08
FUJITSU

FUJITSU Software
Technical Computing Suite V4.0L20

Job Operation Software
API user's Guide for Scheduler API

J2UL-2463-02ENZ0(01)
June 2020

Preface

Purpose of This Manual

This document describes the scheduler plugin function (scheduler API), which is a part of the job operation management function of the "Job
Operation Software" included in Technical Computing Suite.

Intended Readers
This manual is intended for the administrator who operates and manages interconnects with the Job Operation Software.
The manual assumes that readers have the following knowledge:
- Basic Linux knowledge
- General knowledge of the Job Operation Software from the "Job Operation Software Overview"

- General knowledge of the job operation management function from the "Job Operation Software Administrator's Guide for Job
Management"

Organization of This Manual
This manual is organized as follows.
Chapter 1 Overview of Scheduler Plugin Function
Describes the scheduler plugin function.
Chapter 2 Use of Scheduler Plugin Functions
Describes how to use the scheduler plugin function.
Appendix A Processing of the Job Scheduler Process and Log Messages Output at Failure of the Processing

Describes details of the processing performed at the start and end of a process of the job scheduler when the scheduler plugin function
is used, and behaviors when the processing fails.

Appendix B Reference: Common to the Scheduler APIs
Describes structures, definitions, and other issues common to the scheduler API.

Appendix C Reference: Data Structures Relevant to Job Information
Describes data structures relevant to job information.

Appendix D Reference: Data Structures Relevant to Resource Group Information
Describes data structures relevant to resource group information.

Appendix E Reference: Data Structures Relevant to Resource Unit Information
Describes data structures relevant to resource unit information.

Appendix F Reference: API Functions That Can be Used From the Job Selection Class
Describes the API functions that can be used from the job selection class and are provided by the job scheduler function.

Appendix G Reference: Data Structures Relevant to the Job Selection Class
Describes data structures relevant to the job selection class.

Appendix H Reference: Data Structure Relevant to the Scheduler Plugin Manager
Describes data structures relevant to the scheduler plugin manager.

Appendix | Reference: Constants and Functions of the Job Selection Plugin

Describes the constants and functions that the job selection class must define.

Notation Used in This Manual

Notation of model names

In this manual, the computer that based on Fujitsu A64FX CPU is abbreviated as "FX server", and FUJITSU server PRIMERGY as
"PRIMERGY server" (or simply "PRIMERGY™).

Also, specifications of some of the functions described in the manual are different depending on the target model. In the description of
such a function, the target model is represented by its abbreviation as follows:

[FX]: The description applies to FX servers.

[PG]: The description applies to PRIMERGY servers.

Administrators

The Job Operation Software has different types of administrators: system administrator, cluster administrator, and job operation
administrator. However, they may all be represented as just "administrator” in this document. In such cases, an administrator who
manages the system usually means the system administrator or cluster administrator. An administrator who manages job operations
means the cluster administrator or job operation administrator.

Symbols in This Manual

This manual uses the following symbols.

Qn Note

The Note symbol indicates an item requiring special care. Be sure to read these items.

2, See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

The See symbol indicates the written reference source of detailed information.

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

_-ﬂ Information

Export Controls
Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.
Trademarks
- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of Publication and Version

Version Manual code
June 2020, Version 2.1 J2UL-2463-02ENZ0(01)
March 2020, Second version J2UL-2463-02ENZ0(00)
January 2020, First version J2UL-2463-01ENZ0(00)

Copyright
Copyright FUJITSU LIMITED 2020

Update history

Also added the enumeration type pjsplg_net_route _t.

Changed the look according to product upgrades.

Changes Location Version
Fixed errata. - 2.1
Added the member pjsplg_net_route_t net_route to the structure PjsplgJobSubmitParam_t that | C.1.6 2
represents the job submission parameters. C.35

Al rights reserved.

The information in this manual is subject to change w thout notice.

Contents

Chapter 1 Overview of Scheduler PIUGIN FUNCHON.oii ettt e e e e et e e e e e et be e e e e e e anneeeeaeeaanneaeeens 1
1.1 SCEAUIET PIUGIN FUNCEION. ...ttt bbbkt b bbb bbbt e bbb bbb bbbt b bbb en e 1
1.2 Programming Model Of the PIUGIN LIDIAIY.........oooi ettt sttt se et ee et et e e ene e neeae e 2
1.3 Constitution OF the SCREAUIET APL......c. ittt b et e bt b s £ ek e b bt e bR e e bbbt e b e e e bt st eae s b et ebennene b 2

1.3.1 Functions That the Plugin Library MuUSt IMPIEMENT.........cooviiiiiiiic ettt b et b s e 2
1.3.2 Built-in Functions Provided by the JOD SChETUIET ...t 4
1.4 Scheduler API Types

Chapter 2 Use of Scheduler PIUGIN FUNCHONS.oiiiiiiiie ettt e st e e et e s e e s b e e e s e e e nnneeeneneeeas 6

2.1 HOW 10 Create @ PIUGIN LIDFAIY......c.ciiiieiiiiit ettt bbbt bbbkt bbbt n bbbt 6
2.1.1 Rules for Creating @ PIUGIN LIDIAIY.........ccoiiieiiiecesee ettt b et 6
2.1.2 Implementation Example of the PIUGIN LIDFAIY........cooiiiiiiece ettt e 7
2.1.3 Operation when Abnormality is Detected in the PIUGIn LIDrary........ccccoeiiiiiiiiiiiiicse et 9

2.2 Plugin Library INCOrPOration SEHINGS.eeirietiutiiietesiiseetestsist ettt ettt bbb es et b et b et bbbttt b et 9

2.3 Scheduling Operation When the SCheduler AP IS USB..........oiiiieee ettt sttt et e e 11
2.3.1 BasiC SChEAUIING DENAVION ..ottt bttt b et a bbb h e bt b bbbt eb et b et e 11
2.3.2 Scheduling behavior when an event occurrence affects SCheduling reSUILS..........ccoieviiriciiiericisee s 12

2.4 Notes on Using the Scheduler PIUGIN FUNCHION. ..ottt 13

Appendix A Processing of the Job Scheduler Process and Log Messages Output at Failure of the Processing.................. 14

A.1 Process Start Processing 0f the JOD SCREAUIET ..ottt
A.L.1 ReAAING the PIUGIN LIDIAIY.....ciiiiiiiiiiiiiet ittt bbb bbb bbb bbbkt e
A.1.2 Verifying the Validity 0f the PIUGIN LIDIAIY ..o
A.1.3 Calling the Initialization Function of the PIUGIN LIDFArY........cc.ccoriiiiiiiiiiiee et
A.1.4 Creating an Instance of the Job SEIECTION CIASS..........cviviiiiiiciiec ettt ere v

A.2 Processing on Normal End of @ JOD SChedUIET PrOCESS.........c.viiiiieiiiieirsieie s
A.2.1 Releasing the Instance of the SChEAUIING CIASS. ...ttt ettt
A.2.2 Calling the Termination Function of the PIUGIN LIDIAry..........cociiii e
A.2.3 Releasing the Plugin Library.........ccccocovvveivieiiinicieseiene,

A.3 Processing When a Process of the Job Scheduler Terminates Abnormally

Appendix B Reference: Common t0 the SCHEAUIET APIS........cuiiiiiii ittt et e e e e e e s e st e e e e e enaenes 18
B L SETUCTUIE. ...ttt bbb R E e E e R Rt e R R e R e R R bR e Rt 18
B 1.1 PJSPIGSUDJODIA L. ..eviiitciie ekt bR R bbb bbbt 18
B.2 MACIO DEIINITIONS. ...ttt s e E bR e R bRt e Rt e b bt e b bt e bt n bt n s 18
B.2.1 PISPLG_API_VERSION......coititttttitititetetiteteteiet sttt st bbbt b bbb bbb bbb bbb b bbb b e bbb b b eb b b e b e bbb e b e b b e b b e b b e b e b et e b e b ebeb et ebebena 18
B.2.2 PISPLG_NUM_MAX_RSCGRP.....c.cututtiiiiiiiiiiiiiiiiiiiiitieittities i tses it ese sttt es s tstses s eatses st es et sttt 18

B3 TYPE DBFINITIONS. ...ttt bbbkt b b e b E e bbb e E bt H s e bRt E b bbb e bbb
2 0 o] o] o N (1o [OO
I o] o] [o I o [0 [OO OO TO TSP TSRS TOURUTPOUPRPRRRTO

B.4 Enumeration Types....

B.4.1 pjsplg_result_t.....

B.4.2 pjsplg_error_t......

SR o] 1 o] o TR o]] 1Y LN SOOI
B.4.4 PISPIG_JODMOUEI_L... .ttt bbb bbb R E bbbt bbb 20

BL5 VATIADIE. ... R R R R R R R R R R Rt r e n s 20
TN A o T o] o =T (ol o[- T OO OO SO O U TSUTPRPRTRRU 21

Appendix C Reference: Data Structures Relevant to JOD INfOrMation............oooiiiiiiieiiiiic e 22

. SEIUCTUIE ...ttt h et bt b h st h et E e b s R e b e R e st e R £ b e b £ R e b £ 0 e h £ AR e e e b £ 0 b e R et e b £ e et e b e bt et e bt bt e e n e b e 22
(O I A 1Yo o= o o TSt=To I T I SO PSP 22
C.1.2 PJSPIGNOUESNAPE L. etttk b bbbt b b sk e e bt b e s e b e e e b £ e Eeh e e b e e e bt e b e R b e bt e eb e nb s e e bt st e bt et e b et 22
C.1.3 PjsplgNodeReq_t...........

C.1.4 PjsplgVVnodeReq_t
(O o 1Yo (o] Tod = o [SO OSSO
C.1.6 PJSPIGIODSUDMITPAIAM _f....iiiteiieiiiteteisieieie sttt bttt b et e et e b et e b et e e b sttt et e st et et e st ne b et ne e et enenn 24

C.1.7 PjSPIGIODVArTADIEPAIAM _T.......ceiitiiiiiitiie ettt bbbtk b etk e ekt b et b e b e bt e b et e b e b e bt et et et e b e st et e b 26

(O = o 1Y o] [0 5101] o] o T SO 28
C.2 IMACTO DFINITIONS. ...tttk e bbb e E bbb e R e bbb bbb bbbt b bt 29
C.2.1 PJSPLG_ELAPSED_TIME_VALUE_UNLIMITED........ccectttttttetitiueteieiiieieieieieseieseieseiesesesesssssesese bbb sesssesebesssesesesesssesesssesenas 29
C.2.2 PISPLG_JOB_ATTR X .ottt bbbt bbbt b bbbt 29
C.3 ENUMEIALION TYPES...utitveteteiitetesesistetest ettt bt se st bkt se b bt bk s e s bbbt b b s €10 b b s e e e b b s £ £ b b s e b bR bbbt e e bbbt bt 30
C.3.1 pjSplg_joh_elapSea_tiME_MOUE_L......cccveireriirirecieires et n bbbt n et 30
C.3.2 pjsplg_job_rSC_type to..cccioeeieieiriese e OSSR e 30
C.3.3 pjsplg_node_req_type_t....... ettt e s 30
€304 PJSPIG_JOD_SEAE T....eiveteiiieeetee itttk b bbb R R h bR bR R Rt n ket e e 31
(OB o] 1 o (o T L= A (U1 SOOI 31
Appendix D Reference: Data Structures Relevant to Resource Group INformation.............ccceeviieeiniieenicc e 32
D1 SHIUCTUIE ...ttt bbb bR bR E bbb bbb bbb bbb
D.1.1 PJSPIGRSCOIMPCONT ...ttt et bbb bt bbb e bt e bbb bbb e bbbtk
(DA 1 o] [0 ST o o T OO OSSPSR

D.2 Macro Definitions......
D.2.1 PJSPLG_MAX_RSCGRP_NAME_LEN

Appendix E Reference: Data Structures Relevant to Resource Unit INformation............cccccveveeiiiiiiiic e 34
ot I 1 (] PSSR 34
I S o] o | {T o0 T | A OO SRS ORPPTRSRN 34

E.2 IMIACTO DEFINITIONS.cuieieiicte ettt b ettt et et e s b e s besbe s b e ebeeheeseeseeeesbesbesbeebeeheeasensenb et e abesaesheeReensesseseebeseestestesteeteereennens 34
E.2.1 PISPLG_MAX_RSCUNIT_NAME_LEN. ...t tiitrieeiiise et sesieie et te e esssse e steses e seseessesesesessesesensssssesesessesensssnses 34

Appendix F Reference: API Functions That Can be Used From the Job Selection Class
FLL SETUCTUN. ..
F.1.1 PjsplgJobSelectClassApi_t

Appendix G Reference: Data Structures Relevant to the Job Selection Class.........ccccooviiiiiie i 39
G L SEIUCTUIE. ...ttt etttk b etk b etk e ek b e st E b e b e R oA e E £ 82 h €A E oAb e E €A Eeh £ a8 £ o e eh £ 1EeH £ 4 h e E e b £ A E 2R e e b€ A Eeb £ e b e e eR e A b e bt e b et e bt e b e bt e b et et e e b e abin 39
G. 1.1 PJSPIGIODSEIECICIASS L. e.evviriiteieniiet etttk bbbkt e bbbttt bbbttt 39
Appendix H Reference: Data Structure Relevant to the Scheduler Plugin Manager..........ccuveveeeiiiieiee e i 42

H.L SETUCTUIE....ee ettt ettt e e sseesbe e teesteenteeeeaneeeneesnnenraens
H.1.1 PjsplgManager_t

Appendix | Reference: Constants and Functions of the Job Selection PlUgin.............ooiiiiiiiiiii e 44
1.1 IMIBCTO DIBFINMITIONS. ...ttt e Rt R bR E bR bt e Rt e b bt e b bt e e n et n e 44
1L PISPLG_DEFINE ..ottt ettt sttt b bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb b bbb b e bbb e b e b bbb bbb b e bbb bbb b erenas 44

L2 FUNCHIONS. ...ttt E ettt 44
L2, L PIUGIN_INTE() vtttk bk e b e R e h R e R R R e Rt R Rt n et 44

2 o1 1N 1o 1 T OSSOSO 45

|Chapter 1 Overview of Scheduler Plugin Function

The Job Operation Software provides a function that incorporates an original scheduling algorithm created by the job operation
administrator into the job scheduler to replace the scheduling algorithm of the job operation management function with it. This function is
called the "scheduler plugin function.” Use of the scheduler plugin function allows you to apply an optimal scheduling algorithm to the job
operation.

1.1 Scheduler Plugin Function

An original scheduling algorithm can be incorporated by replacing a part of the processing unit of the job scheduler with a module (shared
library) created by the job operation administrator. The following figure shows the internal structure of the job scheduler and relations with
the modules (job manager and commands).

Figure 1.1 Internal Structure of the Job Scheduler and the Processing Unit that a Plugin Can Replace With Another

Command

pjsub | | pjstat

I r —> Handing over of data

Module (process)

Job manager

ry i1 Processing unit
T leeet in A module
Job scheduler Job scheduler | .. ===7 Processing unit that
T I R t._-! a scheduler plugin can
| i Data sending unit j replace with another
............... e

=1 Data/Event processing
Overall control unit | L___! unit of the job scheduler

i =

i Job execution |

- ! Resource 1 | 1

Job selection | 5 : i il request

procassing unit | | salen_hm 1T PrOCEssing
o e) mecessmgumt | et

rmm———————
------------ i
1
1

The job scheduler is a module that allocates resources according to the job priority and determines the order of executing jobs (scheduled
time of job execution start). It operates in coordination with the job manager that has interfaces with commands. The job scheduler consists
of the following processing units.

Data receiving unit
A processing unit that receives data sent from the job manager. The types of received data include those indicating job submission,
change in the node state, change in the system setting, etc. The received data is handed over to the overall control unit.

Overall control unit

A processing unit that controls the start and end of job scheduling. Triggered by data received from another processing unit, it
discontinues the scheduling being performed or starts new scheduling. When discontinuing scheduling being performed, it retrieves the
job being processed in each processing unit.

Job selection processing unit

A processing unit that prioritizes submitted jobs according to the job selection policy, and sorts them in descending order of the priority
levels. It hands the jobs to the resource selection processing unit in sequence beginning with the one with the highest priority level. This
processing unit and the resource selection processing unit cooperate with each other to implement the job scheduler function.

Resource selection processing unit
This unit, beginning with the job with the highest priority level determined by the job selection processing unit, allocates resources
dedicated for each job (compute nodes, custom resources, etc.) while being aware of the number of requested nodes, elapse time limit

value, etc., and determines the scheduled time of job execution start. It hands over a job for which resources have been selected to the
job execution request processing unit. This processing unit and the job selection processing unit cooperate with each other to implement
the job scheduler function.

- Job execution request processing unit
This unit requests the job manager to execute a job when it is the scheduled execution start time of the job determined by the resource
selection processing unit.

The scheduler plugin function provides an API (Application Programming Interface) to replace the job selection processing unit, which is
one of the above processing units, with a unique scheduling algorithm. This API is called the "scheduler API."

By using this API, the job operation administrator implements an original scheduling algorithm as a shared library, and incorporates this
library into the job scheduler. Such a unique scheduling algorithm is incorporated in the job scheduler. The algorithm and a series of
programs implementing the algorithm are together called the "job selection plugin." Also, shared libraries incorporated into the scheduler
are called "plugin libraries." A process of the job scheduler is started for each plugin library.

With this library incorporated in the job scheduler, the job selection plugin determines the priority of jobs in the same way as the job selection
processing unit of the job scheduler. The job scheduler controls the priority of jobs by preferentially allocating compute resources in
descending order of job priority determined by the job selection plugin.

1.2 Programming Model of the Plugin Library

The scheduler API is designed by using an object-oriented programming model based on the class. The programming model for the plugin
library has the concept called "class" which is implemented by the plugin library and “instance™ which is generated based on the class.

- Class
A class is a series of functions defined by a plugin library for the purpose of replacing specific processing of the job scheduler.
The class is registered in the job scheduler during the initialization processing of a plugin.
When the job scheduler calls the series of functions defined in the class during scheduling processing, the default scheduling algorithm
is replaced with the original scheduling algorithm implemented by the plugin library. The class for replacing the scheduling algorithm
is called a "job selection class."

- Instance
An instance is a data structure of an arbitrary type. It is created for each resource unit or resource group that is a processing target of
a plugin library, and holds data necessary for processing defined by the class.
An instance is generated when the job scheduler calls the initialization function of the job selection class as defined in the class. (The
function is create(). For details, see "Table 1.2 Functions Implemented by the Plugin Library (related to the job selection class).")
Data held in an instance is used in the plugin library.
For the job selection class, one instance is generated for each job scheduler process or each resource group.

i, See

A plugin library must be implemented according to this programming model. For information on how to implement a plugin library, see
"2.1 How to Create a Plugin Library" and "2.2 Plugin Library Incorporation Settings."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

1.3 Constitution of the Scheduler API

The scheduler API consists of the "plugin library" described in the preceding section and "built-in functions" provided for the plugin library
by the job scheduler.

This section provides lists of the functions and classes that the plugin library must implement and the built-in functions that the plugin can
use.

1.3.1 Functions That the Plugin Library Must Implement

The tables below provide lists of the functions that the plugin library must implement. To use the scheduler plugin function, the following
functions are all required.

Table 1.1 Functions That the Plugin Library Implements (related to the job selection plugin)

Function Name

Description

plugin_init()

Initialization function of the job selection plugin

This is called when the plugin library is read (at the time of dynamic loading).

When called by the job scheduler, the initialization function of the job selection plugin
registers a class for the job scheduler. The class registered here is called during the scheduling
of the job scheduler.

plugin_fini()

End function of the job selection plugin

This is called when the plugin library is released (unloaded).

When called by the job scheduler, the end function of the job selection plugin deletes the
registration of the class for the job scheduler.

Table 1.2 Functions Implemented by the Plugin Library (related to the job selection class)

Function Name

Description

create()

Initialization function of the job selection class

This function is called at the start of a job scheduler process.

The function builds the data (instance) required for the processing defined in the job selection
class. The instance returned as the return value of this function is passed as an argument when
the destroy(), push_many(), pop(), or remove_all() function is called.

destroy()

End function of the job selection class
This function is called at the end of a job scheduler process.
The function releases the data kept in an instance of the job selection class.

push_many()

Job registration function

This function is called by the job scheduler when scheduling begins.

The function registers jobs to be scheduled and passes them as arguments so that they can be
managed by the job selection plugin. (*)

pop() Function to retrieve the highest-priority job
This function is called by the job scheduler during scheduling.
The function returns the job that will select compute resources next (highest-priority job
among jobs registered in the instance). The job is removed from the jobs managed by the job
selection plugin and excluded from the jobs returned in subsequent pop() calls.
remove_all() Function to remove registered jobs
This function is called by the job scheduler when scheduling ends or is interrupted.
The function removes all jobs from the jobs managed by the job selection plugin.
*)
The following job information for scheduled jobs is passed as arguments of the push_many() function:
- Sub job ID
- Execution user ID

- Acceptance time (pjsub command execution time)

- Acceptance time of the first sub job (only for a step job)

- Job type (batch job or interactive job)

- Job model

- Execution

- Job priority specified by the user

- Job priority within the resource unit

group ID

- Specified execution start time (value specified in the -at option of the pjsub command)

- Resource group ID

- Elapsed time limit value for job execution

- Total of the elapsed time limit values of preceding sub jobs (only for a step job)
For the first sub job, 0 is passed. Note that the total does not include the elapsed time limit values of preceding sub jobs that ended when
the step job was submitted by the pjsub command.

- Requested node shape (including information on whether :strict or :strict-io is specified in the -L node option of the pjsub command)
- Requested memory amount per node

- Priority of the job execution user

- Priority of the job execution group

- User priority within the group of the job execution user

- Job status (QUEUED only)

- Job execution wait time (difference between the job submission and scheduling start times)

- Re-execution count (cumulative count of job re-execution due to compute node failure, etc.)

2, See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

For details of the functions, see "Appendix G Reference: Data Structures Relevant to the Job Selection Class™ and "Appendix | Reference:
Constants and Functions of the Job Selection Plugin."”

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

1.3.2 Built-in Functions Provided by the Job Scheduler

The following provides a list of the built-in functions provided for the plugin library by the job scheduler.

Table 1.3 Built-in Functions Provided by the Job Scheduler

Name Description

register_job_select_class() Registers a job selection class.

deregister_job_select_class() Deletes a job selection class.

get_rscunit() Obtains the access right for resource unit information.
The resource unit information includes also resource group information and node information.
(*1)

put_rscunit() Returns the access right for resource unit information.

get_user_fshare_value() Obtains the fair share value of a specified user. (*2)

get_group_fshare_value() Obtains the fair share value of a specified group. (*2)

get_user_in_group_fshare_value() Obtains the user fair share value in the group of a specified user. (*2)

*1)

The job selection plugin has the right to access resource unit information, whereas other threads of the job scheduler cannot access the
information. Consequently, resource unit setting changes are not processed. After the access right is returned by the put_rscunit() function,
setting changes are processed, and resource unit information is changed.

(*2)

The get_user_fshare_value(), get_group_fshare_value(), or get_user_in_group_fshare_value() function obtains a fair share value at the
point in time when the function is called. The update timing of fair share values is, for example, the job execution start time.

Q_P.',See

For details of the built-in functions provided for the plugin library by the job scheduler, see "Appendix F Reference: API Functions That
Can be Used From the Job Selection Class."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

1.4 Scheduler API Types

The scheduler plugin function provides the following scheduler APIs.

- Types and definitions common to the scheduler APls

APIs relevant to job information

APIs relevant to resource group information

APIs relevant to resource unit information

APIs relevant to the job selection plugin

APIs relevant to the job selection plugin

JL See

For details of scheduler APIs, see the appendices from "Appendix B Reference: Common to the Scheduler APIs" to "Appendix | Reference:
Constants and Functions of the Job Selection Plugin.”

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

|Chapter 2 Use of Scheduler Plugin Functions

This chapter describes how to use scheduler plugin functions.

2.1 How to Create a Plugin Library

The job selection plugin is implemented as a shared library (plugin library). The plugin library is loaded into the job scheduler process, and
the functions implemented in the plugin library are called to allow scheduling by its own algorithm.

This section describes rules and knowledge necessary for creating a plugin library.

2.1.1 Rules for Creating a Plugin Library

Create a plugin library in compliance with the following rules.

Name a file as follows.

lib plugin library nane.so

Specify the plugin name with a character string made up of single-byte alpha-numeric characters, hyphens ("-"), or underscores ("_").

Ln Note

There is no limit on the number of the characters used for the file name of a plugin library. However, there is the limit of 512 characters
in one line regarding the pmpjm.conf file, in which setting of incorporation of a plugin library in the job scheduler is made. While taking
this limit into account, name the file.

For information on setting of incorporation of a plugin library in the job scheduler, see "2.2 Plugin Library Incorporation Settings."

Use a share object (.so format) of ELF (Executable and Linkable Format) as a file format.

The plugin library must be read when the job scheduler calls dlopen(3) (dynamic loading). At this time, libraries dynamically linked
with the plugin library must be read even if the environment variable LD_LIBRARY_PATH is not specified. Especially, if the plugin
library depends on a shared library placed in a non-standard path (path that is not /usr/lib or /ust/lib64, etc), you need to take some
measures so that the path can be resolved. For example, you can specify RUNPATH when creating the plugin, or you can change the
system setting by adding the path to /etc/ld.so.conf in the compute cluster management node, in which the job scheduler runs.

The following is a compilation example.

gcc -shared -fPIC -Ipthread -Irt -o lib plugin library nane.so source file

Use C or a language supporting a C-compatible interface as a programming language.
Since many jobs must be processed at a high speed, we recommend that the plugin library be created in a language such as C, a language
that enables native compilation.

To implement a scheduling algorithm in a plugin library, use the APIs provided by the job scheduler defined in the following header
file, which is found in the system management node, compute cluster management node, and login node.

/usr/include/ FISVt cs/ pj m pj spl ugi n. h

The macro PJSPLG_DEFINE must be called.

By calling this macro, the job scheduler is notified of the plugin name, plugin version, and version of the scheduler API used by the
plugin library. This causes necessary information to be incorporated in the library, and the job scheduler becomes able to read the
information. The job scheduler reads the information that has been read in the plugin library and uses it for checking the compatibility
of the scheduler API and for the identifiers of log messages relevant to the plugin.

i% See

© © 0000000000000 00060OCOCEOESE

For details of the macro PJSPLG_DEFINE, see "Appendix | Reference: Constants and Functions of the Job Selection Plugin."”

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

- The plugin library must implement the following functions and methods.
- Initialization function of the job selection plugin plugin_init()
- End function of the job selection plugin plugin_fini()
- Initialization function of the job selection class create()
- End function of the job selection class destroy()
- Job registration function push_many()
- Function to retrieve the highest-priority job pop()

- Function to remove registered jobs remove_all()

QT Note

When all jobs are sorted at the push_many() function call time, job priority cannot change according to the fair share value, which
changes based on resource allocation to the jobs retrieved by the pop() function. Also, since the start of resource selection processing
waits until the sorting of all the jobs is completed, job sorting cannot be processed in parallel with the resource selection processing.
Therefore, we recommend an implementation that searches for only the highest-priority job at the point in time when the pop() function
is called.

.:-..
|
iy See
For details of the functions the plugin library must implement, see "1.3.1 Functions That the Plugin Library Must Implement,"
"Appendix G Reference: Data Structures Relevant to the Job Selection Class,” and "Appendix | Reference: Constants and Functions
of the Job Selection Plugin."”

© 0000000000000 00000000000000000000000000O0O0C0C0COCOCOCOCEOCEOCEOCEOCEOCIOCEOCIOCOCEOCEOCOCIOCI0CIOCI0C0CI0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0C0CCQCCQCCOCQOCEOCEECEEETS

- As to the functions to be implemented by the plugin library, make them thread-safe.

- Place the created plugin library in the compute cluster management node.

2.1.2 Implementation Example of the Plugin Library

The following is an implementation example of the initialization and end processing of the plugin library.

#i

}s

pi

}

pi

}

/1 include header file to declare API
/'l Declare plugin nane and version (displayed in pjsd |og)
PJSPLG DEFI NE(" cust om j obsel ect", "1.0.0");

/'l Declare group of functions (class) called from schedul er
const Pjspl gJobSel ectd ass_t JOB _SELECT_CLASS = {

/1 Function called when plugin is |oaded

/1 Function called when plugin is rel eased

ncl ude <FJSVtcs/ pj n pj spl ugi n. h>

.create = create, .destroy = destroy,
.push_many = push_nany, .pop = pop,
.renove_all = renove_all

splg_result_t plugin_init(PjsplgManager_t *mmg_p) {
/'l Register group of functions (class) related to job selection
mmg_p- >regi ster_j ob_sel ect _cl ass(&IO0B_SELECT_CLASS);

splg_result_t plugin_fini (P spl gManager_t *mg_p) {
/1 Rermove group of registered functions
mmg_p- >der egi ster _j ob_sel ect _cl ass(&J0OB_SELECT_CLASS);

/1 Declare internal data structure used inside plugin
typedef struct { ... } InternalData_t;

/1 1 nmplement create function

static void *create(const PjsplgJobSelectPolicy_t *policy_p) {
// Get data area used internally
Internal Data_t *data_p = calloc(l, sizeof(InternalData_t));

/1 Initialize and return data used internally

return data_p;

}

/1 |nplenment destroy function.
static void destroy (void *instance_p) {
Internal Data_t *data_p = (Internal Data_t *)instance_p;

/'l Rel ease data area used internally

/1 1 nmpl enment push_many function
static pjsplg_result_t push_nmany(void *instance_p,
const Pjspl gJobSel ect G assApi _t *api _p,
Pj spl gSubj ob_t **jobs_list_pp) {
Internal Data_t *data_p = (Internal Data_t *)instance_p;
/! Register job infornmation passed to internal data

return PJSPLG CK;
}

/1 | nplenment pop function
static pjsplg_result_t pop(void *instance_p,
const Pj spl gJobSel ect d assApi _t *api _p,
Pj spl gSubj ob_t **job_pp) {
Internal Data_t *data_p = (Internal Data_t *)instance_p;

if (resources targeted for any job) {
/1 1f no job targeted for resource selection, return NULL
*job_pp = NULL;
return PJSPLG CK;
/1 Sort jobs in internal data in order of priority
/1 Retrieve highest-priority job
/'l Rermove retrieved job frominternal data
return PIJSPLG CK;
/'l 1 mplenent renove_all function
static pjsplg_result_t renmove_all (void *instance_p,
const Pjspl gJobSel ect Cl assApi _t *api _p)

Internal Data_t *data_p = (Internal Data_t *)instance_p;

/!l Rermove all jobs frominternal data

return PIJSPLG CK;

2.1.3 Operation when Abnormality is Detected in the Plugin Library

The job scheduler operates as follows upon detection of abnormality caused by an error, etc. in the plugin library when loading or unloading
the plugin library.

[Event 1]
Read error of the plugin library
[Cause]
- A call of dlopen(3) of the plugin library failed.
- Version incompatibility of the scheduler AP1 was detected.
- A symbol necessary for the plugin library has not been defined.
[Operation]
The process of the job scheduler discontinues the start processing and terminates abnormally.
[Event 2]

Error return of the initialization function of the job selection plugin
Error return of the Initialization function of the job selection class

[Cause]
Error in the plugin library
[Operation]
The process of the job scheduler discontinues the start processing and terminates abnormally.
[Event 3]

Error return of the end function of the job selection class
Error return of the end function of the job selection plugin

[Cause]
Error in the plugin library
[Operation]

Since instance release or plugin end processing is performed at the end of the job scheduler process, a log message is output and the
job scheduler process ends normally.

.:-..
1
is See
For details of the processing performed at the start and end of the job scheduler process, the behavior of the job scheduler process at failure
of the process, and log messages output at the failure of the processing, see "Appendix A Processing of the Job Scheduler Process and Log
Messages Output at Failure of the Processing."”

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

2.2 Plugin Library Incorporation Settings

The job operation administrator can configure plugin library incorporation with the pmpjm.conf configuration file for job operation
management within a resource unit. Make these settings on the system management node. These settings make it possible to control
operations, such as job scheduling, through the job selection plugin for the specified resource unit.

The pmpjm.conffile is placed in the following location in the system management node. When changing default setting values, edit this file.

/etc/opt/FISVtcs/ Rscunit.d/resource unit name/ pnpj m conf

2 See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

For details of the pmpjm.conf file and how to reflect the settings, see "Job Operation Software Administrator's Guide for Job Management."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

Set to ResourceUnit section the path of the directory in which the plugin library to be incorporated into the job scheduler is placed.

Table 2.1 Definition Item Relevant to the Plugin Library in the ResourceUnit Section

Item Name Definition Contents Specifiable Values Default Value
SchedulerPluginLoadPath The absolute paths of the directories | A list of directory names (To | /etc/opt/FISVics/plugin/
in which the plugin libraries in specify multiple items, delimit | pjm/pjsd/normal_mode
normal mode are placed them with a colon ":".)

Configure settings for the plugin library to be incorporated into the job scheduler in the Scheduler sub section in the ResourceUnit section.

Table 2.2 Definition Items of the Scheduler Sub Section in the ResourceUnit Section

Item Name Definition Contents Specifiable Values Default Value
Name The name of the scheduler of the A 1 to 63-character long Not omissible
plugin library character string consisting of

single-byte alphanumeric
characters, hyphens "-," and

underscores " _"
Plugins File names of the plugin librariesto | A list of file names None
be read (To specify multiple items,
delimit them with a comma
"y

4}1 Note

- One subsection scheduler can be defined in the ResourceUnit section.

- If the Plugins item is not specified, the plugin library is not loaded even when the file has the Scheduler section. In this case, the
algorithm incorporated in the job scheduler is used.

When setting is reflected, a job scheduler process starts for each plugin library (each Scheduler sub section). The name of the process of the
job scheduler in which a plugin library is incorporated is named as follows.

PJM pj sd_resource unit nanme_schedul er nane

Log messages of this process are output to the following.

/var/| og/ FISVt cs/ pj m pj sd_resource unit nanme_schedul er nane. | og

| ?1 information

If the pmpjmadm command is executed and setting change relevant to a scheduler plugin is reflected, the job scheduler process is ended,
started, or restarted. At this time, since the other processes are not restarted, operations such as submitting jobs and checking job states can
be performed as usual even while the setting change is being reflected.

The following example shows settings covering scheduling by the plugin library libplugin.so for all the resource groups in the resource unit
rscunit000.

The underlined parts in the setting example are setting items for incorporating the plugin library. The other items that can be set in the
pmpjm.conf file are omitted.

ResourceUnit {
Resour ceUni t Nanme = rscuni t 000
Schedul er Pl ugi nLoadPath = /pl ugin:/foo/bar

Schedul er {

Name = sched001
Plugins = libplugin.so

-10 -

2.3 Scheduling Operation When the Scheduler APl is Used

The job selection plugin implemented as a plugin library uses the scheduler API to process scheduling. This section describes scheduling
processing (operation) for when the scheduler API is used.

2.3.1 Basic scheduling behavior

The information required for determining the priority of jobs is passed when the job scheduler calls the job selection plugin.
The following figures show the functions of the job selection plugin that are called during scheduling and the order of the function calls.

1. Registering jobs to be scheduled (when scheduling begins)
The job scheduler calls the push_many() function and registers job information for scheduled jobs in the job selection plugin.

Job scheduler

Resource selection i Job selection i
processing unit iy processing unit | |

Job selection plugin

L J

Adding to internal data (queue)
[] Job (Job ID)

2. Retrieving the highest-priority job
The job scheduler calls the pop() function and retrieves the highest-priority job from the job selection plugin. The retrieved job is
passed to the resource selection processing unit, and allocated resources.

Job scheduler

Resource selection Job selection ; |
processing unit

{1 processing unit

e) | [y e | ;. Highest
| i e

17 ANl . Retun . ---... priorty |
e | To resource <\‘J 17 s 10 5
/ selection | J | \ J
i pr{){:&ﬁslﬂg - —— il s sassssissssssssessssitssanns sttt s sans s anant s nn
block Searching for and retrieving
l:' Job (Job 1D} highest-priority job

-11 -

3. Retrieving the next job
The job scheduler calls the pop() function again and retrieves the second highest-priority job from the job selection plugin. The
retrieved job is passed to the resource selection processing unit of the job scheduler, and allocated resources.

Job scheduler
Resource _selecl_ion ; Job sel_ecllnn_ ! Job selection plugin !
processing unit i processing unit i ! !
T Y r«\ pop() _\
i i call { 16 ;1_H|5_]hesti

| | i | | S
(. (18] | 16 ié@ :
|

! 1 i i : i E E !
<]
1 I B = i
! To resource | [¥ | |

- | pe— i 10
/ selection | J Lt " J
block Searching for and retrieving
|:| Job (Job 1D) highest-priority job

4. Repeating job selection
The processes in steps 2 and 3 are repeated until the completion of resource selection for all jobs.

2.3.2 Scheduling behavior when an event occurrence affects scheduling
results

If anew job submission, node failure, or other event that affects scheduling results occurs, the functions of the job selection plugin are called
in the order shown below to interrupt and resume scheduling.
This section describes the behavior when a node failure occurs.

1. Resetting the internal information on the job selection plugin
The job scheduler calls the remove_all() function to interrupt scheduling by resetting the internal information on the job selection

plugin.

Job scheduler

i Resource selection || Job selection | ! Job selection plugin

| processingunit || processing unit | i !

4 { " remove_all() A e TN
N call
! i i |::> i R T
m —>] |Remove
| ROOOKD XX | Re-sxecute | B I—‘m ------ ;
', Node failure occurred ; scheduling | I \ /

Remove internal data

[] Job (Job ID)

-12 -

2. Resuming scheduling
After interrupting scheduling, the job scheduler calls the push_many() function, and registers information on the job to be scheduled
in the job selection plugin.

Job scheduler
Resource selection : Job selection : Job selection plugin :
processing unit || processing unit | i |
T remove_all() \

116 | cal |
______ (5]

— @ R R
SXOODDKXIX [resenecunng| o VN S 10|

Adding to internal data (queue)

[] Job (Job ID)

3. Retrieving the highest-priority job
The job scheduler calls the pop() function, and retrieves the highest-priority job from the job selection plugin. The retrieved job is
passed to the resource selection processing unit of the job scheduler, and allocated resources.

Job scheduler
Resource _selecl_mn 1 Job sellecllon_ | i Job selection plugin i
processing unit ‘i Pprocessing :

. | Ly |) | 7 femeve)| ' Highest|
L BEm |7 (Reweve| {7 _righest
- <Air| RS " prority |

0 XX | % recou | . Retum ¢ | e ;
| To resource | I | 10 i
J/ selection |) : ' J
cmccmcscsmcsssccssecsasaas. pr(){:ess”}g st - ————r PP
block Searching for and retrieving
highest-priority job

[] Job (Job ID)

4. Repeating job selection
Like in steps 2 and 3 in "2.3.1 Basic scheduling behavior," the pop() function call and resource selection for a job are repeated in
subsequent behavior.

:;-.l
ih See

For details of the above functions and the method, see "Appendix G Reference: Data Structures Relevant to the Job Selection Class" and
"Appendix | Reference: Constants and Functions of the Job Selection Plugin."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

2.4 Notes on Using the Scheduler Plugin Function

If the scheduler plugin function is used in combination with a step job, simple sort logic such as sorting by the number of nodes cannot satisfy
the step job requirement that job execution begin in ascending order of step number. Therefore, to determine the priority of the jobs (sub
jobs), itis necessary to implementa plugin library to sort the sub jobs of a step job by criteria that enable resources to be selected in ascending
order of step number.

-13-

Appendix A Processing of the Job Scheduler Process and
Log Messages Output at Failure of the
Processing

When using a job selection plugin, the job scheduler performs read processing of the plugin at start of a process, and release processing of
the plugin at normal end of the process.

This appendix describes contents of processing performed when a process of the job scheduler is started and when it is ended, and describes
the operation performed when the processing fails.

A.1 Process Start Processing of the Job Scheduler

When the job scheduler starts a process, it performs the following.

- Reading the plugin library (dynamic loading)
- Verifying the validity of the plugin library
- Calling the initialization function of the job selection plugin
- Registering the class (only when the registration is requested in the initialization function)
- Creating an instance of the job selection class (only when the class is registered in the initialization function)

If any of these operations fails, the job scheduler process discontinues the start processing to prevent operation based on abnormal system
setting (plugin library) from being continued. Then, it outputs information used to identify the event of the failure to the job scheduler log,
and terminates abnormally.

The following describes details of each of the process start processing operations of the job scheduler, and describes log messages to be
output when an operation fails.

gn Note

In the log output examples provided below, the header part is omitted. In addition, space characters are inserted in a log message instead
of line feeds.

A.1.1 Reading the Plugin Library

When the job scheduler starts a process, it reads a plugin library to use based on the plugin setting information (see "2.2 Plugin Library
Incorporation Settings") (dynamic loading). If the dynamic loading of the relevant plugin library, dlopen(3), fails, the job scheduler outputs
the following error message to the log and terminates abnormally.

Failed to | oad schedul er plugin: dlopen failed
pl ugi n_path="path of the plugin library"
detail ="detail ed error cause"

The character string indicating the error cause returned by dlerror() is output to detailed error cause.

A.1.2 Verifying the Validity of the Plugin Library

After the job scheduler succeeds in dynamic loading of the plugin library, it verifies the validity of the loaded plugin library by checking
the following points.

- Whether the required symbols have been defined
Whether the symbols below have been defined is checked. These symbols are necessary for verifying the operation and validity of the

-14-

job selection plugin. These symbols are automatically incorporated in the plugin library by calling the PJISPLG_DEFINE macro.
Therefore, a person who creates the plugin does not need to be aware of the symbols.

- PJSPLG_PLUGIN_API_VERSION
Required API version of the plugin
This is used to check whether the API version matches.

- PJSPLG_PLUGIN_TYPE
Plugin type
This is used to check whether the plugin type matches.

- PJSPLG_PLUGIN_NAME
Plugin name
This is output to the log of the job scheduler. This is used to check whether the intended plugin has been loaded.

- PJSPLG_PLUGIN_VERSION
Plugin version
This is output to the log of the job scheduler. This is used to check whether the intended plugin has been loaded.

- plugin_init()

Initialization function of the job selection plugin
- plugin_fini()

End function of the job selection plugin

If a symbol necessary for verifying the operation and validity of the job selection plugin has not been defined in the plugin library
(dlsym(2) call fails), the job scheduler outputs the following error message to the log, and terminates abnormally.

Failed to | oad schedul er plugin: dlsyn() fail ed.
plugi n_pat h="path of the plugin library"

synbol ="synbol that failed in being | oaded"
detail ="detailed error cause"

The character string indicating the error cause returned by dlerror() is output to detailed error cause.

- Whether the required API version of the plugin matches
When aplugin library is created, whether PISPLG_PLUGIN_API_VERSION, a symbol representing the AP1 version of the header file
used for compilation, matches the version of the API provided by the job scheduler process is checked.

If the version of the API on which the plugin library depends and the version of the API provided by the job scheduler are incompatible
because, for example, the library with an old version is deployed by mistake, the job scheduler outputs the following message to the log
and terminates abnormally.

Failed to | oad schedul er plugin: inconpatible schedul er plugin APl version required.
pl ugi n_path="path of the plugin library",

requi red_api _version="version of the APl on which the plugin depends",

provi ded_api _versi on="version of the APl provided by the schedul er"

- Whether the plugin type is a job selection plugin
Whether the value of PISPLG_PLUGIN_TYPE, a symbol representing the plugin type, matches the value meaning the job selection
plugin is checked.

If the plugin type read from the library does not match the plugin library, the job scheduler outputs the following message to the log and
terminates abnormally.

Failed to | oad schedul er plugin: inconpatible scheduler plugin identifier found.
pl ugi n_pat h="path of the plugin library",

decl ared_identifier="plugin type declared by the plugin",
expected_identifier="plugin type the schedul er assumes"

A.1.3 Calling the Initialization Function of the Plugin Library

After completing the reading of the plugin library, the job scheduler calls the initialization function of the job selection plugin plugin_init(),
which is loaded from the plugin library.

-15 -

The plugin initialization function registers the job selection class by calling the API provided by the scheduler that is handed over as an
argument of the relevant function (class registration function). The job scheduler internally maintains information of the registered class,
and uses it at the time of instance creation, etc.

If the plugin initialization function terminates abnormally, the job scheduler outputs the following message to the log and terminates
abnormally.

Failed to | oad scheduler plugin: plugin_init() failed.
pl ugi n="[pl ugi n 1D (plugin nane: pl ugi n version)"

A.1.4 Creating an Instance of the job selection class

After completing the calling of the initialization function of the job selection plugin, the job scheduler calls, the initialization function of
the job selection class create(), to create an instance of this class. The job scheduler maintains the instance that is returned as a return value
of this function, and performs the scheduling processing unique to the plugin by calling functions of this instance.

If the instance creation method of the scheduling class returns abnormally, the job scheduler outputs the following error message to the log,
and terminates abnormally.

Failed to | oad schedul er plugin: JobSelectC ass_t::create() failed.
pl ugi n="[pl ugi n I D] (plugin name: pl ugin version)"

A.2 Processing on Normal End of a Job Scheduler Process

When the job scheduler ends a process normally, it performs the following.

- Releasing the instance of the job selection class (only when it is registered in the initialization function)
- Calling the termination function of the job selection plugin

- Deleting the class (only when the deletion is requested in the termination function)
- Releasing the plugin library

If any of these processing operations fails, the job scheduler process discontinues the subsequent termination processing of the job selection
plugin. Then, it outputs information used to identify the event of the failure to the job scheduler log, and ends normally. The reason why
the process ends normally is because the process itself can be continued even if the releasing processing of the job selection plugin
terminates abnormally since this processing is performed when the process of the job scheduler ends.

A.2.1 Releasing the Instance of the Scheduling Class

When the job scheduler ends a process, it calls the end function of the job selection class destroy(), to release the instance of this class.

A.2.2 Calling the Termination Function of the Plugin Library

After completing the releasing of the instance, the job scheduler calls the end function of the job selection plugin plugin_fini(), which is
loaded from the plugin library.

The end function of the job selection plugin is a function that has been defined in the plugin library by calling an API provided by the
scheduler that is handed over as an argument of the relevant function (class deletion function). The plugin termination function is used to
delete the class that the relevant plugin has registered.

If the job scheduler failed in the call of the end function of the job selection plugin, it outputs the following error message to the log, and
ends normally.

Failed to unload schedul er plugin: plugin_fini() failed.
pl ugi n="[plugi n I D] (plugin name: pl ugin version)"

After succeeding in calling the end function of the job selection plugin, if the class registered by the plugin to which this function belongs
has not been deleted, the job scheduler outputs the following error message to the log, and ends normally.

Failed to unload schedul er plugin: plugin_fini() did not deregister job selection class.
pl ugi n="[pl ugi n I D] (plugin name: pl ugin version)"

-16 -

A.2.3 Releasing the Plugin Library

After the end function of the job selection plugin returns, the job scheduler calls diclose(2) to release the plugin library.

If the job scheduler fails in releasing the plugin library, it outputs the following error message to the log, and ends normally.

Fail ed to unl oad schedul er plugin: dlclose() failed.
I'i bid="plugin |ID",

pl ugi n_pat h="path of the plugin |library",

detail ="detail ed error cause"

The character string indicating the error cause returned by dlerror() is output to detailed error cause.

A.3 Processing When a Process of the Job Scheduler Terminates
Abnormally

If a process of the job scheduler terminates abnormally due to memory access violation, abort from error detection, etc., the releasing
processing of the job selection plugin may not be called. In such a case, the end processing of the OS process releases memory resources,
etc. used by the job selection plugin. However, as to the resources (files, IPC resources, etc.) that have not been released by the OS at the
timing of the process end, they remain even after the process of the job scheduler terminates abnormally. Therefore, it is necessary to create
a job selection plugin that operates normally even when there are undeleted resources.

-17 -

Appendix B Reference: Common to the Scheduler APIs

This appendix mainly describes the structure and definitions common to the scheduler API.

B.1 Structure

This section describes the structure commonly used by the API functions and job selection plugins.

B.1.1 PjsplgSubjobld t

PjsplgSubjobld_t is a structure used in common by API functions and the job selection plugin. A sub job ID is an 1D used for identifying
a sub job. Every sub job has only one sub job ID that is unique in the cluster.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
uint32_t jobid,;
pj spl g_j obnodel _t j obnodel ;
uint32_t bul kno;
uint32_t stepno;
} Pjspl gSubjobld_t;

Table B.1 Members of PjsplgSubjobld t

Members of Members of Members of
jobid uint32_t Job 1D of the job including the relevant sub job
jobmodel pjsplg_jobmodel_t Job model of the job including the sub job
bulkno uint32_t Bulk number

If a sub job is not a bulk job, 0 must be specified.

stepno uint32_t Step number
If a sub job is not a step job, 0 must be specified.

B.2 Macro Definitions

This section describes the macro definitions commonly used by the API functions and job selection plugins.

B.2.1 PJSPLG_API_VERSION

PJSPLG_API_VERSION is a macro for identifying the version of the scheduler API defined by the header macro file of /usr/include/
FJSVtcs/pjm/pjsplugin.h.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

#defi ne PISPLG_API _VERSION "1.0.0"

B.2.2 PJSPLG_NUM_MAX_ RSCGRP

PJSPLG_NUM_MAX_RSCGREP is a macro representing the number of resource groups that can be defined in the resource unit.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

#def i ne PISPLG_NUM MAX_RSCGRP 65535

-18 -

B.3 Type Definitions

This section describes the type definitions commonly used by the API functions and job selection plugins.

B.3.1 pjsplg ruid t

pjsplg_ruid_t is a resource unit ID type.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef int32_t pjsplg ruid_t;

Every resource unit has only one resource unit ID that is unique in the cluster.

B.3.2 pjsplg rgid t

pjsplg_rgid_t is a resource group 1D type.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef int32_t pjsplg_rgid_t;

Every resource group has only one resource group ID that is unique in the resource unit.

B.4 Enumeration Types

This section describes the enumeration types commonly used by the API functions and job selection plugins.

B.4.1 pjsplg result t

pjsplg_result_t is an enumeration type representing the call result of the scheduler API function (success or failure).

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef enum {
PJSPLG K = 0,
PJSPLG ERR = -1
} pisplg_result_t;

Table B.2 Codes and values of pjsplg result t

Code Value Description

PJSPLG_OK 0 Success

PJSPLG_ERR -1 Failure

B.4.2 pjsplg error_t

pjsplg_error_t is an enumeration type representing an error code of the scheduler API.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef enum {
<Onmitted>
PJSPLG_SUCCESS = 0,
PJSPLG_ERROR | NVALI D_ARGUMENT,
PJSPLG_ERROR_ALREADY_REQ STERED,
PJSPLG_ERROR _NOT_REQ STERED,
PJSPLG_ERROR_NOT_EXI ST,

-19 -

PJSPLG_ERROR_ALREADY_GOT,
} pjsplg_error_t;

(*) Omitted enumeration types are unavailable.

Table B.3 Codes and values of pjsplg error t

Code Value Description
PJSPLG_SUCCESS 0 Success (no error has occurred.)
PJSPLG_ERROR_INVALID_ARGUMENT 1 The argument is invalid.
PJSPLG_ERROR_ALREADY_REGISTERED 2 The specified information has already been registered.
PJSPLG_ERROR_NOT_REGISTERED 3 The specified information has not been registered.
PJSPLG_ERROR_NOT_EXIST 4 The specified information does not exist.
PJSPLG_ERROR_ALREADY_GOT 6 The specified information has already been obtained.

B.4.3 pjsplg jobtype t

pjsplg_jobtype_t is an enumeration type representing a job type.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef enum {
PJSPLG JOBTYPE_BATCH = 1,
PJSPLG_JOBTYPE_I NTERACTI VE = 2,

} pisplg_jobtype_t;

Table B.4 Codes and values of pjsplg jobtype t

Code Value Description
PJSPLG_JOBTYPE_BATCH 1 Batch job
PJSPLG_JOBTYPE_INTERACTIVE 2 Interactive job

B.4.4 pjsplg jobmodel t

pjsplg_jobmodel_t is an enumeration type representing a job model.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef enum {

PJSPLG_JOBMODEL_NORMAL =1,
PJSPLG JOBMODEL_STEP = 2,
PJSPLG_JOBMODEL_BULK = 3,

} pjspl g_j obnodel _t;

Table B.5 Codes and values of pjsplg jobmodel t

Code Value Description
PJSPLG_JOBMODEL_NORMAL 1 Normal job
PJSPLG_JOBMODEL_STEP 2 Step job
PJSPLG_JOBMODEL_BULK 3 Bulk job

B.5 Variable

This section describes the variable commonly used by the API functions and job selection plugins.

-20 -

B.5.1 pjsplg errcode

pjsplg_errcode is a variable for the error codes of the scheduler API. The error code set in this variable corresponds to the error that occurred
at the time of the last API call.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

extern __thread pjsplg_error_t pjsplg_errcode;

-21-

Information

Appendix C Reference: Data Structures Relevant to Job

This appendix describes data structures relevant to job information.

C.1 Structure

This section describes structures relevant to job information.

C.1.1 PjsplgElapsedTimeLimit t

PjsplgElapsedTimeLimit_t is a structure representing information of the elapsed time limit value (requested elapsed time).

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
pj spl g_j ob_el apsed_ti me_node_t node;

uni on {
uint64_t fixed;
struct {
uint64_t mn;
uint64_t max;
} adaptive;
} val ue

} Pjspl gEl apsedTinmeLinit_t;

Table C.1 Members of PjsplgElapsedTimeLimit t

Member Type

Description

mode pjsplg_job_elapsed_time_mode_t

Type of specification method of the elapsed time limit
value.

value - union

Information of elapsed time limit values

fixed uint64_t

Elapsed time limit value of a job

When the -L elapse=unlimited option is specified for the
pjsub command,
PJSPLG_ELAPSED_TIME_VALUE_UNLIMITED is
set.

adaptive - struct

Information of the elapsed time limit values of a job for
which elapsed time limit values are specified as a range
This member is valid when mode is
PJSPLG_JOB_ELAPSED_TIME_ADAPTIVE.

min uinté4 t

Minimum value of elapsed time limits

max uint64_t

Maximum value of elapsed time limits

C.1.2 PjsplgNodeShape t

PjsplgNodeShape_t is a structure representing a requested node shape or the number of requested nodes.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef struct {
int8_t dim
int32_t xsize;
int32_t ysize;

-22-

int32_t zsize;
} Pj spl gNodeShape_t;

Table C.2 Members of PjsplgNodeShape t

Member Type Description
dim int8_t The number of dimensions of the node shape (1 to 3)
xsize int32_t The X-axis size or the number of requested nodes
ysize int32_t The Y-axis size
zsize int32_t The Z-axis size

The following are setting values for the above members.

- For the shape of one-dimensional requested nodes or the number of requested nodes

- dim: 1
- xsize: Size of the number of requested nodes
- ysize, zsize: Optional
- For the shape of two-dimensional requested nodes
- dim: 2
- Xsize: X-axis size
- ysize: Y-axis size
- zsize: Optional
- For the shape of three-dimensional requested nodes
- dim: 3
- Xsize: X-axis size
- ysize: Y-axis size

- zsize: Z-axis size

C.1.3 PjsplgNodeReq t

PjsplgNodeReq_t is a structure representing information of the requested nodes.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
pj spl g_node_req_type_t node;
Pj spl gNodeShape_t node_shape;
uint64_t mem per_node;

} Pj spl gNodeReq_t ;

Table C.3 Members of PjsplgNodeReq t

Member Type Description
mode pjsplg_node_req_type_t Node allocation mode
Of the values of pjsplg_node_req_type_t, a valid value for the
resource unit for which this job is submitted is set.
node_shape PjsplgNodeShape_t Shape of the requested nodes or the number of them
mem_per_node uint64_t Requested memory amount per node

-23-

C.1.4 PjsplgVnodeReq t

PjsplgVVnodeReq_t is a structure representing information on requested virtual nodes.

typedef struct {

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

ui nt32_t num vnode;

uint64_t mem per_vnode;

ui nt32_t cpu_per_vnode;
} Pjspl gvnodeReq_t;

Table C.4 Members of PjsplgVnodeReq t

Member Type Description
num_vnode uint32_t Number of requested virtual nodes
mem_per_vnode uinté4_t Amount of requested memory per virtual node
cpu_per_vnode uint32_t Number of requested CPU cores per virtual node

C.1.5 PjsplgRscReq t

PjsplgRscReq_t is a structure representing information of the resources requested by a job.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef struct {
pj spl g_job_rsc_type_t type;
uni on {
Pj spl gNodeReq_t node;
Pj spl gvnodeReq_t vnode;
} val ue;
} PjsplgRscReq_t;

Table C.5 Members of PjsplgRscReq t

Member Type Description
type pisplg_job_rsc_type t Requested resource type
value - union Information of the requested resource amount
node PjsplgNodeReq_t Information of the requested nodes
vnode PjsplgVnodeReq_t Information of the requested virtual nodes

C.1.6 PjsplgJobSubmitParam t

PjsplgJobSubmitParam_t is a structure representing job submission parameters. This information is invariable during execution of the job
unless the pjalter command, etc. is executed.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
<Omitted>
pj spl g_j obtype_t jobtype;

uid_t uid;
gid_t gid;

intl6_t apriority;
intl6_t priority;

intl6_t user_priority;

-24 -

intl6_t group_priority;
int16_t user_in_group_priority;

pjsplg_rgid_t rgid;

uint64_t attribute;

Pj spl gEl apsedTi meLinmit_t elapsed_time_lint;
uint64_t total _preceding_elapsed_time_limt;

Pj spl gRscReq_t req_rsc;

struct tinespec accept_date;

struct tinespec first_subjob_accept_date;

time_t specified_start_date;
pj spl g_net _route_t net_route;
} Pj spl gJobSubmi t Param t;

(*) Omitted enumeration types are unavailable.

Table C.6 Members of PjsplgJobSubmitParam t

Member

Type

Description

jobtype

pjsplg_jobtype_t

Job type

If the --interact option of the pjsub command is
specified, PISPLG_JOBTYPE_INTERACTIVE is set.
If the option is not specified,
PJSPLG_JOBTYPE_BATCH is set.

uid

uid_t

Job execution user ID
The user ID of the user who executed the pjsub
command is set.

gid

gid_t

Job execution group ID

The group ID of the group specified in the -g option of
the pjsub command or the group ID of the user who
executed the pjsub command is set.

apriority

intl6 _t

Job priority level within the resource unit

The value specified in the --apriority option of the
pmalter command or the system default value of 127 is
set.

priority

int16_t

Job priority level specified by the user

The value specified in the -p option of the pjsub, pjalter,
or pmalter command or the default value specified in
the joblimit priv-pri definition item in the job ACL is
set.

user_priority

intl6 t

Priority level of the job execution user
The value specified in the define pri definition item in
the job ACL is set.

group_priority

int16_t

Priority level of the job execution group
The value specified in the define pri-g definition item in
the job ACL is set.

user_in_group_priority

intl6 t

Priority level of the job execution user within the group
The value specified in the define ingroup-pri definition
item in the job ACL is set.

rgid

pjsplg_rgid_t

-25-

Resource group ID
The value specified in the -L rscgrp= option of the
pjsub, pjalter, or pmalter command or the default value

Member Type

Description

specified in the define rscgroup definition item in the
job ACL is set.

attribute uinté4 _t

Job attributes
The logical addition of the valid macros in the macro
named PJSPLG _JOB _ATTR _ *is set.

elapsed_time_limit PjsplgElapsedTimeLimit_t

Information of the elapsed time limit value (requested
elapsed time)

The value specified in the -L elapse= option of the pjsub
command or the default value specified in the joblimit
elapse definition item in the job ACL is set.

total_preceding_elapsed_time_limit uinté4 _t

Total of the elapsed time limit values (requested elapsed
time) of preceding sub jobs

The total of the elapsed time limit values of preceding
sub jobs that had not ended when this sub job was
submitted (when the pjsub command was executed) is
set. The total includes the elapsed time limit values of
preceding sub jobs that ended after this sub job was
submitted but before it was executed.

For a non-step job or the first sub job, O is set.

req_rsc PjsplgRscReq_t

Information of the requested resource

The value specified in the -L node= or node-mem=
option of the pjsub command or the -L vnode= or
vnode-mem= option of the pjsub command or the
default value specified in the joblimit node, joblimit
nodemem, joblimit vnode, or joblimit vnode-mem
definition item in the job ACL is set.

accept_date struct timespec

Job acceptance time
The execution time of the pjsub command is set.

first_subjob_accept_date struct timespec

Acceptance time of the first sub job of a step job
For a non-step job or the first sub job, O is set.

specified_start_date time_t

Job execution start specified time

The execution start time specified in the --at option of
the pjsub command is set.

For the execution start time is not specified, 0 is set.

net_route pjsplg_net_route_t

Communication path change of a job when a Tofu
interconnect link goes down

The value specified in the --net-route option of the pjsub
command or the default value specified in the define
net-route item of the job ACL function is set.

C.1.7 PjsplgJobVariableParam t

PjsplgJobVariableParam_t is a structure representing the variable parameters of a job. A variable parameter of a job is a parameter whose

content varies with the state transition during execution of the job.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
<Onmitted>
pjsplg_job_state t state;
uinté4_t wait_tinme;
uint32_t numrestart;

struct timespec all_prec_subjob_exit_date;

-26 -

struct tinespec |ast_rel eased_date;

} Pjspl gJobVari abl eParam t;

(*) Omitted enumeration types are unavailable.

Table C.7 Members of PjsplgJobVariableParam t

Member

Type

Description

state

pjsplg_job_state t

Current job state

wait_time

uinté4 _t

Job execution wait time

The elapsed time from the job acceptance time
(execution time of the pjsub command) to the
scheduling start time is set. For a job submitted after
scheduling start, 0 is set.

num_restart

uint32_t

The number of times of re-execution

The cumulative number of job re-executions for such a
reason as node down. This is the cumulative number of
times of job execution requests, and this number does
not increase when re-queueing is performed.

all_prec_subjob_exit_date

struct timespec

End time of the preceding sub job
For a job that is not a step job, or a step job whose
preceding sub job has not completed, 0 is set.

last_released_date

struct timespec

Last release time

The time when the end user executes the pjrls command
for this job or the preceding sub job (only in case of a
step job) and a transition the QUEUED state occurs is
set.

For a job for which the pjrls command has never been
executed, 0 is set.

When the administrator executes the pjrls command,
this time is not changed.

According to the scheduling policy of FCFS (First-
Come First-Serve), job priority levels are determined
based on the job acceptance time.

For example, end users a and b submit jobs at the
following timing.

a. When creating a job script, the program to be
executed by the job script, and input data is
completed, and the job becomes executable

b. At the time of completion of creation of the job
script
After the job is submitted, the job is fixed by
using the pjhold command so that is not executed,
and then the program and input data are created.
After completing their creation, the fixed job is
released by using the pjrls command.

In such a case, if the FCFS policy based on the job
acceptance time is observed, job b takes priority over
job a even if they become executable at the same time.
In such a condition, to realize control that makes the job
priority levels of a and b equal, you can use this
information.

-27 -

C.1.8 PjsplgSubjob t

PjsplgSubjob_t is a structure representing job information (a structure that keeps information (on jobs in the case of normal jobs or on sub
jobs in the case of step or bulk jobs)). The job scheduler uses this structure to notify the job selection plugin of job (or sub job) information.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef struct {
<O tted>
Pj spl gSubj ob_t *prev_p;
Pj spl gSubj ob_t *next _p;

Pj spl gSubj obl d_t sjid;

Pj spl gJobSubmi t Param t subnit_param

Pj spl gJobVari abl eParam t vari abl e_param
} Pjspl gSubjob_t;

(*) Omitted enumeration types are unavailable.

Table C.8 Members of PjsplgSubjob t

Member Type Description
prev_p PjsplgSubjob_t * Previous job information
next_p PjsplgSubjob_t * Next job information
sjid PjsplgSubjobld_t Sub job ID
submit_param PjsplgJobSubmitParam_t Submission parameter
variable_param PjsplgJobVariableParam_t Variable parameter

By setting the pointers to other job information in prev_p and next_p, a bidirectional circular link list of job information can be made up.
If multiple sets of job information are handed over through the scheduler API, the job scheduler makes up a bidirectional circular link list
structure that includes all the job information to be handed over with prev_p and next_p. Then, the job scheduler hands over all the job
information to the job selection plugin by handing over the pointer to the first job information set to it.

If job information A, B, and C are arranged in sequence, the connection of the bidirectional circular link list is as follows.

Figure C.1 Connection of the Bidirectional Circular Link List when Job Information A, B, and C are Arranged in
Sequence

— A ™ B - C
s prev_p s prev_p s prev_p
next p e next p = next p

The connection of a bidirectional circular link list that includes only job information A is as follows.

-28 -

Figure C.2 Connection of a Bidirectional Circular Link List That Includes Only Job Information A

e A

s prev_p

next p e -

C.2 Macro Definitions

This section describes macro definitions relevant to job information.

C.2.1 PJSPLG_ELAPSED TIME_VALUE_UNLIMITED

PJSPLG_ELAPSED_TIME_VALUE_UNLIMITED is a macro representing the elapsed time for when unlimited is specified.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

#def i ne PISPLG_ELAPSED TI ME_VALUE_UNLI M TED (~((ui nt64_t)0))

This is set for jobs that have the -L elapse=unlimited option or the like specified in the pjsub command.

C.2.2 PJSPLG JOB ATTR *

PJSPLG_JOB_ATTR_* is a macro representing job attributes.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

<Om tted>

#define PISPLG JOB_ATTR_NODE_STRI CT 0x00000001LLU
#define PISPLG JOB_ATTR_MPI _ASSI GN_ONLI NE 0x00000100LLU
#define PISPLG JOB_ATTR_RESTART 0x00010000LLU

(*) Omitted enumeration types are unavailable.

Table C.9 Macros of PJSPLG JOB ATTR *

Macro name Value

Description

PJSPLG_JOB_ATTR_NODE_STRICT 0x00000001LLU

Attribute that represents jobs that have resources
allocated as per the specified node shape without
rotation

This flag is set for jobs submitted with :strict specified
in the -L node option of the pjsub command.

PJSPLG_JOB_ATTR_MPI_ASSIGN_ONLINE 0x00000100LLU

Attribute that represents jobs whose allocation range
does not include failed nodes

This flag is set for jobs submitted with the --mpi assign-
online-node option specified in in the pjsub command.

PJSPLG_JOB_ATTR_RESTART 0x00010000LLU

-29-

Attribute that represents re-executable jobs

This flag is set in the following cases.

The flag is set for jobs submitted with the --restart
option specified in the pjsub command. It is also set for
job models that have re-execution enabled in the

Macro name Value

Description

papjm.confor pmpjm.conf file and do not have the --no-
restart option specified in the pjsub command.

C.3 Enumeration Types

This section describes enumeration types relevant to job information.

C.3.1 pjsplg job elapsed time mode t

pjsplg_job_elapsed_time_mode_t is an enumeration type to specify specification method types of elapsed time limit values of a job.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef enum {
PJSPLG JOB_ELAPSED TI ME_FI XED =1,
PJSPLG JOB_ELAPSED TI ME_ADAPTI VE,
} pjsplg_job_elapsed_tinme_node_t;

Table C.10 Codes and values of pjsplg job elapsed time mode t

Code Value Description
PJSPLG_JOB_ELAPSED_TIME_FIXED 1 Job for which only the upper limit of the elapsed time limit values is
specified
PJSPLG_JOB_ELAPSED TIME_ADAPTIVE 2 Job for which a range of elapsed time limit values is specified
C.3.2 pjsplg job rsc type t
pjsplg_job_rsc_type_t is an enumeration type representing requested resource types of a job.
#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>
typedef enum {
PJSPLG JOB_RSC TYPE _NCDE = 1,
PJSPLG JOB_RSC TYPE_VNCDE,
} pisplg_job_rsc_type_t;
Table C.11 Codes and values of pjsplg job rsc type t
Code Value Description
PJSPLG_JOB_RSC_TYPE_NODE 1 Node allocation job
PJSPLG_JOB_RSC_TYPE_VNODE 2 Virtual node allocation job

C.3.3 pjsplg node req type t

pjsplg_node_req_type_t is an enumeration type representing node allocation modes.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef enum {
PJSPLG NODE_REQ TORUS = 1,
PJSPLG _NODE_REQ MESH,
PJSPLG_NODE_REQ_ NONCONT,
PJSPLG_NODE_REQ NODEI D,

} pjsplg_node_req_type_t;

-30-

Table C.12 Codes and values of pjsplg node req type t

Code Value Description

PJSPLG_NODE_REQ_TORUS Torus mode (Tofu unit is exclusively used.)

PJSPLG_NODE_REQ_MESH Mesh mode

PJSPLG_NODE_REQ_NONCONT Non-contiguous mode

alw|d| -

PJSPLG_NODE_REQ_NODEID Node allocation to a job submitted to a PRIMERGY server resource

unit

C.3.4 pjsplg job state t

pjsplg_job_state_t is an enumeration type representing the state of a job. This job state refers to the state of a job internally managed by the
job scheduler. Therefore, the set state may be different from the job state shown by the pjstat command.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef enum {

<Om tted>

PJSPLG JOB_STATE_QUEUED =1,
} pjsplg_job_state t;

(*) Omitted enumeration types are unavailable.

Table C.13 Codes and values of pjsplg job state t

Code Value Description

PJSPLG_JOB_STATE_QUEUED 1 Job execution wait state
A request to start job execution causes a transition to the execution
start wait state.

C.3.5 pjsplg net route t

pjsplg_net_route_t is an enumeration type representing whether to change the communication path of a job when a Tofu interconnect link
goes down.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef enum {
PJSPLG NET_ROUTE_DYNAM C = 1,
PJSPLG_NET_ROUTE_STATI C,

} pjsplg_net_route_t;

Table C.14 Codes and Values of pjsplg net route t

Code Value Description

PJSPLG_NET_ROUTE_DYNAMIC 1 Dynamically changes the communication path when a Tofu
interconnect link goes down. Job execution continues.

PJSPLG_NET_ROUTE_STATIC 2 Does not change the communication path when a Tofu interconnect
link goes down. The job ends abnormally.

-31-

Appendix D Reference: Data Structures Relevant to
Resource Group Information

This appendix describes data structures relevant to resource group information.

D.1 Structure

This section describes structures relevant to resource group information.

D.1.1 PjsplgRscgrpConf t

PjsplgRscgrpConf_t is a structure representing setting information of a resource group.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

typedef struct {
intl6_t priority;
} Pjspl gRscgrpConf _t;

Table D.1 Members of PjsplgRscgrpConf t

Member Type Description

priority intl6_t Job selection priority level of the resource group

D.1.2 PjsplgRscgrp_t

PjsplgRscgrp_t is a structure representing resource group information. This includes the resource group 1D, resource group name, and job
selection priority of the resource group.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
<Onmitted>
pjsplg rgid_t rgid;
char name[PJSPLG_MAX_RSCGRP_NAME_LEN + 1];
Pj spl gRscgr pConf _t conf;
} PjsplgRscgrp_t;

(*) Omitted enumeration types are unavailable.

Table D.2 Members of PjsplgRscgrp t

Member Type Description
rgid pjsplg_rgid_t Resource group ID
name char[] Resource group name
conf PjsplgRscgrpConf _t Resource group setting information

D.2 Macro Definitions

This section describes macro definitions relevant to resource group information.

D.2.1 PJSPLG_MAX RSCGRP NAME_LEN

PJSPLG_MAX_RSCGRP_NAME_LEN is a macro representing the maximum number of characters in a resource group name.

-32-

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

#def i ne PIJSPLG_MAX_RSCGRP_NAME_LEN 63

The 63 characters do not include null characters.

-33-

Appendix E Reference: Data Structures Relevant to
Resource Unit Information

This appendix describes data structures relevant to resource unit information.

E.1 Structure

This section describes structures relevant to resource unit information.

E.1.1 PjsplgRscunit_t

PjsplgRscunit_t is a structure representing resource unit information. This includes information of resource unit configurations, status, and

the nodes and resource groups belonging to the resource unit.

typedef struct {
<Onmitted>

pjsplg_ruid_t ruid;

char nane[PJSPLG_MAX_RSCUNI T_NAME_LEN + 1];

Pj spl gRscgrp_t * rscgrp_map_p[PISPLG_NUM MAX_RSCGRP] ;
} PjsplgRscunit_t;

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

(*) Omitted enumeration types are unavailable.

Table E.1 Members of PjsplgRscunit t

Member

Type

Description

ruid

pjsplg_ruid_t

Resource unit ID

name

char[]

Resource unit name

rscgrp_map_p

PjsplgRscgrp_t *[]

Array of the resource groups included in this resource unit

By accessing this array with the specification of a resource group ID as
a subscript, the corresponding resource group information can be
obtained.

If the resource group corresponding to the resource group ID does not
exit, NULL is returned.

E.2 Macro Definitions

This section describes macro definitions relevant to resource unit information.

E.2.1 PJSPLG_MAX RSCUNIT NAME LEN

PJSPLG_MAX_RSCUNIT_NAME_LEN is a macro representing the maximum number of characters in a resource unit name.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

#define PIJSPLG MAX_RSCUNI T_NAME_LEN 63

The 63 characters do not include null characters.

-34-

Appendix F Reference: APl Functions That Can be Used
From the Job Selection Class

This appendix describes API functions that can be used from the job selection class and are provided by the job scheduler function.

F.1 Structure

This section describes structures for representing API functions that can be used from the job selection class.

F.1.1 PjsplgJobSelectClassApi t

PjsplgJobSelectClassApi_t is a structure representing API functions that can be used from the job selection class and are provided by the
job scheduler. This structure is handed over as an argument to each function in PjsplgJobSelectClass _ t. The functions provided by this
structure can be used only from the inside of this function.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {

pjsplg_result_t (*get_rscunit)(const PjsplgRscunit_t **rscunit_pp);

pjsplg_result_t (*put_rscunit)(const PjsplgRscunit_t **rscunit_pp);

pjsplg_result_t (*get_user_fshare_value)(pjsplg_fshare_set_id_ t fshare_set_id, uid_t uid, int64_t
*val ue_p);

pjsplg_result_t (*get_group_fshare_val ue)(pjsplg_fshare_set_id_t fshare_set_id, gid_t gid,
int64_t *val ue_p);

pj splg_result_t (*get_user_in_group_fshare_val ue)

(pj splg_fshare_set _id_t fshare_set_id, uid_t uid, gid_t gid, int64_t *value_p);

} Pjspl globSel ect O assApi _t;

Table F.1 Members of PjsplgJobSelectClassApi t

Member Type Description
get_rscunit() Function pointer Obtains the right to access resource unit information.
put_rscunit() Returns the right to access resource unit information.
get_user_fshare_value() Obtains the fair share value of the specified user.
get_group_fshare_value() Obtains the fair share value of the specified group.
get_user_in_group_fshare_value() Obtains the user fair share value in the group of the specified user.

The following details each member.
get_rscunit()

Obtains the right to access resource unit information.

pj splg_result_t (*get_rscunit)(const PjsplgRscunit_t **rscunit_pp);

The processing below relevant to the resource unit is not performed until the right to access the resource unit information obtained by
calling this function is returned ("put_rscunit()" is called or the function that called this function returns).

- Resource unit setting change
- Node state transition

This is because the other threads of the job scheduler main body cannot access the resource unit information while the job selection
plugin maintains the access right.

Table F.2 Argument of get rscunit()
Argument Description

rscunit_pp Pointer to the resource unit information to be obtained

-35-

Table F.3 Return values of get rscunit()

Return value

Description

PJSPLG_OK

Acquisition success.

PJSPLG_ERR

Acquisition failure

When this function failed in obtaining resource unit information, it returns an
error.

The cause of the error is set in pjsplg_errcode, the error code variable of the
scheduler API. For details of pjsplg_errcode, see "pjsplg_errcode."

In the case of an error, this function sets the following error code in pjsplg_errcode.

Table F.4 Error code set in pjsplg errcode

Error code

Description

PJSPLG_ERROR_INVALID_ARGUMENT

The argument is invalid.

put_rscunit()

Returns the right to access resource unit information.

pjsplg_result_t (*put_rscunit)(const PjsplgRscunit_t **rscunit_pp);

As to the resource unit information whose access right is returned by this function, its access right can be obtained again by calling
get_rscunit(). After the call of this function, NULL is set in *rscunit_pp.

Table F.5 Argument of put rscunit()

Argument

Description

rscunit_pp

Pointer to the pointer to the resource unit information to be returned

Table F.6 Return values of put rscunit()

Return value

Description

PISPLG_OK

Return success.

PJSPLG_ERR

Return failure

When this function failed in returning resource unit information, it returns
an error.

The cause of the error is set in pjsplg_errcode, the error code variable of the
scheduler API. For details of pjsplg_errcode, see "pjsplg_errcode."”

In the case of an error, this function sets the following error code in pjsplg_errcode.

Table F.7 Error code set in pjsplg_errcode

Error code

Description

PJSPLG_ERROR_INVALID_ARGUMENT

The argument is invalid.

get_user_fshare_value()

Obtains the fair share value of the specified user.

pjsplg_result_t (*get_user_fshare_value)(fshare_set_id_t fshare_set_id, uid_t uid, int64_t
*val ue_p);
Table F.8 Argument of get user fshare value()

Argument Description

fshare_set_id

Fair share set ID whose fair share value is to be obtained

uid

User ID of the user to be obtained

-36-

Argument Description
value_p Fair share value
Table F.9 Return values of get user fshare value()
Return value Description

PJSPLG_OK

Acquisition success.

PJSPLG_ERR

Acquisition failure

When this function failed in obtaining the fair share value of the specified
user, it returns an error.

The cause of the error is set in pjsplg_errcode, the error code variable of the

scheduler API. For details of pjsplg_errcode, see "pjsplg_errcode."

In the case of an error, this function sets the following error code in pjsplg_errcode.

Table F.10 Error codes set in pjsplg errcode

Error code

Description

PJSPLG_ERROR_NOT_EXIST

The fair share set corresponding to the fair share set ID specified by the
argument does not exist.

PJSPLG_ERROR_INVALID_ARGUMENT

The argument is invalid.

get_group_fshare_value()

Obtains the fair share value of the specified group.

pjsplg_result_t (*get_group_fshare_val ue)(pjsplg_fshare_set_id_t fshare_set_id, gid_t gid,

*val ue_p);

int64_t

Table F.11 Argument of get group fshare value()

Argument

Description

fshare_set id

Fair share set ID whose fair share value is to be obtained

gid

Group 1D of the group to be obtained

value_p

Fair share value

Table F.12 Return values of get group fshare value()

Return value

Description

PJSPLG_OK

Acquisition success.

PJSPLG_ERR

Acquisition failure

If this function fails in obtaining the fair share value of the specified group,
it returns an error.

The cause of the error is set in pjsplg_errcode, the error code variable of the
scheduler API. For details of pjsplg_errcode, see "pjsplg_errcode."

In the case of an error, this function sets the following error code in pjsplg_errcode.

Table F.13 Error codes set in pjsplg errcode

Error code

Description

PJSPLG_ERROR_NOT_EXIST

The fair share set corresponding to the fair share set ID specified by the
argument does not exist.

PJSPLG_ERROR_INVALID_ARGUMENT

The argument is invalid.

get_user_in_group_fshare_value

Obtains the user fair share value in the group of the specified user.

-37-

pjsplg_result_t (*get_user_in_group_fshare_val ue)
(pjsplg_fshare_set _id_t fshare_set_id, uid_t uid, gid_t gid,

Table F.14 Argument of get user in_group fshare value

Argument

Description

fshare_set_id

uid User ID of the user to be obtained
gid Group ID of the group to be obtained
value_p Fair share value

Table F.15 Return values of get user in group fshare value

Return value

Description

PJSPLG_OK

Acquisition success.

PJSPLG_ERR

Acquisition failure

int64_t *value_p);

Fair share set ID whose fair share value is to be obtained

If this function fails in obtaining the user fair share value in the group of the
specified user, it returns an error.

The cause of the error is set in pjsplg_errcode, the error code variable of the
scheduler API. For details of pjsplg_errcode, see "pjsplg_errcode."

In the case of an error, this function sets the following error code in pjsplg_errcode.

Table F.16 Error codes set in pjsplg errcode

Error code

Description

The fair share set corresponding to the fair share set ID specified by the

PJSPLG_ERROR_NOT_EXIST

argument does not exist.

PJSPLG_ERROR_INVALID_ARGUMENT

The argument is invalid.

-38-

Appendix G Reference: Data Structures Relevant to the
Job Selection Class

This appendix describes data structures relevant to the job selection class.

G.1 Structure

This section describes structures relevant to the job selection class.

G.1.1 PjsplgJobSelectClass t

PjsplgJobSelectClass_t is a structure representing the job selection class. This structure is a collection of functions that the job selection
plugin must implement to replace the job selection process. To implement the job selection plugin, the functions required by this class must
be implemented in the job selection plugin.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
void *(*create)(void);
void (*destory)(void *instance_p);
pj splg_result_t (*push_many)
(void *instance_p, const PjsplgJobSel ectC assApi _t *api_p,
Pj spl gSubj ob_t *jobs_list_p);
pjsplg_result_t (*pop)
(void *instance_p, const PjsplgJobSel ectC assApi _t *api _p,
Pj spl gSubj ob_t **job_p);
pjsplg_result_t (*renove_all)
(void *instance_p, const PjsplgJobSel ectC assApi_t *api_p);
} PjsplglobSel ectd ass_t;

Table G.1 Members of PjsplgJobSelectClass t

Member Type Description
create() Function pointer Create an instance (internal data) of the job selection class.
destroy() Release an instance (Internal data generated by the create () function) of

the job selection class.

push_many() Registers jobs as targets in job selection.
pop() Retrieves the highest-priority job among registered jobs.
remove_all() Removes all jobs.

The following details each member.
create()

This member generates an instance of the job selection class.

void *(*create)(void);

It generates and returns an instance of the job selection class as the return value.

Table G.2 Return codes of create()
Return code Description

INULL Pointer to an instance of the job selection class (Generation success)

NULL Generation failure

The function returns the pointer to the instance when successfully generated. If generation fails, the function returns NULL, and the
scheduling processing in progress is interrupted.

-39-

destroy()

This member releases an instance of the job selection class.

voi d (*destory)(void *instance_p);

The member releases the instance of the job selection class given by the argument instance_p.

Table G.3 Argument of destroy()
Argument Description

instance_p Instance of the job selection class

push_many()

This member registers jobs as targets in job selection.

pj splg_result_t (*push_nany)
(void *instance_p, const PjsplgJobSel ect Gl assApi _t *api _p,
Pj spl gSubj ob_t *jobs_Ilist_p);

Table G.4 Arguments of push many()

Argument Description
instance_p Instance of the job selection class
api_p Job scheduler-provided API function that can be used from this function
jobs_list_p List of job information to be registered

Table G.5 Return codes of push many()

Return code Description
PJSPLG_OK Registration success
PJSPLG_ERR Registration failure

If registration fails, the function returns PJSPLG_ERR, and the scheduling processing in progress is interrupted.

pop()

This member retrieves the highest-priority job among registered jobs.

pjsplg_result_t (*pop)
(void *instance_p, const PjsplgJobSel ect G assApi _t *api _p,
Pj spl gSubj ob_t **j ob_pp);

Table G.6 Arguments of pop

Argument Description
instance_p Instance of the job selection class
api_p Job scheduler-provided API function that can be used from this function
job_pp Pointer to the pointer to the highest-priority job information

Table G.7 Return codes of pop()

Return code Description
PJSPLG_OK Acquisition success
PJSPLG_ERR Acquisition failure

If no job information is registered, the function sets NULL as *job_pp, returns PJSPLG_OK, and returns. If retrieval fails, the function
returns PJSPLG_ERR, and the scheduling processing in progress is interrupted.

- 40 -

remove_all()

This member removes all jobs.

pjsplg_result_t (*renove_all)

(void *instance_p, const PjsplgJobSel ectd assApi _t *api _p);

Table G.8 Arguments of remove_all()

Argument

Description

instance_p

Instance of the job selection class

api_p

Job scheduler-provided API function that can be used from this function

Table G.9 Return codes of remove all()

Return code Description
PJSPLG_OK Remove success
PJSPLG_ERR Remove failure

If removal fails, the function returns PISPLG_ERR, and the scheduling processing in progress is interrupted.

-41-

Appendix H Reference: Data Structure Relevant to the
Scheduler Plugin Manager

Use the scheduler plugin manager to register or release the job selection class so that the job scheduler use it.
This appendix describes a data structure relevant to the scheduler plugin manager.

H.1 Structure

This section describes a structure relevant to the scheduler plugin manager.

H.1.1 PjsplgManager t

PjsplgManager_t is a structure representing the scheduler plugin manager.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

typedef struct {
<Onmi tted>
pjsplg_result_t (*register_job_select_class)
(Pj spl gManager _t *mmg_p, const Pjspl globSel ectC ass_t *class_p);
pjsplg_result_t (*deregister_job_select_class)
(Pj spl gManager _t *mmg_p, const Pjspl gJobSel ectC ass_t *class_p);
} Pjspl gvanager _t;

(*) Omitted enumeration types are unavailable.

Table H.1 Members of PjsplgManager t

Member Description
register_job_select_class() Registers the job selection class.
deregister_job_select_class() Removes the job selection class.

The following details each member.
register_job_select_class()

This member registers the job selection class.

pjsplg_result_t (*register_job_select_class)
(Pj spl gManager _t *mmg_p, const PjsplgJobSelectC ass_t *class_p);

The class registered by this function is called when a job is selected. You can register up to one job selection class.

Table H.2 Arguments of register job select class()

Argument Description

mng_p Scheduler plugin manager

class_p Job selection class to be registered

Table H.3 Return values of register job select class()

Return value Description

PJSPLG_OK Registration success

PJSPLG_ERR Registration failure

If the job selection class is already registered, an error is returned.

The cause of the error is set in the pjsplg_errcode variable for a scheduler API
error code. For details on pjsplg_errcode, see "pjsplg_errcode."

If an error occurs, this function sets the following error code in pjsplg_errcode.

-42-

Table H.4 Error code set in pjsplg_errcode

Error code Description

PJSPLG_ERROR_ALREADY_REGISTERED The job selection class is already registered.

deregister_job_select_class()

This member removes the class registered by the register_job_select_class.

Table H.5 Arguments of deregister job select class()

Argument Description

mng_p Scheduler plugin manager

class_p Job selection class to be removed

Table H.6 Return values of deregister job select class()

Return value Description

PJSPLG_OK Deletion success

PJSPLG_ERR Deletion failure

If the job selection class is not registered, an error is returned.

The cause of the error is set in the pjsplg_errcode variable for a scheduler
API error code. For details on pjsplg_errcode, see "pjsplg_errcode."

If an error occurs, this function sets the following error code in pjsplg_errcode.

Table H.7 Error code set in pjsplg _errcode

Error code Description

PJSPLG_ERROR_NOT_REGISTERED The specified job selection class is not registered.

-43-

Appendix | Reference: Constants and Functions of the
Job Selection Plugin

This appendix describes the constants and functions that every job selection plugin must define.

.1 Macro Definitions

This section describes a macro definition used by job selection plugins.

1.1.1 PJSPLG_DEFINE

PJSPLG_DEFINE is a macro for defining a plugin. It is used to define a name and version of a plugin.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

#defi ne PISPLG_DEFI NE(name, version)

Table I.1 Arguments of PJISPLG DEFINE

Argument Description
name Avrbitrary character string representing a plugin name
version Arbitrary character string representing a version of a plugin

The name and version defined by this macro are output to the log file of the job scheduler.

When creating a plugin library, you need to call PISPLG_DEFINE() from one of the source code files (c files) to embed the plugin name
and plugin into the library as shown below.

#i ncl ude <FJSVt cs/ pj m pj spl ugi n. h>

PJSPLG DEFI NE(" cust om sched", "1.0.0");

.2 Functions

This section describes functions used by job selection plugins.

1.2.1 plugin_init()

plugin_init() is a function that initializes the job selection plugin.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

pj splg_result_t plugin_init(PsplgManager_t *mmg_p);

This function is called when the job selection plugin is loaded.
You can perform processing for registering the class by calling a function of the scheduler plugin manager from the inside of this function.
Every job selection plugin must implement this function.

Table 1.2 Argument of plugin init()

Argument Description

mng_p Scheduler plugin manager

Whether the initialization of the job selection plugin was successful is returned as a return value of this function.

- 44 -

Table 1.3 Return values of plugin init()

Return value Description
PJSPLG_OK Initialization success
PJSPLG_ERR Initialization failure

If failure is returned, starting of the job scheduler process fails.

1.2.2 plugin fini()

plugin_fini() is a function that discards the job selection plugin.

#i ncl ude <FJSVtcs/ pj m pj spl ugi n. h>

pjsplg_result_t plugin_fini(PjsplgManager_t *mmg_p);

This function is called when the job selection plugin is unloaded. The unloading processing is performed when the job scheduler process
ends. At the time of call of this function, it is guaranteed that all the instances created by the relevant job selection plugin have been
discarded.

You can perform deletion processing of the class by calling a function of the scheduler plugin manager from the inside of this function.
Every job selection plugin must implement this function.

Table 1.4 Argument of plugin fini()

Argument Description

mng_p Scheduler plugin manager

Whether or not the job selection plugin was discarded is returned as a return value of this function.

Table I.5 Return values of plugin fini()

Return value Description
PJSPLG_OK Discarding success
PJSPLG_ERR Discarding failure

Regardless that either of the value is returned, the job scheduler continues the end processing. However, the return value is output to the log
file of the job scheduler.

- 45 -

	Title Page
	Preface
	Update history
	Contents
	Chapter 1 Overview of Scheduler Plugin Function
	1.1 Scheduler Plugin Function
	1.2 Programming Model of the Plugin Library
	1.3 Constitution of the Scheduler API
	1.3.1 Functions That the Plugin Library Must Implement
	1.3.2 Built-in Functions Provided by the Job Scheduler

	1.4 Scheduler API Types

	Chapter 2 Use of Scheduler Plugin Functions
	2.1 How to Create a Plugin Library
	2.1.1 Rules for Creating a Plugin Library
	2.1.2 Implementation Example of the Plugin Library
	2.1.3 Operation when Abnormality is Detected in the Plugin Library

	2.2 Plugin Library Incorporation Settings
	2.3 Scheduling Operation When the Scheduler API is Used
	2.3.1 Basic scheduling behavior
	2.3.2 Scheduling behavior when an event occurrence affects scheduling results

	2.4 Notes on Using the Scheduler Plugin Function

	Appendix A Processing of the Job Scheduler Process and Log Messages Output at Failure of the Processing
	A.1 Process Start Processing of the Job Scheduler
	A.1.1 Reading the Plugin Library
	A.1.2 Verifying the Validity of the Plugin Library
	A.1.3 Calling the Initialization Function of the Plugin Library
	A.1.4 Creating an Instance of the job selection class

	A.2 Processing on Normal End of a Job Scheduler Process
	A.2.1 Releasing the Instance of the Scheduling Class
	A.2.2 Calling the Termination Function of the Plugin Library
	A.2.3 Releasing the Plugin Library

	A.3 Processing When a Process of the Job Scheduler Terminates Abnormally

	Appendix B Reference: Common to the Scheduler APIs
	B.1 Structure
	B.1.1 PjsplgSubjobId_t

	B.2 Macro Definitions
	B.2.1 PJSPLG_API_VERSION
	B.2.2 PJSPLG_NUM_MAX_RSCGRP

	B.3 Type Definitions
	B.3.1 pjsplg_ruid_t
	B.3.2 pjsplg_rgid_t

	B.4 Enumeration Types
	B.4.1 pjsplg_result_t
	B.4.2 pjsplg_error_t
	B.4.3 pjsplg_jobtype_t
	B.4.4 pjsplg_jobmodel_t

	B.5 Variable
	B.5.1 pjsplg_errcode

	Appendix C Reference: Data Structures Relevant to Job Information
	C.1 Structure
	C.1.1 PjsplgElapsedTimeLimit_t
	C.1.2 PjsplgNodeShape_t
	C.1.3 PjsplgNodeReq_t
	C.1.4 PjsplgVnodeReq_t
	C.1.5 PjsplgRscReq_t
	C.1.6 PjsplgJobSubmitParam_t
	C.1.7 PjsplgJobVariableParam_t
	C.1.8 PjsplgSubjob_t

	C.2 Macro Definitions
	C.2.1 PJSPLG_ELAPSED_TIME_VALUE_UNLIMITED
	C.2.2 PJSPLG_JOB_ATTR_*

	C.3 Enumeration Types
	C.3.1 pjsplg_job_elapsed_time_mode_t
	C.3.2 pjsplg_job_rsc_type_t
	C.3.3 pjsplg_node_req_type_t
	C.3.4 pjsplg_job_state_t
	C.3.5 pjsplg_net_route_t

	Appendix D Reference: Data Structures Relevant to Resource Group Information
	D.1 Structure
	D.1.1 PjsplgRscgrpConf_t
	D.1.2 PjsplgRscgrp_t

	D.2 Macro Definitions
	D.2.1 PJSPLG_MAX_RSCGRP_NAME_LEN

	Appendix E Reference: Data Structures Relevant to Resource Unit Information
	E.1 Structure
	E.1.1 PjsplgRscunit_t

	E.2 Macro Definitions
	E.2.1 PJSPLG_MAX_RSCUNIT_NAME_LEN

	Appendix F Reference: API Functions That Can be Used From the Job Selection Class
	F.1 Structure
	F.1.1 PjsplgJobSelectClassApi_t

	Appendix G Reference: Data Structures Relevant to the Job Selection Class
	G.1 Structure
	G.1.1 PjsplgJobSelectClass_t

	Appendix H Reference: Data Structure Relevant to the Scheduler Plugin Manager
	H.1 Structure
	H.1.1 PjsplgManager_t

	Appendix I Reference: Constants and Functions of the Job Selection Plugin
	I.1 Macro Definitions
	I.1.1 PJSPLG_DEFINE

	I.2 Functions
	I.2.1 plugin_init()
	I.2.2 plugin_fini()

