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Preface 
  This manual describes the functions and usage of the C Scientific Function Library II Thread-Parallel Capabilities. 

  C-SSL II Thread-Parallel Capabilities provide the computational functionality to efficiently compute or solve large-scale 

problems on a shared-memory parallel computer with scalar processors. New algorithms for parallel processing have been 

adopted. 

  When using the C-SSL II Thread-Parallel Capabilities for the first time, the user should read the General Descriptions 

first. 

  The contents of the C-SSL II Thread-Parallel Capabilities may be amended to keep up with the latest technology. That is, 

if new, revised or updated routines include or surpass the functionality of the current routines, then the current routines may 

then be deleted from the library. 
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How to use this manual 
  It is strongly recommended that the General Descriptions is read carefully by first time users of the C-SSL II Thread-

Parallel Capabilities, even if they are familiar with the Fortran SSL II Thread-Parallel Capabilities. The General 

Descriptions provides: 

 an overview of the library, 

 the library design, 

 information on using the library, 

 an annotated sample calling program, 

 the array storage formats employed, 

 an annotated example of what is contained in each routine description. 

 

  The Selection of routines chapter gives an overview of the functionality covered by the library and allows the user to 

select an appropriate routine for his/her own calculation. Each major section of the library, e.g. linear algebra, is covered 

separately to allow users to locate the relevant section more quickly. 

  After the Selection of routines chapter are Tables of routines, which contain summary information for every routine in the 

library, with cross references to the detailed routine descriptions. This is intended to allow experienced users to quickly 

locate the routine they require. The routines are listed by section and then by generality, e.g. general solution routines are 

listed before routines for more specific cases. 

  The bulk of the manual contains the routine descriptions. The routine descriptions are arranged in alphabetical order. 

Each description contains an overview, argument descriptions, sample calling program and important information on how 

to use each routine. 

  Detailed descriptions of the underlying numerical methods can be found in the manuals for the Fortran SSL II library 

and in the references specified in the Bibliography. 

Further sources of information 

  Following manual describes underlying Fortran routines. 

 SSL II Thread-Parallel Capabilities User's Guide II. 

  There are extensive further references provided in the Bibliography. 

Typographic conventions 

Courier and Times fonts are used as follows: 

 Courier regular font – used for routine names, arguments, program objects, such as arrays and code. 

 Times regular font – standard font for text. 

 Times italic font – emphasis, book titles, manual section references, e.g. See Comments on use, components of 

matrix and vector objects, e.g. aij. 

 Times bold font – Whole matrix and vector objects, e.g. Ax = b, as well as section titles.  
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Mathematical conventions 

  Throughout this manual, the distinction is made between matrices and arrays.  

 Matrices and vectors are mathematical objects that are indexed from one, so the first element of a matrix A 

is a11. 

 2-D and 1-D arrays are C objects indexed from 0, so that the first element of 2-D array a is a[0][0]. 

  When used in mathematical expressions, i is usually used to denote the imaginary part of a complex number, for example 

in z = 5  i10, 1i . 

  The modulus function || x  is used to denote absolute value, including complex absolute value. Unless otherwise 

delimited, norms such as x are the 2-norm (so xxx T ). 
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Tables of routines 

Linear algebra 

1. Matrix operations 

Routine name  Description Page 

c_dm_vmggm Matrix multiplication (real matrix). 133 

c_dm_vmvscc Multiplication of a real sparse matrix and a real vector 

(compressed column storage method) 

148 

c_dm_vmvsccc  Multiplication of a complex sparse matrix and a complex vector (compressed column 

storage method) 

152 

c_dm_vmvsd Multiplication of a real sparse matrix and a real vector (diagonal format storage method). 157 

c_dm_vmvse Multiplication of a real sparse matrix and a real vector (ELLPACK format storage 

method). 

160 

2. Linear equations (Direct method) 

Routine name  Description Page 

c_dm_vlax A system of linear equations with real matrices (blocked LU decomposition method). 93 

c_dm_valu LU decomposition of real matrices (blocked LU decomposition method). 12 

c_dm_vlux A system of linear equations with LU-decomposed real matrices. 131 

c_dm_vlsx A system of linear equations with symmetric positive definite matrices (blocked 

modified Cholesky decomposition method). 

128 

c_dm_vsldl LDLT decomposition of symmetric positive definite matrices (blocked modified 

Cholesky decomposition method). 

301 

c_dm_vldlx A system of linear equations with LDLT -decomposed symmetric positive definite 

matrices. 

112 

c_dm_vlcx A system of linear equations with complex matrices (blocked LU decomposition 

method). 

109 

c_dm_vclu LU decomposition of complex matrices (blocked LU decomposition method). 56 

c_dm_vclux A system of linear equations with LU-decomposed complex matrix. 59 

c_dm_vlbx  A system of linear equations with banded real matrices (Gaussian elimination). 96 

c_dm_vblu  LU decomposition of banded real matrices (Gaussian elimination). 37 

c_dm_vblux  A system of linear equations with LU-decomposed banded real matrices. 42 

c_dm_vschol  LDLT decomposition of a symmetric positive definite sparse matrices (Left-looking 

Cholesky decomposition method) 

212 

c_dm_vscholx A system of linear equations with LDLT-decomposed symmetric positive definite sparse 

matrices 

224 

c_dm_vssps  A system of linear equations with symmetric positive definite sparse matrices (Left-

looking LDLT decomposition method) 

362 

c_dm_vsrs A system of linear equations with unsymmetric real sparse matrices (LU decomposition 

method) 

341 



 

 ix 

 
 

Routine name  Description Page 

c_dm_vsrlu LU decomposition of an unsymmetric real sparse matrix 304 

c_dm_vsrlux A system of linear equations with LU-decomposed unsymmetric real sparse matrices 324 

c_dm_vscs  A system of linear equations with unsymmetric complex sparse matrices (LU 

decomposition method) 

273 

c_dm_vsclu  LU decomposition of an unsymmetric complex sparse matrix 233 

c_dm_vsclux  A system of linear equations with LU-decomposed unsymmetric complex sparse 

matrices 

255 

c_dm_vssss * A system of linear equations with structurally symmetric real sparse matrices (LU 

decomposition method) 

411 

c_dm_vssslu * LU decomposition of a structurally symmetric real sparse matrix 375 

c_dm_vssslux 

* 

A system of linear equations with LU-decomposed structurally symmetric real sparse 

matrices 

394 

3. Linear equations (Iterative method) 

Routine name  Description Page 

c_dm_vcgd A system of linear equations with symmetric positive definite sparse matrices 

(preconditional CG method, diagonal format storage method). 

46 

c_dm_vcge A system of linear equations with symmetric positive definite sparse matrices 

(preconditional CG method, ELLPACK format storage method). 

51 

c_dm_vbcscc A system of linear equations with unsymmetric positive definite sparse matrices 

(BICGSTAB(l) method, compressed column storage method) 

24 

c_dm_vbcsd System of linear equations with unsymmetric or indefinite sparse matrices 

(BICGSTAB(l) method, diagonal format storage method). 

30 

c_dm_vbcse System of linear equations with unsymmetric or indefinite sparse matrices 

(BICGSTAB(l) method, ELLPACK format storage method). 

34 

c_dm_vtfqd A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR 

method, diagonal format storage method). 

436 

c_dm_vtfqe A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR 

method, ELLPACK format storage method). 

439 

c_dm_vamlid System of linear equations with sparse matrices of M-matrix (Algebraic multilevel 

iteration method [ALMI Method], diagonal format storage method). 

15 

c_dm_vmlbife System of linear equations with sparse matrices (Multilevel iteration method based on 

incomplete block factorization, ELLPACK format storage method). 

137 

c_dm_vlcspsxc

r1  

System of linear equations with non-Hermitian symmetric complex sparse matrices 

 (Conjugate A-Orthogonal Conjugate Residual method with preconditioning by 

incomplete LDLT decomposition, symmetric compressed row storage method) 

101 

c_dm_vlspaxcr

2  

System of linear equations with unsymmetric real sparse matrices  

(Induced Dimension Reduction method with preconditioning by sparse approximate 

inverse, compressed row storage method) 

115 
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4. Differential equations 

Routine name  Description Page 

c_dm_vradau5 System of stiff ordinary differential equations or differential-algebraic equations 

(Implicit Runge-Kutta method) 

174 

 

5. Discretization of partial differential equation 

Routine name  Description Page 

c_dm_vpde2d Generation of System of linear equations with sparse matrices by the finite difference 

discretization of a two dimensional boundary value problem for second order partial 

differential equation. 

163 

c_dm_vpde3d Generation of System of linear equations with sparse matrices by the finite difference 

discretization of a three dimensional boundary value problem for second order partial 

differential equation. 

168 

6. Inverse matrices 

Routine name  Description Page 

c_dm_vminv Inverse of real matrices (blocked Gauss-Jordan method). 135 

c_dm_vcminv Inverse of complex matrices (blocked Gauss-Jordan method). 61 

Eigenvalue problem 

Routine name  Description Page 

c_dm_vsevph Eigenvalues and eigenvectors of real symmetric matrices (tridiagonalization, 

multisection method, and inverse iteration). 

296 

c_dm_vhevp Eigenvalues and eigenvectors of Hermite matrices. 68 

c_dm_vtdevc Eigenvalues and eigenvectors of real tridiagonal matrices. 431 

c_dm_vgevph  Generalized eigenvalue problem for real symmetric matrices  

(eigenvalues and eigenvectors) (tridiagonalization, multisection method, inverse 

iteration). 

63 

c_dm_vtrid Tridiagonalization of real symmetric matrices. 442 

c_dm_vhtrid Tridiagonalization of Hermite matrices. 72 

c_dm_vjdhecr Eigenvalues and eigenvectors of an Hermitian sparse matrix (Jacobi-Davidson 
method, compressed row storage method) 

75 

c_dm_vjdnhcr Eigenvalues and eigenvectors of a complex sparse matrix (Jacobi-Davidson 
method, compressed row storage method) 

84 

Fourier transforms 

Routine name  Description Page 

c_dm_v1dcft One-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 445 

c_dm_v1dcft2 One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7). 449 
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Routine name  Description Page 

c_dm_v1dmcft One-dimensional multiple discrete complex Fourier transforms (mixed radix of 2, 3, 5 

and 7). 

451 

c_dm_v2dcft Two-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 461 

c_dm_v3dcft Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 468 

c_dm_v3dcft2 Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7). 471 

c_dm_v1drcf One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 454 

c_dm_v1drcf2 One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 458 

c_dm_v2drcf Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 464 

c_dm_v3drcf Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 477 

c_dm_v3drcf2 Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7). 481 

c_dm_v3dcpf Three-dimensional prime factor discrete complex Fourier transforms. 474 

Random numbers 

Routine name  Description Page 

c_dm_vranu4 Generation of uniform random numbers [0,1). 204 

c_dm_vranu5   Generation of uniform random numbers [0,1) (MRG8). 207 

c_dm_vrann3 Generation of normal random numbers. 196 

c_dm_vrann4 Generation of normal random numbers (Wallace’s method). 200 
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General Descriptions 

Outline 

  C-SSL II Thread-Parallel Capabilities is a parallel mathematical function library to execute on a shared-memory parallel 

computer with scalar processors. The library provides functions to efficiently compute such large-scale problems by 

parallel processing that are intractable on a single processor. 

  The mechanism of "Thread-Parallel" means that multiple execution flows, each of which is called a thread, share the 

calculation where each thread is responsible for undertaking pieces of calculation using one CPU in the shared memory 

system. If the number of created threads is less or equal to the number of CPU available, the process can be executed by 

threads in parallel with all threads carried out by separated CPU. This Thread-Parallel mechanism enables a calculation to 

be divided into multiple parallel executions (as far as the algorithm could be parallelized). 

  Each function of C-SSL II Thread-Parallel Capabilities creates multiple threads internally and solves the problem with a 

parallel algorithm with these threads. Where, the creation and extinction of the threads, work-sharing constructs and 

synchronization are directed with OpenMP C/C++ specifications. Therefore C-SSL II Thread-Parallel Capabilities need 

the run-time execution environment of the OpenMP C/C++. 

  The number of the threads used by a function of C-SSL II Thread-Parallel Capabilities can be assigned by the user with 

OpenMP environment variables or run-time library routines. With these, the function can be executed by as any number 

of threads as specified. 

  The C-SSL II Thread-Parallel Capabilities only supports double precision double functionality; Double precision 

complex numbers are also supported via a special dcomplex type definition. In addition, all integer arguments and 

results are of type int. 

  The scope of functionality, function names, and calling interface of C-SSL II Thread-Parallel Capabilities are different 

from those used in the mathematical library C-SSL II or C-SSL II/VP. 

General rules 

1. Details on the C-SSL II Thread-Parallel Capabilities interface 

  Routines in the C library have names consistent with the Fortran library with the C function name constructed by adding 

the prefix c_ to the underlying Fortran routine name in lower case. As all of the routines deal with double precision 

arguments, this means that the all routines start with c_dm_v. 

From the users’ viewpoint the C-SSL II Thread-Parallel Capabilities consists of C routines using standard C conventions 

for argument passing, argument types and return values. Input-only scalars are passed by value; output and input / output 

arguments are passed by pointer. Input-only arguments are not altered and can be reused by the user. Output arguments do 

not have to be initialized by the user before the function call. Input / output arguments need to be defined before function 

calls and are altered as a result of the call. The values are not necessarily meaningful to the user. Work arrays are labelled 

as such, which implies that no user action is required on the initial call, but their output contents may be significant. It is 
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often possible to recall a function to carry on with a computation (for instance, a new end point can be specified in one of 

the differential equation routines) and in almost all such cases, work arguments must remain unchanged between calls. 

  Argument names follow the traditional Fortran implicit typing conventions, so that arguments of type int begin with the 

letters i to n. Arguments of type double or dcomplex start with the letters a to h and o to z. 

  Every library routine returns a standard int error value. If the routine completed successfully then 0 is returned; if there 

was some error detected in the routine, or if the results may not be reliable, 1 is returned. The user program can check the 

error return value and if an error occurred more information about the error condition can be obtained from the icon 

parameter. 

  As much as possible, the arguments in each C library routine are identical to the arguments in the Fortran library routine, 

and they are specified in the same order. Generally, main arguments are listed first, control arguments are in the middle 

and workspaces are located towards the last of the arguments. The last argument is always icon, the error condition code. 

Some argument types are described more fully elsewhere in this document: multidimensional-arrays (Section 2), and 

complex numbers (Section 3). 

  Notice that where temporary work array arguments are required by a Fortran library routine, the C interface routine also 

includes these arguments. This is not normal C programming, where work space is generally allocated within a routine 

using malloc. However, as mentioned above, there are several instances where data stored in the work area is actually 

required on subsequent calls to the same function. 

  The C-SSL II Thread-Parallel Capabilities is provided with a header file cssl.h which contains prototypes for all of 

the user-accessible functions, and other information such as the dcomplex data type definition. Every user program which 

calls the C library must include this header file. The function name of the user main program is main or MAIN__ (two 

underscores after MAIN). 

2. Multidimensional arrays 

  As shown in the above example, the library expects users to declare matrices as 2-D arrays. These arrays must be recast 

as a pointer to type double in calls to a library routines and it is also necessary to specify the C fixed dimension of the 

array. 

  The approach taken incurs a small performance penalty. This is because the user’s code will use C row-ordered arrays, 

but before these are passed to the Fortran code, they must be transformed to Fortran column-ordered format. Also, before 

exiting from the C wrapper, the arrays may need to be transformed back again to C row-ordered format if the user is 

expected to access the array data. 

  See the Array storage formats section for further details about arrays. 

3. Complex numbers 

  ANSI C does not provide a complex data type, but it is common C practice to define a complex type using a typedef: 

typedef struct { 
  double re, im; 
} dcomplex; 
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  The C-SSL II Thread-Parallel Capabilities supports complex numbers defined in this manner. Only double precision real 

and imaginary parts are supported. An example of user code to handle such complex numbers is: 

/* include C-SSL II header file */ 
#include "cssl.h" 
#define N1 4000 
#define N2 3000 
#define KX (N1+1) 
#define KY (N2+1) 
 
MAIN__() 
{ 
  int      isn, i, j, icon, ierr; 
  dcomplex x[N2][KX], y[N1][KY]; 
 
  /* Set up the input data arrays */ 
#pragma omp parallel for shared(x) private(i,j) 
  for(i=0; i<N2; i++) { 
    for(j=0; j<N1; j++) { 
      x[i][j].re = N1*i+j+1; 
      x[i][j].im = 0.0; 
    } 
  } 
 
  /* Do the forward transform */ 
  isn = 1; 
  ierr = c_dm_v1dcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon); 
  ... 
} 

4. Condition codes 

  The icon argument indicates the resultant status after execution of the library function (the condition code) and should 

always be checked on output. To make this slightly easier, the C library routines also provide a return code. As suggested 

in Section 1, the error return value is 0 only if the result is considered to be reliable ( i.e. icon < 10000 ). A value of 1 is 

returned if the result may be unreliable ( 20000  icon < 30000 ) or if the routine detected an error in the input 

arguments ( icon  30000 ). 

  The following table shows the range into which the icon value normally falls, and how users should interpret the 

reliability of the processing results. A small number of routines return icon values that are negative or larger than 30000. 

With such routines, it is important that the user checks the routine documentation for the range of such icon values and 

their meaning. 

Code Explanation Reliability of result Result 

0 Processing terminated normally. Result is reliable as far as the routine 

can determine. 

Normal 

1 - 9999 Processing terminated normally, but additional 

information is included. 

10000 - 

19999 

Processing terminated due to an internal restriction 

imposed during processing. 

The result is reliable, subject to 

restrictions. 

Warning 

20000 - 

29999 

Processing is stopped due to an error that occurred 

during processing. 

The result is not to be relied upon. Error 

30000 Processing is bypassed due to an error in the input 

argument(s). 
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How to Use C-SSL II Thread Parallel Capabilities 

1. Positions of the CALL statements 

  C-SSL II Thread-Parallel Capabilities consist of OpenMP functions which can be called from both inside and outside of 

the OpenMP parallel regions in user programs. And these functions also can be called from serial programs without 

OpenMP directives, and also they can be called from programs that are auto-parallelized by the C/C++ compiler. 

  In cases where the function is called from inside of the parallel region, it is necessary that every actual argument as input 

and output, output and work areas which is dealt with by each thread must be mapped to different memory area 

respectively. 

  In every calling case above, the fcc/FCC command option "-Kopenmp" must be specified at the time the compiled user 

program is to be linked with C-SSL II Thread-Parallel Capabilities. The load module can be OpenMP executable with this 

option. Refer to "C User’s Guide" for details. 

2. How to specify the number of threads 

  A function of C-SSL II Thread-Parallel Capabilities is executed by multiple threads in parallel within parallel region 

which is created internal of the function. The number of threads used by the function can be assigned by the user with an 

OpenMP environment variable "OMP_NUM_THREADS" or a run-time library routine 

"omp_set_num_threads()". Usually, specify the number of threads in the former way. 

  The run-time library routine can be used in situations where the user wants to assign a specific number of threads for the 

parallel region. Specifying the number of threads with this run-time routine just before the C-SSL II Thread-Parallel 

function makes it possible to execute the function with a specific number of threads. 

  Refer to "C User’s Guide" and "OpenMP Application Program Interface Version2.5 (May 2005)" for details about 

OpenMP environment variables and run-time library routines. 

3. Size of stack area for each thread 

  Some functions of C-SSL II Thread-Parallel Capabilities takes work area internally as auto allocatable array on "stack" 

area for each thread. Suppose that the number of threads to be generated is NT and the total available memory size is M, it 

is recommended to set the environmental variable OMP_STACKSIZE to about M/(5*NT) as the stack size for each 

thread before the execution. When compiler option -Nfjomplib is specified, the environmental variable 

THREAD_STACK_SIZE can be set as the stack size. Refer to "C User’s Guide" for details about setting the stack size for 

OpenMP executables. 

4. Example programs 

To call a function from outside of the parallel region 
  The example program below solves a system of linear equations with input of a real coefficient matrix of 40004000. If 

the environment variable OMP_NUM_THREADS is set to be 4 on the system of 4 processors, execution will be with 4 

threads in parallel. 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX  (4000) 
#define LDA   (NMAX+1) 
 
MAIN__() 
{ 
  int    ip[NMAX]; 
  int    n, is, isw, icon, ierr, i, j; 
  double a[NMAX][LDA], b[NMAX]; 
  double epsz, c, t, s; 
 
  n = NMAX; 
  c = sqrt(2.0/(n+1)); 
  t = atan(1.0)*4.0/(n+1); 
 
  for(i=1; i<=n; i++) { 
    for(j=1; j<=n; j++) { 
      a[i-1][j-1] = c*sin(t*i*j); 
    } 
  } 
 
  for(i=1; i<=n; i++) { 
    s = 0.0; 
    for(j=1; j<=n; j++) { 
      s = s+sin(t*i*j); 
    } 
    b[i-1] = s*c; 
  } 
 
  epsz = 0.0; 
  isw  = 1; 
  ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon); 
 
  printf("icon = %d, return code = %d\n", icon, ierr); 
  printf("n = %d, b[0] = %f, b[n-1] = %f\n", n, b[0], b[n-1]); 
 
} 
 

To call function from inside of the parallel region 
  The example program below solves two independent systems of linear equations. One input of a real coefficient matrix is 

40004000, and the other is 42004200. If the environment variable OMP_NUM_THREADS is set to be 2 and 

OMP_NESTED is set to be TRUE on the system of 4 processors, each system of linear equation is solved with 2 threads 

respectively. The execution will be parallelized with 4 threads total. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <omp.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX1  (4000) 
#define NMAX2  (4200) 
#define LDA1   (NMAX1+1) 
#define LDA2   (NMAX2+1) 
 
MAIN__() 
{ 
  int    ip1[NMAX1], ip2[NMAX2], i, j, num; 
  int    n1, is1, isw1, icon1, ierr1; 
  int    n2, is2, isw2, icon2, ierr2; 
  double a1[NMAX1][LDA1], b1[NMAX1]; 
  double a2[NMAX2][LDA2], b2[NMAX2]; 
  double epsz1, epsz2, c, t, s; 
 
  n1 = NMAX1; 
  c  = sqrt(2.0/(n1+1)); 
  t  = atan(1.0)*4.0/(n1+1); 
 
  for(i=1; i<=n1; i++) { 
    for(j=1; j<=n1; j++) { 
      a1[i-1][j-1] = c*sin(t*i*j); 
    } 
  } 
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  for(i=1; i<=n1; i++) { 
    s = 0.0; 
    for(j=1; j<=n1; j++) { 
      s = s+sin(t*i*j); 
    } 
    b1[i-1] = s*c; 
  } 
 
  n2 = NMAX2; 
  c  = sqrt(2.0/(n2+1)); 
  t  = atan(1.0)*4.0/(n2+1); 
 
  for(i=1; i<=n2; i++) { 
    for(j=1; j<=n2; j++) { 
      a2[i-1][j-1] = c*sin(t*i*j); 
    } 
  } 
 
  for(i=1; i<=n2; i++) { 
    s = 0.0; 
    for(j=1; j<=n2; j++) { 
      s = s+sin(t*i*j); 
    } 
    b2[i-1] = s*c; 
  } 
 
#pragma omp parallel default(shared) private(num) 
 { 
  num = omp_get_thread_num(); 
 
  if(num == 0) { 
    epsz1 = 0.0; 
    isw1  = 1; 
    ierr1 = c_dm_vlax((double*)a1, LDA1, n1, b1, epsz1, isw1, &is1, ip1, &icon1); 
  } else { 
    epsz2 = 0.0; 
    isw2  = 1; 
    ierr2 = c_dm_vlax((double*)a2, LDA2, n2, b2, epsz2, isw2, &is2, ip2, &icon2); 
  } 
 } 
 
  printf("icon1 = %d, return code = %d\n", icon1, ierr1); 
  printf("n1 = %d, b1[0] = %f, b1[n1-1] = %f\n", n1, b1[0], b1[n1-1]); 
  printf("icon2 = %d, return code = %d\n", icon2, ierr2); 
  printf("n2 = %d, b2[0] = %f, b2[n2-1] = %f\n", n2, b2[0], b2[n2-1]); 
} 

Array storage formats 

  The methods for storing matrices in arrays depends on the structure and form of the matrices as well as the computation 

in which it is involved. 

1. Storage formats for general matrices 

  When an argument is defined as a matrix, all of the elements of a matrix are assumed significant. A standard 2-D array is 

used to store the matrix, so that matrix element aij is stored in array element a[i1][j1]. Matrices are indexed from 1, 

which is standard mathematical usage, while array dimensions are indexed from 0, which is standard C. This also applies 

to vectors. Again, the mathematical tradition numbers the elements from 1, so that vector element yi would be stored in 

array element y[i1]. 

  Another feature of the 2-D arrays used in the C-SSL II Thread-Parallel Capabilities library is that most routines are 

designed so that users can specify a larger memory area for a 2-D array than is required for a particular problem. Consider 

the example in Figure 1, where a 5 by 5 matrix A has been stored in an m by k array a. In order for this matrix to be used 

in a function call, in addition to the matrix size (in this case 5), it is also necessary to specify k, the number of columns of 

a. In the documentation, this is referred to as the C fixed dimension. 
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Figure 1 Storage format for general matrices 

2. Storage formats for general sparse matrices 

ELLPACK storage format 
  The ELLPACK storage format is a sparse matrix format that is best suited to those situations where either the matrix 

non-zeros are spread over a wide range of the matrix or the matrix diagonals are themselves very sparse (see [40] and [57] 

for further details on ELLPACK). Two 2-D arrays are used to represent the matrix. The array referred to as coef in 

Figure 2 contains the non-zeros of the matrix, stored so that the i-th column of the array contains the non-zeros on the 

matrix row i1 and the array icol contains the matrix column index of the corresponding non-zero element in coef. 

Another input variable is iwidt, the maximum number of non-zeros in any row of A. If a row has fewer than iwidt 

non-zeros, then the associated column of coef must be padded with zeros. The corresponding elements of icol must 

contain the row number of the row in question. 

  In Figure 2, row 1 of A has non-zeros in columns 1 and 4. Therefore, coef[0][0] has the value 1 and icol[0][0] 

has the value 1, because a11 = 1. Similarly, coef[1][0] has the value 2 and icol[1][0] = 4 , because a14 = 2. Row 3 

of matrix A has fewer than iwidt non-zeros. Therefore, coef[1][2] is zero and icol[1][2] = 3. Row 4 of matrix 

A is treated similarly. Although not illustrated in the example, the ordering of non-zero elements within a column of coef 

is not important, provided that the same ordering is used in icol. 
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Figure 2 ELLPACK storage format for sparse matrices 
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Diagonal storage format 
  The diagonal storage format is effective for those sparse matrices where the non-zero elements all lie along a small 

number of diagonals. This format is intended to be used with preconditioned iterative linear equation solvers and it only 

stores the main diagonal and those off-diagonals that contain non-zeros. Notice however that all of such diagonals are 

stored, including the zero elements. 

  Two arrays are used to store this matrix. The first array, referred to as diag in Figure 3, is a 2-D array whose rows contain 

the diagonal elements and the second is a 1-D array, referred to as nofst whose i-th element contains the offset of the 

diagonal stored in the i-th row of diag. The upper diagonals have a positive offset, the main diagonal an offset of zero 

and the lower diagonals a negative offset. There is no special restriction on the order in which the diagonals are stored, 

although it is essential that the elements within a diagonal are stored consecutively. 

  Also notice that leading zeros on the lower diagonals and trailing zeros on the upper diagonals must be explicitly 

included. The reason for these is illustrated in figure 3. For further information, see [49] and [54]. 
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Figure 3 Diagonal storage format for sparse matrices 

3. Storage formats for symmetric positive definite sparse matrices 

ELLPACK storage format 
This version of the ELLPACK storage format is intended to be used with symmetric positive definite matrices, where the 

main diagonal has been normalized to ones. There are some important differences between the way elements are stored 

for this matrix sub-class and its parent class. In particular, the main diagonal elements are not stored, because they are 

assumed to be 1 and the upper triangular non-zeros are stored separately from the lower triangular non-zeros. Both the 

upper and lower triangular elements are stored, even though one could be determined from the other. The maximum 

number of non-zeros in each row vector of the upper triangular matrix is nsu and the maximum number of non-zeros in 

each row vector of the lower triangular matrix is nsl. If nsh = max(nsl, nsu), then the non-zeros of the upper 

triangular matrix are stored in rows 0 to nsh  1 and the non-zeros of the lower triangular matrix are stored in rows nsh 

to 2 * nsh  1. In other words, occasionally, one or other of the sub-matrix entries will be padded by zeros.  

The indexing for non-zeros (and row numbers for explicit zeros in coef) is still in terms of the original matrix. For 

instance, in Figure 4, coef[2][2] has the value 6, icol[2][2] has the value 2, so that we know a32 = 6. Similarly, 

coef[0][2] has the value 7, icol[0][2] has the value 4, so that a34 = 7. 

It is the user’s responsibility to ensure that the normalization of the matrix and right hand sides are correct. To obtain the 

solution to Ax = b, obtain the solution to the normalized problem A*y = b*, where A* = D1/2AD1/2 and b* = D1/2b and then 

obtain the solution from x = D1/2y, where D is the diagonal matrix containing the inverse of the diagonal elements of A. 
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Figure 4  ELLPACK storage format for normalized symmetric positive definite sparse matrices 

Diagonal storage format 
The data structures used for symmetric positive definite matrices is similar to those in the general case. As with the 

ELLPACK storage format, only normalized matrices are supported, where the main diagonal of the matrix is assumed to 

consist of ones. Therefore, the main diagonal is not explicitly stored because its values are known. An example is 

provided in Figure 5. The order in which the diagonals are stored is now important, with the upper diagonals being stored 

first in diag. Diagonals are given in order from nearest to the main diagonal for both of the upper and lower triangular 

matrices. The entries for the upper diagonals have trailing zeros, so diagonal j will have j trailing zeros. The entries for the 

lower diagonals have leading zeros, so diagonal –j will have j leading zeros.  
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Figure 5  Diagonal storage format for normalized symmetric positive definite sparse matrices 
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c_dm_valu 

LU decomposition of real matrices (blocked LU decomposition method). 

ierr = c_dm_valu(a, k, n, epsz, ip, &is, 

&icon); 

1. Function 

An n  n non-singular matrix A is decomposed by blocked outer product Gaussian elimination. 

 PA = LU (1) 

where, P is the permutation matrix which exchanges the rows of A by partial pivoting, L is the lower triangular matrix, 

and U is the unit upper triangular matrix ( n  1). 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_valu((double*)a, k, n, epsz, ip, &is, &icon); 

where: 

a double 

a[n][k] 

Input 

Output 

Matrix A. 

Matrices L and U. 

k int Input C fixed dimension of array a (  n). 

n int Input Order n of matrix A. 

epsz double Input Tolerance for relative zero test of pivots during the decomposition of A 

(  0).  When epsz is zero, a standard value is used.  See Comments on 

use. 

ip int ip[n] Output Transposition vector that provides the row exchanges that occurred 

during partial pivoting.  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  When the n 

elements of the calculated diagonal of array a are multiplied together, 

and the result multiplied by is, the determinant is obtained. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 Either all of the elements of some row were zero 

or the pivot became relatively zero.  It is highly 

probable that the coefficient matrix is singular. 

Discontinued. 

30000 One of the following has occurred: 

 k < n 

 n < 1 

 epsz < 0 

Bypassed. 
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3. Comments on use 

epsz 
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A = ( aij ), that is: 

epsz ij
k
kk aa max  

then the relative pivot value is assumed to be zero and processing terminates with icon = 20000.  The standard value of 

epsz is 16µ, where µ is the unit round off.  If the processing is to proceed at a lower pivot value, epsz will be given the 

minimum value but the result is not always guaranteed. 

ip 
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting.  In this 

function, the elements of the array a are actually exchanged in partial pivoting.  In the J-th stage (J = 1, ... , n) of 

decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-

th row are exchanged.  Then, in order to record the history of this exchange, I is stored in ip[j-1]. 

How to use this function 
The linear equation can be solved by calling function c_dm_vlux following this function.  Normally, the linear equation 

can be solved in one step by calling function c_dm_vlax. 

4. Example program 

LU decomposition is executed by inputting a real 4000  4000 matrix. 

 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
#define NMAX      (1000) 
#define LDA       (NMAX+1) 
 
MAIN__() 
{ 
  int    n, is, isw, i, j, icon, ierr; 
  int    ip[NMAX]; 
  double a[NMAX][LDA], b[NMAX]; 
  double epsz, s, det; 
 
  n    = NMAX; 
  epsz = 0.0; 
  isw  = 1; 
 
#pragma omp parallel for shared(a,n) private(i,j) 
  for(i=0; i<n; i++) 
    for(j=0; j<n; j++) a[i][j] = min(i,j)+1; 
 
#pragma omp parallel for shared(b,n) private(i) 
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1); 
 
  ierr = c_dm_valu((double*)a, LDA, n, epsz, ip, &is, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_valu failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, &icon); 
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  if (icon != 0) { 
    printf("ERROR: c_dm_vlux failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  s = 1.0; 
#pragma omp parallel for shared(a,n) private(i) reduction(*:s) 
  for(i=0; i<n; i++) s *= a[i][i]; 
 
  printf("solution vector:\n"); 
  for(i=0; i<10; i++) printf("    b[%d] = %e\n", i, b[i]); 
 
  det = is*s; 
  printf("\ndeterminant of the matrix = %e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VALU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and 

[52]. 
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c_dm_vamlid 

System of linear equations with sparse matrices of M-matrix 

(Algebraic multilevel iteration method [AMLI Method], diagonal format 

storage method). 

ierr = c_dm_vamlid(a, k, ndiag, n, nofst, b, 

isw, iguss, info, epsot, epsin, x, 

w, nw, iw, niw, &icon); 

1. Function 

This routine solves, using the iterative method, a system of linear equations with sparse matrices of M-matrix as 

coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the diagonal format storage method.  Vectors b and x are n-dimensional 

vectors. 

The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-symmetric. The iteration (called outer 

iteration) is preconditioned by the algebraic multilevel iteration method (called AMLI) which requires the solution of 

small linear system that is also solved iteratively (called inner iteration), and stable. (In the preconditioner of the algebraic 

multilevel iteration method, the generated linear system becomes smaller as the level is deeper.) 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vamlid((double*)a, k, ndiag, n, nofst, b, isw, iguss, info, epsot, 

epsin, x, w, nw, iw, niw, &icon); 

where: 

a double 

a[n][k] 

Input The nonzero elements of a coefficient matrix A are stored in a. 

k int Input C fixed dimension of array a (  n). 

ndiag int Input Number of columns in array a and size of array nofst.  Must be equal 

to the number of nonzero diagonals in matrix A. 

n int Input Order n of matrix A. 

nofst int 

nofst[ndiag] 

Input Offsets of diagonals of A stored in array a.  Main diagonal has offset 0, 

subdiagonals have negative offsets, and superdiagonals have positive 

offsets. 

b double b[n] Input The right-side constant vectors of a system of linear equations are stored. 

isw int Input Control information.  See Comments on use. 

   1 Initial calling. 

   2 Second or subsequent calling. 

The arrays, a, iw and w, must NOT be changed if the routine is 

called again with isw = 2. 

iguss int Input Control information specifying whether iterative computation is to be 
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performed using the approximate values of the solution vectors specified 

in array x. 

   iguss = 0 the approximate values of the solution vectors are not 

specified and set to zero by c_dm_vamlid. 

   iguss  0 the iterative computation is performed using the 

approximate values of the solution vectors specified in 

array x. 

info int info[14] Input / 

Output 

The control information of the iteration. 

For example, for symmetric coefficient matrix A, info is set as follows; 

  info[0] = 1;   info[1] = NTHRD*100; info[2] = 0; 

  info[4] = 1;    info[5] = 2000;      info[9] = 1; 

  info[10]= 1000; 

For example, for unsymmetric coefficient matrix A, info is set as 

follows; 

  info[0] = 1;   info[1] = NTHRD*100; info[2] = 0; 

  info[4] = 2;    info[5] = 2000;      info[6] = 5; 

  info[7] = 20;   info[9] = 2;         info[10]= 1000; 

  info[11]= 10;   info[12]= 0; 

Where NTHRD is the number of threads which are executed in parallel. 

See Comments on use. 

   info[0] Input MAXLVL. 

Maximal number of levels in the algebraic 

multilevel iteration method. 

MAXLVL < 0  The optimal level evaluated 

internally is used. 

MAXLVL = 0  The multi-level method is not 

used. 

MAXLVL > 0  The coarser level than the 

specified depth is not used. 

   info[1] Input MINUK. 

Minimal number of unknowns for the smallest 

linear system in the deepest level in the inner 

iteration. It is recommendable to set MINUK 

very larger than the number of threads NTHRD 

and very smaller than n. For example, 

100NTHRD. 

   info[2] Input NORM. 

The type of normalization. 

NORM < 1  The matrix is normalized from the 

right and the left by the inverse of the square 

root of the main diagonal of A. This effects that 

the main diagonal of the normalized matrix A 

is equal to one and the matrix is symmetric if A 

is symmetric. 

It is recommendable to use symmetrical 

normalization. However, in some cases the 
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non-symmetrical normalization can produce 

faster convergence. Criterion value for 

judgment of convergency. 

NORM  1  The matrix is normalized from the 

left by the inverse of the main diagonal of A. 

This effects that the main diagonal is equal to 

one but the normalized matrix will be non-

symmetric even if the matrix A is symmetric. 

   info[3] Output Number of levels. 

   info[4] Input METHOT. 

The iterative method used in the outer iteration. 

METHOT = 1  Preconditioned ORTHOMIN is 

used. It should be used if the matrix A is 

symmetric and a symmetrical normalization is 

used. 

METHOT  1  Restarted and truncated 

GMRES is used. It should be used if the matrix 

A is non-symmetric or a non-symmetrical 

normalization is used. 

   info[5] Input ITMXOT. 

The maximal number of iteration steps in the 

outer iteration, for example 2000. If the 

maximum iteration number of outer iteration is 

reached the processing is terminated and the 

returned solution does not fulfill the stopping 

criterion. 

   info[6] Input NRESOT. 

The number of residuals in the 

orthogonalization procedure of the outer 

iteration, i.e. truncation after NRESOT 

residuals. For example , 5. Only used if 

GMRES is applied. 

   info[7] Input NRSTOT. 

After NRSTOT iteration steps the outer 

iteration is restarted. For example , 20. If it is 

NRSTOT < 1 there is no restart. Only used if 

GMRES is applied. 

   info[8] Output ITEROT. 

The number of iteration steps in the outer 

iteration procedure. 

   info[9] Input METHIN. 

The iterative method used in the inner iteration. 

METHIN = 1  Preconditioned ORTHOMIN is 

used. It should be used if the matrix A is 

symmetric and a symmetrical normalization is 

used. 
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METHIN  1  Restarted and truncated 

GMRES is used. It should be used if the matrix 

A is non-symmetric or a non-symmetrical 

normalization is used. 

   info[10] Input ITMXIN. 

The maximal number of iteration steps in the 

inner iteration, for example 1000. 

If ITMXIN is reached the processing is 

continued on the outer iteration. 

   info[11] Input NRESIN. 

The number of residuals in the 

orthogonalization procedure of the inner 

iteration, ie. truncation after NRESIN 

residuals. For example, 10. Only used if 

GMRES is applied. 

   info[12] Input NRSTIN. 

After NRSTIN iteration steps the inner iteration 

is restarted. 

Only used if GMRES is applied. If it is 

NRSTIN < 1 there is no restart. 

   info[13] Output The average number of the inner iteration. 

epsot double Input The desired accuracy for the solution. The outer iteration is stopped in 

the k-th iteration step if the normalized kkk bxAr ˆˆˆ   residual of the 

current approximation xk satisfies the condition br ˆˆ epsotk  

where yyy T2   denotes the Euclidean norm Â  and b̂  are the 

coefficient matrix and the right hand side of the normalized linear 

system. 

epsin double Input The tolerance for the inner iteration. Normally 103 is optimal. 

x double x[n] Input The approximate values of solution vectors can be specified. 

  Output Solution vectors are stored. 

w double w[nw] Work  

nw int Input Size of the work array w. 

nw  NT  (3  NAMAX  5)  3  (NLVL  1)  NBAND  MAXT  

max(NAMAX  NT, 7  NT + LR0) 

MAXT is the maximum number of threads which are created in this 

routine. 

NT = n  MAXT. 

NBAND is the maximum of the lower and upper bandwidth of the matrix. 

NLVL is the number of levels in the algebraic multilevel iteration 

method. 

When MAXLVL < 0, NLVL is 10. 

NAMAX  ndiag. 

if ORTHOMIN is used: 

 LR0 = 4  NT. 

if GMRES is used: 

 NRES = max(NRESOT, NRESIN). 
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 LR0 = (2  NRES  1)  NT. 

See Comments on use. 

iw int iw[niw] Work  

niw int Input Size of the work array iw. 

niw  MAXT  ((6  MAXT  12  NAMAX)  (NLVL  1)  8  NBAND 

 3000)  4  (n  MAXT) 

MAXT is the maximum number of threads which are created in this 

routine. 

NT = n  MAXT. 

NBAND is the maximum of the lower and upper bandwidth of the matrix. 

NLVL is the number of levels in the algebraic multilevel iteration 

method. 

When MAXLVL < 0, NLVL is 10. 

NAMAX  ndiag. 

See Comments on use. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

10700 Vector v pos could not be found. Processing is used with v pos = (1, 1, ... , 1). 

10800 Curable break down in GMRES. Processing is continued. 

20001 Stopping criterion could not be reached within the 

given number of iteration steps. 

Processing is discontinued. 

The approximate value obtained is output in array 

x, but the precision is not assured. 

20003 Non-curable break down in GMRES. Processing is discontinued. 

20005 Non-curable break down in ORTHOMIN by  

pT A p = 0 with p  0. 

 

20006 Non-curable break down in ORTHOMIN by  

pT r = 0. 

 

30000 One of the following has occurred: 

 n < 1 

 n > k 

 ndiag < 1 

 isw  1, 2 

 

30104 |nofst[i]| > n1  

30105 Main diagonal is missed.  

30200 Matrix is not an M-matrix.  

30210 Matrix condensation fails by non-positive value.  

30212 There is a zero entry on the main diagonal.  

30310 Too small integer work array.  

30320 Too small real work array.  
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3. Comments on use 

M-matrix 
A coefficient matrix arising from order two finite difference discretization or, in some cases, from order one finite element 

discretization of an elliptical boundary value problem is an M-matrix.  It can be produced using the routines for 

discretization of a boundary value problem for second order partial differential equation (c_dm_vpde2d, c_dm_vpde3d). 

To be an M-matrix means that 

 All main diagonal entries are positive ai, i > 0 for all i = 1, ... , n and all other entries are non-positive ai, j  0 

for all i, j = 1, ... , n with i  j. 

 There is a positive vector v pos so Av pos is positive. 

If the first condition is not fulfilled, processing is not continued with icon = 30200. This routine can not find the vector 

vpos (icon = 10700) it is set v pos = (1, ... , 1) the matrix A is assumed and processing is continued with the risk of a 

breakdown in AMLI with icon = 30212, 30210 or slow convergence or breakdowns in the outer or inner iteration. 

To define the coarse levels the rectangular grid used to assemble the coefficient matrix is recovered. If the recovering is 

not successful there can be a breakdown in AMLI with icon = 30212, 30210, a disproportionately increase of the 

number of diagonals in the coarser levels or slow convergence or breakdowns in the outer or inner iteration. 

isw 
When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isw = 

1 in the first call and isw = 2 in the second and all subsequent calls. Then the coarse level matrices assembled in the first 

call are reused. 

NAMAX 
Normally it is sufficient to set NAMAX = ndiag in the formulas for the length for the work arrays. It can happen that the 

number of diagonals in the coarse level matrices is larger than the number of diagonals in the given matrix. In this case 

NAMAX has to be increased. 

ORTHOMIN 
It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine 

removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration 

matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical 

normalization first if there is a chance that the iteration matrix is symmetric. 

GMRES 
If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES. 

Normally it is sufficient to truncate after NRESOT = 5 residuals and to restart after 20 steps in the outer iteration. In the 

inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of 

iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required. 

Then it is necessary to increase NRES in the formula for the length workspace nw but, NRES can be set to a smaller value 

than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger. 

But it requires longer computation time and larger amount of memory. 

The optimal number of levels 
This routine tries to find the optimal number of levels. In some rare applications the computing time can be reduced by 

setting the number of levels by hand but normally the improvements are not significant. 
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Preconditioning 
The preconditioner bases on a nested incomplete block factorizations using the Schur complement. The matrix An(n= 

1, ... , MAXLVL1) of each level can be blocked as follows choosing the sets of eliminated unknown from the 

coordination in a virtual grid: 











2221

1211

AA

AA
An  

And define a matrix 12
1

112122 AAAAS  , which is called Schur complement.  An can be factorized as follows: 
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The matrix An+1of next level n+1 can be regarded as a Schur complement matrix with approximating the 1
11
A  to a 

diagonal matrix.  These incomplete factorization are used for preconditioning in this routine. 

4. Example program 

The partial differential equation  

1
2

2

2

1
2

2



















 cu
x

u

x

u
 

is solved on the domain [0, 1]2.  Dirichlet boundary conditions are set to u = 0. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define MAXT       4 
#define N1      1281 
#define N2      1537 
#define NLVL      10 
#define L1      (N1) 
#define L2      (N2) 
#define KA   (N1*N2) 
#define NA         5 
#define NW     ((3*NA+5)*(KA+MAXT)+3*(NLVL+1)*N1*MAXT+11*(KA+MAXT)) 
#define NIW  (((6*MAXT+12*NA)*(NLVL+1)+8*N1+2000)*MAXT+4*(KA+MAXT)) 
 
int MAIN__() 
{ 
  double a[NA][KA], b[KA], u[KA], sol[3*N1*N2], rhs[N1*N2], rhsc[N1*N2]; 
  double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1]; 
  double c[L2][L1], f[L2][L1], w[NW], epsin, epsot, tmp; 
  int    nofst[NA], info[100], iw[NIW]; 
  int    z1, z2, ndiag, n, isw, iguss, nband, i, z, icon; 
 
  /* CREATE NODE COORDINATES */ 
  for (z1=0; z1<N1; z1++) { 
    x1[z1] = (double)(z1)/(double)(N1-1); 
  } 
 
  for (z2=0; z2<N2; z2++) { 
    x2[z2] = (double)(z2)/(double)(N2-1); 
  } 
 
  /* COEFFICIENTS IN THE PARTIAL DIFFERENTIAL EQUATION : */ 
  for (z2=0; z2<N2; z2++) { 
    for (z1=0; z1<N1; z1++) { 
      a1[z2][z1] = 1.0; 
      a2[z2][z1] = 1.0; 
      b1[z2][z1] = 0.0; 
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      b2[z2][z1] = 0.0; 
      c[z2][z1]  = 1.0; 
      f[z2][z1]  = 1.0; 
    } 
 
    /* DIRICHLET BOUNDARY CONDITIONS: */ 
    c[z2][0]    = 1.0; 
    f[z2][0]    = 0.0; 
    c[z2][N1-1] = 1.0; 
    f[z2][N1-1] = 0.0; 
 
    if (z2 == 0) { 
      for (z1=0; z1<N1; z1++) { 
        c[0][z1] = 1.0; 
        f[0][z1] = 0.0; 
      } 
    } 
 
    if (z2 == N2-1) { 
      for (z1=0; z1<N1; z1++) { 
        c[N2-1][z1] = 1.0; 
        f[N2-1][z1] = 0.0; 
      } 
    } 
  } 
 
  n = N1*N2; 
  c_dm_vpde2d((double*)a1, L1, N1, N2, (double*)a2, x1, x2, (double*)b1, 
              (double*)b2, (double*)c, (double*)f, (double*)a, KA, NA, n, 
              &ndiag, nofst, b, &icon); 
  printf("icon of c_dm_vpde2d = %d\n", icon); 
 
  for (z=0; z<n; z++) { 
    rhs[z] = b[z]; 
  } 
 
  nband = 0; 
  for (i=0; i<ndiag; i++) { 
    nband = max(nband,fabs(nofst[i])); 
  } 
 
  /* CALL DAMLI: */ 
  isw   = 1; 
  iguss = 0; 
 
  info[0]  = -1; 
  info[1]  = MAXT*100; 
  info[2]  = 0; 
  info[4]  = 1; 
  info[5]  = 2000; 
  info[9]  = 1; 
  info[10] = 1000; 
 
  epsot = 1e-6; 
  epsin = 1e-3; 
 
  c_dm_vamlid((double*)a, KA, ndiag, n, nofst, b, isw, iguss, info, epsot, epsin, u, 
              w, NW, iw, NIW, &icon); 
  printf("icon of c_dm_vamlid = %d\n", icon); 
 
  for (i=0; i<nband; i++) { 
    sol[i]           = 0.0; 
    sol[nband+n+i-1] = 0.0; 
  } 
 
  for (z=0; z<n; z++) { 
    sol[nband+z] = u[z]; 
  } 
 
  c_dm_vmvsd((double*)a, KA, ndiag, n, nofst, nband, sol, rhsc, &icon); 
 
  tmp = 0.0; 
  for (z=0; z<n; z++) { 
    tmp = max(tmp,fabs((rhs[z]-rhsc[z])/(rhs[z]+1.0))); 
  } 
 
  printf("error = %e\n", tmp); 
  return(0); 
} 
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5. Method 

Consult the entry for DM_VAMLID in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vbcscc 

System of linear equations with unsymmetric or indefinite sparse 

matrices (Bi-Conjugate Gradient Stabilized (l) [BICGSTAB(l)] method, 

compressed column storage method) 

ierr = c_dm_vbcscc(a, nz, nrow, nfcnz, n, b, 

itmax, eps, iguss, l, x, &iter, w, 

(int*)iw, &icon); 

1. Function 

 This routine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient Stabilized(l) method, a system of linear 

equations with unsymmetric or indefinite sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the compressed column storage method.  Vectors b and x are n-dimensional 

vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see   Chapter 4 "Iterative linear equation 

solvers and Convergence," in Part I, "Outline," in the SSL II Extended Capability User's Guide II. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vbcscc(a, nz, nrow, nfcnz, n, b, itmax, eps, iguss, l, x, &iter, 

w, (int*)iw, &icon); 

where: 

a double a[nz] Input The non-zero elements of a coefficient matrix are stored. The non-zero 

elements of a sparse matrix are stored in a[i], i=0, …, nz-1.  For an 

explanation of the compressed column storage method, see Figure 

c_dm_vmvscc-1 in the description of a c_dm_vmvscc routine, 

"Multiplication of a real sparse matrix and a real vector (compressed 

column storage method)". 

nz int Input The total number of the nonzero elements belong to a coefficient matrix 

A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage method, which 

indicate the row number of each nonzero element stored in an array a. 

nfcnz int 

nfcnz[n+1] 

Input The position of the first nonzero element stored in an array a by the 

compressed column storage method which stores the nonzero elements 

column by column. 

nfcnz[n] = nz + 1 

n int  Input Order n of matrix A. 

b double b[n] Input Constant vector b. 

itmax int Input Upper limit of iterations in BICGSTAB(l).( > 0) The value of 

itmax should usually be set to about 2000. 
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eps double Input Criterion value for judgment of convergence.  

When eps is zero or less, eps is set to 106.  See Comments on use. 

iguss int Input Control information specifying whether iterative computation is to be 

performed using the approximate values of the solution vectors specified 

in array x. 

iguss = 0 : Approximate value of the solution vector is not specified. 

iguss  0 : The iterative computation starts from the approximate value 

of the solution vector specified in array x. 

l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8) 

The value of l should usually be set to 1 or 2.  See Comments on use. 

x double x[n] Input The approximate values of solution vectors can be specified in x[i-1], 

1  i  n. 

  Output Solution vector x. 

iter int Output Number of iteration performed using the BICGSTAB(l) method. 

w double w[nz] Work  

iw int iw[nz][2] Work  

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 Break-down occurred. Processing stopped. 

20001 Reached the set maximum number of iterations. Processing is discontinued. The already calculated 

approximate value is output to array x, but its 

precision is not assured. 

30000 One of the following has occurred: 

 n < 1 

 nz < 0 

 nfcnz[n] nz+1 

 itmax  0 

 l < 1 

 l > 8 

Bypassed. 

3. Comments on use 

Convergent criterion 
When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the 

value of eps, it is assumed that the solution converged. The error between the correct solution and the calculated 

approximate solution is roughly equal to the product of the matrix A condition number and the value of eps. 

l 
When l is set to one, the algorithm is same as that of BICGSTAB method. As the value of l is lager, the cost of one 

iteration becomes larger however the total number of iteration is reduced. Consequently in some cases it becomes faster 

with larger l. 
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4. Example program 

The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic 

equation. 

fuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 and a3 are some constants.  The 

matrix A in Diagonal format is generated by the function init_mat_diag. Then it is converted into the storage scheme in 

compressed column storage. 

      #include <stdlib.h> 
      #include <stdio.h> 
      #include <math.h> 
      #include "cssl.h" /* standard C-SSL header file */ 
 
      #define NORD   (60) 
      #define NX     (NORD) 
      #define NY     (NORD) 
      #define NZ     (NORD) 
      #define N      (NX*NY*NZ) 
      #define K      (N+1) 
      #define NDIAG  (7) 
      #define L      (4) 
 
      MAIN__() 
      { 
        int    ierr, icon, iguss, iter, itmax; 
        int    nord, n, l, i, j, k; 
        int    nx, ny, nz, nnz; 
        int    length, nbase, ndiag; 
        int    numnz, ntopcfg, ncol; 
        int    nofst[NDIAG]; 
        int    nrow[K*NDIAG]; 
        int    nfcnz[N+1]; 
        int    iw[K*NDIAG][2]; 
 
        double eps; 
        double va1, va2, va3, vc; 
        double err1, err2, err3, err4; 
        double xl, yl, zl; 
        double diag[NDIAG][K]; 
        double diag2[NDIAG][K]; 
        double a[K*NDIAG]; 
        double b[N]; 
        double w[K*NDIAG]; 
        double x[N]; 
        double solex[N]; 
        double y[N]; 
 
        void init_mat_diag(double va1, double va2, double va3, double vc, 
                    double d_l[], int offset[], int nx, int ny, int nz, 
                    double xl, double yl,double zl, int ndiag, int len, int ndivp); 
 
        double errnrm(double *x1, double *x2, int len); 
 
        nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG, l=L; 
 
        printf("    BICGSTAB(L) METHOD\n"); 
        printf("    COMPRESSED COLUMN STORAGE\n"); 
        printf("\n"); 
 
        for (i=1; i<=n; i++){ 
          solex[i-1]=1.0; 
        } 
        printf("    EXPECTED SOLUTIONS\n"); 
        printf("    X(1) = %f  X(N) = %f\n", solex[0], solex[n-1]); 
        printf("\n"); 
 
        va1 = 3.0; 
        va2 = 1.0/3.0; 
        va3 = 5.0; 
        vc = 1.0; 
        xl = 1.0; 
        yl = 1.0; 
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        zl = 1.0; 
        init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst, 
                            nx, ny, nz, xl, yl, zl, ndiag, n, k); 
 
        for (i=1; i<=ndiag; i++){ 
          if (nofst[i-1] < 0){ 
            nbase=-nofst[i-1]; 
            length=n-nbase; 
            for (j=1; j<=length; j++){ 
              diag2[i-1][j-1]=diag[i-1][nbase+j-1]; 
            } 
          } 
          else{ 
            nbase=nofst[i-1]; 
            length=n-nbase; 
            for (j=nbase+1; j<=n; j++){ 
              diag2[i-1][j-1]=diag[i-1][j-nbase-1]; 
            } 
          } 
        } 
 
        numnz=1;  
        for (j=1; j<=n; j++){ 
          ntopcfg = 1; 
          for (i=ndiag; i>=1; i--){ 
            if (diag2[i-1][j-1]!=0.0){ 
              ncol=j-nofst[i-1]; 
              a[numnz-1]=diag2[i-1][j-1]; 
              nrow[numnz-1]=ncol; 
              if (ntopcfg==1){ 
                nfcnz[j-1]=numnz; 
                ntopcfg=0;  
              } 
              numnz=numnz+1; 
            } 
          } 
        } 
        nfcnz[n]=numnz; 
        nnz=numnz-1; 
 
        for (i=1; i<=n; i++){ 
          x[i-1]=0.0; 
        } 
 
        ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, solex, b, w, (int*)iw, &icon); 
        err1 = errnrm(solex,x,n); 
 
        ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon); 
        err2 = errnrm(y,b,n); 
 
        iguss = 0; 
        itmax = 2000; 
        eps   = 1.0e-8; 
 
        ierr = c_dm_vbcscc(a, nnz, nrow, nfcnz, n, b, itmax, eps, iguss, l,  
                                 x, &iter, w, (int*)iw, &icon); 
        err3 = errnrm(solex,x,n);                            
 
        ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon); 
        err4 = errnrm(y,b,n); 
 
        printf("    COMPUTED VALUES\n"); 
        printf("    X(1) = %f  X(N) = %f\n", x[0], x[n-1]); 
        printf("\n"); 
        printf("    c_dm_vbcscc ICON = %d\n", icon); 
        printf("\n"); 
        printf("    N = %d   :: NX = %d  NY = %d  NZ = %d\n",n,nx,ny,nz); 
        printf("    ITER MAX = %d\n",itmax); 
        printf("    ITER     = %d\n",iter); 
        printf("\n"); 
        printf("    EPS      = %e\n",eps); 
        printf("\n"); 
        printf("    INITIAL ERROR = %f\n",err1); 
        printf("    INITIAL RESIDUAL ERROR  = %f\n",err2); 
        printf("    CRITERIA RESIDUAL ERROR = %e\n",err2 * eps); 
        printf("\n"); 
        printf("    ERROR  = %e\n",err3); 
        printf("    RESIDUAL ERROR = %e\n",err4); 
        printf("\n"); 
        printf("\n"); 
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        if (err4<=(err2*eps*1.1) && icon==0){ 
          printf("********** OK **********\n"); 
        } 
        else{ 
          printf("********** NG **********\n"); 
        } 
      } 
 
      void init_mat_diag(double va1, double va2, double va3, double vc, 
               double d_l[], int offset[], int nx, int ny, int nz, 
               double xl, double yl, double zl, int ndiag, int len, int ndivp) 
      { 
        int i, l, j; 
        int length, numnz, js; 
        int i0, j0, k0; 
        int ndiag_loc; 
        int nxy; 
 
        double hx, hy, hz; 
        double x1, x2; 
        double base; 
        double ret, remark; 
 
        if (ndiag<1){ 
          printf("FUNCTION INIT_MAT_DIAG:\n"); 
          printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 
          return; 
        } 
        ndiag_loc = ndiag; 
        if (ndiag>7){ 
          ndiag_loc=7; 
        } 
 
        hx = xl / (nx + 1); 
        hy = yl / (ny + 1); 
        hz = zl / (nz + 1); 
 
        for (i=1; i<=ndivp; i++){ 
          for (j=1; j<=ndiag; j++){ 
            d_l[i-1+(j-1)*ndivp]= 0.; 
          } 
        } 
 
        nxy = nx * ny; 
        l = 1; 
        if (ndiag_loc >= 7) { 
          offset[l-1] = -nxy; 
          ++l; 
        } 
        if (ndiag_loc >= 5) { 
          offset[l-1] = -nx; 
          ++l; 
        } 
        if (ndiag_loc >= 3) { 
          offset[l-1] = -1; 
          ++l; 
        } 
        offset[l-1] = 0; 
        ++l; 
        if (ndiag_loc >= 2) { 
          offset[l-1] = 1; 
          ++l; 
        } 
        if (ndiag_loc >= 4) { 
          offset[l-1] = nx; 
          ++l; 
        } 
        if (ndiag_loc >= 6) { 
          offset[l-1] = nxy; 
        } 
 
        for (j = 1; j <= len; ++j) { 
          js=j; 
          k0 = (js - 1) / nxy + 1; 
          if (k0 > nz) { 
            printf("ERROR; K0.GH.NZ\n"); 
            return; 
          } 
          j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 
          i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 
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          l = 1; 
          if (ndiag_loc >= 7) { 
            if (k0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 5) { 
            if (j0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 3) { 
            if (i0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc; 
          if (ndiag_loc >= 5) { 
            d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy); 
            if (ndiag_loc >= 7) { 
              d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz); 
            } 
          } 
          ++l; 
          if (ndiag_loc >= 2) { 
            if (i0 < nx) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 4) { 
            if (j0 < ny) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 6) { 
            if (k0 < nz) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz; 
            } 
          } 
        } 
        return; 
      } 
 
      double errnrm(double *x1, double *x2, int len) 
      { 
        double ret_val; 
 
        int i; 
        double s, ss; 
 
        s = 0.; 
        for (i = 1; i <= len; ++i) { 
          ss = x1[i-1] - x2[i-1]; 
          s += ss * ss; 
        } 
        ret_val = sqrt(s); 
        return ret_val; 
      } 
 
 

5. Method 

Consult the entry for DM_VBCSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] 

and [73]. 
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c_dm_vbcsd 

System of linear equations with unsymmetric or indefinite sparse 

matrices 

(BICGSTAB(l) method, diagonal format storage method). 

ierr = c_dm_vbcsd(a, k, ndiag, n, nofst, b, 

itmax, eps, iguss, l, x, &iter, 

&icon); 

1. Function 

This function solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient Stabilized(l) method, a system of linear 

equations with unsymmetric or indefinite sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the diagonal format storage method.  Vectors b and x are n-dimensional 

vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation 

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vbcsd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x, 

&iter, &icon); 

where: 

a double 

a[ndiag][k] 

Input Sparse matrix A stored in diagonal storage format.  See Comments on 

use. 

k int Input C fixed dimension of array a (  n). 

ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements. 

n int Input Order n of matrix A. 

nofst int 

nofst[ndiag] 

Input Distance from the main diagonal vector corresponding to diagonal 

vectors in array a.  Super-diagonal vector rows have positive values.  

Sub-diagonal vector rows have negative values.  See Comments on use. 

b double b[n] Input Constant vector b. 

itmax int Input Upper limit of iterations in BICGSTAB(l).( > 0) 

eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 106.  See Comments on use. 

iguss int Input Control information about whether to start the iterative computation 

from the approximate value of the solution vector specified in array x. 

iguss = 0 : Approximate value of the solution vector is not specified. 

iguss  0 : The iterative computation starts from the approximate value 

of the solution vector specified in array x. 
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l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8) 

The value of l should usually be set to 1 or 2.  See Comments on use. 

x double x[n] Input The starting values for the computation.  This is optional and relates to 

argument iguss. 

  Output Solution vector x. 

iter int Output Number of iteration performed using the BICGSTAB(l) method. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 Break-down occurred. Processing stopped. 

20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 

stage is returned, but its precision is not 

guaranteed. 

30000 One of the following has occurred: 

 n < 1 

 k < 1 

 n > k 

 l < 1 

 l > 8 

 ndiag < 1 

 ndiag > k 

 itmax  0 

Bypassed. 

32001 abs(nofst[i]) > n1; 0  i < ndiag 

3. Comments on use 

Convergent criterion 
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual 

Euclidean norm and eps, it is judged as having converged.  The difference between the precise solution and the obtained 

approximation is roughly equal to the product of the condition number of Matrix A and eps. 

The residual which used for convergence judgement is computed recursively and it may differ from the true residual. 

l 
The maximum value of l is set to 8.  For l=1, this algorithm coincides with BiCGSTAB.  Using smaller l usually results 

in faster speed, but in some situations larger l brings a good convergence, although the steps of an iteration are more 

expensive for larger l. 

Notes on using the diagonal format 
A diagonal vector element outside coefficient matrix A must be set to zero. 

There is no restriction in the order in which diagonal vectors are stored in array a. 
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The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of 

indirect indices.  The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this 

method. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication.  The library routine is then called and the 

resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    (1000) 
#define UBANDW  (2) 
#define LBANDW  (1) 
#define NDIAG   (UBANDW + LBANDW + 1) 
#define L       (2) 
 
MAIN__() 
{ 
  double one=1.0, bcoef=10.0, eps=1.e-6; 
  int    ierr, icon, nub, nlb, n, i, j, k; 
  int    itmax, iguss, iter; 
  int    nofst[NDIAG]; 
  double a[NDIAG][NMAX], b[NMAX], x[NMAX]; 
 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  n     = NMAX; 
  k     = NMAX; 
 
  /* Set A-mat & b */ 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    nofst[i] = i; 
  } 
 
  for (i=1; i<=nlb; i++) { 
    for (j=0  ; j<i+1; j++) a[nub+i][j] =  0.0; 
    for (j=i+1; j<n  ; j++) a[nub+i][j] = -2.0; 
    nofst[nub+i] = -i; 
  } 
  nofst[0] = 0; 
 
  for (j=0; j<n; j++) { 
    b[j]    = bcoef; 
    a[0][j] = bcoef; 
    for (i=1; i<NDIAG; i++) b[j] += a[i][j]; 
  } 
 
  /* solve the nonsymmetric system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  ierr = c_dm_vbcsd ((double*)a, k, NDIAG, n, nofst, b, itmax, eps, 
                  iguss, L, x, &iter, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vbcsd failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* check result */ 
  for (i=0;i<n;i++) { 
    if (fabs(x[i]-one) > eps*10.0) { 
      printf("WARNING: result maybe inaccurate\n"); 
      exit(1); 
    } 
  } 
  printf("Result OK\n"); 
  return(0); 
} 
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5. Method 

Consult the entry for DM_VBCSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] 

and [73] 
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c_dm_vbcse 

System of linear equations with unsymmetric or indefinite sparse 

matrices 

(BICGSTAB(l) method, ELLPACK format storage method). 

ierr = c_dm_vbcse(a, k, iwidt, n, icol, b, 

itmax, eps, iguss, l, x, &iter, 

&icon); 

1. Function 

This function solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient Stabilized(l) method, a system of linear 

equations with unsymmetric or indefinite sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the ELLPACK format storage method. Vectors b and x are n-dimensional 

vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation 

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vbcse((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss, 

l, x, &iter, &icon); 

where: 

a double 

a[iwidt][k] 

Input Sparse matrix A stored in ELLPACK storage format. 

k int Input C fixed dimension of array a and icol (  n). 

iwidt int Input The maximum number of non-zero elements in any row vectors of A  

(  0). 

n int Input Order n of matrix A. 

icol int 

icol[iwidt][k] 

Input Column indices used in the ELLPACK format, showing to which 

column the elements corresponding to a belong. 

b double b[n] Input Constant vector b. 

itmax int Input Upper limit of iterations in BICGSTAB(l) method.( > 0) 

eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 106.  See Comments on use. 

iguss int Input Control information about whether to start the iterative computation 

from the approximate value of the solution vector specified in array x. 

iguss = 0 : Approximate value of the solution vector is not set. 

iguss  0 : The iterative computation starts from the approximate 

value of the solution vector specified in array x. 

l int Input The order of stabiliser in the BICGSTAB(l) algorithm.(1  l  8) 
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The value of l should usually be set to 1 or 2.  See Comments on use 

x double x[n] Input The starting values for the computation.  This is optional and relates to 

argument iguss. 

  Output Solution vector x. 

iter int Output The real number of iteration steps in BICGSTAB(l) method. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 Break-down occurred Processing stopped. 

20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 

stage is returned, but its precision is not 

guaranteed. 

30000 One of the following has occurred: 

 n < 1 

 k < 1 

 n > k 

 l < 1 

 l > 8 

 iwidt < 1 

 iwidt > k 

 itmax  0 

Bypassed. 

30001 The band width is zero. 

3. Comments on use 

Convergent criterion 
In the BICGSTAB(l) method, if the residual Euclidean norm is equal to or less than the product of the initial residual 

Euclidean norm and eps, it is judged as having converged.  The difference between the precise solution and obtained 

approximate solution is equal to the product of the condition number of matrix A and eps. 

The residual which used for convergence judgement is computed recursively and it may differ from the true residual. 

l 
The maximum value of l is set to 8.  For l=1, this algorithm coincides with BiCGSTAB.  Using smaller l usually results 

in faster speed, but in some situations larger l brings a convergence, although the steps of a iteration are more expensive 

for larger l. 

4. Example program 

This example program initializes A and x, and calculates b by multiplication.  The library routine is then called and the 

resulting x vector is checked against the original version. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
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#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    (1000) 
#define UBANDW  (2) 
#define LBANDW  (1) 
#define IWIDT   (UBANDW + LBANDW + 1) 
#define L       (2) 
 
MAIN__() 
{ 
  double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6; 
  int    ierr, icon, nlb, nub, n, k, itmax, iguss, iter, i, j, ix; 
  int    icol[IWIDT][NMAX]; 
  double a[IWIDT][NMAX], b[NMAX], x[NMAX]; 
 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  n     = NMAX; 
  k     = NMAX; 
  for (i=0; i<IWIDT; i++) 
    for (j=0; j<n; j++) { 
      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
 
  /* Set A-mat & b */ 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = bcoef; 
    b[j]    = bcoef+(double)j*lcf+(double)nub*ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef; 
    b[j]      = bcoef+(double)nlb*lcf+(double)nub*ucf; 
    for (i=nlb+1; i<IWIDT; i++) a[i][j] = ucf; 
    for (i=0; i<IWIDT; i++) icol[i][j] = i+1+j-nlb; 
  } 
 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef; 
    b[j]      = bcoef+(double)nlb*lcf+(double)(n-j-1)*ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n - (j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
 
  /* solve the nonsymmetric system of linear equations */ 
  itmax = 2000; 
  iguss = 0; 
  ierr = c_dm_vbcse ((double*)a, k, IWIDT, n, (int*)icol, b, itmax, 
                  eps, iguss, L, x, &iter, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vbcse failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* check result */ 
  for (i=0; i<n; i++) { 
    if (fabs(x[i]-one) > eps*10.0) { 
      printf("WARNING: result maybe inaccurate\n"); 
      exit(1); 
    } 
  } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VBCSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] 

and [73]. 
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c_dm_vblu 

LU decomposition of banded real matrices (Gaussian elimination). 

ierr = c_dm_vblu(a, k, n, nh1, nh2, epsz, &is, 

ip, &icon); 

1. Function 

This routine executes LU decomposition for banded matrix A of n  n, lower bandwidth h1, and upper bandwidth h2 using 

Gaussian elimination. 

 PA = LU 

where, P is the permutation matrix of the row vector, L is the unit lower banded matrix, and U is the upper banded matrix.  

n > h1  0, n > h2  0. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vblu((double*)a, k, n, nh1, nh2, epsz, &is, ip, &icon); 

where: 

a double 

a[n][k] 

Input Store banded coefficient matrix A. 

See Figure c_dm_vblu-1. 

  Output LU-decomposed matrices L and U are stored. 

See Figure c_dm_vblu-2. 

The value of a is not assured after operation. 

k int Input C fixed dimension of array a (  2  nh1 + nh2 + 1). 

n int Input Order n of matrix A. 

nh1 int Input Lower bandwidth size h1. 

nh2 int Input Upper bandwidth size h2. 

epsz double Input Judgment of relative zero of the pivot ( 0.0).  When epsz is zero, the 

standard value is set.  See Comments on use. 

is int Output Indicates row vector exchange count.  See Comments on use. 

   1 exchange count is even. 

   1 exchange count is odd. 

ip int ip[n] Output The transposition vector to contain row exchange information is stored.  

See Comments on use. 

icon int Output Condition code.  See below. 
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Figure c_dm_vblu-1. Storing matrix A in array a 

The column vector of matrix A is continuously stored in columns of array a in the same manner as diagonal elements of 

banded matrix A aii, i = 1, ... , n, are stored in a[i1][h1h2]. 

Upper banded matrix part: 

aji, j, i = 1, ... , h2, j = 1, ... , n, j  i  1 is stored in a[i][j], i = 0, ... , n1, j = h1, ... , h1h21. 

Lower banded matrix part: 

aji, j, i = 1, ... , h1, j = 1, ... , n, j  i  n is stored in a[i][j], i = 0, ... , n1, j = h1h21, ... , 2h1h2. 

For a[i][j], i = 0, ... , n  1, j = 0, ... , h11, set zero for the elements of matrix A outside the band. 

* indicates undefined values. 
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Figure c_dm_vblu-2. Storing LU-decomposed matrix L and U in array a 

LU-decomposed unit upper banded matrix except diagonal elements uji1, j, i = 1, ... , h1h2, j = 1, ... , n, j  i  1  1 is 

stored in a[i][j], i = 0, ... , n1, j = 0 , ... , h1h2. 

Lower banded matrix part: 

lji, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in a[i][j], i = 0, ... , n1, j = h1h2, ... , 2h1h2. 

* indicates undefined values. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 All elements in some row of array a were zero, or 

the pivot became relatively zero.  Matrix A may 

be singular. 

Discontinued. 

30000 One of the following has occurred: 

 n < 1 

 nh1  n 

 nh1 < 0 

 nh2  n 

 nh2 < 0 

 k < 2  nh1 + nh2  1 

 epsz < 0 

Bypassed. 
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3. Comments on use 

epsz 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition.  In 

this case, processing is discontinued with icon = 20000.  When unit round off is u, the standard value of epsz is 16  u. 

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz.  In this case, 

however, the result is not assured. 

ip 
In this routine, the row vector is exchanged using partial pivoting.  That is, when the I-th row (I  J) is selected as the 

pivot row in the J-th stage (J = 1, ... , n) of decomposition, the contents of the I-th row and J-th row are exchanged.  To 

indicate this exchange, I is stored in ip[J 1]. 

How to use this function 
The linear equation can be solved by calling function c_dm_vblux following this function.  Normally, the linear 

equation can be solved in one step by calling function c_dm_vlbx. 

is 
The determinant can be obtained by multiplying is and a[i][h1  h2], where i = 0, ... , n  1. 

4. Example program 

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, nh1 = 

2000, nh2 = 3000. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
 
#define NH1   2000 
#define NH2   3000 
#define N     10000 
#define KA    (2*NH1+NH2+1) 
#define NWORK 4500 
 
int MAIN__() 
{ 
  double a[N][KA], b[N], dwork[NWORK]; 
  double tt1, tt2, tmp, epsz; 
  int    ip[N], i, j, is, ix, icon, nptr, nbase, nn; 
 
  ix = 123; 
  nn = NH1+NH2+1; 
  for (i=0; i<N; i++) { 
    c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon); 
  } 
 
  printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N); 
 
  /* zero clear */ 
  for (j=0; j<N; j++) { 
    for (i=0; i<NH1; i++) { 
      a[j][i] = 0.0; 
    } 
  } 
 
  /* left upper triangular part */ 
  for (j=0; j<NH2; j++) { 



 c_dm_vblu  

 41 

    for (i=0; i<NH2-j; i++) { 
      a[j][i+NH1] = 0.0; 
    } 
  } 
 
  /* right rower triangular part */ 
  nbase = 2*NH1+NH2+1; 
  for (j=0; j<NH1; j++) { 
    for (i=0; i<j; i++) { 
      a[N-NH1+j][nbase-i-1] = 0.0; 
    } 
  } 
 
  /* set right hand constant vector */ 
  for (i=0; i<N; i++) { 
    b[i] = 0.0; 
  } 
 
  for (i=0; i<N; i++) { 
    nptr = i; 
    for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) { 
      b[j] += a[i][j-i+NH1+NH2]; 
    } 
  } 
 
  epsz = 0.0; 
  c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon); 
  c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon); 
 
  tmp = 0.0; 
  for (i=0; i<N; i++) { 
    tmp = max(tmp,fabs(b[i]-1)); 
  } 
 
  printf("maximum error = %e\n", tmp); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VBLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vblux 

A system of linear equations with LU-decomposed banded real matrices. 

ierr = c_dm_vblux(b, fa, k, n, nh1, nh2, ip, 

&icon); 

1. Function 

This routine solves a linear equation having an LU-decomposed banded matrix as coefficient. 

 LUx = b 

where, L is a unit lower banded matrix of lower bandwidth h1, U is an upper banded matrix of upper bandwidth h(= min 

(h1+h2, n1)), and b is an n-dimensional real constant vector. The order of matrix A before LU decomposition, lower 

bandwidth, and upper bandwidth is n, h1, and h2. n > h1  0, n > h2  0. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vblux(b, (double*)fa, k, n, nh1, nh2, ip, &icon); 

where: 

b double b[n] Input Constant vector b. 

  Output Solution vector x. 

fa double 

fa[n][k] 

Input LU-decomposed matrices L and U are stored. 

See Figure c_dm_vblux-1. 

The value of fa[i][j], i = 0, ... , n1, j = 2  nh1 + nh2 + 1, ... , 

k1, is not assured after operation. 

k int Input C fixed dimension of array a (  2  nh1 + nh2 + 1). 

n int Input Order n of matrix A. 

nh1 int Input Lower bandwidth size h1. 

nh2 int Input Upper bandwidth size h2. 

ip int ip[n] Output The transposition vector to contain row exchange information is stored.  

See Comments on use. 

icon int Output Condition code.  See below. 
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Figure c_dm_vblux-1. Storing LU-decomposed matrices L and U into array fa  

LU-decomposed unit upper banded matrix except diagonal elements uji1, j, i = 1, ... , h1h2, j = 1, ... , n, j  i  1  1 is 

stored in a[i][j], i = 0, ... , n1, j = 0 , ... , h1h2. 

Lower banded matrix part: 

lji, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in a[i][j], i = 0, ... , n1, j = h1h2, ... , 2h1h2. 

* indicates undefined values. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 n < 1 

 nh1  n 

 nh1 < 0 

 nh2  n 

 nh2 < 0 

 k < 2  nh1 + nh2  1 

 Diagonal element of lower banded matrix 

was zero. 

 Contents of ip are invalid. 

Bypassed. 



c_dm_vblux 

 44 
 

3. Comments on use 

How to use this function 
A system of linear equations with banded matrices can be solved by calling this routine following the routine 

c_dm_vblu. In this case, specify the output parameters of the routine c_dm_vblu without modification of the input 

parameters (except the constant vector) of this routine.  Normally, a solution can be obtained in one step by calling the 

routine c_dm_vlbx. 

4. Example program 

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, nh1 = 

2000, nh2 = 3000. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
 
#define NH1   2000 
#define NH2   3000 
#define N     10000 
#define KA    (2*NH1+NH2+1) 
#define NWORK 4500 
 
int MAIN__() 
{ 
  double a[N][KA], b[N], dwork[NWORK]; 
  double tt1, tt2, tmp, epsz; 
  int    ip[N], i, j, is, ix, icon, nptr, nbase, nn; 
 
  ix = 123; 
  nn = NH1+NH2+1; 
  for (i=0; i<N; i++) { 
    c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon); 
  } 
 
  printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N); 
 
  /* zero clear */ 
  for (j=0; j<N; j++) { 
    for (i=0; i<NH1; i++) { 
      a[j][i] = 0.0; 
    } 
  } 
 
  /* left upper triangular part */ 
  for (j=0; j<NH2; j++) { 
    for (i=0; i<NH2-j; i++) { 
      a[j][i+NH1] = 0.0; 
    } 
  } 
 
  /* right rower triangular part */ 
  nbase = 2*NH1+NH2+1; 
  for (j=0; j<NH1; j++) { 
    for (i=0; i<j; i++) { 
      a[N-NH1+j][nbase-i-1] = 0.0; 
    } 
  } 
 
  /* set right hand constant vector */ 
  for (i=0; i<N; i++) { 
    b[i] = 0.0; 
  } 
 
  for (i=0; i<N; i++) { 
    nptr = i; 
    for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) { 
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      b[j] += a[i][j-i+NH1+NH2]; 
    } 
  } 
 
  epsz = 0.0; 
  c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon); 
  c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon); 
 
  tmp = 0.0; 
  for (i=0; i<N; i++) { 
    tmp = max(tmp,fabs(b[i]-1)); 
  } 
 
  printf("maximum error = %e\n", tmp); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VBLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vcgd 

A system of linear equations with symmetric positive definite sparse 

matrices (preconditional CG method, diagonal format storage method) 

ierr = c_dm_vcgd(a, k, nw, n, ndlt, b, ipc, 

itmax, isw, omega, eps, iguss, x, 

&iter, &rz, w, iw, &icon); 

1. Function 

This routine solves a linear equation having an n  n normalized symmetric positive definite sparse matrix as coefficient 

matrix using the preconditioned CG method. 

 Ax = b (1) 

The n  n matrix coefficient is normalized so that its diagonal elements are 1, and non-zero elements except the diagonal 

elements are stored using the diagonal format spares matrix storage method. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vcgd((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw, omega, eps, 

iguss, x, &iter, &rz, (double*)w, (int*)iw, &icon); 

where: 

a double a[nw][k] Input Sparse matrix A stored in diagonal normalized symmetric positive 

definite storage format. 

The value of a is not assured after operation. 

k int Input C fixed dimension of array a (  n). 

nw int Input Number of vectors in the diagonal direction where the coefficient matrix 

A is stored using the diagonal format storage method.  Even number. The 

size of the second dimension of array a  

n int Input Order n of matrix A. 

ndlt int ndlt[nw] Input Indicate the distance from the main diagonal vector. 

b double b[n] Input Constant vector b. 

ipc int Input Preconditioner control information.  See Comments on use. 

1 No preconditioner. 

2 Neumann preconditioner. 

3 Preconditioner using block incomplete Cholesky decomposition. 

In this case, omega needs to be specified. 

itmax int Input Upper limit of iterations. 

isw int Input Control information.  See Comments on use. 

1 Initial call. 

2 Subsequent calls. 

The arrays, a, ndlt, w and iw, must NOT be changed as the values 

set on the initial call are reused. 

omega double Input Modification factor for incomplete Cholesky decomposition, 0  omega 
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 1.  Only use when ipc=3.  See Comments on use. 

eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to   b , with   10 6 .  See 

Comments on use. 

iguss int Input Sets the information indicating whether the iteration is started from an 

approximate value of solution vector specified in array x. 

When 0 is set, the approximate value of solution vector is not specified. 

When non-zero is set, the iterative computation is started from an 

approximate value of the solution vector specified in array x. 

x double x[n] Input An approximate value of the solution vector of the linear equation can be 

specified in x. 

  Output The solution vector linear equation is stored in x. 

iter int Output The actual iteration count. 

rz double Output The square root of the residual rz after the convergency judgment. 

See Comments on use. 

w double 

w[Wlen1][Wlen2] 

Work When ipc = 3, Wlen1 = nw  8, Wlen2 = n  maxt. 

When ipc  3, Wlen1 = 7, Wlen2 = n  maxt, where maxt is the 

maximum number of threads executed in parallel. 

iw int 

iw[Iwlen1][Iwlen2] 

Work When ipc = 3, Iwlen1 = 4, Iwlen2 = n  2  maxt. 

When ipc  3, Iwlen1 = 2, Iwlen2 = maxt, where maxt is the maximum 

number of threads executed in parallel. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

10000 Diagonal vectors in a were reordered as U/L in 

ascending distance order. 

Processing is continued. 

20001 The upper iteration count limit was reached. Processing stopped. 

The approximate value obtained is output in array 

x, but the precision is not assured. 

20003 Break down occurred. 

30003 itmax  0 Processing stopped. 

 

 

 

 

 

 

 

 

 

 

 

 

30005 k < n 

30006 Incomplete LLT decomposition could not be 

performed. 

30007 The pivot became minus. 

30089 nw is not an even number. 

30091 nband = 0 

30092 nw  0 

30093 k  0, n  0 

30096 omega < 0 or omega > 1 

30097 ipc < 1 or ipc > 3 

30102 Upper triangular part is not correctly stored. 

30103 Lower triangular part is not correctly stored. 
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Code  Meaning  Processing 

30104 The number of diagonal vectors in the upper 

triangular does not equal that in the lower 

triangular. 

Processing stopped. 

30105 isw  1 or 2 

30200 abs(ndlt[i]) > n  1 or 

ndlt[i] = 0;  0  i < nw 

3. Comments on use 

isw 
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc 

= 3, the solution on the first call is with isw = 1, and solutions on subsequent calls are with isw = 2.  In subsequent calls, 

the result of the incomplete Cholesky decomposition obtained on the initial call is reused. 

eps and rz 
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set 

tolerance, eps: 

 rz eps  rz  (2) 

 r b Ax  m  (3) 

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix 
M, rz is calculated by equation (4). 

 rz  r M rT 1  (4) 

ipc and omega 
Two types of preconditioners and a no-preconditioner option are provided. 

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a 

preconditioner based on an incomplete Cholesky decomposition to obtain the solution. 

If A = I  N, the preconditioner M of the linear equation ( I  N )x = b is as follows for the different values of ipc: 

1. No preconditioner, M = I. 

2. Neumann, M1 = ( I  N ). 

3. Incomplete Cholesky decomposition, M = LLT. 

 

When ipc = 2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix 

( I + N ) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not 

improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such 

that the maximum absolute value of the eigenvalues of the matrix N is larger than one. 

When ipc=3, the user must provide a value for omega (0  omega  1).  For values of omega, 0 gives the incomplete 

Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the 

two decompositions. 

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was 

found empirically to be in the range of 0.92 to 1.00. 
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4. Example program 

This example solves a system of linear equations with symmetric positive definition matrices. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define MAXT (4) 
#define ND   (20) 
#define N    (ND*ND*ND) 
#define K    (N) 
#define NW   (6) 
 
MAIN__() 
{ 
  double a[NW][K], b[N], x[N], w[7][N+MAXT]; 
  double omega, eps, rz; 
  int    ndlt[NW], iw[2][MAXT]; 
  int    k, nw, n, ipc, itmax, isw, iguss, iter, icon; 
  int    i, j, nx, ny, iy, iz, l; 
  int    rhs(double*, int, int, int, double*, int*, double*); 
 
  for(j=0; j<NW; j++) { 
    for(i=0; i<N; i++) { 
      a[j][i] = 0.0; 
    } 
  } 
 
  for(i=0; i<NW; i++) { 
    ndlt[i] = 0; 
  } 
 
  nx = ND; 
  ny = ND; 
  for(i=0; i<N; i++) { 
    l  = i+1; 
    iz = (l-1)/(nx*ny); 
    iy = (l-1-iz*nx*ny)/nx; 
 
    if ((l/nx)*nx != l && l <= N-1) { 
      a[0][i] = -1.0/6.0; 
    } 
    if (l <= N-nx && iy != ny-1) { 
      a[1][i] = -1.0/6.0; 
    } 
    if (l <= N-nx*ny) { 
      a[2][i] = -1.0/6.0; 
    } 
    if (((l-1)/nx)*nx != l-1 && l >= 2 && l <= N) { 
      a[3][i] = -1.0/6.0; 
    } 
    if (l >= nx+1 && l <= N && iy != 0) { 
      a[4][i] = -1.0/6.0; 
    } 
    if (l >= nx*ny+1 && l <= N) { 
      a[5][i] = -1.0/6.0; 
    } 
  } 
 
  ndlt[0] =  1, ndlt[1] =  nx, ndlt[2] =  nx*ny; 
  ndlt[3] = -1, ndlt[4] = -nx, ndlt[5] = -nx*ny; 
 
  rhs((double*)a, N, K, NW, (double*)w, ndlt, b); 
 
  eps   = 1e-6; 
  itmax = 2000; 
  isw   = 1; 
  iguss = 0; 
  ipc   = 2; 
 
  c_dm_vcgd((double*)a, K, NW, N, ndlt, b, ipc, itmax, isw, omega, eps, iguss, x, 
            &iter, &rz, (double*)w, (int*)iw, &icon); 
 
  printf("icon = %d\n", icon); 
  printf("x[0] = %e, x[n-1]= %e\n", x[0], x[N-1]); 
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  return(0); 
} 
 
 
int rhs(double *a, int n, int k, int ndiag, double *dp, int *ndlt, double *b) 
{ 
  int i, nlb, icon; 
 
  nlb = 0; 
  for (i=0; i < ndiag; i++) { 
    nlb = max(fabs(ndlt[i]), nlb); 
  } 
 
  for (i=0; i < n*3; i++) { 
    dp[i] = 0.0; 
  } 
 
  for (i=0; i < n; i++) { 
    dp[i + nlb] = 1.0; 
    b[i] = 0.0; 
  } 
 
  c_dm_vmvsd((double*)a, k, ndiag, n, ndlt, nlb, dp, b, &icon); 
 
  for (i = 0; i < n; i++) { 
    b[i] += dp[i+nlb]; 
  } 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_VCGD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43], 

[50], [51] and [55]. 
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c_dm_vcge 

A system of linear equations with symmetric positive definite sparse 

matrices (preconditional CG method, ELLPACK format storage method) 

ierr = c_dm_vcge(a, k, nw, n, icol, b, ipc, 

itmax, isw, omega, eps, iguss, x, 

&iter, &rz, w, iw, &icon); 

1. Function 

This routine solves a linear equation having an n  n normalized symmetric positive definite sparse matrix as a coefficient 

matrix using the preconditioned CG method. 

 Ax = b (1) 

The n  n coefficient matrix is normalized so that the diagonal elements are 1, and the non-zero elements except the 

diagonal elements are stored by the ELLPACK format storage method. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vcge((double*)a, k, nw, n, (int*)icol, b, ipc, itmax, isw, omega, 

eps, iguss, x, &iter, &rz, (double*)w, (int*)iw, &icon); 

where: 

a double a[nw][k] Input Sparse matrix A stored in the ELLPACK normalized symmetric positive 

definite storage format. 

k int Input C fixed dimension of array a (  n). 

nw int Input When the maximum numbers of non-zero elements of row vectors of 

upper and lower triangular matrices are NSU and NSL, respectively, 2  

max (NSU, NSL). 

n int Input Order n of matrix A. 

icol int icol[nw][k] Input The information on the column vector to which non-zero elements 

belong is stored in icol. 

b double b[n] Input Constant vector b. 

ipc int Input Preconditioner control information.  See Comments on use. 

1 No preconditioner. 

2 Neumann preconditioner. 

3 Preconditioner with incomplete Cholesky decomposition. 

In this case, omega must be specified. 

itmax int Input Upper limit of iterations. 

isw int Input Control information.  See Comments on use. 

1 Initial call. 

2 Subsequent calls. 

The arrays, a, icol, w and iw, must NOT be changed as the values 

set on the initial call are reused. 

omega double Input Modification factor for incomplete Cholesky decomposition, 0  omega 
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 1.  Only use when ipc=3.  See Comments on use. 

eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to   b , with   10 6 .  See 

Comments on use. 

iguss int Input Sets the information indicating whether the iteration is started from an 

approximate value of solution vector specified in array x. 

When 0 is set, the approximate value of solution vector is not specified. 

When non-zero is set, the iterative computation is started from an 

approximate value of the solution vector specified in array x. 

x double x[n] Input An approximate value of the solution vector of the linear equation can be 

specified in x. 

  Output The solution vector linear equation is stored in x. 

iter int Output The actual iteration count. 

rz double Output The square root of the residual rz after the convergency judgment. 

See Comments on use. 

w double 

w[Wlen1][Wlen2] 

Work When ipc = 3, Wlen1 = nw  8, Wlen2 = n  maxt. 

When ipc  3, Wlen1 = 7, Wlen2 = n  maxt, where maxt is the 

maximum number of threads executed in parallel. 

iw int 

iw[Iwlen1][Iwlen2] 

Work When ipc = 3, Iwlen1 = nw  5, Iwlen2 = n  2  maxt. 

When ipc  3, Iwlen1 = 2, Iwlen2 = maxt, where maxt is the maximum 

number of threads executed in parallel. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

10000 Elements of a and icol are rearranged as U/L. Processing continues. 

20001 The iteration count reaches the upper limit. Processing stopped. 

The approximate solution obtained up to this 

stage is returned, but its precision is not 

guaranteed. 

20003 Break down occurred. 

30003 itmax  0 Processing stopped. 

30005 k < n 

30006 Incomplete LLT decomposition could not be 

executed. 

30007 Pivot became minus. 

30092 nw  0 

30093 k  0, n  0 

30096 omega < 0 or omega > 1 

30097 ipc < 1 or ipc > 3 

30098 isw  1 or 2 

30100 nw  2  max(NSU, NSL) 

30104 The upper triangular part or the lower triangular 

part is not correctly stored. 

negative 

number 

The non-diagonal element is present in the 

icon row. 
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3. Comments on use 

a, nw and icol 
The sparse matrix A is normalized in such a way that the main diagonal elements are ones.  The non-zero elements other 

than the main diagonal elements are stored using the ELLPACK storage format. For details on normalization of systems 

of linear equations and ELLPACK normalized symmetric positive definite storage format, see the Array storage formats 

section of the General description. 

Apart from the incomplete Cholesky decomposition preconditioner (ipc = 3), both the storage formats for ELLPACK, 

normalized and unnormalized, are acceptable for the function. In the standard case (unnormalized), nw = 2  max(NSU, 

NSL) is not required. 

isw 
When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc 

= 3, the solution on the first call is with isw = 1, and solutions on subsequent calls are with isw = 2. In subsequent calls, 

the result of the incomplete Cholesky decomposition obtained on the initial call is reused. 

eps and rz 
The solution is assumed to have converged in the m-th iteration when (2), the square root of residual rz is less than the set 

tolerance, eps: 

 rz eps  rz  (2) 

 r b Ax  m  (3) 

The residual vector r for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix M, rz is 

calculated by equation (4). 

 rz  r M rT 1  (4) 

ipc and omega 
Two types of preconditioners and a no-preconditioner option are provided. 

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a 

preconditioner based on an incomplete Cholesky decomposition to obtain the solution. 

If A = I  N, the preconditioner M of the linear equation ( I  N )x = b is as follows for the different values of ipc: 

1. No preconditioner, M = I. 

2. Neumann, M1 = ( I  N ). 

3. Incomplete Cholesky decomposition, M = LLT. 

 

When ipc=2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix 

( I + N ) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not 

improve the convergence when the preconditioner does not approximate the inverse matrix of A in some situations such 

that the maximum absolute value of the eigenvalues of the matrix N is larger than one. 

When ipc=3, the user must provide a value for omega (0  omega  1).  For values of omega, 0 gives the incomplete 

Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the 

two decompositions. 
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For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was 

found empirically to be in the range of 0.92 to 1.00. 

4. Example program 

This example solves the system of linear equations with symmetric positive definition matrix. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define MAXT (4) 
#define ND   (80) 
#define N    (ND*ND*ND) 
#define K    (N) 
#define NW   (6) 
 
MAIN__() 
{ 
  double a[NW][K], b[N], x[N], xx[N], w[7][N+MAXT];  
  double omega, eps, rz; 
  int    icol[NW][K], iw[2][MAXT]; 
  int    ipc, itmax, isw, iguss, iter, icon; 
  int    i, j, nx, ny, iy, iz, l; 
 
  for(j=0; j<NW; j++) { 
    for(i=0; i<N; i++) { 
      a[j][i]    = 0.0; 
      icol[j][i] = j+1; 
    } 
  } 
 
  nx = ND; 
  ny = ND; 
  for(i=0; i<N; i++) { 
    l  = i+1; 
    iz = i/(nx*ny); 
    iy = (i-iz*nx*ny)/nx; 
 
    if ((l/nx)*nx != l && l <= N-1) { 
      a[0][i]    = -1.0/6.0; 
      icol[0][i] = l+1; 
    } 
    if (l <= N-nx && iy != ny-1) { 
      a[1][i]    = -1.0/6.0; 
      icol[1][i] = l+nx; 
    } 
    if (l <= N-nx*ny) { 
      a[2][i]    = -1.0/6.0; 
      icol[2][i] = l+nx*ny; 
    } 
    if (((l-1)/nx)*nx != l-1 && l >= 2 && l <= N) { 
      a[3][i]    = -1.0/6.0; 
      icol[3][i] = l-1; 
    } 
    if (l >= nx+1 && l <= N && iy != 0) { 
      a[4][i]    = -1.0/6.0; 
      icol[4][i] = l-nx; 
    } 
    if (l >= nx*ny+1 && l <= N) { 
      a[5][i]    = -1.0/6.0; 
      icol[5][i] = l-nx*ny; 
    } 
  } 
 
  for (i=0; i<N; i++) { 
    xx[i] = 1.0; 
  } 
 
  c_dm_vmvse((double*)a, K, NW, N, (int*)icol, xx, b, &icon); 
 
  for (i=0; i<N; i++) { 
    b[i] += 1.0; 
  } 
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  itmax = 2000; 
  eps   = 1e-6; 
  isw   = 1; 
  ipc   = 2; 
  iguss = 0; 
 
  c_dm_vcge((double*)a, K, NW, N, (int*)icol, b, ipc, itmax, isw, omega, eps, iguss, 
            x, &iter, &rz, (double*)w, (int*)iw, &icon); 
 
  printf("icon = %d\n", icon); 
  printf("x[0] = %e, x[n-1]= %e\n", x[0], x[N-1]); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_VCGE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43] 

and [51]. 
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c_dm_vclu 

LU decomposition of complex matrices (blocked LU decomposition 

method) 

ierr = c_dm_vclu(za, k, n, epsz, ip, &is, 

&icon); 

1. Function 

This routine executes LU decomposition for non-singular complex n  n matrices using blocked outer product type 

Gaussian elimination. 

 PA = LU (1) 

where, P is the permutation matrix which exchanges rows by partial pivoting, L is the lower triangular matrix, and U is 

unit upper triangular matrix ( n  1). 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vclu((dcomplex*)za, k, n, epsz, ip, &is, &icon); 

where: 

za dcomplex 

za[n][k] 

Input 

Output 

Matrix A. 

Matrices L and U. 

k int Input C fixed dimension of array za (  n). 

n int Input Order n of matrix A. 

epsz double Input Judgment of relative zero of the pivot (  0.0). 

When epsz is 0.0, the standard value is assumed. See Comments on 

use. 

ip int ip[n] Output The transposition vector indicating the history of row exchange by 

partial pivoting. One-dimensional array of size n. See Comments on use. 

is int Output Information to obtain the determinant of matrix A. The determinant is 

obtained by multiplying the n diagonal elements of array za by the value 

of is after the operation. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 All elements in some row of array za were zero, 

or the pivot became relatively zero.  Matrix A 

may be singular. 

Discontinued. 

30000 One of the following has occurred: 

 k < n 

 n < 1 

 epsz < 0.0 

Bypassed. 
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3. Comments on use 

epsz 
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If both the real and imaginary parts of the pivot value lose more than s significant digits during LU-decomposition by 

Crout’s method, the pivot value is assumed to be zero and computation is discontinued with icon = 20000. 

The standard value of epsz is normally 16µ, where µ is the unit round off. If processing is to proceed at a low pivot 

value, epsz will be given the minimum value but the result is not always guaranteed. 

ip 
The transposition vector corresponds to the permutation matrix P of LU-decomposition with partial pivoting. In this 

function, the elements of the array za are actually exchanged in partial pivoting. In the J-th stage (J = 1, ... , n) of 

decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J-

th row are exchanged. Then, in order to record the history of this exchange, I is stored in ip[j1]. 

How to use this function 
The linear equation can be solved by calling routine c_dm_vclux following this routine. Normally, the linear equation 

can be solved in one step by calling routine c_dm_vlcx. 

4. Example program 

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N  (2000) 
#define K  (N+1) 
 
MAIN__() 
{ 
  dcomplex za[N][K], zb[N]; 
  double   epsz, c, t, s, error; 
  int      ip[N]; 
  int      is, icon, i, j; 
 
  c = sqrt(1.0/(double)(N+1)); 
  t = atan(1.0)*8.0/(N+1); 
 
  for (j=0; j<N; j++) { 
    for (i=0; i<N; i++) { 
      za[j][i].re = c*cos(t*(i+1)*(j+1)); 
      za[j][i].im = c*sin(t*(i+1)*(j+1)); 
    } 
  } 
 
  for (i=0; i<N; i++) { 
    s = 0.0; 
    for (j=0; j<N; j++) { 
      s += cos(t*(i+1)*(j+1)); 
      zb[i].re = s*c; 
      zb[i].im = 0.0; 
    } 
  } 
 
  epsz = 0.0; 
  c_dm_vclu((dcomplex*)za, K, N, epsz, ip, &is, &icon); 
  c_dm_vclux(zb, (dcomplex*)za, K, N, ip, &icon); 
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  printf("icon    = %d\n", icon); 
 
  error = 0.0; 
 
  for (i=0; i<N; i++) { 
    error = max(fabs(1.0-zb[i].re), error); 
  } 
 
  printf("error   = %f\n", error); 
  printf("ORDER   = %d\n", N); 
  printf("zb[0]   = %e\n", zb[0].re); 
  printf("zb[n-1] = %e\n", zb[N-1].re); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_VCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and 

[52]. 
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c_dm_vclux 

A system of linear equations with LU-decomposed complex matrix 

ierr = c_dm_vclux(zb, zfa, kfa, n, ip, &icon); 

1. Function 

This routine solves a linear equation with an LU-decomposed complex coefficient matrices. 

 LUx = Pb (1) 

where, L is a lower triangular matrix of n  n, U is a unit upper triangular matrix of n  n, and P is a permutation matrix.  

(Rows are exchanged by partial pivoting when the coefficient matrix is LU-decomposed.) b is an n-dimensional complex 

constant vector, and x is an n-dimensional solution vector ( n  1). 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vclux(zb, (dcomplex*)zfa, kfa, n, ip, &icon); 

where: 

zb dcomplex Input Constant vector b. 

 zb[n] Output Solution vector x. 

zfa dcomplex 

zfa[n][kfa] 

Input Matrices L and U. 

kfa int Input C fixed dimension of array zfa ( n). 

n int Input Order of matrices L and U. 

ip int ip[n] Input The transposition vector which indicates the history of row exchange by 

partial pivoting. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 The coefficient matrix was singular. Discontinued. 

30000 One of the following occurred: 

 n < 1 

 kfa < n 

 ip was invalid. 

Bypassed. 

3. Comments on use 

The linear equations can be solved by calling routine c_dm_vclu, LU-decomposing the coefficient matrix, then calling 

this routine.  Normally, the solution can be obtained in one step by calling routine c_dm_vlcx. 
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4. Example program 

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N  (2000) 
#define K  (N+1) 
 
MAIN__() 
{ 
  dcomplex za[N][K], zb[N]; 
  double   epsz, c, t, s, error; 
  int      ip[N]; 
  int      is, icon, i, j; 
 
  c = sqrt(1.0/(double)(N+1)); 
  t = atan(1.0)*8.0/(N+1); 
 
  for (j=0; j<N; j++) { 
    for (i=0; i<N; i++) { 
      za[j][i].re = c*cos(t*(i+1)*(j+1)); 
      za[j][i].im = c*sin(t*(i+1)*(j+1)); 
    } 
  } 
 
  for (i=0; i<N; i++) { 
    s = 0.0; 
    for (j=0; j<N; j++) { 
      s += cos(t*(i+1)*(j+1)); 
      zb[i].re = s*c; 
      zb[i].im = 0.0; 
    } 
  } 
 
  epsz = 0.0; 
  c_dm_vclu((dcomplex*)za, K, N, epsz, ip, &is, &icon); 
  c_dm_vclux(zb, (dcomplex*)za, K, N, ip, &icon); 
 
  printf("icon    = %d\n", icon); 
 
  error = 0.0; 
 
  for (i=0; i<N; i++) { 
    error = max(fabs(1.0-zb[i].re), error); 
  } 
 
  printf("error   = %f\n", error); 
  printf("ORDER   = %d\n", N); 
  printf("zb[0]   = %e\n", zb[0].re); 
  printf("zb[n-1] = %e\n", zb[N-1].re); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_VCLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52]. 
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c_dm_vcminv 

Inverse of complex matrix (blocked Gauss-Jordan method) 

ierr = c_dm_vcminv(za, k, n, epsz, &icon); 

1. Function 

This routine obtains the inverse A1 of the n  n non-singular complex matrix A using the Gauss-Jordan method. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vcminv((dcomplex*)za, k, n, epsz, &icon); 

where: 

za dcomplex Input Matrix A. 

 za[n][k] Output Matrix A1. 

k int Input C fixed dimension of array za (  n). 

n int Input Order of matrix A. 

epsz double Input Judgment of relative zero of the pivot.  ( 0.0) 

When epsz is 0.0, the standard value is assumed. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 All row elements in matrix A are zero or the pivot 

becomes a relatively zero.  Matrix A may be 

singular. 

Discontinued. 

30000 One of the following occurred: 

 n < 1 

 k < n 

 epsz < 0.0 

3. Comments on use 

epsz 
When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be 

relatively zero. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value 

of epsz is 16u.  If the minimum value is assigned to epsz, processing is continued, but the result is not assured. 

4. Example program 

The inverse of a matrix is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
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#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define N 2000 
#define K (N+1) 
 
int MAIN__() 
{ 
  dcomplex a[N][K], as[N][K], tmpz; 
  double   c, t, error, epsz; 
  int      i, j, icon; 
 
  c = sqrt(1.0/(double)N); 
  t = atan(1.0)*8.0/N; 
 
  for (j=0; j<N; j++) { 
    for (i=0; i<N; i++) { 
      a[j][i].re  =  c*cos(t*i*j); 
      a[j][i].im  =  c*sin(t*i*j); 
      as[j][i].re =  a[j][i].re; 
      as[j][i].im = -a[j][i].im; 
    } 
  } 
 
  epsz = 0.0; 
  c_dm_vcminv((dcomplex*)a, K, N, epsz, &icon); 
 
  error = 0.0; 
  for (j=0; j<N; j++) { 
    for (i=0; i<N; i++) { 
      tmpz.re = fabs(a[j][i].re-as[j][i].re); 
      tmpz.im = fabs(a[j][i].im-as[j][i].im); 
      error = max(error,tmpz.re+tmpz.im); 
    } 
  } 
 
  printf("order = %d, error = %e\n", N, error); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VCMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vgevph 

Generalized eigenvalue problem for real symmetric matrices 

(eigenvalues and eigenvectors) 

(Tridiagonalization, multisection method, and inverse iteration) 

ierr = c_dm_vgevph(a, k, n, b, epsz, nf, nl, 

ivec, &etol, &ctol, nev, e, maxne, 

m, ev, &icon); 

1. Function 

This routine obtains all the eigenvalues and eigenvectors to solve a generalized eigenvalue problem. 

 Ax = Bx 

where, A is an n  n real symmetric matrix and B is an n  n positive definite matrix. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vgevph((double*)a, k, n, (double*)b, epsz, nf, nl, ivec, &etol, 

&ctol, nev, e, maxne, (int*)m, (double*)ev, &icon); 

where: 

a double a[n][k] Input The upper triangular part {aij | i  j} of real symmetric matrix A is 

stored in the upper triangular part {a[i1][j1], i  j} of a. 

The value of a is not assured after operation. 

k int Input C fix dimension of matrix A. (k  n) 

n int Input Order n of matrix A. 

b double b[n][k] Input The upper triangular part {bij | i  j}of the positive definite symmetric 

matrix B is stored in the upper triangular part {b[i1][j1], i  j} 

of b. 

  Output The LLT-decomposed matrix is stored. 

The upper triangular matrix L { lij | i  j} is stored in the upper 

triangular part {b[i1][j1], i  j} of b. 

epsz double Input The zero judgment value of the pivot when B is LLT-decomposed. ( 

0.0) 

When epsz is 0.0, the standard value is assumed. 

nf int Input Number assigned to the first eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

nl int Input Number assigned to the last eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

ivec int Input Control information. 

ivec = 1 if both the eigenvalues and eigenvectors are sought. 

ivec  1 if only the eigenvalues are sought. 
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etol double Input Criterion value for checking whether the eigenvalues are numerically 

different from each other or are multiple. 

  Output When etol is less than 3.01016 this value is used as the standard 

value. See Comments on use. 

ctol double Input Criterion value for checking whether the adjacent eigenvalues can be 

considered to be approximately equal to each other. This value is used 

to assure the linear independence of the eigenvector corresponding to 

the eigenvalue belonging to approximately multiple eigenvalues 

(clusters). 

The value of ctol should be generally 5.01012. For a very large 

cluster, a large ctol value is required. 

106  ctol  etol. 

  Output When condition ctol > 106 occurs, ctol is set to 106. 

When condition ctol < etol occurs, ctol = 10  etol is set as the 

standard value. See Comments on use. 

nev int nev[5] Output Number of eigenvalues calculated. 

Details are given below. 

nev[0] indicates the number of different eigenvalues calculated. 

nev[1] indicates the number of approximately multiple different 

eigenvalues (different clusters) calculated. 

nev[2] indicates the total number of eigenvalues (including multiple 

eigenvalues) calculated. 

nev[3] indicates the number representing the first of the eigenvalues 

calculated. 

nev[4] indicates the number representing the last of the eigenvalues 

calculated. 

e double 

e[maxne] 

Output Eigenvalues. Stored in e[i1], i = 1, ..., nev[2]. 

maxne int Input Maximum number of eigenvalues that can be computed. 

When it can be considered that there are two or more eigenvalues with 

multiplicity m, maxne must be set to a larger value than nl  nf  1  

2  m that is bounded by n. When condition nev[2] > maxne occurs, 

the eigenvectors cannot be calculated. See Comments on use. 

m int 

m[2][maxne] 

Output Information about multiplicity of eigenvalues calculated. 

m[0][i1] indicates the multiplicity of the i-th eigenvalue i. 

m[1][i1] indicates the multiplicity of the i-th cluster when the 

adjacent eigenvalues are regarded as clusters. See Comments on use. 

ev double 

ev[maxne][k] 

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are 

stored in ev. 

The eigenvectors are stored in ev[i1][j1], i = 1, ... , nev[2], j 

= 1, ..., n. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 
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Code  Meaning  Processing 

20000 The pivot becomes negative at LLT 

decomposition of matrix B.  Matrix B is not 

positive. 

Discontinued. 

20100 The pivot becomes relatively zero at LLT 

decomposition of matrix B.  Matrix B may be 

singular. 

20200 During calculation of clustered eigenvalues, the 

total number of eigenvalues exceeded the value of 

maxne. 

Discontinued. The eigenvectors cannot be 

calculated, but the different eigenvalues 

themselves are already calculated. 

A suitable value for maxne to allow calculation 

to proceed is returned in nev[2]. 

See Comments on use. 

30000 One of the following has occurred: 

 n < 1 

 k < n 

 nf < 1 

 nl > n 

 nl < nf 

 maxne < nl  nf  1 

 epsz < 0 

Bypassed. 

3. Comments on use 

epsz 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LLT decomposition. 

In this case, processing is discontinued with icon = 20100.  When unit round off is u, the standard value of epsz is 16u.  

When the computation is to be continued even if the pivot is small, assign, the minimum value to epsz. In this case, 

however, the result is not assured. 

etol and ctol 
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets 

(parallel processing). 

When  = etol, the following condition is satisfied for consecutive eigenvalues  j (j = s  1, s, ..., s  k, (k  0)): 

 








|)||,max(|1

||

1

1

ii

ii , (1) 

If formula (1) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that 

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple. 

The standard value of etol is 3.01016 (about the unit round off). In this case, the eigenvalues are refined up to the 

maximum machine precision. 

If formula (1) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues. 
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When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ..., t  k (k  0)) are different eigenvalues. Also, 

when  = ctol, assume that formula (1) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t 

 k  1.  In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ... , t  k) are approximately multiple (i.e., 

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors 

corresponding to m (m = t  1, t, ... , t  k) are reorthogonalized. 

maxne 
The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, 

the cluster size also increases.  Therefore, the total number of eigenvalues calculated might exceed the value of maxne.  

In this case, decrease the value of ctol or increase the value of maxne. 

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20200 is returned.  In this case, the 

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not 

stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in e[i1], i=1, ... ,nev[0]. The multiplicity of the corresponding 

eigenvalues is stored in m[0][i1], i=1, ... ,nev[0]. 

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne 

value can be nt( nt = nl  nf  1 is the total number of eigenvalues calculated). However, when there are multiple 

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m. 

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the 

calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value 

and by calling the routine again. 

4. Example program 

This example calculates the specified eigenvalues and eigenvectors of a generalized eigenvalue problem whose 

eigenvalues and eigenvectors are known. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
 
#define N  2000 
#define K  (N+1) 
#define NF 1 
#define NL N 
#define MAXNE (NL-NF+1) 
 
 
int MAIN__() 
{ 
    double a[N][K], b[N][K], b2[N][K], c[N][K], d[N][K]; 
    double e[MAXNE], ev[MAXNE][K]; 
    double pai, coef, ctol, etol, epsz, temp; 
    int    nev[5], m[2][MAXNE]; 
    int    i, j, k, ivec, icon; 
 
    pai  = atan(1.0) * 4.0; 
    coef = sqrt(2.0/(N+1)); 
 
    for (j=0; j<N; j++) { 
      for (i=0; i<N; i++) { 
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        d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1)); 
      } 
    } 
 
    for (j=0; j<N; j++) { 
      for (i=0; i<N; i++) { 
        if (i==j) { c[j][i] = (double)(j+1); } 
        else      { c[j][i] = 0.0; } 
      } 
    } 
 
    c_dm_vmggm((double*)d, K, (double*)c, K, (double*)b, K, N, N, N, &icon); 
    c_dm_vmggm((double*)b, K, (double*)d, K, (double*)a, K, N, N, N, &icon); 
 
    /* B = LL^t , A <- LALt */ 
    for (i=0; i<N; i++) { 
      for (j=0; j<N; j++) { 
        b[i][j]  = 1.0/sqrt(1.0); 
        b2[i][j] = min(i+1,j+1)/1.0; 
      } 
    } 
 
    for (j=0; j<N; j++) { 
      for (k=N-1; k>=0; k--) { 
        temp = a[j][k]; 
        a[j][k] *= b[k][k]; 
        for (i=k+1; i<N; i++) { 
          a[j][i] += temp*b[k][i]; 
        } 
      } 
    } 
 
    for (j=N-1; j>=0; j--) { 
      temp = b[j][j]; 
      for (i=0; i<N; i++) { 
        a[j][i] *= temp; 
      } 
      for (k=0; k<j; k++) { 
        temp=b[j][k]; 
        for (i=0; i<N; i++) { 
          a[j][i] += temp*a[k][i]; 
        } 
      } 
    } 
 
    ivec     = 1; 
    etol     = 1.0e-15; 
    ctol     = 1.0e-10; 
    epsz     = 0; 
 
    c_dm_vgevph((double*)a, K, N, (double*)b2, epsz, NF, NL, ivec, &etol, &ctol, 
                nev, e, MAXNE, (int*)m, (double*)ev, &icon); 
 
    for (i=0; i<nev[2]; i+=nev[2]/10) { 
      printf("eigen value in e[%d] = %f\n", i, e[i]); 
    } 
 
    return(0); 
} 

5. Method 

Consult the entry for DM_VGEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vhevp 

Eigenvalues and eigenvectors of Hermite matrices 

ierr = c_dm_vhevp(za, k, n, nf, nl, ivec, 

&etol, &ctol, nev, eh, maxne, m, 

zev, &icon); 

1. Function 

This routine calculates specified eigenvalues and, optionally, eigenvectors of an n-dimensional Hermite matrix. 

 Ax = x. (1) 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vhevp((dcomplex*)za, k, n, nf, nl, ivec, &etol, &ctol, nev, eh, 

maxne, (int*)m, (dcomplex*)zev, &icon); 

where: 

za dcomplex 

za[n][k] 

Input The upper triangular part {aij | i  j } of Hermite matrix A whose 

eigenvalues and eigenvectors are to be calculated is stored in the upper 

triangular part {za[i1][j1], i  j } of za. The value of a is not 

assured after operation. 

k int Input C fix dimension of matrix A. (k  n) 

n int Input Order n of matrix A. 

nf int Input Number assigned to the first eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

nl int Input Number assigned to the last eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

ivec int Input Control information. 

ivec = 1 if both the eigenvalues and eigenvectors are sought. 

ivec  1 if only the eigenvalues are sought. 

etol double Input Criterion value for checking whether the eigenvalues are different from 

each other or equal to each other. 

  Output When etol is less than 31016, this value is used as the standard 

value. 

See Comments on use. 

ctol double Input Criterion value for checking whether the adjacent eigenvalues are 

approximately equal to each other.  ctol is used to assure the linear 

independence of the eigenvector corresponding to the eigenvalue 

belonging to approximately multiple eigenvalues (clusters). 

The ctol value should generally be 5.01012. For a very large cluster, 

a large ctol value is required. 

10-6  ctol  etol. 
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  Output When condition ctol > 106 occurs, ctol is set to 106. 

When condition ctol < etol occurs, ctol = 10  etol is set as the 

standard value. See Comments on use. 

nev int nev[5] Output Number of eigenvalues calculated. 

Details are given below. 

nev[0] indicates the number of different eigenvalues calculated. 

nev[1] indicates the number of approximately multiple different 

eigenvalues (different clusters) calculated. 

nev[2] indicates the total number of eigenvalues (including multiple 

eigenvalues) calculated. 

nev[3] indicates the number representing the first of the eigenvalues 

calculated. 

nev[4] indicates the number representing the last of the eigenvalues 

calculated. 

eh double 

eh[maxne] 

Output Eigenvalues. Stored in eh[i1], i = 1, ... , nev[2]. 

maxne int Input Maximum number of eigenvalues that can be computed. See Comments 

on use. 

m int 

m[2][maxne] 

Output Information about the multiplicity of eigenvalues calculated. 

m[0][i1] indicates the multiplicity of the i-th eigenvalue i 

calculated. 

m[1][i1] indicates the multiplicity of the i-th cluster calculated 

when the adjacent eigenvalues are regarded as approximately multiple 

eigenvalues (clusters). 

zev dcomplex 

zev[maxne][k] 

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are 

stored in zev. 

The eigenvectors are stored in zev[i1][j1], i = 1, ... , nev[2], 

j = 1,...,n. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 During calculation of clustered eigenvalues, the 

total number of eigenvalues exceeded maxne. 

Discontinued. The eigenvectors cannot be 

calculated, but the different eigenvalues 

themselves are already calculated. 

A suitable value for maxne to allow calculation 

to proceed is returned in nev[2]. 

See Comments on use. 

30000 One of the following has occurred: 

 n < 1 

 k < n 

 nf < 1 

 nl > n 

 nl < nf 

 maxne < nl  nf  1 

Bypassed. 
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3. Comments on use 

etol and ctol 
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets 

(parallel processing). 

When  = etol, the following condition is satisfied for consecutive eigenvalues  j (j = s  1, s, ... , s  k, (k  0)): 

 








|)||,max(|1

||

1

1

ii

ii , (2) 

If formula (2) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that 

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple. 

The standard value of etol is 3.0  1016 (about the unit round off). In this case, the eigenvalues are refined up to the 

maximum machine precision. 

If formula (2) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues. 

When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ... , t  k (k  0)) are different eigenvalues. Also, 

when  = ctol, assume that formula (2) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t 

 k  1.  In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ... , t  k) are approximately multiple (i.e., 

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors 

corresponding to m (m = t  1, t, ... , t  k) are reorthogonalized. 

maxne 
The maximum number of eigenvalues calculated can be specified in maxne. When the ctol value is increased, the 

cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the maxne value. In this 

case, decrease the ctol value or increase the maxne value. 

If the total number of eigenvalues calculated exceeds the maxne value, icon = 20000 is returned.  In this case, the 

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not 

stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in eh[i1], i=1, ... , nev[0]. The multiplicity of the corresponding 

eigenvalues is stored in m[0][i1], i=1, ... , nev[0]. 

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne 

value can be nt(nt = nlnf1 is the total number of eigenvalues calculated). However, when there are multiple 

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m. 

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the 

calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value 

and by calling the routine again. 

4. Example program 

This program obtains eigenvalues and prints the results. 

#include <stdio.h> 
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#include <stdlib.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N              512 
#define K                N 
#define NF               1 
#define NL              28 
#define MAXNE      NL-NF+1 
 
MAIN__() 
{ 
  dcomplex za[N][K], zev[MAXNE][K]; 
  double   eh[MAXNE]; 
  double   etol, ctol; 
  int      nev[5], m[2][MAXNE]; 
  int      ierr, icon; 
  int      i, j, k, n, nf, nl, maxne, ivec; 
 
  n     = N; 
  k     = K; 
  nf    = NF; 
  nl    = NL; 
  ivec  = 1; 
  maxne = MAXNE; 
  etol  = 1.0e-14; 
  ctol  = 5.0e-12; 
 
  printf(" Number of data points = %d\n", n); 
  printf(" Parameter k = %d\n", k); 
  printf(" Eigenvalue calculation tolerance = %12.4e\n", etol); 
  printf(" Cluster tolerance = %12.4e\n", ctol); 
  printf(" First eigenvalue to be found is %d\n", nf); 
  printf(" Last eigenvalue to be found is %d\n", nl); 
 
  /* Set up real and imaginary parts of matrix in AR and AI */ 
  for(i=0; i<n; i++) { 
    for(j=0; j<n; j++) { 
      za[i][j].re = (double)(i+j+2)/(double)n; 
      if(i==j) { 
        za[i][j].im = 0.0; 
        za[i][j].re = (double)(j+1); 
      } else { 
        za[i][j].im = (double)((i+1)*(j+1))/(double)(n*n); 
      } 
    } 
  } 
  for(i=0; i<n; i++) { 
    for(j=0; j<n; j++) { 
      if(i > j) za[i][j].im = -za[i][j].im; 
    } 
  } 
  /* Call complex eigensolver */ 
  ierr = c_dm_vhevp ((dcomplex*)za, k, n, nf, nl, ivec, &etol, &ctol, nev, eh, 
                  maxne, (int*)m, (dcomplex*)zev, &icon); 
  if (icon > 20000) { 
    printf("ERROR: c_dm_vhevp failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
  printf(" Number of Hermitian eigenvalues = %d\n", nev[2]); 
  printf(" Eigenvaluse of complex Hermitian matrix\n"); 
  for(i=0; i<nev[2]; i++) { 
    printf("  eh[%d] = %12.4e\n", i, eh[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for DM_VHEVP in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [57]. 
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c_dm_vhtrid 

Tridiagonalization of Hermite matrices 

ierr = c_dm_vhtrid(za, k, n, d, sl, zs, 

&icon); 

1. Function 

This routine reduces an Hermite matrix into an Hermite tridiagonal matrix and this matrix is transformed into a 
real tridiagonal matrix using diagonal unitary transform. 

 H = P*AP 

 T = V*HV 

A is an n  n Hermite matrix, P is an n  n unitary matrix. V is an n  n diagonal unitary matrix and T is a real tridiagonal 

matrix. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vhtrid((dcomplex*)za, k, n, d, sl, zs, &icon); 

 

where: 

za dcomplex 

za[n][k] 

Input The upper triangular part {aij | i  j} of Hermite matrix A is stored in the 

upper triangular part {za[i1][j1], i  j} of za. 

  Output The information on Householder transforms used for Hermite 

tridiagonalization is stored in the upper triangular part 

{za[i1][j1], i  j} of za.  The values in the lower triangular part 

of za is not assured after operation. 

See Comments on use. 

k int Input C fixed dimension of matrix za. (k  n) 

n int Input Order n of Hermite matrix A. 

d double d[n] Output The diagonal elements of the reduced tridiagonal matrix are stored. 

sl double sl[n] Output The subdiagonal elements of reduced tridiagonal matrix are stored in 

sl[i1], i = 2, ... , n. sl[0] = 0. 

zs dcomplex zs[n] Output Diagonal elements of the diagonal unitary matrix are stored in zs[i-

1], i=1, … ,n. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 k < n, n < 2. Processing is discontinued. 
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3. Comments on use 

za 
Hermite tridiagonalization is performed by the repeated transforms varying k = 1, ... , n-2. 

AAPAPA   01 ,k
k*

k
k  

Put  bT = (0, ... , 0, A k (k+1, k) , ... , Ak(n, k) ) . (Ak-1(i , j) means i,j element of Ak-1) 

bT = (0, ... , 0, bk+1, ... , bn) 

b*∙b = S2  and  put  wT = (0, ... , 0, 












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1
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k
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b , bk+2, ... , bn). 

Then the transform matrix is represented as follows. 

SS

1
,I

1
2

*




k
k

b
 wwP  

w(i-1) ( i=k+1, ... , n)  and  are stored in  za[k-1][i-1]and  za[k-1][k-1]respectively. 

 

4. Example program 

This example calculates the tridiagonalization of a Hermite matrix with the known eigenvalues. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N               2000 
#define K               N 
#define NE              N 
#define MAX_NEV         NE 
 
MAIN__() 
{ 
    dcomplex a[N][K],b[N][K],c[N][K],d[N][K],dh[N][K]; 
    dcomplex alpha,beta,tr[N]; 
    double   eval[MAX_NEV],evec[MAX_NEV][K],dd[N],sld[N],sud[N]; 
    double   pai2, coef, part1, part2, eval_tol, clus_tol; 
    int      nev[5],mult[2][MAX_NEV]; 
    int      i, j, k, n, nf, nl, ivec, icon ,in, im, ik; 
 
    n    = N; 
    k    = K; 
 
 
    pai2 = 8.0 * atan(1.0); 
    coef = sqrt(1.0/(N)); 
    for (j=0; j<N; j++) { 
      for (i=0; i<N; i++) { 
        part1 = coef * cos(pai2/N*i*j); 
        part2 = coef * sin(pai2/N*i*j); 
        d[i][j].re = part1; 
        d[i][j].im = part2; 
        dh[i][j].re = part1; 
        dh[i][j].im = -part2; 
      } 
    } 
 
    for (j=0; j<N; j++) { 
      for (i=0; i<N; i++) { 
        if (i == j) { 
          c[i][j].re = (double)(i+1); 
          c[i][j].im = 0.0; 
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        } 
        else { 
          c[i][j].re = 0.0; 
          c[i][j].im = 0.0; 
        } 
      } 
    } 
 
    /* d x c -> b */ 
    for (im=0; im<N; im++) { 
      for (in=0; in<N; in++) { 
        b[im][in].re = 0.0; 
        b[im][in].im = 0.0; 
      } 
      for (ik=0; ik<N; ik++) { 
        for (in=0; in<N; in++) { 
          b[im][in].re = b[im][in].re + d[im][ik].re * c[ik][in].re  
- d[im][ik].im * c[ik][in].im; 
          b[im][in].im = b[im][in].im + d[im][ik].re * c[ik][in].im  
+ c[ik][in].re * d[im][ik].im; 
        } 
      } 
    } 
 
    /* b x dh -> a */ 
    for (im=0; im<N; im++) { 
      for (in=0; in<N; in++) { 
        a[im][in].re = 0.0; 
        a[im][in].im = 0.0; 
      } 
      for (ik=0; ik<N; ik++) { 
        for (in=0; in<N; in++) { 
          a[im][in].re = a[im][in].re + b[im][ik].re * dh[ik][in].re  
- b[im][ik].im * dh[ik][in].im; 
          a[im][in].im = a[im][in].im + b[im][ik].re * dh[ik][in].im  
+ dh[ik][in].re * b[im][ik].im; 
        } 
      } 
    } 
 
    c_dm_vhtrid((dcomplex*)a, K, N, dd, sld, tr, &icon); 
 
    if (icon != 0) { 
      printf(" icon of c_dm_vhtrid =%d\n", icon); 
      exit(0); 
    } 
 
    for (i=1; i<N; i++) { 
      sud[i-1]=sld[i]; 
    } 
    sud[N-1]=0.0; 
 
    nf=1; 
    nl=N; 
    ivec=0; 
    eval_tol=1.0e-15; 
    clus_tol=1.0e-10; 
    c_dm_vtdevc(dd, sld, sud, N, nf, nl, ivec, &eval_tol, &clus_tol, 
                nev, eval, MAX_NEV, (double*)evec, K, (int*)mult, &icon); 
 
    for (i=0; i<NE; i=i+N/20) { 
      printf("eigen value in eval(%d) = %f\n",i+1,eval[i]); 
    } 
 
    return(0); 
} 
 

5. Method 

Consult the entry for DM_VHTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vjdhecr 

Eigenvalues and eigenvectors of an Hermitian sparse matrix(Jacobi-

Davidson method, compressed row storage method) 

ierr = c_dm_vjdhecr(zh, nz, ncol, nfrnz, n, 

 itrgt, dtrgt, nsel, &nev, itmax, 

 &iter, iflag, dprm, deval, zevec, kv, dhis, 

 kh, &icon); 

1. Function 

This routine computes a few of selected eigenvalues and corresponding eigenvectors of an Hermitian sparse 
eigenvalue problem 

 Ax =  x 

using the Jacobi-Davidson method, where A is an n  n Hermitian sparse matrix, the lower triangular part of which is 

stored using the compressed row storage method, and x is an n-dimensional vector. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vjdhecr(zh, nz, ncol, nfrnz, n, itrgt, dtrgt, nsel, &nev, itmax, 

&iter, iflag, dprm, deval, (dcomplex*)zevec, kv, (double*)dhis, 

kh, &icon); 

 

where: 

zh dcomplex 

zh[nz] 

Input The non-zero elements of the lower triangular part of the sparse matrix 

A are stored. 

For the compressed row storage method, refer to Figure c_dm_vjdhecr-

1. 

nz int Input The total number of the nonzero elements which belong to the lower 

triangular part of the matrix A. 

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which 

indicate the column number of each nonzero element stored in the array 

zh. 

nfrnz int nfrnz[n+1] Input The position of the first nonzero element of each row stored in the array 

zh in the compressed row storage method which stores the lower part 

of the nonzero elements row by row.  Specify nfrnz[n] = nz + 1. 

n int Input Order n of matrix A. 

itrgt int Input Select a way of specifying the eigenvalues to be sought 

 (0  itrgt  4). 

Specify itrgt = 0 to compute eigenvalues closest to a target value 

dtrgt. 

Specify itrgt = 1 to compute eigenvalues with largest magnitude. 

Specify itrgt = 2 to compute eigenvalues with smallest magnitude. 
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Specify itrgt = 3 to compute eigenvalues with largest real part. 

Specify itrgt = 4 to compute eigenvalues with smallest real part. 

See Comments on use. 

dtrgt double Input The target value  is specified when itrgt = 0.  In the following 

cases, the convergence might be improved by specifying a value near 

the seeking eigenvalue even when itrgt  0. 

1) The value  is used as a shift of the test subspace <W>  = <(A  

I)V> when dprm[2] = 1 which indicates that the harmonic 

algorithm is to be used. See Comments on use. 

2) When dprm[8]  1, the value  is used as an approximated 

eigenvalue in the Jacobi-Davidson correction equation while the 

initial phase of the iteration is proceeding. See Comments on use. 

3) When dprm[14]  1, the value  is used as a shift value of the 

preconditioner for the Jacobi-Davidson correction equation. See 

Comments on use. 

In other cases, dtrgt is not referred in this routine. 

nsel int Input The number of eigenvalues to be computed (1  nsel  n). See 

Comments on use. 

nev int Output The number of eigenvalues converged. 

itmax int Output Upper limit of iterative count for the Jacobi-Davidson method ( 0). 

iter int Output Actual iterative count for the Jacobi-Davidson method. 

iflag int iflag[32] Input Control information array specifying whether the auxiliary parameter is 

specified explicitly in dprm array. 

When iflag[i]  0, the parameter specified in dprm[i] is to be 

used. 

When iflag[i] = 0, a default parameter is used and dprm[i] is not 

referred. 

Set iflag[15] to [31] to be all zero since these area are preserved 

for future enhanced functionality. 

dprm double 

dprm[32] 

Input Auxiliary parameters are specified as for the iflag[i] denotes that 

the user specified value is to be used. 

For definition of each parameter in the algorithm, see "Method" of 

DM_VJDHECR in the Fortran SSL II Thread-Parallel Capabilities 

User's Guide 

If all of iflag[0] to [31] are set to be zero, dprm[0] to [31] are 

not referred and default parameters are used. Changing the parameter is 

recommended when the iteration did not converge with default 

parameters. 
dprm[0]:  The dimension mmin of shrunk subspace when 
restarting  

(1  mmin  n).  The default value is mmin = 50. 
dprm[1]:  Upper limit of the dimension mmax of subspace (mmin   

mmax  n).  The default value is mmax = mmin + 30. 
See Comments on use. 

dprm[2]:  The type of the algorithm, which is associated with  
setting of a test subspace. 
When dprm[2] = 0, the standard algorithm is  
adopted. The algorithm is appropriate for seeking the  
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extreme eigenvalues in the spectrum. 
When dprm[2] = 1, the harmonic algorithm is  
adopted. The algorithm is appropriate for seeking the  
internal eigenvalues in the spectrum. 
The default value is the harmonic algorithm for itrgt  
= 0 or 2, or the standard algorithm in other cases. 

dprm[3]:  The criterion value for judgment of acceptable  
convergence. The default value is 10-6.  
See Comments on use. 

dprm[4]:  The way how to calculate the residual norm with  
respect to the approximated eigenvalue  and  
eigenvector u. 
When dprm[4] = 0, the residual norm relative to the  
absolute value of approximated eigenvalue |Auu|/||  
is adopted. 
When dprm[4] = 1, the residual norm relative to the  
1-norm of the matrix |Auu|/|A|1 is adopted. 
When dprm[4] = 2, the residual norm relative to the  
Frobenius norm of the matrix |Auu|/|A|F is adopted. 
When dprm[4] = 3, the residual norm relative to the  
infinity-norm of the matrix |Auu|/|A| is adopted. 
When dprm[4] = 4, the absolute residual norm  
|Auu| is adopted. 
The default is dprm[4] = 0. See Comments on use. 

dprm[5]:  A criterion value for a delay-deflation scheme ( 1.0).  
The default value is dprm[5] = 0.9.  
See Comments on use. 

dprm[6]:  Control information indicating whether the iteration is  
started from a vector specified in the array  
zevec[0][i-1], i = 1, ... , n. 
When dprm[6] = 0, the iteration is started from a  
random vector generated in this routine internally. 
When dprm[6] = 1, set an initial vector in the array  
zevec[0][i-1], i = 1, ... , n. 
The default setting is using a random vector. 

dprm[7]:  A seed to generate a random vector ( 1.0). The default  
value is 1. 

dprm[8]:  While the iteration count is less or equal to dprm[8],  
the process is regarded as an initial phase of the  
iteration. Then the fixed value of  is used as an  
approximated eigenvalue instead of the value of  in  
the Jacobi-Davidson correction equation. 
When dprm[2] = 0, the default value is dprm[8] =  
0. 
When dprm[2] = 1, the default value is dprm[8]=  
mmax. See Comments on use. 

dprm[9]:  The method to solve the Jacobi-Davidson correction  
equation. 
When dprm[9] = 0, t=r is set without using the  
correction equation. 
When dprm[9] = 1, the GMRES method is adopted. 
When dprm[9] = 2, the BiCGstab(L) method is  
adopted. 
When dprm[9] = 11, the MINRES method is  
adopted. The default is using the MINRES method.  
See Comments on use. 

dprm[10]: A parameter for the solver of the correction equation.  
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When the BiCGstab(L) is used, specify the value of L  
( 10). The default value is 4. 

dprm[11]: Upper limit of the iteration count of the solver for the  
Jacobi-Davidson correction equation ( 1). The default  
value is 30. 

dprm[12]: A parameter to determine the stopping criterion for the  
iterative solver of the correction equation (> 0.0). 
The default value is 0.7. See Comments on use. 

dprm[13]: A parameter to determine the stopping criterion for the  
iterative solver of the correction equation (0.0 <  
dprm[13]  1.0). The stopping criterion is set to  
dprm[12]  dprm[13]l, where l is an iteration  
counter of the outer loop which is reset in each  
deflation. 
The default value is 0.7. See Comments on use. 

dprm[14]: The type of preconditioning of the correction equation  
( 1). 
When dprm[14] = 0, no preconditioning is used. 
When dprm[14] = 1, the diagonal left  
preconditioning is exploited. See Comments on use. 
The default is dprm[14] = 0. 

dprm[15] to [31]:  Preserved area for future enhanced  
functionality. 

deval double 

deval[nsel] 

Output Detected eigenvalues are stored in deval[i-1], i = 1, ... , nev. 

zevec dcomplex 

zevec[nsel][kv] 

Output Detected eigenvectors are stored in zevec[i-1][j-1], i = 1, ... , 

nev, j = 1, ... , n. 

  Input Set the initial vector in zevec[i-1][j-1], i = 1, ... , nev, j = 

1, ... , n when iflag[6]  0 and dprm[6] = 1.0. 

kv int Input C fixed dimension of array zevec ( n). 

dhis double 

dhis[2][kh] 

Output The convergence history of the residuals of the eigenproblem are stored 

in dhis[0][i-1], i = 1, ... , min(kh, iter). The final relative 

residual norm of the each correction equation are stored in 

dhis[1][i-1], i = 1, ... , min(kh, iter). 

kh int Input C fixed dimension of array dhis ( 0). Setting kh = itmax is enough. 

If kh = 0 is set, the outputs to the array dhis are suppressed. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

1000 Breakdown occurred in the iterative linear 

equations solver. 

Processing is continued with the approximated 

solution until the point. 

2000 A null vector is detected in a sort of process of the 

orthogonalization. 

Processing is continued with the subspace 

expanded by a random vector. 

3000 A recovery procedure is activated in a sort of 

restorative process of the delay deflation. 

Processing is continued. 

10000 The iteration count reached the maximum limit 

before nsel-th eigenvalue is obtained. 

The calculated eigenpairs up to nev are correct. 
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Code  Meaning  Processing 

20000 The projected dense eigenproblem can not be 

solved. 

Processing is discontinued. 

The calculated eigenpairs up to nev are correct if 

nev >0. 

21000 The iteration count reached the maximum limit 

without a single convergence. 

Processing is discontinued. 

The approximate values obtained up to this point 

are output in array deval[0] and 

zevec[0][0] to [0][n-1], but their 

precision cannot be guaranteed. 

29000 An internal error occurred. Processing is discontinued. 

30000 One of the following has occurred: 

• n < 1 

• itrgt < 0 

• itrgt > 4 

• nsel < 1 

• nsel > n 

• itmax < 0 

• kv < n 

• kh < 0. 

 

30001 to 

30032 

The value of iflag or dprm is not correct.  

31000 The value of nz, ncol or nfrnz is not correct.  
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Figure c_dm_vjdhecr-1 Storing a matrix A in compressed row storage method 
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3. Comments on use 

Robustness of the Jacobi-Davidson algorithm 
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices 

based on the reduction of matrix elements.  The results obtained using the Jacobi-Davidson method depends on choice of 

the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified.  

This method is applicable when the seeking eigenvalues are only a few of the entire spectrum. 

The convergence behavior of this routine is affected by various auxiliary parameters.  For description of these parameters, 

refer to "Comments on use." 

ITRGT and DTRGT parameter 
The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of 

itrgt, which specifies a way of selecting eigenvalues.  However, an explicit specification of the value in dprm[2] by 

setting iflag[2]  0 is prior to the default value of course.  Which means that the standard algorithm can be used with 

itrgt = 0 or 2, and that the harmonic algorithm can be used with itrgt = 1, 3, 4, 5 or 6, as long as user knows its 

adaptivity. 

Note that the dtrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just 

setting itrgt = 2, which specifies to compute eigenvalues with smallest magnitude.  Define the dtrgt to be 0.0 if other 

appropriate value is not known. 

Calculating the residual norm 
In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to absolute value of 

the approximated eigenvalue.  When the absolute value of the seeking eigenvalue is far smaller than the norm of the 

matrix, however, it is difficult to satisfy the convergence condition |Auu|/||< dprm[3].  In that case, adjust the 

convergence criterion dprm[3], or change the way of calculating the residual norm which can be specified by 

dprm[4] parameter. 

Delay deflation procedure 
This routine adopts an ingenious scheme to improve the precision of the results.  After the residual becomes below the 

convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the 

residual remains valid.  This procedure is called delay-deflation here.  The decrease ratio is regarded valid if the ratio of 

the residual norm relative to the preceding residual is less than the parameter dprm[5]. If the residual deteriorates while 

this extra iteration, the better previous variables are restored and the deflation with the vector takes place.  With setting 

dprm[5] = 0.0, this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary 

convergence criterion. 

Approximated eigenvalue in the correction equation 
In the initial few steps of the process, the values of  are usually poor approximations of the wanted eigenvalue. This 

routine takes the target value  specified in the dtrgt as an approximated eigenvalue instead of  in the initial phase, 

since the validity of the expansion vector t is affected by the closeness to the approximated eigenvalue in the Jacobi-

Davidson correction equation.  The process is regarded as the initial phase of the iteration while the iteration count is less 

than or equal to dprm[8].  However, the default value of this parameter is dprm[8] = 0 when dprm[2] = 0 is 

adopted, because it is difficult to determine a value of  in advance when the standard algorithm is specified. 
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Stopping criterion for inner iteration 
The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm 

consists of two nested iterations.  In the outer iteration the approximation for the eigenproblem is constructed, and in the 

inner iteration the correction equation is approximately solved.  If the residual of the eigenproblem still not be small in the 

outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary.  Therefore, the 

stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration.  The 

criterion is set to be dprm[12]  dprm[13]l, where l is the outer iteration counter which is reset to zero at each 

deflation.  Incidentally, the upper limit count for the inner iteration is specified by dprm[11]. 

Precondition for the correction equation 
It is known that a good preconditioner improves the convergence of the iterative method for linear equations.  The 

preconditioner to be applied is controlled by the parameter dprm[14] in this routine.  Note that the value of DTRGT is 

used for constructing a matrix M  (A   I), which approximates a part of the coefficient matrix in some way.  The 

preconditioner is derived from the inverse procedure of the matrix M and projections on both sides.  If the preconditioner 

does not approximate the coefficient matrix of the correction equation properly or the parameter dtrgt is far from the 

seeking eigenvalue, the convergence may deteriorate.  Additionally, dprm[9] must specify a kind of the iterative method 

that is applicable to nonsymmetric linear systems, because the coefficient matrix becomes nonsymmetric with a left 

preconditioner adopted in this routine. 

Memory usage 
This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when 

the available area of the memory runs out.  The necessary size for the outer iteration is at least n  (2  mmax  2  nsel) 

 16 bytes for the standard algorithm and n  (3  mmax  2  nsel)  16 bytes for the harmonic algorithm.  And when 

the GMRES method is used as the solver of the correction equation, the additional necessary area is n  dprm[11]  16 

bytes for the inner iteration. 

 

4. Example program 

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem Ax =  x are sought, where A is 

a 10000  10000 example Hermitian matrix of the random sparsity pattern with about 20 nonzero entries in each row. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4 

processors. 

/* **EXAMPLE** */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <malloc.h> 
#include "cssl.h" 
 
#define     NMAX 10000 
#define     NZC 20 
#define     NNZMAX NMAX*NZC 
#define     LDK 10 
 
int      mkspmat(int, int, dcomplex*, int*, int*); 
dcomplex comp_add(dcomplex, dcomplex); 
dcomplex comp_sub(dcomplex, dcomplex); 
dcomplex comp_mult(dcomplex, dcomplex); 
dcomplex d_c_mult(dcomplex, double); 
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int MAIN__() { 
 
  static dcomplex  zh[NNZMAX], zevec[LDK][NMAX]; 
  dcomplex  rvec[NMAX], zw[NMAX], zh_w; 
  double  dtrgt, deval[LDK], derr, dprm[32], dhis[2][NMAX]; 
  int  nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt; 
  int  iflag[32], nsel, nev, itmax, iter, ldx, ldh, icon; 
  int  i, j, k, ncolj; 
 
  n = NMAX; 
  mkspmat(n, NZC, zh, ncol, nfrnz); 
  nz = nfrnz[n] - 1; 
 
  itmax = 500; 
  nsel = 10; 
  for (i = 0; i < 32; i++) { 
    iflag[i] = 0; 
  } 
  ldx = NMAX; 
  ldh = NMAX; 
  dtrgt = 0.0; 
  itrgt = 1; 
 
  c_dm_vjdhecr(zh, nz, ncol, nfrnz, n, itrgt, dtrgt, nsel, 
              &nev, itmax, &iter, iflag, dprm, 
              deval, (dcomplex *)zevec, ldx, (double *)dhis, ldh, &icon); 
 
  printf(" C_DM_VJDHECR ICON= %d\n", icon); 
  printf(" ITER= %d\n", iter); 
  for (k = 0; k < nev; k++) { 
#pragma omp parallel private(i, j, ncolj, zw, zh_w) 
{ 
    for (i = 0; i < n; i++) { 
      zw[i].re = 0.0; 
      zw[i].im = 0.0; 
    } 
#pragma omp for 
    for (i = 0; i < n; i++) { 
      rvec[i].re = 0.0; 
      rvec[i].im = 0.0; 
      for (j = nfrnz[i]-1; j < nfrnz[i+1]-1; j++) { 
        ncolj = ncol[j] - 1; 
        rvec[i] = comp_add(rvec[i], comp_mult(zh[j], zevec[k][ncolj])); 
        if (i != ncolj) { 
          zh_w = zh[j]; 
          zh_w.im = -zh_w.im; 
          zw[ncolj] = comp_add(zw[ncolj], comp_mult(zh_w, zevec[k][i])); 
        } 
      } 
    } 
#pragma omp critical 
    for (i = 0; i < n; i++) { 
      rvec[i] = comp_add(rvec[i], zw[i]); 
    } 
} 
    derr = 0.0; 
    for (i = 0; i < n; i++) { 
      rvec[i] = comp_sub(rvec[i], d_c_mult(zevec[k][i], deval[k])); 
      derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im); 
    } 
    derr = sqrt(derr); 
    printf(" EIGEN VALUE %d =%18.14lf\n", k+1, deval[k]); 
    printf(" ERROR= %22.16le\n", derr/fabs(deval[k])); 
  } 
  return(0); 
} 
 
int mkspmat(int n, int nzc, dcomplex *zh, int *ncol, int *nfrnz) { 
#define LDW 1350 
  int  i, ic, ict, j, k, iseed, icon, nnz; 
  double  *dwork, rndwork[LDW]; 
 
  dwork = (double *)malloc(nzc * sizeof(double)); 
 
  iseed = 1; 
  nnz = 0; 
  for (i = 1; i <= n; i++) { 
    nfrnz[i-1] = nnz + 1; 
label_10:   c_dvrau4(&iseed, dwork, nzc, rndwork, LDW, &icon); 
    ic = 0; 
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    for (j = 1; j <= nzc; j++) { 
      ict = n * fabs(dwork[j-1]) + 1; 
      if (ict <= i) { 
        for (k = 1; k <= ic; k++) { 
          if (ict == ncol[nnz - k]) { 
            nnz = nnz - ic; 
            goto label_10; 
          } 
        } 
        ic++; 
        ncol[nnz] = ict; 
        nnz++; 
      } 
    } 
  } 
  nfrnz[n] = nnz + 1; 
  iseed = 1; 
  c_dvran4(0.0, 1.0, &iseed, (double *)zh, 2 * nnz, rndwork, LDW, 
      &icon); 
  for (i = 0; i < n; i++) { 
    for (j = nfrnz[i]-1; j < nfrnz[i+1]-1; j++) { 
      if (i == ncol[j]-1) { 
        zh[j].re = zh[j].re + zh[j].im; 
        zh[j].im = 0.0; 
      } 
    } 
  } 
  free(dwork); 
  return(0); 
} 
 
dcomplex comp_add(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re + so2.re; 
  obj.im = so1.im + so2.im; 
  return obj; 
} 
 
dcomplex comp_sub(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re - so2.re; 
  obj.im = so1.im - so2.im; 
  return obj; 
} 
 
dcomplex comp_mult(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re * so2.re - so1.im * so2.im; 
  obj.im = so1.re * so2.im + so1.im * so2.re; 
  return obj; 
} 
 
dcomplex d_c_mult(dcomplex so1, double so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re * so2; 
  obj.im = so1.im * so2; 
  return obj; 
} 
 
 

5. Method 

Consult the entry for DM_VJDHECR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7]. 
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c_dm_vjdnhcr 

Eigenvalues and eigenvectors of a complex sparse matrix(Jacobi-

Davidson method, compressed row storage method) 

ierr = c_dm_vjdnhcr(za, nz, ncol, nfrnz, n, 

itrgt, ztrgt, nsel, &nev, itmax, &iter, 

iflag, dprm, zeval, zevec, kv, dhis, kh, 

&icon); 

1. Function 

This routine computes a few of selected eigenvalues and corresponding eigenvectors of a complex sparse 
eigenvalue problem 

 Ax =  x 

using the Jacobi-Davidson method, where A is an n  n complex sparse matrix stored using the compressed row storage 

method and x is an n-dimensional vector. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vjdnhcr (za, nz, ncol, nfrnz, n, itrgt, ztrgt, nsel, &nev, itmax, 

&iter, iflag, dprm, zeval, (dcomplex*)zevec, kv, (double*)dhis, 

kh, &icon); 

 

where: 

za dcomplex 

za[nz] 

Input The non-zero elements of the sparse matrix A are stored. 

For the compressed row storage method, refer to Figure c_dm_vjdnhcr-

1. 

nz int Input The total number of the nonzero elements of the matrix A. 

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which 

indicate the column number of each nonzero element stored in the array 

za. 

nfrnz int nfrnz[n+1] Input The position of the first nonzero element of each row stored in the array 

za in the compressed row storage method which stores the nonzero 

elements row by row.  Specify nfrnz[n] = nz + 1. 

n int Input Order n of matrix A. 

itrgt int Input Select a way of specifying the eigenvalues to be sought (0  itrgt  

6). 

Specify itrgt = 0 to compute eigenvalues closest to a target value 

ztrgt. 

Specify itrgt = 1 to compute eigenvalues with largest magnitude. 

Specify itrgt = 2 to compute eigenvalues with smallest magnitude. 

Specify itrgt = 3 to compute eigenvalues with largest real part. 

Specify itrgt = 4 to compute eigenvalues with smallest real part. 
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Specify itrgt = 5 to compute eigenvalues with largest imaginary part. 

Specify itrgt = 6 to compute eigenvalues with smallest imaginary  

part. See Comments on use. 

ztrgt dcomplex Input The target value  is specified as a complex variable when itrgt = 0.  

In the following cases, the convergence might be improved by 

specifying a value near the seeking eigenvalue even when itrgt  0. 

1) The value  is used as a shift of the test subspace <W> = <(A  

I)V> when dprm[2] = 1 which indicates that the harmonic 

algorithm is to be used. See Comments on use. 

2) When dprm[8]  1, the value  is used as an approximated 

eigenvalue in the Jacobi-Davidson correction equation while the 

initial phase of the iteration is proceeding. See Comments on use. 

3) When dprm[14]  1, the value  is used as a shift value of the 

preconditioner for the Jacobi-Davidson correction equation. See 

Comments on use. 

In other cases, ztrgt is not referred in this routine. 

nsel int Input The number of eigenvalues to be computed (1  nsel  n). See 

Comments on use. 

nev int Output The number of eigenvalues converged. 

itmax int Input Upper limit of iterative count for the Jacobi-Davidson method ( 0). 

iter int Output Actual iterative count for the Jacobi-Davidson method. 

iflag int iflag[32] Input Control information array specifying whether the auxiliary parameter is 

specified explicitly in dprm array. 

When iflag[i]  0, the parameter specified in dprm[i] is to be 

used. 

When iflag[i] = 0, a default parameter is used and dprm[i] is not 

referred. 

Set iflag[15] to [31] to be all zero since these area are preserved 

for future enhanced functionality. 

dprm double 

dprm[32] 

Input Auxiliary parameters are specified as for the iflag [i] denotes that 

the user specified value is to be used. 

For definition of each parameter in the algorithm, see "Method" of 

DM_VJDNHCR in the Fortran SSL II Thread-Parallel Capabilities 

User's Guide 

If all of iflag[0] to [31] are set to be zero, dprm[0] to [31] are 

not referred and default parameters are used. Changing the parameter is 

recommended when the iteration did not converge with default 

parameters. 
dprm[0]:  The dimension mmin of shrunk subspace when 
restarting  

(1  mmin  n).  The default value is mmin = 50. 
dprm[1]:  Upper limit of the dimension mmax of subspace (mmin   

mmax  n).  The default value is mmax = mmin + 30. 
See Comments on use. 

dprm[2]:  The type of the algorithm, which is associated with  
setting of a test subspace. 
When dprm[2] = 0, the standard algorithm is  
adopted. The algorithm is appropriate for seeking the  
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extreme eigenvalues in the spectrum. 
When dprm[2] = 1, the harmonic algorithm is  
adopted. The algorithm is appropriate for seeking the  
internal eigenvalues in the spectrum. 
The default value is the harmonic algorithm for itrgt  
= 0 or 2, or the standard algorithm in other cases. 

dprm[3]:  The criterion value for judgment of acceptable   
convergence. The default value is 10-6.  
See Comments on use. 

dprm[4]:  The way how to calculate the residual norm with  
respect to the approximated eigenvalue  and  
eigenvector u. 
When dprm[4] = 0, the residual norm relative to the  
absolute value of approximated eigenvalue |Auu|/||  
is adopted. 
When dprm[4] = 1, the residual norm relative to the  
1-norm of the matrix |Auu|/|A|1 is adopted. 
When dprm[4] = 2, the residual norm relative to the  
Frobenius norm of the matrix |Auu|/|A|F is adopted. 
When dprm[4] = 3, the residual norm relative to the  
infinity-norm of the matrix |Auu|/|A| is adopted. 
When dprm[4] = 4, the absolute residual norm  
|Auu| is adopted. 
The default is dprm[4] = 0.  See Comments on use. 

dprm[5]:  A criterion value for a delay-deflation scheme ( 1.0).  
The default value is dprm[5] = 0.9.  
See Comments on use. 

dprm[6]:  Control information indicating whether the iteration is  
started from a vector specified in the array  
zevec[0][i-1], i = 1, ... , n. 
When dprm[6] = 0, the iteration is started from a  
random vector generated in this routine internally. 
When dprm[6] = 1, set an initial vector in the array  
zevec[0][i-1], i = 1, ... , n. 
The default setting is using a random vector. 

dprm[7]:  A seed to generate a random vector ( 1.0). The default  
value is 1. 

dprm[8]:  While the iteration count is less or equal to dprm[8],  
the process is regarded as an initial phase of the  
iteration. Then the fixed value of  is used as an  
approximated eigenvalue instead of the value of  in  
the Jacobi-Davidson correction equation. 
When dprm[2] = 0, the default value is  
dprm[8] = 0. 
When dprm[2] = 1, the default value is dprm[8] =  
mmax.  See Comments on use. 

dprm[9]:  The method to solve the Jacobi-Davidson correction  
equation. 
When dprm[9] = 0, t = r is set without using the  
correction equation. 
When dprm[9] = 1, the GMRES method is adopted. 
When dprm[9] = 2, the BiCGstab(L) method is  
adopted. 
The default is using the GMRES method. See  
Comments on use. 

dprm[10]: A parameter for the solver of the correction equation.  
When the BiCGstab(L) is used, specify the value of L  
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( 10). The default value is 4. 
dprm[11]: Upper limit of the iteration count of the solver for the  

Jacobi-Davidson correction equation ( 1). The default  
value is 30. 

dprm[12]: A parameter to determine the stopping criterion for the  
iterative solver of the correction equation (> 0.0). 
The default value is 0.7. See Comments on use. 

dprm[13]: A parameter to determine the stopping criterion for the  
iterative solver of the correction equation (0.0 < 
dprm[13]  1.0). The stopping criterion is set to  
dprm[12]  dprm[13]l, where l is an iteration  
counter of the outer loop which is reset in each  
deflation. 
The default value is 0.7. See Comments on use. 

dprm[14]: The type of preconditioning of the correction equation  
( 1). 
When dprm[14] = 0, no preconditioning is used. 
When dprm[14] = 1, the diagonal left  
preconditioning is exploited. See Comments on use. 
The default is dprm[14] = 0. 

dprm[15] to [31]:  Preserved area for future enhanced  
functionality. 

zeval dcomplex 

zeval[nsel] 

Output Detected eigenvalues are stored in zeval[i-1] , i = 1, ... , nev. 

zevec dcomplex 

zevec[nsel][kv] 

Output Detected eigenvectors are stored in zevec[i-1][j-1], i = 1, ... , 

nev, j = 1, ... , n. 

  Input Set the initial vector in zevec[0][i-1], i = 1, ... , n when 

iflag[6]  0 and dprm[6] = 1.0. 

kv int Input C fixed dimension of array zevec ( n). 

dhis double 

dhis[2][kh] 

Output The convergence history of the residuals of the eigenproblem are stored 

in dhis[0][i-1], i = 1, ... , min(kh, iter). The final relative 

residual norm of the each correction equation are stored in 

dhis[1][i-1], i = 1, ... , min(kh, iter). 

kh int Input C fixed dimension of array dhis (0). Setting kh = itmax is enough. 

If kh = 0 is set, the outputs to the array dhis are suppressed. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

1000 Breakdown occurred in the iterative linear 

equations solver. 

Processing is continued with the approximated 

solution until the point. 

2000 A null vector is detected in a sort of process of the 

orthogonalization. 

Processing is continued with the subspace 

expanded by a random vector. 

3000 A recovery procedure is activated in a sort of 

restorative process of the delay deflation. 

Processing is continued. 

10000 The iteration count reached the maximum limit 

before nsel-th eigenvalue is obtained. 

The calculated eigenpairs up to nev are correct. 
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Code  Meaning  Processing 

20000 The projected dense eigenproblem can not be 

solved. 

Processing is discontinued. 

The calculated eigenpairs up to nev are correct if 

nev >0. 

21000 The iteration count reached the maximum limit 

without a single convergence. 

Processing is discontinued. 

The approximate values obtained up to this point 

are output in array zeval[0] and 

zevec[0][0] to [0][n-1], but their 

precision cannot be guaranteed. 

29000 An internal error occurred. Processing is discontinued. 

30000 One of the following has occurred: 

• n < 1 

• itrgt < 0 

• itrgt > 6 

• nsel < 1 

• nsel > n 

• itmax < 0 

• kv < n 

• kh < 0. 

 

30001 to 

30032 

The value of iflag or dprm is not correct.  

31000 The value of nz, ncol or nfrnz is not correct.  
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Figure c_dm_vjdnhcr-1 Storing a matrix A in compressed row storage method 
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3. Comments on use 

Robustness of the Jacobi-Davidson algorithm 
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices 

based on the reduction of matrix elements.  The results obtained using the Jacobi-Davidson method depends on choice of 

the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified.  

This method is applicable when the seeking eigenvalues are only a few of the entire spectrum. 

The convergence behavior of this routine is affected by various auxiliary parameters.  For description of these parameters, 

refer to "Comments on use." 

itrgt and ztrgt parameter 
The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of 

itrgt, which specifies a way of selecting eigenvalues.  However, an explicit specification of the value in dprm[2] by 

setting iflag[2]  0 is prior to the default value of course.  Which means that the standard algorithm can be used with 

itrgt = 0 or 2, and that the harmonic algorithm can be used with itrgt = 1, 3, 4, 5 or 6, as long as user knows its 

adaptivity. 

Note that the ztrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just 

setting itrgt = 2, which specifies to compute eigenvalues with smallest magnitude.  Define the ztrgt to be (0.0,0.0) if 

other appropriate value is not known. 

Calculating the residual norm 
In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to the absolute value 

of the approximated eigenvalue.  When the absolute value of the seeking eigenvalue is far smaller than the norm of the 

matrix, however, it is difficult to satisfy the convergence condition |Auu|/|| < dprm[3].  In that case, adjust the 

convergence criterion dprm[3], or change the way of calculating the residual norm which can be specified by 

dprm[4] parameter. 

Delay deflation procedure 
This routine adopts an ingenious scheme to improve the precision of the results.  After the residual becomes below the 

convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the 

residual remains valid.  This procedure is called delay-deflation here.  The decrease ratio is regarded valid if the ratio of 

the residual norm relative to the preceding residual is less than the parameter dprm[5]. If the residual deteriorates while 

this extra iteration, the better previous variables are restored and the deflation with the vector takes place.  With setting 

dprm[5] = 0.0, this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary 

convergence criterion. 

Approximated eigenvalue in the correction equation 
In the initial few steps of the process, the values of  are usually poor approximations of the wanted eigenvalue. This 

routine takes the target value  specified in the ztrgt as an approximated eigenvalue instead of  in the initial phase, 

since the validity of the expansion vector t is affected by the closeness to the approximated eigenvalue in the Jacobi-

Davidson correction equation.  The process is regarded as the initial phase of the iteration while the iteration count is less 

than or equal to dprm[8].  However, the default value of this parameter is dprm[8] = 0 when dprm[2] = 0 is 

adopted, because it is difficult to determine a value of  in advance when the standard algorithm is specified. 
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Stopping criterion for inner iteration 
The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm 

consists of two nested iterations.  In the outer iteration the approximation for the eigenproblem is constructed , and in the 

inner iteration the correction equation is approximately solved.  If the residual of the eigenproblem still not be small in the 

outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary.  Therefore, the 

stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration.  The 

criterion is set to be dprm[12]  dprm[13]l, where l is the outer iteration counter which is reset to zero at each 

deflation.  Incidentally, the upper limit count for the inner iteration is specified by dprm[11]. 

Precondition for the correction equation 
It is known that a good preconditioner improves the convergence of the iterative method for linear equations.  The 

preconditioner to be applied is controlled by the parameter dprm[14] in this routine.  Note that the value of ztrgt is 

used for constructing a matrix M  (A   I), which approximates a part of the coefficient matrix in some way.  The 

preconditioner is derived from the inverse procedure of the matrix M and projections on both sides.  If the preconditioner 

does not approximate the coefficient matrix of the correction equation properly or the parameter ztrgt is far from the 

seeking eigenvalue, the convergence may deteriorate. 

Memory usage 
This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when 

the available area of the memory runs out.  The necessary size for the outer iteration is at least n  (3  mmax  2  nsel)  

 16 bytes for the standard algorithm and n  (4  mmax  2  nsel)   16 bytes for the harmonic algorithm.  And when 

the GMRES method is used as the solver of the correction equation, the additional necessary area is n  dprm[11]  16 

bytes for the inner iteration. 

 

4. Example program 

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem Ax =  x are sought, where A is 

a 10000  10000 example matrix of the random sparsity pattern with 20 nonzero entries in each row. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4 

processors. 

/* **EXAMPLE** */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <malloc.h> 
#include <omp.h> 
#include "cssl.h" 
 
#define NMAX 10000 
#define NZC 20 
#define NNZMAX NMAX*NZC 
#define LDK 10 
 
int      mkspmat(int, int, dcomplex*, int*, int*); 
dcomplex comp_add(dcomplex, dcomplex); 
dcomplex comp_sub(dcomplex, dcomplex); 
dcomplex comp_mult(dcomplex, dcomplex); 
double   cdabs(dcomplex); 
 
 
int MAIN__() { 
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  static dcomplex za[NNZMAX], ztrgt, zeval[LDK], zevec[LDK][NMAX]; 
  dcomplex rvec[NMAX]; 
  double derr, dprm[32], dhis[2][NMAX]; 
  int nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt, iflag[32]; 
  int nsel, nev, itmax, iter, i, j, k, icon, ldx, ldh; 
 
  n = NMAX; 
  mkspmat(n, NZC, za, ncol, nfrnz); 
  nz = nfrnz[n] - 1; 
  itmax = 500; 
  nsel = 10; 
  for (i=0; i<32; i++) { 
    iflag[i] = 0; 
  } 
  ldx = NMAX; 
  ldh = NMAX; 
  ztrgt.re = 0.0; 
  ztrgt.im = 0.0; 
  itrgt = 1; 
  c_dm_vjdnhcr(za, nz, ncol, nfrnz, n, itrgt, ztrgt, nsel, &nev, 
               itmax, &iter, iflag, dprm, zeval, (dcomplex*)zevec, ldx, 
               (double*)dhis, ldh, &icon); 
 
  printf(" C_DM_VJDNHCR ICON= %d\n", icon); 
  printf(" ITER= %d\n", iter); 
  for (k=0; k<nev; k++) { 
    for (i=0; i<n; i++) { 
      rvec[i].re = 0.0; 
      rvec[i].im = 0.0; 
    } 
#pragma omp parallel for private(j)  
    for (i=0; i<n; i++) { 
      for (j=nfrnz[i]-1; j<nfrnz[i+1]-1; j++) { 
        rvec[i] = comp_add(rvec[i], comp_mult(za[j], zevec[k][ncol[j]-1])); 
      } 
      rvec[i] = comp_sub(rvec[i], comp_mult(zeval[k], zevec[k][i])); 
    } 
    derr = 0.0; 
    for (i=0; i<n; i++) { 
      derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im); 
    } 
    derr = sqrt(derr); 
    printf(" EIGEN VALUE %d = (%.15lf,%.15lf)\n", k+1, zeval[k].re, zeval[k].im); 
    printf(" ERROR= %3.15le\n", derr/cdabs(zeval[k])); 
  } 
  return(0); 
} 
 
int mkspmat(int n, int nzc, dcomplex *za, int *ncol, int *nfrnz) { 
#define LDW 1350 
 
  int  i, ic, ict, j, k, iseed, icon; 
  double  *dwork, rndwork[LDW]; 
 
  dwork = (double *)malloc(nzc * sizeof(double)); 
 
  iseed = 1; 
  c_dvran4(0.0, 1.0, &iseed, (double*)za, (2*n*nzc), rndwork, LDW, &icon); 
  iseed = 1; 
  for (i=0; i<n; i++) { 
    nfrnz[i] = i * nzc + 1; 
LABEL_10:   c_dvrau4(&iseed, dwork, nzc, rndwork, LDW, &icon); 
    ic = i * nzc; 
    for (j=0; j<nzc; j++) { 
      ict = n * fabs(dwork[j]) + 1; 
      for (k=0; (k<=j) && (j!=0); k++) { 
        if (ict == ncol[ic-k]) goto LABEL_10; 
      } 
      ic = ic + 1; 
      ncol[ic-1] = ict; 
    } 
  } 
  nfrnz[n] = ic + 1; 
  free(dwork); 
  return 0; 
} 
 
dcomplex comp_add(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
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  obj.re = so1.re + so2.re; 
  obj.im = so1.im + so2.im; 
  return obj; 
} 
 
dcomplex comp_sub(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re - so2.re; 
  obj.im = so1.im - so2.im; 
  return obj; 
} 
 
dcomplex comp_mult(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re * so2.re - so1.im * so2.im; 
  obj.im = so1.re * so2.im + so1.im * so2.re; 
  return obj; 
} 
 
double cdabs(dcomplex so) { 
  double obj; 
 
  obj = sqrt(so.re * so.re + so.im * so.im); 
  return obj; 
} 
 

5. Method 

Consult the entry for DM_VJDNHCR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7]. 
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c_dm_vlax 

A system of linear equations with a real matrix (blocked LU 

decomposition method). 

ierr = c_dm_vlax(a, k, n, b, epsz, isw, &is, 

ip, &icon); 

1. Function 

This function solves a system of real coefficient linear equations using the blocked LU-decomposition method of outer 

product type. 

 Ax = b 

where, A is a non-singular real matrix of n  n, b is an n-dimensional real constant vector, and x is an n-dimensional 

solution vector. ( n  1) 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vlax((double*)a, k, n, b, epsz, isw, &is, ip, &icon); 

where: 

a double 

a[n][k] 

Input 

Output 

Matrix A. 

Matrices L and U. 

k int Input C fixed dimension of array a (  n). 

n int Input Order n of matrix A. 

b double b[n] Input Constant vector b. 

  Output Solution vector x. 

epsz double Input Tolerance for relative zero test of pivots in decomposition process of A 

(  0).  When epsz is zero, a standard value is used.  See Comments on 

use. 

isw int Input Control information. 

When solving several sets of equations that have the same coefficient 

matrix, set isw=1 for the first set, and isw=2 for the second and 

subsequent sets.  Only argument b is assigned a new constant vector b 

and the others are unchanged.  See Comments on use. 

is int Output Information for obtaining the determinant of matrix A.  When the n 

elements of the calculated diagonal of array a are multiplied together, 

and the result is then multiplied by is, the determinant is obtained. 

ip int ip[n] Work The transposition vector which indicates the history of row exchange by 

partial pivoting.  A one-dimensional array of size n. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 
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Code  Meaning  Processing 

20000 Either all of the elements of some row are zero or 

the pivot became relatively zero.  It is highly 

probable that the coefficient matrix is singular. 

Discontinued. 

30000 One of the following has occurred: 

 k < n 

 n < 1 

 epsz < 0 

 isw  1 or 2 

Bypassed. 

3. Comments on use 

epsz 
If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning: 

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix A = ( aij ), that is: 

epsz ij
k
kk aa max  

then the relative pivot value is assumed to be zero and processing terminates with icon = 20000.  The standard value of 

epsz is 16µ, where µ is the unit round-off.  If the processing is to proceed at a lower pivot value, epsz will be given the 

minimum value but the result is not always guaranteed. 

isw 
When solving several sets of linear equations with same coefficient matrix, specify isw = 2 for any second and 

subsequent sets after successfully completing the first with isw = 1.  This will bypass the LU-decomposition section and 

go directly to the solution stage.  Consequently, the computation for these subsequent sets is far more efficient than 

otherwise.  The value of is is identical for all sets and any valid isw. 

4. Example program 

A system of linear equations having on 1000  1000 coefficient matrix is solved. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
#define NMAX      (1000) 
#define LDA       (NMAX+1) 
 
MAIN__() 
{ 
  int    n, is, isw, i, j, icon, ierr; 
  int    ip[NMAX]; 
  double a[NMAX][LDA], b[NMAX]; 
  double epsz, s, det; 
 
  n    = NMAX; 
  epsz = 0.0; 
  isw  = 1; 
 
#pragma omp parallel for shared(a,n) private(i,j) 
  for(i=0; i<n; i++) 
    for(j=0; j<n; j++) a[i][j] = min(i,j)+1; 
 
#pragma omp parallel for shared(b,n) private(i) 
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  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1); 
 
  ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vlax failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  s = 1.0; 
#pragma omp parallel for shared(a,n) private(i) reduction(*:s) 
  for(i=0; i<n; i++) s *= a[i][i]; 
 
  printf("solution vector:\n"); 
  for(i=0; i<10; i++) printf("    b[%d] = %e\n", i, b[i]); 
 
  det = is*s; 
  printf("\ndeterminant of the matrix = %e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VLAX in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vlbx 

A system of linear equations with banded real matrices (Gaussian 

elimination). 

ierr = c_dm_vlbx(a, k, n, nh1, nh2, b, epsz, 

isw, &is, ip, &icon); 

1. Function 

This routine solves a system of linear equations with the banded real matrix using Gaussian elimination. 

 Ax = b 

where, A is an n  n banded matrix, with the lower bandwidth h1, and upper bandwidth h2, b is an n-dimensional real 

constant vector, and x is an n-dimensional solution vector. n > h1  0, n > h2  0. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vlbx((double*)a, k, n, nh1, nh2, b, epsz, isw, &is, ip, &icon); 

where: 

a double 

a[n][k] 

Input Store banded coefficient matrix A. 

See Figure c_dm_vlbx-1. 

  Output LU-decomposed matrices L and U are stored. 

See Figure c_dm_vlbx-2. 

The value of a is not assured after operation. 

k int Input C fixed dimension of array a (  2  nh1 + nh2 + 1). 

n int Input Order n of matrix A. 

nh1 int Input Lower bandwidth size h1. 

nh2 int Input Upper bandwidth size h2. 

b double b[n] Input Constant vector b. 

  Output Solution vector x. 

epsz double Input Judgment of relative zero of the pivot ( 0.0).  When epsz is zero, the 

standard value is set.  See Comments on use. 

isw int Input Control information. 

When solving k (k  1) sets of equations having the same coefficient 

matrix, specify as follows. 

   1 the first set of equations. 

   2 the second and subsequent sets of equations. 

When specifying isw = 2, change only the value of b into a new 

constant vector b and do not change any other parameters. 

is int Output Indicates row vector exchange count.  See Comments on use. 

   1 exchange count is even. 

   1 exchange count is odd. 

ip int ip[n] Output The transposition vector to contain row exchange information is stored.  

See Comments on use. 
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icon int Output Condition code.  See below. 
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Figure c_dm_vlbx-1. Storing matrix A in array a 

The column vector of matrix A is continuously stored in columns of array a in the same manner as diagonal elements of 

banded matrix A aii, i = 1, ... , n, are stored in a[i1][h1h2]. 

Upper banded matrix part: 

aji, j, i = 1, ... , h2, j = 1, ... , n, j  i  1 is stored in a[i][j], i = 0, ... , n1, j = h1, ... , h1h21. 

Lower banded matrix part: 

aji, j, i = 1, ... , h1, j = 1, ... , n, j  i  n is stored in a[i][j], i = 0, ... , n1, j = h1h21, ... , 2h1h2. 

For a[i][j], i = 0, ... , n  1, j = 0, ... , h11, set zero for the elements of matrix A outside the band. 

* indicates undefined values. 
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Figure c_dm_vlbx-2. Storing LU-decomposed matrix L and U in array a 

LU-decomposed unit upper banded matrix except diagonal elements uji1, j, i = 1, ... , h1  h2, j = 1, ... , n, j  i  1  1 is 

stored in a[i][j], i = 0, ... , n1, j = 0 , ... , h1  h2. 

Lower banded matrix part: 

lji, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in a[i][j], i = 0, ... , n1, j = h1  h2, ... , 2  h1  h2. 

* indicates undefined values. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 All elements in some row of array a were zero, or 

the pivot became relatively zero.  Matrix A may 

be singular. 

Discontinued. 

30000 One of the following has occurred: 

 n < 1 

 nh1  n 

 nh1 < 0 

 nh2  n 

 nh2 < 0 

 k < 2  nh1 + nh2  1 

 epsz < 0 

Bypassed. 
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3. Comments on use 

epsz 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition.  In 

this case, processing is discontinued with icon = 20000.  When unit round off is u, the standard value of epsz is 16  u. 

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz.  In this case, 

however, the result is not assured. 

ip 
In this routine, the row vector is exchanged using partial pivoting.  That is, when the I-th row (I  J) is selected as the 

pivot row in the J-th stage (J = 1, ... , n) of decomposition, the contents of the I-th row and J-th row are exchanged.  To 

indicate this exchange, I is stored in ip[J 1]. 

is 
The determinant can be obtained by multiplying is and a[i][h1  h2], where i = 0, ... , n  1. 

4. Example program 

The system of linear equations with banded matrices is solved with the input of a banded real matrix of n = 10000, nh1 = 

2000, nh2 = 3000. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
 
#define NH1   2000 
#define NH2   3000 
#define N     10000 
#define KA    (2*NH1+NH2+1) 
#define NWORK 4500 
 
int MAIN__() 
{ 
  double a[N][KA], b[N], dwork[NWORK]; 
  double tt1, tt2, tmp, epsz; 
  int    ip[N], i, j, is, ix, isw, icon, nptr, nbase, nn; 
 
  ix = 123; 
  nn = NH1+NH2+1; 
  for (i=0; i<N; i++) { 
    c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon); 
  } 
 
  printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N); 
 
  /* zero clear */ 
  for (j=0; j<N; j++) { 
    for (i=0; i<NH1; i++) { 
      a[j][i] = 0.0; 
    } 
  } 
 
  /* left upper triangular part */ 
  for (j=0; j<NH2; j++) { 
    for (i=0; i<NH2-j; i++) { 
      a[j][i+NH1] = 0.0; 
    } 
  } 
 
  /* right rower triangular part */ 
  nbase = 2*NH1+NH2+1; 
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  for (j=0; j<NH1; j++) { 
    for (i=0; i<j; i++) { 
      a[N-NH1+j][nbase-i-1] = 0.0; 
    } 
  } 
 
  /* set right hand constant vector */ 
  for (i=0; i<N; i++) { 
    b[i] = 0.0; 
  } 
 
  for (i=0; i<N; i++) { 
    nptr = i; 
    for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) { 
      b[j] += a[i][j-i+NH1+NH2]; 
    } 
  } 
 
  epsz = 0.0; 
  isw  = 1; 
  c_dm_vlbx((double*)a, KA, N, NH1, NH2, b, epsz, isw, &is, ip, &icon); 
 
  tmp = 0.0; 
  for (i=0; i<N; i++) { 
    tmp = max(tmp,fabs(b[i]-1)); 
  } 
 
  printf("maximum error = %e\n", tmp); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VLBX in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vlcspsxcr1 

System of linear equations with non-Hermitian symmetric complex 

sparse matrices (Conjugate A-Orthogonal Conjugate Residual method 

with preconditioning by incomplete LDLT decomposition, symmetric 

compressed row storage method) 

ierr = c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, 

n, zb, isw, zx, ipar, rpar, zvw, 

&icon); 

1. Function 

This routine solves, using Conjugate A-Orthogonal Conjugate Residual method, COCR method, a system of linear 
equations with non-Hermitian symmetric complex  sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix A is stored using the symmetric compressed row storage method. Vectors b and x are n-

dimensional vectors. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, n zb, isw, zx, ipar, rpar, zvw, 

&icon); 

 

where: 

zsa dcomplex 

zsa[nz] 

Input The nonzero elements of the coefficient matrix are stored. 

Regarding the symmetric compressed row storage method, see Fig. 

c_dm_vlcspsxcr1-1. 

nz int Input Total number of the nonzero elements belong to the coefficient matrix 

A (   1). 

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which 

indicate the column number of each nonzero element stored in the array 

zsa. 

nfrnz int nfrnz[n+1] Input The position of the first nonzero element stored in array zsa by the 

symmetric compressed row storage methods which  stores the nonzero 

elements row by row of upper triangular portion of matrix A.  

nfrnz[n] = nz + 1. 

n int Input Order n of the matrix A (   1). 

zb dcomplex zb[n] Input The right-side constant vector of the system of linear equations is 

stored. 

isw int Input Control information. 

When solving multiple sets of equations having the same coefficient 

matrix, specify as follows; 

Specify isw = 1 for the first set of equations. 

Specify isw = 3 for the second and subsequent sets with the same 
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coefficient matrix and different constant vector b. 

When specifying isw = 3, change only the value of zb and zx into a 

new constant vector b and initial vector x and do not change other 

parameters. 

zx dcomplex zx[n] Input The initial value of solution can be specified. 

  Output The solution vector is stored. 

ipar int ipar[20]  Control parameters having integer values. Some parameters may be 

modified on output. When specify 0 for any parameter, it will be 

assumed to specify default value on it. If no convergence is met by 

using default parameters, it is recommended to try again by making 

parameters change. 

  Input ipar[0] to [4]: Reserved for future extensions. Specify 0 for each,  

just in case. 

  Input ipar[5]: Specify the upper limit of iteration counts for the COCR 

                   method (   0). Default value is 2000. 

  Output ipar[6]: Actual iteration counts. 

  Output ipar[7]: Actual evaluation counts of matrix-vector multiplications 

Av 

                   where A is the coefficient matrix and v is iterative vector in  

the COCR method. 

  Input ipar[8] to [9]: Reserved for future extensions. Specify 0 for each,  

just in case. 

  Input ipar[10]: Specify control parameter how to make compensation for  

dropped new nonzero elements which are filled in during  

incomplete LDLT decomposition. If specify as  

ipar[10] = 0, no compensation will be made. If  

specify as ipar[10] = 1, compensation will be made 

by  

reflecting dropped entries into diagonal elements. Default  

value is 0. 

For more detail, See Comments on use. 

  Output ipar[11]: Actual number of dropped new nonzero elements. 

  Input ipar[12] to [19]: Reserved for future extensions. Specify 0 for  

each, just in case. 

rpar double 

rpar[20] 

 Control parameters having real values. Some parameters may be 

modified on output. When specify 0.0 for any parameter, it will be 

assumed to specify default value on it. If no convergence is met by 

using default parameters, it is recommended to try again by making 

parameters change. 

  Input rpar[0]: Reserved for future extensions. Specify 0.0 for each, just in  

case. 

  Input rpar[1]: Specify convergence criteria epst for iterative solution of 

given a system of linear equations by COCR method 

 (   0.0). 

  Output rpar[2]: Relative residual norm for residual vector of the solution. 

  Output rpar[3]: Real part of the accumulated sum of dropped new nonzero 
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elements which are filled in during incomplete LDLT 

decomposition. 

                     For more detail, See Comments on use. 

  Output rpar[4]: Imaginary part of the accumulated sum of dropped new 

nonzero elements which are filled in during incomplete 

LDLT decomposition. 

                     For more detail, See Comments on use. 

  Input rpar[5] to [19]: Reserved for future extensions. Specify 0.0 for  

each, just in case. 

zvw dcomplex 

zvw[nz] 

Work 

area 

 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 The iteration counts reached the upper limit. Processing is discontinued. 

The already calculated approximate value is 

output to array zx along with relative residual 

error. 

29000 Matrix A is singular. Processing is discontinued. 

30000 Parameter error(s). 

• n < 1 

• nz < 1 

• nz ≠ nfrnz[n] - 1 

• isw < 1 

• isw = 2 

• isw > 3 

• ipar[5] < 0 

• ipar[10] < 0 

• ipar[10] > 1 

• rpar[1] < 0.0. 
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     Figure c_dm_vlcspsxcr1-1  Storing matrix A in symmetric compressed row storage method 

 

3. Comments on use 

About drop of the new nonzero and its compensation 
In this routine, the new nonzero elements which are filled in during incomplete LDLT decomposition will be dropped in 

general. In order to ease up effect of such dropping, this routine attempts to compensate such dropping according to 

ipar[10]. If specify as ipar[10] = 1, it makes compensation for each diagonal elements by adding certain value 

which is accumulated sum of dropped new nonzero elements which are filled in on the row. By this compensation, it may 

affect to improve characteristic of the preconditioning matrix. 

Further, this routine outputs the accumulated sum zdrp as an index regardless of ipar[10] specification. The real part 

and imaginary part of zdrp are stored in rpar[3] and rpar[4] respectively. 

 

4. Example program 

Read a symmetric complex matrix, then solve a linear system of equations Ax = b by this routine. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* ==================================================== 
    TEST PROGRAM FOR KRYLOV ITERATION METHODS 
    FOR SPARSE LINEAR EQUATIONS  
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    WITH NON-HERMIT COMPLEX SYMMETRIC MATRIX.  
   ==================================================== */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" 
 
#define NZMAX 500000 
#define NMAX 10000 
 
dcomplex comp_add(dcomplex, dcomplex); 
dcomplex comp_mult(dcomplex, dcomplex); 
void cmsvcr1(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, int); 
void creadmat(char*, double*, int*, int*, int*, double*); 
void cmatcopy(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, dcomplex*, 
              int*, int*, dcomplex*, dcomplex*); 
void cvecgen(dcomplex*, int, int*, int*, dcomplex*, dcomplex*); 
double cnorm(dcomplex*, int); 
 
int MAIN__() { 
 
  dcomplex    zsa[NZMAX], zx[NMAX], zb[NMAX], zsat[NZMAX], zxt[NMAX], 
              zbt[NMAX], zvw[NZMAX]; 
  int     nfrnz[NMAX+1], ncol[NZMAX], nfrnzt[NMAX+1], ncolt[NZMAX], ipar[20]; 
  double  rpar[20]; 
  char    title[74]; 
 
  int     n, nz, isw, ii, ic, icmav, mdrp, nzdrp, icon; 
  double  epst, relres, drpr, drpi,rel, relerr; 
/* ---------------------------------------------------- 
        INPUT MATRIX FROM UF SPARSE MATRIX COLLECTION 
   ---------------------------------------------------- */ 
  creadmat(title, (double *)zsat, &n, nfrnzt, ncolt, (double *)zsa); 
  cvecgen(zsat, n, nfrnzt, ncolt, zxt, zbt); 
  cmatcopy(zsat, n, nfrnzt, ncolt, zxt, zbt, zsa, nfrnz, ncol, zx, zb); 
 
  printf( 
    "\n--------------------------------------------------------------------\n"); 
  printf("TEST MATRIX : \n%s\n", title); 
/* ---------------------------------------------------- */ 
  isw = 1; 
  for (ii = 0; ii < 20; ii++) { 
    ipar[ii] = 0; 
    rpar[ii] = 0.0; 
  } 
  nz = nfrnz[n] - 1; 
  c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, n, zb, 
                  isw, zx, ipar, rpar, zvw, &icon); 
 
  ic = ipar[6]; 
  icmav = ipar[7]; 
  mdrp = ipar[10]; 
  nzdrp = ipar[11]; 
  epst = rpar[1]; 
  relres = rpar[2]; 
  drpr = rpar[3]; 
  drpi = rpar[4]; 
  rel = cnorm(zb, n); 
  cmsvcr1(zsa, n, nfrnz, ncol, zx, zb, 0); 
  relerr = cnorm(zb, n) / rel; 
 
  printf( 
    "\n--------------------------------------------------------------------\n"); 
  printf(" SOLUTION RESULTS BY \"C_DM_VLCSPSXCR1\"\n\n"); 
  printf(" N           =%12d\n", n); 
  printf(" NZ          =%12d\n", nfrnz[n]-1); 
  printf(" MDRP        =%12d\n\n", mdrp); 
  printf(" ICON        =%12d\n", icon); 
  printf(" IC          =%12d\n", ic); 
  printf(" ICMAV       =%12d\n", icmav); 
  printf(" NZDRP       =%12d\n", nzdrp); 
  printf(" DRPR        =%12.2le\n", drpr); 
  printf(" DRPI        =%12.2le\n", drpi); 
  printf(" EPST        =%12.2le\n", epst); 
  printf(" RELRES      =%12.2le\n", relres); 
  printf(" RELERR      =%12.2le\n", relerr); 
  printf( 
    "--------------------------------------------------------------------\n"); 
  if ((relerr <= epst * 1.1) && (icon == 0)) { 
    printf("  ********** OK **********\n"); 
  } else { 
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    printf("  ********** NG **********\n"); 
  } 
  return(0); 
} 
 
dcomplex comp_add(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re + so2.re; 
  obj.im = so1.im + so2.im; 
  return obj; 
} 
 
dcomplex comp_mult(dcomplex so1, dcomplex so2) { 
 
  dcomplex obj; 
 
  obj.re = so1.re * so2.re - so1.im * so2.im; 
  obj.im = so1.re * so2.im + so1.im * so2.re; 
  return obj; 
} 
 
/* ===================================================== 
        MATRIX VECTOR MULTIPLICATION. 
        COMPLEX SYMMETRIC MATRIX STORED IN CSR FORM. 
   ===================================================== */ 
void cmsvcr1(dcomplex *zsa, int n, int *nfrnz, int *ncol, dcomplex *zx, 
       dcomplex *zb, int isw) { 
  int     i, j, k1, k2; 
  dcomplex    zsa_w; 
 
  if (isw == 1) {     /* *** MULTIPLICATION (AX=>B) */ 
    for (i = 0; i < n; i++) { 
      zb[i].re = 0.0; 
      zb[i].im = 0.0; 
    } 
    for (i = 0; i < n; i++) { 
      k1 = nfrnz[i] - 1; 
      k2 = nfrnz[i+ 1] - 1; 
      if (zx[i].re != 0.0 || zx[i].im != 0.0) { 
        for (j = k1; j < k2; j++) { 
          zb[ncol[j] - 1] = comp_add(comp_mult(zsa[j], zx[i]), 
                              zb[ncol[j] - 1]); 
                                 
          if (ncol[j] != i + 1) 
            zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] -1]), zb[i]); 
        } 
      } else {     
        for (j = k1; j < k2; j++) {     
          zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] - 1]), zb[i]); 
        } 
      } 
    } 
  } else {    /* *** RESIDUAL VECTOR (B-AX=>B) */ 
    for (i = 0; i < n; i++) { 
      k1 = nfrnz[i] - 1; 
      k2 = nfrnz[i + 1] - 1; 
      if (zx[i].re != 0.0 || zx[i].im != 0.0) { 
        for (j = k1; j < k2; j++) { 
          zsa_w = zsa[j]; 
          zsa_w.re = -zsa_w.re; 
          zsa_w.im = -zsa_w.im; 
          zb[ncol[j] - 1] = comp_add(comp_mult(zsa_w, zx[i]), zb[ncol[j] - 1]); 
          if (ncol[j] != i + 1) { 
            zsa_w = zsa[j]; 
            zsa_w.re = -zsa_w.re; 
            zsa_w.im = -zsa_w.im; 
            zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]); 
          } 
        } 
      } else { 
        for (j = k1; j < k2; j++) { 
          zsa_w = zsa[j]; 
          zsa_w.re = -zsa_w.re; 
          zsa_w.im = -zsa_w.im; 
          zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]); 
        } 
      } 
    } 
  } 
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  return; 
} 
 
/* ===================================================== 
        READ TEST MATRIX FOR COMPLEX SYMMETRIC MATRIX. 
   ===================================================== */ 
void creadmat(char *title, double *a, int *ncol, int *is, int *js, double *w) { 
 
/*  THIS ROUTINE READS MATRIX DATA OF RB SPARSE FORM. 
    THE FOLLOWING SAMPLE CODE IS ORIGINATED FROM MATRIX 
    MARKET;                                             */ 
 
  char  key[11], mxtype[4], rhstyp[4], 
        ptrfmt[17], indfmt[17], valfmt[21], rhsfmt[23]; 
  char  dummy[12]; 
  int  totcrd, ptrcrd, indcrd, valcrd, rhscrd, 
       nrow, nnzero, neltvl, 
       nrhs, nrhsix; 
  int  i; 
/*  ------------------------ 
     READ IN HEADER BLOCK 
    ------------------------ */ 
  scanf("%72c%8c", title, key); 
  title[72] ='\0';  
  scanf("%14d%14d%14d%14d%14d", &totcrd, &ptrcrd, &indcrd, 
      &valcrd, &rhscrd); 
  scanf("%3c%11c%14d%14d%14d%14d", mxtype, dummy, &nrow, ncol, 
      &nnzero, &neltvl); 
  scanf("%16c%16c%20c%20c", ptrfmt, indfmt, valfmt, rhsfmt);   
  if (rhscrd > 0) { 
    scanf("%3c%11c%14d%14d", rhstyp, dummy, &nrhs, &nrhsix); 
  } 
/*   ------------------------- 
      READ MATRIX STRUCTURE 
     ------------------------- */ 
  for (i = 0; i <= *ncol; i++) { 
    scanf("%5d", &is[i]); 
  } 
  for (i = 0; i < nnzero; i++) { 
    scanf("%4d", &js[i]); 
  } 
 
  if (valcrd > 0) {  
/*  ---------------------- 
     READ MATRIX VALUES 
    ---------------------- */ 
    if (mxtype[0] == 'R') { 
      for (i = 0; i < nnzero; i++) { 
        scanf("%le", &a[i]); 
      } 
    } else { 
      for (i = 0; i < 2 * nnzero; i++) { 
        scanf("%le", &a[i]); 
      } 
    } 
  } 
  return; 
} 
 
/* ===================================================== 
        COPY COMPLEX MATRIX AND VECTORS. 
   ===================================================== */ 
void cmatcopy(dcomplex *zsat, int n, int *nfrnzt, int *ncolt, 
       dcomplex *zxt, dcomplex *zbt, dcomplex *zsa, int *nfrnz, int *ncol, 
       dcomplex *zx, dcomplex *zb) { 
  int  nz, i; 
 
  nz = nfrnzt[n] - 1; 
  for (i = 0; i <= n; i++) { 
    nfrnz[i] = nfrnzt[i]; 
  } 
  for (i = 0; i < nz; i++) { 
    zsa[i] = zsat[i]; 
    ncol[i] = ncolt[i]; 
  } 
 
  for (i = 0; i < n; i++) { 
    zx[i] = zxt[i]; 
    zb[i] = zbt[i]; 
  } 
  return; 
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} 
 
/* ===================================================== 
        GENERATE COMPLEX B AND X VECTORS. 
   ===================================================== */ 
void cvecgen(dcomplex *zsat, int n, int *nfrnzt, int *ncolt, dcomplex *zxt, 
       dcomplex *zbt) { 
  int  ii; 
 
/*  COMPUTE RIGHT HAND SIDE VECTOR B. */ 
  for (ii = 1; ii <= n; ii++) { 
    zxt[ii - 1].re = 1.0 + (double)ii / (double)n; 
    zxt[ii - 1].im = 0.0; 
  } 
  cmsvcr1(zsat, n, nfrnzt, ncolt, zxt, zbt, 1); 
 
/*  SET INITIAL VALUE */ 
  for (ii = 0; ii < n; ii++) { 
    zxt[ii].re = 0.0; 
    zxt[ii].im = 0.0;  
  } 
  return; 
} 
 
/* ===================================================== 
        L2 NORM OF A COMPLEX VECTOR. 
   ===================================================== */ 
double cnorm(dcomplex *zx, int n) { 
  int  i; 
  double  cnorm_ret; 
 
  cnorm_ret = 0.0; 
  for (i = 0; i < n; i++) { 
    cnorm_ret +=  (zx[i].re * zx[i].re + zx[i].im * zx[i].im); 
  } 
  if (cnorm_ret != 0.0) 
    cnorm_ret = sqrt(cnorm_ret); 
  return(cnorm_ret); 
} 
 

5. Method 

Consult the entry for DM_VLCSPSXCR1 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as 

[62] , [70]. 
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c_dm_vlcx 

A system of linear equations with complex matrices (blocked LU 

decomposition method) 

ierr = c_dm_vlcx(za, k, n, zb, epsz, isw, &is, 

ip, &icon); 

1. Function 

This routine solves a system of complex coefficient linear equations using blocked LU-decomposition method of an outer 

product type. 

 Ax = b (1) 

where, A is a non-singular n  n complex matrix, b is an n-dimensional complex constant vector, and x is an n-

dimensional solution vector (n  1). 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vlcx((dcomplex*)za, k, n, zb, epsz, isw, &is, ip, &icon); 

where: 

za dcomplex 

za[n][k] 

Input 

Output 

Matrix A. 

Matrices L and U are stored in za. 

k int Input C fixed dimension of array za (  n). 

n int Input Order n of matrix A. 

zb dcomplex 

zb[n] 

Input Constant vector b. 

  Output Solution vector x. 

epsz double Input Judgment of relative zero of the pivot (  0.0). 

When epsz is 0.0, the standard value is assumed. See Comments on 

use. 

isw int Input Control information. 

When solving k (  1) sets of equations having identical coefficient 

matrices, specify as follows. 

Specify isw = 1 for the first set of equations. 

Specify isw = 2 for the second and the subsequent sets of equations.  

When specifying isw = 2, change only the value of zb into a new 

constant vector.  Do not change any other parameters. 

See Comments on use. 

is int Output Information to obtain the determinant of matrix A. 

The determinant is obtained by multiplying n diagonal elements of array 

za by the value of is after the operation. 

ip int ip[n] Output The transposition vector which indicates the history of the row exchange 

by partial pivoting. A one-dimensional array of size n. 

icon int Output Condition code.  See below. 
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The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 All the elements in some row of matrix A are 

zero, or the pivot becomes relatively zero.  Matrix 

A may be singular. 

Stopped. 

30000 One of the following has occurred: 

 k < n 

 n < 1 

 epsz < 0.0 

 isw  1 or 2 

Bypassed. 

3. Comments on use 

epsz 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz. In this case, processing is discontinued 

with icon = 20000.  When unit round off is µ, the standard value of epsz is 16µ. When the computation is to be 

continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured. 

isw 
When several sets of linear equations with an identical coefficient matrix are successively solved, the value of isw should 

be 2 from the second time on. This reduces the execution time because LU decomposition of coefficient matrix A is 

bypassed. The value of is does not change from the time isw = 1. 

4. Example program 

A system of linear equations having an n  n complex coefficient matrix is solved. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N  (2000) 
#define K  (N+1) 
 
MAIN__() 
{ 
  dcomplex za[N][K], zb[N]; 
  double   epsz, c, t, s, error; 
  int      ip[N]; 
  int      isw, is, icon, i, j; 
 
  c = sqrt(1.0/(double)(N+1)); 
  t = atan(1.0)*8.0/(N+1); 
 
  for (j=0; j<N; j++) { 
    for (i=0; i<N; i++) { 
      za[j][i].re = c*cos(t*(i+1)*(j+1)); 
      za[j][i].im = c*sin(t*(i+1)*(j+1)); 
    } 
  } 
 
  for (i=0; i<N; i++) { 
    s = 0.0; 
    for (j=0; j<N; j++) { 
      s += cos(t*(i+1)*(j+1)); 
      zb[i].re = s*c; 
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      zb[i].im = 0.0; 
    } 
  } 
 
  epsz = 0.0; 
  isw = 1; 
  c_dm_vlcx((dcomplex*)za, K, N, zb, epsz, isw, &is, ip, &icon); 
 
  printf("icon    = %d\n", icon); 
 
  error = 0.0; 
 
  for (i=0; i<N; i++) { 
    error = max(fabs(1.0-zb[i].re), error); 
  } 
 
  printf("error   = %f\n", error); 
  printf("ORDER   = %d\n", N); 
  printf("zb[0]   = %e\n", zb[0].re); 
  printf("zb[n-1] = %e\n", zb[N-1].re); 
 
  return(0); 
} 
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c_dm_vldlx 

A system of linear equations with LDLT -decomposed symmetric 

positive definite matrices. 

ierr = c_dm_vldlx(b, fa, kfa, n, &icon); 

1. Function 

This routine solves a system of linear equations with LDLT - decomposed symmetric positive definite coefficient matrix. 

 LDLTx = b 

Where, L and D are a unit lower triangular matrix and an n  n diagonal matrix respectively, b is an n-dimensional real 

constant vector, x is an n-dimensional solution vector, and n  1. 

This routine receives the LDLT-decomposed matrix from routine c_dm_vsldl and calculates the solution of a system of 

linear equations. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vldlx(b, (double*)fa, kfa, n, &icon); 

where: 

b double b[n] Input Constant vector b. 

  Output Solution vector x. 

fa double 

fa[n][n] 

Input The LDLT-decomposed matrices L, D1 , and LT are stored. 

The upper triangular matrix L, D1 and LT is stored in the upper 

triangular part {fa[i1][j1] , i  j} of fa. 

See Figure c_dm_vldlx-1. 

kfa int Input A fixed dimension of array fa. (  n ) 

n int Input Order n of matrices L and D. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

10000 Coefficient matrix is not positive definite. Continued. 

30000 n < 1, kfa < n Bypassed. 
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Figure c_dm_vldlx-1. Storing matrices L, D1 into array fa 
 
After LDLT decomposition, matrix D1 is stored in diagonal elements and L (excluding the diagonal elements) are 
stored in the upper triangular part respectively. 

3. Comments on use 

A system of linear equations with a positive definite coefficient matrix can be solved by calling this function after calling 

function c_dm_vsldl.  However, function c_dm_vlsx should be usually used to solve a system of linear equations in 

one step. 

4. Example program 

A 1000  1000 coefficient matrix is decomposed into LDLT-decomposed matrix, then the system of linear equations is 

solved. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
#define NMAX      (1000) 
#define LDA       (NMAX+1) 
 
MAIN__() 
{ 
  int    n, i, j, icon, ierr; 
  double a[NMAX][LDA], b[NMAX]; 
  double epsz, s, det; 
 
  n    = NMAX; 
  epsz = 0.0; 
 
#pragma omp parallel for shared(a,n) private(i,j) 
  for(i=0; i<n; i++) 
    for(j=0; j<n; j++) a[i][j] = min(i,j)+1; 
 
#pragma omp parallel for shared(b,n) private(i) 
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1); 
 
  ierr = c_dm_vsldl((double*)a, LDA, n, epsz, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon); 
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    exit(1); 
  } 
 
  ierr = c_dm_vldlx(b, (double*)a, LDA, n, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  s = 1.0; 
#pragma omp parallel for shared(a,n) private(i) reduction(*:s) 
  for(i=0; i<n; i++) s *= a[i][i]; 
 
  printf("solution vector:\n"); 
  for(i=0; i<10; i++) printf("    b[%d] = %e\n", i, b[i]); 
 
  det = 1.0/s; 
  printf("\ndeterminant of the matrix = %e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VLDLX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52]. 
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c_dm_vlspaxcr2 

System of linear equations with unsymmetric real sparse matrices 

(Induced Dimension Reduction method with preconditioning by sparse 

approximate inverse, compressed row storage method) 

ierr = c_dm_vlspaxcr2(a, nz, ncol, nfrnz, n, 

b, isw, x, am, nzm, ncolm, nfrnzm, 

nwm, ipar, rpar, vw1, ivw1, vw2, 

ivw2, lmmax, lnmax, numt, &icon); 

1. Function 

This routine solves, using IDR method with stabilization, IDRstab(s,l) method, a system of linear equations with 
unsymmetric real sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix A is stored using the compressed row storage method. Vectors b and x are n-dimensional 

vectors. The parameter s is the order of shadow residual and l is the order of acceleration polynomial. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vlspaxcr2(a, nz, ncol, nfrnz, n b, isw, x, am, &nzm, ncolm, 

nfrnzm, nwm, ipar, rpar, vw1, ivw1, (double*)vw2, (int*)ivw2, 

lmmax, lnmax, numt, &icon); 

 

where: 

a double a[nz] Input The nonzero elements of the coefficient matrix are stored. 

The compressed row storage method is to store transposed matrix of the 

coefficient matrix A in the compressed column storage method. 

Regarding the compressed column storage method, see Fig. 

c_dm_vmvscc-1. 

nz int Input Total number of the nonzero elements belong to the coefficient matrix 

(  1). 

ncol int ncol[nz] Input The column indices used in the compressed row storage method, which 

indicate the column number of each nonzero element stored in the array 

a. 

nfrnz int nfrnz[n+1] Input The position of the first nonzero element stored in array A by the 

compressed row storage methods which stores the nonzero elements 

row by row. nfrnz[n] = nz + 1. 

n int Input Order n of the matrix A (   1). 

b double b[n] Input The right-side constant vector of the system of linear equations is 

stored. 

isw int Input Control information. 

When solving multiple sets of equations having the same sparse 

structure and /or the same coefficient matrix, specify as follows; 
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Specify isw = 1 for the first set of equations. 

Specify isw = 2 for the second and subsequent sets with the same 

sparse structure and different coefficient matrix A and constant vector 

b. 

Specify isw = 3 for the second and subsequent sets with different 

constant vector b. 

When specifying isw = 2 or 3, change only the parameters necessary to 

be changed such as a, b and/or x and do not change other parameters. 

x double x[n] Input The initial value of solution can be specified. 

  Output The solution vector is stored. 

am double am[nwm] Input If any, the nonzero elements of the initial approximate inverse matrix 

M0 are stored in am[i-1], i = 1, ... , nzm using the compressed row 

storage method. 

The compressed row storage method is the same with matrix A. 

  Output The approximate inverse matrix M. 

nzm int Input If any, total number of the nonzero elements belong to the initial 

approximate inverse matrix M0 (   1). 

If not, specify as nzm = 0. In this case, this routine employs the unit 

matrix as the initial approximate inverse internally.  

  Output Total number of the nonzero elements of approximate inverse matrix 

M. 

ncolm int ncolm[nwm] Input If any, the column indices used in the compressed row storage method, 

which indicate the column number of each nonzero element stored in 

the array am. 

  Output The column indices of approximate inverse matrix M. 

nfrnzm int 

nfrnzm[n+1] 

Input If any, the position of the first nonzero element stored in array am by the 

compressed row storage method which stores the nonzero elements row 

by row. nfrnzm[n] = nzm + 1. 

  Output The position of the first nonzero element of each row of approximate 

inverse matrix M. 

nwm int Input Specify the maximum size of areas used for computation of 

approximate inverse matrix M (   1). 

Total number of the nonzero elements of approximate inverse matrix M 

is calculated by the formula below where nzk is number of nonzero 

elements in the k-th column of matrix A. 





n

k
k iparnznzm

1

)100/]1[,1max(  

Then nwm is specified as follows; 

),max( nznzmnwm  . 

For more detail, See Comments on use. 

ipar int ipar[20]  Control parameters having integer values. Some parameters may be 

modified on output. When specify 0 for any parameter, it will be 

assumed to specify default value on it. If no convergence is met by 

using default parameters, it is recommended to try again by making 

parameters change. 

  Input ipar[0]: Reserved for future extensions. Specify 0 for each, just in  
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case. 

  Input ipar[1]: Input. Specify percentage(%) which is the ratio of nonzero  

elements of approximate inverse against that of the  

coefficient matrix A (   0). 

It is used as upper limit control for nonzero elements  

generations. 

For instance, if specify as ipar[1] = 50, approximate  

inverse matrix will be generated having total nonzero  

number which is about 50% of that of coefficient matrix as  

an upper limit. Default value is 100. 

For more detail, See Comments on use. 

  Input ipar[2]: Specify incremental number which is number of adding  

new  indices during computation of column vector of  

approximate inverse matrix (n   ipar[2]   0). For  

instance, if specify as ipar[2] = 2, the number of  

indices within each column of approximate inverse will be  

incremented by 2 indices which are the most effective  

indices in term of the norm minimization.  

Default value is 1. 

For more detail, See Comments on use. 

  Input ipar[3]: Specify the order of shadow residual s of Induced  

Dimension Reduction method IDRstab(s,l) (n   s   0).  

Default value is 4. 

  Input ipar[4]: Specify the order of acceleration polynomial l of Induced  

Dimension Reduction method IDRstab(s,l) (n   l   0). 

Default value is 1. 

  Input ipar[5]: Specify the upper limit of iteration counts for IDRstab(s,l)  

                   method (   0). Default value is 2000. 

  Output ipar[6]: Actual iteration counts. 

  Output ipar[7]: Actual evaluation counts of matrix-vector multiplications  

                    Av  where A is the coefficient matrix and v is iterative  

vector in IDRstab(s,l) method. 

  Output ipar[8]: Estimated size nwm for am, ncolm etc. 

                    For more detail, See Comments on use. 

  Input ipar[9] to [11]: Reserved for future extensions. Specify 0 for each,  

just in case. 

  Output ipar[12]: Actual size lmmax used for vw2 and ivw2. 

  Output ipar[13]: Actual size lnmax used for vw2. 

  Input ipar[14] to [19]: Reserved for future extensions. Specify 0 for  

each, just in case. 

rpar double 

rpar[20] 

 Control parameters having real values. Some parameters may be 

modified on output. When specify 0.0 for any parameter, it will be 

assumed to specify default value on it. If no convergence is met by 

using default parameters, it is recommended to try again by making 

parameters change. 

  Input rpar[0]: Specify convergence criteria eps with iterative computation  
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for each column of approximate inverse matrix (  0.0). 

Default value is 0.3.  

  Input rpar[1]: Specify convergence criteria epst for iterative solution of 

given a system of linear equations by COCR method 

 (   0.0). 

  Output rpar[2]: Specify convergence criteria epst for iterative solution of 

given a system of linear equations by IDRstab(s,l) method 

(   0.0). 

                    Default value is 10-8. 

  Input rpar[3] to [19]: Reserved for future extensions. Specify 0.0 for 

each, just in case.  

vw1 double 

vw1[nwm] 

Work 

area 

 

ivw1 int ivw1[nwm] Work 

area 

 

vw2 double 

vw2[numt][lnma

x+3][lmmax] 

Work 

area 

 

ivw2 int 

ivw2[numt][3][

lmmax] 

Work 

area 

 

lmmax int Input The third dimension of working array (   1). 

lmmax is a certain value related to the number of nonzero elements of 

matrix A. Lets see certain column of matrix A, we defines the total 

number of nonzero elements in the column and another columns which 

are relatives of the nonzero elements of the column. Specify the 

maximum number of the total number between columns. In general, it 

is adequate to specify as lmmax = 1000. If no solution is met, it is 

recommended to try again by making parameters change. 

For more detail, See Comments on use. 

lnmax int Input The second dimension of working array (   1). 

lnmax is a certain value proportional to the maximum number of 

nonzero elements between columns of matrix A. In general, specify the 

maximum number of nonzero elements for regular use with ipar[1] 

= 100. If no solution is met, it is recommended to try again by making 

parameters change. 

For more detail, See Comments on use. 

numt int Input The first dimension of working array (   1). 

Specify maximum number of threads for parallel processing. 

icon int Output Condition code. See below. 

 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

11000 Matrix A may be near singular. Processing is continued. 
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Code  Meaning  Processing 

19000 Non diagonal element(s) is detected in matrix A.  

20000 The iteration counts reached the upper limit. Processing is discontinued. 

The already calculated approximate value is 

output to array x along with relative residual 

error. 

25000 Array am and ncolm overflow due to too small 

value nwm. 

Processing is discontinued. 

Estimated minimum size is output to ipar[8]. 

26000 Work area vw2, ivw2 overflow due to too small 

value lmmax. 

Processing is discontinued. 

27000 Work area vw2 overflow due to too small value 

lnmax. 

 

29000 Matrix A is singular.  

30000 Parameter error(s). 

• n < 1 

• nz < 1 

• nz ≠ nfrfz[n] - 1 

• isw < 1 

• isw > 3 

• nwm < n 

• nzm < 0 

• ipar[1] < 0 

• ipar[2] < 0 

• ipar[3] < 0 

• n < ipar[3] 

• ipar[4] < 0 

• n < ipar[4] 

• ipar[5] < 0 

• lmmax < 1 

• lnmaz < 1 

• numt < 1 

• rpar[0] < 0.0 

• rpar[1] < 0.0. 

 

30011 Parameter error(s) related to matrix A.  

Some parameter value show following relation. 

nfrnz[k] > nfrnz[k+1], k = 0, ..., n-1. 

 

30012 Parameter error(s) related to matrix A.  

Some parameter value show following relation. 

ncol[l] > ncol[l+1], 

 l = nfrnz[k], ..., nfrnz[k+1], k = 0, ..., n-1. 

 

30021 Parameter error(s) related to matrix M0.  

Some parameter value show following relation. 

nfrnz[k] > nfrnz[k+1], k = 0, ..., n-1. 
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Code  Meaning  Processing 

30022 Parameter error(s) related to matrix M0.  

Some parameter value show following relation. 

ncol[l] > ncol[l+1], 

l = nfrnz[k], ..., nfrnz[k+1], k = 0, ..., n-1. 

 

 

3. Comments on use 

About the size of arrays for approximate inverse matrix 
The size nzm of approximate inverse matrix M is calculated by the formula below where nzk is number of nonzero 

elements in the k-th column of matrix A. 





n

k
knznzm

1

)100/]1[,1max( ipar  

Then the size of array nwm is specified as follows; 

),max( nznzmnwm   

In general, if you use default value for ipar[1], that is ipar[1] = 0, which specifies upper limit of percentage of 

nonzero elements generations, it is adequate to specify as nwm = nz. When it is difficult to calculate nwm by above 

formula, it is recommended to specify enough big size such as nwm = 2 × nz. As a result of operation of this routine, the 

suggested size is output on ipar[8]. This resultant value gives good suggestion for subsequent call to solve a system 

with a similar sparse matrix. If you solve another system having the same sparse structure and the equivalent nonzero 

percentage of approximate inverse, you can take ipar[8] as a suggestion. On the other hand, if you solve another 

system having much more nonzero elements than previous, or increasing percentage of nonzero elements in approximate 

inverse, you can take ipar[8] multiplied by each increasing ratio as a suggestion. 

About the initial approximate inverse matrix 
If you have a good approximate inverse matrix M0, you can specify it as an initial value on relevant parameters. You can 

specify total nonzero number of the matrix M0 on nzm, and specify the initial approximate inverse matrix on am, ncolm 

and nfrnzm respectively. 

Such usage is recommended for user who would process following type of problems in efficient manner. 

#1  to solve multiple set of equations with the same sparse structure and different coefficient matrix A and constant vector 

b. 

#2  to solve multiple set of equations with similar sparse structure. 

Process is controlled along with parameter isw. In these cases, change only the value of a and/or related parameters and 

b, x, and do not change other parameters such as am and work areas in which previous results are stored. 

In this case, it is possible to increase the upper limit by making parameter ipar[1] change. 

About total nonzero number of approximate inverse matrix M 
This routine solves a system of linear equations with preconditioning based on approximate inverse matrix, 
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AMy = b, x = My. 

Approximate inverse matrix M is computed so as to be satisfied AM ≒ I . The total number of nonzero elements of M 

affects not only accuracy of inverse but also performance of matrix vector multiplication which is appeared frequently 

during iterations. In this routine, it is able to control the total number of nonzero elements of matrix M via parameter 

ipar[1]. In general, it is recommended the nonzero number take the same order with that of matrix A. 

That is, ipar[1] = 100 is recommended. 

This routine computes inverse matrix M column by column, mk , k = 1, …, n. 

The iterate mk of inverse matrix M is accepted as a minimum solution if    

epskk 
2eAm  

is satisfied even if nonzero number in mk does not reach upper limit 

nzk × ipar[1] / 100. 

Where nzk is number of nonzero elements in k-th column of matrix A. 

 

About incremental number during computation of column vector of inverse 
This routine computes column vector mk of matrix M by solving least squares problems as follows; 

,...,n,k
m

kk
k

1min
2

 eAm  

Where ek is unit vector. Residual vector based on the solution above may lead candidates of new nonzeros in next step mk. 

This routine selects new indices automatically from candidates in terms of the most profitable one which minimizes 

coming residual vector. Key point of this algorithm lies in determining a good sparsity structure of the column of 

approximate inverse. In order to increase nonzero elements gradually, it is recommended to specify as ipar[2] = 1 

which is number of adding new indices during computation of column vector. 

About work area vw2, ivw2 
Work area vw2 and ivw2 are three dimensional array respectively. These areas are used for solving least squares 

problems in order to compute column vector mk of approximate inverse matrix M. In general, column vector mk is sparse 

vector and its density of nonzero elements is varied during computation. The least squares problems are defined 

corresponding to the formula of previous section 4). 

The residual vector Amk - ek can be formulated only by nonzero elements of mk and certain columns of A related with 

nonzero elements of mk. From such point of view, rectangular system which is constructed by nonzero elements is derived. 

You can specify lmmax and lnmax as maximum number of rectangular matrix and allocate array vw2 and ivw2. Actual 

number of rectangular matrix desired in this routine depend on characteristics of matrix a and value of parameters such as 

ipar[1]. Therefore you can try to call this routine by using suggested manner below. If no solution is met, it is 

recommended to try again by making parameters change. 
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lmmax is a certain value related to the number of nonzero elements of matrix A. Lets see k-th column of matrix A, we 

defines the total number of nonzero elements in k-th column and another columns which are relatives of the nonzero 

elements of k-th column. You can specify the maximum number of the total number between columns. In general, it is 

adequate to specify as lmmax = 1000. 

In case that density of nonzero elements is rather high or relation between elements tend to be strong or certain columns 

have more nonzero elements than others, it is recommended to increase lmmax. 

lnmax is a certain value proportional to the maximum number of nonzero elements between columns of matrix A. The 

maximum number of nonzero is calculated by the formula below where nzk is number of nonzero elements in the k-th 

column of matrix A. 

 100]1[,1max(max ipark
k

nz　  

You can specify lnmax as this maximum number multiplied by 1.2. 

After computation, this routine output the actual size in ipar[12] and ipar[13] corresponding to lmmax and 

lnmax respectively. 

4. Example program 

The linear system of equations Ax = f is solved, where A results from the finite difference method applied to the elliptic 

equation 

-  u+a u+u= f 

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3) where a1, a2 and a3 are some constants. The matrix 

A in Diagonal format is generated by the routine init_mat_diag. Then it is converted into the storage scheme in 

compressed storage. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <malloc.h> 
#include <omp.h> 
#include "cssl.h" 
 
#define  NORD   60 
#define  NX     NORD 
#define  NY     NORD 
#define  NZ     NORD 
#define  N      (NX * NY * NZ) 
#define  K      (N + 1) 
#define  NDIAG  7 
#define  L      4 
#define  LMMAX  1000 
#define  LNMAX  200 
#define  NUMT   4 
 
double errnrm(double*, double*, int); 
void init_mat_diag(double, double, double, double, double*, int*, int, int, 
                   int, double, double, double, int, int, int); 
void convgcr(double*, int, int*, int*, double*, int*, int*, int*); 
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int MAIN__() { 
  int  nofst[NDIAG]; 
  int  nrow[K * NDIAG], nfcnz[K], iw[K * NDIAG][2]; 
  int  ivw[N]; 
  int  *ivw2; 
  int  ipar[20]; 
  int  nfrnz[K], nfrnzm[K]; 
  int  j, l, nbase, length, numnz, ncoll, ntopcfg, nnz, icon, isw, nwm, 
       nzm, itmax, icont; 
  int  i; 
  double  diag[NDIAG][K], diag2[NDIAG][K]; 
  double  a[K * NDIAG], w[K * NDIAG]; 
  double  x[N], b[N], solex[N], y[N]; 
  double  *vw2;  
  double  rpar[20];       
  double  va1, va2, va3, vc, xl, yl, zl, err1, err2, err3, err4, eps;       
 
  double  *aa, *am, *vw1; 
  int *ncol, *ncolm, *ivw1; 
 
  vw2  = (double *)malloc(LMMAX * (LNMAX + 3) * NUMT * sizeof(double)); 
  ivw2 = (int *)malloc(LMMAX * 3 * NUMT * sizeof(int)); 
  if (vw2 == NULL || ivw2 == NULL)  
    exit(-1); 
 
  printf("  *** SPARSE LINEAR EQUATIONS BY IDR METHOD");     
  printf(" WITH PRECONDITIONING\n");     
  printf("  *** COMPRESSED ROW STORAGE.\n");     
  printf("\n");     
 
  for (i = 0; i < N; i++)     
    solex[i] = 1.0;     
 
  printf("  *** EXPECTED SOLUTIONS\n");      
  printf("  X(1) = %18.15lf  X(N) = %18.15lf\n", solex[0], solex[N-1]); 
  printf("\n");     
 
  va1 = 3.0; 
  va2 = 1.0/3.0; 
  va3 = 5.0; 
  vc = 1.0; 
  xl = 1.0; 
  yl = 1.0; 
  zl = 1.0; 
 
  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, 
                NX, NY, NZ, xl, yl, zl, NDIAG, N, K); 
 
  for (i = 0; i < NDIAG; i++) { 
    if (nofst[i] < 0) { 
      nbase = -nofst[i]; 
      length = N - nbase; 
      for (j = 0,l = nbase; j < length; j++,l++) 
        diag2[i][j] = diag[i][l]; 
    } else { 
      nbase = nofst[i]; 
      length = N - nbase; 
      for (j = 0,l = nbase; j < length; j++,l++) 
        diag2[i][l] = diag[i][j]; 
    } 
  } 
 
  numnz = 1; 
 
  for (j = 0; j < N; j++) { 
    ntopcfg = 1; 
    for (i = NDIAG; i > 0; i--) { 
      if (diag2[i-1][j] != 0.0) { 
        ncoll = (j+1) - nofst[i-1]; 
        a[numnz-1] = diag2[i-1][j]; 
        nrow[numnz-1] = ncoll; 
        if (ntopcfg == 1) { 
          nfcnz[j] = numnz; 
          ntopcfg = 0; 
        } 
        numnz++; 
      } 
    } 
  } 
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  nfcnz[N] = numnz; 
  nnz = numnz - 1; 
  c_dm_vmvscc(a, nnz, nrow, nfcnz, N, solex, b, w, (int *)iw, &icon); 
  err1 = errnrm(solex, x, N); 
 
  for (i = 0; i < N; i++) 
    x[i] = 0.0; 
  c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icon); 
  err2 = errnrm(y, b, N); 
 
  aa    = (double *)malloc(sizeof(double) * nnz); 
  am    = (double *)malloc(sizeof(double) * nnz); 
  vw1   = (double *)malloc(sizeof(double) * nnz); 
  ncol  = (int *)malloc(sizeof(int) * nnz); 
  ncolm = (int *)malloc(sizeof(int) * nnz); 
  ivw1  = (int *)malloc(sizeof(int) * nnz); 
  if (aa == NULL || am == NULL || vw1 == NULL ||  
    ncol == NULL || ncolm == NULL || ivw1 == NULL)  
    exit(-1); 
  isw = 1; 
  for (i = 0; i < 20; i++) { 
    ipar[i] = 0; 
    rpar[i] = 0.0; 
  } 
  nwm = nnz; 
  nzm = 0; 
 
  convgcr(a, N, nfcnz, nrow, aa, nfrnz, ncol, ivw); 
  c_dm_vlspaxcr2(aa, nnz, ncol, nfrnz, N, b, isw, x, 
                 am, &nzm, ncolm, nfrnzm, nwm, ipar, rpar, 
                 vw1, ivw1, vw2, ivw2, LMMAX, LNMAX, NUMT, &icon); 
 
  eps = rpar[1]; 
  itmax = 2000; 
  err3 = errnrm(solex, x, N); 
  c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icont); 
  err4 = errnrm(y, b, N); 
  printf("  *** COMPUTED SOLUTIONS\n"); 
  printf("  X(1) = %19.16lf  X(N) = %19.16lf\n", x[0], x[N-1]); 
  printf("\n"); 
  printf("  C_DM_VLSPAXCR2 ICON =  %d\n", icon); 
  printf("\n"); 
  printf("  N        =  %d\n", N); 
  printf("        NX =  %d\n", NX); 
  printf("        NY =  %d\n",NY); 
  printf("        NZ =  %d\n", NZ); 
  printf("  ITER MAX =  %d\n", itmax); 
  printf("  ITER     =  %d\n", ipar[6]); 
  printf("  ICMAV    =  %d\n", ipar[7]); 
  printf("\n"); 
  printf("  EPS      =  %21.15le\n", rpar[1]); 
  printf("\n"); 
  printf("  INITIAL ERROR           = %18.13lf\n", err1); 
  printf("  INITIAL RESIDUAL ERROR  = %18.10lf\n", err2); 
  printf("  CRITERIA RESIDUAL ERROR =  %20.15le\n", err2*eps); 
  printf("\n"); 
  printf("  ERROR                   =  %20.15le\n", err3); 
  printf("  RESIDUAL ERROR          =  %20.15le\n", err4); 
  printf("\n"); 
  printf("\n"); 
  if (err4 <= err2*eps*1.1 && icon == 0) { 
    printf(" ********** OK **********\n");  
  } else { 
    printf(" ********** NG **********\n"); 
  } 
  free(vw2); 
  free(ivw2); 
  free(aa); 
  free(am); 
  free(vw1); 
  free(ncol); 
  free(ncolm); 
  free(ivw1); 
  return(0); 
} 
 
/* ======================================== 
       ABSOLUTE ERROR : | X1 - X2 | 
   ======================================== */ 
double errnrm(double *x1, double *x2, int len) { 
  int  i; 
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  double  s, ss, errnrm_ret; 
 
  s = 0; 
  for (i = 0; i < len; i++) { 
    ss = x1[i] - x2[i]; 
    s = s + ss * ss; 
  } 
  errnrm_ret = sqrt(s); 
  return(errnrm_ret); 
} 
 
/* ======================================== 
   INITIALIZE COEFFICIENT MATRIX 
   ======================================== */ 
void init_mat_diag(double va1, double va2, double va3, double vc, 
                   double *d_l, int *offset, int nx, int ny, int nz, 
                   double xl, double yl, double zl, int ndiag, int len, 
                   int ndivp) { 
 
  if (ndiag < 1) { 
    printf("FUNCTION INIT_MAT_DIAG:\n"); 
    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 
    return; 
  } 
#pragma omp parallel default(shared) 
{ 
  int  j, l, ndiag_loc, nxy, js, i0, j0, k0; 
  int  i; 
  double  hx, hy, hz, hx2, hy2, hz2; 
/* NDIAG CANNOT BE GREATER THAN 7 */ 
  ndiag_loc = ndiag; 
  if (ndiag > 7) 
    ndiag_loc = 7; 
/* INITIAL SETTING */ 
  hx = xl / (nx + 1); 
  hy = yl / (ny + 1); 
  hz = zl / (nz + 1); 
#pragma omp for 
  for (i = 0; i < ndivp; i++) { 
    for (j = 0; j < ndiag; j++) { 
      d_l[(j * ndivp) + i] = 0.0; 
    } 
  } 
  nxy = nx * ny; 
/* OFFSET SETTING */ 
#pragma omp single 
  { 
  l = 0; 
  if (ndiag_loc >= 7) { 
    offset[l]  = -nxy; 
    l++; 
  } 
  if (ndiag_loc >= 5) { 
    offset[l] = -nx; 
    l++; 
  } 
  if (ndiag_loc >= 3) { 
    offset[l] = -1; 
    l++; 
  } 
  offset[l] = 0; 
  l++; 
  if (ndiag_loc >= 2) { 
    offset[l] = 1; 
    l++; 
  } 
  if (ndiag_loc >= 4) { 
    offset[l] = nx; 
    l++; 
  } 
  if (ndiag_loc >= 6) { 
    offset[l] = nxy;  
  } 
  } 
/* MAIN LOOP */ 
#pragma omp for 
  for (j = 1; j <= len; j++) { 
    js = j; 
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */ 
    k0 = (js - 1) / nxy + 1; 
    if (k0 > nz) { 
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      printf("ERROR; K0.GH.NZ \n"); 
      continue; 
    } 
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;  
    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 
    l = 0; 
    if (ndiag_loc >= 7) { 
      if (k0 > 1)  
        d_l[(l * ndivp) + (j-1)] = -(1.0 / hz + 0.5 * va3) / hz; 
      l++; 
    } 
    if (ndiag_loc >= 5) { 
      if (j0 > 1) 
        d_l[(l * ndivp) + (j-1)] = -(1.0 / hy + 0.5 * va2) / hy; 
      l++; 
    } 
    if (ndiag_loc >= 3) { 
      if (i0 > 1) 
        d_l[(l * ndivp) + (j-1)] = -(1.0 / hx + 0.5 * va1) / hx; 
      l++; 
    } 
    hx2 = hx * hx; 
    hy2 = hy * hy; 
    hz2 = hz * hz; 
    d_l[(l * ndivp) + (j-1)] = 2.0 / hx2 + vc; 
    if (ndiag_loc >= 5) { 
      d_l[(l * ndivp) + (j-1)] += 2.0 / hy2; 
      if (ndiag_loc >= 7) { 
        d_l[(l * ndivp) + (j-1)] += 2.0 / hz2; 
      } 
    } 
    l++; 
    if (ndiag_loc >= 2) { 
      if (i0 < nx) 
        d_l[(l * ndivp) + (j-1)] = -(1.0 / hx -0.5 * va1) / hx; 
      l++; 
    } 
    if (ndiag_loc >= 4) { 
      if (j0 < ny) 
        d_l[(l * ndivp) + (j-1)] = -(1.0 / hy - 0.5 * va2) / hy; 
      l++; 
    } 
    if (ndiag_loc >= 6) { 
      if (k0 < nz) 
        d_l[(l * ndivp) + (j-1)] = -(1.0 / hz - 0.5 * va3) / hz; 
    } 
  } 
} 
  return; 
} 
 
/* ============================================================= 
        MODE CONV UNSYM MATRIX FROM COMPRESSED COLUMN TO ROW. 
   ============================================================= */ 
void convgcr(double *ac, int n, int *ic, int *jc, double *ar, 
  int *ir, int *jr, int *iw) { 
  int     j, icol, nz; 
  int  i; 
 
  nz = ic[n] - 1; 
  for (i = 0; i <= n; i++) { 
    ir[i] = 0; 
  } 
  for (j = 0; j < nz; j++) { 
    ir[jc[j]] = ir[jc[j]]+1; 
  } 
  ir[0] = 1; 
  for (i = 1; i <= n; i++) { 
    ir[i] = ir[i] + ir[i-1]; 
  } 
  for (i=0; i < n; i++) { 
    iw[i] = ir[i]; 
  } 
  icol = 1; 
  for (j = 0; j < nz; j++) { 
    if (j == ic[icol]-1)  
      icol++; 
    jr[iw[jc[j]-1]-1] = icol; 
    ar[iw[jc[j]-1]-1] = ac[j]; 
    iw[jc[j]-1] = iw[jc[j]-1] + 1; 
  } 
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  return; 
} 
 

5. Method 

Consult the entry for DM_VLSPAXCR2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [29], 

[31] , [68]. 

 



c_dm_vlsx 

128 

c_dm_vlsx 

A system of linear equations with symmetric positive definite matrices 

(blocked modified Cholesky decomposition method). 

ierr = c_dm_vlsx(a, k, n, b, epsz, isw, 

&icon); 

1. Function 

This function solves a system of linear equations (1) with a real coefficient matrix by blocked modified Cholesky’s 

method. 

 Ax = b (1) 

In (1), A is an n  n positive definite symmetric real matrix, b is a real constant vector, and x is the real solution vector.  

Both the real vectors are of size n ( n  1 ). 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vlsx((double*)a, k, n, b, epsz, isw, &icon); 

where: 

a double 

a[n][k] 

Input The upper triangular part {aij, i  j} of A is stored in the upper triangular 

part {a[i1][j1], ij} of a for input. 

See Figure c_dm_vlsx-1. 

The contents of the array are altered on output. 

  Output Decomposed matrix.  After the first set of equations has been solved, the 

upper triangular part of a[i1][j1] (ij) contains lij ( i  j ) of the 

upper triangular matrix L, D1 and LT. 

k int Input C fixed dimension of array a. (  n ) 

n int Input Order n of matrix A. 

b double b[n] Input Constant vector b. 

  Output Solution vector x. 

epsz double Input Tolerance for relative zero test (  0 ). 

When epsz is zero, a standard value is assigned.  See Comments on use. 

isw int Input Control information. 

When solving several sets of equations that have the same coefficient 

matrix, set isw=1 for the first set, and isw=2 for the second and 

subsequent sets.  Only argument b is assigned a new constant vector b 

and the others are unchanged.  See Comments on use. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 
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Code  Meaning  Processing 

10000 Pivot became negative. 

Coefficient matrix is not positive definite. 

Processing continues. 

20000 Pivot became smaller then relative zero value.  

Coefficient matrix might be singular. 

Discontinued. 

30000 One of the following has occurred: 

 n < 1 

 epsz < 0 

 isw  1 or 2 

 k < n 

Bypassed. 
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Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method 
 

The diagonal elements and upper triangular part (aij) of the LDLT-decomposed positive definite matrix are stored in array 

a[i1][j1] , i=1,...,n, j=i,...,n. 

After LDLT decomposition, matrix D1 is stored in diagonal elements and L (excluding the diagonal elements) are stored 

in the upper triangular part respectively. 

3. Comments on use 

epsz 
If the value 10s is given for epsz as the tolerance for relative zero test then it has the following meaning: 

If the pivot value loses more than s significant digits during LDLT decomposition in the modified Cholesky’s method, the 

value is assumed to be zero and decomposition is discontinued with icon=20000.  The standard value of epsz is 

normally 16µ, where µ is the unit round-off. 

Decomposition can be continued by assigning the smallest value (e.g. 1070) to epsz even when pivot values become 

smaller than the standard value, however the result obtained may not be of the desired accuracy. 

isw 
When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and 

subsequent sets after successfully completing the first with isw=1. This will bypass the LDLT decomposition section and 
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go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than 

otherwise. 

Negative pivot during the solution 
If the pivot value becomes negative during decomposition, it means the coefficient matrix is no longer positive definite.  

The calculation is to continued and icon = 10000 is returned on exit. Note, however, that the resulting calculation error 

may be significant, because no pivoting is performed. 

Calculation of determinant 
To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of the array a together(i.e., 

diagonal elements of D1) after calculation is completed, and take the reciprocal of this result. 

4. Example program 

A system of linear equations with a 1000  1000 coefficient matrix is solved. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
#define NMAX      (1000) 
#define LDA       (NMAX+1) 
 
MAIN__() 
{ 
  int    n, isw, i, j, icon, ierr; 
  double a[NMAX][LDA], b[NMAX]; 
  double epsz, s, det; 
 
  n    = NMAX; 
  epsz = 0.0; 
  isw  = 1; 
 
#pragma omp parallel for shared(a,n) private(i,j) 
  for(i=0; i<n; i++) 
    for(j=0; j<n; j++) 
      a[i][j] = min(i,j)+1; 
 
#pragma omp parallel for shared(b,n) private(i) 
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1); 
 
  ierr = c_dm_vlsx((double*)a, LDA, n, b, epsz, isw, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vlsx failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  s = 1.0; 
#pragma omp parallel for shared(a,n) private(i) reduction(*:s) 
  for(i=0; i<n; i++) s *= a[i][i]; 
 
  printf("solution vector:\n"); 
  for(i=0; i<10; i++) printf("    b[%d] = %e\n", i, b[i]); 
 
  det = 1.0/s; 
  printf("\ndeterminant of the matrix = %e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VLSX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [52]. 
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c_dm_vlux 

A system of linear equations with LU-decomposed real matrices. 

ierr = c_dm_vlux(b, fa, kfa, n, ip, &icon); 

1. Function 

This routine solves a system of linear equations having LU-decomposed real coefficient matrices. 

 LUx = Pb (1) 

where, L and U are respectively a unit lower triangular matrix and a unit upper triangular n  n matrix, P is a permutation 

matrix (interchanging rows of the coefficient matrix for partial pivoting in LU-decomposition), b is an n-dimensional real 

constant vector, and x is an n-dimensional solution vector ( n  1 ). 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vlux(b, (double*)fa, kfa, n, ip, &icon); 

where: 

b double b[n] Input Constant vector b. 

  Output Solution vectors x. 

fa double 

fa[n][kfa] 

Input Matrix L  ( U  I ). See Comments on use. 

kfa int Input C fixed dimension of array fa (  n). 

n int Input Order of matrices L and U. 

ip int ip[n] Input Transposition vector that provides the row exchanges that occurred 

during partial pivoting. See Comments on use. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 Coefficient matrix was singular. Discontinued. 

30000 One of the following occurred: 

 n < 1 

 kfa < n 

 error found in ip 

Bypassed. 

3. Comments on use 

A system of linear equations with a real coefficient matrix can be solved by calling the routine c_dm_valu to LU-

decompose the coefficient matrix prior to calling this routine.  The input arguments fa and ip of this routine are the same 

as the output arguments a and ip of routine c_dm_valu.  Alternatively, the system of linear equations can be solved by 

calling the single routine c_dm_vlax. 
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4. Example program 

A system of linear equations is solved by LU-decomposing the coefficient 1000  1000 matrix. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
#define NMAX      (1000) 
#define LDA       (NMAX+1) 
 
MAIN__() 
{ 
  int    n, is, isw, i, j, icon, ierr; 
  int    ip[NMAX]; 
  double a[NMAX][LDA], b[NMAX]; 
  double epsz, s, det; 
 
  n    = NMAX; 
  epsz = 0.0; 
  isw  = 1; 
 
#pragma omp parallel for shared(a,n) private(i,j) 
  for(i=0; i<n; i++) 
    for(j=0; j<n; j++) a[i][j] = min(i,j)+1; 
 
#pragma omp parallel for shared(b,n) private(i) 
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1); 
 
  ierr = c_dm_valu((double*)a, LDA, n, epsz, ip, &is, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_valu failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vlux failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  s = 1.0; 
#pragma omp parallel for shared(a,n) private(i) reduction(*:s) 
  for(i=0; i<n; i++) s *= a[i][i]; 
 
  printf("solution vector:\n"); 
  for(i=0; i<10; i++) printf("    b[%d] = %e\n", i, b[i]); 
 
  det = is*s; 
  printf("\ndeterminant of the matrix = %e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vmggm 

Matrix multiplication (real matrix). 

ierr = c_dm_vmggm(a, ka, b, kb, c, kc, m, n, 

l, &icon); 

1. Function 

This function obtains product C by multiplying a real matrix A ( m  n ) by a real matrix B ( n  l ). 

 C = AB 

where C is a real matrix ( m  l ), where m, n, l  1. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vmggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, l, 

&icon); 

where: 

a double 

a[m][ka] 

Input Matrix A. 

ka int Input C fixed dimension of array a (  n). 

b double 

b[n][kb] 

Input Matrix B. 

kb int Input C fixed dimension of array b (  l). 

c double 

c[m][kc] 

Output Matrix C.  See Comments on use. 

kc int Input C fixed dimension of array c (  l). 

m int Input The number of rows m in matrices A and C. 

n int Input The number of columns n in matrix A and number of rows n in matrix B. 

l int Input The number of columns l in matrices B and C. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 m < 1 

 n < 1 

 l < 1 

 ka < n 

 kb < l 

 kc < l 

Bypassed. 
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3. Comments on use 

Storage space 
Storing the solution matrix C in the same memory area used for matrix A or B is NOT permitted.  C must be stored in a 

separate array otherwise the result will be incorrect.  

4. Example program 

This example program performs a matrix-matrix multiplication and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX  (100) 
 
MAIN__() 
{ 
  int ierr, icon; 
  int n, i, j; 
  double eps; 
  double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX]; 
 
  /* initialize matrices */ 
  n = NMAX; 
  for (i=0; i<n; i++) { 
    for (j=0; j<n; j++) { 
      a[i][j] = j+1; 
      b[j][i] = 1.0/(j+1); 
    } 
  } 
 
  /* matrix matrix multiply */ 
  ierr = c_dm_vmggm((double*)a, NMAX, (double*)b, NMAX,  
                    (double*)c, NMAX, n, n, n, &icon); 
 
  /* check result */ 
  eps = 1e-5; 
  for (i=0; i<n; i++) { 
    for (j=0; j<n; j++) { 
      if (fabs((c[i][j]-n)/n) > eps) { 
        printf("WARNING: result inaccurate\n"); 
        exit(1); 
      } 
    } 
  } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VMGGM in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30]. 

 



 c_dm_vminv 

135 

c_dm_vminv 

Inverse of real matrix (blocked Gauss-Jordan method) 

ierr = c_dm_vminv(a, k, n, epsz, &icon); 

1. Function 

This routine obtains the inverse A1 of the n  n non-singular real matrix A using the Gauss-Jordan method. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vminv((double*)a, k, n, epsz, &icon); 

where: 

a double Input Matrix A. 

 a[n][k] Output Matrix A1. 

k int Input C fixed dimension of array a (  n). 

n int Input Order of matrix A. 

epsz double Input Judgment of relative zero of the pivot.  ( 0.0) 

When epsz is 0.0, the standard value is assumed. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 All row elements in matrix A are zero or the pivot 

becomes a relatively zero.  Matrix A may be 

singular. 

Discontinued. 

30000 One of the following occurred: 

 n < 1 

 k < n 

 epsz < 0.0 

3. Comments on use 

epsz 
When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be 

relatively zero. In this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value 

of epsz is 16u.  If the minimum value is assigned to epsz, processing is continued, but the result is not assured. 

4. Example program 

The inverse of a matrix is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
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#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define N 2000 
#define K (N+1) 
 
int MAIN__() 
{ 
  double a[N][K], as[N][K]; 
  double c, t, error, epsz; 
  int    i, j, icon; 
 
  c = sqrt(2.0/(N+1)); 
  t = atan(1.0)*4.0/(N+1); 
 
  for (j=0; j<N; j++) { 
    for (i=0; i<N; i++) { 
      as[j][i] = a[j][i] = c*sin(t*(i+1)*(j+1)); 
    } 
  } 
 
  epsz = 0.0; 
  c_dm_vminv((double*)a, K, N, epsz, &icon); 
 
  error = 0.0; 
  for (i=0; i<N; i++) { 
    for (j=0; j<N; ++j) { 
      error = max(error,fabs(a[j][i]-as[j][i])); 
    } 
  } 
 
  printf("order = %d, error = %e\n", N, error); 
  return(0); 
} 
 

5. Method 

Consult the entry for DM_VMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vmlbife 

System of linear equations with sparse matrices 

(Multilevel iteration method based on incomplete block factorization, 

ELLPACK format storage method) 

ierr = c_dm_vmlbife(a, k, iwidt, n, icol, b, 

isw, iguss, info, infoep, epsot, 

epsin, epsep, x, w, nw, iw, niw, 

&icon); 

1. Function 

This routine solves, using the iterative method, a system of linear equations with   sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the ELLPACK format storage method.  Vectors b and x are n-dimensional 

vectors. 

The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-symmetric. The iteration (called outer 

iteration) is preconditioned by the multilevel incomplete block factorizations and stable.  The iteration procedure is 

preconditioned by repeated elimination of certain sets of unknowns.  The elimination procedure uses approximative 

inverses of the sub-matrices produced by the sets of eliminated unknowns.  The elimination procedure is repeated until on 

the so-called coarsest level a smaller linear system is produced.  For every step of the outer iteration this linear system is 

solved iteratively (called inner iteration). 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vmlbife((double*)a, k, iwidt, n, (int*)icol, b, isw, iguss, info, 

infoep, epsot, epsin, epsep, x, w, nw, iw, niw, &icon); 

where: 

a double 

a[iwidt][k] 

Input The nonzero elements of a coefficient matrix A are stored in a. 

k int Input C fixed dimension of array a (  n). 

iwidt int Input Maximum number of row-vector-direction nonzero elements of 

coefficient matrix A.  Size of first-dimension of a and icol. 

n int Input Order n of matrix A. 

icol int icol 

[iwidt][k] 

Input Column index used in ELLPACK format.  Used to indicate to which 

column vector the corresponding element of a belongs. 

b double b[n] Input The right-side constant vectors of a system of linear equations are stored. 

isw int Input Control information.  See Comments on use. 

   1 Initial calling. 

   2 Second or subsequent calling. 

The arrays, a, icol, iw and w, must NOT be changed if the 

routine is called again with isw = 2. 
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iguss int Input Control information specifying whether iterative computation is to be 

performed using the approximate values of the solution vectors specified 

in array x. 

   iguss = 0 the approximate values of the solution vectors are not 

specified and set to zero. 

   iguss  0 the iterative computation is performed using the 

approximate values of the solution vectors specified in 

array x. 

info int info[14] Input / 

Output 

The control information of the iteration. 

For example, for symmetric coefficient matrix A, info is set as follows; 

  info[0] = 10;   info[1] = NTHRD*100; info[2] = 0; 

  info[4] = 1;    info[5] = 2000;      info[9] = 1; 

  info[10]= 1000; 

For example, for unsymmetric coefficient matrix A, info is set as 

follows; 

  info[0] = 10;   info[1] = NTHRD*100; info[2] = 0; 

  info[4] = 2;    info[5] = 2000;      info[6] = 5; 

  info[7] = 20;   info[9] = 2;         info[10]= 1000; 

  info[11]= 10;   info[12]= 0; 

Where NTHRD is the number of threads which are executed in parallel. 

See Comments on use. 

   info[0] Input MAXLVL. 

Maximal number of levels in the algebraic 

multilevel iteration method. 

MAXLVL < 0  The optimal level evaluated 

internally is used. 

MAXLVL = 0  The multi-level method is not 

used. 

MAXLVL > 0  The coarser level than the 

specified depth is not used. 

   info[1] Input MINUK. 

Minimal number of unknowns for the smallest 

linear system in the deepest level in the inner 

iteration. It is recommendable to set MINUK 

very larger than the number of threads NTHRD 

and very smaller than n. For example, 

100NTHRD. 

   info[2] Input NORM. 

The type of normalization. 

NORM < 1  The matrix is normalized from the 

right and the left by the inverse of the square 

root of the main diagonal of A. This effects that 

the main diagonal of the normalized matrix A 

is equal to one and the matrix is symmetric if A 

is symmetric. 

It is recommendable to use symmetrical 



 c_dm_vmlbife 

139 

normalization. However, in some cases the 

non-symmetrical normalization can produce 

faster convergence. Criterion value for 

judgment of convergency. 

NORM  1  The matrix is normalized from the 

left by the inverse of the main diagonal of A. 

This effects that the main diagonal is equal to 

one but the normalized matrix will be non-

symmetric even if the matrix A is symmetric. 

   info[3] Output Number of levels. 

   info[4] Input METHOT. 

The iterative method used in the outer iteration. 

METHOT = 1  Preconditioned ORTHOMIN is 

used. It should be used if the matrix A is 

symmetric and a symmetrical normalization is 

used. 

METHOT  1  Restarted and truncated 

GMRES is used. It should be used if the matrix 

A is non-symmetric or a non-symmetrical 

normalization is used. 

   info[5] Input ITMXOT. 

The maximal number of iteration steps in the 

outer iteration, for example 2000. If the 

maximum iteration number of outer iteration is 

reached the processing is terminated and the 

returned solution does not fulfill the stopping 

criterion. 

   info[6] Input NRESOT. 

The number of residuals in the 

orthogonalization procedure of the outer 

iteration, i.e. truncation after NRESOT 

residuals. For example , 5. Only used if 

GMRES is applied. 

   info[7] Input NRSTOT. 

After NRSTOT iteration steps the outer 

iteration is restarted. For example , 20. If it is 

NRSTOT < 1 there is no restart. Only used if 

GMRES is applied. 

   info[8] Output ITEROT. 

The number of iteration steps in the outer 

iteration procedure. 

   info[9] Input METHIN. 

The iterative method used in the inner iteration. 

METHIN = 1  Preconditioned ORTHOMIN is 

used. It should be used if the matrix A is 

symmetric and a symmetrical normalization is 
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used. 

METHIN  1  Restarted and truncated 

GMRES is used. It should be used if the matrix 

A is non-symmetric or a non-symmetrical 

normalization is used. 

   info[10] Input ITMXIN. 

The maximal number of iteration steps in the 

inner iteration, for example 1000. 

If ITMXIN is reached the processing is 

continued on the outer iteration. 

   info[11] Input NRESIN. 

The number of residuals in the 

orthogonalization procedure of the inner 

iteration, ie. truncation after NRESIN residuals. 

For example, 10. Only used if GMRES is 

applied. 

   info[12] Input NRSTIN. 

After NRSTIN iteration steps the inner iteration 

is restarted. 

Only used if GMRES is applied. If it is 

NRSTIN < 1 there is no restart. 

   info[13] Output The average number of the inner iteration. 

infoep int infoep[3] Input The control information for the block matrix of the removed unknowns 

and the reduced matrix. 

For example,  infoep is set as follows to specify the method for 

approximating the inverse matrix of a matrix block, which is used for 

calculating the Schur complement in each level: 

In case of approximating the inverse matrix with a diagonal matrix. 

  infoep[0] = 1; 

  infoep[1] = 5; 

  infoep[2] = 2*nrow; 

In case of seeking an approximative inverse matrix with an iterative 

method. 

  infoep[0] = nrow; 

  infoep[1] = 5; 

  infoep[2] = 2*nrow; 

Where, nrow indicates the representative number of nonzero entries per 

row in the coefficient matrix A. 

   infoep[0] Input MAXNCV. 

Maximal number of nonzero entries per row 

in the approximative inverse of the eliminated 

matrix block.  Typically it is set MAXNCV 

=1 or MAXNCV=MAXNC.  Notice that 

MAXNCV=1 effects that the matrix block is 

approximated by its main diagonal. 

   infoep[1] Input MAXITV. 
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Maximal number of approximative inverse 

steps.  MAXITV specifies the maximal 

number of iteration steps which are allowed 

to calculate the approximative inverse matrix 

with accuracy TAUV.  If the number of 

iteration steps reaches MAXITV the 

procedure is terminated.  Notice that in any 

case the approximation procedure will need 

less than 
)LAMBDAlog(

)TAUVlog(
 steps. 

If MAXITV  1 the matrix block is 

approximated by its main diagonal. 

   infoep[2] Input MAXNC. 

MAXNC limits the entries remaining in the 

reduced matrix as Schur complement in block 

decomposition.  If MAXNC < 2 small entries 

of the reduces system less than TAU are 

dropped.  If MAXNCV > 1 the number of 

non-zero entries per row is limited by 

MAXNCV.  In this case only the MAXNCV 

largest entries in every row are kept.  Other 

entries are dropped even if they are greater 

than TAU. 

epsot double Input The desired accuracy for the solution. The outer iteration is stopped in 

the k-th iteration step if the normalized kkk bxAr ˆˆˆ   residual of the 

current approximation xk satisfies the condition br ˆˆ epsotk  

where yyy T2   denotes the Euclidean norm Â  and b̂  are the 

coefficient matrix and the right hand side of the normalized linear 

system. 

epsin double Input The tolerance for the inner iteration. Normally 103 is optimal. 

epsep double 

epsep[4] 

Input The control information for the approximation of the reduced system and 

the inverse of the eliminated matrix block. 

For example, set as follows: 

  epsep[0] = 1.0e-2; 

  epsep[1] = 1.0e-2; 

  epsep[2] = 0.2; 

  epsep[2] = 1.0e-3; 

   epsep[0] Input TAU. 

The dropping tolerance.  In the reduced 

systems as Schur complement in block 

decomposition, entries less than TAU are 

dropped to keep the sparsity.  As larger TAU as 

faster is the iterative solver on the lowest level.  

But on the other hand there is a larger loss of 

information, which deteriorates the quality of 

the preconditioner. 
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It has to be 0  TAU < 1. 

   epsep[1] Input TAUV. 

The tolerance of the approximative inverse.  A 

small value for TAUV will increase the time for 

the elimination procedure but improve the 

quality of the preconditioner.  Normally 

epsin = TAUV is optimal. 

   epsep[2] Input LAMBDA. 

Diagonal threshold for the block matrix.  The 

entries in the block matrix of the removed 

unknowns are selected such that the absolute 

sum per row is less than LAMBDA times the 

main diagonal entry.  A larger value for 

LAMBDA will produce a smaller set of 

removed unknowns but will increase the costs 

for the calculation of the approximative inverse 

of the block.  Recommendation: 

LAMBDA = 0.2.  It should be TAUV  

LAMBDA < 1 or LAMBDA = 0. 

   epsep[3] Input RHO. 

Unknowns with small entries in their main 

diagonal are not considered in the elimination 

procedure.  A main diagonal entry is small if it 

is smaller than RHO times the absolute sum of 

the row entries. 

Recommendation: RHO = 1.0e-3.  It has to be 

0 < RHO < 1. 

x double x[n] Input The approximate values of solution vectors can be specified. 

  Output Solution vectors are stored. 

w double w[nw] Work  

nw int Input Size of the work array w. 

nw  max(2  MAXLVL  2, 10)  NBAND  MAXT  (4  NC  6)  (n 

 MAXT)  max(2  NC  (n  MAXT), LR0(n))  max(LR0(nf)  n  

MAXT, 6  (n  MAXT))) 

MAXT is the maximum number of threads which are created in this 

routine. 

NBAND denotes the bandwidth of the matrix. 

NC an upper bound for the number of non-zero entries per row (typically 

NC = MAXNC). 

nf the number of unknowns in the final level (typically nf = 2MAXLVL  

(n + MAXT). 

Moreover it is  









method GMRES:N)12(

method ORTHOMIN :N4
)N(

NRES
LR0 , 

where NRES denotes the number of residuals used in GMRES.  

Normally the term LR0(nf) can be neglected. 
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iw int iw[niw] Work  

niw int Input Size of the work array iw. 

niw  ((4  MAXLVL  10)  MAXT  12  NBAND)  3400)  MAXT 

 (6  NC  11)  (n  MAXT) 

MAXT is the maximum number of threads which are created in this 

routine. 

NBAND denotes the bandwidth of the matrix. 

NC an upper bound for the number of non-zero entries per row (typically 

NC = MAXNC). 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below.  

Code  Meaning  Processing 

0 No error. Completed. 

10100 Inverse matrix could not be calculated with 

sufficient accuracy. 

Processing is continued. 

10800 Curable break down in GMRES. 

20001 Stopping criterion could not be reached within the 

given number of iteration steps. 

Processing is discontinued. 

The approximate value obtained is output in array 

x, but the precision is not assured. 

20003 Non-curable break down in GMRES. Processing is discontinued. 

20005 Non-curable break down in ORTHOMIN by  

pT A p = 0 with p  0. 

 

20006 Non-curable break down in ORTHOMIN by  

pT r = 0. 

 

30000 One of the following has occurred: 

 n < 1 

 n > k 

 iwidt < 1 

 isw  1, 2 

 

30103 Incorrect entry in column list icol.  

30105 Main diagonal is missed.  

30210 Matrix condensation fails by non-positive value.  

30213 There is a row with only non-zero entries.  

30310 Too small integer work array.  

30320 Too small real work array.  

3. Comments on use 

isw 
When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isw = 

1 in the first call and isw = 2 in the second and all subsequent calls. Then the coarse level matrices assembled in the first 

call are reused. 
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nw, niw 
Normally it is sufficient to set NC = iwidt1.5 in the formulas for the length for the work arrays.  In general, if the work 

arrays are too small it is recommendable to increase NC.  If the given matrix has a very large bandwidth it is 

recommendable to increase NBAND first. 

ORTHOMIN 
It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine 

removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration 

matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical 

normalization first if there is a chance that the iteration matrix is symmetric. 

GMRES 
If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES. 

Normally it is sufficient to truncate after NRESOT = 5 residuals and to restart after 20 steps in the outer iteration. In the 

inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of 

iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required. 

Then it is necessary to increase NRES in the formula for the length workspace nw but, NRES can be set to a smaller value 

than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger. 

But it requires longer computation time and larger amount of memory. 

The elimination of unknowns 
The elimination of unknowns is stopped if one of the following conditions is fulfilled: 

 the number of level is greater or equal MAXLVL. 

 the coefficient matrix of the final level is a diagonal matrix. 

 the number of eliminated unknowns is less than 10% of the number of unknowns in the final level. 

 

classical ILUM preconditioner 
When setting TAU = 0, LAMBDA = 0, RHO = 0.99, MAXNC = iwidt the routine is (similar to) the classical ILUM 

preconditioner with wavefront ordering.  For TAU > 0, LAMBDA = 0, RHO < 1, and MAXNC >> iwidt the routine is 

the ILUM preconditioner with threshold. 

parameters 
It is emphasized that not every setting of the parameters produces necessarily an efficient preconditioner. So it can be 

necessary to test some values for the parameters till an optimal selection has been found. 

Preconditioning 
The preconditioner bases on nested incomplete block factorizations using the Schur complement.   The matrix An, n=1 ,..., 

MAXLVL1 in each level can be blocked as follows choosing the appropriate sets of eliminated unknowns: 











2221

1211

AA

AA
An  

And define a matrix 12
1

112122 AAAAS  , which is called Schur complement.  An can be factorized as follows: 
























S0

AAI
IA

0A
A 12

1
11

21

11
n  

The matrix An+1of next level n+1 can be regarded as a Schur complement matrix with approximating the 1
11
A .  These 

incomplete factorization are used for preconditioning in this routine. 
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4. Example program 

The partial differential equation  
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is solved on the domain [0, 1]2. Dirichlet boundary condition u = 0 is imposed and the value of  t is set to 1.0. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define MAXT   2 
#define N1     39 
#define N2     (N1) 
#define N3     (N1) 
#define L1     (N1) 
#define L2     (N2) 
#define L3     (N3) 
#define KA     (N1*N2*N3) 
#define NA     7 
#define NLBMAX (N1*N2) 
#define MAXNC  11 
#define NW   ((KA+MAXT)*(6*MAXNC+11)+(85*NLBMAX+100)*MAXT) 
#define NIW  ((KA+MAXT)*(6*MAXNC+11)+(13*NLBMAX+200+61*51+13)*MAXT) 
 
int MAIN__() 
{ 
  double a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1]; 
  double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1]; 
  double x1[L1], x2[L2], x3[L3], c[L3][L2][L1], f[L3][L2][L1]; 
  double w[NW], epsin, epsot, epsep[4], mat[NA][KA], rhs[KA], v[KA]; 
  double sol[KA*3], rhsx[KA], rhsc[KA]; 
  double tmp, t, hr1, hr2, hr3, hr4, hr6, hr7, hr13, one=1.0; 
  int    ndlt[NA], iw[NIW], info[14], infoep[3], icol[NA][KA]; 
  int    isw, iguss, nband, ndiag, icon; 
  int    z, z1, z2, z3, n, i, nc; 
 
  /* THESE ARE PARAMETERS OF THE TEST PDES. CHANGES OF THE  */ 
  /* VALUES CAN PRODUCE DIVERGENCE IN THE ITERATIVE SOLVER. */ 
  t = 1.0; 
 
  /* CREATE NODE COORDINATES */ 
  for (z1=0; z1<N1; z1++) { 
    x1[z1] = (double)z1/(double)(N1-1); 
  } 
  for (z2=0; z2<N2; z2++) { 
    x2[z2] = (double)z2/(double)(N2-1); 
  } 
  for (z3=0; z3<N3; z3++) { 
    x3[z3] = (double)z3/(double)(N3-1); 
  } 
 
  /* -UX1X1-UX2X2-UX3X3+T*((X2-X3)*UX1+(X3-X1)*UX2+(X1-X2)*UX3)=F */ 
  /*                                                              */ 
  /*   REMARK: IF T IS TO LARGE THE PDE IS SINGULAR.              */ 
  for (z3=0; z3<N3; z3++) { 
    for (z2=0; z2<N2; z2++) { 
      for (z1=0; z1<N1; z1++) { 
        a1[z3][z2][z1] = 1.0; 
        a2[z3][z2][z1] = 1.0; 
        a3[z3][z2][z1] = 1.0; 
        b1[z3][z2][z1] = t*(x2[z2]-x3[z3]); 
        b2[z3][z2][z1] = t*(x3[z3]-x1[z1]); 
        b3[z3][z2][z1] = t*(x1[z1]-x2[z2]); 
        c[z3][z2][z1]  = 0.0; 
        hr1            = one-x2[z2]; 
        hr2            = x2[z2]*hr1; 
        hr3            = one-x3[z3]; 
        hr4            = x3[z3]*hr3; 
        hr6            = one-x1[z1]; 
        hr7            = x1[z1]*hr6; 
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        hr13           = hr1*x3[z3]*hr3; 
        f[z3][z2][z1]  = 2*hr2*hr4+2*hr7*hr4+2*hr7*hr2+ 
                         t*((x2[z2]-x3[z3])*(hr6*x2[z2]*hr13-x1[z1]*x2[z2]*hr13) 
                           +(x3[z3]-x1[z1])*(hr7*hr13-hr7*x2[z2]*x3[z3]*hr3) 
                           +(x1[z1]-x2[z2])*(hr7*hr2*hr3-hr7*hr2*x3[z3])); 
      } 
    } 
  } 
 
  /* DIRICHLET CONDITIONS: */ 
  for (z3=0; z3<N3; z3++) { 
    for (z2=0; z2<N2; z2++) { 
      c[z3][z2][0]     = 1.0; 
      b1[z3][z2][0]    = 0.0; 
      b2[z3][z2][0]    = 0.0; 
      b3[z3][z2][0]    = 0.0; 
      f[z3][z2][0]     = 0.0; 
      c[z3][z2][N1-1]  = 1.0; 
      b1[z3][z2][N1-1] = 0.0; 
      b2[z3][z2][N1-1] = 0.0; 
      b3[z3][z2][N1-1] = 0.0; 
      f[z3][z2][N1-1]  = 0.0; 
 
      if (z2 == 0) { 
        for (z1=0; z1<N1; z1++) { 
          c[z3][0][z1]  = 1.0; 
          b1[z3][0][z1] = 0.0; 
          b2[z3][0][z1] = 0.0; 
          b3[z3][0][z1] = 0.0; 
          f[z3][0][z1]  = 0.0; 
        } 
      } else if (z2 == N2-1) { 
        for (z1=0; z1<N1; z1++) { 
          c[z3][N2-1][z1]  = 1.0; 
          b1[z3][N2-1][z1] = 0.0; 
          b2[z3][N2-1][z1] = 0.0; 
          b3[z3][N2-1][z1] = 0.0; 
          f[z3][N2-1][z1]  = 0.0; 
        } 
      } 
 
      if (z3 == 0) { 
        for (z1=0; z1<N1; z1++) { 
          c[0][z2][z1]  = 1.0; 
          b1[0][z2][z1] = 0.0; 
          b2[0][z2][z1] = 0.0; 
          b3[0][z2][z1] = 0.0; 
          f[0][z2][z1]  = 0.0; 
        } 
      } else if (z3 == N3-1) { 
        for (z1=0; z1<N1; z1++) { 
          c[N3-1][z2][z1]  = 1.0; 
          b1[N3-1][z2][z1] = 0.0; 
          b2[N3-1][z2][z1] = 0.0; 
          b3[N3-1][z2][z1] = 0.0; 
          f[N3-1][z2][z1]  = 0.0; 
        } 
      } 
    } 
  } 
 
  n = N1*N2*N3; 
  c_dm_vpde3d((double*)a1, L1, L2, N1, N2, N3, (double*)a2, (double*)a3, x1, x2, x3, 
               (double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f, 
(double*)mat, 
                KA, NA, n, &ndiag, ndlt, rhs, &icon); 
  printf("icon of c_dm_vpde3d = %d\n", icon); 
 
  for (z =0; z<n; z++) { 
    rhsx[z] = rhs[z]; 
  } 
 
  nband = 0; 
  for (i=0; i<ndiag; i++) { 
    nband=max(nband,fabs(ndlt[i])); 
  } 
 
  /* CHANGE TO ELLPACK FORMAT: */ 
  nc = ndiag; 
  for (i=0; i<nc; i++) { 
    for (z=0; z<KA; z++) { 
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      icol[i][z] = z+ndlt[i]+1; 
    } 
  } 
 
  /* CALL THE ITERATIVE SOLVER: */ 
  isw       = 1; 
  iguss     = 0; 
  epsot     = 1.0e-6; 
  epsin     = 1.0e-3; 
  info[0]   = 10; 
  info[1]   = MAXT*100; 
  info[2]   = 1; 
  info[4]   = 2; 
  info[5]   = 5000; 
  info[6]   = 5; 
  info[7]   = 20; 
  info[9]   = 2; 
  info[10]  = 5000; 
  info[11]  = 20; 
  info[12]  = 0; 
  infoep[0] = 1; 
  infoep[1] = 5; 
  infoep[2] = 14; 
  epsep[0]  = 1.0e-2; 
  epsep[1]  = 1.0e-2; 
  epsep[2]  = 0.2; 
  epsep[3]  = 1.0e-3; 
 
  c_dm_vmlbife((double*)mat, KA, nc, n, (int*)icol, rhs, isw, iguss, info,  
               infoep, epsot, epsin, epsep, v, w, NW, iw, NIW, &icon); 
  printf("icon of c_dm_vmlbife = %d\n", icon); 
 
  for (i=0; i<nband; i++) { 
    sol[i]         = 0.0; 
    sol[nband+n+i] = 0.0; 
  } 
 
  for (z=0; z<n; z++) { 
    sol[nband+z] = v[z]; 
  } 
 
  c_dm_vmvsd((double*)mat, KA, ndiag, n, ndlt, nband, sol, rhsc, &icon); 
 
  tmp = 0.0; 
  for (z=0; z<n; z++) { 
    tmp = max(tmp,fabs((rhsx[z]-rhsc[z])/(rhsx[z]+1.0))); 
  } 
 
  printf("error = %e\n", tmp); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VMLBIFE in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vmvscc 

Multiplication of a real sparse matrix and a real vector (compressed 

column storage method) 

ierr = c_dm_vmvscc(a, nz, nrow, nfcnz, n, x, 

y, w, iw, &icon); 

1. Function 

This routine obtains a product by multiplying an n  n sparse matrix by a vector. 

 y = Ax 

The sparse matrix A is stored by the compressed column storage method. Vectors x and y are n-dimensional vectors. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vmvscc(a, nz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon); 

where: 

a double a[nz] Input The non-zero elements of a coefficient matrix are stored. The non-zero 

elements of a sparse matrix are stored in a[i], i = 0, …, nz-1. For the 

compressed column storage method, refer to Figure c_dm_vmvscc-1. 

nz int Input The total number of the nonzero elements belong to a coefficient matrix 

A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage method, which 

indicate the row number of each nonzero element stored in an array a.  

nfcnz int 

nfcnz[n+1] 

Input The position of the first nonzero element stored in an array a by the 

compressed column storage method which stores the nonzero elements 

column by column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

x double x[n] Input Vector x is stored in x[i-1], 1  i  n. 

y double y[n] Output The product of a matrix and vector is stored in y[i-1], 1  i  n. 

w double w[nz] Work  

iw int iw[nz][2] Work  

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 n < 1 

 nz < 0 

 nfcnz[n]  nz+1 

Bypassed. 
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Figure c_dm_vmvscc-1  Storing a coefficient matrix A in compressed column storage method 

The way how to store a coefficient matrix A in compressed column storage method is explained. 

The nonzero elements of each column vector of a matrix A are stored in compressed mode into a one-dimensional array a 

column by column.  The position in the array a where the first nonzero element in the i-th column vector is stored is set 

into nfcnz[i-1]. 

The value of nfcnz[n] is set to nz+1, where n is an order of the matrix A and nz is the total number of the nonzero 

elements in this matrix. 

The row number of the nonzero element of the matrix A stored in the i-th array element a[i-1] is set into nrow[i-1]. 

3. Example program 

A product is obtained by multiplying the sparse matrix by a vector. 

      #include <stdlib.h> 
      #include <stdio.h> 
      #include <math.h> 
      #include "cssl.h" /* standard C-SSL header file */ 
 
      #define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
      #define NORD    (60) 
      #define NX      (NORD) 
      #define NY      (NORD) 
      #define NZ      (NORD) 
      #define N       (NX*NY*NZ) 
      #define K       (N+1) 
      #define NDIAG   (7) 
 
      MAIN__() 
      { 
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        int    ierr, icon; 
        int    i, ii, j; 
        int    ne, ns, nnz; 
        int    numnz, ntopcfg, ncol;  
        int    length, nbase; 
        int    nofst[NDIAG]; 
        int    nrow[K*NDIAG]; 
        int    nfcnz[N+1]; 
        int    iw[K*NDIAG][2]; 
 
        double s; 
        double diag[NDIAG][K]; 
        double a[K*NDIAG]; 
        double w[K*NDIAG]; 
        double x[N]; 
        double b[N]; 
        double y[N]; 
 
        for (i=1; i<=N; i++){ 
            x[i-1]=1.0; 
        } 
          
        nofst[1]=-NX*NY; 
        nofst[2]=-NX; 
        nofst[3]=-1; 
        nofst[4]=0; 
        nofst[5]=1; 
        nofst[6]=NX; 
        nofst[7]=NX*NY; 
 
        for (i=1; i<=NDIAG; i++){ 
          if (nofst[i-1] < 0){ 
            nbase=-nofst[i-1]; 
            length=N-nbase; 
            for (j=1; j<=length; j++){ 
              diag[i-1][j-1]=(double)(i-1); 
            } 
          } 
          else{ 
            nbase=nofst[i-1]; 
            length=N-nbase; 
            for (j=nbase+1; j<=N; j++){ 
              diag[i-1][j-1]=(double)(i-1); 
            } 
          }           
        } 
 
        numnz = 1; 
        for (j=1; j<=N; j++){ 
          ntopcfg = 1; 
          for (i=NDIAG; i>=1; i--){ 
     if (diag[i-1][j-1] != 0){ 
              ncol = j-nofst[i-1]; 
              a[numnz-1] = diag[i-1][j-1]; 
              nrow[numnz-1] = ncol; 
              if (ntopcfg == 1){ 
                nfcnz[j-1] = numnz; 
                ntopcfg = 0; 
              } 
              numnz = numnz+1; 
            } 
          } 
        } 
        nfcnz[N] = numnz; 
        nnz = numnz-1; 
 
        ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int*)iw, &icon);  
        for (i=1; i<=N; i++){ 
          b[i-1]=0.0; 
        } 
 
        for (i=1; i<=N; i++){ 
          ns = nfcnz[i-1]; 
          ne = nfcnz[i]-1; 
          for (j=ns; j<=ne; j++){ 
            ii = nrow[j-1]; 
            b[ii-1] = b[ii-1]+a[j-1]*x[i-1]; 
          } 
        } 
 
        s = 0.0; 
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        for (i=1; i<=N; i++){ 
          s=max(s,fabs(y[i-1]-b[i-1])); 
        } 
          
        printf("ERROR=%e\n", s); 
          
      }  

 
 

4. Method 

Consult the entry for DM_VMVSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vmvsccc 

Multiplication of a complex sparse matrix and a complex vector 

(compressed column storage method) 

ierr = c_dm_vmvsccc(za, nz, nrow, nfcnz, n, 

zx, zy, zw, iw, &icon); 

1. Function 

This routine obtains a product by multiplying an n  n complex sparse matrix by a complex vector. 

 y = Ax 

The sparse matrix A is stored by the compressed column storage method. Vectors x and y are n-dimensional vectors. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vmvsccc(za, nz, nrow, nfcnz, n, zx, zy, zw, (int*)iw, &icon); 

where: 

za dcomplex 

za[nz] 

Input The non-zero elements of a coefficient matrix are stored. The non-zero 

elements of a sparse matrix are stored in za[i], i=0, …, nz-1. For the 

compressed column storage method, refer to Figure c_dm_vmvscc-1.  

For a complex matrix , the real array a in this Figure is replaced with 

complex array. 

nz int Input The total number of the nonzero elements belong to a coefficient matrix 

A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage method, which 

indicate the row number of each nonzero element stored in an array za.  

nfcnz int 

nfcnz[n+1] 

Input The position of the first nonzero element stored in an array za by the 

compressed column storage method which stores the nonzero elements 

column by column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

zx dcomplex 

zx[n] 

Input Vector x is stored in zx[i-1], 1  i  n. 

zy dcomplex 

zy[n] 

Output The product of a matrix and vector is stored in zy[i-1], 1  i  n. 

zw dcomplex 

zw[nz] 

Work  

iw int iw[nz][2] Work  

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

 



 c_dm_vmvsccc 

153 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 n < 1 

 nz < 0 

 nfcnz[n]  nz+1 

Bypassed. 

 

3. Example program 

A product is obtained by multiplying the complex sparse matrix by a complex vector. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS).  For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include "cssl.h" 

 

#define  NORD 60 

#define  NX NORD 

#define  NY NORD 

#define  NZ NORD 

#define  N NX * NY * NZ 

#define  K (N + 1) 

#define  NDIAG 7 

 

dcomplex comp_add(dcomplex, dcomplex); 

dcomplex comp_sub(dcomplex, dcomplex); 

dcomplex comp_mult(dcomplex, dcomplex); 

double   cdabs(dcomplex); 

 

int MAIN__() { 

 

  int  nofst[NDIAG]; 

  dcomplex  zdiag[NDIAG][K], za[K * NDIAG], zw[K * NDIAG]; 

  int nrow[K * NDIAG], nfcnz[N + 1], 

      iw[K * NDIAG][2]; 

  dcomplex  zx[N], zb[N], zy[N]; 

  int  i, ii, j, icon, nbase, length, ncol, numnz, ntopcfg, nnz, ns, ne; 

  double s; 

 

  for (i = 0; i < N; i++) { 

    zx[i].re = 1.0; 
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    zx[i].im = 0.0; 

  } 

 

  nofst[0] = -NX * NY; 

  nofst[1] = -NX; 

  nofst[2] = -1; 

  nofst[3] = 0; 

  nofst[4] = 1; 

  nofst[5] = NX; 

  nofst[6] = NX * NY; 

 

  for (i = 0; i < NDIAG; i++) { 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        zdiag[i][j].re = (double)i; 

        zdiag[i][j].im = 0.0; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = nbase; j < N; j++) { 

        zdiag[i][j].re = (double)i; 

        zdiag[i][j].im = 0.0; 

      } 

    } 

  } 

 

  numnz = 1; 

 

  for (j = 0; j < N; j++) { 

    ntopcfg = 1; 

    for (i = NDIAG - 1; i >= 0; i--) { 

      if (zdiag[i][j].re != 0.0 || zdiag[i][j].im != 0.0) { 

        ncol = (j + 1) - nofst[i]; 

        za[numnz - 1] = zdiag[i][j]; 

        nrow[numnz - 1] = ncol; 

 

        if (ntopcfg == 1) { 

          nfcnz[j] = numnz; 

          ntopcfg = 0; 

        } 

        numnz++; 

      } 

    } 
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  } 

 

  nfcnz[N] = numnz;  

  nnz = numnz - 1; 

  c_dm_vmvsccc(za, nnz, nrow, nfcnz, N, zx, 

               zy, zw, (int *)iw, &icon); 

 

  for (i = 0; i < N; i++) { 

    zb[i].re = 0.0; 

    zb[i].im = 0.0; 

  } 

 

  for (i = 0; i < N; i++) { 

    ns = nfcnz[i]; 

    ne = nfcnz[i + 1] - 1; 

    for (j = ns - 1; j < ne; j++) { 

      ii = nrow[j]; 

      zb[ii - 1] = comp_add(zb[ii - 1], comp_mult(za [j], zx[i])); 

    } 

  } 

 

  s = 0.0; 

 

  for (i = 0; i < N; i++) { 

    s = fmax(s, cdabs(comp_sub(zy[i], zb[i]))); 

  } 

 

  printf("ERROR=%18.15lf\n", s); 

 

  return(0); 

} 

 

dcomplex comp_add(dcomplex so1, dcomplex so2) { 

 

  dcomplex obj; 

 

  obj.re = so1.re + so2.re; 

  obj.im = so1.im + so2.im; 

  return obj; 

} 

 

dcomplex comp_sub(dcomplex so1, dcomplex so2) { 

 

  dcomplex obj; 

 

  obj.re = so1.re - so2.re; 
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  obj.im = so1.im - so2.im; 

  return obj; 

} 

 

dcomplex comp_mult(dcomplex so1, dcomplex so2) { 

 

  dcomplex obj; 

 

  obj.re = so1.re * so2.re - so1.im * so2.im; 

  obj.im = so1.re * so2.im + so1.im * so2.re; 

  return obj; 

} 

 

double cdabs(dcomplex so) { 

  double obj; 

 

  obj = sqrt(so.re * so.re + so.im * so.im); 

  return obj; 

} 

 
 

4. Method 

Consult the entry for DM_VMVSCCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vmvsd 

Multiplication of a real sparse matrix and a real vector (diagonal format 

storage method). 

ierr = c_dm_vmvsd(a, k, ndiag, n, nofst, nlb, 

x, y, &icon); 

1. Function 

This function obtains a product by multiplying an n  n sparse matrix by a vector. 

 y = Ax 

The sparse matrix A is stored by the diagonal format storage method.  Vectors x and y are n-dimensional vectors. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, &icon); 

where: 

a double 

a[ndiag][k] 

Input Sparse matrix A stored in diagonal storage format.  See Comments on 

use. 

k int Input C fixed dimension of array a (  n). 

ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements. 

n int Input Order n of matrix A. 

nofst int 

nofst[ndiag] 

Input Distance from the main diagonal vector corresponding to diagonal 

vectors in array a.  Super-diagonal vectors have positive values.  Sub-

diagonal vectors have negative values.  See Comments on use. 

nlb int Input Lower bandwidth of matrix A. 

x double x[Xlen] Input Vector x is stored in x[i], nlb  i < nlb  n. 

Xlen = n  nlb  nub.  Where nlb is the lower band width and nub is 

the upper band width. 

y double y[n] Output Product vector y. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 k < 1 

 n < 1 

 n > k 

 ndiag < 1 

 nlb  max(nofst[i]);  0  i < ndiag 

 abs(nofst[i]) > n  1; 0  i < ndiag 

Bypassed. 
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3. Comments on use 

a and nofst 
The coefficients of matrix A are stored in two arrays using the diagonal storage format.  For full details, see the Array 

storage formats section of the General Descriptions. 

The advantage of this method lies in the fact that the matrix-vector product can be computed without the use of indirect 

indices.  The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method. 

4. Example program 

This example program calculates a matrix-vector multiplication and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    (100) 
#define UBANDW  (2) 
#define LBANDW  (1) 
#define NDIAG   (UBANDW + LBANDW + 1) 
 
MAIN__() 
{ 
  double one=1.0, eps=1.e-6; 
  int   ierr, icon; 
  int   nlb, nub, n, i, j, k; 
  int   nofst[UBANDW + LBANDW + 1]; 
  double a[NDIAG][NMAX], x[NMAX + UBANDW + LBANDW], y[NMAX]; 
 
  /* initialize matrix and vector */ 
  nlb   = LBANDW; 
  nub   = UBANDW; 
  n     = NMAX; 
  k     = NMAX; 
 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    nofst[i] = i; 
  } 
 
  for (i=1; i<=nlb; i++) { 
    for (j=0; j<i; j++) a[nub+i][j] =  0.0; 
    for (j=i; j<n; j++) a[nub+i][j] = -2.0; 
    nofst[nub+i] = -i; 
  } 
 
  for (i=0; i<n+nlb+nub; i++) x[i] = 0.0; 
 
  nofst[0] = 0; 
  for (j=0; j<n; j++) { 
    a[0][j] = one; 
    for (i=1; i<NDIAG; i++) a[0][j] -= a[i][j]; 
    x[nlb+j] = one; 
  } 
 
  /* perform matrix-vector multiply */ 
  ierr = c_dm_vmvsd((double*)a, k, NDIAG, n, nofst, nlb, x, y, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dm_vmvsd failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* check vector */ 
  for (i=0;i<n;i++) { 
    if (fabs(y[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
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  } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VMVSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vmvse 

Multiplication of a real sparse matrix and a real vector (ELLPACK 

format storage method). 

ierr = c_dm_vmvse(a, k, nw, n, icol, x, y, 

&icon); 

1. Function 

This function obtains a product by multiplying an n  n sparse matrix by a vector. 

 y = Ax 

The coefficient matrix ( n  n ) is stored by the ELLPACK format storage method using two arrays. Vectors x and y are n-

dimensional vectors. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vmvse((double*)a, k, nw, n, (int*)icol, x, y, &icon); 

where: 

a double 

a[nw][k] 

Input Sparse matrix A stored in ELLPACK storage format.  See Comments on 

use. 

k int Input C fixed dimension of array a (  n ). 

nw int Input The maximum number of non-zero elements in any row of matrix A 

(  0). 

n int Input Order n of matrix A. 

icol int 

icol[nw][k] 

Input Column indices used in the ELLPACK format, showing to which 

column the elements corresponding to a belong.  See Comments on use. 

x double x[n] Input Vector x. 

y double y[n] Output Solution vector y. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 k < 1 

 n  0 

 nw < 1 

 n > k 

Bypassed. 
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3. Comments on use 

a and icol 
The coefficients of matrix A are stored in two arrays using the ELLPACK storage format.  For full details, see the Array 

storage formats section of the General Descriptions. 

Before storing data in the ELLPACK format, it is recommended that the user initialize the arrays a and icol with zero 

and the row number, respectively. 

4. Example program 

This example program calculates a matrix-vector multiplication and checks the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    (1000) 
#define UBANDW  (2) 
#define LBANDW  (1) 
#define NW      (UBANDW + LBANDW + 1) 
 
MAIN__() 
{ 
  double lcf=-2.0, ucf=-1.0, one=1.0, eps=1.e-6; 
  int   ierr, icon; 
  int   nlb, nub, n, i, j, k, ix; 
  int   icol[NW][NMAX]; 
  double a[NW][NMAX], x[NMAX], y[NMAX]; 
 
  /* initialize matrix and vector */ 
  nub = UBANDW; 
  nlb = LBANDW; 
  n   = NMAX; 
  k   = NMAX; 
 
  for (i=0; i<n; i++) x[i] = one; 
 
  for (i=0; i<NW; i++) { 
    for (j=0; j<n; j++) { 
      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
  } 
 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = one-(double)j*lcf-(double)nub*ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = one-(double)nlb*lcf-(double)nub*ucf; 
    for (i=nlb+1; i<NW; i++) a[i][j] = ucf; 
    for (i=0; i<NW; i++) icol[i][j] = i+1+j-nlb; 
  } 
 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = one-(double)nlb*lcf-(double)(n-j-1)*ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n-(j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
 
  /* perform matrix-vector multiply */ 
  ierr = c_dm_vmvse((double*)a, k, NW, n, (int*)icol, x, y, &icon); 
  if (icon != 0) { 
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    printf("ERROR: c_dm_vmvse failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* check vector */ 
  for (i=0; i<n; i++) { 
    if (fabs(y[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
  } 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VMVSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vpde2d 

Generation of System of linear equations with sparse matrices by the 

finite difference discretization of a two dimensional boundary value 

problem for second order partial differential equation. 

ierr = c_dm_vpde2d(a1, l1, n1, n2, a2, x1, x2, 

b1, b2, c, f, a, k, na, n, &ndiag, 

nofst, r, &icon); 

1. Function 

This routine assembles the system of linear equations by the finite difference discretization of the linear, two dimensional 

boundary value problem on the rectangular domain B: 

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is 

satisfied. 
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a1, a2, b1, b2, c and f are given functions on the domain and 1, 2,  and  are given functions on the boundary of the 

domain. 

The n1  n2 grid is defined by xi, j = (x1[i1], x2[j1]) 

i = 1, ... , n1, j = 1, ... , n2 with 

B = [x1[0], x1[n11]]  [x2[0], x2[n21]]; 

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the 

grid points. The returned coefficient matrix is stored by the diagonal format storage method. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vpde2d((double*)a1, l1, n1, n2, (double*)a2, x1, x2, (double*)b1, 

(double*)b2, (double*)c, (double*)f, (double*)a, k, na, n, &ndiag, 

nofst, r,  &icon); 

where: 

a1 double 

a1[n2][l1] 

Input The coefficients of a1(xij) are stored in a1[j  1][i  1], i = 1, ... , n1, j 

= 1, ... , n2. 

l1 int Input Size of second-dimension of array a1, a2, b1, b2, c and f (l1  n1). 

n1 int Input Number of grid points in the x1-direction (n1 > 2). 

n2 int Input Number of grid points in the x2-direction (n2 > 2). 

 



c_dm_vpde2d 

164 

a2 double 

a2[n2][l1] 

Input The coefficients of a2(xij) are stored in a2[j  1][i  1], i = 1, ... , n1, j 

= 1, ... , n2. 

x1 double x1[n1] Input The x1-coordinates of the grid points are stored in x1[i], i = 0, ... , 

n11. The coordinates of the grid points have to be increasing: 

x1[i] < x1[i1], i = 0, ... , n12. 

x2 double x2[n2] Input The x2-coordinates of the grid points are stored in x2[i], i = 0, ... , 

n21. The coordinates of the grid points have to be increasing: 

x2[i] < x2[i1], i = 0, ... , n22. 

b1 double 

b1[n2][l1] 

Input The coefficients of b1(xi, j) and the boundary condition 1 are stored in b1. 
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b2 double 

b2[n2][l1] 

Input The coefficients of b2(xi, j) and the boundary condition 2 are stored in b2. 
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c double 

c[n2][l1] 

Input The coefficients of c(xi, j) and the boundary condition  are stored in c. 
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f double 

f[n2][l1] 

Input The coefficients of f(xi, j) and the boundary condition   are stored in f. 
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a double 

a[na][k] 

Output The nonzero elements of a coefficient matrix are stored in a. 

k int Input Size of second-dimension of array a ( n). 

na int Input Size of first-dimension of array a ( ndiag). 

n int Input Order n of matrix A  ( n = n1  n2). 

ndiag int Output Number of columns in array a and size of array nofst (= 5). 

nofst int 

nofst[ndiag] 

Output Offsets of diagonals of A stored a.  Main diagonal has offset 0, 

subdiagonals have negative offsets, and superdiagonals have positive 

offsets. 

r double r[k] Output The right-side constant vectors of a system of linear equations are stored 

in r. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 
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Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 l1 < n1 

 n1 < 3 

 n2 < 3 

 na < 5 

 k < n1  n2 

Bypassed. 

30001 The coordinates of the grid points is not 

increasing. 

3. Comments on use 

The value of the solution at the grid points 
The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue 

problem solver depends strictly on the number and the location of the grid points. 

The grid points to their nearest neighbor 
The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in x1-direction 

the condition 

 1,...,2,25.0 
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
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should be met (for the x2-direction analogously). 

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of 

the coefficient matrix is not only determined by the grid but also by the coefficient functions. 

4. Example program 

The domain is the box [1,1] 2. The partial differential equation is 

 0
2

2
1

1
2

2

2

1
2

2




























x

u
v

x

u
v

x

u

x

u
 

modeling a diffusion of the quantity u through the cannel driven by the rotating velocity field 
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where v0 is real constant (e.g. v0=1). The boundary conditions are set as follows: 
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where n denotes the outer normal field at the boundary of the box. 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define N1 49 
#define N2 (N1) 
#define L1 (N1) 
#define L2 (N2) 
#define KA (N1*N2) 
#define NA 5 
 
int MAIN__() 
{ 
  double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1]; 
  double c[L2][L1], f[L2][L1], a[NA][KA], r[KA], v0; 
  int    nofst[NA], z1, z2, i, j, n, ndiag, icon; 
 
  v0 = 1.0; 
 
  /* create grid nodes nodes: */ 
  for (z1=0; z1<N1; z1++) { 
    x1[z1] = 2*(double)(z1)/(double)(N1-1)-1.0; 
  } 
 
  for (z2=0; z2<N2; z2++) { 
    x2[z2] = 2*(double)(z2)/(double)(N2-1)-1.0; 
  } 
 
  /* coefficient functions: */ 
  for (z2=0; z2<N2; z2++) { 
    for (z1=0; z1<N1; z1++) { 
      a1[z2][z1] = 1.0; 
      a2[z2][z1] = 1.0; 
    } 
 
    for (z1=1; z1<N1-1; z1++) { 
      b1[z2][z1] =  v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10); 
      b2[z2][z1] = -v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10); 
      c[z2][z1]  = 0.0; 
      f[z2][z1]  = 0.0; 
    } 
 
    /* boundary conditions at faces X1=-1 and X1=1: */ 
    b1[z2][0]    = -1.0; 
    b2[z2][0]    =  0.0; 
    c[z2][0]     =  0.0; 
    f[z2][0]     =  0.0; 
    b1[z2][N1-1] =  1.0; 
    b2[z2][N1-1] =  0.0; 
    c[z2][N1-1]  =  0.0; 
    f[z2][N1-1]  =  0.0; 
 
    /* boundary conditions at faces X2=-1 and X2=1: */ 
    if (z2 == 0) { 
      for (z1=0; z1<N1; z1++) { 
        b1[z1][0] = 0.0; 
        b2[z1][0] = 0.0; 
        c[z1][0]  = 1.0; 
        f[z1][0]  = 0.0; 
      } 
    } else if (z2 == N2-1) { 
      for (z1=0; z1<N1; z1++) { 
        b1[z1][N2-1] = 0.0; 
        b2[z1][N2-1] = 0.0; 
        c[z1][N2-1]  = 1.0; 
        f[z1][N2-1]  = 1.0; 
      } 
    } 
  } 
 
  /* build the linear system: */ 
  n = N1*N2; 
  c_dm_vpde2d((double*)a1, L1, N1, N2, (double*)a2, x1, x2, (double*)b1, (double*)b2, 
              (double*)c, (double*)f, (double*)a, KA, NA, n, &ndiag, nofst, r, &icon); 
  printf("icon of c_dm_vpde2d = %d\n", icon); 
 
  /* write the matrix to a file: */ 
  for (j=0; j<ndiag; j++) { 
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    for (i=0; i<n; i+=100) { 
      if(i%3 == 0) { printf("\n");}; 
      printf("%23.16e ", a[j][i]); 
    } 
  } 
 
  for (i=0; i<ndiag; i++) { 
    if(i%3 == 0) { printf("\n");}; 
    printf("%10d ", nofst[i]); 
  } 
 
  for (i=0; i<n; i+=100) { 
    if(i%3 == 0) { printf("\n");}; 
    printf("%23.16e ", r[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for DM_VPDE2D in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vpde3d 

Generation of System of linear equations with sparse matrices by the 

finite difference discretization of a three dimensional boundary value 

problem for second order partial differential equation. 

ierr = c_dm_vpde3d(a1, l1, l2, n1, n2, n3, a2, 

a3, x1, x2, x3, b1, b2, b3, c, f, 

a, k, na, n, &ndiag, nofst, r, 

&icon); 

1. Function 

This routine assembles the system of linear equations by the finite difference discretization of the linear, three dimensional 

boundary value problem on the rectangular domain B: 

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is 

satisfied. 
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a1, a2, a3, b1, b2, b3, c and f are given functions on the domain and 1, 2, 3,  and  are given functions on the boundary 

of the domain. 

The n1  n2  n3 grid is defined by xi, j, k = (x1[i1], x2[j1] , x3[k1]) 

i = 1, ... , n1, j = 1, ... , n2, k = 1, ... , n3 

B = [x1[0], x1[n11]]  [x2[0], x2[n21]]  [x3[0], x3[n31]]; 

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the 

grid points. The returned coefficient matrix is stored by the diagonal format storage method. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vpde3d((double*)a1, l1, l2, n1, n2, n3, (double*)a2, (double*)a3, 

x1, x2, x3, (double*)b1, (double*)b2, (double*)b3, (double*)c, 

(double*)f, (double*)a, k, na, n, &ndiag, nofst, r,  &icon); 

where: 

a1 double 

a1[n3][l2][l1] 

Input The coefficients of a1(xi, j, k) are stored in a1[k  1][j  1][i  1], i = 

1, ... , n1, j = 1, ... , n2, k = 1, ... , n3. 

l1 int Input Size of second-dimension of array a1, a2, a3, b1, b2, b3, c and f 

(l1  n1). 
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l2 int Input Size of second-dimension of array a1, a2, a3, b1, b2, b3, c and f 

(l2  n2). 

n1 int Input Number of grid points in the x1-direction (n1 > 2). 

n2 int Input Number of grid points in the x2-direction (n2 > 2). 

n3 int Input Number of grid points in the x3-direction (n3 > 2). 

a2 double 

a2[n3][l2][l1] 

Input The coefficients of a2(xi, j, k) are stored in a2[k  1][j  1][i  1], i = 

1, ... , n1, j = 1, ... , n2, k = 1, ... , n3. 

a3 double 

a3[n3][l2][l1] 

Input The coefficients of a3(xi, j, k) are stored in a3[k  1][j  1][i  1], i = 

1, ... , n1, j = 1, ... , n2, k = 1, ... , n3. 

x1 double x1[n1] Input The x1-coordinates of the grid points are stored in x1[i], i = 0, ... , 

n11. The coordinates of the grid points have to be increasing: 

x1[i] < x1[i1], i = 0, ... , n12. 

x2 double x2[n2] Input The x2-coordinates of the grid points are stored in x2[i], i = 0, ... , 

n21. The coordinates of the grid points have to be increasing: 

x2[i] < x2[i1], i = 0, ... , n22. 

x3 double x3[n3] Input The x3-coordinates of the grid points are stored in x3[i], i = 0, ... , 

n31. The coordinates of the grid points have to be increasing: 

x3[i] < x3[i1], i = 0, ... , n32. 

b1 double 

b1[n3][l2][l1] 

Input The coefficients of b1(xi, j, k) and the boundary condition 1 are stored in 

b1. 
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b2 double 

b2[n3][l2][l1] 

Input The coefficients of b2(xi, j, k) and the boundary condition 2 are stored in 

b2. 
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b3 double 

b3[n3][l2][l1] 

Input The coefficients of b3(xi, j, k) and the boundary condition 3 are stored in 

b3. 
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c double 

c[n3][l2][l1] 

Input The coefficients of c(xi, j, k) and the boundary condition  are stored in c. 
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f double 

f[n3][l2][l1] 

Input The coefficients of f(xi, j, k) and the boundary condition   are stored in f. 
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a double 

a[na][k] 

Output The nonzero elements of a coefficient matrix are stored in a. 

k int Input Size of second-dimension of array a ( n). 

na int Input Size of first-dimension of array a ( ndiag). 

n int Input Order n of matrix A ( n = n1  n2  n3). 

ndiag int Output Number of columns in array a and size of array nofst (= 7). 

nofst int 

nofst[ndiag] 

Output Offsets of diagonals of A stored a.  Main diagonal has offset 0, 

subdiagonals have negative offsets, and superdiagonals have positive 

offsets. 

r double r[n] Output The right-side constant vectors of a system of linear equations are 

stored in r. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 l1 < n1 

 l2 < n2 

 n1 < 3 

 n2 < 3 

 n3 < 3 

 na < 7 

 k < n1  n2  n3 

Bypassed. 

30001 The coordinates of the grid points is not 

increasing. 
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3. Comments on use 

The value of the solution at the grid points 
The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue 

problem solver depends strictly on the number and the location of the grid points. 

The grid points to their nearest neighbor 
The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in x1-direction 

the condition 
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should be met (for the x2-direction and x3-direction analogously). 

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of 

the coefficient matrix is not only determined by the grid but also by the coefficient functions. 

4. Example program 

The domain is the channel[-1, 1]2  [0, 5]. The partial differential equation is 
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modeling a diffusion of the quantity u through the cannel driven by the rotating velocity field 
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where v0 is real constant (e.g. v0=1). The boundary conditions are set as follows: 
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where n denotes the outer normal field at the boundary of the channel. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define N1 49 
#define N2 49 
#define N3 25 
#define L1 (N1) 
#define L2 (N2) 
#define L3 (N3) 
#define KA (N1*N2*N3) 
#define NA 7 
 
int MAIN__() 
{ 
  double x1[L1], x2[L2], x3[L3], a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1]; 
  double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1], c[L1][L2][L3]; 
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  double f[L3][L2][L1], a[NA][KA], r[KA], v0; 
  int    nofst[NA], z1, z2, z3, i, j, n, ndiag, icon; 
 
  v0 = 1.0; 
 
  for (z1=0; z1<N1; z1++) { 
    x1[z1] = 2*(double)z1/(double)(N1-1)-1.0; 
  } 
  for (z2=0; z2<N2; z2++) { 
    x2[z2] = 2*(double)z2/(double)(N2-1)-1.0; 
  } 
  for (z3=0; z3<N3; z3++) { 
    x3[z3] = (double)z3/(double)(N3-1); 
  } 
 
  /* coefficient functions: */ 
  for (z3=0; z3<N3; z3++) { 
    for (z2=0; z2<N2; z2++) { 
      for (z1=0; z1<N1; z1++) { 
        a1[z3][z2][z1] = 1.0; 
        a2[z3][z2][z1] = 1.0; 
        a3[z3][z2][z1] = 1.0; 
      } 
    } 
 
    for (z2=1; z2<N2-1; z2++) { 
      for (z1=1; z1<N1-1; z1++) { 
        b1[z3][z2][z1] = v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10); 
        b2[z3][z2][z1] = v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10); 
        b3[z3][z2][z1] = 0.0; 
        c[z3][z2][z1]  = 0.0; 
        f[z3][z2][z1]  = 0.0; 
      } 
    } 
 
    /* boundary conditions at faces X1=-1 and X1=1: */ 
    for (z2=0; z2<N2; z2++) { 
      b1[z3][z2][0] = -1.0; 
      b2[z3][z2][0] =  0.0; 
      b3[z3][z2][0] =  0.0; 
      c[z3][z2][0]  =  0.0; 
      f[z3][z2][0]  =  0.0; 
 
      b1[z3][z2][N1-1] = 1.0; 
      b2[z3][z2][N1-1] = 0.0; 
      b3[z3][z2][N1-1] = 0.0; 
      c[z3][z2][N1-1]  = 0.0; 
      f[z3][z2][N1-1]  = 0.0; 
    } 
 
    /* boundary conditions at faces X2=-1 and X2=1: */ 
    for (z1=0; z1<N1; z1++) { 
      b1[z3][0][z1] =  0.0; 
      b2[z3][0][z1] = -1.0; 
      b3[z3][0][z1] =  0.0; 
      c[z3][0][z1]  =  0.0; 
      f[z3][0][z1]  =  0.0; 
 
      b1[z3][N2-1][z1] = 0.0; 
      b2[z3][N2-1][z1] = 1.0; 
      b3[z3][N2-1][z1] = 0.0; 
      c[z3][N2-1][z1]  = 0.0; 
      f[z3][N2-1][z1]  = 0.0; 
    } 
 
    /* boundary conditions at faces X3=0 and X3=5: */ 
    if (z3==0) { 
      for (z1=0; z1<N1; z1++) { 
        for (z2=0; z2<N2; z2++) { 
          b1[0][z2][z1] = 0.0; 
          b2[0][z2][z1] = 0.0; 
          b3[0][z2][z1] = 0.0; 
          c[0][z2][z1]  = 1.0; 
          f[0][z2][z1]  = 0.0; 
        } 
      } 
    } else if (z3==N3-1) { 
      for (z1=0; z1<N1; z1++) { 
        for (z2=0; z2<N2; z2++) { 
          b1[N3-1][z2][z1] = 0.0; 
          b2[N3-1][z2][z1] = 0.0; 
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          b3[N3-1][z2][z1] = 0.0; 
          c[N3-1][z2][z1]  = 1.0; 
          f[N3-1][z2][z1]  = 1.0; 
        } 
      } 
    } 
  } 
 
  /* build the linear system: */ 
  n = N1*N2*N3; 
  c_dm_vpde3d((double*)a1, L1, L2, N1, N2, N3, (double*)a2, (double*)a3, x1, x2, x3, 
               (double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f, (double*)a, 
               KA, NA, n, &ndiag, nofst, r, &icon); 
  printf("c_dm_vpde3d : icon = %d\n", icon); 
 
  /* write the matrix to a file: */ 
  for (j=0; j<ndiag; j++) { 
    for (i=0; i<n; i+=1000) { 
      if(i%3 == 0) { printf("\n");}; 
      printf("%23.16e ", a[j][i]); 
    } 
  } 
 
  for (i=0; i<ndiag; i++) { 
    if(i%3 == 0) { printf("\n");}; 
    printf("%10d ", nofst[i]); 
  } 
 
  for (i=0; i<n; i+=1000) { 
    if(i%3 == 0) { printf("\n");}; 
    printf("%23.16e ", r[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for DM_VPDE3D in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vradau5 

System of stiff ordinary differential equations or differential-algebraic 

equations (Implicit Runge-Kutta method) 

ierr = c_dm_vradau5(n, fcn, &x, y, xend, &h,  

rtol, Atol, itol, jac, ijac,  

mljac, mujac, mas, imas, mlmas,  

mumas, solout, iout, work, lwork,  

iwork, liwork, rpar, &ipar, 

&icon); 

1. Function 

This routine solves a system of stiff ordinary differential equations or differential-algebraic equations of the 
following form: 

 My′ =                                 y(x0) = y0 

, where M is a constant n-by-n matrix ( called mass-matrix ) , y is the solution vector of size n (with components 

nyyy ,...,, 21 ), f(x,y) is function vector of size n ( with components nfff ,...,, 21 ) and 0y  is the initial value at 0xx   (with 

components nyyy 00201 ,...,, ) . 

When M is a non-singular matrix other than identity matrix, the system becomes an implicit system of ordinary 

differential equations. When M is a singular matrix, the system becomes a system of differential-algebraic equations. 

This routine returns to the caller program when a numerical solution at )( 0xxend   is obtained. When integrating the 

system from 0x  toward endx  , a numerical solution after each successful step can be provided to a user’s routine ( its 

routine name is given as parameter solout). 

This routine calls DM_VRADAU5 in Fortran SSL II which is based on RADAU5, a free software developed by E. Haier 

and G. Wanner (Universite de Geneve, as of March 2011). The license of RADAU5 is listed in Appendix 2 of "FUJITSU 

SSL II Thread-Parallel Capabilities User's Guide". 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vradau5(n, fcn, &x, y, xend, &h, rtol, Atol, itol, jac, ijac, 

mljac, mujac, mas, imas, mlmas, mumas, solout, iout, work, lwork, 

iwork, liwork, rpar, &ipar, &icon); 

 

where: 

n int Input Dimension of the system(n  1). 

fcn int Input Name of user function computing the value of f(x,y). Its prototype is: 

void fcn(int n, double x, double y[], 

          double f[], double *rpar, int *ipar); 

n int Input Original number of 

an equation 

)yf (x,
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x double Input Autonomous 

variable x  

y double 

y[n] 

Input Solution vector y 

f double 

f[n] 

Output )( yf x, .  

f[0]= 1f , 

f[1]= 2f ,….. 

f[n-1]= nf  

rpar, ipar (see below) 

x double Input Initial x-value x0. 

  Output x-value for which the solution has been computed (after successful 

return x = xend). 

y double y[n] Input Initial values for y: y[0] = 01y , y[1]= 02y ,…, y[n-1] = ny0 . 

  Output Numerical solution at x ( = xend on successful return). 

xend double Input Final x-value endx ( 0xxend   may be positive or negative) 

h double Input Initial step size guess; 

For stiff equations with initial transient, h = 1.0 / (norm of  yf x,' ), 

usually 10-3 or 10-5, is good. This choice is not very important, the step 

size is quickly adapted (if h = 0.0, the code puts h = 10-6). 

  Output Predicted step size of the last accepted step. 

rtol 

Atol 

double Input Relative and absolute error tolerances. They can be both scalars (must 

be variables) or else both vectors of length n.  Atol (or Atol[i]) > 0 

and rtol (or rtol[i]) > 10u, where u is the round off unit. 

itol int Input Switch for rtol and Atol: 

itol = 0: Both rtol and Atol are scalars. The code keeps, roughly, 

the local error of y[i] below rtol * abs(y[i])  +  Atol. 

itol   0: Both rtol and Atol are vectors. The code keeps, 

roughly, the local error of y[i] below rtol[i] * abs(y[i]) + 

Atol[i]. 

jac int Input Name of the user function which computes the partial derivatives of  

f(x,y) with respect to y (This routine is only called if ijac   0; Supply 

a dummy routine in the case ijac = 0). 

For ijac   0, this function must have the form 

Its prototype is: 

void jac(int n, double x, double y[], 

 double dfy[], int ldfy, double *rpar, 

int *ipar); 

ldfy, the row-length of the array, is furnished by the calling program. 

If mljac = n the Jacobian is supposed to be full and the partial 

derivatives are stored in dfy as 

dfy[(i-1)*ldfy+j-1] =
j

i

y

f




 

else, the Jacobian is taken as banded and the partial derivatives are 

stored diagonal-wise as 

dfy[(i-j+mujac)*ldfy+j-1] = 
j

i

y

f



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Fig. c_dm_vradau5-1 shows how a banded Jacobian is stored in dfy in 

the case of n = 6, mljac = 3, and mujac = 1.  

ijac int Input Switch for the computation of the Jacobian: 

ijac = 0: Jacobian is computed internally by finite differences, user 

function " jac " is never called. 

ijac   0: Jacobian is supplied by user function jac. 

mljac int Input Switch for the banded structure of the Jacobian: 

mljac = n: Jacobian is a full matrix.  The linear algebra is done by 

full-matrix Gauss-elimination. 

0   mljac  < n: mljac is the lower bandwidth of Jacobian matrix 

(   number of non-zero diagonals below the main diagonal). 

mujac int Input Upper bandwidth of Jacobian matrix ( number of non-zero diagonals 

above the main diagonal). Need not be defined if mljac = n.  

mas int Input Name  of user function computing the mass-matrix M. 

If imas = 0, the matrix is assumed to be the identity matrix and needs 

not to be defined; Supply a dummy routine in this case. 

If imas   0, the routine mas is of the form. 

Its prototype is:  

void mas(int n, double am[], int lmas, 

 double *rpar, int *ipar); 

If mlmas = n the mass-matrix is stored as full matrix like 

am[(i-1)*lmas+j-1] = ijM  

else, the matrix is taken as banded and stored diagonal-wise as 

am[(i-j+mumas)*lmas+j-1] = ijM  

imas int Input Information on the mass-matrix; 

imas = 0: M is supposed to be the identity matrix, mas is never called. 

imas   0: Mass-matrix is supplied. 

mlmas int Input Switch for the banded structure of the mass-matrix: 

mlmas = n: the full matrix case. The linear algebra is done by full-

matrix Gauss-elimination. 

0   mlmas < n: mlmas is the lower bandwidth of the matrix  

(   number of non-zero diagonals below the main diagonals). 

 mlmas   mljac. 

mumas int Input Upper bandwidth of mass-matrix ( number of non-zero diagonals 

above the main diagonal). Need not be defined if mlmas = n.  

mumas   mujac. 

solout int Input Name of user function providing the numerical solution during 

integration. 

If iout   0, it is called after every successful step. Supply a dummy 

function if iout = 0. 

It must have the form. Its prototype is: 

void solout(int nr, double xold, double x, 

 double y[], double cont[], int lrc, int n, 

      double *rpar, int *ipar, int irtrn, 

double *work2, int *iwork2); 

solout furnishes the solution "y" at the nr-th grid-point "x" (thereby 
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the initial value is the first grid-point with nr = 1 and xend is the final 

grid-point). 

"xold" is the preceding grid-point. "irtan" serves to interrupt the 

integration. If irtan is set < 0, c_dm_vradau5 returns to the calling 

program. 

-----  CONTINUOUS OUTPUT: ----- 

During calls to " solout ", a continuous solution for the interval 

[xold,x]  is available through the function of type double: 

  c_dm_vcontr5(i, s, cont, lrc, work2, iwork2)   

which provides an approximation to the I-th component of the solution 

(1   i   n) at the point S. The value S should lie in the interval 

[xold,x]. Do not change the entries of cont[lrc], work2[*], and 

iwork2[*]. 

iout int Input Switch for calling the routine solout: 

iout = 0: Routine is never called 

iout   0: Routine is available for output. 

work double 

work[lwork] 

Work 

area 

work[0], work[1], ..., work[19] serve as parameters for the code. 

For standard use of the code work[0], ..., work[19] must be set to 

zero before calling. See below for a more sophisticated use. 

work[20], ..., work[lwork-1] serve as working space for all 

vectors and matrices. 

"lwork " must be at least 

n * (ljac + lmas + 3 * le * 12)  +  20 

where 

  ljac = n  if mljac = n ( full Jacobian) 

  ljac = mljac + mujac + 1  if mljac < n (banded jac.) 

and 

  lmas = 0  if imas = 0 

  lmas = n  if imas   0 and mlmas = n (full) 

  lmas = mlmas + mumas + 1 if mlmas < n (banded mass-M.) 

and 

  le = n    if mljac = n (full Jacobian) 

  le = 2 * mljac + mujac + 1  if mljac < n (banded jac.) 

 

In the usual case where the Jacobian is full and the mass-matrix is the 

identity (imas =0), the minimum storage requirement is 

  lwork = 4 * n * n + 12 * n + 20. 

If  iwork[8] = M1 > 0 then " lwork " must be at least 

  n * (ljac + 12) + (n - M1) * (lmas + 3 * le) + 20 

where in the definitions of ljac, lmas and le the number n can be 

replaced by n - M1. 

lwork int Input Declared length of array “work”. 

iwork int 

iwork[liwork] 

Work 

area 

iwork[0], iwork[1], ..., iwork[19] serve as parameters for the 

code. For standard use, set iwork[0], ..., iwork[19] to zero before 

calling.  

iwork[20], ..., iwork[liwork-1] serve as working space.  
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"liwork" must be at least 3 * n + 20. 

  Output iwork[13] through iwork[19] contain statistics at completion of 

integration up to xend.  

iwork[13] NFCN  Number of function evaluations(those for  

numerical evaluation of the Jacobian are not counted)  

iwork[14] NJAC  Number of Jacobian evaluations (either  

analytically or numerically)  

iwork[15] NSTEP  Number of computed steps 

iwork[16] NACCPT Number of accepted steps  

iwork[17] NREJCT Number of rejected steps(due to error  

test) ,(step rejections in the first step are not counted) 

iwork[18] NDEC  Number of LU-decompositions of both matrices 

iwork[19] NSOL  Number of forward-backward substitutions, of  

both systems; The NSTEP forward-backward 

substitutions, 

needed for step size selection, are not counted 

liwork int Input Declared length of array “iwork”.  

rpar 

ipar 

double* 

int* 

paramet

ers 

which can be used for communication between your calling program 

and functions fcn, jac, mas, and solout.  

icon int Output Condition code. See below. 
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where jiij yfa  The elements marked *are not used. 

Fig. c_dm_vradau5-1 

Sophisticated Setting of Parameters: 
Several parameters of the code are tuned to make it work well. They may be defined by setting work[0], ... as well as 

iwork[0], ... different from zero. For zero input, the code chooses default values: 

iwork[0] Input If iwork[0]   0, the code transforms the Jacobian matrix to Hessenberg 

form. This is particularly advantageous for large systems with full Jacobian. It 

does not work for banded Jacobian (mljac < n) and not for implicit systems 

(imas   0).  

iwork[1] Input This is the maximal number of allowed steps. The default value (for 

* 12a  23a  34a  45a  56a  

11a  22a  33a  44a  55a  66a  

21a  32a  43a  54a  65a  * 

31a  42a  53a  64a  * * 

41a  52a  63a  * * * 
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iwork[1] = 0) is 100000. 

iwork[2] Input The maximum number of Newton iterations for the solution of the implicit 

system in each step. The default value ( for iwork[2] = 0) is 7. 

iwork[3] Input If iwork[3] = 0 the extrapolated collocation solution is taken as starting 

value for Newton’s method. If iwork[3]   0 zero starting values are used. 

The latter is recommended if Newton’s method has difficulties with 

convergence (This is the case when NSTEP is larger than NACCPT + 

NREJCT; See output parameters). Default is iwork[3] = 0. 

The following 3 parameters are important for differential-algebraic systems of index > 1. The function-routine should be 

written such that the index 1, 2, 3 variables appear in this order. In estimating the error the index 2 variables are multiplied 

by h, the index 3 variables by h2. (In the cases where M is the identity matrix or non-singular, the system is just ordinary 

differential equations, so all variables are index 1 variables and it is sufficient to set 3 parameters to zero.) 

If the user sets any of these 3 parameters different from 0, the sum of 3 parameters must be n. 

iwork[4] Input Dimension of the index 1 variables.  

iwork[5] Input Dimension of the index 2 variables. Default iwork[5] = 0. 

iwork[6] Input Dimension of the index 3 variables. Default iwork[6] = 0. 

iwork[7] Input Switch for step size strategy. 

If iwork[7] = 1 modified predictive controller (Gustafsson) 

If iwork[7] > 1 classical step size control 

The default value (for iwork[7] = 0) is iwork[7] = 1. The choice 

iwork[7] = 1 seems to produce safer results. For simple problems, the 

choice iwork[7] > 1 produces often slightly faster runs. 

If the differential system has the special structure that 

     y(i)' = y [i+M2]   for   i = 0, ... , M1, 

with M1 a multiple of M2, a substantial gain in computer time can be achieved by setting the parameters iwork[8] and 

iwork[9]. For example, second order systems )',,( ppgp" x can be rewritten as 

        
),,(' vpgv

vp

x

'




 

, where  p and v are vectors of dimension n / 2. In this case one has to put M1 = M2 = n / 2. For M1 > 0 some of the input 

parameters have different meanings: 

jac Input Only the elements of the non-trivial part of the Jacobian have to be stored. For 

example, with the above first order system reduced from the second order 

system, routine jac has to store only 

       













v

g

p

g
 

, which is n / 2   n non-trivial matrix. 

Suppose y and f are solution vector and right hand side function vector , 

respectively, of resulting first order system. 

If  mljac = n - M1 the Jacobian is supposed to be full; 

     dfy[(i-1)*ldfy+j-1] = 
y(j)

M1)f(i




 ,  i = 1,…, n - M1,   j = 1,…, 

n 
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If  0   mljac < n - M1 the Jacobian is banded ( M1 = M2 * MM ); 

dfy[(i-j+mujac)*ldfy+(j+k×M2-1)]= 
M2)KY(J

M1)F(I




 

               i = 1, .., n  - M1,   j = 1, …, M2,  k = 0,.., MM 

In the banded case, n = M1 + M2 has to be met. 

mljac Input mljac = n - M1 : if the non-trivial part of the Jacobian is full. 

0   mljac < n - M1: if the (MM + 1) submatrices (M1 = M2 * MM), 

       
M2)ky(j

M1)f(i




 , i = 0,…, n - M1 ,  j = 1,…, M2,  k = 0,…,MM 

are all banded , and mljac is the maximal lower bandwidth of these MM + 1 

submatrices. 

mujac Input Maximal upper bandwidth of these MM+1 submatrices. Need not be defined if 

mujac = n- M1. 

mas Input If imas = 0 this matrix is assumed to be the identity and need not be defined. 

Supply a dummy routine in this case. 

If imas   0 it is assumed that only the elements of right lower block of 

dimension n - M1 differ from that of the identity matrix and only the elements 

of right lower block of dimension n  - M1 must be given in routine mas. For 

example , consider the following system. 

  )',,( ppgMp" x  

This can be rewritten as 

   
),,(' vpgMv

vp'
x


 

and expressed in the following form. 

   





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


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
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


),,( vg

v
vM p

p

0

0I
'

'

x
 

In this case the coefficient matrix of the left hand side corresponds to M in 

(1.1). Denoting by M the coefficient matrix of the left hand side, if mlmas = n 

- M1 the right lower block is supposed to be full; the array am in the routine 

mas should be set as 

  am[(i-1)*lmas +j-1] = M(j+M1,i+M1),   i = 1,…, n  - M1 , j = 

1,…,n - M1. 

If mlmas ≠ n  - M1 the right low block is supposed to be banded: 

    am[(i-j+mumas+1)*lmas+j-1] = M(j+M1,i+M1) 

mlmas Input mlmas = n- M1: If the non-trivial part of  M is full. 

0   mlmas < n- M1: Lower bandwidth of the mass matrix. 

 mlmas   mljac must be met. 

mumas Input Upper bandwidth of the mass matrix. mumas   mujac must be met. Need 

not be defined if mlmas = n - M1. 

iwork[8] Input The value of M1 (  0). Default M1 = 0. 

iwork[9] Input The value of M2 (  0). Default M2 = M1. 

If iwork[8] > 0, iwork[8] + iwork[9]   n must be met. 

work[0] Input The round off unit u.  c_dmach()   work[0] < 1.0 must be met. Default  

u = c_dmach(). 

work[1] Input The safety factor in step size prediction. 

0.001 < work[1] < 1.0 must be met.  Default 0.9. 
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work[2] Input Decides whether the Jacobian should be recomputed; increase work[2], to 

0.1 say, when Jacobian evaluations are costly. For small systems work[2] 

should be smaller (0.001, say). Negative work[2] forces the code to compute 

the Jacobian after every accepted step. 

Default  0.001.  work[2] < 1.0 must be met. 

work[3] Input Stopping criterion for Newton’s method, usually chosen < 1. Smaller values of 

work[3] make the code slower, but safer. 

DEFAULT  MAX(10u/TOLST, MIN(0.03, TOLST )) , where u is the round 

off unit, TOLST = 0.1∙ rtol**(2/3) , and rtol = rtol[0] when rtol is 

vector. work[3] > u / TOLST must be met. 
work[4], 

work[5] 
Input If work[4] < HNEW / HOLD < work[5], then the step size is not changed. 

This saves, together with a large work[2], LU-decompositions and 

computing time for large systems. For smaller systems one may have 

work[4] = 1.0, work[5] = 1.2, for large full systems work[4] = 0.99, 

work[5] = 2.0 might be good. 

DEFAULTS work[4] = 1.0, work[5] = 1.2 . 

work[4]   1.0 and work[5]   1.0 must be met. 
work[6] Input Maximal step size. Default 0xxend  . 
work[7], 
work[8] 

Input Parameters for step size selection. 

The new step size is chosen subject to the restriction 

   work[7]   HNEW / HOLD   work[8] 

Default values : work[7] = 0.20, work[8] = 8.0. 

work[7]   1.0  and work[8]   1.0 must be met. 

 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

100 In routine solout, parameter irtrn was set to 

be negative. 

Processing is discontinued. Solutions obtained so 

far were correct. 

10000 Number of steps exceeded the value specified in 

iwork[1]. 

Processing is discontinued. Integration did not 

reach xend. The user can try a larger value for 

iwork[1]. 

21000 Step size became too small. Processing is discontinued. 

22000 Matrix was repeatedly singular.  

30000 There was an inconsistent input.  

 

3. Comments on use 

Role of SOLOUT 
During integration from 0x  to endx  this routine provides numerical solutions after every accepted step to the routine 

solout when iout   0. 
Namely, when endxx 0 , every accepted step results in a sequence of grid-point such as 
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      endxxxx  210  

and ix and solutions at ix  are passed to solout ( 0x  and endx  included). ix  is determined under step size control to meet 

required accuracies. 

If the user requires solutions at intended grid-points, the function subprogram c_dm_vcontr5 can be used for dense 

output. For instance, if solutions are required at equally spaced grid-points one can refer to Example 1 below. 

Note that repeated calls to c_dm_vradau5 by incrementing xend is inefficient way for that purpose. 

Thread parallelization of user’s routines 
In any of user’s routines fcn, jac, mas, and solout, the user can use OpenMP parallelization when necessary. 

Index and initial values for differential-algebraic equations 
In the model ),( yfMy' x  if M is non-singular the system is just ordinary differential equations, and “index” of 

variables in y is 1. In this case iwork[4] to iwork[6] should be set to 0. 

If M is singular, the system becomes a differential-algebraic equations, and iwork[4] to iwork[6] and initial values 

should be given carefully. Here is a brief guideline. 

For singular M, we can decompose the matrix (e.g., by Gaussian elimination with total pivoting) as 

   T
I

SM 









00

0
 

where S and T are n-by-n non-singular matrices , and I is the identity matrix of smaller size. Inserting this into (1.1), 

multiplying by S-1, and using the transformed variables 

   
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





w
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Ty  
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or 
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wuh

wugu'

,x

,x




0
 

These are called Hessenberg form of the differential-algebraic equations, where the system is split into a smaller ordinary 

differential equations and a smaller algebraic equations. The Hessenberg forms are often encountered in practice, and can 

be said as differential equations with algebraic constraints. Below, we give some typical Hessenberg forms which 

illustrate index 1,2 and 3 variables. 

We omit, from now on, the independent variable in equations to simplify mathematical expressions. 

a)System of index 1 

Let us consider the following system 

                    )( zyfy' ,                                                                    (3.1a) 

                    )( zyg ,0                                                                      (3.1b) 

, where  y and z are unknown function vectors, and sum of each size is n. 

The mass-matrix M here is 

                    



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




00

0I
M  

Differentiating (3.1b) and using (3.1a) we get 

                    '
zy zzygzyfzyg ),()()(  ,,0                                          (3.1c) 

 

, where )( zy,g y  and )( zy,g z  are yzy,g  )(  and  zzy,g  )( respectively. If )( zy,g z , the coefficient of 'z , is non-

singular in a neighborhood of the solution we get 
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                   ),(),()(1 zyfzygzy,gz yz
'   

In this case, y  and z  are index 1 variables. Initial values 0y  and 0z should be given to satisfy (3.1b). 

b) System of index 2 

Next, we consider the following 

                     ),( zyfy'                                                                    (3.2a) 

                     )(0 yg                                                                        (3.2b) 

, where z  is absent in the algebraic constraint and M  is as follows. 

     









00

0I
M  

Differentiating (3.2b) gives 
                     ),()(0 zyfyg y                                                           (3.2c) 

Differentiating (3.2c) gives the coefficient of 'z as 
                     ),()( zyfyg zy                                                                (3.2d) 

If (3.2d) is non-singular in a neighborhood of the solution, y is index 1 variable and z is index 2 variable. Initial values 

0y  and 0z  should be given to satisfy not only (3.2b) but (3.2c). 

c) System of index 3 
Finally, we consider the following system. 
                     ),( zyfy'                                                                  (3.3a) 

                     ),,( uzykz'                                                                (3.3b) 
                     )(0 yg                                                                       (3.3c) 
Here the sum of length of y , z , and u   is n. M  is written as 

                    

















000

00

00

I

I

M . 

Differentiating (3.3c) and using (3.3a) we get 
                     fg y0                                                                       (3.3d) 

Differentiating (3.3d) and using (3.3a,b) we get 
                     kfgffgf)(f,g zyyyyy 0                                        (3.3e) 

, where the first term of the right hand side means matrix vector multiplication with the matrix yg y  obtained by 

differentiating matrix yg  and the vector f . Furthermore, differentiating (3.3e) brings about 'u . If its coefficient, written 

as 

uzy kfg , is non-singular in a neighborhood of the solution, y  is index 1 variable, z  is index 2 variable, and u   is index 3 

variable in the original system (3.3a,b,c). Initial values 0y , 0z  and  0u  should be given to satisfy the three constraints (3.3 

c,d,e). 

4. Example program 

■ Example 1:Ordinary differential equations of the form  ),( yfy' x   

Let us consider a simple system:  
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Suppose we want to find solutions at 11,,2,1 x  and print them out. In this problem, the Jacobian matrix yf   is as 

follows. 
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We provide routine jvpol as real argument of jac. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" 
 
#define     ND 2 
#define     LWORK  (4 * ND * ND + 12 * ND + 20)  /* 60 */ 
#define     LIWORK (3 * ND + 20) /* 26 */ 
 
void  solout(int, double, double, double*, double*, int, int, 
                      double*, int*, int*, double*, int*); 
void  jvpol(int, double, double*, double*, int, double*, int*); 
void  fvpol(int, double, double*, double*, double*, int*); 
void  dummy(int, double*, int, double*, int*); 
 
int MAIN__() { 
  double  y[ND], work[LWORK]; 
  int  iwork[LIWORK]; 
  double  rpar[2]; 
 
  int  i, n, ijac, mljac, imas, itol, mujac, iout, icon, mlmas, mumas; 
  int  ipar; 
  double  x, xend, rtol, Atol, h; 
   
  rpar[0] = 1.0e-6; 
  rpar[1] = 0.2; 
  n = ND; 
  ijac = 1; 
  mljac = n; 
  imas = 0; 
  iout = 1; 
  x = 0.0; 
  y[0] = 2.0; 
  y[1] = -0.66; 
  xend = 11.0; 
  rtol = 1.0e-4; 
  Atol = 1.0 * rtol; 
  itol = 0; 
  h = 1.0e-6; 
  for (i = 0; i < 20; i++) { 
    iwork[i] = 0; 
    work[i] = 0.0; 
  } 
  c_dm_vradau5(n, fvpol, &x, y, xend, &h, 
               rtol, Atol, itol, 
               jvpol, ijac, mljac, mujac, 
               dummy, imas, mlmas, mumas, 
               solout, iout, 
               work, LWORK, iwork, LIWORK, 
               rpar, &ipar, &icon); 
  printf(" ICON= %d\n", icon); 
  printf(" X =%5.2lf    Y =%18.10e%18.10e\n", x, y[0], y[1]); 
  return(0); 
} 
 
void solout(int nr, double xold, double x, double *y, double *cont, 
            int lrc, int n, double *rpar, int *ipar, int *irtrn, 
            double *work2, int *iwork2) { 
 
  double      prm1, prm2; 
 
  if (nr == 1) { 
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    printf(" X =%5.2lf    Y =%18.10le%18.10le    NSTEP =%4d\n", 
           x, y[0], y[1], nr - 1); 
  } else { 
label_10:   ; 
    if (x >= rpar[1]) { 
/* --- CONTINUOUS OUTPUT FOR RADAU5 */ 
      prm1 = c_dm_vcontr5(1, rpar[1], cont, lrc, work2, iwork2); 
      prm2 = c_dm_vcontr5(2, rpar[1], cont, lrc, work2, iwork2); 
      printf(" X =%5.2lf    Y =%18.10le%18.10le    NSTEP =%4d\n", 
             rpar[1], prm1, prm2, nr - 1); 
      rpar[1] = rpar[1] + 0.2; 
      goto label_10; 
    } 
  } 
  return; 
} 
 
void fvpol(int n, double x, double *y, double *f, double *rpar, int *ipar) { 
 
  f[0] = y[1]; 
  f[1] = ((1 - (y[0] * y[0])) * y[1] - y[0]) / rpar[0]; 
  return; 
} 
 
void jvpol(int n, double x, double *y, double *dfy, int ldfy, double *rpar, 
           int *ipar) { 
 
  dfy[0] = 0.0; 
  dfy[1] = 1.0; 
  dfy[ldfy] = (-2.0 * y[0] * y[1] - 1.0) / rpar[0]; 
  dfy[ldfy + 1] = (1.0 - (y[0] * y[0])) / rpar[0]; 
  return; 
} 
 
void dummy(int n, double *am, int lmas, double *rpar, int *ipar) { 
 
  return; 
} 
 
 

 

■ Example 2: ),( yfy' x   with banded Jacobian. 

Consider the following partial differential equations. “t” means time and “x” is scalar space variable.   
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501,3,1,10  BAx  

Boundary conditions : 3),1(),0(,1),1(),0(  tvtvtutu  

Initial values : 3)0,(),2sin(
2

1
1)0,(  xvxxu   

We replace the second spatial derivatives by finite differences on a grid of N points, )1(  Nixi  (1  i N), 

)1(1  Nx and then obtain a system of ordinary differential equations with independent variable “t” and 2N 

unknowns  

),( ii xtuu   and ),( ii xtvv  . 

)2()(41 11
22'

  iiiiiii uuuxuvuu   
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c_dm_vradau5 

186 

When using this routine we define y as T),,,,,,( 2211 NN vuvuvu y . Then the Jacobian becomes a banded matrix with 

the upper and lower bandwidth 2. In the following example, we set n = 500, xend = 10, and iout = 0 and print some 

components of the solutions at xend. 

 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" 
 
#define  ND 1000 
#define  NL 2 
#define  NU 2 
#define  LWORK  ((7 * NL + 4 * NU + 16) * ND + 20) /* 38020 */ 
#define  LIWORK (3 * ND + 20) /* 3020 */ 
 
void  fbrus(int, double, double*, double*, double*, int*); 
void  jbrus(int, double, double*, double*, int, double*, int*); 
void  solout(int, double, double, double*, double*, int, int, 
             double*, int*, int*, double*, int*); 
void  dummy(int, double*, int, double*, int*); 
 
int MAIN__() { 
  double  x, xend, y[ND], work[LWORK]; 
  int  iwork[LIWORK]; 
  double  rpar[2]; 
  int  ipar; 
  double  pi, usdelq, gamma, gamma2, anp1, xi, rtol, Atol, h; 
  int  i, n, n2, ijac, mljac, mujac, mlmas, mumas, imas, iout, itol, icon; 
   
  pi = 3.14159265358979324; 
  n = 500; 
  n2 = 2 * n; 
  usdelq = ((double)(n + 1)) * ((double)(n + 1)); 
  gamma = 0.02 * usdelq; 
  gamma2 = 2.0 * gamma; 
  rpar[0] = gamma; 
  rpar[1] = gamma2; 
  x = 0.0; 
  xend = 10.0; 
  anp1 = n + 1; 
  for (i = 1; i <= n; i++) { 
    xi = i / anp1; 
    y[(2 * i) - 1] = 3.0; 
    y[(2 * i) - 2]  = 1.0 + 0.5 * sin(2.0 * pi * xi); 
  } 
  ijac = 1; 
/*  Jacobian is a banded matrix. */ 
  mljac = NL; 
  mujac = NU; 
  imas = 0; 
/*  Output Routine is not used. */ 
  iout = 0; 
  rtol = 1.0e-6; 
  Atol = rtol; 
  itol = 0; 
  h = 1.0e-6; 
  for (i = 0; i < 20; i++) { 
    work[i] = 0.0; 
    iwork[i] = 0; 
  } 
  mlmas = 0; 
  mumas = 0; 
  c_dm_vradau5(n2, fbrus, &x, y, xend, &h, 
              rtol, Atol, itol, 
              jbrus, ijac, mljac, mujac, 
              dummy, imas, mlmas, mumas, 
              solout, iout, 
              work, LWORK, iwork, LIWORK, 
              rpar, &ipar, &icon); 
  printf(" ICON= %d\n", icon); 
  printf(" %18.10e%18.10e%18.10e%18.10e\n", y[0], y[1], y[n2 - 2], y[n2 - 1]); 
  return(0); 
} 
 
void solout(int nr, double xold, double x, double *y, double *cont, 
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            int lrc, int n, double *rpar, int *ipar, int *irtrn, 
            double *work2, int *iwork2) { 
  return; 
} 
 
void fbrus(int n2, double x, double *y, double *f, double *rpar, int *ipar) { 
  int     i, n, iu, iv; 
  double  gamma, ui, vi, uim, vim, uip, vip, prod; 
   
  n = n2 / 2; 
  gamma = rpar[0]; 
  i = 1; 
  iu = 2 * i - 1; 
  iv = 2 * i; 
  ui = y[iu -1]; 
  vi = y[iv - 1]; 
  uim = 1.0; 
  vim = 3.0; 
  uip = y[iu + 1]; 
  vip = y[iv + 1]; 
  prod = ui * ui * vi; 
  f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip); 
  f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip); 
  for (i = 2; i <= n-1; i++) { 
    iu = 2 * i - 1; 
    iv = 2 * i; 
    ui = y[iu - 1]; 
    vi = y[iv - 1]; 
    uim = y[iu - 3]; 
    vim = y[iv - 3]; 
    uip = y[iu + 1]; 
    vip = y[iv + 1]; 
    prod = ui * ui * vi; 
    f[iu - 1] = 1.0 + prod -4.0 * ui + gamma * (uim - 2.0 * ui + uip); 
    f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip); 
  } 
  i = n; 
  iu = 2 * i - 1; 
  iv = 2 * i; 
  ui = y[iu - 1]; 
  vi = y[iv - 1]; 
  uim = y[iu - 3]; 
  vim = y[iv - 3]; 
  uip = 1.0; 
  vip = 3.0; 
  prod = ui * ui * vi; 
  f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip); 
  f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip); 
  return;  
} 
 
void jbrus(int n2, double x, double *y, double *dfy, int ldfy, double *rpar, 
          int *ipar) { 
 
  int     i, n, iu, iv; 
  double  gamma, gamma2, ui, ui2, vi, uivi; 
 
 
  n = n2 / 2; 
  gamma = rpar[0]; 
  gamma2 = rpar[1]; 
  for (i = 1; i <= n; i++) { 
    iu = 2 * i - 1; 
    iv = 2 * i; 
    ui = y[iu - 1]; 
    vi = y[iv - 1]; 
    uivi = ui * vi; 
    ui2 = ui * ui; 
    dfy[(2 * ldfy) + (iu - 1)] = 2.0 * uivi - 4.0 - gamma2;  
    dfy[ldfy + (iv - 1)] = ui2; 
    dfy[(3 * ldfy) + (iu - 1)] = 3.0 - 2.0 * uivi; 
    dfy[(2 * ldfy) + (iv - 1)] = -ui2 - gamma2; 
    dfy[ldfy + (iu - 1)] = 0.0; 
    dfy[(3 * ldfy) + (iv - 1)] = 0.0; 
  } 
  for (i = 1; i <= n2 - 2; i++) { 
    dfy[i + 1] = gamma; 
    dfy[(4 * ldfy) + (i - 1)] = gamma; 
  } 
  return; 
} 
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void dummy(int n, double *am, int lmas, double *rpar, int *ipar) { 
 
  return; 
} 
 
 

 

■ Example 3:Second order system ),,( ''' yyfy x  

Next , we consider a partial differential equations defined in rectangular plate }340,20);,{(  yxyx  :   
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             Boundary conditions: 0|,0|   uu  
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The plate   is discretized on a grid 8  5 interior points 

5,,2,1,8,,2,1,,  jijhyihx ji  , 92h . 

We replace the special derivatives by finite differences, then setting '
jiji uv   gives the following ordinary differential 

system. 
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With mapping k = i + 8(j - 1) from (i,j) , we set jik uy   and jik vy 40 .Then we obtain system with 
T),,,,,,( 80414021 yyyyy  as unknown vector. In the following program we set iwork[8] = 40 and routine jplatsb 

computes only non-trivial part of the Jacobian. 
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#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" 
 
#define  MX  8 
#define  MY  5 
#define  ND  (2 * MX * MY) /* 80 */ 
#define  LWORK  (4 * ND * ND + 12 * ND + 20) /* 26580 */ 
#define  LIWORK  (3 * ND + 20) /* 260 */ 
 
void  fplate(int, double, double*, double*, double*, int*); 
void  jplatsb(int, double, double*, double*, int, double*, int*); 
void  solout(int, double, double, double*, double*, int, int, 
             double*, int*, int*, double*, int*); 
void  dummy(int, double*, int, double*, int*); 
 
int MAIN__() { 
  double  y[ND], work[LWORK]; 
  int  iwork[LIWORK]; 
 

if  2yy   or 4y  

for all other  y  
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  double  rpar[4]; 
  int  ipar[9]; 
  int  i, k, n, nx, ny, nachs1, nachs2, nxm1, nym1, ndemi, imas, iout; 
  int  itol, ijac, mljac, mujac, mlmas, mumas, icon; 
  double  omega, stiffn, weight, denom, delx,  ush4, fac, x, rtol, Atol; 
  double  h, xend; 
 
  nx = MX; 
  ny = MY; 
  nachs1 = 2; 
  nachs2 = 4; 
  nxm1 = nx - 1; 
  nym1 = ny - 1; 
  ndemi = nx * ny; 
  omega = 1000.0; 
  stiffn = 100.0; 
  weight = 200.0; 
  denom = nx + 1; 
  delx = 2.0 / denom; 
  ush4 = 1.0 / ((delx * delx) * (delx * delx)); 
  fac = stiffn * ush4; 
  n = ND; 
  imas = 0; 
/*  --- OUTPUT ROUTINE IS USED DURING INTEGRATION */ 
  iout = 1; 
/*  --- INITIAL VALUES */ 
  x = 0.0; 
  for (i = 0; i < n; i++) { 
    y[i] = 0.0; 
  } 
/*  --- REQUIRED TOLERANCE */ 
  rtol = 1.0e-6; 
  Atol = rtol * 1.0e-3; 
  itol = 0; 
/*  --- INITIAL STEP SIZE */ 
  h = 1.0e-2; 
/*  --- SET DEFAULT VALUES */ 
  for (i = 0; i < 20; i++) { 
    work[i] = 0.0; 
    iwork[i] = 0; 
  } 
/*  --- SECOND ORDER OPTION AND BANDED */ 
  ijac = 1; 
  iwork[8] = n / 2; 
  mljac = 2 * MX; 
  mujac = 2 * MX; 
/*  --- ENDPOINT OF INTEGRATION */ 
  xend = 7.0; 
/*  --- COMMUNICATION VALUES */ 
  ipar[0] = nx; 
  ipar[1] = nxm1; 
  ipar[2] = ny; 
  ipar[3] = nym1; 
  ipar[4] = ndemi; 
  ipar[5] = nachs1; 
  ipar[6] = nachs2; 
  ipar[7] = mljac; 
  ipar[8] = mujac; 
  rpar[0] = omega; 
  rpar[1] = delx; 
  rpar[2] = fac; 
  rpar[3] = weight; 
 
/*  --- CALL OF THE FUNCTION RADAU5 */ 
  c_dm_vradau5(n, fplate, &x, y, xend, &h, 
              rtol, Atol, itol, 
              jplatsb, ijac, mljac, mujac, 
              dummy, imas, mlmas, mumas, 
              solout, iout, 
              work, LWORK, iwork, LIWORK, 
              rpar, ipar, &icon); 
  printf(" ICON= %d\n", icon); 
  for (k = 0; k < n; k++) { 
    printf(" %-22.15le\n", y[k]); 
  } 
  return(0); 
} 
 
void solout(int nr, double xold, double x, double *y, double *cont, 
            int lrc, int n, double *rpar, int *ipar, int *irtrn, 
            double *work2, int *iwork2) { 
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  int  nhalf; 
 
  nhalf = n / 2; 
  printf(" X =%9.5lf Y(1) and Y(%3d)=%18.10lf%18.10lf NSTEP =%4d\n", 
         x, nhalf, y[0], y[nhalf - 1], nr - 1); 
  return; 
} 
 
void fplate(int n, double x, double *y, double *f, double *rpar, int *ipar) { 
  int  i, j, k, nx, nxm1, ny, nym1, ndemi, nachs1, nachs2; 
  double  omega, delx, fac, weight, uc, xi, force; 
 
  nx = ipar[0]; 
  nxm1 = ipar[1]; 
  ny = ipar[2]; 
  nym1 = ipar[3]; 
  ndemi = ipar[4]; 
  nachs1 = ipar[5]; 
  nachs2 = ipar[6]; 
  omega = rpar[0]; 
  delx = rpar[1]; 
  fac = rpar[2]; 
  weight = rpar[3]; 
 
  for (i = 1; i <= nx; i++) { 
    for (j = 1; j <= ny; j++) { 
      k = i + nx * (j - 1); 
/*  -------- SECOND DERIVATIVE ---- */ 
      f[k - 1] = y[(k - 1) + ndemi]; 
/*  ------ CENTRAL POINT--- */ 
      uc = 16.0 * y[k - 1]; 
      if (i > 1) { 
        uc = uc + y[k - 1]; 
        uc = uc - 8.0 * y[k - 2]; 
      } 
      if (i < nx) { 
        uc = uc + y[k - 1]; 
        uc = uc - 8.0 * y[k]; 
      } 
      if (j > 1) { 
        uc = uc + y[k - 1]; 
        uc = uc - 8.0 * y[(k - 1) - nx]; 
      } 
      if (j < ny) { 
        uc = uc + y[k - 1]; 
        uc = uc - 8.0 * y[(k - 1) + nx]; 
      } 
      if (i > 1 && j > 1) 
        uc = uc + 2.0 * y[k - nx - 2]; 
      if (i < nx && j > 1) 
        uc = uc + 2.0 * y[k - nx]; 
      if (i > 1 && j < ny) 
        uc = uc + 2.0 * y[k + nx - 2]; 
      if (i < nx && j < ny) 
        uc = uc + 2.0 * y[k + nx]; 
      if (i > 2) 
        uc = uc + y[k - 3]; 
      if (i < nxm1) 
        uc = uc + y[k + 1]; 
      if (j > 2) 
        uc = uc + y[(k - 2 * nx) - 1]; 
      if (j < nym1) 
        uc = uc + y[(k + 2 * nx) - 1]; 
      if (j == nachs1 || j == nachs2) { 
        xi = i * delx; 
        force = exp(-5.0 * ((x - xi - 2.0) * (x - xi - 2.0))) + 
                exp(-5.0 * ((x - xi - 5.0) * (x - xi - 5.0))); 
      } else { 
        force = 0.0; 
      } 
      f[k + ndemi - 1] = -omega * y[k + ndemi - 1] - fac * uc + force * weight; 
    } 
  }     
  return;  
} 
 
void jplatsb(int n, double x, double *y, double *dfy, int ldfy, double *rpar, 
             int *ipar) { 
  int  i, j, k, nx, nxm1, ny, nym1, ndemi, mu, mljac, mujac; 
  double  omega, fac, fac2, fac8, fac16; 
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  nx = ipar[0]; 
  nxm1 = ipar[1]; 
  ny = ipar[2]; 
  nym1 = ipar[3]; 
  ndemi = ipar[4]; 
  mljac = ipar[7]; 
  mujac = ipar[8]; 
  omega = rpar[0]; 
  fac = rpar[2]; 
   
  for (i = 0; i < mljac + mujac + 1; i++) { 
    for (j = 0; j < ldfy; j++) { 
      dfy[(i * ldfy) + j] = 0.0; 
    } 
  }         
  mu = 2 * nx + 1; 
  fac2 = fac * 2.0; 
  fac8 = fac * 8.0; 
  fac16 = fac * 16.0; 
  for (i = 1; i <= nx; i++) { 
    for (j = 1; j <= ny; j++) { 
      k = i + nx * (j - 1); 
      dfy[((mu - 1) * ldfy) + (k - 1)] = -fac16; 
      if (i > 1) { 
        dfy[((mu - 1) * ldfy)  + (k - 1)] = 
            dfy[((mu - 1) * ldfy) + (k - 1)] - fac; 
        dfy[(mu * ldfy) + (k - 2)] = fac8; 
      } 
      if (i < nx) { 
        dfy[((mu - 1) * ldfy)  + (k - 1)] = 
            dfy[((mu - 1) * ldfy) + (k - 1)] - fac; 
        dfy[((mu - 2) * ldfy) + k] = fac8; 
      } 
      if (j > 1) { 
        dfy[((mu - 1) * ldfy)  + (k - 1)] = 
            dfy[((mu - 1) * ldfy) + (k - 1)] - fac; 
        dfy[((mu + nx - 1) * ldfy) + (k - nx - 1)] = fac8; 
      } 
      if (j < ny) { 
        dfy[((mu - 1) * ldfy)  + (k - 1)] = 
            dfy[((mu - 1) * ldfy) + (k - 1)] - fac; 
        dfy[((mu - nx - 1) * ldfy) + (k + nx - 1)] = fac8; 
      } 
      if (i > 1 && j > 1) 
        dfy[((mu + nx)  * ldfy) + (k - nx - 2)] = -fac2; 
      if (i < nx && j > 1) 
        dfy[((mu + nx - 2) * ldfy) + (k - nx)] = -fac2; 
      if (i > 1 && j < ny) 
        dfy[((mu - nx) * ldfy) + (k + nx - 2)] = -fac2; 
      if (i < nx && j < ny) 
        dfy[((mu - nx - 2) * ldfy) + (k + nx)] = -fac2; 
      if (i > 2)  
        dfy[((mu + 1) * ldfy) + (k - 3)] = -fac; 
      if (i < nxm1)  
        dfy[((mu - 3) * ldfy) + (k + 1)] = -fac; 
      if (j > 2) 
        dfy[((mu + 2 * nx - 1) * ldfy) + (k - 2 * nx - 1)] = -fac; 
      if (j < nym1)  
        dfy[((mu - 2 * nx - 1) * ldfy) + (k + 2 * nx - 1)] = -fac; 
      dfy[((mu - 1) * ldfy) + (k + ndemi - 1)] = -omega; 
    } 
  }     
  return; 
} 
 
void dummy(int n, double *am, int lmas, double *rpar, int *ipar) { 
 
  return; 
} 
 
 

 

■ Example 4:Differential-algebraic system ),( yfMy' x . 

Finally, we consider the following system with independent variable t and 8 unknowns 821 ,,, yyy  .   
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With T),,,( 821 yyy y  the left hand side of the above 8 equations can be written as My’, where M is a tridiagonal 

matrix. 
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Obviously, M is singular and its rank is 5. Because of this, the system is a differential-algebraic system. According to a 

detailed analysis this system is index 1 problem.  

We integrate from t = 0 through t = 0.2. Initial values y(0) must be chosen so that the vector with 8 components from the 

right hand side of the above equations lies in the range of the matrix M. Such initial values are as follows.  
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The Jacobian matrix in this model becomes a banded matrix with upper bandwidth 2 and lower bandwidth 1. Additionally, 

all the unknown variables can be proved to be index 1. 

 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
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#include "cssl.h" 
 
#define  ND  8 
#define  LJAC  4 
#define  LMAS  3 
#define  LE  5 
#define  LWORK  (ND * (LJAC + LMAS + 3 * LE + 12) + 20) /* 292 */ 
#define  LIWORK  (3 * ND + 20) /* 44 */ 
 
void  fampl(int, double, double*, double*, double*, int*); 
void  jbampl(int, double, double*, double*, int, double*, int*); 
void  bbampl(int, double*, int, double*, int*); 
void  solout(int, double, double, double*, double*, int, int, 
             double*, int*, int*, double*, int*); 
 
int MAIN__() { 
  double  y[ND], work[LWORK], rpar[16]; 
  int  iwork[LIWORK]; 
  double  ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9; 
  double  x, xend, rtol, Atol, h; 
  int  i, n, ijac, mljac, mujac, imas, mlmas, mumas, iout, itol, ipar; 
  int  icon; 
 
  ue = 0.1; 
  rpar[0] = ue; 
  ub = 6.0; 
  rpar[1] = ub; 
  uf = 0.026; 
  rpar[2] = uf; 
  alpha = 0.99; 
  rpar[3] = alpha; 
  beta = 1.0e-6; 
  rpar[4] = beta; 
  r0 = 1000.0; 
  rpar[5] = r0; 
  r1 = 9000.0; 
  rpar[6] = r1; 
  r2 = 9000.0; 
  rpar[7] = r2; 
  r3 = 9000.0; 
  rpar[8] = r3; 
  r4 = 9000.0; 
  rpar[9] = r4; 
  r5 = 9000.0; 
  rpar[10] = r5; 
  r6 = 9000.0; 
  rpar[11] = r6; 
  r7 = 9000.0; 
  rpar[12] = r7; 
  r8 = 9000.0; 
  rpar[13] = r8; 
  r9 = 9000.0; 
  rpar[14] = r9; 
  rpar[15] = 0.0025; 
  ipar = 0; 
  n = 8; 
  ijac = 1; 
  mljac = 1; 
  mujac = 2; 
  imas = 1; 
  mlmas = 1; 
  mumas = 1; 
  iout = 1; 
  x = 0.0; 
  y[0] = 0.0; 
  y[1] = ub - y[0] * r8 / r9; 
  y[2] = ub / (r6 / r5 + 1.0); 
  y[3] = ub / (r6 / r5 + 1.0); 
  y[4] = ub; 
  y[5] = ub / (r2 / r1 + 1.0); 
  y[6] = ub / (r2 / r1 + 1.0); 
  y[7] = 0.0; 
  xend = 0.2; 
  rtol = 1.0e-5; 
  Atol = 1.0e-6 * rtol; 
  itol = 0; 
  h = 1.0e-6; 
  for (i = 0; i < 20; i++) { 
    iwork[i] = 0; 
    work[i] = 0.0; 
  }     
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  c_dm_vradau5(n, fampl, &x, y, xend, &h, 
              rtol, Atol, itol, 
              jbampl, ijac, mljac, mujac, 
              bbampl, imas, mlmas, mumas, 
              solout, iout, 
              work, LWORK, iwork, LIWORK, rpar, &ipar, &icon); 
  printf(" ICON= %d\n", icon); 
  printf(" X =%7.4lf    Y =%18.10le%18.10le\n", x, y[0], y[1]); 
  return(0); 
} 
 
void solout(int nr, double xold, double x, double *y, double *cont, 
            int lrc, int n, double *rpar, int *ipar, int *irtrn, 
            double *work2, int  *iwork2) { 
  double  prm1, prm2; 
 
  if (nr == 1) { 
    printf(" X =%7.4lf    Y =%18.10le%18.10le    NSTEP =%4d\n", 
           x, y[0], y[1], nr - 1); 
  } else { 
Label_10:   ; 
    if (x >= rpar[15]) { 
      prm1 = c_dm_vcontr5(1, rpar[15], cont, lrc, work2, iwork2); 
      prm2 = c_dm_vcontr5(2, rpar[15], cont, lrc, work2, iwork2); 
      printf(" X =%7.4lf    Y =%18.10le%18.10le    NSTEP =%4d\n", 
             rpar[15], prm1, prm2, nr - 1); 
      rpar[15] = rpar[15] + 0.0025;  
      goto Label_10; 
    } 
  } 
  return; 
} 
 
void fampl(int n, double x, double *y, double *f, double *rpar, int *ipar) { 
  double  ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9; 
  double  w, uet, fac1, fac2; 
 
  ue = rpar[0]; 
  ub = rpar[1]; 
  uf = rpar[2]; 
  alpha = rpar[3]; 
  beta = rpar[4]; 
  r0 = rpar[5]; 
  r1 = rpar[6]; 
  r2 = rpar[7]; 
  r3 = rpar[8]; 
  r4 = rpar[9]; 
  r5 = rpar[10]; 
  r6 = rpar[11]; 
  r7 = rpar[12]; 
  r8 = rpar[13]; 
  r9 = rpar[14]; 
  w = 2.0 * 3.141592654 * 100.0; 
  uet = ue * sin(w * x);  
  fac1 = beta * (exp((y[3] - y[2]) / uf) - 1.0); 
  fac2 = beta * (exp((y[6] - y[5]) / uf) - 1.0); 
  f[0] = y[0] / r9; 
  f[1] = (y[1] - ub) / r8 + alpha * fac1; 
  f[2] = y[2] / r7 - fac1; 
  f[3] = y[3] / r5 + (y[3] - ub) / r6 + (1.0 - alpha) * fac1; 
  f[4] = (y[4] - ub) / r4 + alpha * fac2; 
  f[5] = y[5] / r3 - fac2; 
  f[6] = y[6] / r1 + (y[6] - ub) / r2 + (1.0 - alpha) * fac2; 
  f[7] = (y[7] - uet) / r0; 
  return; 
} 
 
void jbampl(int n, double x, double *y, double *dfy, int ldfy, double *rpar, 
            int *ipar) { 
  double  uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9; 
  double  fac14, fac27; 
  int  j; 
 
  uf = rpar[2]; 
  alpha = rpar[3]; 
  beta = rpar[4]; 
  r0 = rpar[5]; 
  r1 = rpar[6]; 
  r2 = rpar[7]; 
  r3 = rpar[8]; 
  r4 = rpar[9]; 
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  r5 = rpar[10]; 
  r6 = rpar[11]; 
  r7 = rpar[12]; 
  r8 = rpar[13]; 
  r9 = rpar[14]; 
  fac14 = beta * exp((y[3] - y[2]) / uf) / uf;  
  fac27 = beta * exp((y[6] - y[5]) / uf) / uf; 
  for (j = 0; j < 8; j++) {  
    dfy[j] = 0.0;  
    dfy[ldfy + j] = 0.0;  
    dfy[3 * ldfy + j] = 0.0;  
  } 
  dfy[2 * ldfy] = 1.0 / r9; 
  dfy[2 * ldfy + 1] = 1.0 / r8; 
  dfy[ldfy + 2] = -alpha * fac14;  
  dfy[3] = alpha * fac14; 
  dfy[2 * ldfy + 2] = 1.0 / r7 + fac14;  
  dfy[ldfy + 3] = -fac14; 
  dfy[2 * ldfy + 3] = 1.0 / r5 + 1.0 /r6 + (1.0 - alpha) * fac14; 
  dfy[3 * ldfy + 2] = -(1.0 - alpha) * fac14;  
  dfy[2 * ldfy + 4] = 1.0 / r4;  
  dfy[ldfy + 5] = -alpha * fac27; 
  dfy[6] = alpha * fac27; 
  dfy[2 * ldfy + 5] = 1.0 / r3 + fac27;  
  dfy[ldfy + 6] = -fac27; 
  dfy[2 * ldfy + 6] = 1.0 / r1 + 1.0/ r2 + (1.0 - alpha) * fac27; 
  dfy[3 * ldfy + 5] = -(1.0 - alpha) * fac27;  
  dfy[2 * ldfy + 7] = 1.0 / r0; 
  return; 
} 
 
void bbampl(int n, double *b, int lb, double *rpar, int *ipar) { 
  int  i; 
  double  c1, c2, c3, c4, c5; 
   
  for (i = 0; i < 8; i++) { 
    b[i] = 0.0; 
    b[2 * lb + i] = 0.0; 
  } 
  c1 = 1.0e-6; 
  c2 = 2.0e-6; 
  c3 = 3.0e-6; 
  c4 = 4.0e-6; 
  c5 = 5.0e-6; 
  b[lb] = -c5; 
  b[1] = c5; 
  b[2 * lb] = c5; 
  b[lb + 1] = -c5; 
  b[lb + 2] = -c4; 
  b[lb + 3] = -c3; 
  b[4] = c3; 
  b[2 * lb + 3] = c3; 
  b[lb + 4] = -c3; 
  b[lb + 5] = -c2; 
  b[lb + 6] = -c1; 
  b[7] = c1; 
  b[2 * lb + 6] = c1; 
  b[lb + 7] = -c1; 
  return; 
} 
 
 
 
 
 

5. Method 

Consult the entry for DM_VRADAU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [34] 

and [69]. 
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c_dm_vrann3 

Generation of normal random numbers. 

ierr = c_dm_vrann3(dam, dsd, &ix, da, k, n, 

dwork, nwork, &icon); 

1. Function 

This routine generates normal random numbers from a normal-distribution density function (1) with given mean m and 

standard deviation . 

    

















2

2

2
exp

2

1 mx
xf  (1) 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vrann3(dam, dsd, &ix, (double*)da, k, n, (double*)dwork, nwork, 

&icon); 

where: 

dam double Input Mean m of normal distribution. 

dsd double Input Standard deviation  of normal distribution. (>0) 

ix int Input Starting point. 

On the first call, the value of ix must be positive.  On the second and 

later calls, return value 0 must be used.  When a different starting point is 

specified for the initial call, a different random number sequence is 

created. 

  Output Return value is 0. 

da double 

da[NUMT][k] 

Output n normal pseudorandom numbers generated by each thread. 

Where, NUMT is the number of threads. 

n pseudo random numbers generated by thread number p (which is from 

0 to NUMT1) are stored in da[P][0], ... , da[P][n1]. 

k int Input C fixed dimension of array da (  n ). 

n int Input Number of normally distributed pseudorandom numbers to be returned 

by each thread in da.  Comments on use. 

dwork double 

dwork[NUMT] 

[nwork] 

Work When this routine is called repeatedly, the contents and NUMT must not 

be changed.  dwork contains all the current information required to 

restart this routine from its current point. 

nwork int Input Size of second-dimension of workspace.  nwork  1156. 

icon int Output Condition code. See below. 

The complete list of condition codes is given below. 
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Code  Meaning  Processing 

0 No error. Completed. 

30000 k > n or k < 1 Bypassed. 

30001 One of the following has occurred: 

 nwork is too small. 

 ix < 0 

 dsd  0 

30002 The internal check failed. 

30003 to 30008 dwork overwritten or ix = 0 on first call. 

30009 ix is too large. 

3. Comments on use 

ix 
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random 

input.  Thus, the user must give a starting point ix.  This is often called a "seed".  On the first call to this function the seed 

ix should be a positive integer.  On the subsequent call ix should be zero.  This indicates that more pseudo random 

numbers from the same sequence are to be generated.  To simplify programming, ix is returned as zero after the first call 

to this function. 

This function appends the thread number 1, omp_get_thread_num() 1, to the seed, as in seed = seed * 

omp_get_num_threads()  omp_get_thread_num() 1.  Thus the seeds used on different threads are assured 

to be distinct, and hence subsequences of length less than 1018 will not overlap. 

n 
This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If n  

0, no pseudo random numbers are returned. 

For efficiency, n should be large (for example, n = 100,000).  This reduces the overhead of function calls.  n may be 

different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than 

the maximum value of n. 

dwork 
When this routine is to be called two or more times, dwork is used as the work area for storing the information for the 

next call.  While this routine is called, the contents of dwork must not be changed by the called program. 

nwork 
dwork[i][0], ... , dwork[i][nwork1] ( i = 0, ... , NUMT1) are used by this routine.  The value of nwork must 

not be changed at any call of this routine.  For efficient processing, nwork must be set to 1,156 or higher.  When this 

routine is to be used on a vector processor, the value of nwork must be 100,000 or higher. 

Regeneration of the same random numbers 
When dwork[i][0], ... , dwork[i][nwork1] ( i = 0, ... , NUMT1) are saved, the same random number sequence 

as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition ix = 0. 
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NUMT 
The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment 

variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads().  In case of specifying the 

number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first 

calling immediately before the second or later calling also with omp_set_num_threads(). 

4. Example program 

10,000,000  4 normal pseudo random numbers are generated, and their mean and standard deviation are calculated. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <omp.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
 
#define NUMT  4 
#define NRAN  10000000 
#define SEED  12345 
#define NWMAX 100000 
#define NBUF  120000 
#define K     (NBUF) 
 
int MAIN__() 
{ 
  double da[NUMT][K], dwork[NUMT][NWMAX]; 
  double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd; 
  int    ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon; 
 
  /* Initialize ix,n and nwork */ 
  ix    = SEED; 
  n     = NBUF; 
  nwork = NWMAX; 
  dam   = 0.0; 
  dsd   = 1.0; 
  dsum  = 0.0; 
  dssum = 0.0; 
 
  printf("Seed               = %d\n", ix); 
  printf("Mean               = %e\n", dam); 
  printf("Standard deviation = %e\n", dsd); 
 
  /* ngen counts down to 0 */ 
  ngen = NRAN; 
  ntot = NRAN*NUMT; 
 
  /* Generate ngen numbers with maximum NBUF at a time. */ 
  krpt = (NRAN+NBUF-1)/NBUF; 
 
  printf("Generating %d numbers with %d calls to c_dm_vrann3 on %d threads.\n", 
          ntot, krpt, NUMT); 
 
  omp_set_num_threads(NUMT); 
 
  for (iz=0; iz<krpt; iz++) { 
    n = min(NBUF,ngen); 
    c_dm_vrann3(dam, dsd, &ix, (double*)da, K, n, (double*)dwork, nwork, &icon); 
 
    if(icon != 0) printf("c_dm_vrann3 : icon = %d\n", icon); 
 
    /* Accumulate sum of numbers */ 
    dsum2 = 0.0; 
    for (j=0; j<NUMT; j++) { 
      for (i=0; i<n; i++) { 
        dsum2 += da[j][i]; 
      } 
    } 
 
    /* Accumulate sum of numbers globally. */ 
    dssum2 = 0.0; 
    for (j=0; j<NUMT; j++) { 
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      for (i=0; i<n; i++) { 
        dssum2 += da[j][i]*da[j][i]; 
      } 
    } 
 
    dsum  += dsum2; 
    dssum += dssum2; 
 
    /* Count down numbers still to generate on each processor */ 
    ngen -= n; 
  } 
 
  /* Compute overall mean. */ 
  dmean = dsum / (double)ntot; 
  printf("Sample mean %e\n", dmean); 
 
  /* Compute overall sample standard deviation. */ 
  dsig = dssum / (double)ntot; 
  printf("Sample standard deviation %e\n", dsig); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VRANN3 in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vrann4 

Generation of normal random numbers (Wallace’s method) 

ierr = c_dm_vrann4(dam, dsd, &ix, da, k, n, 

dwork, nwork, &icon); 

1. Function 

This routine generates normal random numbers from a normal-distribution density function (1) with given mean m and 

standard deviation . 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_vrann4(dam, dsd, &ix, (double*)da, k, n, (double*)dwork, nwork, 

&icon); 

where: 

dam double Input Mean m of normal distribution. 

dsd double Input Standard deviation  of normal distribution. (>0) 

ix int Input Starting point. 

On the first call, the value of ix must be positive.  On the second and 

later calls, return value 0 must be used.  When a different starting point is 

specified for the initial call, a different random number sequence is 

created. 

  Output Return value is 0. 

da double 

da[NUMT][k] 

Output n normal pseudorandom numbers generated by each thread. 

Where, NUMT is the number of threads. 

n pseudo random numbers generated by thread number p (which is from 

0 to NUMT1) are stored in da[P][0], ... , da[P][n1]. 

k int Input C fixed dimension of array da (  n ). 

n int Input Number of normally distributed pseudorandom numbers to be returned 

by each thread in da.  Comments on use. 

dwork double 

dwork[NUMT] 

[nwork] 

Work When this routine is called repeatedly, the contents and NUMT must not 

be changed.  dwork contains all the current information required to 

restart this routine from its current point. 

nwork int Input Size of second-dimension of workspace.  nwork  1350. 

icon int Output Condition code. See below. 

The complete list of condition codes is given below. 
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Code  Meaning  Processing 

0 No error. Completed. 

30000 k > n or k < 1 Bypassed. 

30001 One of the following has occurred: 

 nwork is too small. 

 ix < 0 

 dsd  0 

30002 The internal check failed. 

30003 to 30008 dwork overwritten or ix = 0 on first call. 

30009 ix is too large. 

40000 to 40002 dwork overwritten or ix = 0 on first call. 

3. Comments on use 

ix 
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random 

input.  Thus, the user must give a starting point ix.  This is often called a "seed".  On the first call to this function the seed 

ix should be a positive integer.  On the subsequent call ix should be zero.  This indicates that more pseudo random 

numbers from the same sequence are to be generated.  To simplify programming, ix is returned as zero after the first call 

to this function. 

n 
This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If n  

0, no pseudo random numbers are returned. 

For efficiency, n should be large (for example, n = 100,000).  This reduces the overhead of function calls.  n may be 

different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than 

the maximum value of n. 

dwork 
When this routine is to be called two or more times, dwork is used as the work area for storing the information for the 

next call.  While this routine is called, the contents of  dwork must not be changed by the called program. 

nwork 
dwork[i][0], ... , dwork[i][nwork1] ( i = 0, ... , NUMT1) are used by this routine.  The value of nwork must 

not be changed at any call of this routine.  For efficient processing, nwork must be set to 1,350 or higher.  When this 

routine is to be used on a vector processor, the value of nwork must be 500,000 or higher. 

Regeneration of the same random numbers 
When dwork[i][0], ... , dwork[i][nwork1] ( i = 0, ... , NUMT1) are saved, the same random number sequence 

as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition ix = 0. 

NUMT 
The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment 

variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads().  In case of specifying the 

number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first 

calling immediately before the second or later calling also with omp_set_num_threads(). 
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Wallece’s method 
The implementation of Wallece’s method in this routine is about three times faster than the implementation of the Polar 

method in c_dm_vrann3. 

4. Example program 

10,000,000  4 normal pseudo random numbers are generated, and their mean and standard deviation are calculated. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <omp.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
 
#define NUMT  4 
#define NRAN  10000000 
#define SEED  12345 
#define NWMAX 100000 
#define NBUF  120000 
#define K     (NBUF) 
 
int MAIN__() 
{ 
  double da[NUMT][K], dwork[NUMT][NWMAX]; 
  double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd; 
  int    ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon; 
 
  /* Initialize ix,n and nwork */ 
  ix    = SEED; 
  n     = NBUF; 
  nwork = NWMAX; 
  dam   = 0.0; 
  dsd   = 1.0; 
  dsum  = 0.0; 
  dssum = 0.0; 
 
  printf("Seed               = %d\n", ix); 
  printf("Mean               = %e\n", dam); 
  printf("Standard deviation = %e\n", dsd); 
 
  /* ngen counts down to 0 */ 
  ngen = NRAN; 
  ntot = NRAN*NUMT; 
 
  /* Generate ngen numbers with maximum NBUF at a time. */ 
  krpt = (NRAN+NBUF-1)/NBUF; 
 
  printf("Generating %d numbers with %d calls to c_dm_vrann4 on %d threads.\n", 
          ntot, krpt, NUMT); 
 
  omp_set_num_threads(NUMT); 
 
  for (iz=0; iz<krpt; iz++) { 
    n = min(NBUF,ngen); 
    c_dm_vrann4(dam, dsd, &ix, (double*)da, K, n, (double*)dwork, nwork, &icon); 
 
    if(icon != 0) printf("c_dm_vrann4 : icon = %d\n", icon); 
 
    /* Accumulate sum of numbers */ 
    dsum2 = 0.0; 
    for (j=0; j<NUMT; j++) { 
      for (i=0; i<n; i++) { 
        dsum2 += da[j][i]; 
      } 
    } 
 
    /* Accumulate sum of numbers globally. */ 
    dssum2 = 0.0; 
    for (j=0; j<NUMT; j++) { 
      for (i=0; i<n; i++) { 
        dssum2 += da[j][i]*da[j][i]; 
      } 
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    } 
 
    dsum  += dsum2; 
    dssum += dssum2; 
 
    /* Count down numbers still to generate on each processor */ 
    ngen -= n; 
  } 
 
  /* Compute overall mean. */ 
  dmean = dsum / (double)ntot; 
  printf("Sample mean %e\n", dmean); 
 
  /* Compute overall sample standard deviation. */ 
  dsig = dssum / (double)ntot; 
  printf("Sample standard deviation %e\n", dsig); 
  return(0); 
} 
 
 

5. Method 

Consult the entry for DM_VRANN4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vranu4 

Generation of uniform random numbers [0,1). 

ierr = c_dm_vranu4(&ix, da, k, n, dwork, 

nwork, &icon); 

1. Function 

This function generates different sequences of pseudo random numbers from a uniform distribution on [0,1) on each 

thread. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vranu4(&ix, (double*)da, k, n, (double*)dwork, nwork, &icon); 

where: 

ix int Input Starting point. 

On the first call, ix should be positive.  ix is returned as zero and 

should remain zero for subsequent calls.  ix < 8000000.  See Comments 

on use. 

  Output Return value is 0. 

da double 

da[NUMT][k] 

Output n uniform pseudo random numbers on [0,1) generated by each thread. 

Where, NUMT is the number of threads.  n pseudo random numbers 

generated by thread number P (which is from 0 to NUMT1) are stored in 

da[P][0], ... , da[P][n1]. 

k int Input C fixed dimension of array da (  n ). 

n int Input The number of uniformly distributed pseudo random numbers on each 

processor to be returned in da.  Comments on use. 

dwork double 

dwork[NUMT] 

[nwork] 

Work When this function is called repeatedly, the contents and NUMT must not 

be changed.  dwork contains all the current information required to 

restart this function from its current point. 

nwork int Input Size of second-dimension of workspace.  nwork  388. 

icon int Output Condition code. See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 k > n or k < 1 Bypassed. 

30001 nwork is too small. 

30002 The internal check failed. 

30003 to 30008 dwork overwritten or ix = 0 on first call. 

30009 ix is too large. 
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3. Comments on use 

ix 
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random 

input.  Thus, the user must give a starting point ix.  This is often called a "seed".  On the first call to this function the seed 

ix should be a positive integer.  On the subsequent call ix should be zero.  This indicates that more pseudo random 

numbers from the same sequence are to be generated.  To simplify programming, ix is returned as zero after the first call 

to this function. 

This function appends the thread number 1, omp_get_thread_num() 1, to the seed, as in seed = seed * 

omp_get_num_threads()  omp_get_thread_num() 1.  Thus the seeds used on different threads are assured 

to be distinct, and hence subsequences of length less than 1018 will not overlap. 

n 
This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If n  

0, no pseudo random numbers are returned. 

For efficiency, n should be large (for example, n = 100,000).  This reduces the overhead of function calls.  n may be 

different on successive calls to this routine, provided that k (the size of the first dimension of the array da) is larger than 

the maximum value of n. 

dwork 
dwork is used as a work area to store state information between calls to this function.  The calling program must not 

change the contents of the array dwork between calls. 

nwork 
dwork[i][0], ... , dwork[i][nwork1] ( i = 0, ... , NUMT1) are used by this function.  nwork should be the same 

on each call to this function. nwork should be at least 388. 

Checkpointing 
If dwork[i][0], ... , dwork[i][nwork1] ( i = 0, ... , NUMT1) are saved, the same sequence of random numbers 

can be generated again (from the point where dwork was saved) by restoring dwork and calling this routine with argument 

ix = 0. 

NUMT 
The number of the threads or NUMT, used with this function can be assigned by user with an OpenMP environment 

variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads().  In case of specifying the 

number of threads with run-time library omp_set_num_threads(), assign the same number of threads as that of first 

calling immediately before the second or later calling also with omp_set_num_threads(). 

4. Example program 

1,000,000  4 uniform pseudo random numbers are generated and their mean value is calculated. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <omp.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
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#define NT        (4) 
#define RAN       (1000000) 
#define NWMAX     (5000) 
#define BUF       (25000) 
 
MAIN__() 
{ 
  double da[NT][BUF], dwork[NT][NWMAX]; 
  double sum, sum2, mean, sig; 
  unsigned int gen, tot, rpt, i, j; 
  int    tno, ix, n, nwork, icon, ierr; 
 
  /* Initialize ix, n and nwork */ 
  ix = 123; 
  printf("Seed = %d\n", ix); 
 
/*  n     = BUF;*/ 
  nwork = NWMAX; 
  sum   = 0.0; 
 
  /* gen counts down to 0 */ 
  gen = RAN; 
  tot = RAN*NT; 
 
  /* Generate ngen numbers on each thread with maximum BUF at a time */ 
  rpt = (RAN+BUF-1)/BUF; 
  printf("Generating %d numbers with %d calls to c_dm_vranu4 on %d threads.\n", 
         tot, rpt, NT); 
 
  for(j=0; j<rpt; j++) { 
    n    = min(BUF,gen); 
    sum2 = 0.0; 
 
    omp_set_num_threads(NT); 
    ierr = c_dm_vranu4(&ix, (double*)da, BUF, n, (double*)dwork, nwork, &icon); 
 
    if (icon != 0) { 
      printf("ERROR: c_dm_vranu4 failed with icon = %d\n", icon); 
      exit(1); 
    } 
 
    /* Accumulate sum of numbers locally */ 
    for(tno=0; tno<NT; tno++) 
      for(i=0; i<n; i++) sum2 += da[tno][i]; 
 
    /* Accumulate sum of numbers globally */ 
    sum += sum2; 
 
    /* Count down numbers still to generate on each processor */ 
    gen -= n; 
  } 
 
  /* Compute overall mean */ 
  mean = sum/tot; 
  printf("mean = %e\n", mean); 
 
  /* Compute deviation from 0.5 normalized by expected value 1/sqrt(12*ntot).     */ 
  /* This should be (approximately) normally distributed with mean 0, variance 1. */ 
  sig = (mean-0.50)*sqrt(12.0*tot); 
  printf("Normalized deviation = %e\n", sig); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VRANU4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [4], [9], 

[10], [24], [40] and [51]. 
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c_dm_vranu5 

Generation of uniform random numbers [0,1) (MRG8). 

ierr = c_dm_vranu5(&ix, da, n, j, dwork, 

&icon); 

1. Function 

This routine generates sequence of pseudo random numbers from a uniform distribution on [0,1) by Multiple Recursive 

Generator with 8th-order full primitive polynomials (MRG8). 

This function generates same sequence of random number in any thread numbers. When the reproducibility is needed, use 

this function instead of c_dm_vranu4. The interface of this function is different from the interface of c_dm_vranu4. 

This function supports jumping-ahead method, which jumps j steps in a sequence of pseudo random numbers. This is 

useful to generate distinct sub sequence in parallel execution. 

The performance of c_dm_vranu4 is better than this function. 

Both this function and c_dm_vranu4 passed the bigCrush test of TESTU01 which is the statistical testing program of 

uniform random number generators. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vranu5(&ix, da, n, j, dwork, &icon); 

where: 

ix int Input Starting point. 

On the first call, ix should be positive.  ix is returned as zero and 

should remain zero for subsequent calls.  See Comments on use. 

  Output Return value is 0. 

da double da[n] Output n uniform pseudo random numbers on [0,1). 

n int Input The number of uniformly distributed pseudo random numbers to be 

returned in da.   

j long Input Number of jumping steps in the sequence of pseudo random numbers. 

0 is to be set to generate pseudo random numbers just after the sequence.  

See Comments on use. 

dwork double 

dwork[8] 

Work When this function is called repeatedly, the contents must not be 

changed.  dwork contains all the current information required to restart 

this function from its current point.  See Comments on use. 

icon int Output Condition code. See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

30000 ix < 0, n < 1 or j < 0 Bypassed. 
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3. Comments on use 

ix 
When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random 

input.  Thus, the user must give a starting point ix.  This is often called a "seed".  On the first call to this function the seed 

ix should be a positive integer.  On the subsequent call ix should be zero.  This indicates that more pseudo random 

numbers from the same sequence are to be generated.  To simplify programming, ix is returned as zero after the first call 

to this function. 

j 
This function supports jumping-ahead method, which jumps j steps in a sequence of pseudo random numbers by setting 

j  0. 

This function generates distinct sub sequence of pseudo random numbers in each process by setting same ix and different 

j in parallel execution. 

dwork 
dwork is used as a work area to store state information between calls to this function.  The calling program must not 

change the contents of the array dwork between calls. 

Checkpointing 
If dwork are saved, the same sequence of random numbers can be generated again (from the point where dwork was 

saved) by restoring dwork and calling this function with argument ix = 0. 

4. Example program 

Example 1. 

1,000,000 uniform pseudo random numbers are generated and their mean value is calculated.  The starting point is 123. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS).  For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE 1** */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" 
 
#define  NRAN 10000000 
#define  NSEED 123 
#define  NBUF 25000 
 
#define min(x,y) ((x)>(y)?(y):(x)) 
 
int MAIN__() { 
 
  double  da[NBUF]; 
  double  dwork[8]; 
  double  dsum, dsum2; 
  double  dmean; 
  int  ix, n, icon; 
  int  i, j; 
 
/* Generate NRAN numbers with maximum NBUF at a time */ 
  ix = NSEED; 
  printf(" Seed %d\n", ix); 
  printf(" Generating %d numbers\n", NRAN); 
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  dsum = 0.0; 
  for (j = 1; j <= NRAN; j += NBUF) { 
    n = min(NBUF, NRAN - j + 1); 
    c_dm_vranu5(&ix, da, n, (long)0, dwork, &icon); 
    if (icon != 0) { 
      printf(" Error return ICON %d\n", icon); 
    } 
    dsum2 = 0.0; 
    for (i = 0; i < n; i++) { 
      dsum2 += da[i]; 
    } 
    dsum += dsum2; 
  } 
/* Compute mean */ 
  dmean = dsum / (double)NRAN; 
  printf(" Mean %20.16lf\n", dmean); 
 
  return(0); 
} 
 
 
 

Example 2. 

Distinct 100,000 uniform pseudo random numbers are generated in each MPI processes and their mean value is calculated.  

The starting point is 123. 

In this program, j is set to 231-1. As far as the length of each sub sequences is smaller than 231-1 they are not overlapping. 

/* **EXAMPLE 2** */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <mpi.h> 
#include "cssl.h" 
 
#define  N 10000 
 
int MAIN__(int argc, char *argv[]) { 
 
  const long  jump = (long)2147483647;  /* =2**31-1 */ 
  double  x[N]; 
  double  dnall; 
  int  irank, np; 
  int  ix, icon; 
  int  i; 
  long  j; 
  double  work[8]; 
  double  dsum, dsumall, dmean; 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_rank(MPI_COMM_WORLD, &irank); 
  MPI_Comm_size(MPI_COMM_WORLD, &np); 
 
  ix = 123; 
  j = irank * jump; 
  c_dm_vranu5(&ix, x, N, j, work, &icon); 
  if (icon != 0) { 
    printf("C_DM_VRANU5 ERROR ICON= %d\n", icon); 
  } 
 
  dsum = 0.0; 
  for (i = 0; i < N; i++) { 
    dsum += x[i]; 
  } 
  MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
/* Compute overall mean */ 
  dnall = (double)N * (double)np; 
  if (irank == 0) { 
    dmean = dsumall / dnall; 
    printf(" Mean %19.16lf\n", dmean); 
  } 
 
  MPI_Finalize(); 
  return(0); 
} 
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Example 3. 

Two uniform pseudo random number sequences x and y are generated by four MPI process and their mean values are 

calculated. The total number of each vector is 1,000,000 and the starting point is 123. 

In this program, 1,000,000 pseudo random numbers are split into NP blocks, where NP is the number of processes, and 

each of the sequences is generated by each of the processes.  Even if NP is changed, the whole sequence of pseudo 

random numbers is the same. 

/* **EXAMPLE 3** */ 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" 
#include <mpi.h> 
 
#define  NX  100000 
#define  NY  100000 
#define  NP  4  /* NUMBER OF PROCESS */ 
 
#define min(x,y) ((x)>(y)?(y):(x)) 
 
int MAIN__(int argc, char *argv[]) { 
 
  double  x[(NX + NP - 1) / NP], y[(NY + NP - 1) / NP]; 
  int  irank, nsize; 
  int  ix, nl, icon, jump; 
  int  i; 
  long  j0, j; 
  double  work[8]; 
  double  dsum, dsumall, dmean; 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_rank(MPI_COMM_WORLD, &irank); 
  MPI_Comm_size(MPI_COMM_WORLD, &nsize); 
  if (NP != nsize) { 
    MPI_Finalize(); 
    return(-1); 
  } 
 
  ix = 123; 
  jump = (NX + NP - 1) / NP; 
  j = min(irank * jump, NX); 
  nl = min(jump, NX - j); 
  if (nl >= 1) { 
    c_dm_vranu5(&ix, x, nl, j, work, &icon); 
    if (icon != 0) { 
      printf("DM_VRANU5 ERROR ICON= %d\n", icon); 
    } 
    j0 = NX - (j + nl); 
  } else { 
    j0 = NX; 
  } 
 
  dsum = 0.0; 
  for (i = 0; i < nl; i++) { 
    dsum += x[i];  
  } 
  MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
 
/* Compute overall mean of X */ 
  if (irank == 0) { 
      dmean = dsumall / (double)NX; 
      printf(" Mean of X %19.16lf\n", dmean); 
  } 
 
  jump = (NY + NP - 1) / NP; 
  j = min(irank * jump, NY); 
  nl = min(jump, NY - j); 
  j += j0; 
  if (nl >= 1) { 
    c_dm_vranu5(&ix, y, nl, j, work, &icon); 
    if (icon != 0) { 
      printf("C_DM_VRANU5 ERROR ICON= %d\n", icon); 
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    } 
  } 

 

  dsum = 0.0; 

  for (i = 0; i < nl; i++) { 

    dsum += y[i]; 

  } 

  MPI_Reduce(&dsum, &dsumall, 1, MPI_DOUBLE, MPI_SUM, 0, 

             MPI_COMM_WORLD); 

              

/* Compute overall mean of Y */ 

  if (irank == 0) { 

    dmean = dsumall / (double) NY; 

    printf(" Mean of Y %19.16lf\n", dmean); 

  } 

 

  MPI_Finalize(); 

  return(0); 

} 

 
 

5. Method 

Consult the entry for DM_VRANU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [78], [79], 

and [80]. 
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c_dm_vschol 

LDLT decomposition of a symmetric positive definite sparse matrix  

(Left-looking Cholesky decomposition method) 

ierr = c_dm_vschol(a, nz, nrow, nfcnz, n, 

iordering, nperm, isw, &epsz, 

nassign, &nsupnum, nfcnzfactor, 

panelfactor, &nsizefactor, 

nfcnzindex,npanelindex, 

&nsizeindex, ndim, nposto, w, iw1, 

iw2, iw3, &icon); 

1. Function 

This routine executes LDLT decomposition for an n × n symmetric positive definite sparse matrix using modified 

Cholesky decomposition method, so that 

QPAPTQT = LDLT, 

 where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering.  P and Q are orthogonal 

matrices, L is a unit lower triangular matrix, and D is a diagonal matrix. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vschol(a, nz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, 

nassign, &nsupnum, nfcnzfactor, panelfactor, &nsizefactor, 

nfcnzindex, npanelindex, &nsizeindex,(int*)ndim, nposto, w, iw1, 

iw2, iw3, &icon); 

where: 

a double a[nz] Input The non-zero elements of the lower triangular part {aij | i 

 j} of a symmetric sparse matrix A are stored in a[i], 

i=0, …, nz-1. 

For the compressed column storage method, refer to 
Figure c_dm_vmvscc-1 in the description for 
c_dm_vmvscc routine (multiplication of a real sparse 
matrix and a real vector). 

nz int Input The total number of the nonzero elements belong to the 

lower triangular part of a symmetric sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array a. 

nfcnz int  

nfcnz[n+1] 

Input The position of the first nonzero element of each 
column stored in an array a in the compressed 
column storage method which stores the nonzero 
elements column by column. 
nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 
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iordering int  Input Control information whether to decompose the 
reordered matrix PAPT permuted by the matrix P of 
ordering or to decompose the matrix A. 

Specify iordering=1 for the decomposition of the 
matrix PAPT. 

Specify the other value for the decomposition of the 

matrix A as it is. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. 

See Comments on use. 

isw int  Input Control information. 

   1 Initial calling. 

   2 Subsequent call if the previous call has 

failed with icon=31000, that means the 

size of panelfactor or npanelindex 

were not enough.  In this case, the 

panelfactor or npanelindex must 

be reallocated with the necessary sizes 

which are returned in the nsizefactor 

or nsizeindex at the precedent call. 

Besides, the values of a, nz, nrow, 
nfcnz, n, iordering, nperm, 
nassign, nsupnum, nfcnzfactor, 
nfcnzindex, npanelindex, 
nposto, ndim, w, iw1, iw2, and iw3 
must be unchanged after the first call. 

   3 Second and subsequent calls when 
solving another system of equations 
which have the same non-zero pattern of 
the matrix A but the values of its 
elements are different.  In this case, the 
information obtained in symbolic 
decomposition and the array 
panelfactor and npanelindex of 
the same size required in previous call 
can be reused.  Then numerical LDLT 
decomposition will proceed with that 
information and the new linear equations 
can be solved efficiently.  Store the 
values of the matrix elements in the array 
a, or store in another array b and let it be 
as the parameter a. 

Besides, the values of nz, nrow, 
nfcnz, n, iordering, nperm, 
nassign, nsupnum, nfcnzfactor, 
nsizefactor, nfcnzindex, 
npanelindex, nsizeindex, 
nposto, ndim, w, iw1, iw2, and iw3 
must be unchanged as the previous call. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

When epsz is 0.0, the standard value is assumed. Output 
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See Comments on use. 

nassign int nassign[n] Output Each supernode consists of multiple column vectors, and 

the supernodes are stored in two-dimensional panel by 

compressing rows containing nonzero elements with a 

common row indices vector.  The elements of this array 

indicate the position, where this panel is allocated as a 

part of the one-dimensional array panelfactor.  

When j = nassign[i-1], the i-th supernode is 

allocated at j-th position. 

  Input The values of the first call are reused when isw  1 
specified. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vschol-1. 

See Comments on use. 

nsupnum int Output The total number of supernodes. 

  Input The values of the first call are reused when isw  1 
specified. ( n) 

nfcnzfactor long long int 

nfcnzfactor 

[n+1] 

Output Each supernode consists of multiple column vectors, and 

the factorized matrix of supernodes are stored in two-

dimensional panel by compressing rows containing 

nonzero elements with a common row indices vector.  

The elements of this array indicate the position of the 

first element panel[0][0] of the i-th panel, where 

this panel is allocated as a part of the one-dimensional 

array panelfactor. 

  Input The values set by the first call are reused when isw 
 1 specified. 
For the storage method of the decomposed results, 
refer to Figure c_dm_vschol-1. 

panelfactor double  

panelfactor 

[nsizefactor] 

Output Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  These 
panels are stored in this matrix. 

The positions of the panel corresponding to the i-th 
supernode are indicated as j = nassign[i-1].  
The first position is stored in nfcnzfactor[j-
1].  The decomposed result is stored in each panel. 

The size of the i-th panel can be considered to be 
two-dimensional array of ndim[i -1][1]×ndim 
[i -1][0].  The corresponding part where the 
lower triangular unit matrix except the diagonal part 
is transposed and is stored in panel[t-1][s-1], 
s>t, s=1,…,ndim[i-1][0], t=1,…,ndim[i-
1][1] of the i-th panel.  The corresponding part of 
the diagonal matrix D is stored in panel[t-1][t-
1]. 

For the storage method of the decomposed results, refer 

to Figure c_dm_vschol-1. 
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See Comments on use. 

nsizefactor long long int Input The size of the array panelfactor. 

  Output The necessary size for the array panelfactor is 

returned. 

See Comments on use. 

nfcnzindex long long int 

nfcnzindex 

[n+1] 

Output Each supernode consists of multiple column vectors, and 

the supernodes are stored in two-dimensional panel by 

compressing rows containing nonzero elements with a 

common row indices vector.  The elements of this array 

indicate the position of the first element of the i-th row 

indices vector, where this panel is allocated as a part of 

the one-dimensional array npanelindex. 

  Input The values set by the first call are reused when isw 
 1 specified. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vschol-1. 

npanelindex int npanelindex 

[nsizeindex] 

Output Each supernode consists of multiple column vectors, and 

the supernodes are stored in two-dimensional panel by 

compressing rows containing nonzero elements with a 

common row indices vector.  These row indices vectors 

are stored in this matrix.  The positions of the row 

pointer vector corresponding to the i-th supernode are 

indicated as j = nassign[i-1].  The first position is 

stored in nfcnzindex[j-1].  The row indices vector 

is stored by each panel.  This row indices are the row 

indices of the matrix QAQT to which the matrix A is 

permuted by post ordering. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vschol-1. 

See Comments on use. 

nsizeindex long long int  Input The size of the array npanelindex. 

  Output The necessary size is returned. 

See Comments on use. 

ndim int ndim[n][2] Output The size of first and second dimension of the i-th 
panel are stored in ndim[i-1][0] and 
ndim[i-1][1] respectively. 

  Input The values set by the first call are reused when isw 
 1 specified. 

For the storage method of the decomposed results, refer 

to Figure c_dm_vschol-1. 

nposto int nposto[n] Output The one dimensional vector is stored which indicates 

what column index of A the i-th node in post ordering 

corresponds to. 

  Input The values set by the first call are reused when isw  1 

specified. 

See Comments on use. 
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w double w[Iwlen1] Work area When this routine is called repeatedly with isw = 
1,2,3,  This work area is used for preserving 
information among calls.  The contents must not be 
changed. 
When iordering = 1,  Iwlen1 = nz. 
When iordering  1,  Iwlen1 = 1. 

  Output/Input 

iw1 int iw1[Iwlen2] 

 

Work area When this routine is called repeatedly with isw = 1,2,3,  

This work area is used for preserving information among 

calls.  The contents must not be changed. 

When iordering = 1,  Iwlen2 = nz+n+1. 

When iordering  1,  Iwlen2 = 1. 

 Output/Input 

iw2 int iw2[nz+n+1] Work area When this routine is called repeatedly with isw = 1,2,3,  

This work area is used for preserving information among 

calls.  The contents must not be changed. 

  Output/Input 

iw3 int 

iw3[n*35+35] 

Work area When this routine is called repeatedly with isw = 1,2,3,  

This work area is used for preserving information among 

calls.  The contents must not be changed. 

 Output/Input 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

10000 The coefficient matrix is not positive definite. Processing is continued. 

20000 The pivot became relatively zero.  The 
coefficient matrix A may be singular. 

Processing is discontinued. 

30000 One of the following has occurred: 

 n < 1 

 nz < 0 

 nfcnz[n]nz+1 

 nsizefactor<1 

 nsizeindex<1 

 epsz<0.0 

 isw<0 

 isw>3 

30100 The permutation matrix specified in nprem is 
not correct. 

30200 The row pointer k stored in nrow[j-1] is k 
< i or k > n. 

30300 The number of row indices belong to i-th 
column is nfcnz[i]-nfcnz[i-1]>n-
i+1. 

30400 There is a column without a diagonal element. 

31000 The value of nsizefactor is not enough as 
the size of panelfactor, or the value of 
nsizeindex is not enough as the size of 
npanelindex. 

Reallocate the panelfactor or 
npanelindex with the necessary size which 
are returned in the nsizefactor or 
nsizeindex, and call this routine again with 
isw=2. 
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panel row pointer vector 

row indices of post ordering . 

 
Figure c_dm_vschol-1   concept of storing the data for decomposed result 

j = nassign[i-1]              The i-th supernode is stored at the j-th position. 

p = nfcnzfactor[j-1]    The j-th panel occupies the area with a length  
ndim[j-1][1] × ndim[j-1][0] from the p-th element of 
panelfactor. 

q = nfcnzindex[j-1]       The row pointer vector of the j-th panel occupies the area with a 
  length ndim[j-1][0] from the q-th element of panelindex. 

A panel is regarded as an array of the size ndim[j-1][1] × ndim[j-1][0]. 

 

The lower triangular unit matrix L except the diagonal part is transposed and is stored in 

panel[t-1][s-1]  ,  s > t , s=1 , … , ndim[j-1][0], 
                                          t=1 , … , ndim[j-1][1] 

The corresponding part of the diagonal matrix D is stored in panel[t-1][t-1]. 

The row pointers indicate the column indices of the matrix QAQT to which the node of the matrix A is 
permuted by post ordering. 

3. Comments on use 

nperm 
When the element pij=1 of the permutation matrix P, set nperm[i-1]=j. 

The inverse of the matrix can be obtained as follows: 

       for(i=1; i<=n; i++){ 
     j=nperm[i-1]; 
     perminv[j-1]=i; 
   } 
 
epsz 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LDLT decomposition.  

In this case, processing is discontinued with icon = 20000.  When unit round off is u, the standard value of epsz is 16 

 u.  When the computation is to be continued even if the pivot is small, assign the minimum value to epsz.  In this case, 

however, the result is not assured. 
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 When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite.  In this case, 

processing is continued as icon=10000, but the numerical error may be large because of no pivoting. 

c_dm_vscholx 
The linear equations LDLTPQx = PQb which is a derived form from Ax = b can be solved by calling routine 

c_dm_vscholx following this routine with the decomposed result data such as nassign, nsupnum, nfcnzfactor, 

nsizefactor, nfcnzindex, npanelindex, nsizeindex, nposto, ndim, iw3 unchanged. 

nsizefactor and nsizeindex 
The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be 

determined beforehand.  It is suggested to reallocate them by using the result of the symbolic decomposition analysis after 

the first call of this routine, or allocate large enough arrays at first call. 

 For instance, allocate the small one-dimensional arrays of size one at first.  And call this routine with the small values 

such as one in the size specifying in nsizefactor and nsizeindex.  This routine ends with icon = 31000, and the 

necessary sizes for nsizefactor and nsizeindex are returned.  Then the suspended process can be resumed by 

calling it with isw = 2 after reallocating the arrays with the necessary sizes. 

nposto 
Nodes corresponding to column number is considered.  The node number permuted in post order is stored in nposto.  

This array indicates what node number in original node number the i-th node in post order is corresponding.  It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note nperm above,  and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

for(i=1; i<=n; i++){ 
     j=nposto[i-1]; 
     npostoinv[j-1]=i; 
   } 

4. Example program 

The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic 

equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1, a2, a3)  where a1, a2, a3 and c are zero constants, that 

means the operator is Laplacian.  The matrix A in Diagonal format is generated by the routine init_mat_diag, and 

transferred into compressed column storage format. 

  The number of the threads can be specified with an environment variable (OMP_NUM_THREADS).  For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

      #include <stdlib.h> 
      #include <stdio.h> 
      #include <math.h> 
      #include <malloc.h> 
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      #include "cssl.h" /* standard C-SSL header file */ 
 
      #define NORD   (39) 
      #define NX     (NORD) 
      #define NY     (NORD) 
      #define NZ     (NORD) 
      #define N      (NX*NY*NZ) 
      #define K      (N+1) 
      #define NDIAG  (7) 
      #define NDIAGH (4) 
 
      MAIN__() 
      { 
        int    ierr, icon, iguss, iter, itmax; 
        int    nord, n, l, i, j, k; 
        int    nx, ny, nz, nnz, nnzc; 
        int    length, nbase, ndiag, ntopcfgc; 
        int    numnz, numnzc, nsupnum, ntopcfg, ncol; 
        int    iordering, isw; 
        int    *npanelindex; 
        int    ndummyi; 
        int    nofst[NDIAG]; 
        int    nrow[NDIAG*K]; 
        int    nrowc[NDIAG*K]; 
        int    nfcnz[N+1]; 
        int    nfcnzc[N+1]; 
        int    nperm[N]; 
        int    nassign[N]; 
        int    nposto[N]; 
        int    ndim[N][2]; 
        int    iw1[N*NDIAGH+N+1]; 
        int    iw2[N*NDIAGH+N+1]; 
        int    iw3[N*35+35]; 
        int    iwc[NDIAG*K][2]; 
 
        double err, epsz; 
        double t0, t1, t2; 
        double va1, va2, va3, vc; 
        double xl, yl, zl; 
        double dummyf; 
        double *panelfactor; 
        double diag[NDIAG][K]; 
        double diag2[NDIAG][K]; 
        double a[N*NDIAGH]; 
        double b[N]; 
        double c[NDIAG*K]; 
        double w[N*NDIAGH]; 
        double wc[NDIAG*K]; 
        double x[N]; 
        double solex[N]; 
 
        long long int nsizefactor; 
        long long int nsizeindex; 
        long long int nfcnzfactor[N+1]; 
        long long int nfcnzindex[N+1]; 
 
        void init_mat_diag(double va1, double va2, double va3, double vc, 
                    double d_l[], int offset[], int nx, int ny, int nz, 
                    double xl, double yl,double zl, int ndiag, int len, int ndivp); 
 
        double errnrm(double *x1, double *x2, int len); 
 
        nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG; 
 
        printf("     LEFT-LOOKING MODIFIED CHOLESKY METHOD\n"); 
        printf("     FOR SPARSE POSITIVE DEFINITE MATRICES\n"); 
        printf("     IN COMPRESSED COLUMN STORAGE\n"); 
        printf("\n"); 
 
        for (i=1; i<=n; i++){ 
          solex[i-1]=1.0; 
        } 
        printf("     EXPECTED SOLUTIONS\n"); 
        printf("     X(1) = %.15lf  X(N) = %.15lf\n", solex[0], solex[n-1]); 
        printf("\n"); 
 
        va1 = 0.0; 
        va2 = 0.0; 
        va3 = 0.0; 
        vc = 0.0; 
        xl = 1.0; 
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        yl = 1.0; 
        zl = 1.0; 
        init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst, 
                            nx, ny, nz, xl, yl, zl, ndiag, n, k); 
 
        for (i=1; i<=ndiag; i++){ 
          if (nofst[i-1] < 0){ 
            nbase=-nofst[i-1]; 
            length=n-nbase; 
            for (j=1; j<=length; j++){ 
              diag2[i-1][j-1]=diag[i-1][nbase+j-1]; 
            } 
          } 
          else{ 
            nbase=nofst[i-1]; 
            length=n-nbase; 
            for (j=nbase+1; j<=n; j++){ 
              diag2[i-1][j-1]=diag[i-1][j-nbase-1]; 
            } 
          } 
        } 
 
        numnzc=1; 
        numnz=1; 
        for (j=1; j<=n; j++){ 
          ntopcfgc = 1; 
          ntopcfg = 1; 
          for (i=ndiag; i>=1; i--){ 
            if (diag2[i-1][j-1]!=0.0){ 
              ncol=j-nofst[i-1]; 
              c[numnzc-1]=diag2[i-1][j-1]; 
              nrowc[numnzc-1]=ncol; 
              if (ncol>=j){ 
                a[numnz-1]=diag2[i-1][j-1]; 
                nrow[numnz-1]=ncol; 
              } 
              if (ntopcfgc==1){ 
                nfcnzc[j-1]=numnzc; 
                ntopcfgc=0; 
              } 
              if (ntopcfg==1){ 
                nfcnz[j-1]=numnz; 
                ntopcfg=0; 
              } 
              if (ncol>=j){ 
                numnz=numnz+1; 
              } 
              numnzc=numnzc+1; 
            } 
          } 
        } 
 
 
        nfcnzc[n]=numnzc; 
        nnzc=numnzc-1; 
        nfcnz[n]=numnz; 
        nnz=numnz-1; 
 
        ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon); 
 
        for(i=1; i<=n; i++){ 
           x[i-1]=b[i-1]; 
        } 
        iordering=0; 
        isw=1; 
        epsz=0; 
        nsizefactor=1; 
        nsizeindex=1; 
 
        ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign, 
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex, 
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon); 
 
        printf("\n"); 
        printf("     ICON = %d  NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon, 
nsizefactor, nsizeindex); 
        printf("\n"); 
 
        panelfactor = (double *)malloc(sizeof(double)*nsizefactor); 
        npanelindex = (int *)malloc(sizeof(int)*nsizeindex); 
        isw=2; 
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        ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign, 
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex, 
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon); 
 
        ierr=c_dm_vscholx(n, iordering, nperm, x, nassign, nsupnum, 
                          nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex, 
nsizeindex, (int*)ndim, nposto, iw3, &icon); 
 
        err = errnrm(solex,x,n); 
 
        printf("     COMPUTED VALUES\n"); 
        printf("     X(1) = %.15lf  X(N) = %.15lf\n", x[0], x[n-1]); 
        printf("\n"); 
        printf("     ICON = %d\n", icon); 
        printf("\n"); 
        printf("     N = %d  :: NX = %d  NY = %d  NZ = %d\n",n,nx,ny,nz); 
        printf("\n"); 
        printf("     ERROR = %.15e\n",err); 
        printf("\n"); 
        printf("\n"); 
        if (err<(1.0e-8) && icon==0){ 
          printf("     ********** OK **********\n"); 
        } 
        else{ 
          printf("     ********** NG **********\n"); 
        } 
          free(panelfactor); 
          free(npanelindex); 
          return 0; 
      } 
 
      void init_mat_diag(double va1, double va2, double va3, double vc, 
               double d_l[], int offset[], int nx, int ny, int nz, 
               double xl, double yl, double zl, int ndiag, int len, int ndivp) 
      { 
        int i, l, j; 
        int length, numnz, js; 
        int i0, j0, k0; 
        int ndiag_loc; 
        int nxy; 
 
        double hx, hy, hz; 
        double x1, x2; 
        double base; 
        double ret, remark; 
 
        if (ndiag<1){ 
          printf("FUNCTION INIT_MAT_DIAG:\n"); 
          printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 
          return; 
        } 
        ndiag_loc = ndiag; 
        if (ndiag>7){ 
          ndiag_loc=7; 
        } 
 
        hx = xl / (nx + 1); 
        hy = yl / (ny + 1); 
        hz = zl / (nz + 1); 
 
        for (i=1; i<=ndivp; i++){ 
          for (j=1; j<=ndiag; j++){ 
            d_l[i-1+(j-1)*ndivp]= 0.; 
          } 
        } 
 
        nxy = nx * ny; 
        l = 1; 
        if (ndiag_loc >= 7) { 
          offset[l-1] = -nxy; 
          ++l; 
        } 
        if (ndiag_loc >= 5) { 
          offset[l-1] = -nx; 
          ++l; 
        } 
        if (ndiag_loc >= 3) { 
          offset[l-1] = -1; 
          ++l; 
        } 
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        offset[l-1] = 0; 
        ++l; 
        if (ndiag_loc >= 2) { 
          offset[l-1] = 1; 
          ++l; 
        } 
        if (ndiag_loc >= 4) { 
          offset[l-1] = nx; 
          ++l; 
        } 
        if (ndiag_loc >= 6) { 
          offset[l-1] = nxy; 
        } 
 
        for (j = 1; j <= len; ++j) { 
          js=j; 
          k0 = (js - 1) / nxy + 1; 
          if (k0 > nz) { 
            printf("ERROR; K0.GH.NZ\n"); 
            return; 
          } 
          j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 
          i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 
 
          l = 1; 
          if (ndiag_loc >= 7) { 
            if (k0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 5) { 
            if (j0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 3) { 
            if (i0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc; 
          if (ndiag_loc >= 5) { 
            d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy); 
            if (ndiag_loc >= 7) { 
              d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz); 
            } 
          } 
          ++l; 
          if (ndiag_loc >= 2) { 
            if (i0 < nx) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 4) { 
            if (j0 < ny) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 6) { 
            if (k0 < nz) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz; 
            } 
          } 
        } 
        return; 
      } 
 
      double errnrm(double *x1, double *x2, int len) 
      { 
        double ret_val; 
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        int i; 
        double s, ss; 
 
        s = 0.; 
        for (i = 1; i <= len; ++i) { 
          ss = x1[i-1] - x2[i-1]; 
          s += ss * ss; 
        } 
        ret_val = sqrt(s); 
        return ret_val; 
      } 

5.  Method 

Consult the entry for DM_VSCHOL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19].
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c_dm_vscholx 

A system of linear equations with LDLT-decomposed symmetric positive 

definite sparse matrices 

ierr = c_dm_vscholx(n, iordering, nperm, b, 

nassign, nsupnum, nfcnzfactor, 

            panelfactor, nsizefactor, 

nfcnzindex, npanelindex, 

nsizeindex,ndim, nposto, iw3, 

&icon); 

1. Function 

This routine solves a system of equations with a LDLT-decomposed symmetric positive definite sparse coefficient n  n 

matrix. 

LDLTQPx = QPb, 

 where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering.  P and Q are orthogonal 

matrices, L is a unit lower triangular matrix, D is a diagonal matrix, b is a constant vector, and x is a solution vector. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vscholx(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactor, 

panelfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, 

           (int*)ndim, nposto, iw3, &icon); 

where: 

n int Input Order n of matrix. 

iordering int Input Control information whether the coefficient matrix 
was permuted into PAPT by the permutation matrix 
P before decomposition. 

Specify iordering=1 for the LDLT decomposed 
from PAPT. 

Specify the other value for the LDLT decomposed 
matrix from A as it is. 

nperm int nperm[n] Input The permutation matrix P is specified as a vector 
when iordering=1. 

See Comments on use. 

b double b[n] Input The right-hand side constant vector b of a system of 
linear equations Ax = b. 

  Output Solution vector x. 

nassign int nassign[n] Input Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  The 
elements of this array indicate the position, where 
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this panel is allocated as a part of the one-
dimensional array panelfactor.  When j = 
nassign[i-1], the i-th supernode is allocated at 
j-th position. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vscholx-1. 

nsupnum int Input The total number of supernodes. 

nfcnzfactor long long int 

nfcnzfactor 

[n+1] 

Input Each supernode consists of multiple column vectors, 
and the factorized matrix of supernodes are stored in 
two-dimensional panel by compressing rows 
containing nonzero elements with a common row 
indices vector.  The elements of this array indicate 
the position of the first element panel[0][0] of the 
i-th panel, where this panel is allocated as a part of 
the one-dimensional array panelfactor. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vscholx-1. 

See Comments on use. 

panelfactor double  

panelfactor 

[nsizefactor] 

Input Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  These 
panels are stored in this matrix. 

The positions of the panel corresponding to the i-th 
supernode are indicated as j = nassign[i-1].  
The first position is stored in nfcnzfactor[j-
1].  The decomposed result is stored in each 
panel. 

The size of the i-th panel can be considered to be 
two-dimensional array of ndim[i-1][1]×ndim 
[i-1][0].  The corresponding part where the 
lower triangular unit matrix except the diagonal part 
is transposed and is stored in panel[t-1][s-1], 
s>t, s=1, …, ndim[i-1][0], t=1, …, 
ndim[i-1][1] of the i-th panel.  The 
corresponding part of the diagonal matrix D is stored 
in panel[t-1][t-1]. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vscholx-1. 

nsizefactor long long int Input The size of the array panelfactor. 

nfcnzindex long long int 

nfcnzindex 

[n+1] 

Input Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  The 
elements of this array indicate the position of the 
first element of the i-th row indices vector, where 
this panel is allocated as a part of the one-
dimensional array npanelindex. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vscholx-1. 
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npanelindex int npanelindex 

[nsizeindex] 

Input Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  These 
row pointer vectors are stored in this matrix.  The 
positions of the row pointer vector corresponding to 
the i-th supernode are indicated as j = 
nassign[i-1].  The first position is stored in 
nfcnzindex[j-1].  The row indices vector is 
stored by each panel.  This row indices are the row 
indices of the matrix QAQT to which the matrix A is 
permuted by post ordering. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vscholx-1. 

nsizeindex long long int Input The size of the array panelindex. 

ndim int ndim[n][2] Input The size of first and second dimension of the i-th 
panel are stored in ndim[i-1][0] and  
ndim[i-1][1] respectively. 

nposto int nposto[n] Input The one dimensional vector is stored which indicates 
what column index of A the i-th node in post 
ordering corresponds to. 

 See Comments on use. 

iw3 int 

iw3[n*35+35] 

Input Specify the iw3 which is used by c_dm_vschol 
before calling this routine.  The contents must not be 
changed. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 n < 1 

 nsizefactor < 1 

 nsizeindex < 1 

 nsupnum < 1 

Processing is discontinued. 

30100 The permutation matrix specified in nprem is not 

correct. 
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panel row pointer vector 

row indices of post ordering . 

 
Figure c_dm_vscholx-1   concept of storing the data for decomposed result 

j = nassign[i-1]          The i-th supernode is stored at the j-th position. 

p = nfcnzfactor[j-1]   The j-th panel occupies the area with a length  
ndim[j-1][1]×ndim[j-1][0] from the p-th element of 
panelfactor. 

q = nfcnzindex[j-1]      The row pointer vector of the j-th panel occupies the area with a length 
ndim[j-1][0] from the q-th element of panelindex. 

A panel is regarded as an array of the size ndim[j-1][1]×ndim[j-1][0]. 

 

The lower triangular unit matrix L except the diagonal part is transposed and is stored in 

panel[t-1][s-1]  ,  s > t , s=1 , … , ndim[j-1][0], 
                                       t=1 , … , ndim[j-1][1] 

The corresponding part of the diagonal matrix D is stored in panel[t-1][t-1]. 

The row pointers indicate the column indices of the matrix QAQT to which the node of the matrix A is 
permuted by post ordering. 

3. Comments on use 

nperm 
When the element pij=1 of the permutation matrix P, set nperm[i-1]=j. 

The inverse of the matrix can be obtained as follows: 

       for(i=1; i<=n; i++){ 
     j=nperm[i-1]; 
     nperminv[j-1]=i; 
   } 
 
nposto 
Nodes corresponding to column number is considered.  The node number permuted in post order is stored in nposto.  

This array indicates what node number in original node number the i-th node in post order is corresponding.  It means j-th 

position when j=nposto[i-1]. 
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This array represents a permutation matrix Q which is an orthogonal matrix also as well as note nperm above, and 

corresponds to permute the matrix A into QAQT. 

The inverse matrix QT can be obtained as follows: 

for(i=1; i<=n; i++){ 
     j=nposto[i-1]; 
     npostoinv[j-1]=i; 
   } 
 
The linear system of equations 
The linear system of equations can be solved by calling this routine with specifying the LDLT-decomposed results which 

are calculated by c_dm_vschol routine. 

4. Example program 

  The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic 

equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1, a2, a3) where a1, a2, a3 and c are zero constants, that 

means the operator is Laplacian.  The matrix A in Diagonal format is generated by the routine init_mat_diag, and 

transferred into compressed column storage format. 

  The number of the threads can be specified with an environment variable (OMP_NUM_THREADS).  For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

      #include <stdlib.h> 
      #include <stdio.h> 
      #include <math.h> 
      #include <malloc.h> 
      #include "cssl.h" /* standard C-SSL header file */ 
 
      #define NORD   (39) 
      #define NX     (NORD) 
      #define NY     (NORD) 
      #define NZ     (NORD) 
      #define N      (NX*NY*NZ) 
      #define K      (N+1) 
      #define NDIAG  (7) 
      #define NDIAGH (4) 
 
      MAIN__() 
      { 
        int    ierr, icon, iguss, iter, itmax; 
        int    nord, n, l, i, j, k; 
        int    nx, ny, nz, nnz, nnzc; 
        int    length, nbase, ndiag, ntopcfgc; 
        int    numnz, numnzc, nsupnum, ntopcfg, ncol; 
        int    iordering, isw; 
        int    *npanelindex; 
        int    ndummyi; 
        int    nofst[NDIAG]; 
        int    nrow[NDIAG*K]; 
        int    nrowc[NDIAG*K]; 
        int    nfcnz[N+1]; 
        int    nfcnzc[N+1]; 
        int    nperm[N]; 
        int    nassign[N]; 
        int    nposto[N]; 
        int    ndim[N][2]; 
        int    iw1[N*NDIAGH+N+1]; 
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        int    iw2[N*NDIAGH+N+1]; 
        int    iw3[N*35+35]; 
        int    iwc[NDIAG*K][2]; 
 
        double err, epsz; 
        double t0, t1, t2; 
        double va1, va2, va3, vc; 
        double xl, yl, zl; 
        double dummyf; 
        double *panelfactor; 
        double diag[NDIAG][K]; 
        double diag2[NDIAG][K]; 
        double a[N*NDIAGH]; 
        double b[N]; 
        double c[NDIAG*K]; 
        double w[N*NDIAGH]; 
        double wc[NDIAG*K]; 
        double x[N]; 
        double solex[N]; 
 
        long long int nsizefactor; 
        long long int nsizeindex; 
        long long int nfcnzfactor[N+1]; 
        long long int nfcnzindex[N+1]; 
 
        void init_mat_diag(double va1, double va2, double va3, double vc, 
                    double d_l[], int offset[], int nx, int ny, int nz, 
                    double xl, double yl,double zl, int ndiag, int len, int ndivp); 
 
        double errnrm(double *x1, double *x2, int len); 
 
        nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG; 
 
        printf("     LEFT-LOOKING MODIFIED CHOLESKY METHOD\n"); 
        printf("     FOR SPARSE POSITIVE DEFINITE MATRICES\n"); 
        printf("     IN COMPRESSED COLUMN STORAGE\n"); 
        printf("\n"); 
 
        for (i=1; i<=n; i++){ 
          solex[i-1]=1.0; 
        } 
        printf("     EXPECTED SOLUTIONS\n"); 
        printf("     X(1) = %.15lf  X(N) = %.15lf\n", solex[0], solex[n-1]); 
        printf("\n"); 
 
        va1 = 0.0; 
        va2 = 0.0; 
        va3 = 0.0; 
        vc = 0.0; 
        xl = 1.0; 
        yl = 1.0; 
        zl = 1.0; 
        init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst, 
                            nx, ny, nz, xl, yl, zl, ndiag, n, k); 
 
        for (i=1; i<=ndiag; i++){ 
          if (nofst[i-1] < 0){ 
            nbase=-nofst[i-1]; 
            length=n-nbase; 
            for (j=1; j<=length; j++){ 
              diag2[i-1][j-1]=diag[i-1][nbase+j-1]; 
            } 
          } 
          else{ 
            nbase=nofst[i-1]; 
            length=n-nbase; 
            for (j=nbase+1; j<=n; j++){ 
              diag2[i-1][j-1]=diag[i-1][j-nbase-1]; 
            } 
          } 
        } 
 
        numnzc=1; 
        numnz=1; 
        for (j=1; j<=n; j++){ 
          ntopcfgc = 1; 
          ntopcfg = 1; 
          for (i=ndiag; i>=1; i--){ 
            if (diag2[i-1][j-1]!=0.0){ 
              ncol=j-nofst[i-1]; 
              c[numnzc-1]=diag2[i-1][j-1]; 
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              nrowc[numnzc-1]=ncol; 
              if (ncol>=j){ 
                a[numnz-1]=diag2[i-1][j-1]; 
                nrow[numnz-1]=ncol; 
              } 
              if (ntopcfgc==1){ 
                nfcnzc[j-1]=numnzc; 
                ntopcfgc=0; 
              } 
              if (ntopcfg==1){ 
                nfcnz[j-1]=numnz; 
                ntopcfg=0; 
              } 
              if (ncol>=j){ 
                numnz=numnz+1; 
              } 
              numnzc=numnzc+1; 
            } 
          } 
        } 
 
 
        nfcnzc[n]=numnzc; 
        nnzc=numnzc-1; 
        nfcnz[n]=numnz; 
        nnz=numnz-1; 
 
        ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon); 
 
        for(i=1; i<=n; i++){ 
           x[i-1]=b[i-1]; 
        } 
        iordering=0; 
        isw=1; 
        epsz=0; 
        nsizefactor=1; 
        nsizeindex=1; 
 
        ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign, 
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex, 
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon); 
 
        printf("\n"); 
        printf("     ICON = %d  NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon, 
nsizefactor, nsizeindex); 
        printf("\n"); 
 
        panelfactor = (double *)malloc(sizeof(double)*nsizefactor); 
        npanelindex = (int *)malloc(sizeof(int)*nsizeindex); 
        isw=2; 
 
        ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, nassign, 
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex, 
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon); 
 
        ierr=c_dm_vscholx(n, iordering, nperm, x, nassign, nsupnum, 
                          nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex, 
nsizeindex, (int*)ndim, nposto, iw3, &icon); 
 
        err = errnrm(solex,x,n); 
 
        printf("     COMPUTED VALUES\n"); 
        printf("     X(1) = %.15lf  X(N) = %.15lf\n", x[0], x[n-1]); 
        printf("\n"); 
        printf("     ICON = %d\n", icon); 
        printf("\n"); 
        printf("     N = %d  :: NX = %d  NY = %d  NZ = %d\n",n,nx,ny,nz); 
        printf("\n"); 
        printf("     ERROR = %.15e\n",err); 
        printf("\n"); 
        printf("\n"); 
        if (err<(1.0e-8) && icon==0){ 
          printf("     ********** OK **********\n"); 
        } 
        else{ 
          printf("     ********** NG **********\n"); 
        } 
          free(panelfactor); 
          free(npanelindex); 
          return 0; 
      } 
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      void init_mat_diag(double va1, double va2, double va3, double vc, 
               double d_l[], int offset[], int nx, int ny, int nz, 
               double xl, double yl, double zl, int ndiag, int len, int ndivp) 
      { 
        int i, l, j; 
        int length, numnz, js; 
        int i0, j0, k0; 
        int ndiag_loc; 
        int nxy; 
 
        double hx, hy, hz; 
        double x1, x2; 
        double base; 
        double ret, remark; 
 
        if (ndiag<1){ 
          printf("FUNCTION INIT_MAT_DIAG:\n"); 
          printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 
          return; 
        } 
        ndiag_loc = ndiag; 
        if (ndiag>7){ 
          ndiag_loc=7; 
        } 
 
        hx = xl / (nx + 1); 
        hy = yl / (ny + 1); 
        hz = zl / (nz + 1); 
 
        for (i=1; i<=ndivp; i++){ 
          for (j=1; j<=ndiag; j++){ 
            d_l[i-1+(j-1)*ndivp]= 0.; 
          } 
        } 
 
        nxy = nx * ny; 
        l = 1; 
        if (ndiag_loc >= 7) { 
          offset[l-1] = -nxy; 
          ++l; 
        } 
        if (ndiag_loc >= 5) { 
          offset[l-1] = -nx; 
          ++l; 
        } 
        if (ndiag_loc >= 3) { 
          offset[l-1] = -1; 
          ++l; 
        } 
        offset[l-1] = 0; 
        ++l; 
        if (ndiag_loc >= 2) { 
          offset[l-1] = 1; 
          ++l; 
        } 
        if (ndiag_loc >= 4) { 
          offset[l-1] = nx; 
          ++l; 
        } 
        if (ndiag_loc >= 6) { 
          offset[l-1] = nxy; 
        } 
 
        for (j = 1; j <= len; ++j) { 
          js=j; 
          k0 = (js - 1) / nxy + 1; 
          if (k0 > nz) { 
            printf("ERROR; K0.GH.NZ\n"); 
            return; 
          } 
          j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 
          i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 
 
          l = 1; 
          if (ndiag_loc >= 7) { 
            if (k0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz; 
            } 
            ++l; 
          } 
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          if (ndiag_loc >= 5) { 
            if (j0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 3) { 
            if (i0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc; 
          if (ndiag_loc >= 5) { 
            d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy); 
            if (ndiag_loc >= 7) { 
              d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz); 
            } 
          } 
          ++l; 
          if (ndiag_loc >= 2) { 
            if (i0 < nx) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 4) { 
            if (j0 < ny) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 6) { 
            if (k0 < nz) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz; 
            } 
          } 
        } 
        return; 
      } 
 
      double errnrm(double *x1, double *x2, int len) 
      { 
        double ret_val; 
 
        int i; 
        double s, ss; 
 
        s = 0.; 
        for (i = 1; i <= len; ++i) { 
          ss = x1[i-1] - x2[i-1]; 
          s += ss * ss; 
        } 
        ret_val = sqrt(s); 
        return ret_val; 
      } 
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c_dm_vsclu 

LU decomposition of an unsymmetric complex sparse matrix. 

ierr = c_dm_vsclu(za, nz, nrow, nfcnz, n,  

ipledsm, mz, isclitermax,  

&iordering, nperm, isw,  

nrowsym, nfcnzsym,  

nassign, &nsupnum,  

nfcnzfactorl, zpanelfactorl,  

&nsizefactorl, nfcnzindexl,  

npanelindexl,  

&nsizeindexl, ndim,  

nfcnzfactoru, zpanelfactoru,  

&nsizefactoru,  

nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto,  

sclrow, sclcol,  

&epsz, &thepsz, ipivot, istatic,  

&spepsz, nfcnzpivot,  

npivotp, npivotq, zw, w, iw1, iw2,  

&icon); 

1. Function 

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the diagonal and then it is scaled in 

order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as 

specified within the block diagonal portion belonging to each supernode.  

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its 

imaginary part for the permutation of elements, scaling and pivot. 

The unsymmetric complex sparse matrix is transformed as below. 

 A1 = DrAPcDc 

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a 

diagonal matrix for scaling columns. 

 A2 = QPA1PTQT  

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for  

SYM = A1 + A1
T and Q is a permutation matrix of postorder for SYM.  P and Q are orthogonal matrices. L is a lower 

triangular matrix and U is a unit upper triangular matrix. 

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold 

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of 

a supernode is regarded as a candidate.  

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU 
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specifying an appropriate small value as a static pivot in place of the candidate sought. 

 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsclu(za, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax, 

&iordering, nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum,  

nfcnzfactorl, zpanelfactorl, &nsizefactorl, nfcnzindexl,  

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,  

zpanelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,  

istatic, &spepsz, nfcnzpivot, npivotp, npivotq, zw, w, iw1, iw2,  

&icon); 

where: 

za dcomplex za[nz] Input The nonzero elements of an unsymmetric sparse matrix A 

are stored. 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). For a complex matrix , a real 

array a in this Figure is replaced with a complex array. 

nz int Input The total number of the nonzero elements belong to an 

unsymmetric complex sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array za. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array za in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

ipledsm int Input Control information whether to permute the large entries 

to the diagonal of a matrix A.  

When ipledsm = 1 is specified, a matrix A is 

transformed internally permuting large entries to the 

diagonal. 

Otherwise no permutation is performed. 

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a 

permutation of columns. mz[i-1] = j indicates that the 

j-th column which the element of aij belongs to is 

permutated to i-th column. The element of aij is the large 

entry to be permuted to the diagonal. 

isclitermax int Input The upper limit for the number of iteration to seek scaling 

matrices of Dr and Dc to equilibrate both rows and 
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columns of matrix A. 

When isclitermax  ≤ 0 is specified no scaling is 

done. In this case Dr and Dc are assumed as unit matrices. 

When isclitermax ≥ 10 is specified, the upper limit 

for the number of iteration is considered as 10. 

iordering int Input Control information whether to decompose the reordered 

matrix PA1PT permuted by the matrix P of ordering or to 

decompose the matrix A. 

When iordering = 10 is specified, calling this routine 

with isw = 1 produces the informations which is needed 

to generate an ordering regarding A1 and they are set in 

nrowsym and nfcnzsym. 

When iordering 11 is specified, it is indicated that 

after an ordering is set in nperm, the computation is 

resumed.  

Using the informations obtained in nrowsym and 

nfcnzsym after calling this routines with isw = 1 and 

iordering = 10, an ordering is determined. After 

specifying this ordering in nperm, this routine is called 

again with isw = 1and iordering = 11 and the 

computation is resumed. 

LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is 

decomposed into LU. 

  Output iordering is set to 11 after this routine is called with 

iordering = 10 and isw = 1. Therefore after an 

ordering is set in nperm the computation is resumed in 

the subsequent call without iordering = 11 being 

specified explicitly. See Comments on use. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See 

Comments on use. 

isw int Input Control information. 

1) When isw = 1 is specified. 

After symmetrization of a matrix and symbolic 

decomposition, checking whether the sufficient 

amount of memory for storing data are allocated the 

computation is performed. 

Call with iordering = 10 produces the 

informations needed for seeking an ordering in 

nrowsym and nfcnzsym. Using these 

informations an ordering for SYM is determined. 

After an ordering is set in nperm, calling this 

routine with iordering = 11 and also isw = 1 

again resumes the computation. 

When iordering is neither 10 nor 11, no 

ordering is specified. 
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2) When isw = 2 specified. 

After the previous call ends with icon = 31000, that 

means that the sizes of zpanelfactorl or 

zpanelfactoru or npanelindexl or 

npanelindexu were not enough, the suspended 

computation is resumed.  

Before calling again with isw = 2, the 

zpanelfactorl or zpanelfactoru or 

npanelindexl or npanelindexu must be 

reallocated with the necessary sizes which are 

returned in the nsizefactorl nsizefactoru 

or nsizeindexl or nsizeindezu at the 

precedent call and specified in corresponding 

arguments. 

Besides, except these arguments and isw as control 

information, the values in the other augments must 

not be changed between the previous and following 

calls. 

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices 

of nonzero pattern of the lower triangular part of  

SYM = A1 + A1
T in the compressed column storage 

method are generated. 

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of 

the first row index of each column stored in array 

nrowsym in the compressed column storage method 

which stores the nonzero pattern of the lower part of a 

matrix SYM column by column. 

nfcnzsym[n] = nsymz + 1 where nsymz is the total 

nonzero elements in the lower triangular part. 

nassign int nassign[n] Output L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in zpanelfactorl and 

zpanelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign[i-1]. 

  Input When isw ≠ 1, the values stored in the first call are 

reused. Regarding  

the storage methods of decomposed matrices, refer to 

Figure c_dm_vsclu-1. 

nsupnum int Output The total number of supernodes. 

  Input The values in the first call are reused when isw  1 

specified. ( n) 

nfcnzfactorl long Output The decomposed matrices L and U of an unsymmetric 
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nfcnzfactorl[n+1] complex sparse matrix are computed for each supernode 

respectively. The columns of L belonging to each 

supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is 

mapped into zpanelfactorl consecutively or the 

location of panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. 

  Input The values set by the first call are reused when isw  1 

specified. 

zpanelfactor

l 

dcomplex 

zpanelfactorl 

[nsizefactorl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign 

[i-1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[i-1][0]  

ndim[i-1][1] The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1], s ≥ t, s = 1,...,ndim[i-1][0], t = 1 

,..., ndim[i-1][1]. The corresponding block diagonal 

portion of the unit upper triangular matrix U except its 

diagonals is stored in the panel[t-1][s-1], s < t, t 

= 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. See Comments on use. 

nsizefactorl long Input The size of the array zpanelfactorl. 

  Output The necessary size for the array zpanelfactorl is 

returned. See Comments on use. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 
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refer to Figure c_dm_vsclu-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexl int npanelindexl 

[nsizeindexl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix into which 

SYM is permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. See Comments on use. 

nsizeindexl long Input The size of the array npanelindexl. 

  Output The necessary size is returned. See Comments on use. 

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][2] indicates the total amount of the size of 

the first dimension of the panel where a matrix U is 

transposed and stored and the size of its block diagonal 

portion. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. 

  Input When isw  1, the values set by the first call are reused. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Output Regarding a matrix U derived from LU decomposition of 

an unsymmetric complex sparse matrix, the rows of U 

except the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into zpanelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. 

  Input When isw  1, the values set by the first call are reused. 

zpanelfactor

u 

dcomplex 

zpanelfactoru 

[nsizefactoru] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 
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the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 

i-th block can be considered to be two dimensional array 

of { ndim[i-1][2] - ndim[i-1][1] }  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 

transposed and stored in this panel[t-1][s-1], s = 

1,..., ndim[i-1][2] – ndim[i-1][1], t = 1 

,..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. See Comments on use. 

nsizefactoru long Input The size of the array zpanelfactoru. 

  Output The necessary size for the array zpanelfactoru is 

returned. See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexu int npanelindexu 

[nsizeindexu] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix into which SYM is 

permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclu-1. See Comments on use. 

nsizeindexu long Input The size of the array npanelindexu. 

  Output The necessary size is returned. See Comments on use. 

nposto int nposto[n] Output The information about what column number of A the i-th 

node in post order corresponds to is stored. 

  Input When isw  1, the values set by the first call are reused. 
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See Comments on use. 

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

  Input When isw  1, the values set by the first call are reused. 

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

  Input The values set by the first call are reused when isw  1 

specified. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

  Output When epsz ≤ 0.0, it is set to the standard value.  

See Comments on use. 

thepsz double Input Threshold used in judgement for a pivot. Immediately 

after a candidate in pivot search is considered to have the 

value greater than or equal to the threshold specified, it is 

accepted as a pivot and the search of a pivot is broken off. 

For example, 10-2. 

  Output When thepsz ≤ 0.0, 10-2 is set. 

When epsz ≥ thepsz > 0.0, it is set to the value of 

epsz. 

ipivot int Input Control information on pivoting which indicates whether 

a pivot is searched and what kind of pivoting is chosen if 

any. 

For example, 40 for complete pivoting.  

ipivot < 10 or ipivot ≥ 50, no pivoting.  

10 ≤ ipivot < 20, partial pivoting 

20 ≤ ipivot < 30, diagonal pivoting 

21 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting.  

22 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting. If Rook pivoting fails, it is 

changed to complete pivoting.  

30 ≤ ipivot < 40, Rook pivoting 

32 : When within a supernode Rook pivoting fails, it is 

changed to complete pivoting.  

40 ≤ ipivot < 50, complete pivoting 

istatic int Input Control information indicating whether Static pivoting is 

taken. 

1) When istatic =1 is specified. 
When the pivot searched within a supernode is not 
greater than spepsz, it is replaced with its 
approximate value of a complex number with the 
absolute value of spepsz. 
If its value is 0.0, spepsz is used as an 
approximation value.  
The following conditions must be satisfied. 
a) epsz must be less than or equal to the standard 
value of epsz. 
b) Scaling must be performed with isclitermax 
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=10. 
c) thepsz ≥ spepsz must hold.            

2) When istatic ≠ 1 is specified. 

No static pivot is performed. 

spepsz double Input The approximate value used in Static pivoting when 

istatic = 1 is specified. 

The following conditions must hold. 

thepsz ≥ spepsz ≥ epsz 

  Output When spepsz < epsz, it is set to 10-10. 

nfcnzpivot int nfcnzpivot 

[nsupnum+1] 

Output The location for the storage where the history of relative 

row and column exchanges for pivoting within each 

supernode is stored. 

The block number of the section where the information 

on the i-th supernode is assigned is known by j = 

nassign[i-1]. The position of the first element of 

that section is stored in nfcnzpivot[j-1]. The 

information of exchange rows and columns within the i-th 

supernode is stored in the elements of is = 

nfcnzpivot[j-1], …, ie = nfcnzpivot[j-1] + 

ndim[j-1][1] - 1 in npivotp and npivotq 

respectively. 

npivotp int npivotp[n] Output The information on exchanges of rows within each 

supernode is stored. 

npivotq int npivotq[n] Output The information on exchanges of columns within each 

supernode is stored. 

zw dcomplex zw[2*nz] Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

w double 

w[4*nz+6*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw1 int 

iw1[2*nz+2* 

(n+1)+16*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw2 int 

iw2[47*n+47+nz+4* 

(n+1)+2*(nz+n)] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

10000 When istatic = 1 is specified, Static pivot  

which replaces the pivot candidate with too small 

value with spepsz is made. 

Continued. 
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Code  Meaning  Processing 

20000 The pivot became relatively zero. The coefficient 

matrix A may be singular. 

Processing is discontinued. 

20100 When ipledsm is specified, maximum 

matching with the length n is sought in order to 

permute large entries to the diagonal but can not 

be found. The coefficient matrix A may be 

singular. 

20200 When seeking diagonal matrices for equilibrating 

both rows and columns, there is a zero vector in 

either rows or columns of the matrix A. The 

coefficient matrix A may be singular. 

Processing is discontinued. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindexl < 1 

• nsizeindexu < 1 

• isw < 1 

• isw > 2 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 

30500 When istatic = 1 is specified, the required 

conditions are not satisfied. 

epsz is greater than 16u of the standard value 

or isclitermax < 10 

or spepsz > thepsz 

31000 The value of nsizefactorl is not enough as 

the size of zpanelfactorl, 

or the value of nsizeindexl is not enough as 

the size of npanelindexl, 

or the value of nsizefactoru is not enough as 

the size of zpanelfactoru, 

 or the value of nsizeindexu is not enough as 

the size of npanelindexu. 

Reallocate the zpanelfactorl or 

npanelindexl or 

zpanelfactoru or npanelindexu 

with the necessary size which are returned in the 

nsizefactorl or nsizeindexl or 

nsizefactoru or nsizeindexu 

respectively 

and call this routine again with isw =2 specified. 
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Figure c_dm_vsclu-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim 

[j-1][1] from the p-th element of zpanelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length ndim 

[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1,..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of zpanelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][2] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

for (i = 1; i <= n; i++) { 



c_dm_vsclu 

244 

    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

Fill-reduction Orderings are obtained in use of METIS and so on. 

Refer to [41], [42] in Appendix , “References.” in detail. 

b) 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In 

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u. 

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its 

imaginary part for pivot.  

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum 

value to epsz. In this case, however, the result is not assured. 

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is 

approximately continued replacing it with spepsz. 

c) 
The necessary sizes for the array zpanelfactorl, npanelindexl, zpanelfactoru and npanelindexu that 

store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of 

the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. 

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such 

as one in the size specifying in nsizefactorl,  nsizeindexl, nsizefactoru and  nsizeindexu with isw = 1. 

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl,  nsizefactoru 

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after 

reallocating the arrays with the necessary sizes. 

d) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

e) 
A system of equations Ax = b can be solved by calling c_dm_vsclux subsequently in use of the results of LU 
decomposition obtained by this routine. 
The following arguments used in this routine are specified.  

za, nz, nrow, nfcnz, n,  

ipledsm, mz, iordering, nperm,  

nassign, nsupnum,  

nfcnzfactorl, zpanelfactorl, 

nsizefactorl, nfcnzindexl, npanelindexl, 
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nsizeindexl, ndim, 

nfcnzfactoru, zpanelfactoru, nsizefactoru, 

nfcnzindexu, npanelindexu, nsizeindexu, nposto, 

sclrow,sclcol, 

nfcnzpivot, 

npivotp, npivotq, iw2 

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower 

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real 

sparse matrix A built in this way is stored into a complex sparse array and is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define  NORD  40 

#define  KX  NORD 

#define  KY  NORD 

#define  KZ  NORD 

#define  N  KX * KY * KZ 

#define  NBORDER  (N + 1) 

#define  NOFFDIAG  6 

#define  K  (N + 1) 

#define  NDIAG  7 

#define  NALL  NDIAG * N 

 

#define  ZWL  2 * NALL 

#define  WL  4 * NALL + 6 * N 

#define  IW1L  2 * NALL + 2 * (N + 1) + 16 * N 

#define  IW2L  47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N) 
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void init_mat_diag(double, double, double, double, double*, int*, int, int, int, 

                   double, double, double, int, int, int); 

double errnrm(dcomplex*, dcomplex*, int); 

dcomplex comp_sub(dcomplex, dcomplex); 

 

int MAIN__() { 

 

  int  nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  dcomplex  za[K * NDIAG], zwc[K * NDIAG], 

            zw[ZWL], zone; 

  int  nrow[K * NDIAG], nfcnz[N + 1], 

       nrowsym[K * NDIAG + N], nfcnzsym[N + 1], 

       iwc[K * NDIAG][2]; 

  int  nperm[N], 

       nposto[N], ndim[N][3], 

       nassign[N], 

       mz[N], 

       iw1[IW1L], iw2[IW2L]; 

  double  w[WL]; 

  dcomplex  *zpanelfactorl, *zpanelfactoru; 

  int  *npanelindexl, *npanelindexu; 

  dcomplex  zdummyfl, zdummyfu; 

  int  ndummyil, 

       ndummyiu; 

  long  nsizefactorl, 

        nsizeindexl, 

        nsizeindexu, 

        nsizefactoru, 

        nfcnzfactorl[N + 1], 

        nfcnzfactoru[N + 1], 

        nfcnzindexl[N + 1], 

        nfcnzindexu[N + 1]; 

  dcomplex  zb[N], zsolex[N]; 

  double  epsz, thepsz, spepsz, 

          sclrow[N], sclcol[N]; 

 

  int  ipivot, istatic, nfcnzpivot[N + 1], 

       npivotp[N], npivotq[N], 

       irefine, itermax, iter, ipledsm; 

  double  err, va1, va2, va3, vc, xl, yl, zl, epsr; 

  int  i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering, 

       isclitermax, isw, nsupnum; 

 

  zone.re = 1.0; 

  zone.im = 0.0; 
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  printf("    LU DECOMPOSITION METHOD\n"); 

  printf("    FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n"); 

  printf("    IN COMPRESSED COLUMN STORAGE\n\n"); 

 

  for (i = 0; i < N; i++) { 

    zsolex[i] = zone; 

  } 

  printf("    EXPECTED SOLUTIONS\n"); 

  printf("    X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", 

         zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im); 

 

  va1 = 1.0; 

  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, 

                KX, KY, KZ, xl, yl, zl, NDIAG, N, K); 

 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

 

  } 
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  numnz = 1; 

 

  for (j = 0; j < N; j++) { 

    ntopcfg = 1; 

 

    for (i = NDIAG - 1; i >= 0; i--) { 

 

      if (ntopcfg == 1) { 

        nfcnz[j] = numnz; 

        ntopcfg = 0; 

      } 

 

      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) { 

        continue; 

      } else { 

 

        if (diag2[i][j] != 0.0) { 

 

          ncol = (j + 1) - nofst[i]; 

          za[numnz - 1].re = diag2[i][j]; 

          za[numnz - 1].im = 0.0; 

          nrow[numnz - 1] = ncol; 

 

          numnz++; 

 

        } 

      } 

    } 

  } 

 

  nfcnz[N] = numnz; 

  nz = numnz - 1; 

 

  c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex, 

               zb, zwc, (int *)iwc, &icon); 

 

/* INITIAL CALL WITH IORDER=1 */ 

 

  iordering = 0; 

  ipledsm = 1; 

  isclitermax = 10; 

  isw = 1; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindexl = 1; 

  nsizeindexu = 1; 
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  epsz = 1.0e-16; 

  thepsz = 1.0e-2; 

  spepsz = 0.0; 

  ipivot = 40; 

  istatic = 0; 

  irefine = 1; 

  epsr = 0.0; 

  itermax = 10; 

 

  c_dm_vsclu(za, nz, nrow, nfcnz, N, 

            ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, 

            nrowsym, nfcnzsym, 

            nassign, 

            &nsupnum, 

            nfcnzfactorl, &zdummyfl, 

            &nsizefactorl, 

            nfcnzindexl, 

            &ndummyil, &nsizeindexl, 

            (int *)ndim, 

            nfcnzfactoru, &zdummyfu, 

            &nsizefactoru, 

            nfcnzindexu, 

            &ndummyiu, &nsizeindexu, 

            nposto, 

            sclrow, sclcol, 

            &epsz, &thepsz, 

            ipivot, istatic, &spepsz, nfcnzpivot, 

            npivotp, npivotq, 

            zw, w, iw1, iw2, &icon); 

 

  printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d", 

         icon, nsizefactorl, nsizefactoru, nsizeindexl); 

  printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum); 

 

  zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex)); 

  zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex)); 

  npanelindexl = (int *)malloc(nsizeindexl * sizeof(int)); 

  npanelindexu = (int *)malloc(nsizeindexu * sizeof(int)); 

 

  isw = 2; 

 

  c_dm_vsclu(za, nz, nrow, nfcnz, N, 

            ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, 

            nrowsym, nfcnzsym, 
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            nassign, 

            &nsupnum, 

            nfcnzfactorl, zpanelfactorl, 

            &nsizefactorl, 

            nfcnzindexl, 

            npanelindexl, &nsizeindexl, 

            (int *)ndim, 

            nfcnzfactoru, zpanelfactoru, 

            &nsizefactoru, 

            nfcnzindexu, 

            npanelindexu, &nsizeindexu, 

            nposto, 

            sclrow, sclcol, 

            &epsz, &thepsz, 

            ipivot, istatic, &spepsz, nfcnzpivot, 

            npivotp, npivotq, 

            zw, w, iw1, iw2, &icon); 

 

  c_dm_vsclux(N, 

              iordering, 

              nperm, 

              zb, 

              nassign, 

              nsupnum, 

              nfcnzfactorl, zpanelfactorl, 

              nsizefactorl, 

              nfcnzindexl, 

              npanelindexl, nsizeindexl, 

              (int *)ndim, 

              nfcnzfactoru, zpanelfactoru, 

              nsizefactoru, 

              nfcnzindexu, 

              npanelindexu, nsizeindexu, 

              nposto, 

              ipledsm, mz, 

              sclrow, sclcol, 

              nfcnzpivot, 

              npivotp, npivotq, 

              irefine, epsr, itermax, &iter, 

              za, nz, nrow, nfcnz, 

              iw2, &icon); 

 

  err = errnrm(zsolex, zb, N); 

 

  printf("    COMPUTED VALUES\n"); 

  printf("    X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]); 
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  printf("    ICON = %d\n\n", icon); 

  printf("    N = %d\n\n", N); 

  printf("    ERROR = %lf\n", err); 

  printf("    ITER=%d\n\n\n", iter); 

 

  if (err < 1.0e-8 && icon == 0) { 

    printf("********** OK **********\n"); 

  } else { 

    printf("********** NG **********\n"); 

  } 

 

  free(zpanelfactorl); 

  free(zpanelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

      INITIALIZE COEFFICIENT MATRIX 

  ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, 

                   double *d_l, int *offset, 

                   int nx, int ny, int nz, double xl, double yl, double zl, 

                   int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 

{ 

  int i, j, l, ndiag_loc, nxy, js, k0, j0, i0; 

  double hx, hy, hz, hx2, hy2, hz2; 

 

/* NDIAG CANNOT BE GREATER THAN 7 */ 

  ndiag_loc = ndiag; 

  if (ndiag > 7)  

    ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 
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  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp; i++) { 

    for (j = 0; j < ndiag; j++) { 

      d_l[(j * ndivp) + i] = 0.0; 

    } 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 
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/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */ 

    k0 = (js -1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      goto label_100; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[(l * ndivp) + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[(l * ndivp) + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[(l * ndivp) + j] += 2.0 / hz2; 

      } 

    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

label_100: ; 
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  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 

  * | Z1 - Z2 | 

   ======================================== */ 

double errnrm(dcomplex *z1, dcomplex *z2, int len) { 

  double  rtc, s; 

  dcomplex  ss; 

  int i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = comp_sub(z1[i], z2[i]); 

    s += ss.re * ss.re + ss.im * ss.im; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 

 

dcomplex comp_sub(dcomplex so1, dcomplex so2) { 

 

  dcomplex obj; 

 

  obj.re = so1.re - so2.re; 

  obj.im = so1.im - so2.im; 

  return obj; 

} 
 

5. Method 

Consult the entry for DM_VSCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as[2], [13] , 

[17] , [19] , [22] , [23] , [46] ,[53] , [59] , [64] and [65]. 
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c_dm_vsclux 

A system of linear equations with LU-decomposed unsymmetric 

complex sparse matrices 

ierr = c_dm_vsclux(n, iordering, nperm  

zb, nassign, nsupnum,  

nfcnzfactorl, zpanelfactorl, 

nsizefactorl, nfcnzindexl,  

npanelindexl,  

nsizeindexl, ndim, 

nfcnzfactoru, zpanelfactoru,  

nsizefactoru,  

nfcnzindexu, npanelindexu,  

nsizeindexu, nposto, 

ipledsm, mz,  

sclrow, sclcol, nfcnzpivot,  

npivotp, npivotq, irefine, epsr,  

itermax, &iter,  

za, nz, nrow, nfcnz,  

iw2, &icon); 

1. Function 

An n × n unsymmetric complex sparse matrix A of which LU decomposition is made as below is given.  In this 

decomposition the large entries of an n × n unsymmetric complex sparse matrix A are permutated to the diagonal and then 

it is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is 

taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following 

form. This routine solves the following linear equation in use of these results of LU decomposition.  

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its 

imaginary part for the permutation of elements, scaling and pivot. 

 Ax = b 

A matrix A is decomposed into as below. 

 PrsQPDrAPcDcPTQTPcs = LU 

The unsymmetric complex sparse matrix A is transformed as below. 

 A1 = DrAPcDc 

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a 

diagonal matrix for scaling columns. 

 A2 = QPA1PTQT 
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A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.  

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 + 

A1
T and Q is a permutation matrix of postorder for SYM.  P and Q are orthogonal matrices. L is a lower triangular matrix 

and U is a unit upper triangular matrix. 

It can be specified to improve the precision of the solution by iterative refinement.  

 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsclux(n, iordering, nperm, zb, nassign, nsupnum, nfcnzfactorl,  

zpanelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,  

nsizeindexl, (int *)ndim, nfcnzfactoru, zpanelfactoru,  

nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,  

ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,  

irefine, epsr, itermax, &iter, za, nz, nrow, nfcnz, iw2, &icon); 

where: 

n int Input Order n of matrix A. 

iordering int Input When iordering 11 is specified, it is indicated that LU 

decomposition is performed with an ordering 

specified in nperm.  

The matrix PA1PT is decomposed into LU decomposition. 

Otherwise. No ordering is specified.  

See Comments on use. 

nperm int nperm[n] Input When iordering = 11 is specified, a vector presenting 

the permutation matrix P used is stored.  

See Comments on use. 

zb dcomplex zb[n] Input The right-hand side constant vector b of a system of 

linear equations Ax = b.  

  Output Solution vector x. 

nassign int nassign[n] Input L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in zpanelfactorl and 

zpanelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign[i-1]. 

Regarding the storage methods of decomposed matrices, 

refer to Figure c_dm_vsclux-1. 

nsupnum int Input The total number of supernodes.( n) 

nfcnzfactorl long Input The decomposed matrices L and U of an unsymmetric 
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nfcnzfactorl[n+1] complex sparse matrix are computed for each supernode 

respectively. The columns of L belonging to each 

supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is mapped 

into zpanelfactorl consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

zpanelfactor

l 

dcomplex 

zpanelfactorl 

[nsizefactorl] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign 

[i-1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[j-1][0]  

ndim[j-1][1]. The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1], s ≥ t, s = 1,..., ndim[i-1][0], t = 1, 

..., ndim[i-1][1]. The corresponding block diagonal 

portion of the unit upper triangular matrix U except its 

diagonals is stored in the panel[t-1][s-1], s < t, 

 t = 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

nsizefactorl long Input The size of the array zpanelfactorl. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

npanelindexl int npanelindexl 

[nsizeindexl] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 
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with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix into which 

SYM is permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

nsizeindexl long Input The size of the array npanelindexl. 

ndim int ndim[n][3] Input ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][2] indicates the total amount of the size of 

the first dimension of the panel where a matrix U is 

transposed and stored and the size of its block diagonal 

portion. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Input Regarding a matrix U derived from LU decomposition of 

an unsymmetric complex sparse matrix, the rows of U 

except the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into zpanelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

zpanelfactor

u 

dcomplex 

zpanelfactoru 

[nsizefactoru] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the i-th 

block can be considered to be two dimensional array of 

{ndim[i-1][2] – ndim[i-1][1]}  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 
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transposed and stored in this panel[t-1][s-1], s = 

1,...,ndim[i-1][2] – ndim[i-1][1], t = 1, 

..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

nsizefactoru long Input The size of the array zpanelfactoru.  

See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

npanelindexu int npanelindexu 

[nsizeindexu] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix into which SYM is 

permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsclux-1. 

nsizeindexu long Input The size of the array npanelindexu. 

nposto int nposto[n] Input The information about what column number of A the i-th 

node in post order corresponds to is stored.  

See Comments on use. 

ipledsm int Input Information indicating whether for LU decomposition it 

is specified to permute the large entries to the diagonal of 

a matrix A.  

When ipledsm = 1 is specified, a matrix A is 

transformed internally permuting large entries to the 

diagonal. 

Otherwise no permutation is performed. 

mz int mz[n] Input When ipledsm = 1 is specified, it indicates a 

permutation of columns. mz[i-1] = j indicates that the 

j-th column which the element of aij belongs to is 

permutated to i-th column. The element of aij is the large 
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entry to be permuted to the diagonal. 

sclrow double sclrow[n] Input The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

sclcol double sclcol[n] Input The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

nfcnzpivot int nfcnzpivot 

[nsupnum+1] 

Input The location for the storage where the history of relative 

row and column exchanges for pivoting within each 

supernode is stored. 

The block number of the section where the information 

on the i-th supernode is assigned is known by j = 

nassign[i-1]. The position of the first element of 

that section is stored in nfcnzpivot[j-1]. The 

information of exchange rows and columns within the i-th 

supernode is stored in the elements of is = 

nfcnzpivot[j-1],…, ie = nfcnzpivot[j-1] + 

ndim[j-1][1] - 1 in npivotp and npivotq 

respectively 

npivotp int npivotp[n] Input The information on exchanges of rows within each 

supernode is stored. 

npivotq int npivotq[n] Input The information on exchanges of columns within each 

supernode is stored. 

irefine int Input Control information indicating whether iterative 

refinement is performed when the solution is computed in 

use of results of LU decomposition. A residual vector is 

computed in quadruple precision. 

When irefine = 1 is specified. 

The iterative refinement is performed. It is iterated until in 

the sequences of the solutions obtained in refinement the 

difference of the absolute values of their corresponding 

residual vectors become larger than a fourth of that of 

immediately previous ones. 

When irefine ≠ 1is specified. 

No iterative refinement is performed. 

epsr double Input Criterion value to judge if the absolute value of the 

residual vector  

b-Ax is sufficiently smaller compared with the absolute 

value of b. 

When epsr ≤ 0.0, it is set to 10-6. 

itermax int Input Upper limit of iterative count for refinement ( 1). 

iter int Output Actual iterative count for refinement. 

za dcomplex za[nz] Input The nonzero elements of an unsymmetric complex sparse 

matrix A are stored.  

For the compressed column storage method, refer to 

Figure c_dm_vmvsccc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). For a complex matrix , a real 
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array a in this Figure is replaced with a complex array. 

nz int Input The total number of the nonzero elements belong to an 

unsymmetric complex sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array za. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array za in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

iw2 int 

iw2[47*n+47+nz+4* 

(n+1)+2*(nz+n)] 

Work 

area 

The data derived from calling c_dm_vsclu of LU 

decomposition of an unsymmetric complex sparse matrix 

is transferred in this work area. The contents must not be 

changed among calls. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20400 There is a zero element in diagonal of resultant 

matrices of LU decomposition. 

Processing is discontinued. 

20500 The norm of residual vector for the solution 

vector is greater than that of b multiplied by 

epsr, which is the right term constant vector in 

Ax = b.  The coefficient matrix A may be close to 

a singular matrix. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindexl < 1 

• nsizeindexu < 1 

• itermax < 1 when irefine = 1. 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] - nfcnz[i-1] > n. 
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Figure c_dm_vsclux-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim 

[j-1][1] from the p-th element of zpanelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length ndim 

[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of zpanelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][2] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1,…, ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

The results of LU decomposition obtained by c_dm_vsclu is used. 

See  note c), "Comments on use."  of  c_dm_vsclu and Example  program of  c_dm_vsclux. 



 c_dm_vsclux 

263 

b) 
When the element pij=1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

c) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower 

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real 

sparse matrix A built in this way is stored into a complex sparse matrix and is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define  NORD  40 

#define  KX  NORD 

#define  KY  NORD 

#define  KZ  NORD 
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#define  N  KX * KY * KZ 

#define  NBORDER  (N + 1) 

#define  NOFFDIAG  6 

#define  K  (N + 1) 

#define  NDIAG  7 

#define  NALL  NDIAG * N 

 

#define  ZWL  2 * NALL 

#define  WL  4 * NALL + 6 * N 

#define  IW1L  2 * NALL + 2 * (N + 1) + 16 * N 

#define  IW2L  47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N) 

 

void init_mat_diag(double, double, double, double, double*, int*, int, int, int, 

                   double, double, double, int, int, int); 

double errnrm(dcomplex*, dcomplex*, int); 

dcomplex comp_sub(dcomplex, dcomplex); 

 

int MAIN__() { 

 

  int  nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  dcomplex  za[K * NDIAG], zwc[K * NDIAG], 

            zw[ZWL], zone; 

  int  nrow[K * NDIAG], nfcnz[N + 1], 

       nrowsym[K * NDIAG + N], nfcnzsym[N + 1], 

       iwc[K * NDIAG][2]; 

  int  nperm[N], 

       nposto[N], ndim[N][3], 

       nassign[N], 

       mz[N], 

       iw1[IW1L], iw2[IW2L]; 

  double  w[WL]; 

  dcomplex  *zpanelfactorl, *zpanelfactoru; 

  int  *npanelindexl, *npanelindexu; 

  dcomplex  zdummyfl, zdummyfu; 

  int  ndummyil, 

       ndummyiu; 

  long  nsizefactorl, 

        nsizeindexl, 

        nsizeindexu, 

        nsizefactoru, 

        nfcnzfactorl[N + 1], 

        nfcnzfactoru[N + 1], 

        nfcnzindexl[N + 1], 

        nfcnzindexu[N + 1]; 

  dcomplex  zb[N], zsolex[N]; 
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  double  epsz, thepsz, spepsz, 

          sclrow[N], sclcol[N]; 

 

  int  ipivot, istatic, nfcnzpivot[N + 1], 

       npivotp[N], npivotq[N], 

       irefine, itermax, iter, ipledsm; 

  double  err, va1, va2, va3, vc, xl, yl, zl, epsr; 

  int  i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering, 

       isclitermax, isw, nsupnum; 

 

  zone.re = 1.0; 

  zone.im = 0.0; 

 

  printf("    LU DECOMPOSITION METHOD\n"); 

  printf("    FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n"); 

  printf("    IN COMPRESSED COLUMN STORAGE\n\n"); 

 

  for (i = 0; i < N; i++) { 

    zsolex[i] = zone; 

  } 

  printf("    EXPECTED SOLUTIONS\n"); 

  printf("    X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", 

         zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im); 

 

  va1 = 1.0; 

  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, 

                KX, KY, KZ, xl, yl, zl, NDIAG, N, K); 

 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 
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        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

 

  } 

 

  numnz = 1; 

 

  for (j = 0; j < N; j++) { 

    ntopcfg = 1; 

 

    for (i = NDIAG - 1; i >= 0; i--) { 

 

      if (ntopcfg == 1) { 

        nfcnz[j] = numnz; 

        ntopcfg = 0; 

      } 

 

      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) { 

        continue; 

      } else { 

 

        if (diag2[i][j] != 0.0) { 

 

          ncol = (j + 1) - nofst[i]; 

          za[numnz - 1].re = diag2[i][j]; 

          za[numnz - 1].im = 0.0; 

          nrow[numnz - 1] = ncol; 

 

          numnz++; 

 

        } 

      } 

    } 

  } 

 

  nfcnz[N] = numnz; 

  nz = numnz - 1; 

 

  c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex, 
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               zb, zwc, (int *)iwc, &icon); 

 

/* INITIAL CALL WITH IORDER=1 */ 

 

  iordering = 0; 

  ipledsm = 1; 

  isclitermax = 10; 

  isw = 1; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindexl = 1; 

  nsizeindexu = 1; 

  epsz = 1.0e-16; 

  thepsz = 1.0e-2; 

  spepsz = 0.0; 

  ipivot = 40; 

  istatic = 0; 

  irefine = 1; 

  epsr = 0.0; 

  itermax = 10; 

 

  c_dm_vsclu(za, nz, nrow, nfcnz, N, 

            ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, 

            nrowsym, nfcnzsym, 

            nassign, 

            &nsupnum, 

            nfcnzfactorl, &zdummyfl, 

            &nsizefactorl, 

            nfcnzindexl, 

            &ndummyil, &nsizeindexl, 

            (int *)ndim, 

            nfcnzfactoru, &zdummyfu, 

            &nsizefactoru, 

            nfcnzindexu, 

            &ndummyiu, &nsizeindexu, 

            nposto, 

            sclrow, sclcol, 

            &epsz, &thepsz, 

            ipivot, istatic, &spepsz, nfcnzpivot, 

            npivotp, npivotq, 

            zw, w, iw1, iw2, &icon); 

 

  printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d", 

         icon, nsizefactorl, nsizefactoru, nsizeindexl); 

  printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum); 
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  zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex)); 

  zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex)); 

  npanelindexl = (int *)malloc(nsizeindexl * sizeof(int)); 

  npanelindexu = (int *)malloc(nsizeindexu * sizeof(int)); 

 

  isw = 2; 

 

  c_dm_vsclu(za, nz, nrow, nfcnz, N, 

            ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, 

            nrowsym, nfcnzsym, 

            nassign, 

            &nsupnum, 

            nfcnzfactorl, zpanelfactorl, 

            &nsizefactorl, 

            nfcnzindexl, 

            npanelindexl, &nsizeindexl, 

            (int *)ndim, 

            nfcnzfactoru, zpanelfactoru, 

            &nsizefactoru, 

            nfcnzindexu, 

            npanelindexu, &nsizeindexu, 

            nposto, 

            sclrow, sclcol, 

            &epsz, &thepsz, 

            ipivot, istatic, &spepsz, nfcnzpivot, 

            npivotp, npivotq, 

            zw, w, iw1, iw2, &icon); 

 

  c_dm_vsclux(N, 

              iordering, 

              nperm, 

              zb, 

              nassign, 

              nsupnum, 

              nfcnzfactorl, zpanelfactorl, 

              nsizefactorl, 

              nfcnzindexl, 

              npanelindexl, nsizeindexl, 

              (int *)ndim, 

              nfcnzfactoru, zpanelfactoru, 

              nsizefactoru, 

              nfcnzindexu, 

              npanelindexu, nsizeindexu, 

              nposto, 
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              ipledsm, mz, 

              sclrow, sclcol, 

              nfcnzpivot, 

              npivotp, npivotq, 

              irefine, epsr, itermax, &iter, 

              za, nz, nrow, nfcnz, 

              iw2, &icon); 

 

  err = errnrm(zsolex, zb, N); 

 

  printf("    COMPUTED VALUES\n"); 

  printf("    X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]); 

  printf("    ICON = %d\n\n", icon); 

  printf("    N = %d\n\n", N); 

  printf("    ERROR = %lf\n", err); 

  printf("    ITER=%d\n\n\n", iter); 

 

  if (err < 1.0e-8 && icon == 0) { 

    printf("********** OK **********\n"); 

  } else { 

    printf("********** NG **********\n"); 

  } 

 

  free(zpanelfactorl); 

  free(zpanelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

      INITIALIZE COEFFICIENT MATRIX 

  ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, 

                   double *d_l, int *offset, 

                   int nx, int ny, int nz, double xl, double yl, double zl, 

                   int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 
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{ 

  int i, j, l, ndiag_loc, nxy, js, k0, j0, i0; 

  double hx, hy, hz, hx2, hy2, hz2; 

 

/* NDIAG CANNOT BE GREATER THAN 7 */ 

  ndiag_loc = ndiag; 

  if (ndiag > 7)  

    ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp; i++) { 

    for (j = 0; j < ndiag; j++) { 

      d_l[(j * ndivp) + i] = 0.0; 

    } 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 
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      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */ 

    k0 = (js -1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      goto label_100; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[(l * ndivp) + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[(l * ndivp) + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[(l * ndivp) + j] += 2.0 / hz2; 

      } 

    } 

    l++; 
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    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

label_100: ; 

  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 

  * | Z1 - Z2 | 

   ======================================== */ 

double errnrm(dcomplex *z1, dcomplex *z2, int len) { 

  double  rtc, s; 

  dcomplex  ss; 

  int i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = comp_sub(z1[i], z2[i]); 

    s += ss.re * ss.re + ss.im * ss.im; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 

 

dcomplex comp_sub(dcomplex so1, dcomplex so2) { 

 

  dcomplex obj; 

 

  obj.re = so1.re - so2.re; 

  obj.im = so1.im - so2.im; 

  return obj; 

} 
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c_dm_vscs 

A system of linear equations with unsymmetric complex sparse matrices 

(LU decomposition method) 

ierr = c_dm_vscs(za, nz, nrow, nfcnz, n,  

ipledsm, mz, isclitermax,  

&iordering, nperm, isw,  

nrowsym, nfcnzsym, zb,  

nassign, &nsupnum,  

nfcnzfactorl, zpanelfactorl,  

&nsizefactorl, nfcnzindexl,  

npanelindexl,  

&nsizeindexl, ndim,  

nfcnzfactoru, zpanelfactoru,  

&nsizefactoru, 

nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto,  

sclrow, sclcol,  

&epsz, &thepsz, ipivot, istatic,  

&spepsz, nfcnzpivot,  

npivotp, npivotq, irefine, epsr,  

itermax, &iter,  

zw, w, iw1, iw2, &icon); 

1. Function 

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the diagonal and then it is scaled in 

order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations Ax = b in use 

of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each 

supernode.  

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its 

imaginary part for the permutation of elements, scaling and pivot. 

 Ax = b 

The unsymmetric complex sparse matrix is transformed as below. 

 A1 = DrAPcDc 

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a 

diagonal matrix for scaling columns. 

 A2 = QPA1PTQT 

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 + 
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A1
T and Q is a permutation matrix of postorder for SYM.  P and Q are orthogonal matrices. L is a lower triangular matrix 

and U is a unit upper triangular matrix. 

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold 

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of 

a supernode is regarded as a candidate.  

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU 

specifying an appropriate small value as a static pivot in place of the candidate sought. 

The solution is computed using LU decomposition. 

It can be specified to improve the precision of the solution by iterative refinement.  

 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vscs(za, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax, 

&iordering, nperm, isw, nrowsym, nfcnzsym, zb, nassign, &nsupnum,  

nfcnzfactorl, zpanelfactorl, &nsizefactorl, nfcnzindexl,  

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,  

zpanelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,  

istatic, &spepsz, nfcnzpivot, npivotp, npivotq, irefine, epsr,  

itermax, &iter, zw, w, iw1, iw2, &icon); 

where: 

za dcomplex za[nz] Input The nonzero elements of an unsymmetric complex sparse 

matrix A are stored. 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). For a complex matrix, a real 

array a in this Figure is replaced with a complex array. 

nz int Input The total number of the nonzero elements belong to an 

unsymmetric complex sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array za. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array za in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

ipledsm int Input Control information whether to permute the large entries 

to the diagonal of a matrix A.  

When ipledsm = 1 is specified, a matrix A is 

transformed internally permuting large entries to the 

diagonal. 
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Otherwise no permutation is performed. 

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a 

permutation of columns. mz[i-1] = j indicates that the 

j-th column which the element of aij belongs to is 

permutated to i-th column. The element of aij is the large 

entry to be permuted to the diagonal. 

isclitermax int Input The upper limit for the number of iteration to seek scaling 

matrices of Dr and Dc to equilibrate both rows and 

columns of matrix A. 

When isclitermax ≤ 0 is specified no scaling is 

done. In this case Dr and Dc are assumed as unit matrices. 

When isclitermax ≥ 10 is specified, the upper limit 

for the number of iteration is considered as 10. 

iordering int Input Control information whether to decompose the reordered 

matrix PA1PT permuted by the matrix P of ordering or to 

decompose the matrix A. 

When iordering = 10 is specified, calling this routine 

with isw = 1 produces the informations which is needed 

to generate an ordering regarding A1 and they are set in 

nrowsym and nfcnzsym. 

When iordering 11 is specified, it is indicated that 

after an ordering is set in nperm, the computation is 

resumed.  

Using the informations obtained in nrowsym and 

nfcnzsym after calling this routines with isw = 1 and 

iordering = 10, an ordering is determined. After 

specifying this ordering in nperm, this routine is called 

again with isw = 1and iordering = 11 and the 

computation is resumed. 

LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is 

decomposed into LU. 

  Output iordering is set to 11 after this routine is called with 

iordering = 10 and isw = 1. Therefore after an 

ordering is set in nperm the computation is resumed in 

the subsequent call without iordering = 11 being 

specified explicitly. See Comments on use. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See 

Comments on use. 

isw int Input Control information. 

1) When isw = 1 is specified. 

After symmetrization of a matrix and symbolic 

decomposition, checking whether the sufficient 

amount of memory for storing data are allocated the 

computation is performed. 

Call with iordering = 10 produces the 
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informations needed for seeking an ordering in 

nrowsym and nfcnzsym. Using these 

informations an ordering for SYM is determined. 

After an ordering is set in nperm, calling this 

routine with iordering =11 and also isw = 1 

again resumes the computation. 

When iordering is neither 10 nor 11, no ordering 

is specified. 

2) When isw = 2 specified. 

After the previous call ends with icon = 31000, that 

means that the sizes of zpanelfactorl or 

zpanelfactoru or npanelindexl or 

npanelindexu were not enough, the suspended 

computation is resumed.  

Before calling again with isw = 2, the 

zpanelfactorl or zpanelfactoru or 

npanelindexl or npanelindexu must be 

reallocated with the necessary sizes which are 

returned in the nsizefactorl nsizefactoru 

or nsizeindexl or nsizeindezu at the 

precedent call and specified in corresponding 

arguments. 

Besides, except these arguments and isw as control 

information, the values in the other augments must 

not be changed between the previous and following 

calls. 

3) When isw = 3 specified. 

The subsequent call with isw = 3 solves another 

system of equations of which the coefficient matrix is 

as same as previous call but the right-hand side 

vector b is changed. In this case, the information 

obtained by the previous LU decomposition can be 

reused. 

Besides, except isw as control information and zb 

for storing the new right-hand side b, the values in 

the other arguments must not be changed between 

the previous and following calls. 

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices 

of nonzero pattern of the lower triangular part of SYM = 

A1 + A1
T in the compressed column storage method are 

generated. 

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of 

the first row index of each column stored in array 

nrowsym in the compressed column storage method 

which stores the nonzero pattern of the lower part of a 

matrix SYM column by column. 
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nfcnzsym[n] = nsymz + 1 where nsymz is the total 

nonzero elements in the lower triangular part. 

zb dcomplex zb[n] Input The right-hand side constant vector b of a system of 

linear equations Ax = b. 

  Output Solution vector x. 

nassign int nassign[n] Output L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in zpanelfactorl and 

zpanelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign [i-1]. 

  Input When isw ≠ 1, the values stored in the first call are 

reused. Regarding  

the storage methods of decomposed matrices, refer to 

Figure c_dm_vscs-1. 

nsupnum int Output The total number of supernodes. 

  Input The values in the first call are reused when isw  1 

specified. ( n) 

nfcnzfactorl long 

nfcnzfactorl[n+1] 

Output The decomposed matrices L and U of an unsymmetric 

complex sparse matrix are computed for each supernode 

respectively. The columns of L belonging to each 

supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is 

mapped into zpanelfactorl consecutively or the 

location of panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. 

  Input The values set by the first call are reused when isw  1 

specified. 

zpanelfactor

l 

dcomplex 

zpanelfactorl 

[nsizefactorl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel with 

the corresponding parts of the decomposed matrix U in its 

block diagonal portion. The block number of the section 

where the panel corresponding to the i-th supernode is 

assigned is known from j = nassign[i-1]. The 

location of its top of subarray including the portion of 

decomposed matrices is stored in nfcnzfactorl 

[j-1]. 

The size of the panel in the i-th block can be considered 
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to be two dimensional array of ndim[i-1][0]  

ndim[i-1][1]. The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1],  s ≥ t, s = 1, ..., ndim[i-1][0], 

 t = 1, ..., ndim[i-1][1]. The corresponding block 

diagonal portion of the unit upper triangular matrix U 

except its diagonals is stored in the panel 

[t-1][s-1], s < t, t = 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. See Comments on use. 

nsizefactorl long Input The size of the array panelfactorl. 

  Output The necessary size for the array panelfactorl is 

returned. See Comments on use. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel with 

the corresponding parts of the decomposed matrix U in its 

block diagonal portion. The index number of the top array 

element of the one dimensional subarray where the i-th 

row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexl int npanelindexl 

[nsizeindexl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix into which 

SYM is permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. See Comments on use. 

nsizeindexl long Input The size of the array npanelindexl. 

  Output The necessary size is returned. See Comments on use. 

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][2] indicates the total amount of the size of 

the first dimension of the panel where a matrix U is 
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transposed and stored and the size of its block diagonal 

portion. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. 

  Input When isw  1, the values set by the first call are reused. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Output Regarding a matrix U derived from LU decomposition of 

an unsymmetric complex sparse matrix, the rows of U 

except the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into zpanelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. 

  Input When isw  1, the values set by the first call are reused. 

zpanelfactor

u 

dcomplex 

zpanelfactoru 

[nsizefactoru] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 

i-th block can be considered to be two dimensional array 

of {ndim[i-1][2] – ndim[i-1][1]}  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 

transposed and stored in this panel[t-1][s-1], s = 

1,...,ndim[i-1][2] – ndim[i-1][1], t = 1, 

..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. See Comments on use. 

nsizefactoru long Input The size of the array zpanelfactoru. 

  Output The necessary size for the array zpanelfactoru is 

returned. See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 
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Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexu int npanelindexu 

[nsizeindexu] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix into which SYM is 

permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vscs-1. See Comments on use. 

nsizeindexu long Input The size of the array npanelindexu. 

  Output The necessary size is returned. See Comments on use. 

nposto int nposto[n] Output The information about what column number of A the i-th 

node in post order corresponds to is stored. 

  Input When isw  1, the values set by the first call are reused. 

See Comments on use. 

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

  Input When isw  1, the values set by the first call are reused. 

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

  Input The values set by the first call are reused when isw  1 

specified. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

  Output When epsz ≤ 0.0, it is set to the standard value.  

See Comments on use. 

thepsz double Input Threshold used in judgement for a pivot. Immediately 

after a candidate in pivot search is considered to have the 

value greater than or equal to the threshold specified, it is 

accepted as a pivot and the search of a pivot is broken off. 

For example, 10-2. 

  Output When thepsz ≤ 0.0, 10-2 is set. 

When epsz ≥ thepsz > 0.0, it is set to the value of 

epsz. 

ipivot int Input Control information on pivoting which indicates whether 

a pivot is searched and what kind of pivoting is chosen if 

any. 

For example, 40 for complete pivoting.  

ipivot < 10 or ipivot ≥ 50, no pivoting.  
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10 ≤ ipivot < 20, partial pivoting 

20 ≤ ipivot < 30, diagonal pivoting 

21 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting.  

22 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting. If Rook pivoting fails, it is 

changed to complete pivoting.  

30 ≤ ipivot < 40, Rook pivoting 

32 : When within a supernode Rook pivoting fails, it is 

changed to complete pivoting.  

40 ≤ ipivot < 50, complete pivoting 

istatic int Input Control information indicating whether Static pivoting is 

taken. 

1) When istatic = 1 is specified. 
When the pivot searched within a supernode is not 
greater than spepsz, it is replaced with its 
approximate value of a complex number with the 
absolute value of spepsz. 
If its value is 0.0, spepsz is used as an 
approximation value.  
The following conditions must be satisfied. 
a) epsz must be less than or equal to the standard 
value of epsz. 
b) Scaling must be performed with isclitermax 
=10. 
c) thepsz ≥ spepsz must hold.  
d) irefine = 1 must be specified for the iterative 
refinement of the solution.        

2) When istatic ≠ 1 is specified. 

No static pivot is performed. 

spepsz double Input The approximate value used in Static pivoting when 

istatic = 1 is specified. 

The following conditions must hold. 

10-8 ≥ spepsz ≥ epsz 

  Output When spepsz < epsz, it is set to 10-10. 

nfcnzpivot int nfcnzpivot 

[nsupnum+1] 

Output The location for the storage where the history of relative 

row and column exchanges for pivoting within each 

supernode is stored. 

The block number of the section where the information 

on the i-th supernode is assigned is known by j = 

nassign[i-1]. The position of the first element of 

that section is stored in nfcnzpivot[j-1]. The 

information of exchange rows and columns within the i-th 

supernode is stored in the elements of is = 

nfcnzpivot[j-1], 

…, ie = nfcnzpivot[j-1] + ndim[j-1][1] - 1 

in npivotp and npivotq respectively. 

npivotp int npivotp[n] Output The information on exchanges of rows within each 

supernode is stored. 
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npivotq int npivotq[n] Output The information on exchanges of columns within each 

supernode is stored. 

irefine int Input Control information indicating whether iterative 

refinement is performed when the solution is computed in 

use of results of LU decomposition. A residual vector is 

computed in quadruple precision. 

When irefine = 1 is specified. 

The iterative refinement is performed. It is iterated until in 

the sequences of the solutions obtained in refinement the 

difference of the absolute values of their corresponding 

residual vectors become larger than a fourth of that of 

immediately previous ones. 

When irefine ≠ 1 is specified. 

No iterative refinement is performed. 

When istatic = 1 is specified, irefine = 1 must be 

specified. 

epsr double Input Criterion value to judge if the absolute value of the 

residual vector b - Ax is sufficiently smaller compared 

with the absolute value of b. 

When epsr ≤ 0.0, it is set to 10-6. 

itermax int Input Upper limit of iterative count for refinement ( 1). 

iter int Output Actual iterative count for refinement. 

zw dcomplex zw[2*nz] Work 

area 

When this routine is called repeatedly with isw =1, 2 this 

work area is used for preserving information among calls. 

The contents must not be changed. 

w double 

w[4*nz+6*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw1 int 

iw1[2*nz+2* 

(n+1)+16*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw2 int 

iw2[47*n+47+nz+4* 

(n+1)+2*(nz+n)] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2, 3 

this work area is used for preserving information among 

calls. The contents must not be changed. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 The pivot became relatively zero. The coefficient 

matrix A may be singular. 

Processing is discontinued. 

20100 When ipledsm is specified, maximum 

matching with the length n is sought in order to 

permute large entries to the diagonal but can not 

be found. The coefficient matrix A may be 

singular. 
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Code  Meaning  Processing 

20200 When seeking diagonal matrices for equilibrating 

both rows and columns, there is a zero vector in 

either rows or columns of the matrix A. The 

coefficient matrix A may be singular. 

20400 There is a zero element in diagonal of resultant 

matrices of LU decomposition. 

20500 The norm of residual vector for the solution 

vector is greater than that of b multiplied by 

epsr, which is the right term constant vector in 

Ax = b.  The coefficient matrix A may be close to 

a singular matrix. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindexl < 1 

• nsizeindexu < 1 

• isw < 1 

• isw > 3 

• itermax < 1 when irefine = 1. 

Processing is discontinued. 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 

30500 When istatic =1 is specified, the required 

conditions are not satisfied. 

epsz is greater than 16u of the standard value 

or isclitermax < 10 

or irefine ≠ 1 

or spepsz > thepsz  

or spepsz > 10-8 

31000 The value of nsizefactorl is not enough as 

the size of zpanelfactorl, 

or the value of nsizeindexl is not enough as 

the size of npanelindexl, 

or the value of nsizefactoru is not enough as 

the size of zpanelfactoru, 

or the value of nsizeindexu is not enough as 

the size of npanelindexu. 

Reallocate the zpanelfactorl or 

npanelindexl or 

zpanelfactoru or npanelindexu 

with the necessary size which are returned in the 

nsizefactorl or nsizeindexl or 

nsizefactoru or nsizeindexu 

respectively 

and call this routine again with isw = 2 specified. 
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Figure c_dm_vscs-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]        The j-th panel occupies the area with a length ndim[j-1][0] ×  

ndim[j-1][1] from the p-th element of zpanelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length  

ndim[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of zpanelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][2] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

for (i = 1; i <= n; i++) { 
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    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

Fill-reduction Orderings are obtained in use of METIS and so on. 

Refer to [41], [42] in Appendix , “References.” in detail. 

b) 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In 

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u. 

The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its 

imaginary part for pivot. When the computation is to be continued even if the absolute value of diagonal element is small, 

assign the minimum value to epsz. In this case, however, the result is not assured. 

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is 

approximately continued replacing it with spepsz. It is required to specify to do iterative refinement. 

c) 
The necessary sizes for the array zpanelfactorl, npanelindexl, zpanelfactoru and npanelindexu that 

store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of 

the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. 

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such 

as one in the size specifying in nsizefactorl,  nsizeindexl, nsizefactoru and  nsizeindexu with isw = 1. 

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl,  nsizefactoru 

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after 

reallocating the arrays with the necessary sizes. 

d) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

e) 
Instead of  this routine, a system of equations Ax = b can be solved by calling both c_dm_vsclu to perform LU 
decomposition of an unsymmetric complex sparse matrix A and c_dm_vsclux to solve the linear equation in use of 
decomposed results.  

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 
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fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower 

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real 

sparse matrix A built in this way is stored into a complex sparse matrix and is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define  NORD  40 

#define  KX  NORD 

#define  KY  NORD 

#define  KZ  NORD 

#define  N  KX * KY * KZ 

#define  NBORDER  (N + 1) 

#define  NOFFDIAG  6 

#define  K  (N + 1) 

#define  NDIAG  7 

#define  NALL  NDIAG * N 

 

#define  ZWL  2 * NALL 

#define  WL  4 * NALL + 6 * N 

#define  IW1L  2 * NALL + 2 * (N + 1) + 16 * N 

#define  IW2L  47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N) 

 

void init_mat_diag(double, double, double, double, double*, int*, int, int, int, 

                   double, double, double, int, int, int); 

double errnrm(dcomplex*, dcomplex*, int); 

dcomplex comp_sub(dcomplex, dcomplex); 

 

int MAIN__() { 

 

  int  nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  dcomplex  za[K * NDIAG], zwc[K * NDIAG], 

            zw[ZWL], zone; 

  int  nrow[K * NDIAG], nfcnz[N + 1], 

       nrowsym[K * NDIAG + N], nfcnzsym[N + 1], 
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       iwc[K * NDIAG][2]; 

  int  nperm[N], 

       nposto[N], ndim[N][3], 

       nassign[N], 

       mz[N], 

       iw1[IW1L], iw2[IW2L]; 

  double  w[WL]; 

  dcomplex  *zpanelfactorl, *zpanelfactoru; 

  int  *npanelindexl, *npanelindexu; 

  dcomplex  zdummyfl, zdummyfu; 

  int  ndummyil, 

       ndummyiu; 

  long  nsizefactorl, 

        nsizeindexl, 

        nsizeindexu, 

        nsizefactoru, 

        nfcnzfactorl[N + 1], 

        nfcnzfactoru[N + 1], 

        nfcnzindexl[N + 1], 

        nfcnzindexu[N + 1]; 

  dcomplex  zb[N], zsolex[N]; 

  double  epsz, thepsz, spepsz, 

          sclrow[N], sclcol[N]; 

 

  int  ipivot, istatic, nfcnzpivot[N + 1], 

       npivotp[N], npivotq[N], 

       irefine, itermax, iter, ipledsm; 

  double  err, va1, va2, va3, vc, xl, yl, zl, epsr; 

  int  i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering, 

       isclitermax, isw, nsupnum; 

 

  zone.re = 1.0; 

  zone.im = 0.0; 

 

  printf("    LU DECOMPOSITION METHOD\n"); 

  printf("    FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n"); 

  printf("    IN COMPRESSED COLUMN STORAGE\n\n"); 

 

  for (i = 0; i < N; i++) { 

    zsolex[i] = zone; 

  } 

  printf("    EXPECTED SOLUTIONS\n"); 

  printf("    X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", 

         zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im); 

 

  va1 = 1.0; 
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  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, 

                KX, KY, KZ, xl, yl, zl, NDIAG, N, K); 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

 

  } 

 

  numnz = 1; 

 

  for (j = 0; j < N; j++) { 

    ntopcfg = 1; 

    for (i = NDIAG - 1; i >= 0; i--) { 

 

      if (ntopcfg == 1) { 

        nfcnz[j] = numnz; 

        ntopcfg = 0; 

      } 

 

      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) { 

        continue; 

      } else { 
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        if (diag2[i][j] != 0.0) { 

 

          ncol = (j + 1) - nofst[i]; 

          za[numnz - 1].re = diag2[i][j]; 

          za[numnz - 1].im = 0.0; 

          nrow[numnz - 1] = ncol; 

 

          numnz++; 

 

        } 

      } 

    } 

  } 

  nfcnz[N] = numnz; 

  nz = numnz - 1; 

 

  c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex, 

               zb, zwc, (int *)iwc, &icon); 

 

/* INITIAL CALL WITH IORDER=1 */ 

 

  iordering = 0; 

  ipledsm = 1; 

  isclitermax = 10; 

  isw = 1; 

  epsz = 1.0e-16; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindexl = 1; 

  nsizeindexu = 1; 

  thepsz = 1.0e-2; 

  spepsz = 0.0; 

  ipivot = 40; 

  istatic = 0; 

  irefine = 1; 

  epsr = 0.0; 

  itermax = 10; 

 

  c_dm_vscs(za, nz, nrow, nfcnz, N, 

            ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, 

            nrowsym, nfcnzsym, 

            zb, 

            nassign, 

            &nsupnum, 
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            nfcnzfactorl, &zdummyfl, 

            &nsizefactorl, 

            nfcnzindexl, 

            &ndummyil, &nsizeindexl, 

            (int *)ndim, 

            nfcnzfactoru, &zdummyfu, 

            &nsizefactoru, 

            nfcnzindexu, 

            &ndummyiu, &nsizeindexu, 

            nposto, 

            sclrow, sclcol, 

            &epsz, &thepsz, 

            ipivot, istatic, &spepsz, nfcnzpivot, 

            npivotp, npivotq, 

            irefine, epsr, itermax, &iter, 

            zw, w, iw1, iw2, &icon); 

 

  printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d", 

         icon, nsizefactorl, nsizefactoru, nsizeindexl); 

  printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum); 

 

  zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex)); 

  zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex)); 

  npanelindexl = (int *)malloc(nsizeindexl * sizeof(int)); 

  npanelindexu = (int *)malloc(nsizeindexu * sizeof(int)); 

 

  isw = 2; 

 

  c_dm_vscs(za, nz, nrow, nfcnz, N, 

            ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, 

            nrowsym, nfcnzsym, 

            zb, 

            nassign, 

            &nsupnum, 

            nfcnzfactorl, zpanelfactorl, 

            &nsizefactorl, 

            nfcnzindexl, 

            npanelindexl, &nsizeindexl, 

            (int *)ndim, 

            nfcnzfactoru, zpanelfactoru, 

            &nsizefactoru, 

            nfcnzindexu, 

            npanelindexu, &nsizeindexu, 

            nposto, 

            sclrow, sclcol, 
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            &epsz, &thepsz, 

            ipivot, istatic, &spepsz, nfcnzpivot, 

            npivotp, npivotq, 

            irefine, epsr, itermax, &iter, 

            zw, w, iw1, iw2, &icon); 

 

  err = errnrm(zsolex, zb, N); 

 

  printf("    COMPUTED VALUES\n"); 

  printf("    X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]); 

  printf("    ICON = %d\n\n", icon); 

  printf("    N = %d\n\n", N); 

  printf("    ERROR = %lf\n", err); 

  printf("    ITER=%d\n\n\n", iter); 

  if (err < 1.0e-8 && icon == 0) { 

    printf("********** OK **********\n"); 

  } else { 

    printf("********** NG **********\n"); 

  } 

 

  free(zpanelfactorl); 

  free(zpanelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

       INITIALIZE COEFFICIENT MATRIX 

   ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, 

                   double *d_l, int *offset, 

                   int nx, int ny, int nz, double xl, double yl, double zl, 

                   int ndiag, int len, int ndivp) { 

  if (ndiag < 1) { 

    printf("FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 

{ 

  int i, j, l, ndiag_loc, nxy, js, k0, j0, i0; 

  double hx, hy, hz, hx2, hy2, hz2; 
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  ndiag_loc = ndiag; 

  if (ndiag > 7)  

    ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp; i++) { 

    for (j = 0; j < ndiag; j++) { 

      d_l[(j * ndivp) + i] = 0.0; 

    } 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 
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    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */ 

    k0 = (js -1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      goto label_100; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[(l * ndivp) + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[(l * ndivp) + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[(l * ndivp) + j] += 2.0 / hz2; 

      } 

    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 
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      if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

label_100: ; 

  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 

  * | Z1 - Z2 | 

   ======================================== */ 

double errnrm(dcomplex *z1, dcomplex *z2, int len) { 

  double  rtc, s; 

  dcomplex  ss; 

  int i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = comp_sub(z1[i], z2[i]); 

    s += ss.re * ss.re + ss.im * ss.im; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 

 

dcomplex comp_sub(dcomplex so1, dcomplex so2) { 

 

  dcomplex obj; 

 

  obj.re = so1.re - so2.re; 

  obj.im = so1.im - so2.im; 

  return obj; 

} 
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5. Method 

Consult the entry for DM_VSCS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2], [13] , 

[17] , [19] , [22] , [23] , [46] , [53] , [59] , [64] and [65]. 
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c_dm_vsevph 

Eigenvalues and eigenvectors of real symmetric matrices 

(tridiagonalization, multisection method, and inverse iteration) 

ierr = c_dm_vsepvh(a, k, n, nf, nl, ivec, 

&etol, &ctol, nev, e, maxne, m, 

ev, &icon); 

1. Function 

This routine calculates specified eigenvalues and, optionally, eigenvectors of n-dimensional real symmetric matrix 
A. 

 Ax = x (1) 

where, A is an n  n real symmetric matrix. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsevph((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, 

maxne, (int*)m, (double*)ev, &icon); 

where: 

a double a[n][k] Input The upper triangular part {aij | i  j} of real symmetric matrix A is 

stored in the upper triangular part {a[i1][j1], i  j} of a. 

The value of a is not assured after operation. 

k int Input C fix dimension of matrix A. (k  n) 

n int Input Order n of matrix A. 

nf int Input Number assigned to the first eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

nl int Input Number assigned to the last eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

ivec int Input Control information. 

ivec = 1 if both the eigenvalues and eigenvectors are sought. 

ivec  1 if only the eigenvalues are sought. 

etol double Input Criterion value for checking whether the eigenvalues are numerically 

different from each other or are multiple. 

  Output When etol is less than 3.01016 this value is used as the standard 

value. See Comments on use. 

ctol double Input Criterion value for checking whether the adjacent eigenvalues can be 

considered to be approximately equal to each other. This value is used 

to assure the linear independence of the eigenvector corresponding to 

the eigenvalue belonging to approximately multiple eigenvalues 

(clusters). 
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The value of ctol should be generally 5.01012. For a very large 

cluster, a large ctol value is required. 

106  ctol  etol. 

  Output When condition ctol > 106 occurs, ctol is set to 106. 

When condition ctol < etol occurs, ctol = 10  etol is set as the 

standard value. See Comments on use. 

nev int nev[5] Output Number of eigenvalues calculated. 

Details are given below. 

nev[0] indicates the number of different eigenvalues calculated. 

nev[1] indicates the number of approximately multiple different 

eigenvalues (different clusters) calculated. 

nev[2] indicates the total number of eigenvalues (including multiple 

eigenvalues) calculated. 

nev[3] indicates the number representing the first of the eigenvalues 

calculated. 

nev[4] indicates the number representing the last of the eigenvalues 

calculated. 

e double 

e[maxne] 

Output Eigenvalues. Stored in e[i1], i = 1, ..., nev[2]. 

maxne int Input Maximum number of eigenvalues that can be computed. 

When it can be considered that there are two or more eigenvalues with 

multiplicity m, maxne must be set to a larger value than nl  nf  1  

2  m that is bounded by n. When condition nev[2] > maxne occurs, 

the eigenvectors cannot be calculated. See Comments on use. 

m int 

m[2][maxne] 

Output Information about multiplicity of eigenvalues calculated. 

m[0][i1] indicates the multiplicity of the i-th eigenvalue i. 

m[1][i1] indicates the multiplicity of the i-th cluster when the 

adjacent eigenvalues are regarded as clusters. See Comments on use. 

ev double 

ev[maxne][k] 

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are 

stored in ev. 

The eigenvectors are stored in ev[i1][j1], i = 1, ... , nev[2], j 

= 1, ..., n. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 During calculation of clustered eigenvalues, the 

total number of eigenvalues exceeded the value of 

maxne. 

Discontinued. The eigenvectors cannot be 

calculated, but the different eigenvalues 

themselves are already calculated. 

A suitable value for maxne to allow calculation 

to proceed is returned in nev[2]. 

See Comments on use. 
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Code  Meaning  Processing 

30000 One of the following has occurred: 

 n < 1 

 k < n 

 nf < 1 

 nl > n 

 nl < nf 

 maxne < nl  nf  1 

Bypassed. 

3. Comments on use 

etol and ctol 
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets 

(parallel processing). 

When  = etol, the following condition is satisfied for consecutive eigenvalues  j (j = s  1, s, ..., s  k, (k  0)): 

 








|)||,max(|1

||

1

1

ii

ii , (2) 

If formula (2) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that 

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple. 

The standard value of etol is 3.01016 (about the unit round off). In this case, the eigenvalues are refined up to the 

maximum machine precision. 

If formula (2) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues. 

When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ..., t  k (k  0)) are different eigenvalues. Also, 

when  = ctol, assume that formula (2) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t 

 k  1.  In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ..., t  k) are approximately multiple (i.e., 

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors 

corresponding to m (m = t  1, t, ... , t  k) are reorthogonalized. 

maxne 
The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, 

the cluster size also increases.  Therefore, the total number of eigenvalues calculated might exceed the value of maxne.  

In this case, decrease the value of ctol or increase the value of maxne. 

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20000 is returned.  In this case, the 

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not 

stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in e[i1], i=1, ..., nev[0]. The multiplicity of the corresponding 

eigenvalues is stored in m[0][i1], i=1, ..., nev[0]. 

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne 

value can be nt(nt = nl  nf  1 is the total number of eigenvalues calculated). However, when there are multiple 

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m. 
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If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the 

calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value 

and by calling the routine again. 

4. Example program 

This program obtains eigenvalues and prints the results. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
#define N              500 
#define K                N 
#define NF               1 
#define NL             100 
#define MAXNE      NL-NF+1 
 
MAIN__() 
{ 
  double a[N][K], ab[N][K]; 
  double e[MAXNE], ev[MAXNE][K]; 
  double vv[N][K]; 
  double etol, ctol, pi; 
  int    nev[5], m[2][MAXNE]; 
  int    ierr, icon; 
  int    i, j, k, n, nf, nl, maxne, ivec; 
 
  n     = N; 
  k     = K; 
  nf    = NF; 
  nl    = NL; 
  ivec  = 1; 
  maxne = MAXNE; 
  etol  = 3.0e-16; 
  ctol  = 5.0e-12; 
 
  /* Generate real symmetric matrix with known eigenvalues */ 
  /* Initialization                                        */ 
  pi = 4.0 * atan(1.0); 
  for(i=0; i<n; i++) { 
    for(j=0; j<n; j++) { 
      vv[i][j] = sqrt(2.0/(double)(n+1))*sin((double)(i+1)*pi* 
                      (double)(j+1)/(double)(n+1)); 
      a[i][j] = 0.0; 
    } 
  } 
 
  for(i=0; i<n; i++) { 
    a[i][i] = (double)(-n/2+(i+1)); 
  } 
 
  printf(" Input matrix size is %d\n", n); 
  printf(" Matrix calculations use k = %d\n", k); 
  printf(" Desired eigenvalues are nf to nl %d %d\n", nf, nl); 
  printf(" That is, request %d eigenvalues.\n", maxne) ; 
  printf(" True eigenvalues are as follows\n"); 
  for(i=nf-1; i<nl; i++) { 
    printf("a(%d,%d) = %12.4e\n", i, i, a[i][i]); 
  } 
 
  ierr = c_dm_vmggm ((double*)a, k, (double*)vv, k, (double*)ab, k, n, n, n, &icon); 
  ierr = c_dm_vmggm ((double*)vv, k, (double*)ab, k, (double*)a, k, n, n, n, &icon); 
 
  /* Calculate the eigendecomposition of A */ 
  ierr = c_dm_vsevph ((double*)a, k, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne, 
                     (int*)m, (double*)ev, &icon); 
  if (icon > 0) { 
    printf("ERROR: c_dvsevp failed with icon = %d\n", icon); 
    exit(1); 
  } 
  printf("icon = %i\n", icon); 
  /* print eigenvalues */ 
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  printf(" Number of eigenvalues %d\n", nev[2]); 
  printf(" Number of distinct eigenvalues %d\n", nev[0]); 
  printf(" Solution to eigenvalues\n"); 
  for(i=0; i<nev[2]; i++) { 
    printf("  e[%d] = %12.4e\n", i, e[i]); 
  } 
  return(0); 
} 

5. Method 

Consult the entry for DM_VSEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and 

[57]. 

 



 c_dm_vsldl 

301 

c_dm_vsldl 

LDLT decomposition of symmetric positive definite matrices (blocked 

modified Cholesky decomposition method). 

ierr = c_dm_vsldl(a, k, n, epsz, &icon); 

1. Function 

This function executes LDLT decomposition for an n  n positive definite matrix A using the blocked modified Cholesky 

decomposition method of outer product type, so that 

 A = LDLT 

where, L is a unit lower triangular matrix and D is a diagonal matrix. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsldl((double*)a, k, n, epsz, &icon); 

where: 

a double 

a[n][k] 

Input The upper triangular part {aij, i  j} of A is stored in the upper triangular 

part {a[i1][j1], ij} of a for input. 

See Figure c_dm_vsldl-1. 

The contents of the array are altered on output. 

  Output Decomposed matrix.  After the first set of equations has been solved, the 

upper triangular part of a[i1][j1] (ij) contains lij ( i  j ) of the 

upper triangular matrix L, D1 and LT. 

k int Input C fixed dimension of array a. (  n ) 

n int Input Order n of matrix A. 

epsz double Input Tolerance for relative zero test (  0 ). 

When epsz is zero, a standard value is assigned.  See Comments on use. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

10000 A pivot was negative. Matrix A is not positive 

definite. 

Continued. 

20000 A pivot is relatively zero. It is probable that 

matrix A is singular. 

Discontinued. 

30000 One of the following has occurred: 

 n < 1 

 k < n 

 epsz < 0 

Bypassed. 
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Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method 
 

The diagonal elements and upper triangular part (aij) of the LDLT-decomposed positive definite matrix are stored in array 

a[i1][j1] , i=1,...,n, j=i,...,n. 

After LDLT decomposition, matrix D1 is stored in diagonal elements and L (excluding the diagonal elements) are stored 

in the upper triangular part respectively. 

3. Comments on use 

epsz 
The standard value of epsz is 16µ, where  µ is the unit round-off.  If, during the decomposition process, a pivot value fails 

the relative zero test, it is considered to be zero and decomposition is discontinued with icon = 20000.  Decomposition 

can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy. 

icon 
If a pivot is negative during decomposition, the matrix A is not positive definite and icon = 10000 is set. Processing is 

continued, however no further pivoting is performed and the resulting calculation error may be significant. 

Calculation of determinant 
The determinant of matrix A is the same as the determinant of matrix D, and can be calculated by forming the product of 

the elements of output array a corresponding to the diagonal elements of D1 , and then taking the reciprocal of the result. 

4. Example program 

LDLT decomposition is executed for a 1000  1000 matrix. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define min(a,b)  ((a) < (b) ? (a) : (b)) 
#define NMAX      (1000) 
#define LDA       (NMAX+1) 
 
MAIN__() 
{ 
  int    n, i, j, icon, ierr; 
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  double a[NMAX][LDA], b[NMAX]; 
  double epsz, s, det; 
 
  n    = NMAX; 
  epsz = 0.0; 
 
#pragma omp parallel for shared(a,n) private(i,j) 
  for(i=0; i<n; i++) 
    for(j=0; j<n; j++) a[i][j] = min(i,j)+1; 
 
#pragma omp parallel for shared(b,n) private(i) 
  for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1); 
 
  ierr = c_dm_vsldl((double*)a, LDA, n, epsz, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  ierr = c_dm_vldlx(b, (double*)a, LDA, n, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  s = 1.0; 
#pragma omp parallel for shared(a,n) private(i) reduction(*:s) 
  for(i=0; i<n; i++) s *= a[i][i]; 
 
  printf("solution vector:\n"); 
  for(i=0; i<10; i++) printf("    b[%d] = %e\n", i, b[i]); 
 
  det = 1.0/s; 
  printf("\ndeterminant of the matrix = %e\n", det); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VSLDL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and 

[52]. 
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c_dm_vsrlu 

LU decomposition of an unsymmetric real sparse matrix. 

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n,  

ipledsm, mz, isclitermax,  

&iordering, nperm, isw,  

nrowsym, nfcnzsym,  

nassign, &nsupnum,  

nfcnzfactorl, panelfactorl,  

&nsizefactorl, nfcnzindexl,  

npanelindexl,  

&nsizeindexl, ndim,  

nfcnzfactoru, panelfactoru,  

&nsizefactoru,  

nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto,  

sclrow, sclcol,  

&epsz, &thepsz, ipivot, istatic,  

&spepsz, nfcnzpivot,  

npivotp, npivotq, w, iw1, iw2,  

&icon); 

1. Function 

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal and then it is scaled in order 

to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified 

within the block diagonal portion belonging to each supernode.  

The unsymmetric real sparse matrix is transformed as below. 

 A1 = DrAPcDc 

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a 

diagonal matrix for scaling columns. 

 A2 = QPA1PTQT  

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for  

SYM = A1 + A1
T and Q is a permutation matrix of postorder for SYM.  P and Q are orthogonal matrices. L is a lower 

triangular matrix and U is a unit upper triangular matrix. 

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold 

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of 

a supernode is regarded as a candidate.  

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU 

specifying an appropriate small value as a static pivot in place of the candidate sought. 

 



 c_dm_vsrlu 

305 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax, 

&iordering, nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum,  

nfcnzfactorl, panelfactorl, &nsizefactorl, nfcnzindexl,  

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,  

panelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,  

istatic, spepsz, nfcnzpivot, npivotp, npivotq, w, iw1, iw2,  

&icon); 

where: 

a double a[nz] Input The nonzero elements of an unsymmetric real sparse 

matrix A are stored. 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). 

nz int Input The total number of the nonzero elements belong to an 

unsymmetric real sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array A. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array A in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

ipledsm int Input Control information whether to permute the large entries 

to the diagonal of a matrix A.  

When ipledsm = 1 is specified, a matrix A is 

transformed internally permuting large entries to the 

diagonal. 

Otherwise no permutation is performed. 

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a 

permutation of columns. mz[i-1] = j indicates that the 

j-th column which the element of aij belongs to is 

permutated to i-th column. The element of aij is the large 

entry to be permuted to the diagonal. 

isclitermax int Input The upper limit for the number of iteration to seek scaling 

matrices of Dr and Dc to equilibrate both rows and 

columns of matrix A. 

When isclitermax  ≤ 0 is specified no scaling is 

done. In this case Dr and Dc are assumed as unit matrices. 

When isclitermax ≥ 10 is specified, the upper limit 
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for the number of iteration is considered as 10. 

iordering int Input Control information whether to decompose the reordered 

matrix PA1PT permuted by the matrix P of ordering or to 

decompose the matrix A. 

When iordering = 10 is specified, calling this routine 

with isw = 1 produces the informations which is needed 

to generate an ordering regarding A1 and they are set in 

nrowsym and nfcnzsym. 

When iordering 11 is specified, it is indicated that 

after an ordering is set in nperm, the computation is 

resumed.  

Using the informations obtained in nrowsym and 

nfcnzsym after calling this routines with isw = 1 and 

iordering = 10, an ordering is determined. After 

specifying this ordering in nperm, this routine is called 

again with isw = 1and iordering = 11 and the 

computation is resumed. 

LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is 

decomposed into LU. 

  Output iordering is set to 11 after this routine is called with 

iordering = 10 and isw = 1. Therefore after an 

ordering is set in nperm the computation is resumed in 

the subsequent call without iordering = 11 being 

specified explicitly. See Comments on use. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See 

Comments on use. 

isw int Input Control information. 

1) When isw = 1 is specified. 

After symmetrization of a matrix and symbolic 

decomposition, checking whether the sufficient 

amount of memory for storing data are allocated the 

computation is performed. 

Call with iordering = 10 produces the 

informations needed for seeking an ordering in 

nrowsym and nfcnzsym. Using these 

informations an ordering for SYM is determined. 

After an ordering is set in nperm, calling this 

routine with iordering = 11 and also isw = 1 

again resumes the computation. 

When iordering is neither 10 nor 11, no 

ordering is specified. 

2) When isw = 2 specified. 

After the previous call ends with icon = 31000, that 

means that the sizes of panelfactorl or 

panelfactoru or npanelindexl or 
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npanelindexu were not enough, the suspended 

computation is resumed.  

Before calling again with isw = 2, the 

panelfactorl or panelfactoru or 

npanelindexl or npanelindexu must be 

reallocated with the necessary sizes which are 

returned in the nsizefactorl nsizefactoru 

or nsizeindexl or nsizeindezu at the 

precedent call and specified in corresponding 

arguments. 

Besides, except these arguments and isw as control 

information, the values in the other augments must 

not be changed between the previous and following 

calls. 

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices 

of nonzero pattern of the lower triangular part of  

SYM = A1 + A1
T in the compressed column storage 

method are generated. 

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of 

the first row index of each column stored in array 

nrowsym in the compressed column storage method 

which stores the nonzero pattern of the lower part of a 

matrix SYM column by column. 

nfcnzsym[n] = nsymz + 1 where nsymz is the total 

nonzero elements in the lower triangular part. 

nassign int nassign[n] Output L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in panelfactorl and 

panelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign[i-1]. 

  Input When isw ≠ 1, the values stored in the first call are 

reused. Regarding  

the storage methods of decomposed matrices, refer to 

Figure c_dm_vsrlu-1. 

nsupnum int Output The total number of supernodes. 

  Input The values in the first call are reused when isw  1 

specified. ( n) 

nfcnzfactorl long 

nfcnzfactorl[n+1] 

Output The decomposed matrices L and U of an unsymmetric 

real sparse matrix are computed for each supernode 

respectively. The columns of L belonging to each 

supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 
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with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is 

mapped into panelfactorl consecutively or the 

location of panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. 

  Input The values set by the first call are reused when isw  1 

specified. 

panelfactorl double 

panelfactorl 

[nsizefactorl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign 

[i-1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[i-1][0]  

ndim[i-1][1] The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1], s ≥ t, s = 1, ..., ndim[i-1][0], t = 1 

, ..., ndim[i-1][1]. The corresponding block diagonal 

portion of the unit upper triangular matrix U except its 

diagonals is stored in the panel[t-1][s-1], s < t, t 

= 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. See Comments on use. 

nsizefactorl long Input The size of the array panelfactorl. 

  Output The necessary size for the array panelfactorl is 

returned. See Comments on use. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexl int npanelindexl 

[nsizeindexl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 
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indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix into which 

SYM is permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. See Comments on use. 

nsizeindexl long Input The size of the array npanelindexl. 

  Output The necessary size is returned. See Comments on use. 

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][2] indicates the total amount of the size of 

the first dimension of the panel where a matrix U is 

transposed and stored and the size of its block diagonal 

portion. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. 

  Input When isw  1, the values set by the first call are reused. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Output Regarding a matrix U derived from LU decomposition of 

an unsymmetric real sparse matrix, the rows of U except 

the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into panelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. 

  Input When isw  1, the values set by the first call are reused. 

panelfactoru double 

panelfactoru 

[nsizefactoru] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 
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i-th block can be considered to be two dimensional array 

of { ndim[i-1][2] - ndim[i-1][1] }  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 

transposed and stored in this panel[t-1][s-1], s = 

1, ..., ndim[i-1][2] – ndim[i-1][1], t = 1,..., 

ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. See Comments on use. 

nsizefactoru long Input The size of the array panelfactoru. 

  Output The necessary size for the array panelfactoru is 

returned. See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexu int npanelindexu 

[nsizeindexu] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix into which SYM is 

permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlu-1. See Comments on use. 

nsizeindexu long Input The size of the array npanelindexu. 

  Output The necessary size is returned. See Comments on use. 

nposto int nposto[n] Output The information about what column number of A the i-th 

node in post order corresponds to is stored. 

  Input When isw  1, the values set by the first call are reused. 

See Comments on use. 

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

  Input When isw  1, the values set by the first call are reused. 
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sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

  Input The values set by the first call are reused when isw  1 

specified. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

  Output When epsz ≤ 0.0, it is set to the standard value.  

See Comments on use. 

thepsz double Input Threshold used in judgement for a pivot. Immediately 

after a candidate in pivot search is considered to have the 

value greater than or equal to the threshold specified, it is 

accepted as a pivot and the search of a pivot is broken off. 

For example, 10-2. 

  Output When thepsz ≤ 0.0, 10-2 is set. 

When epsz ≥ thepsz > 0.0, it is set to the value of 

epsz. 

ipivot int Input Control information on pivoting which indicates whether 

a pivot is searched and what kind of pivoting is chosen if 

any. 

For example, 40 for complete pivoting.  

ipivot < 10 or ipivot ≥ 50, no pivoting.  

10 ≤ ipivot < 20, partial pivoting 

20 ≤ ipivot < 30, diagonal pivoting 

21 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting.  

22 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting. If Rook pivoting fails, it is 

changed to complete pivoting.  

30 ≤ ipivot < 40, Rook pivoting 

32 : When within a supernode Rook pivoting fails, it is 

changed to complete pivoting.  

40 ≤ ipivot < 50, complete pivoting 

istatic int Input Control information indicating whether Static pivoting is 

taken. 

1) When istatic = 1 is specified. 
When the pivot searched within a supernode is not 
greater than spepsz, it is replaced with its 
approximate value of copysign(spepsz, pivot). 
If its value is 0.0, spepsz is used as an 
approximation value.  
The following conditions must be satisfied. 
a) epsz must be less than or equal to the standard 
value of epsz. 
b) Scaling must be performed with isclitermax 
= 10. 
c) thepsz ≥ spepsz must hold.            

2) When istatic ≠ 1 is specified. 

No static pivot is performed. 

spepsz double Input The approximate value used in Static pivoting when 
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istatic = 1 is specified. 

The following conditions must hold. 

thepsz ≥ spepsz ≥ epsz 

  Output When spepsz < epsz, it is set to 10-10. 

nfcnzpivot int nfcnzpivot 

[nsupnum+1] 

Output The location for the storage where the history of relative 

row and column exchanges for pivoting within each 

supernode is stored. 

The block number of the section where the information 

on the i-th supernode is assigned is known by j = 

nassign[i-1]. The position of the first element of 

that section is stored in nfcnzpivot[j-1]. The 

information of exchange rows and columns within the i-th 

supernode is stored in the elements of is= 

nfcnzpivot[j-1], …, ie = nfcnzpivot[j-1] + 

ndim[j-1][2] - 1 in npivotp and npivotq 

respectively. 

npivotp int npivotp[n] Output The information on exchanges of rows within each 

supernode is stored. 

npivotq int npivotq[n] Output The information on exchanges of columns within each 

supernode is stored. 

w double 

w[4*nz+6*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw1 int 

iw1[2*nz+2* 

(n+1)+16*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw2 int 

iw2[47*n+47+nz+4* 

(n+1)+2*(nz+n)] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

10000 When istatic = 1 is specified, Static pivot  

which replaces the pivot candidate with too small 

value with spepsz is made. 

Continued. 

20000 The pivot became relatively zero. The coefficient 

matrix A may be singular. 

Processing is discontinued. 

20100 When ipledsm is specified, maximum 

matching with the length n is sought in order to 

permute large entries to the diagonal but can not 

be found. The coefficient matrix A may be 

singular. 
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Code  Meaning  Processing 

20200 When seeking diagonal matrices for equilibrating 

both rows and columns, there is a zero vector in 

either rows or columns of the matrix A. The 

coefficient matrix A may be singular. 

Processing is discontinued. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindexl < 1 

• nsizeindexu < 1 

• isw < 1 

• isw > 2 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 

30500 When istatic = 1 is specified, the required 

conditions are not satisfied. 

epsz is greater than 16u of the standard value 

or isclitermax < 10 

or spepsz > thepsz 

31000 The value of nsizefactorl is not enough as 

the size of panelfactorl, 

or the value of nsizeindexl is not enough as 

the size of npanelindexl, 

or the value of nsizefactoru is not enough as 

the size of panelfactoru, 

 or the value of nsizeindexu is not enough as 

the size of npanelindexu. 

Reallocate the panelfactorl or 

npanelindexl or 

panelfactoru or npanelindexu 

with the necessary size which are returned in the 

nsizefactorl or nsizeindexl or 

nsizefactoru or nsizeindexu 

respectively 

and call this routine again with isw =2 specified. 
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Figure c_dm_vsrlu-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim 

[j-1][1] from the p-th element of panelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length ndim 

[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][2] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

for (i = 1; i <= n; i++) { 
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    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

Fill-reduction Orderings are obtained in use of METIS and so on. 

Refer to [41], [42] in Appendix , “References.” in detail. 

b) 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In 

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u. 

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum 

value to epsz. In this case, however, the result is not assured. 

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is 

approximately continued replacing it with spepsz. 

c) 
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store 

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the 

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. 

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such 

as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and  nsizeindexu with isw = 1. 

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru 

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after 

reallocating the arrays with the necessary sizes. 

d) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

e) 
A system of equations Ax = b can be solved by calling c_dm_vsrlux subsequently in use of the results of LU 
decomposition obtained by this routine. 
The following arguments used in this routine are specified.  

a, nz, nrow, nfcnz, n,  

ipledsm, mz, iordering, nperm,  

nassign, nsupnum,  

nfcnzfactorl, panelfactorl, 

nsizefactorl, nfcnzindexl, npanelindexl, 

nsizeindexl, ndim, 

nfcnzfactoru, panelfactoru, nsizefactoru, 
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nfcnzindexu, npanelindexu, nsizeindexu, nposto, 

sclrow,sclcol, 

nfcnzpivot, 

npivotp, npivotq, iw2 

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower 

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real 

sparse matrix A built in this way is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define NORD    40 

#define KX      NORD 

#define KY      NORD 

#define KZ      NORD 

#define N       (KX * KY * KZ) 

#define NBORDER (N + 1) 

#define NOFFDIAG    6 

#define K       (N + 1) 

#define NDIAG   7 

#define NALL    (NDIAG*N) 

#define WL      (4 * NALL + 6 * N) 

#define IW1L    (2 * NALL + 2 * (N + 1) + 16 * N) 

#define IW2L    (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)) 

 

void init_mat_diag(double, double, double, double, double*, int*, int, int, int, 

                   double, double, double, int, int, int); 

double errnrm(double*, double*, int); 
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int MAIN__() { 

 

  int     nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  double  a[K * NDIAG], wc[K * NDIAG]; 

  int     nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG + N], nfcnzsym[N + 1], 

          iwc[K * NDIAG][2]; 

  int     nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L], 

          iw2[IW2L]; 

  double  w[WL]; 

  double  *panelfactorl, *panelfactoru; 

  int     *npanelindexl, *npanelindexu; 

  double  dummyfl, dummyfu; 

  int     ndummyil, ndummyiu; 

  long    nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru, 

          nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1], 

          nfcnzindexu[N + 1]; 

  double  b[N], solex[N]; 

  double  thepsz, epsz, spepsz, sclrow[N], sclcol[N]; 

  int     ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine, 

          itermax, iter, ipledsm; 

  int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering, 

      isclitermax, isw, nsupnum; 

  double va1, va2, va3, vc, xl, yl, zl, err, epsr; 

 

  printf("     LU DECOMPOSITION METHOD\n"); 

  printf("     FOR SPARSE UNSYMMETRIC REAL MATRICES\n"); 

  printf("     IN COMPRESSED COLUMN STORAGE\n \n"); 

 

  for (i = 0; i < N; i++) { 

    solex[i] = 1.0; 

  } 

 

  printf("     EXPECTED SOLUTIONS\n"); 

  printf("     X(1) = %18.15lf  X(N) = %18.15lf\n \n", solex[0], solex[N-1]); 

 

  va1 = 1.0; 

  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ, 

                xl, yl, zl, NDIAG, N, K); 
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  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

  } 

 

  numnz = 1; 

 

  for (j = 0; j < N; j++) { 

    ntopcfg = 1; 

 

    for (i = NDIAG - 1; i >= 0; i--) { 

      if (ntopcfg == 1) { 

        nfcnz[j] = numnz; 

        ntopcfg = 0; 

      } 

 

      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) { 

        continue; 

      } else { 

        if (diag2[i][j] != 0.0) { 

          ncol = (j + 1) - nofst[i]; 

          a[numnz - 1] = diag2[i][j]; 

          nrow[numnz - 1] = ncol; 

          numnz++; 

        } 

      } 

    } 
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  } 

 

  nfcnz[N] = numnz; 

  nz = numnz - 1; 

 

  c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon); 

 

/* INITIAL CALL WITH IORDER=1 */ 

 

  iordering = 0; 

  ipledsm = 1; 

  isclitermax = 10; 

  isw = 1; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindexl = 1; 

  nsizeindexu = 1; 

  epsz = 1.0e-16; 

  thepsz = 1.0e-2; 

  spepsz = 0.0; 

  ipivot = 40; 

  istatic = 0; 

  irefine = 1; 

  epsr = 0.0; 

  itermax = 10; 

 

  c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering, 

             nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl, 

             &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl, 

             (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu, 

             &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, 

             ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, w, iw1, 

             iw2, &icon); 

 

  printf(" ICON= %d  NSIZEFACTORL= %d  NSIZEFACTORU= %d NSIZEINDEXL= %d", 

         icon, nsizefactorl, nsizefactoru, nsizeindexl); 

  printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum); 

 

  panelfactorl = (double *)malloc(nsizefactorl * sizeof(double)); 

  panelfactoru = (double *)malloc(nsizefactoru * sizeof(double)); 

  npanelindexl = (int *)malloc(nsizeindexl * sizeof(int)); 

  npanelindexu = (int *)malloc(nsizeindexu * sizeof(int)); 

 

  isw = 2; 

 

  c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, &iordering, nperm, 
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             isw, nrowsym, nfcnzsym, nassign, &nsupnum,nfcnzfactorl, 

             panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl, 

             &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru, 

             &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto, 

             sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz, 

             nfcnzpivot, npivotp, npivotq, w, iw1, iw2, &icon); 

 

  c_dm_vsrlux(N, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl, 

              panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl, 

              nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru, 

              nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto, 

              ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq, 

              irefine, epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon); 

 

  err = errnrm(solex, b, N); 

 

  printf("     COMPUTED VALUES\n"); 

  printf("     X(1) = %18.15lf  X(N) = %18.15lf\n \n", b[0], b[N-1]); 

  printf("     ICON =  %d\n \n", icon); 

  printf("     N = %6d\n \n", N); 

  printf("     ERROR = %18.15lf\n", err); 

  printf("     ITER= %d\n \n \n", iter); 

 

  if (err < 1.0e-8 && icon == 0) { 

    printf(" ********** OK **********\n"); 

  } else { 

    printf(" ********** NG **********\n"); 

  } 

 

  free(panelfactorl); 

  free(panelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

       INITIALIZE COEFFICIENT MATRIX 

   ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, 

                   int *offset, int nx, int ny, int nz, double xl, double yl, 

                   double zl, int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("FUNCTION INIT_MAT_DIAG:\n"); 
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    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 

{ 

  int i, j, l, ndiag_loc, nxy, js, k0, j0, i0; 

  double hx, hy, hz, hx2, hy2, hz2; 

 

  ndiag_loc = ndiag; 

  if (ndiag > 7) ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp; i++) { 

    for (j = 0; j < ndiag; j++) { 

      d_l[(j * ndivp) + i] = 0.0; 

    } 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 
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      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

    k0 = (js - 1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      goto label_100; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[(l * ndivp) + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[(l * ndivp) + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[(l * ndivp) + j] += 2.0 / hz2; 

      } 
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    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

label_100: ; 

  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 

  * | X1 - X2 | 

   ======================================== */ 

double errnrm(double *x1, double *x2, int len) { 

 

  double rtc, s, ss; 

  int i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = x1[i] - x2[i]; 

    s = s + ss * ss; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 
 

5. Method 

Consult the entry for DM_VSRLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [13] , 

[17] , [19] , [22] , [23] , [46] ,[53] , [59] , [64] and [65]. 
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c_dm_vsrlux 

A system of linear equations with LU-decomposed unsymmetric real 

sparse matrices 

ierr = c_dm_vsrlux(n, iordering, nperm  

b, nassign, nsupnum,  

nfcnzfactorl, panelfactorl, 

nsizefactorl, nfcnzindexl,  

npanelindexl,  

nsizeindexl, ndim, 

nfcnzfactoru, panelfactoru,  

nsizefactoru,  

nfcnzindexu, npanelindexu,  

nsizeindexu, nposto, 

ipledsm, mz,  

sclrow, sclcol, nfcnzpivot,  

npivotp, npivotq, irefine, epsr,  

itermax, &iter,  

a, nz, nrow, nfcnz,  

iw2, &icon); 

1. Function 

An n × n unsymmetric real sparse matrix A of which LU decomposition is made as below is given.  In this decomposition 

the large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal and then it is scaled in order 

to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified 

within the block diagonal portion belonging to each supernode is performed and results in the following form. This 

routine solves the following linear equation in use of these results of LU decomposition. 

 Ax = b 

A matrix A is decomposed into as below. 

 PrsQPDrAPcDcPTQTPcs = LU 

The unsymmetric real sparse matrix A is transformed as below. 

 A1 = DrAPcDc 

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a 

diagonal matrix for scaling columns. 

 A2 = QPA1PTQT 

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.  
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The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 + 

A1
T and Q is a permutation matrix of postorder for SYM.  P and Q are orthogonal matrices. L is a lower triangular matrix 

and U is a unit upper triangular matrix. 

It can be specified to improve the precision of the solution by iterative refinement.  

 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,  

panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,  

nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,  

nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,  

ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,  

irefine, &epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon); 

where: 

n int Input Order n of matrix A. 

iordering int Input When iordering 11 is specified, it is indicated that LU 

decomposition is performed with an ordering 

specified in nperm.  

The matrix PA1PT is decomposed into LU decomposition. 

Otherwise. No ordering is specified.  

See Comments on use. 

nperm int nperm[n] Input When iordering = 11 is specified, a vector presenting 

the permutation matrix P used is stored.  

See Comments on use. 

b double b[n] Input The right-hand side constant vector b of a system of 

linear equations Ax = b.  

  Output Solution vector x. 

nassign int nassign[n] Input L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in panelfactorl and 

panelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign[i-1]. 

Regarding the storage methods of decomposed matrices, 

refer to Figure c_dm_vsrlux-1. 

nsupnum int Input The total number of supernodes.( n) 

nfcnzfactorl long 

nfcnzfactorl[n+1] 

Input The decomposed matrices L and U of an unsymmetric 

real sparse matrix are computed for each supernode 

respectively. The columns of L belonging to each 

supernode are compressed to have the common row 
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indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is 

mapped into panelfactorl consecutively or the 

location of panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

panelfactorl double 

panelfactorl 

[nsizefactorl] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign 

[i-1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[j-1][0]  

ndim[j-1][1]. The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1], s ≥ t, s = 1,..., ndim[i-1][0], t = 1, 

..., ndim[i-1][1]. The corresponding block diagonal 

portion of the unit upper triangular matrix U except its 

diagonals is stored in the panel[t-1][s-1], s < t, 

 t = 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

nsizefactorl long Input The size of the array panelfactorl. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

npanelindexl int npanelindexl 

[nsizeindexl] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 
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block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix into which 

SYM is permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

nsizeindexl long Input The size of the array npanelindexl. 

ndim int ndim[n][3] Input ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][2] indicates the total amount of the size of 

the first dimension of the panel where a matrix U is 

transposed and stored and the size of its block diagonal 

portion. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Input Regarding a matrix U derived from LU decomposition of 

an unsymmetric real sparse matrix, the rows of U except 

the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into panelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

panelfactoru double 

panelfactoru 

[nsizefactoru] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 

i-th block can be considered to be two dimensional array 

of {ndim[i-1][2] – ndim[i-1][1]}  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 

transposed and stored in this panel[t-1][s-1], s = 

1,...,ndim[i-1][2] – ndim[i-1][1], t = 1, 

..., ndim[i-1][1]. 
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Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

nsizefactoru long Input The size of the array panelfactoru.  

See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

npanelindexu int npanelindexu 

[nsizeindexu] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix into which SYM is 

permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrlux-1. 

nsizeindexu long Input The size of the array npanelindexu. 

nposto int nposto[n] Input The information about what column number of A the i-th 

node in post order corresponds to is stored.  

See Comments on use. 

ipledsm int Input Information indicating whether for LU decomposition it 

is specified to permute the large entries to the diagonal of 

a matrix A.  

When ipledsm = 1 is specified, a matrix A is 

transformed internally permuting large entries to the 

diagonal. 

Otherwise no permutation is performed. 

mz int mz[n] Input When ipledsm = 1 is specified, it indicates a 

permutation of columns. mz[i-1] = j indicates that the 

j-th column which the element of aij belongs to is 

permutated to i-th column. The element of aij is the large 

entry to be permuted to the diagonal. 

sclrow double sclrow[n] Input The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 
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sclcol double sclcol[n] Input The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

nfcnzpivot int nfcnzpivot 

[nsupnum+1] 

Input The location for the storage where the history of relative 

row and column exchanges for pivoting within each 

supernode is stored. 

The block number of the section where the information 

on the i-th supernode is assigned is known by j = 

nassign[i-1]. The position of the first element of 

that section is stored in nfcnzpivot[j-1]. The 

information of exchange rows and columns within the i-th 

supernode is stored in the elements of is = 

nfcnzpivot[j-1],…, ie = nfcnzpivot[j-1] + 

ndim[j-1][2] - 1 in npivotp and npivotq 

respectively 

npivotp int npivotp[n] Input The information on exchanges of rows within each 

supernode is stored. 

npivotq int npivotq[n] Input The information on exchanges of columns within each 

supernode is stored. 

irefine int Input Control information indicating whether iterative 

refinement is performed when the solution is computed in 

use of results of LU decomposition. A residual vector is 

computed in quadruple precision. 

When irefine = 1 is specified. 

The iterative refinement is performed. It is iterated until in 

the sequences of the solutions obtained in refinement the 

difference of the absolute values of their corresponding 

residual vectors become larger than a fourth of that of 

immediately previous ones. 

When irefine ≠ 1is specified. 

No iterative refinement is performed. 

epsr double Input Criterion value to judge if the absolute value of the 

residual vector  

b-Ax is sufficiently smaller compared with the absolute 

value of b. 

When epsr ≤ 0.0, it is set to 10-6. 

itermax int Input Upper limit of iterative count for refinement ( 1). 

iter int Output Actual iterative count for refinement. 

a double a[nz] Input The nonzero elements of an unsymmetric real sparse 

matrix A are stored in a[0] to [nz-1] 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). 

nz int Input The total number of the nonzero elements belong to an 

unsymmetric real sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 
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method, which indicate the row number of each nonzero 

element stored in an array a. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array a in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

iw2 int 

iw2[47*n+47+nz+4* 

(n+1)+2*(nz+n)] 

Work 

area 

The data derived from calling c_dm_vsrlu of LU 

decomposition of an unsymmetric real sparse matrix is 

transferred in this work area. The contents must not be 

changed among calls. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20400 There is a zero element in diagonal of resultant 

matrices of LU decomposition. 

Processing is discontinued. 

20500 The norm of residual vector for the solution 

vector is greater than that of b multiplied by 

epsr, which is the right term constant vector in 

Ax = b.  The coefficient matrix A may be close to 

a singular matrix. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindexl < 1 

• nsizeindexu < 1 

• itermax < 1 when irefine = 1. 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 
 



 c_dm_vsrlux 

331 

                                       

 

             U 

              

 

 

 

 

             L                               UT 

panel row indices vector  
in postorder 

 ・  ・ 

panel 
column indices vector  
in postorder  

 
Figure c_dm_vsrlux-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim 

[j-1][1] from the p-th element of panelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length ndim 

[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][2] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1, …, ndim[j-1][2] – ndim[j-1][1], y = 1, …, ndim[j-1][1]. 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

The results of LU decomposition obtained by c_dm_vsrlu is used. 

See note c), "Comments on use."  of c_dm_vsrlu and Example program of c_dm_vsrlux. 
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b) 
When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

c) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower 

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real 

sparse matrix A built in this way is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define NORD    40 

#define KX      NORD 

#define KY      NORD 

#define KZ      NORD 
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#define N       (KX * KY * KZ) 

#define NBORDER (N + 1) 

#define NOFFDIAG    6 

#define K       (N + 1) 

#define NDIAG   7 

#define NALL    (NDIAG*N) 

#define WL      (4 * NALL + 6 * N) 

#define IW1L    (2 * NALL + 2 * (N + 1) + 16 * N) 

#define IW2L    (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)) 

 

void init_mat_diag(double, double, double, double, double*, int*, int, int, int, 

                   double, double, double, int, int, int); 

double errnrm(double*, double*, int); 

 

int MAIN__() { 

 

  int     nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  double  a[K * NDIAG], wc[K * NDIAG]; 

  int     nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG + N], nfcnzsym[N + 1], 

          iwc[K * NDIAG][2]; 

  int     nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L], 

          iw2[IW2L]; 

  double  w[WL]; 

  double  *panelfactorl, *panelfactoru; 

  int     *npanelindexl, *npanelindexu; 

  double  dummyfl, dummyfu; 

  int     ndummyil, ndummyiu; 

  long    nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru, 

          nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1], 

          nfcnzindexu[N + 1]; 

  double  b[N], solex[N]; 

  double  thepsz, epsz, spepsz, sclrow[N], sclcol[N]; 

  int     ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine, 

          itermax, iter, ipledsm; 

  int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering, 

      isclitermax, isw, nsupnum; 

  double va1, va2, va3, vc, xl, yl, zl, err, epsr; 

 

  printf("     LU DECOMPOSITION METHOD\n"); 

  printf("     FOR SPARSE UNSYMMETRIC REAL MATRICES\n"); 

  printf("     IN COMPRESSED COLUMN STORAGE\n \n"); 

 

  for (i = 0; i < N; i++) { 

    solex[i] = 1.0; 

  } 
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  printf("     EXPECTED SOLUTIONS\n"); 

  printf("     X(1) = %18.15lf  X(N) = %18.15lf\n \n", solex[0], solex[N-1]); 

 

  va1 = 1.0; 

  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ, 

                xl, yl, zl, NDIAG, N, K); 

 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

  } 

 

  numnz = 1; 

 

  for (j = 0; j < N; j++) { 

    ntopcfg = 1; 

 

    for (i = NDIAG - 1; i >= 0; i--) { 

      if (ntopcfg == 1) { 

        nfcnz[j] = numnz; 

        ntopcfg = 0; 
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      } 

 

      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) { 

        continue; 

      } else { 

        if (diag2[i][j] != 0.0) { 

          ncol = (j + 1) - nofst[i]; 

          a[numnz - 1] = diag2[i][j]; 

          nrow[numnz - 1] = ncol; 

          numnz++; 

        } 

      } 

    } 

 

  } 

 

  nfcnz[N] = numnz; 

  nz = numnz - 1; 

 

  c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon); 

 

/* INITIAL CALL WITH IORDER=1 */ 

 

  iordering = 0; 

  ipledsm = 1; 

  isclitermax = 10; 

  isw = 1; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindexl = 1; 

  nsizeindexu = 1; 

  epsz = 1.0e-16; 

  thepsz = 1.0e-2; 

  spepsz = 0.0; 

  ipivot = 40; 

  istatic = 0; 

  irefine = 1; 

  epsr = 0.0; 

  itermax = 10; 

 

  c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering, 

             nperm, isw, nrowsym, nfcnzsym, nassign, &nsupnum, nfcnzfactorl, 

             &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl, 

             (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu, 

             &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, 

             ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, w, iw1, 
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             iw2, &icon); 

 

  printf(" ICON= %d  NSIZEFACTORL= %d  NSIZEFACTORU= %d NSIZEINDEXL= %d", 

         icon, nsizefactorl, nsizefactoru, nsizeindexl); 

  printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum); 

 

  panelfactorl = (double *)malloc(nsizefactorl * sizeof(double)); 

  panelfactoru = (double *)malloc(nsizefactoru * sizeof(double)); 

  npanelindexl = (int *)malloc(nsizeindexl * sizeof(int)); 

  npanelindexu = (int *)malloc(nsizeindexu * sizeof(int)); 

 

  isw = 2; 

 

  c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, &iordering, nperm, 

             isw, nrowsym, nfcnzsym, nassign, &nsupnum,nfcnzfactorl, 

             panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl, 

             &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru, 

             &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto, 

             sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz, 

             nfcnzpivot, npivotp, npivotq, w, iw1, iw2, &icon); 

 

  c_dm_vsrlux(N, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl, 

              panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl, 

              nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru, 

              nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto, 

              ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq, 

              irefine, epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon); 

 

  err = errnrm(solex, b, N); 

 

  printf("     COMPUTED VALUES\n"); 

  printf("     X(1) = %18.15lf  X(N) = %18.15lf\n \n", b[0], b[N-1]); 

  printf("     ICON =  %d\n \n", icon); 

  printf("     N = %6d\n \n", N); 

  printf("     ERROR = %18.15lf\n", err); 

  printf("     ITER= %d\n \n \n", iter); 

 

  if (err < 1.0e-8 && icon == 0) { 

    printf(" ********** OK **********\n"); 

  } else { 

    printf(" ********** NG **********\n"); 

  } 

 

  free(panelfactorl); 

  free(panelfactoru); 

  free(npanelindexl); 
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  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

       INITIALIZE COEFFICIENT MATRIX 

   ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, 

                   int *offset, int nx, int ny, int nz, double xl, double yl, 

                   double zl, int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 

{ 

  int i, j, l, ndiag_loc, nxy, js, k0, j0, i0; 

  double hx, hy, hz, hx2, hy2, hz2; 

 

  ndiag_loc = ndiag; 

  if (ndiag > 7) ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp; i++) { 

    for (j = 0; j < ndiag; j++) { 

      d_l[(j * ndivp) + i] = 0.0; 

    } 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 
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      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

    k0 = (js - 1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      goto label_100; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 
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    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[(l * ndivp) + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[(l * ndivp) + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[(l * ndivp) + j] += 2.0 / hz2; 

      } 

    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

label_100: ; 

  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 

  * | X1 - X2 | 

   ======================================== */ 

double errnrm(double *x1, double *x2, int len) { 

 

  double rtc, s, ss; 

  int i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 
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    ss = x1[i] - x2[i]; 

    s = s + ss * ss; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 
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c_dm_vsrs 

A system of linear equations with unsymmetric real sparse matrices (LU 

decomposition method) 

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n,  

ipledsm, mz, isclitermax,  

&iordering, nperm, isw,  

nrowsym, nfcnzsym, b,  

nassign, &nsupnum,  

nfcnzfactorl, panelfactorl,  

&nsizefactorl, nfcnzindexl,  

npanelindexl,  

&nsizeindexl, ndim,  

nfcnzfactoru, panelfactoru,  

&nsizefactoru, 

nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto,  

sclrow, sclcol,  

&epsz, &thepsz, ipivot, istatic,  

&spepsz, nfcnzpivot,  

npivotp, npivotq, irefine, epsr,  

itermax, &iter,  

w, iw1, iw2, &icon); 

1. Function 

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal and then it is scaled in order 

to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations Ax = b in use of LU 

decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode. 

 Ax = b 

The unsymmetric real sparse matrix is transformed as below. 

 A1 = DrAPcDc 

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling rows and Dc is also a 

diagonal matrix for scaling columns. 

 A2 = QPA1PTQT 

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for SYM = A1 + 

A1
T and Q is a permutation matrix of postorder for SYM.  P and Q are orthogonal matrices. L is a lower triangular matrix 

and U is a unit upper triangular matrix. 

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold 
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specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a 

supernode is regarded as a candidate.  

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU 

specifying an appropriate small value as a static pivot in place of the candidate sought. 

The solution is computed using LU decomposition. 

It can be specified to improve the precision of the solution by iterative refinement.  

 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax, 

&iordering, nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum,  

nfcnzfactorl, panelfactorl, &nsizefactorl, nfcnzindexl,  

npanelindexl, &nsizeindexl, (int *)ndim, nfcnzfactoru,  

panelfactoru, &nsizefactoru, nfcnzindexu, npanelindexu,  

&nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, ipivot,  

istatic, &spepsz, nfcnzpivot, npivotp, npivotq, irefine, epsr,  

itermax, iter, w, iw1, iw2, &icon); 

where: 

a double a[nz] Input The nonzero elements of an unsymmetric real sparse 

matrix A are stored. 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). 

nz int Input The total number of the nonzero elements belong to an 

unsymmetric real sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array A. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array A in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

ipledsm int Input Control information whether to permute the large entries 

to the diagonal of a matrix A.  

When ipledsm = 1 is specified, a matrix A is 

transformed internally permuting large entries to the 

diagonal. 

Otherwise no permutation is performed. 

mz int mz[n] Output When ipledsm = 1 is specified, it indicates a 

permutation of columns. mz[i-1] = j indicates that the 

j-th column which the element of aij belongs to is 
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permutated to i-th column. The element of aij is the large 

entry to be permuted to the diagonal. 

isclitermax int Input The upper limit for the number of iteration to seek scaling 

matrices of Dr and Dc to equilibrate both rows and 

columns of matrix A. 

When isclitermax ≤ 0 is specified no scaling is 

done. In this case Dr and Dc are assumed as unit matrices. 

When isclitermax ≥ 10 is specified, the upper limit 

for the number of iteration is considered as 10. 

iordering int Input Control information whether to decompose the reordered 

matrix PA1PT permuted by the matrix P of ordering or to 

decompose the matrix A. 

When iordering = 10 is specified, calling this routine 

with isw = 1 produces the informations which is needed 

to generate an ordering regarding A1 and they are set in 

nrowsym and nfcnzsym. 

When iordering 11 is specified, it is indicated that 

after an ordering is set in nperm, the computation is 

resumed.  

Using the informations obtained in nrowsym and 

nfcnzsym after calling this routines with isw = 1 and 

iordering = 10, an ordering is determined. After 

specifying this ordering in nperm, this routine is called 

again with isw = 1and iordering = 11 and the 

computation is resumed. 

LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is 

decomposed into LU. 

  Output iordering is set to 11 after this routine is called with 

iordering = 10 and isw = 1. Therefore after an 

ordering is set in nperm the computation is resumed in 

the subsequent call without iordering = 11 being 

specified explicitly. See Comments on use. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See 

Comments on use. 

isw int Input Control information. 

1) When isw = 1 is specified. 

After symmetrization of a matrix and symbolic 

decomposition, checking whether the sufficient 

amount of memory for storing data are allocated the 

computation is performed. 

Call with iordering = 10 produces the 

informations needed for seeking an ordering in 

nrowsym and nfcnzsym. Using these 

informations an ordering for SYM is determined. 

After an ordering is set in nperm, calling this 
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routine with iordering =11 and also isw = 1 

again resumes the computation. 

When iordering is neither 10 nor 11, no ordering 

is specified. 

2) When isw = 2 specified. 

After the previous call ends with icon = 31000, that 

means that the sizes of panelfactorl or 

panelfactoru or npanelindexl or 

npanelindexu were not enough, the suspended 

computation is resumed.  

Before calling again with isw = 2, the 

panelfactorl or panelfactoru or 

npanelindexl or npanelindexu must be 

reallocated with the necessary sizes which are 

returned in the nsizefactorl nsizefactoru 

or nsizeindexl or nsizeindezu at the 

precedent call and specified in corresponding 

arguments. 

Besides, except these arguments and isw as control 

information, the values in the other augments must 

not be changed between the previous and following 

calls. 

3) When isw = 3 specified.  

The subsequent call with isw = 3 solves another 

system of equations of which the coefficient matrix is 

as same as previous call but the right-hand side 

vector b is changed. In this case, the information 

obtained by the previous LU decomposition can be 

reused. 

Besides, except isw as control information and b for 

storing the new right-hand side b, the values in the 

other arguments must not be changed between the 

previous and following calls. 

nrowsym int nrowsym[nz+n] Output When it is called with iordering = 10, the row indices 

of nonzero pattern of the lower triangular part of SYM = 

A1 + A1
T in the compressed column storage method are 

generated. 

nfcnzsym int nfcnzsym[n+1] Output When it is called with iordering = 10, the position of 

the first row index of each column stored in array 

nrowsym in the compressed column storage method 

which stores the nonzero pattern of the lower part of a 

matrix SYM column by column. 

nfcnzsym[n] = nsymz + 1 where nsymz is the total 

nonzero elements in the lower triangular part. 

b double b[n] Input The right-hand side constant vector b of a system of 

linear equations Ax = b. 
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  Output Solution vector x. 

nassign int nassign[n] Output L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in panelfactorl and 

panelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign [i-1]. 

  Input When isw ≠ 1, the values stored in the first call are 

reused. Regarding  

the storage methods of decomposed matrices, refer to 

Figure c_dm_vsrs-1. 

nsupnum int Output The total number of supernodes. 

  Input The values in the first call are reused when isw  1 

specified. ( n) 

nfcnzfactorl long 

nfcnzfactorl[n+1] 

Output The decomposed matrices L and U of an unsymmetric 

real sparse matrix are computed for each supernode 

respectively. The columns of L belonging to each 

supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is 

mapped into panelfactorl consecutively or the 

location of panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. 

  Input The values set by the first call are reused when isw  1 

specified. 

panelfactorl double 

panelfactorl 

[nsizefactorl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign[i-

1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[i-1][0]  

ndim[i-1][1]. The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1],  s ≥ t, s = 1, ..., ndim[i-1][0], 
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 t = 1, ..., ndim[i-1][1]. The corresponding block 

diagonal portion of the unit upper triangular matrix U 

except its diagonals is stored in the panel 

[t-1][s-1], s < t, t = 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. See Comments on use. 

nsizefactorl long Input The size of the array panelfactorl. 

  Output The necessary size for the array panelfactorl is 

returned. See Comments on use. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexl int npanelindexl 

[nsizeindexl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix into which 

SYM is permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. See Comments on use. 

nsizeindexl long Input The size of the array npanelindexl. 

  Output The necessary size is returned. See Comments on use. 

ndim int ndim[n][3] Output ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][2] indicates the total amount of the size of 

the first dimension of the panel where a matrix U is 

transposed and stored and the size of its block diagonal 

portion. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. 



 c_dm_vsrs 

347 

  Input When isw  1, the values set by the first call are reused. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Output Regarding a matrix U derived from LU decomposition of 

an unsymmetric real sparse matrix, the rows of U except 

the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into panelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. 

  Input When isw  1, the values set by the first call are reused. 

panelfactoru double 

panelfactoru 

[nsizefactoru] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 

i-th block can be considered to be two dimensional array 

of {ndim[i-1][2] – ndim[i-1][1]}  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 

transposed and stored in this panel[t-1][s-1], s = 

1, ..., ndim[i-1][2] – ndim[i-1][1], t = 1, 

..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. See Comments on use. 

nsizefactoru long Input The size of the array panelfactoru. 

  Output The necessary size for the array panelfactoru is 

returned. See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexu int npanelindexu Output The rows of the decomposed matrix U belonging to each 
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[nsizeindexu] supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix into which SYM is 

permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vsrs-1. See Comments on use. 

nsizeindexu long Input The size of the array npanelindexu. 

  Output The necessary size is returned. See Comments on use. 

nposto int nposto[n] Output The information about what column number of A the i-th 

node in post order corresponds to is stored. 

  Input When isw  1, the values set by the first call are reused. 

See Comments on use. 

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

  Input When isw  1, the values set by the first call are reused. 

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

  Input The values set by the first call are reused when isw  1 

specified. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

  Output When epsz ≤ 0.0, it is set to the standard value.  

See Comments on use. 

thepsz double Input Threshold used in judgement for a pivot. Immediately 

after a candidate in pivot search is considered to have the 

value greater than or equal to the threshold specified, it is 

accepted as a pivot and the search of a pivot is broken off. 

For example, 10-2. 

  Output When thepsz ≤ 0.0, 10-2 is set. 

When epsz ≥ thepsz > 0.0, it is set to the value of 

epsz. 

ipivot int Input Control information on pivoting which indicates whether 

a pivot is searched and what kind of pivoting is chosen if 

any. 

For example, 40 for complete pivoting.  

ipivot < 10 or ipivot ≥ 50, no pivoting.  

10 ≤ ipivot < 20, partial pivoting 

20 ≤ ipivot < 30, diagonal pivoting 

21 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting.  
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22 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting. If Rook pivoting fails, it is 

changed to complete pivoting.  

30 ≤ ipivot < 40, Rook pivoting 

32 : When within a supernode Rook pivoting fails, it is 

changed to complete pivoting.  

40 ≤ ipivot < 50, complete pivoting 

istatic int Input Control information indicating whether Static pivoting is 

taken. 

1) When istatic = 1 is specified. 
When the pivot searched within a supernode is not 
greater than spepsz, it is replaced with its 
approximate value of copysign(spepsz, pivot). 
If its value is 0.0, spepsz is used as an 
approximation value.  
The following conditions must be satisfied. 
a) epsz must be less than or equal to the standard 
value of epsz. 
b) Scaling must be performed with isclitermax 
= 10. 
c) thepsz ≥ spepsz must hold.  
d)irefine = 1 must be specified for the iterative 
refinement of the solution.  

2) When istatic ≠ 1 is specified. 

No static pivot is performed. 

spepsz double Input The approximate value used in Static pivoting when 

istatic = 1 is specified. 

The following conditions must hold. 

10-10 ≥ spepsz ≥ epsz 

  Output When spepsz < epsz, it is set to 10-10. 

nfcnzpivot int nfcnzpivot 

[nsupnum+1] 

Output The location for the storage where the history of relative 

row and column exchanges for pivoting within each 

supernode is stored. 

The block number of the section where the information 

on the i-th supernode is assigned is known by j = 

nassign[i-1]. The position of the first element of 

that section is stored in nfcnzpivot[j-1]. The 

information of exchange rows and columns within the i-th 

supernode is stored in the elements of is = 

nfcnzpivot[j-1], 

…, ie = nfcnzpivot[j-1] + ndim[j-1][2] - 1 

in npivotp and npivotq respectively. 

npivotp int npivotp[n] Output The information on exchanges of rows within each 

supernode is stored. 

npivotq int npivotq[n] Output The information on exchanges of columns within each 

supernode is stored. 

irefine int Input Control information indicating whether iterative 

refinement is performed when the solution is computed in 
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use of results of LU decomposition. A residual vector is 

computed in quadruple precision. 

When irefine = 1 is specified. 

The iterative refinement is performed. It is iterated until in 

the sequences of the solutions obtained in refinement the 

difference of the absolute values of their corresponding 

residual vectors become larger than a fourth of that of 

immediately previous ones. 

When irefine ≠ 1 is specified. 

No iterative refinement is performed. 

When istatic = 1 is specified, irefine = 1 must be 

specified. 

epsr double Input Criterion value to judge if the absolute value of the 

residual vector  

b - Ax is sufficiently smaller compared with the absolute 

value of b. 

When epsr ≤ 0.0, it is set to 10-6. 

itermax int Input Upper limit of iterative count for refinement ( 1). 

iter int Output Actual iterative count for refinement. 

w double 

w[4*nz+6*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw1 int 

iw1[2*nz+2* 

(n+1)+16*n] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw2 int 

iw2[47*n+47+nz+4* 

(n+1)+2*(nz+n)] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2, 3 

this work area is used for preserving information among 

calls. The contents must not be changed. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 The pivot became relatively zero. The coefficient 

matrix A may be singular. 

Processing is discontinued. 

20100 When ipledsm is specified, maximum 

matching with the length n is sought in order to 

permute large entries to the diagonal but can not 

be found. The coefficient matrix A may be 

singular. 

20200 When seeking diagonal matrices for equilibrating 

both rows and columns, there is a zero vector in 

either rows or columns of the matrix A. The 

coefficient matrix A may be singular. 

20400 There is a zero element in diagonal of resultant 

matrices of LU decomposition. 
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Code  Meaning  Processing 

20500 The norm of residual vector for the solution 

vector is greater than that of b multiplied by 

epsr, which is the right term constant vector in 

Ax = b.  The coefficient matrix A may be close to 

a singular matrix. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindexl < 1 

• nsizeindexu < 1 

• isw < 1 

• isw > 3 

• itermax < 1 when irefine = 1. 

Processing is discontinued. 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 

30500 When istatic =1 is specified, the required 

conditions are not satisfied. 

epsz is greater than 16u of the standard value 

or isclitermax < 10 

or irefine ≠ 1 

or spepsz > thepsz  

or spepsz > 10-10 

31000 The value of nsizefactorl is not enough as 

the size of panelfactorl, 

or the value of nsizeindexl is not enough as 

the size of npanelindexl, 

or the value of nsizefactoru is not enough as 

the size of panelfactoru, 

 or the value of nsizeindexu is not enough as 

the size of npanelindexu. 

Reallocate the panelfactorl or 

npanelindexl or 

panelfactoru or npanelindexu 

with the necessary size which are returned in the 

nsizefactorl or nsizeindexl or 

nsizefactoru or nsizeindexu 

respectively 

and call this routine again with isw = 2 specified. 
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Figure c_dm_vsrs-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]        The j-th panel occupies the area with a length ndim[j-1][0] ×  

ndim[j-1][1] from the p-th element of panelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length  

ndim[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][2] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][2] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][2] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1 , … , ndim[j-1][2] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

for (i = 1; i <= n; i++) { 
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    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

Fill-reduction Orderings are obtained in use of METIS and so on. 

Refer to [41], [42] in Appendix, “References.” in detail. 

b) 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In 

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u. 

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum 

value to epsz. In this case, however, the result is not assured. 

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is 

approximately continued replacing it with spepsz. It is required to specify to do iterative refinement. 

c) 
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store 

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the 

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. 

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such 

as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw = 1. 

This routine ends with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru 

and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw = 2 after 

reallocating the arrays with the necessary sizes. 

d) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

e) 
Instead of  this routine, a system of equations Ax=b can be solved by calling both c_dm_vsrlu to perform LU 
decomposition of an unsymmetric real sparse matrix A and c_dm_vsrlux to solve the linear equation in use of 
decomposed results.  

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 
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fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower 

diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real 

sparse matrix A built in this way is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define NORD    40 

#define KX      NORD 

#define KY      NORD 

#define KZ      NORD 

#define N       (KX * KY * KZ) 

#define NBORDER (N + 1) 

#define NOFFDIAG    6 

#define K       (N + 1) 

#define NDIAG   7 

#define NALL    (NDIAG * N) 

#define WL      (4 * NALL + 6 * N) 

#define IW1L    (2 * NALL + 2 * (N + 1) + 16 * N) 

#define IW2L    (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)) 

 

void init_mat_diag(double, double, double, double, double*, int*, int, int, int, 

                   double, double, double, int, int, int); 

double errnrm(double*, double*, int); 

 

int MAIN__() { 

 

  int     nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  double  a[K * NDIAG], wc[K * NDIAG]; 

  int     nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG+N], nfcnzsym[N + 1], 

          iwc[K * NDIAG][2]; 

  int     nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L], 

          iw2[IW2L]; 

  double  w[WL]; 

  double  *panelfactorl, *panelfactoru; 
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  int     *npanelindexl, *npanelindexu; 

  double  dummyfl, dummyfu; 

  int     ndummyil, ndummyiu; 

  long    nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru, 

          nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1], 

          nfcnzindexu[N + 1]; 

  double  b[N], solex[N]; 

  double  epsz, thepsz, spepsz, sclrow[N], sclcol[N]; 

  int     ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine, 

          itermax, iter, ipledsm; 

  int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering, 

      isclitermax, isw, nsupnum; 

  double va1, va2, va3, vc, xl, yl, zl, err, epsr; 

 

  printf("     LU DECOMPOSITION METHOD\n"); 

  printf("     FOR SPARSE UNSYMMETRIC REAL MATRICES\n"); 

  printf("     IN COMPRESSED COLUMN STORAGE\n \n"); 

 

  for (i = 0; i < N; i++) { 

    solex[i] = 1.0; 

  } 

  printf("     EXPECTED SOLUTIONS\n"); 

  printf("     X(1) = %18.15lf  X(N) = %18.15lf\n \n", solex[0], solex[N - 1]); 

  va1 = 1.0; 

  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ, 

                xl, yl, zl, NDIAG, N, K); 

 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][j] = diag[i][nbase + j]; 
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      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

  } 

 

  numnz = 1; 

 

  for (j = 0; j < N; j++) { 

    ntopcfg = 1; 

    for (i = NDIAG - 1; i >= 0; i--) { 

      if (ntopcfg == 1) { 

        nfcnz[j] = numnz; 

        ntopcfg = 0; 

      } 

      if (j + 1 < NBORDER && i + 1 > NOFFDIAG) { 

        continue; 

      } else { 

        if (diag2[i][j] != 0.0) { 

          ncol = (j + 1) - nofst[i]; 

          a[numnz - 1] = diag2[i][j]; 

          nrow[numnz - 1] = ncol; 

          numnz++; 

        } 

      } 

    } 

  } 

 

  nfcnz[N] = numnz; 

  nz = numnz - 1; 

 

  c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, &icon); 

 

/* INITIAL CALL WITH IORDER=1 */ 

 

  iordering = 0; 

  ipledsm = 1; 

  isclitermax = 10; 

  isw = 1; 

  epsz = 1.0e-16; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 
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  nsizeindexl = 1; 

  nsizeindexu = 1; 

  thepsz = 1.0e-2; 

  spepsz = 0.0; 

  ipivot = 40; 

  istatic = 0; 

  irefine = 1; 

  epsr = 0.0; 

  itermax = 10; 

 

  c_dm_vsrs(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum, nfcnzfactorl, 

            &dummyfl, &nsizefactorl, nfcnzindexl, &ndummyil, &nsizeindexl, 

            (int *)ndim, nfcnzfactoru, &dummyfu, &nsizefactoru, nfcnzindexu, 

            &ndummyiu, &nsizeindexu, nposto, sclrow, sclcol, &epsz, &thepsz, 

            ipivot, istatic, &spepsz, nfcnzpivot, npivotp, npivotq, irefine, 

            epsr, itermax, &iter, w, iw1, iw2, &icon); 

 

  printf(" ICON= %d  NSIZEFACTORL= %d  NSIZEFACTORU= %d NSIZEINDEXL= %d", 

         icon, nsizefactorl, nsizefactoru, nsizeindexl); 

  printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum); 

 

  panelfactorl = (double *)malloc(nsizefactorl * sizeof(double)); 

  panelfactoru = (double *)malloc(nsizefactoru * sizeof(double)); 

  npanelindexl = (int *)malloc(nsizeindexl * sizeof(int)); 

  npanelindexu = (int *)malloc(nsizeindexu * sizeof(int)); 

 

  isw = 2; 

 

  c_dm_vsrs(a, nz,nrow, nfcnz, N,ipledsm, mz, isclitermax, &iordering, 

            nperm, isw, nrowsym, nfcnzsym, b, nassign, &nsupnum, nfcnzfactorl, 

            panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl, 

            &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru, 

            &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto, 

            sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz, 

            nfcnzpivot, npivotp, npivotq, irefine, epsr, itermax, &iter, w, 

            iw1, iw2, &icon); 

 

  err = errnrm(solex, b, N); 

 

  printf("     COMPUTED VALUES\n"); 

  printf("     X(1) = %18.15lf  X(N) = %18.15lf\n \n", b[0], b[N - 1]); 

  printf("     ICON =  %d\n \n", icon); 

  printf("     N = %6d\n \n", N); 

  printf("     ERROR = %18.15lf\n", err); 

  printf("     ITER= %d\n \n \n", iter); 
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  if (err < 1.0e-8 && icon == 0) { 

    printf(" ********** OK **********\n"); 

  } else { 

    printf(" ********** NG **********\n"); 

  } 

 

  free(panelfactorl); 

  free(panelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

       INITIALIZE COEFFICIENT MATRIX 

   ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, 

                   int *offset, int nx, int ny, int nz, double xl, double yl, 

                   double zl, int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 

{ 

  int i, j, l, ndiag_loc, nxy, js, k0, j0, i0; 

  double hx, hy, hz, hx2, hy2, hz2; 

 

/* NDIAG CANNOT BE GREATER THAN 7 */ 

  ndiag_loc = ndiag; 

  if (ndiag > 7) ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp; i++) { 

    for (j = 0; j < ndiag; j++) { 

      d_l[(j * ndivp) + i] = 0.0; 
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    } 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

    k0 = (js -1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      goto label_100; 

    } 
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    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[(l * ndivp) + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[(l * ndivp) + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[(l * ndivp) + j] += 2.0 / hz2; 

      } 

    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

label_100: ; 

  } 

 

} 

 

  return; 

} 
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/* ======================================== 

  * SOLUTE ERROR 

  * | X1 - X2 | 

   ======================================== */ 

double errnrm(double *x1, double *x2, int len) { 

  double rtc, s, ss; 

  int i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = x1[i] - x2[i]; 

    s = s + ss * ss; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 
 

5. Method 

Consult the entry for DM_VSRS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [13] , 

[17] , [19] , [22] , [23] , [46] , [53] , [59] , [64] and [65]. 
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c_dm_vssps 

A system of linear equations with symmetric positive definite sparse 

matrices (Left-looking LDLT decomposition method) 

ierr = c_dm_vssps(a, nz, nrow, nfcnz, n, 

iordering, nperm, isw, &epsz, 

b,nassign, &nsupnum, nfcnzfactor, 

panelfactor, &nsizefactor, 

nfcnzindex,npanelindex, 

&nsizeindex, ndim, nposto, w, iw1, 

iw2, iw3, &icon); 

1. Function 

This routine solves a system of equations Ax=b using modified Cholesky LDLT decomposition, where A is a symmetric 

positive definite sparse matrix (n × n). 

 The positive definite sparse matrix is decomposed as 

QPAPTQT = LDLT, 

 where P is a permutation matrix of ordering and Q is a permutation matrix of post ordering. P and Q are orthogonal 

matrices, L is a unit lower triangular matrix, and D is a diagonal matrix. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vssps(a, nz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, b, 

nassign, &nsupnum, nfcnzfactor, panelfactor, &nsizefactor, 

nfcnzindex, npanelindex, &nsizeindex, (int *)ndim, nposto, w, iw1, 

iw2, iw3, &icon); 

where: 

a double a[nz] Input The non-zero elements of the lower triangular part 
{aij | i  j} of a symmetric sparse matrix A are stored 
in a[i], i=0, …, nz-1.  

For the compressed column storage method, refer to 
Figure c_dm_vmvscc-1 in the description for 
c_dm_vmvscc routine (multiplication of a real sparse 
matrix and a real vector). 

nz int Input The total number of the nonzero elements belong to 
the lower triangular part of a symmetric sparse 
matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column 
storage method, which indicate the row number of 
each nonzero element stored in an array a. 

nfcnz int  

nfcnz[n+1] 

Input The position of the first nonzero element of each 
column stored in an array a in the compressed 
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column storage method which stores the nonzero 
elements column by column. 

nfcnz[n] = nz+1. 

n int Input Order n of matrix A. 

iordering int Input Control information whether to decompose the 
reordered matrix PAPT permuted by the matrix P of 
ordering or to decompose the matrix A. 

Specify iordering=1 for the decomposition of the 
matrix PAPT. 

Specify the other value for the decomposition of the 
matrix A as it is. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. 

See Comments on use. 

isw int  Input Control information. 

   1 Initial calling. 

   2 Subsequent call if the previous call has 
failed with icon=31000, that means the 
size of panelfactor or 
npanelindex were not enough.  In 
this case, the panelfactor or 
npanelindex must be reallocated with 
the necessary sizes which are returned in 
the nsizefactor or nsizeindex at 
the precedent call. 

Besides, the values of a, nz, nrow, 
nfcnz, n, iordering, nperm, 
nassign, nsupnum, nfcnzfactor, 
nfcnzindex, npanelindex, 
nposto, ndim, w, iw1, iw2, and iw3 
must be unchanged after the first call. 

   3 Second and subsequent calls when 
solving another system of equations 
which have the same non-zero pattern of 
the matrix A but the values of its 
elements are different.  In this case, the 
information obtained in symbolic 
decomposition and the array 
panelfactor and npanelindex of 
the same size required in previous call 
can be reused.  Then numerical LDLT 
decomposition will proceed with that 
information and the new linear equations 
can be solved efficiently.  Store the 
values of the matrix elements in the array 
a, or store in another array c and let it be 
as the parameter a.  The value of nrow 
must be unchanged in both cases. 

Besides, the values of nz, nrow, 
nfcnz, n, iordering, nperm, 
nassign, nsupnum, nfcnzfactor, 
nsizefactor, nfcnzindex, 
npanelindex, nsizeindex, 
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nposto, ndim, w, iw1, iw2, and iw3 
must be unchanged also as the previous 
call. 

   4 Second and subsequent calls when 
solving another system of equations of 
which the coefficient matrix is as same as 
previous call but the right-hand side 
vector b is changed.  In this case, the 
information obtained by the previous 
LDLT decomposition can be reused. 

Besides the values of n, iordering, 

nperm, nassign, nsupnum, 

nfcnzfactor, nsizefactor, 

nfcnzindex, npanelindex, 

nsizeindex, nposto, ndim, and iw3 

must be unchanged as the previous call. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

When epsz is 0.0, the standard value is assumed. 

See Comments on use. 

Output 

b double b[n] Input The right-hand side constant vector b of a system of 
linear equations Ax = b. 

  Output Solution vector x. 

nassign int nassign[n] Output Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  The 
elements of this array indicate the position, where 
this panel is allocated as a part of the one-
dimensional array panelfactor.  When 
j=nassign[i-1], the i-th supernode is allocated 
at j-th position. 

  Input The values in the first call are reused when isw  1 
specified. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vssps-1. 

See Comments on use. 

nsupnum int Output The total number of supernodes. 

  Input The values in the first call are reused when isw  1 
specified. ( n) 

nfcnzfactor long long int 

nfcnzfactor 

[n+1] 

Output Each supernode consists of multiple column vectors, 
and the factorized matrix of supernodes are stored in 
two-dimensional panel by compressing rows 
containing nonzero elements with a common row 
indices vector.  The elements of this array indicate 
the position of the first element panel[0][0] of 
the i-th panel, where this panel is allocated as a 
part of the one-dimensional array panelfactor. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vssps-1. 
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  Input The values set by the first call are reused when  
isw  1 specified. 

panelfactor double  

panelfactor 

[nsizefactor] 

Output Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  These 
panels are stored in this matrix. 

The positions of the panel corresponding to the i-th 
supernode are indicated as j=nassign[i-1].  
The first position is stored in nfcnzfactor[j-
1].  The decomposed result is stored in each panel. 

The size of the i-th panel can be considered to be 
two-dimensional array of ndim[i-1][1]×ndim 
[i-1][0].  The corresponding part where the 
lower triangular unit matrix except the diagonal part 
is transposed and is stored in panel[t-1][s-1], 
s>t, s=1,…, ndim[i-1][0], t=1,…, 
ndim[i-1][1]of the i-th panel.  The 
corresponding part of the diagonal matrix D is stored 
in panel[t-1][t-1]. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vssps-1. 

See Comments on use. 

nsizefactor long long int Input The size of the array panelfactor. 

  Output The necessary size for the array panelfactor is 
returned. 

See Comments on use. 

nfcnzindex long long int 

nfcnzindex 

[n+1] 

Output Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  The 
elements of this array indicate the position of the 
first element of the i-th row indices vector, where 
this panel is allocated as a part of the one-
dimensional array npanelindex. 

  Input The values set by the first call are reused when isw 
 1 specified. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vssps-1. 

npanelindex int npanelindex 

[nsizeindex] 

Output Each supernode consists of multiple column vectors, 
and the supernodes are stored in two-dimensional 
panel by compressing rows containing nonzero 
elements with a common row indices vector.  These 
row indices vectors are stored in this matrix.  The 
positions of the row pointer vector corresponding to 
the i-th supernode are indicated as j=nassign[i-
1].  The first position is stored in 
nfcnzindex[j-1].  The row indices vector is 
stored by each panel.  This row indices are the row 
indices of the matrix QAQT to which the matrix A is 
permuted by post ordering. 
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For the storage method of the decomposed results, 
refer to Figure c_dm_vssps-1. 

See Comments on use. 

nsizeindex long long int Input The size of the array panelindex. 

  Output The necessary size is returned. 

See Comments on use. 

ndim int ndim[n][2] Output The size of first and second dimension of the i-th 
panel are stored in ndim[i-1][0] and ndim[i-
1][1] respectively. 

  Input The values set by the first call are reused when isw 
 1 specified. 

For the storage method of the decomposed results, 
refer to Figure c_dm_vssps-1. 

nposto int nposto[n] Output The one dimensional vector is stored which indicates 
what column index of A the i-th node in post 
ordering corresponds to. 

  Input The values set by the first call are reused when isw 
 1 specified. 

See Comments on use. 

w double w[Iwlen1] Work area When this routine is called repeatedly with isw = 
1,2,3, This work area is used for preserving 
information among calls.  The contents must not be 
changed. 
When iordering=1,  Iwlen1 = nz. 
When iordering1,  Iwlen1 = 1. 

  Output/Input 

iw1 int iw1[Iwlen2] 

 

Work area When this routine is called repeatedly with isw = 
1,2,3, This work area is used for preserving 
information among calls.  The contents must not be 
changed. 
When iordering=1,  Iwlen2 = nz+n+1. 
When iordering1,  Iwlen2 = 1. 

 Output/Input 

iw2 int iw2[nz+n+1] Work area When this routine is called repeatedly with isw = 
1,2,3, This work area is used for preserving 
information among calls.  The contents must not be 
changed. 

  Output/Input 

iw3 int 

iw3[n*35+35] 

Work area When this routine is called repeatedly with isw = 
1,2,3,4, This work area is used for preserving 
information among calls.  The contents must not be 
changed. 

 Output/Input 

icon int Output Condition code.  See below. 
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The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

10000 The coefficient matrix is not positive definite. Processing is continued. 

20000 The pivot became relatively zero.  The 
coefficient matrix A may be singular. 

Processing is discontinued. 

30000 One of the following has occurred: 

 n < 1 

 nz < 0 

 nfcnz[n]  nz+1 
 nsizefactor < 1 
 nsizeindex < 1 
 epsz < 0 
 isw < 0 
 isw > 4 

30100 The permutation matrix specified in nprem is not 

correct. 

30200 The row pointer k stored in nrow[j-1] is k < 
i or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i]-nfcnz[i-1] > n – i + 1. 

30400 There is a column without a diagonal element. 

31000 The value of nsizefactor is not enough as 

the size of panelfactor, 

or the value of nsizeindex is not enough as 

the size of npanelindex. 

Reallocate the panelfactor or 

npanelindex with the necessary size which 

are returned in the nsizefactor or 

nsizeindex, and call this routine again. 
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panel row pointer vector 

row indices of post ordering . 

 
Figure c_dm_vssps-1   concept of storing the data for decomposed result 

j = nassign[i-1]               The i-th supernode is stored at the j-th position. 

p = nfcnzfactor[j-1]    The j-th panel occupies the area with a length  
ndim[j-1][1]  ndim[j-1][0] from the p-th element of 
panelfactor. 

q = nfcnzindex[j-1]        The row pointer vector of the j-th panel occupies the area with a 
length ndim[j-1][0] from the q-th element of panelindex. 

A panel is regarded as an array of the size ndim[j-1][1]  ndim[j-1][0]. 

 

The lower triangular unit matrix L except the diagonal part is transposed and is stored in 

 panel[t-1][s-1],     s > t,  s=1 , … , ndim[j-1][0], 

                         t=1 , … , ndim[j-1][1]. 

The corresponding part of the diagonal matrix D is stored in panel[t-1][t-1]. 

The row pointers indicate the column indices of the matrix QAQT to which the node of the matrix A is 
permuted by post ordering. 

3. Comments on use 

nperm 
When the element pij=1 of the permutation matrix P, set nperm[i-1]=j. 

The inverse of the matrix can be obtained as follows: 
       for(i=1; i<=n; i++){ 
     j=nperm[i-1]; 
     perminv[j-1]=i; 
   } 
 
epsz 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LDLT 

decomposition.  In this case, processing is discontinued with icon = 20000.  When unit round off is u, the standard 

value of epsz is 16  u.  When the computation is to be continued even if the pivot is small, assign the minimum value 

to epsz.  In this case, however, the result is not assured. 
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When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite.  In this case, 

processing is continued as icon=10000, but the numerical error may be large because of no pivoting. 

nsizefactor and nsizeindex 
The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be 

determined beforehand.  It is suggested to reallocate them by using the result of the symbolic decomposition analysis after 

the first call of this routine, or allocate large enough arrays at first call. 

For instance, allocate the small one-dimensional arrays of size one at first.  And call this routine with the small values 

such as one in the size specifying in nsizefactor and nsizeindex.  This routine ends with icon=31000, and the 

necessary sizes for nsizefactor and nsizeindex are returned.  Then the suspended process can be resumed by 

calling it with isw=2 after reallocating the arrays with the necessary size. 

nposto 
Nodes corresponding to column number is considered.  The node number permuted in post order is stored in nposto.  

This array indicates what node number in original node number the i-th node in post order is corresponding.  It means j-th 

position when j = nposto[i-1]. 

This array represents a permutation matrix Q which is an orthogonal matrix also as well as note nperm above, and 

corresponds to permute the matrix A into QAQT. 

The inverse matrix QT can be obtained as follows: 

    for(i=1; i<=n; i++){ 
    j=nposto[i-1]; 
    npostoinv[j-1]=i; 
  } 

4. Example program 

The linear system of equations Ax=f is solved, where A results from the finite difference method applied to the elliptic 

equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1, a2, a3)  where a1, a2, a3 and c are zero constants, that 

means the operator is Laplacian.  The matrix A in Diagonal format is generated by the routine init_mat_diag, and 

transferred into compressed column storage format. 

  The number of the threads can be specified with an environment variable (OMP_NUM_THREADS).  For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

      #include <stdlib.h> 
      #include <stdio.h> 
      #include <math.h> 
      #include <malloc.h> 
      #include "cssl.h" /* standard C-SSL header file */ 
 
      #define NORD   (39) 
      #define NX     (NORD) 
      #define NY     (NORD) 
      #define NZ     (NORD) 
      #define N      (NX*NY*NZ) 
      #define K      (N+1) 
      #define NDIAG  (7) 
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      #define NDIAGH (4) 
 
      MAIN__() 
      { 
        int    ierr, icon, iguss, iter, itmax; 
        int    nord, n, l, i, j, k; 
        int    nx, ny, nz, nnz, nnzc; 
        int    length, nbase, ndiag, ntopcfgc; 
        int    numnz, numnzc, nsupnum, ntopcfg, ncol; 
        int    iordering, isw; 
        int    *npanelindex; 
        int    ndummyi; 
        int    nofst[NDIAG]; 
        int    nrow[NDIAG*K]; 
        int    nrowc[NDIAG*K]; 
        int    nfcnz[N+1]; 
        int    nfcnzc[N+1]; 
        int    nperm[N]; 
        int    nassign[N]; 
        int    nposto[N]; 
        int    ndim[N][2]; 
        int    iw1[N*NDIAGH+N+1]; 
        int    iw2[N*NDIAGH+N+1]; 
        int    iw3[N*35+35]; 
        int    iwc[NDIAG*K][2]; 
 
        double err, epsz; 
        double t0, t1, t2; 
        double va1, va2, va3, vc; 
        double xl, yl, zl; 
        double dummyf; 
        double *panelfactor; 
        double diag[NDIAG][K]; 
        double diag2[NDIAG][K]; 
        double a[N*NDIAGH]; 
        double b[N]; 
        double c[NDIAG*K]; 
        double w[N*NDIAGH]; 
        double wc[NDIAG*K]; 
        double x[N]; 
        double solex[N]; 
 
        long long int nsizefactor; 
        long long int nsizeindex; 
        long long int nfcnzfactor[N+1]; 
        long long int nfcnzindex[N+1]; 
 
        void init_mat_diag(double va1, double va2, double va3, double vc, 
                    double d_l[], int offset[], int nx, int ny, int nz, 
                    double xl, double yl,double zl, int ndiag, int len, int ndivp); 
 
        double errnrm(double *x1, double *x2, int len); 
 
        nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG; 
 
        printf("     LEFT-LOOKING MODIFIED CHOLESKY METHOD\n"); 
        printf("     FOR SPARSE POSITIVE DEFINITE MATRICES\n"); 
        printf("     IN COMPRESSED COLUMN STORAGE\n"); 
        printf("\n"); 
 
        for (i=1; i<=n; i++){ 
          solex[i-1]=1.0; 
        } 
        printf("     EXPECTED SOLUTIONS\n"); 
        printf("     X(1) = %.15lf  X(N) = %.15lf\n", solex[0], solex[n-1]); 
        printf("\n"); 
 
        va1 = 0.0; 
        va2 = 0.0; 
        va3 = 0.0; 
        vc = 0.0; 
        xl = 1.0; 
        yl = 1.0; 
        zl = 1.0; 
        init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst, 
                            nx, ny, nz, xl, yl, zl, ndiag, n, k); 
 
        for (i=1; i<=ndiag; i++){ 
          if (nofst[i-1] < 0){ 
            nbase=-nofst[i-1]; 
            length=n-nbase; 



 c_dm_vssps  

371 

            for (j=1; j<=length; j++){ 
              diag2[i-1][j-1]=diag[i-1][nbase+j-1]; 
            } 
          } 
          else{ 
            nbase=nofst[i-1]; 
            length=n-nbase; 
            for (j=nbase+1; j<=n; j++){ 
              diag2[i-1][j-1]=diag[i-1][j-nbase-1]; 
            } 
          } 
        } 
 
        numnzc=1;  
        numnz=1; 
        for (j=1; j<=n; j++){ 
          ntopcfgc = 1; 
          ntopcfg = 1; 
          for (i=ndiag; i>=1; i--){ 
            if (diag2[i-1][j-1]!=0.0){ 
              ncol=j-nofst[i-1]; 
              c[numnzc-1]=diag2[i-1][j-1]; 
              nrowc[numnzc-1]=ncol; 
              if (ncol>=j){ 
                a[numnz-1]=diag2[i-1][j-1]; 
                nrow[numnz-1]=ncol; 
              } 
              if (ntopcfgc==1){ 
                nfcnzc[j-1]=numnzc; 
                ntopcfgc=0; 
              }  
              if (ntopcfg==1){ 
                nfcnz[j-1]=numnz; 
                ntopcfg=0; 
              } 
              if (ncol>=j){ 
                numnz=numnz+1; 
              } 
              numnzc=numnzc+1; 
            } 
          } 
        } 
 
 
        nfcnzc[n]=numnzc; 
        nnzc=numnzc-1; 
        nfcnz[n]=numnz; 
        nnz=numnz-1; 
 
        ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, &icon); 
 
        for(i=1; i<=n; i++){ 
           x[i-1]=b[i-1]; 
        } 
        iordering=0; 
        isw=1; 
        epsz=0; 
        nsizefactor=1; 
        nsizeindex=1; 
 
        ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, x, nassign, 
&nsupnum, nfcnzfactor, &dummyf, &nsizefactor, nfcnzindex, &ndummyi, &nsizeindex, 
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon); 
 
        printf("\n"); 
        printf("     ICON = %d  NSIZEFACTOR = %lld NSIZEINDEX = %lld\n", icon, 
nsizefactor, nsizeindex); 
        printf("\n"); 
 
        panelfactor = (double *)malloc(sizeof(double)*nsizefactor); 
        npanelindex = (int *)malloc(sizeof(int)*nsizeindex); 
        isw=2; 
 
        ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, &epsz, x, nassign, 
&nsupnum, nfcnzfactor, panelfactor, &nsizefactor, nfcnzindex, npanelindex, &nsizeindex, 
(int*)ndim, nposto, w, iw1, iw2, iw3, &icon); 
 
        err = errnrm(solex,x,n); 
         
        printf("     COMPUTED VALUES\n"); 
        printf("     X(1) = %.15lf  X(N) = %.15f\n", x[0], x[n-1]); 
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        printf("\n"); 
        printf("     ICON = %d\n", icon); 
        printf("\n"); 
        printf("     N = %d  :: NX = %d  NY = %d  NZ = %d\n",n,nx,ny,nz); 
        printf("\n"); 
        printf("     ERROR = %.15e\n",err); 
        printf("\n"); 
        printf("\n"); 
        if (err<(1.0e-8) && icon==0){ 
          printf("     ********** OK **********\n"); 
        } 
        else{ 
          printf("     ********** NG **********\n"); 
        } 
          free(panelfactor); 
          free(npanelindex); 
          return 0; 
      } 
 
      void init_mat_diag(double va1, double va2, double va3, double vc, 
               double d_l[], int offset[], int nx, int ny, int nz, 
               double xl, double yl, double zl, int ndiag, int len, int ndivp) 
      { 
        int i, l, j; 
        int length, numnz, js; 
        int i0, j0, k0; 
        int ndiag_loc; 
        int nxy; 
 
        double hx, hy, hz; 
        double x1, x2; 
        double base; 
        double ret, remark; 
 
        if (ndiag<1){ 
          printf("FUNCTION INIT_MAT_DIAG:\n"); 
          printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 
          return; 
        } 
        ndiag_loc = ndiag; 
        if (ndiag>7){ 
          ndiag_loc=7; 
        } 
 
        hx = xl / (nx + 1); 
        hy = yl / (ny + 1); 
        hz = zl / (nz + 1); 
 
        for (i=1; i<=ndivp; i++){ 
          for (j=1; j<=ndiag; j++){ 
            d_l[i-1+(j-1)*ndivp]= 0.; 
          } 
        } 
 
        nxy = nx * ny; 
        l = 1; 
        if (ndiag_loc >= 7) { 
          offset[l-1] = -nxy; 
          ++l; 
        } 
        if (ndiag_loc >= 5) { 
          offset[l-1] = -nx; 
          ++l; 
        } 
        if (ndiag_loc >= 3) { 
          offset[l-1] = -1; 
          ++l; 
        } 
        offset[l-1] = 0; 
        ++l; 
        if (ndiag_loc >= 2) { 
          offset[l-1] = 1; 
          ++l; 
        } 
        if (ndiag_loc >= 4) { 
          offset[l-1] = nx; 
          ++l; 
        } 
        if (ndiag_loc >= 6) { 
          offset[l-1] = nxy; 
        } 
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        for (j = 1; j <= len; ++j) { 
          js=j; 
          k0 = (js - 1) / nxy + 1; 
          if (k0 > nz) { 
            printf("ERROR; K0.GH.NZ\n"); 
            return; 
          } 
          j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 
          i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 
 
          l = 1; 
          if (ndiag_loc >= 7) { 
            if (k0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 5) { 
            if (j0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 3) { 
            if (i0 > 1) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc; 
          if (ndiag_loc >= 5) { 
            d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy); 
            if (ndiag_loc >= 7) { 
              d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz); 
            } 
          } 
          ++l; 
          if (ndiag_loc >= 2) { 
            if (i0 < nx) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 4) { 
            if (j0 < ny) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hy-va2*0.5)/hy; 
            } 
            ++l; 
          } 
 
          if (ndiag_loc >= 6) { 
            if (k0 < nz) { 
              d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz; 
            } 
          } 
        } 
        return; 
      } 
 
      double errnrm(double *x1, double *x2, int len) 
      { 
        double ret_val; 
 
        int i; 
        double s, ss; 
 
        s = 0.; 
        for (i = 1; i <= len; ++i) { 
          ss = x1[i-1] - x2[i-1]; 
          s += ss * ss; 
        } 
        ret_val = sqrt(s); 
        return ret_val; 
      } 
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5. Method 

Consult the entry for DM_VSSPS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19]
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c_dm_vssslu 

LU decomposition of a structurally symmetric real sparse matrix 

ierr = c_dm_vssslu(a, nz, nrow, nfcnz, n,  

isclitermax,  

iordering, nperm, isw,  

nassign, &nsupnum,  

nfcnzfactorl, panelfactorl,  

&nsizefactorl, nfcnzindexl,  

npanelindexl,  

&nsizeindex, ndim,  

nfcnzfactoru, panelfactoru,  

&nsizefactoru,  

nfcnzindexu, npanelindexu,  

nposto,  

sclrow, sclcol,  

&epsz, &thepsz, ipivot, istatic,  

&spepsz, w, iw, &icon); 

1. Function 

An n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both rows and columns norms. And 

LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to 

each supernode.  

(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero elements in its symmetric position. 

But the values of elements in a symmetric position are not necessarily same. ) 

The structurally symmetric real sparse matrix is transformed as below. 

 A1 = DrADc 

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling columns. 

 A2 = QPA1PTQT  

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of elements for A and Q is a  

permutation matrix of postorder.  P and Q are orthogonal matrices.  

Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices L and U respectively is also 

symmetric to each other. L is a lower triangular matrix and U is a unit upper triangular matrix. 

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold 

specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of 

a supernode is regarded as a candidate.  

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU 

specifying an appropriate small value as a static pivot in place of the candidate sought. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n, isclitermax, iordering, 

nperm, isw, nassign, &nsupnum, nfcnzfactorl, 

panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl, 

&nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru, 

&nsizefactoru, nfcnzindexu, npanelindexu, nposto, 

sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, spepsz, 

w, iw, &icon); 

where: 

a double a[nz] Input The nonzero elements of a structurally symmetric real 

sparse matrix A are stored. 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). 

nz int Input The total number of the nonzero elements belong to a 

structurally symmetric real sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array A. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array A in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

isclitermax int Input The upper limit for the number of iteration to seek scaling 

matrices of Dr and Dc to equilibrate both rows and 

columns of matrix A. 

When isclitermax  ≤ 0 is specified no scaling is 

done. In this case Dr and Dc are assumed as unit matrices. 

When isclitermax ≥ 10 is specified, the upper limit 

for the number of iteration is considered as 10. 

iordering int Input Control information whether to decompose the reordered 

matrix PA1PT permuted by the matrix P of ordering or to 

decompose the matrix A. 

When iordering = 1 is specified, the matrix PA1PT is 

decomposed into LU. 

Otherwise. Without any ordering, the matrix A1 is 

decomposed into LU. See Comments on use. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See 

Comments on use. 

isw int Input Control information. 

1) When isw = 1 is specified. 
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A first call. After symbolic decomposition, checking 

whether the sufficient amount of memory for storing 

data are allocated the computation is performed. 

2) When isw = 2 specified. 

After the previous call ends with icon = 31000, that 

means that the sizes of panelfactorl or 

panelfactoru or npanelindexl or 

npanelindexu were not enough, the suspended 

computation is resumed.  

Before calling again with isw = 2, the 

panelfactorl or panelfactoru or 

npanelindexl or npanelindexu must be 

reallocated with the necessary sizes which are 

returned in the nsizefactorl nsizefactoru 

or nsizeindex at the precedent call and specified 

in corresponding arguments. 

Besides, except these arguments and isw as control 

information, the values in the other augments must 

not be changed between the previous and following 

calls. 

nassign int nassign[n] Output L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in panelfactorl and 

panelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign[i-1]. 

  Input When isw ≠ 1, the values stored in the first call are 

reused. Regarding  

the storage methods of decomposed matrices, refer to 

Figure c_dm_vssslu-1. 

nsupnum int Output The total number of supernodes. 

  Input The values in the first call are reused when isw  1 

specified. ( n) 

nfcnzfactorl long 

nfcnzfactorl[n+1] 

Output The decomposed matrices L and U of a structurally 

symmetric real sparse matrix are computed for each 

supernode respectively. The columns of L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is 

mapped into panelfactorl consecutively or the 

location of panel[0][0] is stored. 
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Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. 

  Input The values set by the first call are reused when isw  1 

specified. 

panelfactorl double 

panelfactorl 

[nsizefactorl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign 

[i-1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[i-1][0]  

ndim[i-1][1] The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1], s ≥ t, s = 1,...,ndim[i-1][0], t = 1 

,..., ndim[i-1][1]. The corresponding block diagonal 

portion of the unit upper triangular matrix U except its 

diagonals is stored in the panel[t-1][s-1], s < t, t 

= 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. See Comments on use. 

nsizefactorl long Input The size of the array panelfactorl. 

  Output The necessary size for the array panelfactorl is 

returned. See Comments on use. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexl int npanelindexl 

[nsizeindex] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 
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corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix permuted in its 

post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. See Comments on use. 

nsizeindex long Input The size of the arrays npanelindexl and 

npanelindexu. 

  Output The necessary size is returned. See Comments on use. 

ndim int ndim[n][2] Output ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][0] - ndim[i-1][1] and ndim[i-

1][1] indicates the total amount of the size of the first 

dimension and second dimension of the panel where a 

matrix U is transposed and stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. 

  Input When isw  1, the values set by the first call are reused. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Output Regarding a matrix U derived from LU decomposition of 

a structurally symmetric real sparse matrix, the rows of U 

except the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into panelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. 

  Input When isw  1, the values set by the first call are reused. 

panelfactoru double 

panelfactoru 

[nsizefactoru] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 

i-th block can be considered to be two dimensional array 

of { ndim[i-1][0] - ndim[i-1][1] }  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 
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transposed and stored in this panel[t-1][s-1], s = 

1,..., ndim[i-1][0] – ndim[i-1][1], t = 1 

,..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. See Comments on use. 

nsizefactoru long Input The size of the array panelfactoru. 

  Output The necessary size for the array panelfactoru is 

returned. See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexu int npanelindexu 

[nsizeindex] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslu-1. See Comments on use. 

nposto int nposto[n] Output The information about what column number of A the i-th 

node in post order corresponds to is stored. 

  Input When isw  1, the values set by the first call are reused. 

See Comments on use. 

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

  Input When isw  1, the values set by the first call are reused. 

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

  Input The values set by the first call are reused when isw  1 

specified. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

  Output When epsz ≤ 0.0, it is set to the standard value.  

See Comments on use. 
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thepsz double Input Threshold used in judgement for a pivot. Immediately 

after a candidate in pivot search is considered to have the 

value greater than or equal to the threshold specified, it is 

accepted as a pivot and the search of a pivot is broken off. 

For example, 10-2. 

  Output When thepsz ≤ 0.0, 10-2 is set. 

When epsz ≥ thepsz > 0.0, it is set to the value of 

epsz. 

ipivot int Input Control information on pivoting which indicates whether 

a pivot is searched and what kind of pivoting is chosen if 

any. 

For example, 40 for complete pivoting.  

ipivot < 10 or ipivot ≥ 50, no pivoting.  

10 ≤ ipivot < 20, partial pivoting 

20 ≤ ipivot < 30, diagonal pivoting 

21 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting.  

22 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting. If Rook pivoting fails, it is 

changed to complete pivoting.  

30 ≤ ipivot < 40, Rook pivoting 

32 : When within a supernode Rook pivoting fails, it is 

changed to complete pivoting.  

40 ≤ ipivot < 50, complete pivoting 

istatic int Input Control information indicating whether Static pivoting is 

taken. 

1) When istatic = 1 is specified. 
When the pivot searched within a supernode is not 
greater than spepsz, it is replaced with its 
approximate value of copysign(spepsz, pivot). 
If its value is 0.0, spepsz is used as an 
approximation value.  
The following conditions must be satisfied. 
a) epsz must be less than or equal to the standard 
value of epsz. 
b) Scaling must be performed with isclitermax 
= 10. 
c) thepsz ≥ spepsz must hold.            

2) When istatic ≠ 1 is specified. 

No static pivot is performed. 

spepsz double Input The approximate value used in Static pivoting when 

istatic = 1 is specified. 

The following conditions must hold. 

thepsz ≥ spepsz ≥ epsz 

  Output When spepsz < epsz, it is set to 10-10. 

w double w[nz+n] Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 
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iw int 

iw[36*n+36+2*nz+ 

3*(n+1)] 

Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

10000 When istatic = 1 is specified, Static pivot 

which replaces the pivot candidate with too small 

value with spepsz is made. 

Continued. 

20000 The pivot became relatively zero. The coefficient 

matrix A may be singular. 

Processing is discontinued. 

20200 When seeking diagonal matrices for equilibrating 

both rows and columns, there is a zero vector in 

either rows or columns of the matrix A. The 

coefficient matrix A may be singular. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindex < 1 

• isw < 1 

• isw > 2 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 

30500 When istatic = 1 is specified, the required 

conditions are not satisfied. 

epsz is greater than 16u of the standard value 

or isclitermax < 10 

or spepsz > thepsz 

30700 The matrix A is not structurally symmetric. 

31000 The value of nsizefactorl is not enough as 

the size of panelfactorl, 

or the value of nsizeindex is not enough as 

the size of npanelindexl and 

npanelindexu, 

or the value of nsizefactoru is not enough as 

the size of panelfactoru. 

Reallocate the panelfactorl or 

npanelindexl and npanelindexu or 

panelfactoru or with the necessary size 

which are returned in the nsizefactorl or 

nsizeindex or 

nsizefactoru respectively 

and call this routine again with isw =2 specified. 
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Figure c_dm_vssslu-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim 

[j-1][1] from the p-th element of panelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length ndim 

[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][0] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][0] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][0] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1 , … , ndim[j-1][0] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

for (i = 1; i <= n; i++) { 
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    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

Fill-reduction Orderings are obtained in use of METIS and so on. 

Refer to [41], [42] in Appendix, “References.” in detail. 

b) 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In 

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u. 

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum 

value to epsz. In this case, however, the result is not assured. 

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is 

approximately continued replacing it with spepsz. 

c) 
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store 

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the 

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. 

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such 

as one in the size specifying in nsizefactorl, nsizeindex and nsizefactoru with isw = 1. This routine ends 

with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindex and nsizefactoru are returned. Then 

the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes. 

d) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

e) 
A system of equations Ax = b can be solved by calling c_dm_vssslux subsequently in use of the results of LU 
decomposition obtained by this routine. 
The following arguments used in this routine are specified.  

a, nz, nrow, nfcnz, n,  

iordering, nperm,  

nassign, nsupnum,  

nfcnzfactorl, panelfactorl, 

nsizefactorl, nfcnzindexl, npanelindexl, 

nsizeindex, ndim, 

nfcnzfactoru, panelfactoru, nsizefactoru, 

nfcnzindexu, npanelindexu, nposto, 
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sclrow,sclcol, 

iw 

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed 

column storage format. The linear system of equations with a structurally symmetric real sparse matrix A built in this way 

is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define  NORD  39 

#define  NX    NORD 

#define  NY    NORD 

#define  NZ    NORD 

#define  N     (NX * NY * NZ) 

#define  NXY   (NX * NY) 

#define  K     (N + 1) 

#define  NDIAG  7 

#define  NALL  (NDIAG * N) 

#define  IWL   (36 * N + 36 + 2 * NALL + 3 * (N + 1)) 

#define  IPRINT  0 

 

void  init_mat_diag(double, double, double, double, double*, int*, int, int, 

                    int, double, double, double, int, int, int); 

double  errnrm(double*, double*, int); 

 

int MAIN__() { 

 

  int  nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 
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  double  c[K * NDIAG], wc[K * NDIAG]; 

  int  nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2]; 

  double  w[NDIAG * N + N]; 

  int  nperm[N], 

       nposto[N], ndim[N][2], 

       nassign[N], 

       iw[IWL]; 

  double  *panelfactorl, *panelfactoru; 

  int  *npanelindexl, 

       *npanelindexu; 

  double  dummyfl, dummyfu; 

  int  ndummyil, ndummyiu; 

  long  nsizefactorl, nsizeindex, 

        nsizefactoru, 

        nfcnzfactorl[N + 1], 

        nfcnzfactoru[N + 1], 

        nfcnzindexl[N + 1], 

        nfcnzindexu[N + 1]; 

  double  x[N], b[N], solex[N]; 

  int  i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc; 

  double  va1, va2, va3, vc, xl, yl, zl; 

 

  double  thepsz, 

          epsr, 

          sepsz,                

          sclrow[N], sclcol[N]; 

  double  epsz, err; 

 

  int  ipivot, istatic, 

       isclitermax, 

       irefine, itermax, iter, icon; 

  int  iordering, isw, nsupnum; 

 

 

 

  printf("    DIRECT METHOD\n"); 

  printf("    FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n"); 

  printf("    IN COMPRESSED COLUMN STORAGE\n\n"); 

 

  for (i = 0; i < N; i++) { 

    solex[i] = 1.0; 

  } 

  printf("    EXPECTED SOLUTIONS\n"); 

  printf("    X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]); 

 

  va1 = 1.0; 
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  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, 

                NX, NY, NZ, xl, yl, zl, NDIAG, N, K); 

 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

 

    if (nofst[i] < 0) { 

      nbase = - nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

 

  } 

 

  numnzc = 0; 

 

  for (j = 0; j < N; j++) { 

    ntopcfgc = 1; 

 

    for (i = NDIAG - 1; i >= 0; i--) { 

 

      if (diag2[i][j] != 0.0) { 

 

        ncol = (j + 1) - nofst[i]; 

        c[numnzc] = diag2[i][j]; 

        nrowc[numnzc] = ncol; 
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        if (ntopcfgc == 1) { 

          nfcnzc[j] = numnzc + 1; 

          ntopcfgc = 0; 

        } 

 

        numnzc++; 

 

      } 

    } 

  } 

 

  nfcnzc[N] = numnzc + 1; 

  nnzc = numnzc; 

 

  c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex, 

              b, wc, (int *)iwc, &icon); 

 

 

  for (i = 0; i < N; i++) { 

    x[i] = b[i]; 

  } 

  iordering = 0; 

  isclitermax = 10; 

  isw = 1; 

  epsz = 1.0e-16; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindex = 1; 

  thepsz = 1.0e-2; 

  epsr = 1.0e-8; 

  sepsz = 1.0e-10; 

  ipivot = 40; 

  istatic = 1; 

  irefine = 1; 

  itermax = 10; 

 

  c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N, 

              isclitermax, iordering, 

              nperm, isw, 

              nassign, 

              &nsupnum, 

              nfcnzfactorl, &dummyfl, 

              &nsizefactorl, nfcnzindexl, 

              &ndummyil, &nsizeindex, (int *)ndim, 

              nfcnzfactoru, &dummyfu, 

              &nsizefactoru, 
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              nfcnzindexu, &ndummyiu, 

              nposto, 

              sclrow, sclcol, 

              &epsz, 

              &thepsz, 

              ipivot, istatic, &sepsz, 

              w, iw, &icon); 

  printf("    ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n", 

         icon, nsizefactorl, nsizefactoru, nsizeindex); 

  printf("    NSUPNUM=%d\n\n", nsupnum); 

 

  panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl); 

  panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru); 

  npanelindexl = (int *)malloc(sizeof(int) * nsizeindex); 

  npanelindexu = (int *)malloc(sizeof(int) * nsizeindex); 

 

  isw = 2; 

  c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N, 

              isclitermax, iordering, 

              nperm, isw, 

              nassign, 

              &nsupnum, 

              nfcnzfactorl, panelfactorl, 

              &nsizefactorl, nfcnzindexl, 

              npanelindexl, &nsizeindex, (int *)ndim, 

              nfcnzfactoru, panelfactoru, 

              &nsizefactoru, 

              nfcnzindexu, npanelindexu, 

              nposto, 

              sclrow, sclcol, 

              &epsz, 

              &thepsz, 

              ipivot, istatic, &sepsz, 

              w, iw, &icon); 

 

  c_dm_vssslux(N, 

               iordering, 

               nperm, 

               x, 

               nassign, 

               nsupnum, 

               nfcnzfactorl, panelfactorl, 

               nsizefactorl, nfcnzindexl, 

               npanelindexl, nsizeindex, (int *)ndim, 

               nfcnzfactoru, panelfactoru, 

               nsizefactoru, 
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               nfcnzindexu, npanelindexu, 

               nposto, 

               sclrow, sclcol, 

               irefine, epsr, itermax, &iter, 

               c, nnzc, nrowc, nfcnzc, 

               iw, 

               &icon); 

 

 

  err = errnrm(solex, x, N); 

 

  printf("    COMPUTED VALUES\n"); 

  printf("    X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]); 

  printf("    ICON = %6d\n\n", icon); 

  printf("    N = %d :: NX = %d  NY = %d NZ = %d\n\n", N, NX, NY, NZ); 

  printf("    ERROR = %10.3le\n", err); 

  printf("    ITER=%d\n\n\n", iter); 

 

  if (err < 1.0e-8 && icon == 0) { 

    printf("    ********** OK **********\n"); 

  } else { 

    printf("    ********** NG **********\n"); 

  } 

 

  free(panelfactorl); 

  free(panelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

      INITIALIZE COEFFICIENT MATRIX 

   ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, 

                   int *offset, int nx, int ny, int nz, double xl, double yl, 

                   double zl, int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("SUB FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 
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{ 

  int  ndiag_loc, i, j, l, nxy, i0, j0, k0, js; 

  double  hx, hy, hz, hx2, hy2, hz2; 

 

/* NDIAG CANNOT BE GREATER THAN 7 */ 

  ndiag_loc = ndiag; 

  if (ndiag > 7) ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp * ndiag; i++) { 

    d_l[i] = 0.0; 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 
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    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */ 

    k0 = (js - 1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      continue; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[l * ndivp + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[l * ndivp + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[l * ndivp + j] += 2.0 / hz2; 

      } 

    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 
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    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 

  * | X1 - X2 | 

   ======================================== */ 

double errnrm(double *x1, double *x2, int len) { 

 

  double  s, ss, rtc; 

  int  i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = x1[i] - x2[i]; 

    s += ss * ss; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 

 
 

5. Method 

Consult the entry for DM_VSSSLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [19] , 

[22] , [46] , [59] , [64] and [65]. 
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c_dm_vssslux 

A system of linear equations with LU-decomposed structurally 

symmetric real sparse matrices 

ierr = c_dm_vssslux(n, iordering, nperm  

b, nassign, nsupnum,  

nfcnzfactorl, panelfactorl, 

nsizefactorl, nfcnzindexl,  

npanelindexl,  

nsizeindex, ndim, 

nfcnzfactoru, panelfactoru,  

nsizefactoru,  

nfcnzindexu, npanelindexu,  

nposto, 

sclrow, sclcol, irefine, epsr,  

itermax, &iter,  

a, nz, nrow, nfcnz,  

iw, &icon); 

1. Function 

An n × n structurally symmetric real sparse matrix A of which LU decomposition is made as below is given.  In this 

decomposition an n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both rows and 

columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal 

portion belonging to each supernode is performed and results in the following form. This routine solves the following 

linear equation in use of these results of LU decomposition. 

 Ax = b 

A matrix A is decomposed into as below. 

 PrsQPDrADcPTQTPcs = LU 

The structurally symmetric real sparse matrix A is transformed as below. 

 A1 = DrADc 

Where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling columns. 

 A2 = QPA1PTQT 

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.  

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of nonzero elements for A and Q is a 

permutation matrix of postorder. P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper 
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triangular matrix. 

It can be specified to improve the precision of the solution by iterative refinement.  

 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,  

panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,  

nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,  

nsizefactoru, nfcnzindexu, npanelindexu, nposto,  

sclrow, sclcol, irefine, &epsr, itermax, 

&iter, a, nz, nrow, nfcnz, iw2, &icon); 

where: 

n int Input Order n of matrix A. 

iordering int Input When iordering 1 is specified, it is indicated that LU 

decomposition is performed with an ordering 

specified in nperm.  

The matrix PA1PT is decomposed into LU decomposition. 

Otherwise. No ordering is specified.  

See Comments on use. 

nperm int nperm[n] Input When iordering = 1 is specified, a vector presenting 

the permutation matrix P used is stored.  

See Comments on use. 

b double b[n] Input The right-hand side constant vector b of a system of 

linear equations Ax = b.  

  Output Solution vector x. 

nassign int nassign[n] Input L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in panelfactorl and 

panelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 

corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign[i-1]. 

Regarding the storage methods of decomposed matrices, 

refer to Figure c_dm_vssslux-1. 

nsupnum int Input The total number of supernodes.( n) 

nfcnzfactorl long 

nfcnzfactorl[n+1] 

Input The decomposed matrices L and U of a structurally 

symmetric real sparse matrix are computed for each 

supernode respectively. The columns of L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 
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one dimensional subarray where the i-th panel is 

mapped into panelfactorl consecutively or the 

location of panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

panelfactorl double 

panelfactorl 

[nsizefactorl] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign 

[i-1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[j-1][0]  

ndim[j-1][1]. The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1], s ≥ t, s = 1, ..., ndim[i-1][0], t =  

1, ..., ndim[i-1][1]. The corresponding block 

diagonal portion of the unit upper triangular matrix U 

except its diagonals is stored in the panel[t-1][s- 

 1], s < t, t = 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

nsizefactorl long Input The size of the array panelfactorl. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

npanelindexl int npanelindexl 

[nsizeindex] 

Input The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 
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subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix permuted in its 

post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

nsizeindex long Input The size of the arrays npanelindexl and 

npanelindexu. 

ndim int ndim[n][2] Input ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][0] – ndim[i-1][1] and ndim[i-

1][1] indicates the total amount of the size of the first 

dimension and second dimension of the panel where a 

matrix U is transposed and stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Input Regarding a matrix U derived from LU decomposition of 

a structurally symmetric real sparse matrix, the rows of U 

except the of block diagonal portion belonging to each 

supernode are compressed to have the common column 

indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into panelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

panelfactoru double 

panelfactoru 

[nsizefactoru] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 

i-th block can be considered to be two dimensional array 

of {ndim[i-1][0] – ndim[i-1][1]}  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 

transposed and stored in this panel[t-1][s-1], s = 

1,...,ndim[i-1][0] – ndim[i-1][1], t = 1, 

..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 
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nsizefactoru long Input The size of the array panelfactoru.  

See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

npanelindexu int npanelindexu 

[nsizeindex] 

Input The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 

column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssslux-1. 

nposto int nposto[n] Input The information about what column number of A the i-th 

node in post order corresponds to is stored.  

See Comments on use. 

sclrow double sclrow[n] Input The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

sclcol double sclcol[n] Input The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

irefine int Input Control information indicating whether iterative 

refinement is performed when the solution is computed in 

use of results of LU decomposition. A residual vector is 

computed in quadruple precision. 

When irefine = 1 is specified. 

The iterative refinement is performed. It is iterated until in 

the sequences of the solutions obtained in refinement the 

difference of the absolute values of their corresponding 

residual vectors become larger than a fourth of that of 

immediately previous ones. 

When irefine ≠ 1is specified. 

No iterative refinement is performed. 

epsr double Input Criterion value to judge if the absolute value of the 

residual vector  
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b-Ax is sufficiently smaller compared with the absolute 

value of b. 

When epsr ≤ 0.0, it is set to 10-6. 

itermax int Input Upper limit of iterative count for refinement ( 1). 

iter int Output Actual iterative count for refinement. 

a double a[nz] Input The nonzero elements of a structurally symmetric real 

sparse matrix A are stored in a[0] to [nz-1] 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). 

nz int Input The total number of the nonzero elements to belong to a 

structurally symmetric real sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element to stored in an array a. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array a in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

iw int 

iw[36*n+36+2*nz+ 

3*(n+1)] 

Work 

area 

The data derived from calling c_dm_vssslu of LU 

decomposition of a structurally symmetric real sparse 

matrix is transferred in this work area. The contents must 

not be changed among calls. 

icon int Output Condition code.  See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20400 There is a zero element in diagonal of resultant 

matrices of LU decomposition. 

Processing is discontinued. 

20500 The norm of residual vector for the solution 

vector is greater than that of b multiplied by 

epsr, which is the right term constant vector in 

Ax = b.  The coefficient matrix A may be close to 

a singular matrix. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindex < 1 

• itermax < 1 when irefine = 1. 
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Code  Meaning  Processing 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 
 

                                       

 

             U 

              

 

 

 

 

             L                               UT 

panel row indices vector  
in postorder 

 ・  ・ 

panel 
column indices vector  
in postorder  

 
Figure c_dm_vssslux-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]  The j-th panel occupies the area with a length ndim[j-1][0] × ndim 

[j-1][1] from the p-th element of panelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length ndim 

[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][0] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][0] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][0] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1,…, ndim[j-1][0] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 
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The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

The results of LU decomposition obtained by c_dm_vssslu is used. 

See note c), "Comments on use."  of  c_dm_vssslu and Example program of c_dm_vssslux. 

b) 
When the element pij=1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

c) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed 

column storage format. The linear system of equations with a structurally symmetric real sparse matrix A built in this way 

is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 
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#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define  NORD  39 

#define  NX    NORD 

#define  NY    NORD 

#define  NZ    NORD 

#define  N     (NX * NY * NZ) 

#define  NXY   (NX * NY) 

#define  K     (N + 1) 

#define  NDIAG  7 

#define  NALL  (NDIAG * N) 

#define  IWL   (36 * N + 36 + 2 * NALL + 3 * (N + 1)) 

#define  IPRINT  0 

 

void  init_mat_diag(double, double, double, double, double*, int*, int, int, 

                    int, double, double, double, int, int, int); 

double  errnrm(double*, double*, int); 

 

int MAIN__() { 

 

  int  nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  double  c[K * NDIAG], wc[K * NDIAG]; 

  int  nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2]; 

  double  w[NDIAG * N + N]; 

  int  nperm[N], 

       nposto[N], ndim[N][2], 

       nassign[N], 

       iw[IWL]; 

  double  *panelfactorl, *panelfactoru; 

  int  *npanelindexl, 

       *npanelindexu; 

  double  dummyfl, dummyfu; 

  int  ndummyil, ndummyiu; 

  long  nsizefactorl, nsizeindex, 

        nsizefactoru, 

        nfcnzfactorl[N + 1], 

        nfcnzfactoru[N + 1], 

        nfcnzindexl[N + 1], 

        nfcnzindexu[N + 1]; 

  double  x[N], b[N], solex[N]; 

  int  i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc; 

  double  va1, va2, va3, vc, xl, yl, zl; 
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  double  thepsz, 

          epsr, 

          sepsz,                

          sclrow[N], sclcol[N]; 

  double  epsz, err; 

 

  int  ipivot, istatic, 

       isclitermax, 

       irefine, itermax, iter, icon; 

  int  iordering, isw, nsupnum; 

 

 

 

  printf("    DIRECT METHOD\n"); 

  printf("    FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n"); 

  printf("    IN COMPRESSED COLUMN STORAGE\n\n"); 

 

  for (i = 0; i < N; i++) { 

    solex[i] = 1.0; 

  } 

  printf("    EXPECTED SOLUTIONS\n"); 

  printf("    X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]); 

 

  va1 = 1.0; 

  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 

  yl = 1.0; 

  zl = 1.0; 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, 

                NX, NY, NZ, xl, yl, zl, NDIAG, N, K); 

 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

 

    if (nofst[i] < 0) { 

      nbase = - nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 
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        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

 

  } 

 

  numnzc = 0; 

 

  for (j = 0; j < N; j++) { 

    ntopcfgc = 1; 

 

    for (i = NDIAG - 1; i >= 0; i--) { 

 

      if (diag2[i][j] != 0.0) { 

 

        ncol = (j + 1) - nofst[i]; 

        c[numnzc] = diag2[i][j]; 

        nrowc[numnzc] = ncol; 

 

        if (ntopcfgc == 1) { 

          nfcnzc[j] = numnzc + 1; 

          ntopcfgc = 0; 

        } 

 

        numnzc++; 

 

      } 

    } 

  } 

 

  nfcnzc[N] = numnzc + 1; 

  nnzc = numnzc; 

 

  c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex, 

              b, wc, (int *)iwc, &icon); 

 

 

  for (i = 0; i < N; i++) { 

    x[i] = b[i]; 

  } 



 c_dm_vssslux 

405 

  iordering = 0; 

  isclitermax = 10; 

  isw = 1; 

  epsz = 1.0e-16; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindex = 1; 

  thepsz = 1.0e-2; 

  epsr = 1.0e-8; 

  sepsz = 1.0e-10; 

  ipivot = 40; 

  istatic = 1; 

  irefine = 1; 

  itermax = 10; 

 

  c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N, 

              isclitermax, iordering, 

              nperm, isw, 

              nassign, 

              &nsupnum, 

              nfcnzfactorl, &dummyfl, 

              &nsizefactorl, nfcnzindexl, 

              &ndummyil, &nsizeindex, (int *)ndim, 

              nfcnzfactoru, &dummyfu, 

              &nsizefactoru, 

              nfcnzindexu, &ndummyiu, 

              nposto, 

              sclrow, sclcol, 

              &epsz, 

              &thepsz, 

              ipivot, istatic, &sepsz, 

              w, iw, &icon); 

  printf("    ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n", 

         icon, nsizefactorl, nsizefactoru, nsizeindex); 

  printf("    NSUPNUM=%d\n\n", nsupnum); 

 

  panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl); 

  panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru); 

  npanelindexl = (int *)malloc(sizeof(int) * nsizeindex); 

  npanelindexu = (int *)malloc(sizeof(int) * nsizeindex); 

 

  isw = 2; 

  c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N, 

              isclitermax, iordering, 

              nperm, isw, 

              nassign, 
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              &nsupnum, 

              nfcnzfactorl, panelfactorl, 

              &nsizefactorl, nfcnzindexl, 

              npanelindexl, &nsizeindex, (int *)ndim, 

              nfcnzfactoru, panelfactoru, 

              &nsizefactoru, 

              nfcnzindexu, npanelindexu, 

              nposto, 

              sclrow, sclcol, 

              &epsz, 

              &thepsz, 

              ipivot, istatic, &sepsz, 

              w, iw, &icon); 

 

  c_dm_vssslux(N, 

               iordering, 

               nperm, 

               x, 

               nassign, 

               nsupnum, 

               nfcnzfactorl, panelfactorl, 

               nsizefactorl, nfcnzindexl, 

               npanelindexl, nsizeindex, (int *)ndim, 

               nfcnzfactoru, panelfactoru, 

               nsizefactoru, 

               nfcnzindexu, npanelindexu, 

               nposto, 

               sclrow, sclcol, 

               irefine, epsr, itermax, &iter, 

               c, nnzc, nrowc, nfcnzc, 

               iw, 

               &icon); 

 

 

  err = errnrm(solex, x, N); 

 

  printf("    COMPUTED VALUES\n"); 

  printf("    X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]); 

  printf("    ICON = %6d\n\n", icon); 

  printf("    N = %d :: NX = %d  NY = %d NZ = %d\n\n", N, NX, NY, NZ); 

  printf("    ERROR = %10.3le\n", err); 

  printf("    ITER=%d\n\n\n", iter); 

 

  if (err < 1.0e-8 && icon == 0) { 

    printf("    ********** OK **********\n"); 

  } else { 
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    printf("    ********** NG **********\n"); 

  } 

 

  free(panelfactorl); 

  free(panelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

      INITIALIZE COEFFICIENT MATRIX 

   ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, 

                   int *offset, int nx, int ny, int nz, double xl, double yl, 

                   double zl, int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("SUB FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 

{ 

  int  ndiag_loc, i, j, l, nxy, i0, j0, k0, js; 

  double  hx, hy, hz, hx2, hy2, hz2; 

 

/* NDIAG CANNOT BE GREATER THAN 7 */ 

  ndiag_loc = ndiag; 

  if (ndiag > 7) ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp * ndiag; i++) { 

    d_l[i] = 0.0; 

  } 

 

  nxy = nx * ny; 

 

/* OFFSET SETTING */ 
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#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */ 

    k0 = (js - 1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      continue; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 

    l = 0; 

 

    if (ndiag_loc >= 7) { 
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      if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[l * ndivp + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[l * ndivp + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[l * ndivp + j] += 2.0 / hz2; 

      } 

    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 

  * | X1 - X2 | 

   ======================================== */ 

double errnrm(double *x1, double *x2, int len) { 
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  double  s, ss, rtc; 

  int  i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = x1[i] - x2[i]; 

    s += ss * ss; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 
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c_dm_vssss 

A system of linear equations with structurally symmetric real sparse 

matrices (LU decomposition method) 

ierr = c_dm_vssss(a, nz, nrow, nfcnz, n,  

isclitermax,  

iordering, nperm, isw, b,  

nassign, &nsupnum,  

nfcnzfactorl, panelfactorl,  

&nsizefactorl, nfcnzindexl,  

npanelindexl,  

&nsizeindex, ndim,  

nfcnzfactoru, panelfactoru,  

&nsizefactoru, nfcnzindexu,  

npanelindexu, nposto,  

sclrow, sclcol,  

&epsz, &thepsz, ipivot, istatic,  

&spepsz, irefine, epsr,  

itermax, &iter,  

w, iw, &icon); 

1. Function 

An n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both rows and columns norms. 

Subsequently this routine solves a system of equations Ax = b in use of LU decomposition in which the pivot is taken as 

specified within the block diagonal portion belonging to each supernode.  

 (Each nonzero element of a structurally symmetric real sparse matrix has the nonzero element in its symmetric position. 

But the values of elements in a symmetric position are not necessarily same.) 

 Ax = b 

The structurally symmetric real sparse matrix is transformed as below. 

 A1 = DrADc 

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling columns. 

 A2 = QPA1PTQT 

A2 is decomposed into LU decomposition permuting rows and columns within the block diagonal portion of each 

supernode according to specified pivoting. 

In the right term P is a permutation matrix of ordering which is sought for a pattern of elements for A and Q is a 

permutation matrix of postorder.  P and Q are orthogonal matrices.  

Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices L and U respectively is also 

symmetric to each other. L is a lower triangular matrix and U is a unit upper triangular matrix. 

When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold 

specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a 
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supernode is regarded as a candidate.  

If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU 

specifying an appropriate small value as a static pivot in place of the candidate sought. 

The solution is computed using LU decomposition. 

It can be specified to improve the precision of the solution by iterative refinement.  

 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n, isclitermax, iordering, 

nperm, isw, b, nassign, &nsupnum, nfcnzfactorl, 

panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl, 

&nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru, 

&nsizefactoru, nfcnzindexu, npanelindexu, nposto, 

sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz, 

irefine, epsr, itermax, &iter, w, iw, &icon); 

where: 

a double a[nz] Input The nonzero elements of a structurally symmetric real 

sparse matrix A are stored. 

For the compressed column storage method, refer to 

Figure c_dm_vmvscc-1 in the description for 

c_dm_vmvscc routine (multiplication of a real sparse 

matrix and a real vector). 

nz int Input The total number of the nonzero elements belong to a 

structurally symmetric real sparse matrix A. 

nrow int nrow[nz] Input The row indices used in the compressed column storage 

method, which indicate the row number of each nonzero 

element stored in an array A. 

nfcnz int nfcnz[n+1] Input The position of the first nonzero element of each column 

stored in an array A in the compressed column storage 

method which stores the nonzero elements column by 

column. 

nfcnz[n] = nz + 1. 

n int Input Order n of matrix A. 

isclitermax int Input The upper limit for the number of iteration to seek scaling 

matrices of Dr and Dc to equilibrate both rows and 

columns of matrix A. 

When isclitermax ≤ 0 is specified no scaling is 

done. In this case Dr and Dc are assumed as unit matrices. 

When isclitermax ≥ 10 is specified, the upper limit 

for the number of iteration is considered as 10. 

iordering int Input Control information whether to decompose the reordered 

matrix PA1PT permuted by the matrix P of ordering or to 

decompose the matrix A. 

When iordering = 1 is specified, the matrix PA1PT is 
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decomposed into LU. 

Otherwise. Without any ordering, the matrix A1 is 

decomposed into LU. See Comments on use. 

nperm int nperm[n] Input The permutation matrix P is stored as a vector. See 

Comments on use. 

isw int Input Control information. 

1) When isw = 1 is specified. 

A first call. Symbolic decomposition, checking 

whether the sufficient amount of memory for storing 

data are allocated the computation is performed. 

2) When isw = 2 specified. 

After the previous call ends with icon = 31000, that 

means that the sizes of panelfactorl or 

panelfactoru or npanelindexl or 

npanelindexu were not enough, the suspended 

computation is resumed.  

Before calling again with isw = 2, the 

panelfactorl or panelfactoru or 

npanelindexl or npanelindexu must be 

reallocated with the necessary sizes which are 

returned in the nsizefactorl nsizefactoru 

or nsizeindex at the precedent call and specified 

in corresponding arguments. 

Besides, except these arguments and isw as control 

information, the values in the other augments must 

not be changed between the previous and following 

calls. 

3) When isw = 3 specified.  

The subsequent call with isw = 3 solves another 

system of equations of which the coefficient matrix is 

as same as previous call but the right-hand side 

vector b is changed. In this case, the information 

obtained by the previous LU decomposition can be 

reused. 

Besides, except isw as control information and b for 

storing the new right-hand side b, the values in the 

other arguments must not be changed between the 

previous and following calls. 

b double b[n] Input The right-hand side constant vector b of a system of 

linear equations Ax = b. 

  Output Solution vector x. 

nassign int nassign[n] Output L and U belonging to each supernode are compressed and 

stored in two dimensional panels respectively. These 

panels are stored in panelfactorl and 

panelfactoru as one dimensional subarray 

consecutively and its block number is stored. The 
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corresponding indices vectors are similarly stored 

npanelindexl and npanelindexu respectively. 

Data of the i-th supernode is stored into the j-th block of a 

subarray, where j = nassign [i-1]. 

  Input When isw ≠ 1, the values stored in the first call are 

reused. Regarding  

the storage methods of decomposed matrices, refer to 

Figure c_dm_vssss-1. 

nsupnum int Output The total number of supernodes. 

  Input The values in the first call are reused when isw  1 

specified. ( n) 

nfcnzfactorl long 

nfcnzfactorl[n+1] 

Output The decomposed matrices L and U of a structurally 

symmetric real sparse matrix are computed for each 

supernode respectively. The columns of L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of U in its block diagonal 

portion. The index number of the top array element of the 

one dimensional subarray where the i-th panel is 

mapped into panelfactorl consecutively or the 

location of panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. 

  Input The values set by the first call are reused when isw  1 

specified. 

panelfactorl double 

panelfactorl 

[nsizefactorl] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The block number of the 

section where the panel corresponding to the i-th 

supernode is assigned is known from j = nassign[i-

1]. The location of its top of subarray including the 

portion of decomposed matrices is stored in 

nfcnzfactorl[j-1]. 

The size of the panel in the i-th block can be considered 

to be two dimensional array of ndim[i-1][0]  

ndim[i-1][1]. The corresponding parts of the lower 

triangular matrix L are store in this panel 

[t-1][s-1],  s ≥ t, s = 1, ..., ndim[i-1][0], 

 t = 1, ..., ndim[i-1][1]. The corresponding block 

diagonal portion of the unit upper triangular matrix U 

except its diagonals is stored in the panel 

[t-1][s-1], s < t, t = 1, ..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. See Comments on use. 
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nsizefactorl long Input The size of the array panelfactorl. 

  Output The necessary size for the array panelfactorl is 

returned. See Comments on use. 

nfcnzindexl long 

nfcnzindexl[n+1] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored in a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. The index number of the top 

array element of the one dimensional subarray where the 

i-th row indices vector is mapped into npanelindexl 

consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexl int npanelindexl 

[nsizeindex] 

Output The columns of the decomposed matrix L belonging to 

each supernode are compressed to have the common row 

indices vector and stored into a two dimensional panel 

with the corresponding parts of the decomposed matrix U 

in its block diagonal portion. This column indices vector 

is mapped into npanelindexl consecutively. The 

block number of the section where the row indices vector 

corresponding to the i-th supernode is assigned is known 

from j = nassign[i-1]. The location of its top of 

subarray is stored in nfcnzindexl[j-1]. This row 

indices are the row numbers of the matrix permuted in its 

post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. See Comments on use. 

nsizeindex long Input The size of the arrays npanelindexl and 

npanelindexu. 

  Output The necessary size is returned. See Comments on use. 

ndim int ndim[n][2] Output ndim[i-1][0] and ndim[i-1][1] indicate the 

sizes of the first dimension and second dimension of the 

panel to store a matrix L respectively, which is 

allocated in the i-th location. 

ndim[i-1][0] – ndim[i-1][1] and ndim[i-

1][1] indicates the total amount of the size of the first 

dimension and second dimension of the panel where a 

matrix U is transposed and stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. 

  Input When isw  1, the values set by the first call are reused. 

nfcnzfactoru long 

nfcnzfactoru[n+1] 

Output Regarding a matrix U derived from LU decomposition of 

a structurally symmetric real sparse matrix, the rows of U 

except the of block diagonal portion belonging to each 

supernode are compressed to have the common column 
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indices vector and stored into a two dimensional panel. 

The index number of the top array element of the one 

dimensional subarray where the i-th panel is mapped 

into panelfactoru consecutively or the location of 

panel[0][0] is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. 

  Input When isw  1, the values set by the first call are reused. 

panelfactoru double 

panelfactoru 

[nsizefactoru] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The block 

number of the section where the panel corresponding to 

the i-th supernode is assigned is known from j = 

nassign[i-1]. The location of its top of subarray 

including the portion of decomposed matrices is stored in 

nfcnzfactoru[j-1]. The size of the panel in the 

i-th block can be considered to be two dimensional array 

of {ndim[i-1][0] – ndim[i-1][1]}  ndim 

[i-1][1]. The rows of the unit upper triangular matrix 

U except the block diagonal portion are compressed, 

transposed and stored in this panel[t-1][s-1], s = 

1,...,ndim[i-1][0] – ndim[i-1][1], t = 1, 

..., ndim[i-1][1]. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. See Comments on use. 

nsizefactoru long Input The size of the array panelfactoru. 

  Output The necessary size for the array panelfactoru is 

returned. See Comments on use. 

nfcnzindexu long 

nfcnzindexu[n+1] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed to have the common column 

indices vector, transposed and stored in a two dimensional 

panel without its block diagonal portion. The index 

number of the top array element of the one dimensional 

subarray where the i-th column indices vector including 

indices of the block diagonal portion is mapped into 

npanelindexu consecutively is stored. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. 

  Input When isw  1, the values set by the first call are reused. 

npanelindexu int npanelindexu 

[nsizeindex] 

Output The rows of the decomposed matrix U belonging to each 

supernode are compressed, transposed and stored in a two 

dimensional panel without its block diagonal portion. 

The column indices vector including indices of the block 

diagonal portion is mapped into npanelindexu 

consecutively. The block number of the section where the 
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column indices vector corresponding to the i-th supernode 

is assigned is known from j = nassign[i-1]. The 

location of its top of subarray is stored in 

nfcnzindexu[j-1]. These column indices are the 

column numbers of the matrix permuted in its post order. 

Regarding the storage method of the decomposed results, 

refer to Figure c_dm_vssss-1. See Comments on use. 

nposto int nposto[n] Output The information about what column number of A the i-th 

node in post order corresponds to is stored. 

  Input When isw  1, the values set by the first call are reused. 

See Comments on use. 

sclrow double sclrow[n] Output The diagonal elements of Dr or a diagonal matrix for 

scaling rows are stored in one dimensional array. 

  Input When isw  1, the values set by the first call are reused. 

sclcol double sclcol[n] Output The diagonal elements of Dc or a diagonal matrix for 

scaling columns are stored in one dimensional array. 

  Input The values set by the first call are reused when isw  1 

specified. 

epsz double Input Judgment of relative zero of the pivot ( 0.0). 

  Output When epsz ≤ 0.0, it is set to the standard value.  

See Comments on use. 

thepsz double Input Threshold used in judgement for a pivot. Immediately 

after a candidate in pivot search is considered to have the 

value greater than or equal to the threshold specified, it is 

accepted as a pivot and the search of a pivot is broken off. 

For example, 10-2. 

  Output When thepsz ≤ 0.0, 10-2 is set. 

When epsz ≥ thepsz > 0.0, it is set to the value of 

epsz. 

ipivot int Input Control information on pivoting which indicates whether 

a pivot is searched and what kind of pivoting is chosen if 

any. 

For example, 40 for complete pivoting.  

ipivot < 10 or ipivot ≥ 50, no pivoting.  

10 ≤ ipivot < 20, partial pivoting 

20 ≤ ipivot < 30, diagonal pivoting 

21 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting.  

22 : When within a supernode diagonal pivoting fails, it is 

changed to Rook pivoting. If Rook pivoting fails, it is 

changed to complete pivoting.  

30 ≤ ipivot < 40, Rook pivoting 

32 : When within a supernode Rook pivoting fails, it is 

changed to complete pivoting.  

40 ≤ ipivot < 50, complete pivoting 

istatic int Input Control information indicating whether Static pivoting is 
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taken. 

1) When istatic = 1 is specified. 
When the pivot searched within a supernode is not 
greater than spepsz, it is replaced with its 
approximate value of copysign(spepsz, pivot). 
If its value is 0.0, spepsz is used as an 
approximation value.  
The following conditions must be satisfied. 
a) epsz must be less than or equal to the standard 
value of epsz. 
b) Scaling must be performed with isclitermax 
= 10. 
c) thepsz ≥ spepsz must hold.  
d) irefine = 1 must be specified for the iterative 
refinement of the solution.  

2) When istatic ≠ 1 is specified. 

No static pivot is performed. 

spepsz double Input The approximate value used in Static pivoting when 

istatic = 1 is specified. 

The following conditions must hold. 

10-10 ≥ spepsz ≥ epsz 

  Output When spepsz < epsz, it is set to 10-10. 

irefine int Input Control information indicating whether iterative 

refinement is performed when the solution is computed in 

use of results of LU decomposition. A residual vector is 

computed in quadruple precision. 

When irefine = 1 is specified. 

The iterative refinement is performed. It is iterated until in 

the sequences of the solutions obtained in refinement the 

difference of the absolute values of their corresponding 

residual vectors become larger than a fourth of that of 

immediately previous ones. 

When irefine ≠ 1 is specified. 

No iterative refinement is performed. 

When istatic = 1 is specified, irefine = 1 must be 

specified. 

epsr double Input Criterion value to judge if the absolute value of the 

residual vector  

b - Ax is sufficiently smaller compared with the absolute 

value of b. 

When epsr ≤ 0.0, it is set to 10-6. 

itermax int Input Upper limit of iterative count for refinement ( 1). 

iter int Output Actual iterative count for refinement. 

w double w[nz+n] Work 

area 

When this routine is called repeatedly with isw = 1, 2 

this work area is used for preserving information among 

calls. The contents must not be changed. 

iw int 

iw[36*n+36+2*nz+ 

Work 

area 

When this routine is called repeatedly with isw = 1, 2, 3 

this work area is used for preserving information among 
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3*(n+1)] calls. The contents must not be changed. 

icon int Output Condition code.  See below. 

 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 The pivot became relatively zero. The coefficient 

matrix A may be singular. 

Processing is discontinued. 

20200 When seeking diagonal matrices for equilibrating 

both rows and columns, there is a zero vector in 

either rows or columns of the matrix A. The 

coefficient matrix A may be singular. 

20400 There is a zero element in diagonal of resultant 

matrices of LU decomposition. 

20500 The norm of residual vector for the solution 

vector is greater than that of b multiplied by 

epsr, which is the right term constant vector in 

Ax = b.  The coefficient matrix A may be close to 

a singular matrix. 

30000 One of the following has occurred: 

• n < 1 

• nz < 0 

• nfcnz[n] ≠ nz + 1 

• nsizefactorl < 1 

• nsizefactoru < 1 

• nsizeindex < 1 

• isw < 1 

• isw > 3 

• itermax < 1 when irefine = 1. 

Processing is discontinued. 

30100 The permutation matrix specified in nperm is not 

correct. 

30200 The row index k stored in nrow[j-1] is k < 1 

or k > n. 

30300 The number of row indices belong to i-th column 

is nfcnz[i] – nfcnz[i-1] > n. 

30500 When istatic =1 is specified, the required 

conditions are not satisfied. 

epsz is greater than 16u of the standard value 

or isclitermax < 10 

or irefine ≠ 1 

or spepsz > thepsz  

or spepsz > 10-10 

30700 The matrix A is not structurally symmetric. 
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Code  Meaning  Processing 

31000 The value of nsizefactorl is not enough as 

the size of panelfactorl, 

or the value of nsizeindex is not enough as 

the size of npanelindexl and 

npanelindexu, 

or the value of nsizefactoru is not enough as 

the size of panelfactoru. 

Reallocate the panelfactorl or 

npanelindexl and npanelindexu or 

panelfactoru or npanelindexu 

with the necessary size which are returned in the 

nsizefactorl or nsizeindex or 

nsizefactoru respectively 

and call this routine again with isw = 2 specified. 
 

                                       

 

             U 

              

 

 

 

 

             L                               UT 

panel row indices vector  
in postorder 

 ・  ・ 

panel 
column indices vector  
in postorder  

 
Figure c_dm_vssss-1. Conceptual scheme for storing decomposed results 

 

j = nassign[i-1]                  The i-th supernode is stored at the j-th section. 

p = nfcnzfactorl[j-1]        The j-th panel occupies the area with a length ndim[j-1][0] ×  

ndim[j-1][1] from the p-th element of panelfactorl. 

q = nfcnzindexl[j-1]     The row indices vector of the j-th panel occupies the area with a length  

ndim[j-1][0] from the q-th element of npanelindexl. 

A panel is regarded as an array of the size ndim[j-1][0] × ndim[j-1][1]. 

The lower triangular matrix L of decomposed results is stored in 

      panel[t-1][s-1],   s ≥ t,  s = 1, ..., ndim[j-1][0], 

 t = 1, ..., ndim[j-1][1]. 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed results is stored 
in 

     panel[t-1][s-1],   s < t,  s = 1, ..., ndim[j-1][1], 

 t = 1, ..., ndim[j-1][1]. 

u = nfcnzfactoru[j-1]  The j-th panel occupies the area with a length (ndim[j-1][0] – 
ndim[j-1][1]) × ndim[j-1][1] from the u-th element of panelfactoru. 

v = nfcnzindexu[j-1]     The column indices vector of the j-th panel occupies the area with a length 
ndim[j-1][0] from the v-th element of npanelindexu. 

A panel is regarded as an array of the size (ndim[j-1][0] – ndim[j-1][1]) × ndim[j-1][1]. 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed results is stored in 

      panel[y-1][x-1]  ,  x = 1 , … , ndim[j-1][0] – ndim[j-1][1], y = 1 , … , ndim[j-1][1]. 
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The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A is permuted in 
post ordering. 

3. Comments on use 

a) 

When the element pij = 1 of the permutation matrix P, set nperm[i-1] = j. 

The inverse of the matrix can be obtained as follows: 

for (i = 1; i <= n; i++) { 

    j = nperm[i-1];  

    nperminv[j-1] = i;  

  } 

Fill-reduction Orderings are obtained in use of METIS and so on. 

Refer to [41], [42] in Appendix, “References.” in detail. 

b) 
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In 

this case, processing is discontinued with icon = 20000. When unit round off is u, the standard value of epsz is 16  u. 

When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum 

value to epsz. In this case, however, the result is not assured. 

If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is 

approximately continued replacing it with spepsz. It is required to specify to do iterative refinement. 

c) 
The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store 

the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the 

symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. 

 For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such 

as one in the size specifying in nsizefactorl, nsizeindex, and nsizefactoru with isw = 1. This routine ends 

with icon = 31000, and the necessary sizes for nsizefactorl, nsizeindex and nsizefactoru are returned. Then 

the suspended process can be resumed by calling it with isw = 2 after reallocating the arrays with the necessary sizes. 

d) 
Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. 

This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th 

position when j = nposto[i-1]. 

 This array represents a permutation matrix Q which is an orthogonal matrix also as well as note a) above, and 

corresponds to permute the matrix A into QAQT. 

 The inverse matrix QT can be obtained as follows: 

  for (i = 1; i <= n; i++) { 

    j = nposto[i-1]; 

    npostoinv[j-1] = i;  

  } 

e) 
Instead of  this routine, a system of equations Ax=b can be solved by calling both c_dm_vssslu to perform LU 
decomposition of a structurally symmetric real sparse matrix A and c_dm_vssslux to solve the linear equation in 
use of decomposed results.  
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4. Example program 

The linear system of equations Ax = f is solved, where a matrix is built using results from the finite difference method 

applied to the elliptic equation 

fcuuau   

with zero boundary conditions on a cube and the coefficient a = (a1,a2,a3).  

The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed 

column storage format. The linear system of equations with a structurally symmetric real sparse matrix A built in this way 

is solved. 

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set 

OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 

processors. 

/* **EXAMPLE** */ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <malloc.h> 

#include <omp.h> 

#include "cssl.h" 

 

#define  NORD  39 

#define  NX    NORD 

#define  NY    NORD 

#define  NZ    NORD 

#define  N     NX * NY * NZ 

#define  NXY   NX * NY 

#define  K     (N + 1) 

#define  NDIAG  7 

#define  NALL  NDIAG * N 

#define  IWL   36 * N + 36 + 2 * NALL + 3 * (N + 1) 

#define  IPRINT  0 

 

void  init_mat_diag(double, double, double, double, double*, int*, int, int, 

                    int, double, double, double, int, int, int); 

double  errnrm(double*, double*, int); 

 

int MAIN__() { 

 

  int  nofst[NDIAG]; 

  double  diag[NDIAG][K], diag2[NDIAG][K]; 

  double  c[K * NDIAG], wc[K * NDIAG]; 

  int  nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2]; 

  double  w[NDIAG * N + N]; 

  int  nperm[N], 
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       nposto[N], ndim[N][2], 

       nassign[N], 

       iw[IWL]; 

  double  *panelfactorl, *panelfactoru; 

  int  *npanelindexl, 

       *npanelindexu; 

  double  dummyfl, dummyfu; 

  int  ndummyil, ndummyiu; 

  long  nsizefactorl, nsizeindex, 

        nsizefactoru, 

        nfcnzfactorl[N + 1], 

        nfcnzfactoru[N + 1], 

        nfcnzindexl[N + 1], 

        nfcnzindexu[N + 1]; 

  double  x[N], b[N], solex[N]; 

  int  i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc; 

  double  va1, va2, va3, vc, xl, yl, zl; 

 

  double  thepsz, 

          epsr, 

          sepsz,                

          sclrow[N], sclcol[N]; 

  double  epsz, err; 

 

  int  ipivot, istatic, 

       isclitermax, 

       irefine, itermax, iter, icon; 

  int  iordering, isw, nsupnum; 

 

 

 

  printf("    DIRECT METHOD\n"); 

  printf("    FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n"); 

  printf("    IN COMPRESSED COLUMN STORAGE\n\n"); 

 

  for (i = 0; i < N; i++) { 

    solex[i] = 1.0; 

  } 

  printf("    EXPECTED SOLUTIONS\n"); 

  printf("    X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]); 

 

  va1 = 1.0; 

  va2 = 2.0; 

  va3 = 3.0; 

  vc = 4.0; 

  xl = 1.0; 
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  yl = 1.0; 

  zl = 1.0; 

  init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, 

                NX, NY, NZ, xl, yl, zl, NDIAG, N, K); 

 

  for (i = 0; i < NDIAG; i++) { 

    for (j = 0; j < K; j++) { 

      diag2[i][j] = 0; 

    } 

  } 

 

  for (i = 0; i < NDIAG; i++) { 

 

    if (nofst[i] < 0) { 

      nbase = -nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][j] = diag[i][nbase + j]; 

      } 

    } else { 

      nbase = nofst[i]; 

      length = N - nbase; 

      for (j = 0; j < length; j++) { 

        diag2[i][nbase + j] = diag[i][j]; 

      } 

    } 

 

  } 

 

  numnzc = 0; 

 

  for (j = 0; j < N; j++) { 

    ntopcfgc = 1; 

 

    for (i = NDIAG - 1; i >= 0; i--) { 

 

      if (diag2[i][j] != 0.0) { 

 

        ncol = (j + 1) - nofst[i]; 

        c[numnzc] = diag2[i][j]; 

        nrowc[numnzc] = ncol; 

 

        if (ntopcfgc == 1) { 

          nfcnzc[j] = numnzc + 1; 

          ntopcfgc = 0; 

        } 



 c_dm_vssss 

425 

 

        numnzc++; 

 

      } 

    } 

  } 

 

  nfcnzc[N] = numnzc + 1; 

  nnzc = numnzc; 

 

  c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex, 

              b, wc, (int *)iwc, &icon); 

 

 

  for (i = 0; i < N; i++) { 

    x[i] = b[i]; 

  } 

  iordering = 0; 

  isclitermax = 10; 

  isw = 1; 

  epsz = 1.0e-16; 

  nsizefactorl = 1; 

  nsizefactoru = 1; 

  nsizeindex = 1; 

  thepsz = 1.0e-2; 

  epsr = 1.0e-8; 

  sepsz = 1.0e-10; 

  ipivot = 40; 

  istatic = 1; 

  irefine = 1; 

  itermax = 10; 

 

  c_dm_vssss(c, nnzc, nrowc, nfcnzc, N, 

             isclitermax, iordering, 

             nperm, isw, 

             x, 

             nassign, 

             &nsupnum, 

             nfcnzfactorl, &dummyfl, 

             &nsizefactorl, nfcnzindexl, 

             &ndummyil, &nsizeindex, (int *)ndim, 

             nfcnzfactoru, &dummyfu, 

             &nsizefactoru, 

             nfcnzindexu, &ndummyiu, 

             nposto, 

             sclrow, sclcol, 
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             &epsz, 

             &thepsz, 

             ipivot, istatic, &sepsz, 

             irefine, epsr, itermax, &iter, 

             w, iw, &icon); 

 

  printf("    ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n", 

         icon, nsizefactorl, nsizefactoru, nsizeindex); 

  printf("    NSUPNUM=%d\n\n", nsupnum); 

 

  panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl); 

  panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru); 

  npanelindexl = (int *)malloc(sizeof(int) * nsizeindex); 

  npanelindexu = (int *)malloc(sizeof(int) * nsizeindex); 

 

  isw = 2; 

  c_dm_vssss(c, nnzc, nrowc, nfcnzc, N, 

             isclitermax, iordering, 

             nperm, isw, 

             x, 

             nassign, 

             &nsupnum, 

             nfcnzfactorl, panelfactorl, 

             &nsizefactorl, nfcnzindexl, 

             npanelindexl, &nsizeindex, (int *)ndim, 

             nfcnzfactoru, panelfactoru, 

             &nsizefactoru, 

             nfcnzindexu, npanelindexu, 

             nposto, 

             sclrow, sclcol, 

             &epsz, 

             &thepsz, 

             ipivot, istatic, &sepsz, 

             irefine, epsr, itermax, &iter, 

             w, iw, &icon); 

 

 

  err = errnrm(solex, x, N); 

 

  printf("    COMPUTED VALUES\n"); 

  printf("    X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]); 

  printf("    ICON = %6d\n\n", icon); 

  printf("    N = %d :: NX = %d  NY = %d NZ = %d\n\n", N, NX, NY, NZ); 

  printf("    ERROR = %19.16lf\n", err); 

  printf("    ITER=%d\n\n\n", iter); 
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  if (err < 1.0e-8 && icon == 0) { 

    printf("    ********** OK **********\n"); 

  } else { 

    printf("    ********** NG **********\n"); 

  } 

 

  free(panelfactorl); 

  free(panelfactoru); 

  free(npanelindexl); 

  free(npanelindexu); 

 

  return(0); 

} 

 

/* ======================================== 

       INITIALIZE COEFFICIENT MATRIX 

   ======================================== */ 

void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, 

                   int *offset, int nx, int ny, int nz, double xl, double yl, 

                   double zl, int ndiag, int len, int ndivp) { 

 

  if (ndiag < 1) { 

    printf("SUB FUNCTION INIT_MAT_DIAG:\n"); 

    printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n"); 

    return; 

  } 

 

#pragma omp parallel default(shared) 

{ 

  int  ndiag_loc, i, j, l, nxy, i0, j0, k0, js; 

  double  hx, hy, hz, hx2, hy2, hz2; 

 

/* NDIAG CANNOT BE GREATER THAN 7 */ 

  ndiag_loc = ndiag; 

  if (ndiag > 7) ndiag_loc = 7; 

 

/* INITIAL SETTING */ 

  hx = xl / (nx + 1); 

  hy = yl / (ny + 1); 

  hz = zl / (nz + 1); 

 

#pragma omp for 

  for (i = 0; i < ndivp * ndiag; i++) { 

    d_l[i] = 0.0; 

  } 
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  nxy = nx * ny; 

 

/* OFFSET SETTING */ 

#pragma omp single 

  { 

    l = 0; 

    if (ndiag_loc >= 7) { 

      offset[l] = -nxy; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      offset[l] = -nx; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      offset[l] = -1; 

      l++; 

    } 

    offset[l] = 0; 

    l++; 

    if (ndiag_loc >= 2) { 

      offset[l] = 1; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      offset[l] = nx; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      offset[l] = nxy; 

    } 

  } 

 

/* MAIN LOOP */ 

#pragma omp for 

  for (j = 0; j < len; j++) { 

    js = j + 1; 

 

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */ 

    k0 = (js - 1) / nxy + 1; 

    if (k0 > nz) { 

      printf("ERROR; K0.GH.NZ \n"); 

      goto label_100; 

    } 

    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1; 

    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1); 
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    l = 0; 

 

    if (ndiag_loc >= 7) { 

      if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz; 

      l++; 

    } 

    if (ndiag_loc >= 5) { 

      if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 3) { 

      if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx; 

      l++; 

    } 

    hx2 = hx * hx; 

    hy2 = hy * hy; 

    hz2 = hz * hz; 

    d_l[l * ndivp + j] = 2.0 / hx2 + vc; 

    if (ndiag_loc >= 5) { 

      d_l[l * ndivp + j] += 2.0 / hy2; 

      if (ndiag_loc >= 7) { 

        d_l[l * ndivp + j] += 2.0 / hz2; 

      } 

    } 

    l++; 

    if (ndiag_loc >= 2) { 

      if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx; 

      l++; 

    } 

    if (ndiag_loc >= 4) { 

      if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy; 

      l++; 

    } 

    if (ndiag_loc >= 6) { 

      if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz; 

    } 

label_100: ; 

  } 

 

} 

 

  return; 

} 

 

/* ======================================== 

  * SOLUTE ERROR 
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  * | X1 - X2 | 

   ======================================== */ 

double errnrm(double *x1, double *x2, int len) { 

 

  double  s, ss, rtc; 

  int  i; 

 

  s = 0.0; 

  for (i = 0; i < len; i++) { 

    ss = x1[i] - x2[i]; 

    s += ss * ss; 

  } 

 

  rtc = sqrt(s); 

  return(rtc); 

} 

 
 

5. Method 

Consult the entry for DM_VSSSS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [19] , 

[22] , [46] , [59] , [64] and [65]. 
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c_dm_vtdevc 

Eigenvalues and eigenvectors of real tridiagonal matrices 

ierr = c_dm_vtdevc(d, sl, su, n, nf, nl, ivec, 

&etol, &ctol, nev, e, maxne, ev, 

k, m, &icon); 

1. Function 

This routine calculates specified eigenvalues and, optionally, eigenvectors of a real tridiagonal matrix. 

 Tx = x 

where, T is an n-dimensional real tridiagonal matrix.  Tridiagonal matrix T must satisfy the following condition: 

 li ui1 > 0, where, i = 2, ... , n 

When the element of tridiagonal matrix T is tij, di indicates a tridiagonal element, and li = ti,i1 and ui = ti,i1 indicate 

subdiagonal elements, where, l1 = un = 0. 

 (Tv)i = li vi1 + di vi + ui vi1,    i = 1,2,...,n 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vtdevc(d, sl, su, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne, 

(double*)ev, k, (int*)m, &icon); 

where: 

d double d[n] Input Diagonal of matrix T. 

sl double sl[n] Input Lower diagonal of matrix T, with sl[i1] = li, i = 1, ... , n. 

su double su[n] Input Upper diagonal of matrix T, with su[i1] = ui. 

n int Input Order n of matrix T. 

nf int Input Number assigned to the first eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

nl int Input Number assigned to the last eigenvalue to be acquired by numbering 

eigenvalues in ascending order.  (Multiple eigenvalues are numbered so 

that one number is assigned to one eigenvalue.) 

ivec int Input Control information. 

ivec = 1 if both the eigenvalues and eigenvectors are sought. 

ivec  1 if only the eigenvalues are sought. 

etol double Input Criterion value for checking whether the eigenvalues are numerically 

different from each other or are multiple. 

  Output When etol is less than 3.01016 this value is used as the standard 

value. See Comments on use. 

ctol double Input Criterion value for checking whether the adjacent eigenvalues can be 

considered to be approximately equal to each other. This value is used 

to assure the linear independence of the eigenvector corresponding to 
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the eigenvalue belonging to approximately multiple eigenvalues 

(clusters). 

The value of ctol should be generally 5.01012. For a very large 

cluster, a large ctol value is required. 

106  ctol  etol. 

  Output When condition ctol > 106 occurs, ctol is set to 106. 

When condition ctol < etol occurs, ctol = 10  etol is set as the 

standard value. See Comments on use. 

nev int nev[5] Output Number of eigenvalues calculated. 

Details are given below. 

nev[0] indicates the number of different eigenvalues calculated. 

nev[1] indicates the number of approximately multiple different 

eigenvalues (different clusters) calculated. 

nev[2] indicates the total number of eigenvalues (including multiple 

eigenvalues) calculated. 

nev[3] indicates the number representing the first of the eigenvalues 

calculated. 

nev[4] indicates the number representing the last of the eigenvalues 

calculated. 

e double 

e[maxne] 

Output Eigenvalues. Stored in e[i1], i = 1, ..., nev[2]. 

maxne int Input Maximum number of eigenvalues that can be computed. 

When it can be considered that there are two or more eigenvalues with 

multiplicity m, maxne must be set to a larger value than nl  nf  1  

2  m that is bounded by n. When condition nev[2] > maxne occurs, 

the eigenvectors cannot be calculated. See Comments on use. 

ev double 

ev[maxne][k] 

Output When ivec = 1, the eigenvectors corresponding to the eigenvalues are 

stored in ev. 

The eigenvectors are stored in ev[i1][j1], i = 1, ... ,nev[2], j 

= 1,...,n. 

k int Input C fixed dimension of array ev. (k  n) 

m int 

m[2][maxne] 

Output Information about multiplicity of eigenvalues calculated. 

m[0][i1] indicates the multiplicity of the i-th eigenvalue i. 

m[1][i1] indicates the multiplicity of the i-th cluster when the 

adjacent eigenvalues are regarded as clusters. See Comments on use. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 During calculation of clustered eigenvalues, the 

total number of eigenvalues exceeded the value of 

maxne. 

Discontinued. The eigenvectors cannot be 

calculated, but the different eigenvalues 

themselves are already calculated. 

A suitable value for maxne to allow calculation 

to proceed is returned in nev[2]. 

See Comments on use. 
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Code  Meaning  Processing 

 

30000 One of the following has occurred: 

 n < 1 

 k < 1 

 k < n 

 nf < 1 

 nl > n 

 nl < nf 

 maxne < nl  nf  1 

Bypassed. 

30100 sl[i]  su[i1] 0  

The matrix could not be converted into a 

symmetrical form. 

Bypassed. 

3. Comments on use 

Problems that can be solved using this function 
This routine requires only that liui1 > 0, i = 2, ..., n.  Thus it will also solve the generalized eigenvalue problem. 

 Tx = Dx 

where D > 0 (every diagonal element is positive) is diagonal by setting 

T  D1T.  Also, the eigenvalue problem for T can be reduced to a symmetric generalized problem 

 DTv = Dv 

where d1 = 1, di = ui1di1/li,  i = 2, ..., n. If di can cause scaling problems then it is preferable to consider the symmetric 

problem. 

 D1/2 TD1/2 w = w 

where w = D1/2v. 

etol and ctol 
This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets 

(parallel processing). 

When  = etol, the following condition is satisfied for consecutive eigenvalues  j ( j = s  1, s, ..., s  k, (k  0)): 

 








|)||,max(|1

||

1

1

ii

ii , (1) 

If formula (1) is satisfied for i when i = s, s  1, ..., s  k but not satisfied when i = s  1 and i = s  k  1, it is assumed that 

the eigenvalues  j (j = s  1, s, ..., s  k) are numerically multiple. 

The standard value of etol is 3.01016 (about the unit round off). In this case, the eigenvalues are refined up to the 

maximum machine precision. 

If formula (1) is not satisfied when  = etol, it can be considered that  i1 and i are distinct eigenvalues. 

When  = etol, assume that consecutive eigenvalues m (m = t  1, t, ..., t  k (k  0)) are different eigenvalues. Also, 

when  = ctol, assume that formula (2) is satisfied for i when i = t, t  1, ..., t  k but not satisfied when i = t  1 and i = t 
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 k  1.  In this case, it is assumed that the distinct eigenvalues m (m = t  1, t, ..., t  k) are approximately multiple (i.e., 

form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors 

corresponding to m (m = t  1, t,  ... ,  t  k) are reorthogonalized. 

maxne 
The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, 

the cluster size also increases.  Therefore, the total number of eigenvalues calculated might exceed the value of maxne.  

In this case, decrease the value of ctol or increase the value of maxne. 

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20000 is returned.  In this case, the 

eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not 

stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in e[i1], i = 1, ..., nev[0]. The multiplicity of the corresponding 

eigenvalues is stored in m[0][i1], i = 1, ..., nev[0]. 

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne 

value can be nt(nt = nl  nf  1 is the total number of eigenvalues calculated). However, when there are multiple 

eigenvalues and the multiplicity is m, the maxne value must be at least nt  2  m. 

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the 

calculation is returned to nev[2].  The calculation can be continued by allocating the area by using this returned value 

and by calling the routine again. 

4. Example program 

This program obtains eigenvalues and prints the results. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define P1        (70) 
#define Q1        (100) 
#define N         (P1*Q1) 
#define K         (N+1) 
#define N0        (6001) 
#define N1        (7000) 
#define NE        (N1-N0+1) 
#define MAX_CLUS  (2*Q1) 
#define MAXNE     (NE+MAX_CLUS) 
#define NW        (2*N+2) 
 
MAIN__() 
{ 
  double d[N], sl[N], su[N], e[MAXNE], ev[MAXNE][K], w[NW]; 
  double tmp, error, etol, ctol; 
  int    m[2][MAXNE], nev[5], nf, nl, ivec, icon; 
  int    i, j, l, ii; 
 
  etol=3e-16; 
  ctol=5e-12; 
  j = (P1+1)/2; 
  d[j-1] = 0.0; 
  for (i=1; i<=j-1; i++) { 
    sl[i+1-1]   = 1.0; 
    su[i-1]     = 1.0; 
    sl[j+i-1]   = 1.0; 
    su[j+i-2]   = 1.0; 
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    d[i-1]      = (double)(j-i); 
    d[j*2-i-1]  = d[i-1]; 
  } 
  sl[0]    = 0.0; 
  su[P1-1] = 0.0; 
 
  for (l=2; l<=Q1; l++) { 
    ii = (l-1)*P1; 
    for (i=1; i<=P1; i++) { 
      sl[ii+i-1] = sl[i-1]; 
      su[ii+i-1] = su[i-1]; 
      d[ii+i-1]  = d[i-1]; 
    } 
  } 
  sl[0]   = 0.0; 
  su[N-1] = 0.0; 
 
  nf      = N0; 
  nl      = N1; 
  ivec    = 1; 
 
  c_dm_vtdevc(d, sl, su, N, nf, nl, ivec, &etol, &ctol, nev, e, MAXNE, (double*)ev, K, 
              (int*)m, &icon); 
 
  printf("icon   = %d\n", icon); 
  printf("nev[0] = %d\n", nev[0]); 
  printf("nev[1] = %d\n", nev[1]); 
  printf("nev[2] = %d\n", nev[2]); 
  printf("nev[3] = %d\n", nev[3]); 
  printf("nev[4] = %d\n", nev[4]); 
  error = tmp = 0.0; 
  for (i=0; i<nev[2]; i++) { 
    for (j=0; j<N; j++) { 
      w[j+1] = ev[i][j]; 
    } 
    w[0]   = 0.0; 
    w[N+1] = 0.0; 
 
    for (j=0; j<N; j++) { 
      tmp = sl[j]*w[j]+d[j]*w[j+1]+su[j]*w[j+2]-e[i]*w[j+1]; 
      error = max(fabs(tmp/(fabs(e[i])+1)), error); 
    } 
  } 
 
  printf("maximum element error in ||T*x-eig*x|| = %e\n", tmp); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_VTDEVC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [20], [57], 

[66] and [76]. 
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c_dm_vtfqd 

System of linear equations with unsymmetric or indefinite sparse 

matrices (TFQMR method, diagonal format storage method) 

ierr = c_dm_vtfqd(a, k, ndiag, n, nofst, b, 

itmax, eps, iguss, x, &iter, 

&icon); 

1. Function 

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with 

unsymmetric or indefinite sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the diagonal format storage method.  Vectors b and x are n-dimensional 

vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation 

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vtfqd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, x, 

&iter, &icon); 

where: 

a double 

a[ndiag][k] 

Input The nonzero elements of a coefficient matrix are stored in a. 

k int Input C fixed dimension of array a (  n). 

ndiag int Input The number of diagonal vectors in the coefficient matrix A having non-

zero elements. 

n int Input Order n of matrix A. 

nofst int 

nofst[ndiag] 

Input Distance from the main diagonal vector corresponding to diagonal 

vectors in array a.  Super-diagonal vector rows have positive values.  

Sub-diagonal vector rows have negative values.  See Comments on use. 

b double b[n] Input Constant vector b. 

itmax int Input Upper limit of iterative count for TFQMR method.  The value of itmax 

should usually be set to about 2000. 

eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 106.  See Comments on use. 
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iguss int Input Control information about whether to start the iterative computation 

from the approximate value of the solution vector specified in array x. 

iguss = 0 : Approximate value of the solution vector is not specified. 

iguss  0 : The iterative computation starts from the approximate value 

of the solution vector specified in array x. 

x double x[n] Input The starting values for the computation.  This is optional and relates to 

argument iguss. 

  Output Solution vector x. 

iter int Output Actual iterative count for TFQMR method. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 Break-down occurred. Processing stopped. 

20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 

stage is returned, but its precision is not 

guaranteed. 

30000 One of the following has occurred: 

 n < 1 

 n > k 

 ndiag < 1 

 itmax  0 

Bypassed. 

32001 |nofst[i]| > n1 

3. Comments on use 

eps 
When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the 

value of eps, it is assumed that the solution converged.  The error between the correct solution and the calculated 

approximate solution is roughly equal to the product of the matrix A condition number and the value of eps. 

Notes on using the diagonal format 
A diagonal vector element outside coefficient matrix A must be set to zero. 

There is no restriction in the order in which diagonal vectors are stored in array a. 

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of 

indirect indices.  The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this 

method. 

4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
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#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX   1000 
#define UBANDW    2 
#define LBANDW    1 
 
MAIN__() 
{ 
  double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX]; 
  double one=1.0, bcoef=10.0, eps=1.e-6; 
  int    ierr, icon, ndiag, nub, nlb, n, i, j, k; 
  int    itmax, iguss, iter; 
  int    nofst[UBANDW + LBANDW + 1]; 
 
  /* initialize nonsymmetric matrix and vector */ 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  ndiag = nub + nlb + 1; 
  n     = NMAX; 
  k     = NMAX; 
  for (i=1; i<=nub; i++) { 
    for (j=0  ; j<n-i; j++) a[i][j] = -1.0; 
    for (j=n-i; j<n  ; j++) a[i][j] =  0.0; 
    nofst[i] = i; 
  } 
 
  for (i=1; i<=nlb; i++) { 
    for (j=0  ; j<i+1; j++) a[nub + i][j] =  0.0; 
    for (j=i+1; j<n  ; j++) a[nub + i][j] = -2.0; 
    nofst[nub + i] = -(i + 1); 
  } 
 
  nofst[0] = 0; 
 
  for (j=0; j<n; j++) { 
    a[0][j] = bcoef; 
    for (i=1; i<ndiag; i++) a[0][j] -= a[i][j]; 
    b[j] = bcoef; 
  } 
 
  /* solve the system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  ierr = c_dm_vtfqd ((double*)a, k, ndiag, n, nofst, b, itmax, eps, 
                  iguss, x, &iter, &icon); 
  if (icon != 0) { 
    printf("ERROR: c_dvtfqd failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* check vector */ 
  for (i=0;i<n;i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VTFQD in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vtfqe 

System of linear equations with unsymmetric or indefinite sparse 

matrices (TFQMR method, ELLPACK format storage method) 

ierr = c_dm_vtfqe(a, k, iwidt, n, icol, b, 

itmax, eps, iguss, x, &iter, 

&icon); 

1. Function 

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with 

unsymmetric or indefinite sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the ELLPACK format storage method. Vectors b and x are n-dimensional 

vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation 

solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vtfqe((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss, 

x, &iter, &icon); 

where: 

a double 

a[iwidt][k] 

Input Sparse matrix A stored in ELLPACK storage format. 

k int Input C fixed dimension of array a and icol (  n). 

iwidt int Input The maximum number of non-zero elements in any row vectors of A  

(  0). 

n int Input Order n of matrix A. 

icol int 

icol[iwidt][k] 

Input Column indices used in the ELLPACK format, showing to which 

column the elements corresponding to a belong. 

b double b[n] Input Constant vector b. 

itmax int Input Upper limit of iterative count for TFQMR method.  The value of itmax 

should usually be set to about 2000. 

eps double Input Tolerance for convergence test. 

When eps is zero or less, eps is set to 106.  See Comments on use. 

iguss int Input Control information about whether to start the iterative computation 

from the approximate value of the solution vector specified in array x. 

iguss = 0 : Approximate value of the solution vector is not set. 

iguss  0 : The iterative computation starts from the approximate 

value of the solution vector specified in array x. 

x double x[n] Input The starting values for the computation.  This is optional and relates to 
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argument iguss. 

  Output Solution vector x. 

iter int Output Iterative count for TFQMR method. 

icon int Output Condition code.  See below. 

The complete list of condition codes is given below. 

Code  Meaning  Processing 

0 No error. Completed. 

20000 Break-down occurred Processing stopped. 

20001 Reached the set maximum number of iterations. Processing stopped. 

The approximate solution obtained up to this 

stage is returned, but its precision is not 

guaranteed. 

30000 One of the following has occurred: 

 n < 1 

 n > k 

 iwidt < 1 

 itmax  0 

Bypassed. 

30001 The band width is zero. 

3. Comments on use 

eps 
When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the eps, 

it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution 

is roughly equal to the product of the matrix A condition number and the eps. 

4. Example program 

This program solves a system of linear equations and checks the result. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define NMAX    1000 
#define UBANDW     2 
#define LBANDW     1 
 
MAIN__() 
{ 
  double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX]; 
  double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6; 
  int    ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, iter, i, j, ix; 
  int    icol[UBANDW + LBANDW + 1][NMAX]; 
 
  /* initialize matrix and vector */ 
  nub   = UBANDW; 
  nlb   = LBANDW; 
  iwidt = UBANDW + LBANDW + 1; 
  n     = NMAX; 
  k     = NMAX; 
 
  for (i=0; i<n; i++) b[i] = bcoef; 
 
  for (i=0; i<iwidt; i++) 
    for (j=0; j<n; j++) { 
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      a[i][j] = 0.0; 
      icol[i][j] = j+1; 
    } 
 
  for (j=0; j<nlb; j++) { 
    for (i=0; i<j; i++) a[i][j] = lcf; 
    a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf; 
    for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf; 
    for (i=0; i<=nub+j; i++) icol[i][j] = i+1; 
  } 
 
  for (j=nlb; j<n-nub; j++) { 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf; 
    for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf; 
    for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb; 
  } 
 
  for (j=n-nub; j<n; j++){ 
    for (i=0; i<nlb; i++) a[i][j] = lcf; 
    a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf; 
    for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf; 
    ix = n - (j+nub-nlb-1); 
    for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i; 
  } 
 
  /* solve the system of linear equations */ 
  itmax = n; 
  iguss = 0; 
  ierr = c_dm_vtfqe ((double*)a, k, iwidt, n, (int*)icol, b, itmax, 
                     eps, iguss, x, &iter, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dvtfqe failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* check vector */ 
  for (i=0; i<n; i++) 
    if (fabs(x[i]-one) > eps) { 
      printf("WARNING: result inaccurate\n"); 
      exit(1); 
    } 
 
  printf("Result OK\n"); 
  return(0); 
} 

5. Method 

Consult the entry for DM_VTFQE in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_vtrid 

Tridiagonalization of real symmetric matrices. 

ierr = c_dm_vtrid (a, k, n, d, sl, &icon); 

1. Function 

This routine reduces the real symmetric matrix A to tridiagonal form using the Housholder reductions. 

 T = QTAQ 

where A is an n  n real symmetric matrix, Q is an n  n orthogonal matrix and T is a real tridiagonal matrix. 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_vtrid((double*)a, k, n, d, sl, &icon); 

 

where: 

a double a[n][k] Input The upper triangular part {aij | i  j}of real symmetric matrix A is stored 

in the upper triangular part {a[i1][j1], i  j} of a. 

  Output The information on Householder transforms used for tridiagonalization 

is stored in the upper triangular part {a[i1][j1], i  j} of a.  The 

values in the lower triangular part of a is not assured after operation. 

See Comments on use. 

k int Input C fixed dimension of matrix a. (k  n) 

n int Input Order n of real symmetric  matrix A. 

d double d[n] Input The diagonal elements of the reduced tridiagonal matrix are stored. 

sl double sl[n] Input The subdiagonal elements of reduced tridiagonal matrix are stored in 

sl[i1], i = 2,  ..., n. sl[0] = 0. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 n < 2, k < n. Processing is discontinued. 

3. Comments on use 

a 
Tridiagonalization is performed by the repeated transforms varying k = 1, ... , n-2. 

AAQAQA   01T ,k
k

k
k  

Put  bT = (0, ... , 0, A k-1 (k+1, k ) , ... , Ak-1(n, k ) ) . (Ak-1(i , j) means i, j element of Ak-1) 

bT = (0, ... , 0, bk+1, ... , bn) 
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bT∙b = S2   and  put   wT = (0, ... , 0, bk+1+S, bk+2, ... , bn). 

The sign of S is chosen same as that of bk+1. 

Then the transform matrix is represented as follow. 

SS

1
,I

2
T

ik
k

b 
  wwQ  

w(i-1) ( i=k+1, ... , n)  and  are stored in  a[k-1][i-1]and  a[k-1][k-1]respectively. 

4. Example program 

This example calculates the tridiagonalization of a real symmetric matrix whose eigenvalues are known. 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL II header file */ 
 
 
#define N               2000 
#define K               N 
#define NE              N 
#define MAX_NEV         NE 
 
MAIN__() 
{ 
    double a[N][K], b[N][K], c[N][K], d[N][K], ac[N][K]; 
    double dd[N], sld[N], sud[N]; 
    double eval[MAX_NEV], evec[MAX_NEV][K]; 
    double pai, coef, eval_tol, clus_tol; 
    int    nev[5], mult[2][MAX_NEV]; 
    int    i, j, nf, nl, ivec, icon; 
 
    pai  = 4.0 * atan(1.0); 
    coef = sqrt(2.0/(N+1)); 
 
    for (j=0; j<N; j++) { 
      for (i=0; i<N; i++) { 
        d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1)); 
      } 
    } 
 
    for (j=0; j<N; j++) { 
      for (i=0; i<N; i++) { 
        if (i == j) { c[j][i]=i+1; } 
        else        { c[j][i]=0.0; } 
      } 
    } 
 
    c_dm_vmggm ((double*)d, K, (double*)c, K, (double*)b, K, N, N, N, &icon); 
    c_dm_vmggm ((double*)b, K, (double*)d, K, (double*)a, K, N, N, N, &icon); 
 
    for (i=0; i<N; i++) { 
      for (j=i; j<N; j++) { 
        ac[i][j] = a[i][j]; 
      } 
    } 
 
    c_dm_vtrid ((double*)ac, K, N, dd, sld, &icon); 
    if (icon != 0) { 
      printf(" icon of c_dm_vtrid =%d\n", icon); 
      exit(0); 
    } 
 
    for (i=1; i<N; i++) { 
      sud[i-1]=sld[i]; 
    } 
    sud[N-1]=0.0; 
 
    nf  = 1; 
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    nl  = N; 
    ivec        = 0; 
    eval_tol    = 1.0e-15; 
    clus_tol    = 1.0e-10; 
 
    c_dm_vtdevc( dd, sld, sud, N, nf, nl, ivec, &eval_tol, &clus_tol, nev, eval, 
                MAX_NEV, (double*)evec, K, (int*)mult, &icon); 
 
    for (i=0; i<NE; i=i+N/20) { 
      printf("eigen value in eval(%d) = %f\n",i+1,eval[i]); 
    } 
 
    return(0); 
} 
 

5. Method 

Consult the entry for DM_VTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30]. 
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c_dm_v1dcft 

One-dimensional discrete complex Fourier transforms (mixed radix of 2, 

3, 5 and 7) 

ierr = c_dm_v1dcft(x, kx, y, ky, n1, n2, isn, 

&icon); 

1. Function 

The function c_dm_v1dcft performs a one-dimensional complex Fourier transform or its inverse transform using a mixed 

radix FFT. 

The length of data transformed n(= n1  n2) is a product of the powers of 2, 3, 5 and 7. 

The one-dimensional Fourier transform 
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk} 
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The one-dimensional Fourier inverse transform 
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v1dcft((dcomplex*)x, kx, (dcomplex*)y, ky, n1, n2, isn, &icon); 

where: 

x dcomplex 

x[n2][kx] 

Input The complex data. 

See Comments on use. 

kx int Input C fixed dimension of array x. 

y dcomplex 

y[n1][ky] 

Output The complex transformed data. 

See Comments on use. 

ky int Input C fixed dimension of array y. 

n1 int Input Assuming that the length of the data transformed (n = n1  n2) is two-

dimensional data, the size of first dimension n1 must be a product of 

the powers of 2, 3, 5 and 7. 

n2 int Input Assuming that the length of the data transformed (n = n1  n2) is two-

dimensional data, the size of the second dimension, n2 must be a 

product of the powers of 2, 3, 5 and 7. 

isn int Input Either the transform or the inverse transform is indicated. 
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isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30001 The dimensions of arrays less than or equal to 0. Bypassed. 

30002 The C fixed dimensions are less than the actual 

dimensions. 

30008 The order of transform is not radix 2/3/5/7. 

30016 The invalid value for the parameter isn. 

3. Comments on use 

x and y 
If the one-dimensional data of n = n1  n2 is numbered k = 0 , ... , n  1, 

 k = k1  k2  n1 , k1 = 0, ... , n1  1 
  , k2 = 0, ... , n2  1 
 i = i1  i2  n2 , i1 = 0, ... , n2  1 
  , i2 = 0, ... , n1  1 

The input and output data are regarded as two-dimensional arrays with subscripts of [k2][k1] and [i2][i1], respectively. 

See Figure c_dm_v1dcft-1. 

 
kx 

n1 

n2 * 

x0 x1 xn1-1 

x2n1-1 xn1 

xn1(n2-1) xn1n2-1 

ky 

n2 

* 

y0 y1 yn2-1 

y2n2-1 yn2 

yn2(n1-1) yn2n1-1 

Input Array x Output Array y 

n1 

 
Figure c_dm_v1dcft-1. The input/Output data storage method 

 
General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4). 
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where, n = exp(2i/n). 

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively.  Normalization of the 

results may be required. 

4. Example program 

A one-dimensional FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
#define N1  4000 
#define N2  3000 
#define KX  (N1+1) 
#define KY  (N2+1) 
 
MAIN__() 
{ 
  int      isn, i, j, icon, ierr; 
  double   error; 
  dcomplex x[N2][KX], y[N1][KY]; 
 
  /* Set up the input data arrays */ 
 
#pragma omp parallel for shared(x) private(i,j) 
  for(i=0; i<N2; i++) { 
    for(j=0; j<N1; j++) { 
      x[i][j].re = N1*i+j+1; 
      x[i][j].im = 0.0; 
    } 
  } 
 
  /* Do the forward transform */ 
  isn = 1; 
  ierr = c_dm_v1dcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_v1dcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Do the reverse transform */ 
  isn = -1; 
  ierr = c_dm_v1dcft((dcomplex*)y, KY, (dcomplex*)x, KX, N2, N1, isn, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_v1dcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Find the error after the forward and inverse transform. */ 
  error = 0.0; 
 
  for(i=0; i<N2; i++) { 
    for(j=0; j<N1; j++) { 
      error = max(fabs(x[i][j].re)/N2/N1-(N1*i+j+1), error); 
      error = max(fabs(x[i][j].im)/N2/N1, error); 
    } 
  } 
 



c_dm_v1dcft 

448 

  printf("error = %e\n", error); 
  return(0); 
} 

5. Method 

Consult the entry for DM_V1DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v1dcft2 

One-dimensional discrete complex Fourier transforms (mixed radices of 

2, 3, 5 and 7) 

ierr = c_dm_v1dcft2(x, n, y, isn, &icon); 

1. Function 

This routine performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT. 

The length of data transformed n is a product of the powers of 2, 3, 5 and 7. 

The one-dimensional Fourier transform 
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk} 
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The one-dimensional Fourier inverse transform 
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v1dcft2(x, n, y, isn, &icon); 

where: 

x dcomplex x[n] Input Complex data. 

n int Input The length of the data transformed. n must be a product of the powers 

of 2, 3, 5 and 7. 

y dcomplex y[n] Input Transformed complex data. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30008 The order of transform is not radix 2/3/5/7. Bypassed. 

30016 The invalid notation parameter isn. 
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3. Comments on use 

General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4). 
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where, n = exp(2i/n). 

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the 

results may be required. 

4. Example program 

A one-dimensional FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N1  (1024) 
#define N2  (N1) 
#define N   (N1*N2) 
 
MAIN__() 
{ 
  dcomplex x[N], y[N], xx[N]; 
  double   tmp; 
  int      isn, icon, i; 
 
  for (i=0; i<N; i++) { 
    xx[i].re = x[i].re = (double)(i); 
    xx[i].im = x[i].im = 0.0; 
  } 
 
  isn = 1; 
  c_dm_v1dcft2(x, N, y, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  isn = -1; 
  c_dm_v1dcft2(y, N, x, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  tmp = 0.0; 
  for (i=0; i<N; i++) { 
    tmp = max((fabs(x[i].re/(double)N-xx[i].re)) 
              +(fabs(x[i].im/(double)N-xx[i].im)),tmp); 
  } 
 
  printf("error = %e\n", tmp); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_V1DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v1dmcft 

One-dimensional multiple discrete complex Fourier transforms (mixed 

radix of 2, 3, 5 and 7). 

ierr = c_dm_v1dmcft(x, kx, n, m, isn, &icon); 

1. Function 

The function c_dm_v1dmcft performs multiple one-dimensional complex Fourier transforms or its inverse transforms 

using a mixed radix FFT. 

The length of data transformed n is a product of the powers of 2, 3, 5 and 7. 

The one-dimensional Fourier transform 
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk} 
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The one-dimensional Fourier inverse transform 
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v1dmcft((dcomplex*)x, kx, n, m, isn, &icon); 

where: 

x dcomplex 

x[m][kx] 

Input The complex data. Store the data in x[i][j], i = 0 , ... , m  1, j = 

0, ... , n  1. 

  Output The complex transformed data. The data is stored x[i][j], i = 0, ... , 

m  1, j = 0, ... , n  1. 

kx int Input C fixed dimension of array x. 

n int Input The length of the data transformed must be a product of the powers of 

2, 3, 5 and 7. 

m int Input The multiplicity of the data transformed. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 
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The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30001 The dimensions of arrays less than or equal to 0. Bypassed. 

30002 The leading dimensions are less than the actual 

dimensions. 

30008 The order of transform is not radix 2/3/5/7. 

30016 The invalid value for the parameter isn. 

3. Comments on use 

General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4). 
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where, n = exp(2i/n). 

This function calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the 

results may be required. 

4. Example program 

Multiple one-dimensional FFTs are computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
#define N   2048 
#define M   256 
#define KX  (N+1) 
 
MAIN__() 
{ 
  int      isn, i, j, icon, ierr; 
  double   error; 
  dcomplex x[N][KX]; 
 
  /* Set up the input data arrays */ 
#pragma omp parallel for shared(x) private(i,j) 
  for(i=0; i<M; i++) { 
    for(j=0; j<N; j++) { 
      x[i][j].re = N*i+j+1; 
      x[i][j].im = 0.0; 
    } 
  } 
 
  /* Do the forward transform */ 
  isn = 1; 
  ierr = c_dm_v1dmcft((dcomplex*)x, KX, N, M, isn, &icon); 
 
  if (icon != 0) { 
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    printf("ERROR: c_dm_v1dmcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Do the reverse transform */ 
  isn = -1; 
  ierr = c_dm_v1dmcft((dcomplex*)x, KX, N, M, isn, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_v1dmcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Find the error after the forward and inverse transform. */ 
  error = 0.0; 
 
  for(i=0; i<M; i++) { 
    for(j=0; j<N; j++) { 
      error = max(fabs(x[i][j].re)/N-(N*i+j+1), error); 
      error = max(fabs(x[i][j].im)/N, error); 
    } 
  } 
 
  printf("error = %e\n", error); 
  return(0); 
} 

5. Method 

Consult the entry for DM_V1DMCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v1drcf 

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 

and 7) 

ierr = c_dm_v1drcf(x, kx, y, ky, n1, n2, isin, 

isn, &icon); 

1. Function 

The routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT. 

The data count n (= n1  n2) is a product of the powers of 2, 3, 5 and 7. 

One-dimensional Fourier transform 
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}. 
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One-dimensional Fourier inverse transform 
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}. 

 

1or1,

)/2exp(,

1,...,1,0,
1

0









rr

ni

njx

n

jkr
n

n

k
kj

 (2) 

2. Arguments 

The routine is called as follows: 

ierr = c_dm_v1drcf((double*)x, kx, (dcomplex*)y, ky, n1, n2, isin, isn, 

&icon); 

where: 

x double 

x[n2][kx] 

Input Real data. 

Store the dara in x[i][j], i=0, ... , n21, j=0, ... , n11. 

For the real to complex transform (isn = 1), data is input; for the 

complex to real transform (isn = 1), data is output.  For isn = 1, the 

input data is not saved. 

kx int Input C fixed dimension of array x. 

y dcomplex 

y[n1][ky] 

Input Transformed complex data. 

The data is stored in y[i][j], i=0, ... , n11, j=0, ... , n2/2. 

For the real to complex transform (isn = 1), data is output; for the 

complex to real transform (isn = 1), data is input. 

The input data is not guaranteed when isn = 1. 
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The complex data obtained from real data by Fourier transformation has 

the conjugate complex relation.  About half data is stored. 

ky int Input C fixed dimension of array y. (ky  n2/2  1) 

n1 int Input The size of the first dimension assuming that the real data to be 

transformed (n = n1  n2) is two-dimensional data. 

n1 must be a product of the powers of 2, 3, 5 and 7. 

n1n2 must be the length of the data sequence to be transformed. 

n2 int Input The size of the second dimension assuming that the real data to be 

transformed (n = n1  n2) is two-dimensional data. 

n2 must be a product of the powers of 2, 3, 5 and 7. 

n1n2 must be the length of the data sequence to be transformed. 

isin int Input The direction of transformation. 

isin = 1 for r = 1. 

isin = 1 for r = 1. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 kx < n1 

 ky < n2/2  1 

 n1 < 1 

 n2 < 1 

 isin  1, 1 

 isn  1, 1 

Bypassed. 

30008 The order of transform is not radix 2/3/5/7. 

3. Comments on use 

Input/Output array 
If one-dimensional data of n = n1  n2 is numbered k = 0 , ..., n  1, 

 k = k1  k2  n1 ,  k1 = 0, ... , n1  1 

  ,  k2 = 0, ... , n2  1 

 i = i1  i2  n2 ,  i1  = 0, ... , n2  1 

  ,  i2  = 0, ... , n1  1 

Real data and complex data are regarded as two-dimensional data with subscripts of [k2][k1] and [i2][i1], respectively.  

However, i1 = 0 , ... , n2/2 are stored in y. (See Figure c_dm_v1drcf-1.) 
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Figure c_dm_v1drcf-1. Input/Output data storage method 
 

General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4). 
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where, n = exp(2i/n). 

This routine calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the results 

may be required. 

complex conjugate relation 
The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by ¯ ). 

k = kn ,  k = 1, ..., n  1 

n = n1  n2 
i1 = 0, 1, ..., n2  1 
i2 = 0, 1, ..., n1  1 
If  k = i1  i2  n2 is assumed, 
n  k = n2  i1  (n1  1  i2)  n2 

The rest of data can be obtained from data numbered i1 = 1, ..., n2 /2 (the first part excluding zeros). 

performance 
The performance of this routine will be the best when the n can be factorized into adequately large n1 and n2 which are 

about the same size. 
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4. Example program 

A one-dimensional real FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N1  (1024) 
#define N2  (N1) 
#define KX  (N1+1) 
#define KY  (N2/2+2) 
 
MAIN__() 
{ 
  dcomplex y[N1][KY]; 
  double   x[N2][KX], xx[N2][KX], tmp; 
  int      isw, isin, icon, i, j; 
 
  for (i=0; i<N2; i++) { 
    for (j=0; j<N1; j++) { 
      xx[i][j] = x[i][j] = N1*i+j+1; 
    } 
  } 
 
  isin = 1; 
  isw  = 1; 
  c_dm_v1drcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon); 
  printf("icon = %d\n", icon); 
 
  isw  = -1; 
  c_dm_v1drcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon); 
  printf("icon = %d\n", icon); 
 
  tmp = 0.0; 
  for (i=0; i<N2; i++) { 
    for (j=0; j<N1; j++) { 
      tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp); 
    } 
  } 
 
  printf("error = %e\n", tmp); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_V1DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v1drcf2 

One-dimensional discrete real Fourier transform  (mixed radix of 2, 3, 5 

and 7) 

ierr = c_dm_v1drcf2(x, n, y, isin, isn, 

&icon); 

1. Function 

This routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT. 

The data count n is a product of the powers of 2, 3, 5 and 7. 

One-dimensional Fourier transform 
When {xj} is input, the transform defined by (1) below is calculated to obtain {nk}. 
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One-dimensional Fourier inverse transform 
When {k} is input, the transform defined by (2) below is calculated to obtain {xj}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v1drcf2(x, n, y, isin, isn, &icon); 

where: 

x double x[n] Input 

/Output 

Real data. Store the dara in x[i], i=0, ..., n  1. 

For the real to complex transform (isn = 1), data is input; for the 

complex to real transform (isn = 1), data is output. 

n int Input The size of the data to be transformed. 

n must be an even number and a product of the powers of 2, 3, 5 and 7. 

y dcomplex 

y[n/2+1] 

Output 

/Input 

Transformed complex data. About a half of the complex is stored in 

y[i], i=0, ..., n2/2. 

For the real to complex transform (isn = 1), data is output; for the 

complex to real transform (isn = 1), data is input. 

isin int Input The direction of transformation. 

isin = 1 for r = 1. 

isin = 1 for r = 1. 
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isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 n is not a multiple of 2 

 n  is not a product of the powers of 2, 3, 5 

and 7. 

 isin  1, 1 

 isn  1, 1 

Bypassed. 

3. Comments on use 

complex conjugate relation 
The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by ¯ ). 

k = kn ,  k = 1, ..., n  1   (excluding 0) 

General definition of Fourier transform 
The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4). 
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where, n = exp(2i/n). 

This routine calculates {nk} or {xj} corresponding to the left term of (3) or (4), respectively. Normalization of the results 

may be required. 

4. Example program 

A one-dimensional real FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N1  (1024) 
#define N2  (N1) 
#define N   (N1*N2) 
 
MAIN__() 
{ 
  dcomplex y[N/2+1]; 
  double   x[N], xx[N], tmp; 
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  int      isin, isn, icon, i; 
 
  for (i=0; i<N; i++) { 
    xx[i] = x[i] = (double)(i+1); 
  } 
 
  isin = 1; 
  isn  = 1; 
  c_dm_v1drcf2(x, N, y, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  isn  = -1; 
  c_dm_v1drcf2(x, N, y, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  tmp = 0.0; 
  for (i=0; i<N; i++) { 
    tmp = max(fabs(x[i]/(double)N-xx[i]),tmp); 
  } 
 
  printf("error = %e\n", tmp); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_V1DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v2dcft 

Two-dimensional discrete complex Fourier transforms (mixed radices of 

2, 3, 5 and 7). 

ierr = c_dm_v2dcft(x, kx, n1, n2, isn, &icon); 

1. Function 

The function c_dm_v2cdft performs a two-dimensional complex Fourier transform or its inverse Fourier transform using 

a mixed radix FFT. 

The size of each dimension of two-dimensional data (n1, n2) is a product of the powers of 2, 3, 5 and 7. 

The two-dimensional Fourier transform 
When {xj1j2} is input, the transform defined by (1) below is calculated to obtain {n1n2k1k2}. 
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The two-dimensional Fourier inverse transform 
When {k1k2} is input, the transform defined by (2) below is calculated to obtain {xj1j2}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v2dcft((dcomplex*)x, kx, n1, n2, isn, &icon); 

where: 

x dcomplex 

x[n2][kx] 

Input The complex data.  The data is stored in x[i][j], i = 0 , ... , n2  1, 

j = 0, ... , n1  1. 

  Output The complex transformed data.  The results are stored in x[i][j], i 

= 0, ... , n2  1, j = 0, ... , n1  1. 

kx int Input C fixed dimension of array x. 

n1 int Input The size n1 of data in the first dimension of the two-dimensional array 

to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 
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n2 int Input The size n2 of data in the second dimension of the two-dimensional 

array to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30001 The dimensions of arrays less than or equal to 0. Bypassed. 

30002 The leading dimensions are less than the actual 

dimensions. 

30008 The order of transform is not radix 2/3/5/7. 

30016 The invalid value for the parameter isn. 

3. Comments on use 

General definition of Fourier transform 
The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and 

(4). 
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where, n1 = exp(2i/n1), n2 = exp(2i/n2). 

This function calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of (3) or (4), respectively.  Normalization of 

the results may be required. 

4. Example program 

A two-dimensional FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
#define N1  4000 
#define N2  3000 
#define KX  (N1+400) 
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MAIN__() 
{ 
  int      isn, i, j, icon, ierr; 
  double   error; 
  dcomplex x[N2][KX]; 
 
  /* Set up the input data arrays */ 
#pragma omp parallel for shared(x) private(i,j) 
  for(i=0; i<N2; i++) { 
    for(j=0; j<N1; j++) { 
      x[i][j].re = N1*i+j+1; 
      x[i][j].im = 0.0; 
    } 
  } 
 
  /* Do the forward transform */ 
  isn = 1; 
  ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Do the reverse transform */ 
  isn = -1; 
  ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Find the error after the forward and inverse transform. */ 
  error = 0.0; 
 
  for(i=0; i<N2; i++) { 
    for(j=0; j<N1; j++) { 
      error = max(fabs(x[i][j].re)/(N2*N1)-(N1*i+j+1), error); 
      error = max(fabs(x[i][j].im)/(N2*N1), error); 
    } 
  } 
 
  printf("error = %e\n", error); 
  return(0); 
} 

5. Method 

Consult the entry for DM_V2DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v2drcf 

Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 

and 7) 

ierr = c_dm_v2drcf(x, k, n1, n2, isin, isn, 

&icon); 

1. Function 

The routine performs a two-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT. 

The size of each dimension of the two-dimensional data (n1, n2) can be a product of the powers of 2, 3, 5 and 7. 

The two-dimensional Fourier transform 
When {xj1j2} is input, the transform defined by (1) below is calculated to obtain {n1n2k1k2}. 
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The two-dimensional Fourier inverse transform  
When {k1k2} is input, the transform defined by (2) below is calculated to obtain {xj1j2}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v2drcf((double*)x, k, n1, n2, isin, isn, &icon); 

where: 

x double 

x[n2][k] 

Input 

/Output 

Two-dimensional real data is stored in x[i][j], i=0, ... , n21, 

j=0, ... , n11. 

For the real to complex transform (isn = 1), data is input; for the 

complex to real transform (isn = 1), data is output. 

  Output 

/Input 

The real and imaginary parts of the transformed complex data are stored 

as follows: 



 c_dm_v2drcf 

465 

The real and imaginary parts are stored in x[i][j][0], i=0, ... , 

n21, j=0, ... , n1/2 and x[i][j][1], i=0, ... , n21, j=0, ... , 

n1/2 respectively assuming that the array x was a three-dimensional 

array x[n2][k/2][2]. 

For the real to complex transform (isn = 1), data is output; for the 

complex to real transform (isn = 1), data is input. 

The complex data transformed Fourier has the complex conjugate 

relation.  And about half data is stored. 

k int Input C fixed dimension of array x. ( 2  (n1/2  1)) 

k must be an even number. 

n1 int Input The length n1 of data in the first dimension of the two- dimensional 

array to be transformed. 

n1 must be a value that can be a product of powers of 2, 3, 5 and 7. 

n2 int Input The length n2 of data in the second dimension of the two- dimensional 

array to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

isin int Input The direction of transformation. 

isin = 1 for r = 1. 

isin = 1 for r = 1. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 k < 2  (n1/2  1) 

 k is not an even number. 

 n1 < 1 

 n2 < 1 

 isin  1, 1 

 isn  1, 1 

Bypassed. 

30008 The order of transform is not radix 2/3/5/7. 

3. Comments on use 

General definition of Fourier transform 
The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and 

(4). 
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where, n1= exp(2i/n1), n2 = exp(2i/n2). 

This routine calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of (3) or (4), respectively.  Normalization of the 

results is required, if necessary. 

complex conjugate relation 
The results of the two-dimensional real Fourier transform that has the following complex conjugate relation (indicated by 

 ̄). 

k1k2 = 2211 knkn   

The remainder of the data is obtained from the data in k1 = 0, ..., n1/2 and k2 = 0, ..., n21. 

4. Example program 

A two-dimensional real FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N1  (2048) 
#define N2  (N1) 
#define K   ((N1/2+1)*2) 
 
MAIN__() 
{ 
  double x[N2][K], xx[N2][K], tmp; 
  int    isin, isn, icon, i, j; 
 
  for (i=0; i<N2; i++) { 
    for (j=0; j<N1; j++) { 
      xx[i][j] = x[i][j] = (double)(N2*i+j+1); 
    } 
  } 
 
  isin = 1; 
  isn  = 1; 
  c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  isn  = -1; 
  c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  tmp = 0.0; 
  for (i=0; i<N2; i++) { 
    for (j=0; j<N1; j++) { 
      tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp); 
    } 
  } 
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  printf("error = %e\n", tmp); 
 
  return(0); 
} 

5. Method 

Consult the entry for DM_V2DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v3dcft 

Three-dimensional discrete complex Fourier transforms (mixed radices 

of 2, 3, 5 and 7). 

ierr = c_dm_v3dcft(x, kx, n1, n2, n3, isn, 

&icon); 

1. Function 

The function c_dm_v3dcft performs a three-dimensional complex Fourier transform or its inverse Fourier transform using 

a mixed radix FFT. 

The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7. 

The three-dimensional Fourier transform 
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}. 
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The three-dimensional Fourier inverse transform 
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v3dcft((dcomplex*)x, kx, n1, n2, n3, isn, &icon); 

where: 

x dcomplex 

x[n3][n2][kx] 

Input The complex data.  Data is stored in x[i][j][k], i = 0 , ... , n3  1, 

j = 0, ... , n2  1, k = 0, ... , n1  1. 

  Output The complex transformed data. The results are stored in x[i][j][k], 
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i = 0, ... , n3  1, j = 0, ... , n2  1, k = 0, ... , n1  1. 

kx int Input C fixed dimension of array x. 

n1 int Input The length n1 of data in the first dimension of the three- dimensional 

array to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n2 int Input The length n2 of data in the second dimension of the three- 

dimensional array to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n3 int Input The length n3 of data in the third dimension of the three- dimensional 

array to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30001 The dimensions of arrays less than or equal to 0. Bypassed. 

30002 The leading dimensions are less than the actual 

dimensions. 

30008 The order of transform is not radix 2/3/5/7. 

30016 The invalid value for the parameter isn. 

3. Comments on use 

General definition of Fourier transform 
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and 

(4). 
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where,n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3). 

This function calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-hand-side term of (3) or (4), respectively.  

Normalization of the results may be required. 
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4. Example program 

A three-dimensional FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
#define N1  400 
#define N2  100 
#define N3  200 
#define KX  (N1+40) 
 
MAIN__() 
{ 
  int      isn, i, j, k, icon, ierr; 
  double   error; 
  dcomplex x[N3][N2][KX]; 
 
  /* Set up the input data arrays */ 
#pragma omp parallel for shared(x) private(i,j) 
  for(k=0; k<N3; k++) { 
    for(i=0; i<N2; i++) { 
      for(j=0; j<N1; j++) { 
        x[k][i][j].re = N1*i+j+1; 
        x[k][i][j].im = 0.0; 
      } 
    } 
  } 
 
  /* Do the forward transform */ 
  isn = 1; 
  ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Do the reverse transform */ 
  isn = -1; 
  ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon); 
 
  if (icon != 0) { 
    printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon); 
    exit(1); 
  } 
 
  /* Find the error after the forward and inverse transform. */ 
  error = 0.0; 
 
  for(k=0; k<N3; k++) { 
    for(i=0; i<N2; i++) { 
      for(j=0; j<N1; j++) { 
        error = max(fabs(x[k][i][j].re)/(N3*N2*N1)-(N1*i+j+1), error); 
        error = max(fabs(x[k][i][j].im)/(N3*N2*N1), error); 
      } 
    } 
  } 
 
  printf("error = %e\n", error); 
  return(0); 
} 

5. Method 

Consult the entry for DM_V3DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v3dcft2 

Three-dimensional discrete complex Fourier transforms (mixed radices 

of 2, 3, 5 and 7). 

ierr = c_dm_v3dcft2(x, k1, k2, n1, n2, n3, 

isn, &icon); 

1. Function 

The function c_dm_v3dcft2 performs a three-dimensional complex Fourier transform or its inverse Fourier transform 

using a mixed radix FFT. 

The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7. 

The three-dimensional Fourier transform 
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}. 
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The three-dimensional Fourier inverse transform 
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v3dcft2((dcomplex*)x, k1, k2, n1, n2, n3, isn, &icon); 

where: 

x dcomplex 

x[n3][k2][k1] 

Input The complex data.  Data is stored in x[i][j][k], i = 0 , ... , n3  1, 

j = 0, ... , n2  1, k = 0, ... , n1  1. 

  Output The complex transformed data. The results are stored in x[i][j][k], 
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i = 0, ... , n3  1, j = 0, ... , n2  1, k = 0, ... , n1  1. 

k1 int Input The size of the third dimension of input data arrays x. (  n1) 

k2 int Input The size of the second dimension of input data arrays x. (  n2) 

n1 int Input The length n1 of data in the first dimension of the three- dimensional 

array to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n2 int Input The length n2 of data in the second dimension of the three- 

dimensional array to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n3 int Input The length n3 of data in the third dimension of the three- dimensional 

array to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 n1, n2 or n3 less than or equal to 0. 

 k1 < n1 

 k2 < n2 

 invalid value for the parameter isn. 

Bypassed. 

30008 The order of transform is not radix 2/3/5/7. 

3. Comments on use 

General definition of Fourier transform 
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and 

(4). 
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where,n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3). 
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This function calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-hand-side term of (3) or (4), respectively.  

Normalization of the results may be required. 

4. Example program 

A three-dimensional FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define N1 128 
#define N2 128 
#define N3 128 
#define K1 (N1+1) 
#define K2 N2 
 
int MAIN__() 
{ 
  dcomplex x[N3][K2][K1]; 
  double   error; 
  int      i, j, k, isn, icon; 
 
#pragma omp parallel for shared(x) private(i,j) 
  for (k=0; k<N3; k++) { 
    for (j=0; j<N2; j++) { 
      for (i=0; i<N1; i++) { 
        x[k][j][i].re = N1*j+i+1; 
        x[k][j][i].im = 0.0; 
      } 
    } 
  } 
 
  isn = 1; 
  c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon); 
  if (icon != 0) printf("error occurred : %d \n",icon); 
 
  isn = -1; 
  c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon); 
  if (icon != 0) printf("error occurred : %d \n",icon); 
 
  /* find the error after the forward and inverse transform. */ 
  error = 0.0; 
  for(k=0; k<N3; k++) { 
    for(j=0; j<N2; j++) { 
      for(i=0; i<N1; i++) { 
        error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), error); 
        error = max(fabs(x[k][j][i].im)/(N3*N2*N1), error); 
      } 
    } 
  } 
 
  printf("error = %e\n", error); 
  return(0); 
} 

5. Method 

Consult the entry for DM_V3DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v3dcpf 

Three-dimensional prime factor discrete complex Fourier transforms. 

ierr = c_dm_v3dcpf(x, k1, k2, n1, n2, n3, isn, 

&icon); 

1. Function 

The function c_dm_v3dcpf performs a three-dimensional complex Fourier transform or its inverse Fourier transform. 

The size of each dimension of three-dimensional data (n1, n2, n3) must satisfy the following condition. 

 The size must be expressed by a product of a mutual prime factor p, selected from the following 

numbers: 

factor p (p  {2, 3, 4, 5, 7, 8, 9, 16, 25}) 

The three-dimensional Fourier transform 
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}. 
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The three-dimensional Fourier inverse transform 
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v3dcpf((dcomplex*)x, k1, k2, n1, n2, n3, isn, &icon); 

where: 
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x dcomplex 

x[n3][k2][k1] 

Input The complex data.  Data is stored in x[i][j][k], i = 0 , ... , n3  1, 

j = 0, ... , n2  1, k = 0, ... , n1  1. 

  Output The complex transformed data. The results are stored in x[i][j][k], 

i = 0, ... , n3  1, j = 0, ... , n2  1, k = 0, ... , n1  1. 

k1 int Input The size of the third dimension of input data arrays x. (  n1) 

k2 int Input The size of the second dimension of input data arrays x. (  n2) 

n1 int Input The length n1 of data in the first dimension of the three- dimensional 

array to be transformed. 

n2 int Input The length n2 of data in the second dimension of the three- 

dimensional array to be transformed. 

n3 int Input The length n3 of data in the third dimension of the three- dimensional 

array to be transformed. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

20000 n1, n2 or n3 can not be factored into the product of 

the factors in 2, 3, 4, 5, 7, 8, 9, 16 and 25. 

Bypassed. 

30000 One of the following has occurred: 

 n1, n2 or n3 less than or equal to 0. 

 k1 < n1 

 k2 < n2 

 invalid value for the parameter isn. 

3. Comments on use 

General definition of Fourier transform 
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and 

(4). 
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where,n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3). 
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This function calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-hand-side term of (3) or (4), respectively.  

Normalization of the results may be required. 

4. Example program 

A three-dimensional FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b)  ((a) > (b) ? (a) : (b)) 
 
#define N1 40 
#define N2 240 
#define N3 90 
#define K1 N1 
#define K2 N2 
 
int MAIN__() 
{ 
  dcomplex x[N3][K2][K1]; 
  double   error; 
  int      i, j, k, isn, icon; 
 
#pragma omp parallel for shared(x) private(i,j) 
  for (k=0; k<N3; k++) { 
    for (j=0; j<N2; j++) { 
      for (i=0; i<N1; i++) { 
        x[k][j][i].re = N1*j+i+1; 
        x[k][j][i].im = 0.0; 
      } 
    } 
  } 
 
  isn = 1; 
  c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon); 
  if (icon != 0) printf("error occurred : %d \n",icon); 
 
  isn = -1; 
  c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon); 
  if (icon != 0) printf("error occurred : %d \n",icon); 
 
  /* find the error after the forward and inverse transform. */ 
  error = 0.0; 
  for(k=0; k<N3; k++) { 
    for(j=0; j<N2; j++) { 
      for(i=0; i<N1; i++) { 
        error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), error); 
        error = max(fabs(x[k][j][i].im)/(N3*N2*N1), error); 
      } 
    } 
  } 
 
  printf("error = %e\n", error); 
  return(0); 
} 

5. Method 

Consult the entry for DM_V3DCPF in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v3drcf 

Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 

and 7) 

ierr = c_dm_v3drcf(x, k, n1, n2, n3, isin, 

isn, &icon); 

1. Function 

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT. 

The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7. 

The three-dimensional Fourier transform 
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}. 
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The three-dimensional Fourier inverse transform 
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v3drcf((double*)x, k, n1, n2, n3, isin, isn, &icon); 

where: 

x double 

x[n3][n2][k] 

Input 

/Output 

Three-dimensional real data is stored in x[i][j][k], i=0, ... , n3  

1, j=0, ... , n2  1, k=0, ... , n1  1. 
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For the real to complex transform (isn = 1), data is input; for the 

complex to real transform (isn = 1), data is output. 

  Output 

/Input 

The real and imaginary parts of the transformed complex data are stored 

as follows: 

The real and imaginary parts are stored in x[i][j][k][0], i=0, ... , 

n3  1, j=0, ... , n2  1, k=0, ... , n1/2 and x[i][j][k][1], 

i=0, ... , n3  1, j=0, ... , n2  1, k=0, ... , n1/2 respectively 

assuming that the array x was a four-dimensional array 

x[n3][n2][k/2][2]. 

For the real to complex transform (isn = 1), data is output; for the 

complex to real transform (isn = 1), data is input. 

The complex data obtained from real data by Fourier transformation has 

the complex conjugate relation.  And about half data is stored. 

k int Input C fixed dimension of array x. (  2  (n1/2  1)) 

k must be an even number. 

n1 int Input The length n1 of real data in the first dimension to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n2 int Input The length n2 of real data in the second dimension to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n3 int Input The length n3 of real data in the third dimension to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

isin int Input The direction of transformation. 

isin = 1 for r = 1. 

isin = 1 for r = 1. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 k < 2  (n1/2  1) 

 k is not an even number. 

 n1 < 1 

 n2 < 1 

 n3 < 1 

 isin  1, 1 

 isn  1, 1 

Bypassed. 

30008 The order of transform is not radix 2/3/5/7. 

3. Comments on use 

General definition of Fourier transform 
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and 

(4). 
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where, n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3). 

This routine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left term of (3) or (4), respectively. The 

normalization of the results may be required. 

complex conjugate relation 
The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by  ̄). 

k1k2k3 = 332211 knknkn   

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2  1, and k3 = 0, ..., n3  1. 

4. Example program 

A three-dimensional real FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N1  (128) 
#define N2  (N1) 
#define N3  (N1) 
#define K   ((N1/2+1)*2) 
 
MAIN__() 
{ 
  double x[N3][N2][K], xx[N3][N2][K], tmp; 
  int    isin, isn, icon, i, j, k; 
 
  for (i=0; i<N3; i++) { 
    for (j=0; j<N2; j++) { 
      for (k=0; k<N1; k++) { 
        xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1); 
      } 
    } 
  } 
 
  isin = 1; 
  isn  = 1; 
  c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  isn  = -1; 
  c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  tmp = 0.0; 
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  for (i=0; i<N3; i++) { 
    for (j=0; j<N2; j++) { 
      for (k=0; k<N1; k++) { 
        tmp = max(fabs(x[i][j][k]/(double)N1/(double)N2/(double)N3-xx[i][j][k]),tmp); 
      } 
    } 
   } 
 
  printf("error = %e\n", tmp); 
 
  return(0); 
} 
        
 

5. Method 

Consult the entry for DM_V3DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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c_dm_v3drcf2 

Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 

and 7) 

ierr = c_dm_v3drcf2(x, k1, k2, n1, n2, n3, 

isin, isn, &icon); 

1. Function 

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT. 

The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of the powers of 2, 3, 5 and 7. 

The three-dimensional Fourier transform 
When {xj1j2j3} is input, the transform defined by (1) below is calculated to obtain {n1n2n3k1k2k3}. 
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The three-dimensional Fourier inverse transform 
When {k1k2k3} is input, the transform defined by (2) below is calculated to obtain {xj1j2j3}. 
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2. Arguments 

The routine is called as follows: 

ierr = c_dm_v3drcf2((double*)x, k1, k2, n1, n2, n3, isin, isn, &icon); 

where: 

x double 

x[n3][k2][k1] 

Input 

/Output 

Three-dimensional real data is stored in x[i][j][k], i=0, ... , n3  

1, j=0, ... , n2  1, k=0, ... , n1  1. 
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For the real to complex transform (isn = 1), data is input; for the 

complex to real transform (isn = 1), data is output. 

  Output 

/Input 

The real and imaginary parts of the transformed complex data are stored 

as follows: 

The real and imaginary parts are stored in x[i][j][k][0], i=0, ... , 

n3  1, j=0, ... , n2  1, k=0, ... , n1/2 and x[i][j][k][1], 

i=0, ... , n3  1, j=0, ... , n2  1, k=0, ... , n1/2 respectively 

assuming that the array x was a four-dimensional array 

x[n3][k2][k1/2][2]. 

For the real to complex transform (isn = 1), data is output; for the 

complex to real transform (isn = 1), data is input. 

The complex data obtained from real data by Fourier transformation has 

the complex conjugate relation.  And about half data is stored. 

k1 int Input The size of the third dimension of input data arrays x.(  2  (n1/2  

1)) 

k1 must be an even number. 

k2 int Input The size of the second dimension of input data arrays x. (  n2) 

n1 int Input The length n1 of real data in the first dimension to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n2 int Input The length n2 of real data in the second dimension to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

n3 int Input The length n3 of real data in the third dimension to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

isin int Input The direction of transformation. 

isin = 1 for r = 1. 

isin = 1 for r = 1. 

isn int Input Either the transform or the inverse transform is indicated. 

isn = 1 for the transform. 

isn = 1 for the inverse transform. 

icon int Output Condition code. See below. 

The complete list of condition codes is: 

Code  Meaning  Processing 

0 No error. Completed. 

30000 One of the following has occurred: 

 k1 < 2  (n1/2  1) 

 k1 is not an even number. 

 k2 < n2 

 n1 < 1 

 n2 < 1 

 n3 < 1 

 isin  1, 1 

 isn  1, 1 

Bypassed. 

30008 The order of transform is not radix 2/3/5/7. 
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3. Comments on use 

General definition of Fourier transform 
The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and 

(4). 
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where, n1 = exp(2i/n1), n2 = exp(2i/n2), n3 = exp(2i/n3). 

This routine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left term of (3) or (4), respectively. The 

normalization of the results may be required. 

complex conjugate relation 
The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by  ̄). 

k1k2k3 = 332211 knknkn   

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2  1, and k3 = 0, ..., n3  1. 

4. Example program 

A three-dimensional real FFT is computed. 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include "cssl.h" /* standard C-SSL header file */ 
 
#define max(a,b) ((a) > (b) ? (a) : (b)) 
#define N1  (128) 
#define N2  (N1) 
#define N3  (N1) 
#define K1  ((N1/2+1)*2) 
#define K2  (N2+1) 
 
MAIN__() 
{ 
  double x[N3][K2][K1], xx[N3][K2][K1], tmp; 
  int    isin, isn, icon, i, j, k; 
 
  for (i=0; i<N3; i++) { 
    for (j=0; j<N2; j++) { 
      for (k=0; k<N1; k++) { 
        xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1); 
      } 
    } 
  } 
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  isin = 1; 
  isn  = 1; 
  c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  isn  = -1; 
  c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon); 
  printf("icon = %d\n", icon); 
 
  tmp = 0.0; 
  for (i=0; i<N3; i++) { 
    for (j=0; j<N2; j++) { 
      for (k=0; k<N1; k++) { 
        tmp = max(fabs(x[i][j][k]/(double)N1/(double)N2/(double)N3-xx[i][j][k]),tmp); 
      } 
    } 
   } 
 
  printf("error = %e\n", tmp); 
 
  return(0); 
} 

 
 

5. Method 

Consult the entry for DM_V3DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide. 
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