library for distributed memory concurrent computers., Technical Report 53,

LAPACK Working Note, 1993.

[15] A.Cleary

A comparison of algorithms for Cholesky factorization on a massively parallel MIMD computer, Parallel Processing

for Scientific Computing, 1991.

[16] A.Cleary

A Scalable Algorithm for Triangular System Solution Using the Torus Wrap Mapping, ANU-CMA Tech Report,

series 1994.

[17] T.H.CORMEN, C.E.LEISERSON, R.L.RIVEST and C.STEIN

INTRODUCTION TO ALGORITHMS, SECOND EDITION, The MIT Press, 2001

Bibliography

486

[18] J.K.Cullum and R.A.Willoughby

“Lanczos algorithm for large symmetric eigenvalue computations”, Birkhauser, 1985.

[19] T.Davis

Direct Methods for Sparse Linear Systems, SIAM 2006.

[20] J.Demmel and W.Kahan

Accurate singular values of bidiagonal matrices, SISSC 11, 873-912, 1990.

[21] J.J.Dongarra and R.A.Van de Geijn

Reduction to condensed form for the eigenvalue problem on distributed memory architectures, Parallel Computing,

18, pp.973-982, 1992.

[22] I.S.DUFF, A.M.ERISMAN and J.K.REID

Direct Methods for Sparse Matrices, OXFORD SCIENCE PUBLICATIONS, 1986

[23] I.S.DUFF and J.KOSTER

ON ALGORITHMS FOR PERMUTING LARGE ENTRIES TO THE DIAGONAL OF A SPARSE MATRIX,

SIAM J. MATRIX ANAL. APPL. Vol. 22, No. 4, pp. 973-996, 2001

[24] A.M.Ferrenberg, D.P.Landau and Y.J.Wong

Monte Carlo simulations: Hidden errors from “good” random number generators, Phys. Rev. Lett. 69 (1992), 3382-

3384.

[25] G.Fox

Square matrix decomposition - Symmetric, local, scattered, CalTech Publication Hm-97, California Institute of

Technology, Pasadena, CA, 1985.

[26] R.Freund

“A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems”, SIAM J.Sci.Comput. 14, 1993,

pp.470-482.

[27] R.Freund and N.Nachtigal

“QMR: a quasi minimal resudual method for non-Hermitian linear systems”, Numer. Math. 60, 1991, pp.315-339.

[28] K.A.Gallivan, R.J.Plemmons, and A.H.Sameh

Parallel Algorithms for Dense Linear Algebra Computations, SIAM Review, 1990.

[29] Martin B. van Gijzen and Peter Sonneveld

"An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties",

Delft university of technology, Report 08-21, 2008.

[30] G.H.Golub, C.F.van Loan

Matrix Computations Second Edition, The Johns Hopkins University Press, 1989.

[31] Marcus J. Grote and Thomas Huckle

"Parallel preconditioning with sparse approximate inverse",

SIAM J. Sci. Comput., Vol.18, No.3, pp838-853, May 1997.

[32] M.H.Gutknecht

Variants of BiCGStab for matrices with complex spectrum,IPS Research report No. 91-14, 1991.

[33] E. Hairer, S.P.Norsett, and G. Wanner

"Solving Ordinary Differential Equations I: Nonstiff Problems." Second Revised Edition, Springer, 2000.

[34] E. Hairer, and G. Wanner

“Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.” Second Revised Edition,

Springer, 2002

[35] Markus Hegland

An implementation of multiple and multi-variate Fourier transforms on vector processors, submitted to SIAM J.Sci.

Comput.,1992.

[36] Markus Hegland

Block Algorithms for FFTs on Vector and Parallel Computers. PARCO 93, Grenoble, 1993.

487

[37] Markus Hegland

On the parallel solution of tridiagonal systems by wrap-around partitioning and incomplete LU factorization, Numer.

Math. 59, 453-472, 1991.

[38] B.Hendrickson and D.Womble

The torus-wrap mapping for dense matrix calculations on massively parallel computers, SAND Report SAND 92-

0792, Sandia National Laboratories, Albuquerque, NM, 1992.

[39] J.R.Heringa, H.W.J.Blöte and A.Compagner

New primitive trinomials of Mersenne-exponent degrees for random-number generation, International J. of Modern

Physics C 3 (1992), 561-564.

[40] F. J ames

A review of pseudorandom number generators, Computer Physics Communications 60 (1990), 329-344.

[41] G.KARYPIS AND V.KUMAR

A fast and high quality multilevel scheme for partitioning irregurar graphs, SIAM J. Sci. Comput., 20 pp.359-392,

1998

[42] G.KARYPIS AND V.KUMAR

METIS

A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing

Orderings of Sparse Matrices

Version 4.0

University of Minnesota, Department of Computer Science / Army HPC Research Center

Minneapolis, MN 55455

Septenmber 20, 1998

[43] D.Kincaid, T.Oppe

ITPACK on supercomputers, Numerical methods, Lecture Notes in Mathematics 1005 (1982).

[44] D.E.Knuth

The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition). Addison-Wesley, Menlo

Park, 1981, Sec. 3.4.1, Algorithm P.

[45] Z.Leyk

Modified generalized conjugate residuals for nonsymmetric systems of linear equations, in Proceedings of the 6th

Biennial Conference on Computational Techniques and Applications: CTAC93, D.Stewart, H.Gardner and

D.Singleton, eds., World Scientific, 1994, pp.338-344. Also published as CMA Research Report CMA-MR33-93,

Australian National University, 1993.

[46] X.S.Li AND J.W.DEMMEL

A scalable sparse direct solver using static pivoting, in Proceedings of the Ninth SIAM Conference on Parallel

Processing for Scientific Computing, San Antonio, Texas, 1999, CD-ROM, SIAM, Philadelphia, PA, 1999

[47] Charles Van Loan

Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.

[48] F.T.Luk

Computing the Singular-Value Decomposition on the ILIAC IV, ACM Trans. Math. Softw., 6, 1980, pp.259-273.

[49] F.T.Luk and H.Park

On Parallel Jacobi Orderings, SIAM J.Sci. Comput., 10, 1989, pp.18-26.

[50] N.K.Madsen, G.h.Rodrigue, and J.I.Karush

“Matrix multiplication by diagonals on a vector/parallel processor”, Information Processing Letters, vol.5, 1976,

pp.41-45.

[51] G.Marsaglia

A current view of random number genetators, Computer Science and Statistics: The Interface (edited by L.Billard),

Elsevier Science Publishers B.V. (North-Holland), 1985, 3-10.

Bibliography

488

[52] M.Nakanishi, H.Ina, K.Miura

A high performance linear equation solver on the VPP500 parallel supercomputer, Proceedings of Supercomputing’

94, Washington D.C., Nov. 1994.

[53] M.OLSCHOWKA and A.NEUMAIER

A new pivoting strategy for Gaussian elimination, Linear Algebra Appl., 240(1996), pp.131-151

[54] T.Oppe, W.Joubert and D.Kincaid

An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package, Computer Physics

communications 53 p283 (1989).

[55] T.C.Oppe and D.R.Kincaid

“Are there iterative BLAS?”, Int. J. Sci. Comput. Modeling (to appear or has appeared).

[56] M.R.Osborne

Solving least squares problems on parallel vector processors, Area 4 working notes no. 17, 1994.

[57] M.R.Osborne

Computing the eigenvalues of tridiagonal matrices on parallel vector processors, Mathematics Research Report No.

MRR 044-94, Australian National University, 1994.

[58] J.R.Rice and R.F.Boisvert

Solving Elliptic Problems Using Ellpack, Springer-Verlang, New York, 1985.

[59] D. Ruiz

A scaling algorithm to equilibrate both rows and columns norms in matrices, Tech. rep. RAL-TR-2001-034,

Rutherford Appleton Laboratory, Chilton, U.K., 2001

[60] Y.Saad

ILUT: A dual threshold incomplete LU factorization.Research Report UMSI 92/38, University of Minnesota,

Supercomputer Institute, 1200 Washington Avenue South, Minneapolis, Minnesota 55415, USA, 1992.

[61] Y.Saad

ILUM: A multi-elimination ILU preconditioner for general sparse 591 matrices. SIAM J. Sci. Comput., 17:830-847,

1996.

[62] Y.Saad

"Iterative methods for sparse linear systems, second edition",

Univ.Minnesota,SIAM, 2003

[63] Y.Saad and M.H.Schultz

“GMRES : a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat.

Comput. 7, 1986, p.856-869.

[64] O.Schenk , K.Gärtner

Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems

20(2004)475-487

[65] J.A.SCOTT

Scaling and Pivoting in an Out-of-Core Sparse Direct Solver

ACM Transactions on Mathematical Software, Vol. 37, No. 2, Article 19, April 2010

[66] H.D.Simon

Bisection is not optimal on vector processors, SISSC 10, 205-209, 1989.

[67] G. Sleijpen, D. Fokkema

BCG for linear equations involving unsymmetric matrices with complex spectrum, Electronic Transactions on

Numerical Analysis, 1 p11 1993

[68] Gerard L.G. Sleijpen and Martin B. van Gijzen

"Exploiting BICGSTAB(l) Strategies to Induce Dimension Reduction",

Delft university of technology, Report 09-02, 2009.

[69] Gerard L.G. Sleijpen and Martin B. van Gijzen

“Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.” Second Revised Edition,

Springer, 2002

489

[70] Tomohiro Sogabe,Shao-Liang Zhang

"A COCR method for solving complex symmetric linear systems",

Journal of Computational and SIAM Applied Mathematics,199(2007)297-303.

[71] J.C. Strikwerda

Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks/Cole, Pacific Grove, 1989.

[72] Paul N.Swarztrauber

Multiprocessor FFTs. Parallel Comput. 5, 197-210, 1987.

[73] H.A.Van Der Vorst

“BCG: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems”, SIAM

J. Sci. Statist. Comput., 13 p631 1992

[74] C.S.Wallace

“Fast Pseudo-Random Generators for Normal and Exponential Variates”, ACM Trans. on Mathematical Software 22

(1996), 119-127.

[75] R.Weiss

Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie Verlag, Berlin, 1996.

[76] J.H.Wilkinson

The Algebraic Eigenvalue Problem, O.U.P., 1965.

[77] B.B.Zhou and R.P.Brent

A Parallel Ordering Algorithm for Efficient One-Sided Jacobi SVD Computations, to appear in Proc. Sixty

IASTED-ISMM International Conference on Parallel and Distributed Computing Systems, 1994.

[78] K. Miura

Full Polynomial Multiple Recursive Generator(MRG) Revisited, MCQMC 2006, Ulm, Germany

[79] Kenta Hongo, Ryo Maezono, and Kenichi Miura

Random Number Generators Tested on Quantum Monte Carlo Simulations, Journal of Computational Chemistry, 31,

2186-2194, 2010

[80] P. L'Ecuyer and R. Simard

TestU01: A C Library for Empirical Testing of Random Number Generators, ACM Transactions on Mathematical

Software, Vol. 33, article 22, 2007.

	FUJITSUC-SSL II Thread-Parallel CapabilitiesUser's Guide
	Preface
	Acknowledgements
	How to use this manual
	Tables of routines
	Contents
	General Descriptions
	Outline
	General rules
	1. Details on the C-SSL II Thread-Parallel Capabilities interface
	2. Multidimensional arrays
	3. Complex numbers
	4. Condition codes

	How to Use C-SSL II Thread Parallel Capabilities
	1. Positions of the CALL statements
	2. How to specify the number of threads
	3. Size of stack area for each thread
	4. Example programs

	Array storage formats
	1. Storage formats for general matrices
	2. Storage formats for general sparse matrices
	3. Storage formats for symmetric positive definite sparse matrices

	Description of the C-SSL II Routines
	c_dm_valu
	c_dm_vamlid
	c_dm_vbcscc
	c_dm_vbcsd
	c_dm_vbcse
	c_dm_vblu
	c_dm_vblux
	c_dm_vcgd
	c_dm_vcge
	c_dm_vclu
	c_dm_vclux
	c_dm_vcminv
	c_dm_vgevph
	c_dm_vhevp
	c_dm_vhtrid
	c_dm_vjdhecr
	c_dm_vjdnhcr
	c_dm_vlax
	c_dm_vlbx
	c_dm_vlcspsxcr1
	c_dm_vlcx
	c_dm_vldlx
	c_dm_vlspaxcr2
	c_dm_vlsx
	c_dm_vlux
	c_dm_vmggm
	c_dm_vminv
	c_dm_vmlbife
	c_dm_vmvscc
	c_dm_vmvsccc
	c_dm_vmvsd
	c_dm_vmvse
	c_dm_vpde2d
	c_dm_vpde3d
	c_dm_vradau5
	c_dm_vrann3
	c_dm_vrann4
	c_dm_vranu4
	c_dm_vranu5
	c_dm_vschol
	c_dm_vscholx
	c_dm_vsclu
	c_dm_vsclux
	c_dm_vscs
	c_dm_vsevph
	c_dm_vsldl
	c_dm_vsrlu
	c_dm_vsrlux
	c_dm_vsrs
	c_dm_vssps
	c_dm_vssslu
	c_dm_vssslux
	c_dm_vssss
	c_dm_vtdevc
	c_dm_vtfqd
	c_dm_vtfqe
	c_dm_vtrid
	c_dm_v1dcft
	c_dm_v1dcft2
	c_dm_v1dmcft
	c_dm_v1drcf
	c_dm_v1drcf2
	c_dm_v2dcft
	c_dm_v2drcf
	c_dm_v3dcft
	c_dm_v3dcft2
	c_dm_v3dcpf
	c_dm_v3drcf
	c_dm_v3drcf2

	Bibliography

