FUjiltsu

FUJITSU Software

FUJITSU
C-SSL II Thread-Parallel Capabilities User's Guide

Preface

This manual describes the functions and usage of the C Scientific Function Library II Thread-Parallel Capabilities.

C-SSL II Thread-Parallel Capabilities provide the computational functionality to efficiently compute or solve large-scale problems on a shared-memory parallel computer with scalar processors. New algorithms for parallel processing have been adopted.

When using the C-SSL II Thread-Parallel Capabilities for the first time, the user should read the General Descriptions first.

The contents of the C-SSL II Thread-Parallel Capabilities may be amended to keep up with the latest technology. That is, if new, revised or updated routines include or surpass the functionality of the current routines, then the current routines may then be deleted from the library.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or US export control laws.

Date of Publication and Version

Version	Manual code
March 2020, 12th Version	J2UL-2487-02ENZ0(00)
January 2020, 11th Version	J2UL-2487-01ENZ0(00)
June 2016, 10th Version	J2UL-2071-02ENZ0(00)
September 2015, 9th Version	J2UL-2071-01ENZ0(00)
October 2014, 8th Version	J2UL-1908-01ENZ0(00)
June 2013, 7th Version	-
March 2011, 6th Version	-
February 2009, 5th Version	-
April 2007, 4th Version	-
March 2006, 3rd Version	-
September 2004, 2nd Version	-
December 2003, 1st Version	-

Copyright

Copyright FUJITSU LIMITED 2003-2020

Update History

Changes	Location	Version
Option name "-KOMP" is corrected to "-Kopenmp"	How to Use C-SSL II Thread Parallel Capabilities	$7^{\text {th }}$ Version
A note related to the Neumann preconditioner is appended.	c_dm_vcgd, c_dm_vcge	
Rework format	Cover, Preface	$8^{\text {th }}$ Version
The following routine was added. - c_dm_vlcspsxcr1 - c_dm_vlspaxcr2 - c_dm_vradau5 - c_dm_vjdhecr - c_dm_vjdnhcr - c_dm_vsrlu - c_dm_vsrlux - c dm vsrs	Tables of routines, Description of the C-SSL II Routines	$9^{\text {th }}$ Version
The following routine was added. - c_dm_vmvscce - c_dm_vranu5 - c_dm_vsclu - c_dm_vsclux - c_dm_vscs	Tables of routines, Description of the C-SSL II Routines	$10^{\text {th }}$ Version
Correction of a slip of the pen	c_dm_vbcscc , c_dm_vmvscc , c_dm_vsrlu, c_dm_vsrlux, c_dm_vsrs, c_dm_v3dcpf	
The following routine was added. - c_dm_vssslu - c_dm_vssslux - c_dm_vssss	Tables of routines, Description of the C-SSL II Routines	$11^{\text {th }}$ Version
Correction of wrong sentences	Preface, Update History, How to use this manual, Tables of routines, General Descriptions, How to Use C-SSL II Thread Parallel Capabilities, c_dm_vamlid, c_dm_vbcscc, c_dm_vlcspsxcr1, c_dm_vldlx, c_dm_vlspaxcr2, c_dm_vmlbife, c_dm_vradau5, c_dm_vranu5, c_dm_vschol, c_dm_vsclu, c_dm_vsclux, c_dm_vscs, c_dm_vsrlu, c_dm_vsrlux, c_dm_vsrs, c_dm_vtrid, c_dm_vtrid, c_dm_v3dcpf, Bibliography	
The explanation for the size of stack area for each thread is updated.	How to Use C-SSL II Thread Parallel Capabilities	

- The information in this manual is subject to change without notice.

Acknowledgements

SSL II Thread-Parallel Capabilities include some functions using codes and algorithms, with appropriate modifications, which have been developed for SSL II/VPP. SSL II/VPP is the library developed in collaboration with the Australian National University (ANU). Development at the ANU has been led by professors Mike Osborne and Richard Brent and coordinated by Dr. Bob Gingold, Head, ANU Supercomputer Facility. The following is a complete list of those ANU experts involved in the design and implementation of SSL II/VPP. Fujitsu acknowledges their cooperation.

People

Professor Richard Peirce Brent
Dr Andrew James Cleary
Dr Murray Leslie Dow
Mr Christopher Robert Dun
Dr Lutz Grosz
Dr David Lawrence Harrar II
Dr Markus Hegland
Ms Judith Helen Jenkinson
Dr Margaret Helen Kahn
Dr Zbigniew Leyk
Mr David John Miron
Professor Michael Robert Osborne
Dr Peter Frederick Price
Dr Stephen Gwyn Roberts
Dr David Barry Singleton
Dr David Edward Stewart
Dr Bing Bing Zhou

How to use this manual

It is strongly recommended that the General Descriptions is read carefully by first time users of the C-SSL II ThreadParallel Capabilities, even if they are familiar with the Fortran SSL II Thread-Parallel Capabilities. The General Descriptions provides:

- an overview of the library,
- the library design,
- information on using the library,
- an annotated sample calling program,
- the array storage formats employed,
- an annotated example of what is contained in each routine description.

The Selection of routines chapter gives an overview of the functionality covered by the library and allows the user to select an appropriate routine for his/her own calculation. Each major section of the library, e.g. linear algebra, is covered separately to allow users to locate the relevant section more quickly.

After the Selection of routines chapter are Tables of routines, which contain summary information for every routine in the library, with cross references to the detailed routine descriptions. This is intended to allow experienced users to quickly locate the routine they require. The routines are listed by section and then by generality, e.g. general solution routines are listed before routines for more specific cases.

The bulk of the manual contains the routine descriptions. The routine descriptions are arranged in alphabetical order. Each description contains an overview, argument descriptions, sample calling program and important information on how to use each routine.

Detailed descriptions of the underlying numerical methods can be found in the manuals for the Fortran SSL II library and in the references specified in the Bibliography.

Further sources of information

Following manual describes underlying Fortran routines.

- SSL II Thread-Parallel Capabilities User's Guide II.

There are extensive further references provided in the Bibliography.

Typographic conventions

Courier and Times fonts are used as follows:

- Courier regular font - used for routine names, arguments, program objects, such as arrays and code.
- Times regular font - standard font for text.
- Times italic font - emphasis, book titles, manual section references, e.g. See Comments on use, components of matrix and vector objects, e.g. $a_{i j}$.
- Times bold font - Whole matrix and vector objects, e.g. $\mathbf{A x}=\mathbf{b}$, as well as section titles.

Mathematical conventions

Throughout this manual, the distinction is made between matrices and arrays

- Matrices and vectors are mathematical objects that are indexed from one, so the first element of a matrix \mathbf{A} is a_{11}.
- 2-D and 1-D arrays are C objects indexed from 0 , so that the first element of 2-D array a is $\mathrm{a}[0][0]$.

When used in mathematical expressions, i is usually used to denote the imaginary part of a complex number, for example in $\mathrm{z}=5+i 10, i=\sqrt{-1}$.

The modulus function $|x|$ is used to denote absolute value, including complex absolute value. Unless otherwise delimited, norms such as $\|\mathbf{x}\|$ are the 2-norm (so $\|\mathbf{x}\|=\sqrt{\mathbf{x}^{\mathrm{T}} \mathbf{x}}$).

Tables of routines

Linear algebra

1. Matrix operations

Routine name	Description	Page
C_dm_vmggm	Matrix multiplication (real matrix).	133
c_dm_vmvscc	Multiplication of a real sparse matrix and a real vector (compressed column storage method)	148
c_dm_vmvsccc	Multiplication of a complex sparse matrix and a complex vector (compressed column storage method)	152
c_dm_vmvsd	Multiplication of a real sparse matrix and a real vector (diagonal format storage method).	157
c_dm_vmvse	Multiplication of a real sparse matrix and a real vector (ELLPACK format storage method).	160

2. Linear equations (Direct method)

Routine name	Description	Page
c_dm_vlax	A system of linear equations with real matrices (blocked LU decomposition method).	93
c_dm_valu	LU decomposition of real matrices (blocked LU decomposition method).	12
c_dm_vlux	A system of linear equations with LU-decomposed real matrices.	131
c_dm_vlsx	A system of linear equations with symmetric positive definite matrices (blocked modified Cholesky decomposition method).	128
c_dm_vsldl	LDL $^{\mathrm{T}}$ decomposition of symmetric positive definite matrices (blocked modified Cholesky decomposition method).	301
c_dm_vldlx	A system of linear equations with $\mathrm{LDL}^{\mathrm{T}}$-decomposed symmetric positive definite matrices.	112
c_dm_vlcx	A system of linear equations with complex matrices (blocked LU decomposition method).	109
c_dm_vclu	LU decomposition of complex matrices (blocked LU decomposition method).	56
c_dm_vclux	A system of linear equations with LU-decomposed complex matrix.	59
c_dm_vlbx	A system of linear equations with banded real matrices (Gaussian elimination).	96
c_dm_vblu	LU decomposition of banded real matrices (Gaussian elimination).	37
c_dm_vblux	A system of linear equations with LU-decomposed banded real matrices.	42
c_dm_vschol	LDL $^{\mathrm{T}}$ decomposition of a symmetric positive definite sparse matrices (Left-looking Cholesky decomposition method)	212
c_dm_vscholx	A system of linear equations with $\mathrm{LDL}^{\mathrm{T}}$-decomposed symmetric positive definite sparse matrices	224
c_dm_vssps	A system of linear equations with symmetric positive definite sparse matrices (Leftlooking LDL ${ }^{\mathrm{T}}$ decomposition method)	362
c_dm_vsrs	A system of linear equations with unsymmetric real sparse matrices (LU decomposition method)	341

Routine name	Description	Page
c_dm_vsrlu	LU decomposition of an unsymmetric real sparse matrix	304
c_dm_vsrlux	A system of linear equations with LU-decomposed unsymmetric real sparse matrices	324
c_dm_vscs	A system of linear equations with unsymmetric complex sparse matrices (LU decomposition method)	273
c_dm_vsclu	LU decomposition of an unsymmetric complex sparse matrix	233
c_dm_vsclux	A system of linear equations with LU-decomposed unsymmetric complex sparse matrices	255
c_dm_vssss *	A system of linear equations with structurally symmetric real sparse matrices (LU decomposition method)	411
c_dm_vssslu *	LU decomposition of a structurally symmetric real sparse matrix	375
c_dm_vssslux *	A system of linear equations with LU-decomposed structurally symmetric real sparse matrices	394

3. Linear equations (Iterative method)

Routine name	Description	Page
c_dm_vcgd	A system of linear equations with symmetric positive definite sparse matrices (preconditional CG method, diagonal format storage method).	46
c_dm_vcge	A system of linear equations with symmetric positive definite sparse matrices (preconditional CG method, ELLPACK format storage method).	51
c_dm_vbcscc	A system of linear equations with unsymmetric positive definite sparse matrices (BICGSTAB(l) method, compressed column storage method)	24
c_dm_vbcsd	System of linear equations with unsymmetric or indefinite sparse matrices (BICGSTAB(l) method, diagonal format storage method).	30
c_dm_vbcse	System of linear equations with unsymmetric or indefinite sparse matrices (BICGSTAB(l) method, ELLPACK format storage method).	34
c_dm_vtfqd	A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR method, diagonal format storage method).	436
c_dm_vtfqe	A system of linear equations with unsymmetric or indefinite sparse matrices (TFQMR method, ELLPACK format storage method).	439
c_dm_vamlid	System of linear equations with sparse matrices of M-matrix (Algebraic multilevel iteration method [ALMI Method], diagonal format storage method).	15
c_dm_vmlbife	System of linear equations with sparse matrices (Multilevel iteration method based on incomplete block factorization, ELLPACK format storage method).	137
c_dm_vlcspsxc r1	System of linear equations with non-Hermitian symmetric complex sparse matrices (Conjugate A-Orthogonal Conjugate Residual method with preconditioning by incomplete LDL ${ }^{\text {T decomposition, symmetric compressed row storage method) }}$der c_dm_vlspaxcr 2 System of linear equations with unsymmetric real sparse matrices (Induced Dimension Reduction method with preconditioning by sparse approximate inverse, compressed row storage method)	115

4. Differential equations

Routine name	Description	Page
c_dm_vradau5	System of stiff ordinary differential equations or differential-algebraic equations (Implicit Runge-Kutta method)	174

5. Discretization of partial differential equation

Routine name	Description	Page
c_dm_vpde2d	Generation of System of linear equations with sparse matrices by the finite difference discretization of a two dimensional boundary value problem for second order partial differential equation.	163
c_dm_vpde3d	Generation of System of linear equations with sparse matrices by the finite difference discretization of a three dimensional boundary value problem for second order partial differential equation.	168

6. Inverse matrices

Routine name	Description	Page
c_dm_vminv	Inverse of real matrices (blocked Gauss-Jordan method).	135
c_dm_vcminv	Inverse of complex matrices (blocked Gauss-Jordan method).	61

Eigenvalue problem

Routine name	Description	Page
c_dm_vsevph	Eigenvalues and eigenvectors of real symmetric matrices (tridiagonalization, multisection method, and inverse iteration).	296
c_dm_vhevp	Eigenvalues and eigenvectors of Hermite matrices.	68
c_dm_vtdevc	Eigenvalues and eigenvectors of real tridiagonal matrices.	431
c_dm_vgevph	Generalized eigenvalue problem for real symmetric matrices (eigenvalues and eigenvectors) (tridiagonalization, multisection method, inverse iteration).	63
c_dm_vtrid	Tridiagonalization of real symmetric matrices.	442
c_dm_vhtrid	Tridiagonalization of Hermite matrices.	72
c_dm_vjdhecr	Eigenvalues and eigenvectors of an Hermitian sparse matrix (Jacobi-Davidson method, compressed row storage method)	75
c_dm_vjdnhcr	Eigenvalues and eigenvectors of a complex sparse matrix (Jacobi-Davidson method, compressed row storage method)	84

Fourier transforms

Routine name	Description	Page
c_dm_v1dcft	One-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	445
c_dm_v1dcft2	One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7).	449

Routine name	Description	Page
c_dm_v1dmcft	One-dimensional multiple discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	451
c_dm_v2dcft	Two-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	461
c_dm_v3dcft	Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5 and 7).	468
c_dm_v3dcft2	Three-dimensional discrete complex Fourier transforms (mixed radix of 2, 3, 5and 7).	471
c_dm_v1drcf	One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	454
c_dm_v1drcf2	One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	458
c_dm_v2drcf	Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	464
c_dm_v3drcf	Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	477
c_dm_v3drcf2	Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7).	481
c_dm_v3dcpf	Three-dimensional prime factor discrete complex Fourier transforms.	474

Random numbers

Routine name	Description	Page
c_dm_vranu4	Generation of uniform random numbers [0,1).	204
c_dm_vranu5	Generation of uniform random numbers [0,1) (MRG8).	207
c_dm_vrann3	Generation of normal random numbers.	196
c_dm_vrann4	Generation of normal random numbers (Wallace's method).	200

Contents

General Descriptions 1
Outline 1
General rules 1
How to Use C-SSL II Thread Parallel Capabilities 4
Array storage formats. 6
Description of the C-SSL II Routines 11
c_dm_valu 12
c_dm_vamlid 15
c_dm_vbcscc 24
c dm vbcsd 30
c_dm_vbcse 34
c_dm_vblu 37
c_dm_vblux 42
c_dm_vcgd 46
c_dm_vcge 51
c_dm_vclu 56
c dm vclux 59
c dm veminv 61
c dm vgevph 63
c_dm_vhevp 68
c_dm_vhtrid 72
c_dm_vjdhecr 75
c_dm_vjdnher 84
c_dm_vlax 93
c_dm_vlbx 96
c_dm_vlcspsxcr1 101
c_dm_vlcx 109
c_dm_vldlx 112
c_dm_vlspaxcr2 115
c_dm_vlsx 128
c_dm_vlux 131
c dm vmggm 133
c_dm_vminv 135
c_dm_vmlbife 137
c_dm_vmvscc 148
c_dm_vmvscce 152
c dm vmvsd 157
c_dm_vmvse 160
c_dm_vpde2d 163
c_dm_vpde3d 168
c_dm_vradau5 174
c_dm_vrann3 196
c_dm_vrann4 200
c_dm_vranu4 204
c dm_vranu5 207
c dm vschol 212
c_dm_vscholx 224
c_dm_vsclu 233
c_dm_vsclux 255
c dm vscs 273
c_dm_vsevph 296
c_dm_vsldl 301
c_dm_vsrlu. 304
c_dm_vsrlux 324
c_dm_vsrs 341
c_dm_vssps 362
c_dm_vssslu 375 *
c_dm_vssslux 394*
c_dm_vssss 411 *
c dm vtdevc 431
c_dm_vtfqd 436
c_dm_vtfqe 439
c_dm_vtrid 442
c_dm_vldcft 445
c_dm_v1dcft2 449
c_dm_vldmcft 451
c_dm_v1drcf 454
c_dm_v1drcf2 458
c dm v2dcft 461
c_dm_v2drcf 464
c dm v3dcft 468
c_dm_v3dcft2 471
c_dm_v3dcpf 474
c_dm_v3drcf 477
c_dm_v3drcf2 481
Bibliography 485

General Descriptions

Outline

C-SSL II Thread-Parallel Capabilities is a parallel mathematical function library to execute on a shared-memory parallel computer with scalar processors. The library provides functions to efficiently compute such large-scale problems by parallel processing that are intractable on a single processor.

The mechanism of "Thread-Parallel" means that multiple execution flows, each of which is called a thread, share the calculation where each thread is responsible for undertaking pieces of calculation using one CPU in the shared memory system. If the number of created threads is less or equal to the number of CPU available, the process can be executed by threads in parallel with all threads carried out by separated CPU. This Thread-Parallel mechanism enables a calculation to be divided into multiple parallel executions (as far as the algorithm could be parallelized).

Each function of C-SSL II Thread-Parallel Capabilities creates multiple threads internally and solves the problem with a parallel algorithm with these threads. Where, the creation and extinction of the threads, work-sharing constructs and synchronization are directed with OpenMP C/C++ specifications. Therefore C-SSL II Thread-Parallel Capabilities need the run-time execution environment of the OpenMP $\mathrm{C} / \mathrm{C}++$.

The number of the threads used by a function of C-SSL II Thread-Parallel Capabilities can be assigned by the user with OpenMP environment variables or run-time library routines. With these, the function can be executed by as any number of threads as specified.

The C-SSL II Thread-Parallel Capabilities only supports double precision double functionality; Double precision complex numbers are also supported via a special dcomplex type definition. In addition, all integer arguments and results are of type int.

The scope of functionality, function names, and calling interface of C-SSL II Thread-Parallel Capabilities are different from those used in the mathematical library C-SSL II or C-SSL II/VP.

General rules

1. Details on the C-SSL II Thread-Parallel Capabilities interface

Routines in the C library have names consistent with the Fortran library with the C function name constructed by adding the prefix C_{-}to the underlying Fortran routine name in lower case. As all of the routines deal with double precision arguments, this means that the all routines start with $\mathrm{C} _$dm_v.

From the users' viewpoint the C-SSL II Thread-Parallel Capabilities consists of C routines using standard C conventions for argument passing, argument types and return values. Input-only scalars are passed by value; output and input / output arguments are passed by pointer. Input-only arguments are not altered and can be reused by the user. Output arguments do not have to be initialized by the user before the function call. Input / output arguments need to be defined before function calls and are altered as a result of the call. The values are not necessarily meaningful to the user. Work arrays are labelled as such, which implies that no user action is required on the initial call, but their output contents may be significant. It is
often possible to recall a function to carry on with a computation (for instance, a new end point can be specified in one of the differential equation routines) and in almost all such cases, work arguments must remain unchanged between calls.

Argument names follow the traditional Fortran implicit typing conventions, so that arguments of type int begin with the letters i to n . Arguments of type double or dcomplex start with the letters a to h and o to z .

Every library routine returns a standard int error value. If the routine completed successfully then 0 is returned; if there was some error detected in the routine, or if the results may not be reliable, 1 is returned. The user program can check the error return value and if an error occurred more information about the error condition can be obtained from the icon parameter.

As much as possible, the arguments in each C library routine are identical to the arguments in the Fortran library routine, and they are specified in the same order. Generally, main arguments are listed first, control arguments are in the middle and workspaces are located towards the last of the arguments. The last argument is always icon, the error condition code. Some argument types are described more fully elsewhere in this document: multidimensional-arrays (Section 2), and complex numbers (Section 3).

Notice that where temporary work array arguments are required by a Fortran library routine, the C interface routine also includes these arguments. This is not normal C programming, where work space is generally allocated within a routine using malloc. However, as mentioned above, there are several instances where data stored in the work area is actually required on subsequent calls to the same function.

The C-SSL II Thread-Parallel Capabilities is provided with a header file cssl. h which contains prototypes for all of the user-accessible functions, and other information such as the dcomplex data type definition. Every user program which calls the C library must include this header file. The function name of the user main program is main or MAIN__ (two underscores after MAIN).

2. Multidimensional arrays

As shown in the above example, the library expects users to declare matrices as 2-D arrays. These arrays must be recast as a pointer to type double in calls to a library routines and it is also necessary to specify the C fixed dimension of the array.

The approach taken incurs a small performance penalty. This is because the user's code will use C row-ordered arrays, but before these are passed to the Fortran code, they must be transformed to Fortran column-ordered format. Also, before exiting from the C wrapper, the arrays may need to be transformed back again to C row-ordered format if the user is expected to access the array data.

See the Array storage formats section for further details about arrays.

3. Complex numbers

ANSI C does not provide a complex data type, but it is common C practice to define a complex type using a typedef:

```
typedef struct {
    double re, im;
} dcomplex;
```

The C-SSL II Thread-Parallel Capabilities supports complex numbers defined in this manner. Only double precision real and imaginary parts are supported. An example of user code to handle such complex numbers is:

```
/* include C-SSL II header file */
#include "cssl.h"
#define N1 4000
#define N2 3000
#define KX (N1+1)
#define KY (N2+1)
MAIN__()
{
    int isn, i, j, icon, ierr;
    dcomplex x[N2][KX], y[N1][KY];
    /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
    for(i=0; i<N2; i++) {
        for(j=0; j<N1; j++) {
                x[i][j].re = N1*i+j+1;
                x[i][j].im = 0.0;
        }
    }
    /* Do the forward transform */
    isn = 1;
    ierr = c_dm_v1dcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon);
}
```


4. Condition codes

The icon argument indicates the resultant status after execution of the library function (the condition code) and should always be checked on output. To make this slightly easier, the C library routines also provide a return code. As suggested in Section 1, the error return value is 0 only if the result is considered to be reliable (i.e. icon <10000). A value of 1 is returned if the result may be unreliable ($20000 \leq$ icon <30000) or if the routine detected an error in the input arguments (icon ≥ 30000).

The following table shows the range into which the icon value normally falls, and how users should interpret the reliability of the processing results. A small number of routines return icon values that are negative or larger than 30000 . With such routines, it is important that the user checks the routine documentation for the range of such icon values and their meaning.

Code	Explanation	Reliability of result	Result
0	Processing terminated normally.	Result is reliable as far as the routine can determine.	Normal
$1-9999$	Processing terminated normally, but additional information is included.	Processing terminated due to an internal restriction imposed during processing.	The result is reliable, subject to restrictions.
$10000-$	Processing is stopped due to an error that occurred during processing.	The result is not to be relied upon.	Error
19999 $20000-$ 29999	Processing is bypassed due to an error in the input argument(s).		
30000			

How to Use C-SSL II Thread Parallel Capabilities

1. Positions of the CALL statements

C-SSL II Thread-Parallel Capabilities consist of OpenMP functions which can be called from both inside and outside of the OpenMP parallel regions in user programs. And these functions also can be called from serial programs without OpenMP directives, and also they can be called from programs that are auto-parallelized by the $\mathrm{C} / \mathrm{C}++$ compiler.

In cases where the function is called from inside of the parallel region, it is necessary that every actual argument as input and output, output and work areas which is dealt with by each thread must be mapped to different memory area respectively.

In every calling case above, the fcc/FCC command option "-Kopenmp" must be specified at the time the compiled user program is to be linked with C-SSL II Thread-Parallel Capabilities. The load module can be OpenMP executable with this option. Refer to "C User's Guide" for details.

2. How to specify the number of threads

A function of C-SSL II Thread-Parallel Capabilities is executed by multiple threads in parallel within parallel region which is created internal of the function. The number of threads used by the function can be assigned by the user with an OpenMP environment variable "OMP_NUM_THREADS" or a run-time library routine "omp_set_num_threads()". Usually, specify the number of threads in the former way.

The run-time library routine can be used in situations where the user wants to assign a specific number of threads for the parallel region. Specifying the number of threads with this run-time routine just before the C-SSL II Thread-Parallel function makes it possible to execute the function with a specific number of threads.

Refer to "C User's Guide" and "OpenMP Application Program Interface Version2.5 (May 2005)" for details about OpenMP environment variables and run-time library routines.

3. Size of stack area for each thread

Some functions of C-SSL II Thread-Parallel Capabilities takes work area internally as auto allocatable array on "stack" area for each thread. Suppose that the number of threads to be generated is NT and the total available memory size is M, it is recommended to set the environmental variable OMP_STACKSIZE to about $\mathrm{M} /(5 * \mathrm{NT})$ as the stack size for each thread before the execution. When compiler option -Nfjomplib is specified, the environmental variable THREAD_STACK_SIZE can be set as the stack size. Refer to "C User's Guide" for details about setting the stack size for OpenMP executables.

4. Example programs

To call a function from outside of the parallel region

The example program below solves a system of linear equations with input of a real coefficient matrix of 4000×4000. If the environment variable OMP_NUM_THREADS is set to be 4 on the system of 4 processors, execution will be with 4 threads in parallel.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX (4000)
#define LDA (NMAX+1)
MAIN__()
{
    int ip[NMAX];
    int n, is, isw, icon, ierr, i, j;
    double a[NMAX][LDA], b[NMAX];
    double epsz, c, t, s;
    n = NMAX;
    c = sqrt(2.0/(n+1));
    t = atan(1.0)*4.0/(n+1);
    for(i=1; i<=n; i++) {
        for(j=1; j<=n; j++) {
            a[i-1][j-1] = c*sin(t*i*j);
        }
    }
    for(i=1; i<=n; i++) {
        s = 0.0;
        for(j=1; j<=n; j+++) {
            s = s+sin(t*i*j);
        }
        b[i-1] = s*c;
    }
    epsz = 0.0;
    isw = 1;
    ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon);
    printf("icon = %d, return code = %d\n", icon, ierr);
    printf("n = %d, b[0] = %f, b[n-1] = %f\n", n, b[0],'b[n-1]);
}
```


To call function from inside of the parallel region

The example program below solves two independent systems of linear equations. One input of a real coefficient matrix is 4000×4000, and the other is 4200×4200. If the environment variable OMP_NUM_THREADS is set to be 2 and OMP_NESTED is set to be TRUE on the system of 4 processors, each system of linear equation is solved with 2 threads respectively. The execution will be parallelized with 4 threads total.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <omp.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX1 (4000)
#define NMAX2 (4200)
#define LDA1 (NMAX1+1)
#define LDA2 (NMAX2+1)
MAIN__()
{
    int ip1[NMAX1], ip2[NMAX2], i, j, num;
    int n1, is1, isw1, icon1, ierr1;
    int n2, is2, isw2, icon2, ierr2;
    double a1[NMAX1][LDA1], b1[NMAX1];
    double a2[NMAX2][LDA2], b2[NMAX2];
    double epsz1, epsz2, c, t, s;
    n1 = NMAX1;
    c = sqrt(2.0/(n1+1));
    t = atan(1.0)*4.0/(n1+1);
    for(i=1; i<=n1; i++) {
        for( j=1; j<=n1; j++) {
            a1[i-1][j-1] = c*sin(t*i*j);
        }
    }
```

```
    for(i=1; i<=n1; i++) {
    s = 0.0;
    for(j=1; j<=n1; j++) {
        s = s+sin(t*i*j);
        }
    b1[i-1] = s*c;
    }
    n2 = NMAX2;
    c = sqrt(2.0/(n2+1));
    t}=\operatorname{atan}(1.0)*4.0/(n2+1)
    for(i=1; i<=n2; i++) {
    for(j=1; j<=n2; j++) {
        a2[i-1][j-1] = c*sin(t*i*j);
    }
    }
    for(i=1; i<=n2; i++) {
        s = 0.0;
        for(j=1; j<=n2; j++) {
            s = s+sin(t*i*j);
        }
    b}2[i-1]=s*c
}
#pragma omp parallel default(shared) private(num)
{
    num = omp_get_thread_num();
    if(num == 0) {
        epsz1 = 0.0;
        isw1 = 1;
        ierr1 = c_dm_vlax((double*)a1, LDA1, n1, b1, epsz1, isw1, &is1, ip1, &icon1);
    } else {
        epsz2 = 0.0;
        isw2 = 1;
        ierr2 = c_dm_vlax((double*)a2, LDA2, n2, b2, epsz2, isw2, &is2, ip2, &icon2);
    }
}
    printf("icon1 = %d, return code = %d\n", icon1, ierr1);
    printf("n1 = %d, b1[0] = %f, b1[n1-1] = %f\n", n1, b1[0], b1[n1-1]);
    printf("icon2 = %d, return code = %d\n", icon2, ierr2);
    printf("n2 = %d, b2[0] = %f, b2[n2-1] ='%f\n", n2, b2[0], b2[n2-1]);
}
```


Array storage formats

The methods for storing matrices in arrays depends on the structure and form of the matrices as well as the computation in which it is involved.

1. Storage formats for general matrices

When an argument is defined as a matrix, all of the elements of a matrix are assumed significant. A standard 2-D array is used to store the matrix, so that matrix element $a_{i j}$ is stored in array element a[i-1] [j-1]. Matrices are indexed from 1, which is standard mathematical usage, while array dimensions are indexed from 0 , which is standard C . This also applies to vectors. Again, the mathematical tradition numbers the elements from 1 , so that vector element y_{i} would be stored in array element $y[i-1]$.

Another feature of the 2-D arrays used in the C-SSL II Thread-Parallel Capabilities library is that most routines are designed so that users can specify a larger memory area for a 2-D array than is required for a particular problem. Consider the example in Figure 1, where a 5 by 5 matrix \mathbf{A} has been stored in an m by k array a. In order for this matrix to be used in a function call, in addition to the matrix size (in this case 5), it is also necessary to specify k, the number of columns of a. In the documentation, this is referred to as the C fixed dimension.

Figure 1 Storage format for general matrices

2. Storage formats for general sparse matrices

ELLPACK storage format

The ELLPACK storage format is a sparse matrix format that is best suited to those situations where either the matrix non-zeros are spread over a wide range of the matrix or the matrix diagonals are themselves very sparse (see [40] and [57] for further details on ELLPACK). Two 2-D arrays are used to represent the matrix. The array referred to as coef in Figure 2 contains the non-zeros of the matrix, stored so that the i-th column of the array contains the non-zeros on the matrix row $i+1$ and the array icol contains the matrix column index of the corresponding non-zero element in coef. Another input variable is iwidt, the maximum number of non-zeros in any row of \mathbf{A}. If a row has fewer than iwidt non-zeros, then the associated column of coef must be padded with zeros. The corresponding elements of icol must contain the row number of the row in question.

In Figure 2, row 1 of \mathbf{A} has non-zeros in columns 1 and 4 . Therefore, $\operatorname{coef}[0][0]$ has the value 1 and icol[0] [0] has the value 1 , because $a_{11}=1$. Similarly, coef[1] [0] has the value 2 and icol[1] [0] = 4 , because $a_{14}=2$. Row 3 of matrix \mathbf{A} has fewer than iwidt non-zeros. Therefore, coef[1] [2] is zero and icol[1] [2] = 3. Row 4 of matrix \mathbf{A} is treated similarly. Although not illustrated in the example, the ordering of non-zero elements within a column of coef is not important, provided that the same ordering is used in icol.

$$
\begin{aligned}
& \operatorname{coef}=\left[\begin{array}{llll}
1 & 3 & 5 & 6 \\
2 & 4 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Figure 2 ELLPACK storage format for sparse matrices

Diagonal storage format

The diagonal storage format is effective for those sparse matrices where the non-zero elements all lie along a small number of diagonals. This format is intended to be used with preconditioned iterative linear equation solvers and it only stores the main diagonal and those off-diagonals that contain non-zeros. Notice however that all of such diagonals are stored, including the zero elements.

Two arrays are used to store this matrix. The first array, referred to as diag in Figure 3, is a 2-D array whose rows contain the diagonal elements and the second is a 1-D array, referred to as nofst whose i-th element contains the offset of the diagonal stored in the i-th row of diag. The upper diagonals have a positive offset, the main diagonal an offset of zero and the lower diagonals a negative offset. There is no special restriction on the order in which the diagonals are stored, although it is essential that the elements within a diagonal are stored consecutively.

Also notice that leading zeros on the lower diagonals and trailing zeros on the upper diagonals must be explicitly included. The reason for these is illustrated in figure 3. For further information, see [49] and [54].

Figure 3 Diagonal storage format for sparse matrices

3. Storage formats for symmetric positive definite sparse matrices

ELLPACK storage format

This version of the ELLPACK storage format is intended to be used with symmetric positive definite matrices, where the main diagonal has been normalized to ones. There are some important differences between the way elements are stored for this matrix sub-class and its parent class. In particular, the main diagonal elements are not stored, because they are assumed to be 1 and the upper triangular non-zeros are stored separately from the lower triangular non-zeros. Both the upper and lower triangular elements are stored, even though one could be determined from the other. The maximum number of non-zeros in each row vector of the upper triangular matrix is nsu and the maximum number of non-zeros in each row vector of the lower triangular matrix is nsl . If $\mathrm{nsh}=\max (\mathrm{nsl}, \mathrm{nsu})$, then the non-zeros of the upper triangular matrix are stored in rows 0 to $\mathrm{nsh}-1$ and the non-zeros of the lower triangular matrix are stored in rows nsh to $2 *$ nsh -1 . In other words, occasionally, one or other of the sub-matrix entries will be padded by zeros.

The indexing for non-zeros (and row numbers for explicit zeros in coef) is still in terms of the original matrix. For instance, in Figure 4, coef[2][2] has the value 6, icol[2][2] has the value 2, so that we know $a_{32}=6$. Similarly, $\operatorname{coef}[0][2]$ has the value 7 , icol[0][2] has the value 4 , so that $a_{34}=7$.

It is the user's responsibility to ensure that the normalization of the matrix and right hand sides are correct. To obtain the solution to $\mathbf{A x}=\mathbf{b}$, obtain the solution to the normalized problem $\mathbf{A}^{*} \mathbf{y}=\mathbf{b}^{*}$, where $\mathbf{A}^{*}=\mathbf{D}^{1 / 2} \mathbf{A} \mathbf{D}^{1 / 2}$ and $\mathbf{b}^{*}=\mathbf{D}^{1 / 2} \mathbf{b}$ and then obtain the solution from $\mathbf{x}=\mathbf{D}^{1 / 2} \mathbf{y}$, where \mathbf{D} is the diagonal matrix containing the inverse of the diagonal elements of \mathbf{A}.

Figure 4 ELLPACK storage format for normalized symmetric positive definite sparse matrices

Diagonal storage format

The data structures used for symmetric positive definite matrices is similar to those in the general case. As with the ELLPACK storage format, only normalized matrices are supported, where the main diagonal of the matrix is assumed to consist of ones. Therefore, the main diagonal is not explicitly stored because its values are known. An example is provided in Figure 5. The order in which the diagonals are stored is now important, with the upper diagonals being stored first in diag. Diagonals are given in order from nearest to the main diagonal for both of the upper and lower triangular matrices. The entries for the upper diagonals have trailing zeros, so diagonal j will have j trailing zeros. The entries for the lower diagonals have leading zeros, so diagonal $-j$ will have j leading zeros.

Figure 5 Diagonal storage format for normalized symmetric positive definite sparse matrices

Description of the C-SSL II Routines

c_dm_valu

```
LU decomposition of real matrices (blocked LU decomposition method).
ierr = c_dm_valu(a, k, n, epsz, ip, \&is,
    \&icon);
```


1. Function

An $n \times n$ non-singular matrix \mathbf{A} is decomposed by blocked outer product Gaussian elimination.

$$
\begin{equation*}
\mathbf{P A}=\mathbf{L U} \tag{1}
\end{equation*}
$$

where, \mathbf{P} is the permutation matrix which exchanges the rows of \mathbf{A} by partial pivoting, \mathbf{L} is the lower triangular matrix, and \mathbf{U} is the unit upper triangular matrix ($n \geq 1$).

2. Arguments

The routine is called as follows:
ierr = c_dm_valu((double*)a, k, n, epsz, ip, \&is, \&icon);
where:

a	double	Input	
$\mathrm{a}[\mathrm{n}][\mathrm{k}]$			
k	int	Output	Matrix A.
n	int	Input	Matrices \mathbf{L} and \mathbf{U}. C fixed dimension of array $\mathrm{a}(\geq \mathrm{n})$.
ip	input ip[n]	Output	Order n of matrix A.
is	input	Tolerance for relative zero test of pivots during the decomposition of A (≥ 0). When epsz is zero, a standard value is used. See Comments on Transposition vector that provides the row exchanges that occurred during partial pivoting. See Comments on use.	
icon	int	Output	Information for obtaining the determinant of matrix A. When the n elements of the calculated diagonal of array a are multiplied together, and the result multiplied by is, the determinant is obtained. Condition code. See below.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Either all of the elements of some row were zero or the pivot became relatively zero. It is highly probable that the coefficient matrix is singular.	Discontinued.
30000	One of the following has occurred: $\bullet \quad \mathrm{k}<\mathrm{n}$ \bullet \bullet	Bypassed.

3. Comments on use

epsz

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix $\mathbf{A}=\left(a_{i j}\right)$, that is:

$$
\left|a_{k k}^{k}\right| \leq \max \left|a_{i j}\right| \cdot \mathrm{epsz}
$$

then the relative pivot value is assumed to be zero and processing terminates with icon $=20000$. The standard value of epsz is 16μ, where μ is the unit round off. If the processing is to proceed at a lower pivot value, epsz will be given the minimum value but the result is not always guaranteed.

ip

The transposition vector corresponds to the permutation matrix \mathbf{P} of LU-decomposition with partial pivoting. In this function, the elements of the array a are actually exchanged in partial pivoting. In the J-th stage $(J=1, \ldots, n)$ of decomposition, if the I-th row has been selected as the pivotal row the elements of the I-th row and the elements of the J th row are exchanged. Then, in order to record the history of this exchange, I is stored in ip [j-1].

How to use this function

The linear equation can be solved by calling function c_dm_vlux following this function. Normally, the linear equation can be solved in one step by calling function C_dm_vlax.

4. Example program

LU decomposition is executed by inputting a real 4000×4000 matrix.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define min(a,b) ((a) < (b) ? (a) : (b))
#define NMAX (1000)
#define LDA (NMAX+1)
MAIN__()
{
    int n, is, isw, i, j, icon, ierr;
    int ip[NMAX];
    double a[NMAX][LDA], b[NMAX];
    double epsz, s, det;
    n = NMAX;
    epsz = 0.0;
    isw = 1;
#pragma omp parallel for shared(a,n) private(i,j)
    for(i=0; i<n; i++)
        for(j=0; j<n; j++) a[i][j] = min(i,j)+1;
#pragma omp parallel for shared(b,n) private(i)
    for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
    ierr = c_dm_valu((double*)a, LDA, n, epsz, ip, &is, &icon);
    if (icon != 0) {
        printf("ERROR: c_dm_valu failed with icon = %d\n", icon);
        exit(1);
    }
    ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, &icon);
```

```
    if (icon != 0) {
        printf("ERROR: c_dm_vlux failed with icon = %d\n", icon);
        exit(1);
    }
    s = 1.0;
#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
    for(i=0; i<n; i++) s *= a[i][i];
    printf("solution vector:\n");
    for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);
    det = is*s;
    printf("\ndeterminant of the matrix = %e\n", det);
    return(0);
}
```


5. Method

Consult the entry for DM_VALU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and [52].

c_dm_vamlid

```
System of linear equations with sparse matrices of M-matrix
(Algebraic multilevel iteration method [AMLI Method], diagonal format
storage method).
ierr = c_dm_vamlid(a, k, ndiag, n, nofst, b,
    isw, iguss, info, epsot, epsin, x,
    w, nw, iw, niw, &icon);
```


1. Function

This routine solves, using the iterative method, a system of linear equations with sparse matrices of M-matrix as coefficient matrices.

$$
\mathbf{A x}=\mathbf{b}
$$

The $n \times n$ coefficient matrix is stored using the diagonal format storage method. Vectors \mathbf{b} and \mathbf{x} are n-dimensional vectors.

The solution method is ORTHOMIN if \mathbf{A} is symmetric and GMRES if \mathbf{A} is non-symmetric. The iteration (called outer iteration) is preconditioned by the algebraic multilevel iteration method (called AMLI) which requires the solution of small linear system that is also solved iteratively (called inner iteration), and stable. (In the preconditioner of the algebraic multilevel iteration method, the generated linear system becomes smaller as the level is deeper.)

2. Arguments

The routine is called as follows:
ierr = c_dm_vamlid((double*)a, k, ndiag, n, nofst, b, isw, iguss, info, epsot, epsin, x, w, nw, iw, niw, \&icon);
where:

a	double $a[n][k]$	Input	The nonzero elements of a coefficient matrix \mathbf{A} are stored in a.
k	int	Input	C fixed dimension of array $\mathrm{a}(\geq \mathrm{n})$.
ndiag	int	Input	Number of columns in array a and size of array nofst. Must be equal to the number of nonzero diagonals in matrix \mathbf{A}.
n	int	Input	Order n of matrix A.
nofst	int nofst[ndiag]	Input	Offsets of diagonals of \mathbf{A} stored in array a. Main diagonal has offset 0 , subdiagonals have negative offsets, and superdiagonals have positive offsets.
b	double b[n]	Input	The right-side constant vectors of a system of linear equations are stored.
isw	int	Input	Control information. See Comments on use. 1 Initial calling. 2 Second or subsequent calling. The arrays, a, iw and w, must NOT be changed if the routine is called again with $i s w=2$.
iguss	int	Input	Control information specifying whether iterative computation is to be

performed using the approximate values of the solution vectors specified in array X . iguss $=0 \quad$ the approximate values of the solution vectors are not specified and set to zero by c_dm_vamlid.
iguss $\neq 0$ the iterative computation is performed using the approximate values of the solution vectors specified in array X .
Input / The control information of the iteration.
Output For example, for symmetric coefficient matrix \mathbf{A}, info is set as follows;

```
info[0] = -1; info[1] = NTHRD*100; info[2] = 0;
info[4] = 1; info[5] = 2000; info[9] = 1;
info[10]= 1000;
```

For example, for unsymmetric coefficient matrix \mathbf{A}, info is set as follows;

```
info[0] = -1; info[1] = NTHRD*100; info[2] = 0;
info[4] = 2; \(\quad\) info[5] \(=2000 ; \quad\) info[6] \(=5 ;\)
info[7] \(=20 ; \quad\) info[9] \(=2 ; \quad\) info[10]= 1000;
info[11]= 10; info[12]= 0;
```

Where NTHRD is the number of threads which are executed in parallel.
See Comments on use.
info[0] Input MAXLVL.
Maximal number of levels in the algebraic multilevel iteration method.
MAXLVL <0 The optimal level evaluated internally is used.
MAXLVL $=0$ The multi-level method is not used.
MAXLVL >0 The coarser level than the specified depth is not used.

```
info[1] Input MINUK.
```

Minimal number of unknowns for the smallest linear system in the deepest level in the inner iteration. It is recommendable to set MINUK very larger than the number of threads NTHRD and very smaller than n . For example, $100 \times$ NTHRD.
info[2] Input NORM.
The type of normalization.
NORM <1 The matrix is normalized from the right and the left by the inverse of the square root of the main diagonal of \mathbf{A}. This effects that the main diagonal of the normalized matrix \mathbf{A} is equal to one and the matrix is symmetric if \mathbf{A} is symmetric.
It is recommendable to use symmetrical normalization. However, in some cases the

		non-symmetrical normalization can produce faster convergence. Criterion value for judgment of convergency.
		NORM ≥ 1 The matrix is normalized from the left by the inverse of the main diagonal of \mathbf{A}.
		This effects that the main diagonal is equal to one but the normalized matrix will be nonsymmetric even if the matrix \mathbf{A} is symmetric.
info[4]	Input	METHOT.
		The iterative method used in the outer iteration. METHOT = 1 Preconditioned ORTHOMIN is used. It should be used if the matrix \mathbf{A} is symmetric and a symmetrical normalization is used.
		METHOT $=1$ Restarted and truncated
		GMRES is used. It should be used if the matrix
		\mathbf{A} is non-symmetric or a non-symmetrical normalization is used.
info[5]	Input	ITMXOT.
		The maximal number of iteration steps in the outer iteration, for example 2000. If the
		maximum iteration number of outer iteration is reached the processing is terminated and the
		returned solution does not fulfill the stopping criterion.
info[6]	Input	NRESOT.
		The number of residuals in the orthogonalization procedure of the outer iteration, i.e. truncation after NRESOT
		residuals. For example, 5. Only used if
		GMRES is applied.
info[7]	Input	NRSTOT.
		After NRSTOT iteration steps the outer iteration is restarted. For example, 20. If it is
		NRSTOT < 1 there is no restart. Only used if
		GMRES is applied.
info[8]	Output	ITEROT.
		The number of iteration steps in the outer iteration procedure.
info[9]	Input	METHIN.
		The iterative method used in the inner iteration.
		METHIN $=1$ Preconditioned ORTHOMIN is used. It should be used if the matrix \mathbf{A} is symmetric and a symmetrical normalization is used.

LR0 $=(2 \times$ NRES +1$) \times$ NT.
See Comments on use.

iw	int iw[niw]	Work
niw	int	Input

icon int Output Condition code. See below.
The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10700	Vector $\mathbf{v}^{\text {pos }}$ could not be found.	Processing is used with $\mathbf{v}^{p o s}=(1,1, \ldots, 1)$.
10800	Curable break down in GMRES.	Processing is continued.
20001	Stopping criterion could not be reached within the given number of iteration steps.	Processing is discontinued. The approximate value obtained is output in array x , but the precision is not assured.
20003	Non-curable break down in GMRES.	Processing is discontinued.
20005	Non-curable break down in ORTHOMIN by $\mathbf{p}^{\mathrm{T}} \mathbf{A} \mathbf{p}=0$ with $\mathbf{p} \neq 0$.	
20006	Non-curable break down in ORTHOMIN by $\mathbf{p}^{\mathrm{T}} \mathbf{r}=0$.	
30000	One of the following has occurred: - $n<1$ - $n>k$ - ndiag <1 - isw $=1,2$	
30104	\mid nofst[i] ${ }^{\text {P }}$ n-1	
30105	Main diagonal is missed.	
30200	Matrix is not an M-matrix.	
30210	Matrix condensation fails by non-positive value.	
30212	There is a zero entry on the main diagonal.	
30310	Too small integer work array.	
30320	Too small real work array.	

3. Comments on use

M-matrix

A coefficient matrix arising from order two finite difference discretization or, in some cases, from order one finite element discretization of an elliptical boundary value problem is an M-matrix. It can be produced using the routines for discretization of a boundary value problem for second order partial differential equation (c_dm_vpde2d, c_dm_vpde3d).

To be an M-matrix means that

- All main diagonal entries are positive $a_{i, i}>0$ for all $i=1, \ldots, n$ and all other entries are non-positive $a_{i, j} \leq 0$ for all $i, j=1, \ldots, n$ with $i \neq j$.
- There is a positive vector $\mathbf{v}^{p o s}$ so $\mathbf{A v}{ }^{p o s}$ is positive.

If the first condition is not fulfilled, processing is not continued with icon $=30200$. This routine can not find the vector $\mathbf{v}^{p o s}($ icon $=10700)$ it is set $\mathbf{v}^{\text {pos }}=(1, \ldots, 1)$ the matrix \mathbf{A} is assumed and processing is continued with the risk of a breakdown in AMLI with icon $=30212,30210$ or slow convergence or breakdowns in the outer or inner iteration.

To define the coarse levels the rectangular grid used to assemble the coefficient matrix is recovered. If the recovering is not successful there can be a breakdown in AMLI with icon $=30212$, 30210, a disproportionately increase of the number of diagonals in the coarser levels or slow convergence or breakdowns in the outer or inner iteration.

isw

When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isw = 1 in the first call and isw $=2$ in the second and all subsequent calls. Then the coarse level matrices assembled in the first call are reused.

NAMAX

Normally it is sufficient to set NAMAX = ndiag in the formulas for the length for the work arrays. It can happen that the number of diagonals in the coarse level matrices is larger than the number of diagonals in the given matrix. In this case NAMAX has to be increased.

ORTHOMIN

It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical normalization first if there is a chance that the iteration matrix is symmetric.

GMRES

If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES. Normally it is sufficient to truncate after NRESOT $=5$ residuals and to restart after 20 steps in the outer iteration. In the inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required. Then it is necessary to increase NRES in the formula for the length workspace nw but, NRES can be set to a smaller value than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger. But it requires longer computation time and larger amount of memory.

The optimal number of levels

This routine tries to find the optimal number of levels. In some rare applications the computing time can be reduced by setting the number of levels by hand but normally the improvements are not significant.

Preconditioning

The preconditioner bases on a nested incomplete block factorizations using the Schur complement. The matrix $\mathbf{A}_{n}(n=$ $1, \ldots, \mathrm{MAXLVL}-1$) of each level can be blocked as follows choosing the sets of eliminated unknown from the coordination in a virtual grid:

$$
\mathbf{A}_{n}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]
$$

And define a matrix $\mathbf{S}=\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}$, which is called Schur complement. \mathbf{A}_{n} can be factorized as follows:

$$
\mathbf{A}_{n}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{0} \\
\mathbf{A}_{21} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\
\mathbf{0} & \mathbf{S}
\end{array}\right]
$$

The matrix \mathbf{A}_{n+1} of next level $n+1$ can be regarded as a Schur complement matrix with approximating the \mathbf{A}_{11}^{-1} to a diagonal matrix. These incomplete factorization are used for preconditioning in this routine.

4. Example program

The partial differential equation

$$
-\left(\frac{\partial^{2} u}{\partial^{2} x_{1}}+\frac{\partial^{2} u}{\partial^{2} x_{2}}\right)+c u=1
$$

is solved on the domain $[0,1]^{2}$. Dirichlet boundary conditions are set to $u=0$.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define MAXT 4
#define N1 }128
#define N2 1537
#define NLVL 10
#define L1 (N1)
#define L2 (N2)
#define KA (N1*N2)
#define NA 5
#define NW ((3*NA+5)*(KA+MAXT)+3*(NLVL+1)*N1*MAXT+11**(KA+MAXT))
#define NIW (((6*MAXT+12*NA)*(NLVL+1)+8*N1+2000)*MAXT+4*(KA+MAXT))
int MAIN__()
{
    double a[NA][KA], b[KA], u[KA], sol[3*N1*N2], rhs[N1*N2], rhsc[N1*N2];
    double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1];
    double c[L2][L1], f[L2][L1], w[NW], epsin, epsot, tmp;
    int nofst[NA], info[100], iw[NIW];
    int z1, z2, ndiag, n, isw, iguss, nband, i, z, icon;
    /* CREATE NODE COORDINATES */
    for (z1=0; z1<N1; z1++) {
        x1[z1] = (double)(z1)/(double)(N1-1);
    }
    for (z2=0; z2<N2; z2++) {
        x2[z2] = (double)(z2)/(double)(N2-1);
    }
    /* COEFFICIENTS IN THE PARTIAL DIFFERENTIAL EQUATION : */
    for (z2=0; z2<N2; z2++) {
        for (z1=0; z1<N1; z1++) {
            a1[z2][z1] = 1.0;
            a2[z2][z1] = 1.0
            b1[z2][z1] = 0.0;
```

```
        b2[z2][z1] = 0.0;
        c[z2][z1] = 1.0;
        f[z2][z1] = 1.0;
    }
    /* DIRICHLET BOUNDARY CONDITIONS: */
    c[z2][0] = 1.0;
    f[z2][0] = 0.0;
    c[z2][N1-1] = 1.0;
    f[z2][N1-1] = 0.0;
    if (z2 == 0) {
        for (z1=0; z1<N1; z1++) {
        c[0][z1] = 1.0;
        f[0][z1] = 0.0;
    }
    }
    if (z2 == N2-1) {
        for (z1=0; z1<N1; z1++) {
            c[N2-1][z1] = 1.0;
            f[N2-1][z1] = 0.0;
        }
    }
}
n = N1*N2;
c_dm_vpde2d((double*)a1, L1, N1, N2, (double*)a2, x1, x2, (double*)b1,
                (double*)b2, (double*)c, (double*)f, (double*)a, KA, NA, n,
                &ndiag, nofst, b, &icon);
printf("icon of c_dm_vpde2d = %d\n", icon);
for (z=0; z<n; z++) {
    rhs[z] = b[z];
}
nband = 0;
for (i=0; i<ndiag; i++) {
    nband = max(nband,fabs(nofst[i]));
}
/* CALL DAMLI: */
isw = 1;
iguss = 0;
info[0] = -1;
info[1] = MAXT*100;
info[2] = 0;
info[4] = 1;
info[5] = 2000;
info[9] = 1;
info[10] = 1000;
epsot = 1e-6;
epsin = 1e-3;
c_dm_vamlid((double*)a, KA, ndiag, n, nofst, b, isw, iguss, info, epsot, epsin, u,
    w, NW, iw, NIW, &icon);
printf("icon of c_dm_vamlid = %d\n", icon);
for (i=0; i<nband; i++) {
    sol[i] = 0.0;
    sol[nband+n+i-1] = 0.0;
}
for (z=0; z<n; z++) {
    sol[nband+z] = u[z];
}
c_dm_vmvsd((double*)a, KA, ndiag, n, nofst, nband, sol, rhsc, &icon);
    tmp = 0.0;
    for (z=0; z<n; z++) {
    tmp = max(tmp,fabs((rhs[z]-rhsc[z])/(rhs[z]+1.0)));
}
printf("error = %e\n", tmp);
return(0);
}
```


5. Method

Consult the entry for DM_VAMLID in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vbesce

System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate Gradient Stabilized ($)$ [BICGSTAB($($)] method, compressed column storage method)
$\begin{gathered} \text { ierr = c_dm_vbcscc(a, nz, nrow, nfcnz, n, b, } \\ \quad \begin{array}{l} \text { itmax, eps, iguss, l, x, \&iter, w, } \\ \text { (int*)iw, \&icon); } \end{array} \\ \hline \end{gathered}$

1. Function

This routine solves, using the $\operatorname{BICGSTAB}(l)$ method, Bi-Conjugate Gradient Stabilized (l) method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$
\mathbf{A x}=\mathbf{b}
$$

The $n \times n$ coefficient matrix is stored using the compressed column storage method. Vectors \mathbf{b} and \mathbf{x} are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vbcscc(a, nz, nrow, nfcnz, n, b, itmax, eps, iguss, l, x, &iter,
    w, (int*)iw, &icon);
```

where:

a	double a[nz]	Input	The non-zero elements of a coefficient matrix are stored. The non-zero elements of a sparse matrix are stored in $\mathrm{a}[i], i=0, \ldots, \mathrm{nz}-1$. For an explanation of the compressed column storage method, see Figure c_dm_vmvscc-1 in the description of a c_dm_vmvscc routine, "Multiplication of a real sparse matrix and a real vector (compressed column storage method)".
$n z$	int	Input	The total number of the nonzero elements belong to a coefficient matrix A.
nrow	int nrow[nz]	Input	The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array a.
nfenz	int nfcnz[n+1]	Input	The position of the first nonzero element stored in an array a by the compressed column storage method which stores the nonzero elements column by column. $n f c n z[n]=n z+1$
n	int	Input	Order n of matrix \mathbf{A}.
b	double b [n]	Input	Constant vector \mathbf{b}.
itmax	int	Input	Upper limit of iterations in BICGSTAB $(l) .(>0)$ The value of itmax should usually be set to about 2000 .

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred.	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing is discontinued. The already calculated approximate value is output to array x, but its precision is not assured.
30000	One of the following has occurred: - $n<1$ - $\mathrm{nz}<0$ - $n f e n z[n] \neq n z+1$ - itmax ≤ 0 - $\quad l<1$ - $\quad l>8$	Bypassed.

3. Comments on use

Convergent criterion

When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the value of eps, it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution is roughly equal to the product of the matrix \mathbf{A} condition number and the value of eps.

1

When l is set to one, the algorithm is same as that of BICGSTAB method. As the value of l is lager, the cost of one iteration becomes larger however the total number of iteration is reduced. Consequently in some cases it becomes faster with larger 1 .

4. Example program

The linear system of equations $\mathbf{A x}=\mathbf{f}$ is solved, where \mathbf{A} results from the finite difference method applied to the elliptic equation.

$$
-\Delta u+a \nabla u+u=f
$$

with zero boundary conditions on a cube and the coefficient $a=\left(a_{1}, a_{2}, a_{3}\right)$ where a_{1}, a_{2} and a_{3} are some constants. The matrix \mathbf{A} in Diagonal format is generated by the function init_mat_diag. Then it is converted into the storage scheme in compressed column storage.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NORD (60)
#define NX (NORD)
#define NY
#define NZ
#define N
#define K
#define NDIAG
#define L (4)
MAIN__()
{
    int ierr, icon, iguss, iter, itmax;
    int nord, n, l, i, j, k;
    int nx, ny, nz, nnz;
    int length, nbase, ndiag;
    int numnz, ntopcfg, ncol;
    int nofst[NDIAG];
    int nrow[K*NDIAG];
    int nfcnz[N+1];
    int iw[K*NDIAG][2];
    double eps;
    double va1, va2, va3, vc;
    double err1, err2, err3, err4;
    double xl, yl, zl;
    double diag[NDIAG][K];
    double diag2[NDIAG][K];
    double a[K*NDIAG];
    double b[N];
    double w[K*NDIAG];
    double x[N];
    double solex[N];
    double y[N];
    void init_mat_diag(double va1, double va2, double va3, double vc,
                double d_l[], int offset[], int nx, int ny, int nz,
                double xl, double yl,double zl, int ndiag, int len, int ndivp);
    double errnrm(double *x1, double *x2, int len);
    nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG, l=L;
    printf(" BICGSTAB(L) METHOD\n");
    printf(" COMPRESSED COLUMN STORAGE\n");
    printf("\n");
    for (i=1; i<=n; i++){
        solex[i-1]=1.0;
    }
    printf(" EXPECTED SOLUTIONS\n");
    printf(" X(1) = %f X(N) = %f\n", solex[0], solex[n-1]);
    printf("\n");
    va1 = 3.0;
    va2 = 1.0/3.0;
    va3 = 5.0;
    vc = 1.0;
    xl = 1.0;
    yl = 1.0;
```

```
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
                nx, ny, nz, xl, yl, zl, ndiag, n, k);
for (i=1; i<=ndiag; i++){
    if (nofst[i-1] < 0){
        nbase=-nofst[i-1];
        length=n-nbase;
        for (j=1; j<=length; j++){
            diag2[i-1][j-1]=diag[i-1][nbase+j-1];
        }
    }
    else{
        nbase=nofst[i-1];
        length=n-nbase;
        for (j=nbase+1; j<=n; j++){
            diag2[i-1][j-1]=diag[i-1][j-nbase-1];
        }
    }
}
numnz=1;
for (j=1; j<=n; j++){
    ntopcfg = 1;
    for (i=ndiag; i>=1; i--){
            if (diag2[i-1][j-1]!=0.0){
            ncol=j-nofst[i-1];
            a[numnz-1]=diag2[i-1][j-1];
            nrow[numnz-1]=ncol;
            if (ntopcfg==1){
                    nfcnz[j-1]=numnz;
                    ntopcfg=0;
            }
            numnz=numnz+1;
        }
    }
}
nfcnz[n]=numnz;
nnz=numnz-1;
for (i=1; i<=n; i++){
    x[i-1]=0.0;
}
ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, solex, b, w, (int*)iw, &icon);
err1 = errnrm(solex,x,n);
ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon);
err2 = errnrm(y,b,n);
iguss = 0;
itmax = 2000;
eps = 1.0e-8
ierr = c_dm_vbcscc(a, nnz, nrow, nfcnz, n, b, itmax, eps, iguss, l,
err3 = errnrm(solex,x,n);
ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, n, x, y, w, (int*)iw, &icon);
err4 = errnrm(y,b,n);
printf(" COMPUTED VALUES\n");
printf(" X(1) = %f X(N) = %f\n", x[0], x[n-1]);
printf("\n");
printf(" c_dm_vbcscc ICON = %d\n", icon);
printf("\n");
printf(" N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
printf(" ITER MAX = %d\n",itmax);
printf(" ITER = %d\n",iter);
printf("\n");
printf(" EPS = %e\n",eps);
printf("\n");
printf(" INITIAL ERROR = %f\n",err1);
printf(" INITIAL RESIDUAL ERROR = %f\n",err2);
printf(" CRITERIA RESIDUAL ERROR = %e\n",err2 * eps);
printf("\n");
printf(" ERROR = %e\n",err3);
printf(" RESIDUAL ERROR' = %e\n",err4);
printf("\n");
printf("\n");
```

```
    if (err4<=(err2*eps*1.1) && icon==0){
    printf("********** OK **********\n");
    }
    else{
    printf("********** NG **********\n");
}
}
void init_mat_diag(double va1, double va2, double va3, double vc,
                double d_l[], int offset[], int nx, int ny, int nz,
                double xl, double yl, double zl, int ndiag, int len, int ndivp)
{
    int i, l, j;
    int length, numnz, js;
    int i0, j0, k0;
    int ndiag_loc;
    int nxy;
    double hx, hy, hz;
    double x1, x2;
    double base;
    double ret, remark;
    if (ndiag<1){
        printf("FUNCTION INIT_MAT_DIAG:\n");
        printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
        return;
    }
    ndiag_loc = ndiag;
    if (ndiag>7){
        ndiag_loc=7;
}
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
for (i=1; i<=ndivp; i++){
        for ( }j=1; j<=ndiag; j++)
        d_l[i-1+(j-1)*ndivp]= 0.;
        }
}
nxy = nx * ny;
l = 1;
if (ndiag_loc >= 7) {
        offset[l-1] = -nxy;
        ++l;
}
if (ndiag_loc >= 5) {
    offset[l-1] = -nx;
    ++l;
}
if (ndiag_loc >= 3) {
    offset[l-1] = -1;
    ++1;
}
offset[l-1] = 0;
++l;
if (ndiag_loc >= 2) {
        offset[l-1] = 1;
        ++l;
}
if (ndiag_loc >= 4) {
        offset[l-1] = nx;
        ++l;
}
if (ndiag_loc >= 6) {
    offset[l-1] = nxy;
}
for (j = 1; j <= len; ++j) {
    js=j;
    k0 ='(js - 1) / nxy + 1;
    if (k0 > nz) {
        printf("ERROR; K0.GH.NZ\n");
        return;
    }
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
```

```
        l = 1;
        if (ndiag_loc >= 7) {
            if (k0> 1) {
                d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
            }
            ++l;
        }
        if (ndiag_loc >= 5) {
            if (j0> 1) {
            d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
            }
            ++1;
        }
        if (ndiag_loc >= 3) {
            if (i0 > 1) {
                d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
            }
            ++l;
        }
        d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
        if (ndiag_loc >= 5) {
            d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
            if (ndiag_loc >= 7) {
                d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
            }
        }
        if (ndiag_loc >= 2) {
        if (i0< nx) {
            d_l[j-1+(1-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
        }
        }
        if (ndiag_loc >= 4) {
        if (j0< ny) {
            d_1[j-1+(1-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
        }
        }
        if (ndiag_loc >= 6) {
            if (k0< nz) {
                d_l[j-1+(l-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
            }
        }
    }
    return;
}
double errnrm(double *x1, double *x2, int len)
{
    double ret_val;
    int i;
    double s, ss;
    s = 0.;
    for (i' = 1; i <= len; ++i) {
        ss = x1[i-1] - x2[i-1];
        s += ss * ss;
    }
    ret_val = sqrt(s);
    return ret_val;
}
```


5. Method

Consult the entry for DM_VBCSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] and [73].

c_dm_vbesd

```
System of linear equations with unsymmetric or indefinite sparse
matrices
(BICGSTAB}(l)\mathrm{ method, diagonal format storage method).
```

```
ierr = c_dm_vbcsd(a, k, ndiag, n, nofst, b,
```

ierr = c_dm_vbcsd(a, k, ndiag, n, nofst, b,
itmax, eps, iguss, l, x, \&iter,
itmax, eps, iguss, l, x, \&iter,
\&icon);

```
    &icon);
```


1. Function

This function solves, using the BICGSTAB (l) method, Bi-Conjugate Gradient Stabilized (l) method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$
\mathbf{A x}=\mathbf{b}
$$

The $n \times n$ coefficient matrix is stored using the diagonal format storage method. Vectors \mathbf{b} and \mathbf{x} are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vbcsd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, l, x,
    &iter, &icon);
```

where:

a	double a[ndiag][k]	Input	Sparse matrix A stored in diagonal storage format. See Comments on use.
k	int	Input	C fixed dimension of array $\mathrm{a}(\geq \mathrm{n})$.
ndiag	int	Input	The number of diagonal vectors in the coefficient matrix \mathbf{A} having nonzero elements.
n	int	Input	Order n of matrix \mathbf{A}.
nofst	int nofst[ndiag]	Input	Distance from the main diagonal vector corresponding to diagonal vectors in array a. Super-diagonal vector rows have positive values. Sub-diagonal vector rows have negative values. See Comments on use.
b	double b[n]	Input	Constant vector \mathbf{b}.
itmax	int	Input	Upper limit of iterations in $\operatorname{BICGSTAB}(l) .(>0)$
eps	double	Input	Tolerance for convergence test.
iguss	int	Input	When eps is zero or less, eps is set to 10^{-6}. See Comments on use. Control information about whether to start the iterative computation from the approximate value of the solution vector specified in array x. iguss $=0$: Approximate value of the solution vector is not specified. iguss $\neq 0$: The iterative computation starts from the approximate value of the solution vector specified in array X .

l	int	Input	The order of stabiliser in the $\operatorname{BICGSTAB}(l)$ algorithm. $(1 \leq 1 \leq 8)$ The value of 1 should usually be set to 1 or 2 . See Comments on use.
x	double $\times[\mathrm{n}]$	Input	The starting values for the computation. This is optional and relates to argument iguss.
iter	int	Output	Solution vector \mathbf{x}.
icon	int	Output	Number of iteration performed using the BICGSTAB (l) method.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred.	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped. The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
30000	One of the following has occurred: - $\mathrm{n}<1$ - $k<1$ - $n>k$ - $\quad l<1$ - $\quad 1>8$ - ndiag <1 - ndiag $>\mathrm{k}$ - itmax ≤ 0	Bypassed.
32001	abs(nofst[i]) $>$ n-1; $0 \leq \mathrm{i}<$ ndiag	

3. Comments on use

Convergent criterion

In the $\operatorname{BICGSTAB}(l)$ method, if the residual Euclidean norm is equal to or less than the product of the initial residual Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and the obtained approximation is roughly equal to the product of the condition number of Matrix \mathbf{A} and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

1

The maximum value of l is set to 8 . For $l=1$, this algorithm coincides with BiCGSTAB. Using smaller l usually results in faster speed, but in some situations larger l brings a good convergence, although the steps of an iteration are more expensive for larger 1.

Notes on using the diagonal format

A diagonal vector element outside coefficient matrix \mathbf{A} must be set to zero.

There is no restriction in the order in which diagonal vectors are stored in array a.

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

4. Example program

This example program initializes \mathbf{A} and \mathbf{x}, and calculates \mathbf{b} by multiplication. The library routine is then called and the resulting \mathbf{x} vector is checked against the original version.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX (1000)
#define UBANDW
#define LBANDW
#define NDIAG (UBANDW + LBANDW + 1)
#define L (2)
MAIN__()
{
    double one=1.0, bcoef=10.0, eps=1.e-6;
    int ierr, icon, nub, nlb, n, i, j, k;
    int itmax, iguss, iter;
    int nofst[NDIAG];
    double a[NDIAG][NMAX], b[NMAX], x[NMAX];
    nub = UBANDW;
    nlb = LBANDW;
    n = NMAX;
    k = NMAX;
    /* Set A-mat & b */
    for (i=1; i<=nub; i++) {
        for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
        for (j=n-i; j<n ; j++) a[i][j] = 0.0;
        nofst[i] = i;
    }
    for (i=1; i<=nlb; i++) {
        for (j=0 ; j<i+1; j++) a[nub+i][j] = 0.0;
        for (j=i+1; j<n ; j++) a[nub+i][j] = -2.0;
        nofst[nub+i] = -i;'
    }
    nofst[0] = 0;
    for (j=0; j<n; j++) {
        b[j] = bcoef;
        a[0][j] = bcoef;
        for (i=1; i<NDIAG; i++) b[j] += a[i][j];
    }
    /* solve the nonsymmetric system of linear equations */
    itmax = n;
    iguss = 0;
    ierr = c_dm_vbcsd ((double*)a, k, NDIAG, n, nofst, b, itmax, eps,
                                    iguss, L, x, &iter, &icon);
    if (icon != 0) {
        printf("ERROR: c_dm_vbcsd failed with icon = %d\n", icon);
        exit(1);
    }
    /* check result */
    for (i=0;i<n;i++) {
        if (fabs(x[i]-one) > eps*10.0) {
            printf("WARNING: result maybe inaccurate\n");
            exit(1);
        }
    }
    printf("Result OK\n");
    return(0);
}
```


5. Method

Consult the entry for DM_VBCSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] and [73]

c_dm_vbcse

```
System of linear equations with unsymmetric or indefinite sparse
matrices
(BICGSTAB(l) method, ELLPACK format storage method).
ierr = c_dm_vbcse(a, k, iwidt, n, icol, b,
    itmax, eps, iguss, l, x, &iter,
    &icon);
```


1. Function

This function solves, using the BICGSTAB (l) method, Bi-Conjugate Gradient Stabilized (l) method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$
\mathbf{A x}=\mathbf{b}
$$

The $n \times n$ coefficient matrix is stored using the ELLPACK format storage method. Vectors \mathbf{b} and \mathbf{x} are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vbcse((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss,
    l, x, &iter, &icon);
```

where:

a	double a[iwidt][k]	Input	Sparse matrix A stored in ELLPACK storage format.
k	int	Input	C fixed dimension of array a andicol ($\geq \mathrm{n}$).
iwidt	int	Input	The maximum number of non-zero elements in any row vectors of \mathbf{A} (≥ 0).
n	int	Input	Order n of matrix A.
icol	$\begin{aligned} & \text { int } \\ & \text { icol[iwidt][k] } \end{aligned}$	Input	Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong.
b	double b[n]	Input	Constant vector \mathbf{b}.
itmax	int	Input	Upper limit of iterations in BICGSTAB(l) method. (>0)
eps	double	Input	Tolerance for convergence test.
iguss	int	Input	When eps is zero or less, eps is set to 10^{-6}. See Comments on use. Control information about whether to start the iterative computation from the approximate value of the solution vector specified in array x. iguss $=0$: Approximate value of the solution vector is not set. iguss $\neq 0$: The iterative computation starts from the approximate value of the solution vector specified in array x.
1	int	Input	The order of stabiliser in the $\operatorname{BICGSTAB}(l)$ algorithm. $(1 \leq 1 \leq 8)$

x
double $x[n]$ Input
iter int
icon int
Output
Output

The value of 1 should usually be set to 1 or 2 . See Comments on use The starting values for the computation. This is optional and relates to argument iguss.
Solution vector \mathbf{x}.
The real number of iteration steps in BICGSTAB (l) method.
Output Condition code. See below.
The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped. The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
30000	One of the following has occurred: - $\mathrm{n}<1$ - $k<1$ - $\mathrm{n}>\mathrm{k}$ - $\quad l<1$ - \quad l >8 - iwidt <1 - iwidt $>\mathrm{k}$ - itmax ≤ 0	Bypassed.
30001	The band width is zero.	

3. Comments on use

Convergent criterion

In the $\operatorname{BICGSTAB}(l)$ method, if the residual Euclidean norm is equal to or less than the product of the initial residual Euclidean norm and eps, it is judged as having converged. The difference between the precise solution and obtained approximate solution is equal to the product of the condition number of matrix \mathbf{A} and eps.

The residual which used for convergence judgement is computed recursively and it may differ from the true residual.

1

The maximum value of l is set to 8 . For $l=1$, this algorithm coincides with BiCGSTAB. Using smaller l usually results in faster speed, but in some situations larger l brings a convergence, although the steps of a iteration are more expensive for larger l.

4. Example program

This example program initializes \mathbf{A} and \mathbf{x}, and calculates \mathbf{b} by multiplication. The library routine is then called and the resulting \mathbf{x} vector is checked against the original version.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
```

```
#include "cssl.h" /* standard C-SSL header file */
#define NMAX (1000)
#define UBANDW (2)
#define LBANDW (1)
#define IWIDT (UBANDW + LBANDW + 1)
#define L
(2)
MAIN__()
{
    double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
    int ierr, icon, nlb, nub, n, k, itmax, iguss, iter, i, j, ix;
    int icol[IWIDT][NMAX];
    double a[IWIDT][NMAX], b[NMAX], x[NMAX];
    nub = UBANDW;
    nlb = LBANDW;
    n = NMAX;
    k = NMAX
    for (i=0; i<IWIDT; i++)
        for (j=0; j<n; j++) {
            a[i][j] = 0.0;
            icol[i][j] = j+1;
        }
    /* Set A-mat & b */
    for (j=0; j<nlb; j++) {
        for (i=0; i<j; i++) a[i][j] = lcf;
        a[j][j] = bcoef;
        b[j] = bcoef+(double)j*lcf+(double)nub*ucf;
        for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
        for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
    }
    for (j=nlb; j<n-nub; j++) {
        for (i=0; i<nlb; i++) a[i][j] = lcf;
        a[nlb][j] = bcoef;
        b[j] = bcoef+(double)nlb*lcf+(double)nub*ucf;
        for (i=nlb+1; i<IWIDT; i++) a[i][j] = ucf;
        for (i=0; i<IWIDT; i++) icol[i][j] = i+1+j-nlb;
    }
    for (j=n-nub; j<n; j++){
        for (i=0; i<nlb; i++) a[i][j] = lcf;
        a[nlb][j] = bcoef;
        b[j] = bcoef+(double)nlb*lcf+(double)(n-j-1)*ucf;
        for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
        ix = n - (j+nub-nlb-1);
        for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
    }
    /* solve the nonsymmetric system of linear equations */
    itmax = 2000;
    iguss = 0;
    ierr = c_dm_vbcse ((double*)a, k, IWIDT, n, (int*)icol, b, itmax,
                            eps, iguss, L, x, &iter, &icon);
    if (icon != 0) {
        printf("ERROR: c_dm_vbcse failed with icon = %d\n", icon);
        exit(1);
    }
    /* check result */
    for (i=0; i<n; i++) {
        if (fabs(x[i]-one) > eps*10.0) {
            printf("WARNING: result maybe inaccurate\n");
            exit(1);
        }
    }
    printf("Result OK\n");
    return(0);
}
```


5. Method

Consult the entry for DM_VBCSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [32], [67] and [73].

c_dm_vblu

```
LU decomposition of banded real matrices (Gaussian elimination).
ierr = c_dm_vblu(a, k, n, nh1, nh2, epsz, \&is,
    ip, \&icon);
```


1. Function

This routine executes LU decomposition for banded matrix \mathbf{A} of $n \times n$, lower bandwidth h_{1}, and upper bandwidth h_{2} using Gaussian elimination.

$$
\mathbf{P A}=\mathbf{L} \mathbf{U}
$$

where, \mathbf{P} is the permutation matrix of the row vector, \mathbf{L} is the unit lower banded matrix, and \mathbf{U} is the upper banded matrix. $n>h_{1} \geq 0, n>h_{2} \geq 0$.

2. Arguments

The routine is called as follows:
ierr = c_dm_vblu((double*)a, k, n, nh1, nh2, epsz, \&is, ip, \&icon); where:

a	double a[n][k]	Input	Store banded coefficient matrix A. See Figure c_dm_vblu-1.
		Output	LU-decomposed matrices \mathbf{L} and \mathbf{U} are stored. See Figure c_dm_vblu-2. The value of a is not assured after operation.
k	int	Input	C fixed dimension of array a ($\geq 2 \times \mathrm{nh} 1+\mathrm{nh} 2+1$).
n	int	Input	Order n of matrix A.
nh1	int	Input	Lower bandwidth size h_{1}.
nh2	int	Input	Upper bandwidth size h_{2}.
epsz	double	Input	Judgment of relative zero of the pivot (≥ 0.0). When epsz is zero, the standard value is set. See Comments on use.
is	int	Output	Indicates row vector exchange count. See Comments on use. 1 exchange count is even. -1 exchange count is odd.
ip	int ip[n]	Output	The transposition vector to contain row exchange information is stored. See Comments on use.
icon	int	Output	Condition code. See below.

Figure c_dm_vblu-1. Storing matrix \mathbf{A} in array a
The column vector of matrix \mathbf{A} is continuously stored in columns of array a in the same manner as diagonal elements of banded matrix $\mathbf{A} a_{i i}, i=1, \ldots, n$, are stored in $\mathrm{a}[i-1]\left[h_{1}+h_{2}\right]$.

Upper banded matrix part:
$a_{j-i, j}, i=1, \ldots, h_{2}, j=1, \ldots, n, j-i \geq 1$ is stored in a[i][j], $\mathbf{i}=0, \ldots, n-1, \mathbf{j}=h_{1}, \ldots, h_{1}+h_{2}-1$.

Lower banded matrix part:
$a_{j+i, j}, i=1, \ldots, h_{1}, j=1, \ldots, n, j+i \leq n$ is stored in a[i] [j] $\mathbf{i}=0, \ldots, n-1, \mathbf{j}=h_{1}+h_{2}+1, \ldots, 2 \times h_{1}+h_{2}$.

For a i$][\mathrm{j}], \mathrm{i}=0, \ldots, n-1, \mathrm{j}=0, \ldots, h_{1}-1$, set zero for the elements of matrix \mathbf{A} outside the band.

* indicates undefined values.

Figure c_dm_vblu-2. Storing LU-decomposed matrix \mathbf{L} and \mathbf{U} in array a
LU-decomposed unit upper banded matrix except diagonal elements $u_{j-i+1, j}, i=1, \ldots, h_{1}+h_{2}, j=1, \ldots, n, j-i+1 \geq 1$ is stored in a[i][j],i=0,.., $n-1, j=0, \ldots, h_{1}+h_{2}$.

Lower banded matrix part:
$l_{j+i, j}, i=0, \ldots, h_{2}, j=1, \ldots, n, j+i \leq n$ is stored in a[i] [j], $\mathbf{i}=0, \ldots, n-1, j=h_{1}+h_{2}, \ldots, 2 \times h_{1}+h_{2}$.

* indicates undefined values.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	All elements in some row of array a were zero, or the pivot became relatively zero. Matrix A may be singular.	Discontinued.
30000	One of the following has occurred: - $n<1$ - $n h 1 \geq n$ - $n h 1<0$ - $n h 2 \geq n$ - $n h 2<0$ - $\mathrm{k}<2 \times \mathrm{nh} 1+\mathrm{nh} 2+1$ - epsz<0	Bypassed.

3. Comments on use

epsz

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of $L U$ decomposition. In this case, processing is discontinued with icon $=20000$. When unit round off is u, the standard value of epsz is $16 \times u$.

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

ip

In this routine, the row vector is exchanged using partial pivoting. That is, when the I-th row $(I \geq J)$ is selected as the pivot row in the J-th stage $(J=1, \ldots, n)$ of decomposition, the contents of the I-th row and J-th row are exchanged. To indicate this exchange, I is stored in ip [$J-1$].

How to use this function

The linear equation can be solved by calling function c_dm_vblux following this function. Normally, the linear equation can be solved in one step by calling function $C _d m _v l b x$.

is

The determinant can be obtained by multiplying is and a [i] [$h_{1}+h_{2}$], where $\mathrm{i}=0, \ldots, n-1$.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of $n=10000, n h_{1}=$ $2000, n h_{2}=3000$.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define NH1 2000
#define NH2 3000
#define N 10000
#define KA (2*NH1+NH2+1)
#define NWORK 4500
int MAIN__()
{
    double a[N][KA], b[N], dwork[NWORK];
    double tt1, tt2, tmp, epsz;
    int ip[N], i, j, is, ix, icon, nptr, nbase, nn;
    ix = 123;
    nn = NH1+NH2+1;
    for (i=0; i<N; i++) {
        c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
    }
    printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);
    /* zero clear */
    for (j=0; j<N; j++) {
        for (i=0; i<NH1; i++) {
            a[j][i] = 0.0;
        }
    }
    /* left upper triangular part */
    for (j=0; j<NH2; j++) {
```

```
        for (i=0; i<NH2-j; i++) {
        a[j][i+NH1] = 0.0;
    }
    }
    /* right rower triangular part */
    nbase = 2*NH1+NH2+1;
    for (j=0; j<NH1; j++) {
        for (i=0; i<j; i++) {
        a[N-NH1+j][nbase-i-1] = 0.0;
    }
    }
    /* set right hand constant vector */
    for (i=0; i<N; i++) {
        b[i] = 0.0;
    }
    for (i=0; i<N; i++) {
        nptr = i;
        for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {
        b[j] += a[i][j-i+NH1+NH2];
    }
    }
    epsz = 0.0;
    c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon);
    c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon);
    tmp = 0.0;
    for (i=0; i<N; i++) {
    tmp = max(tmp,fabs(b[i]-1));
    }
    printf("maximum error = %e\n", tmp);
    return(0);
}
```


5. Method

Consult the entry for DM_VBLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vblux

$$
\begin{gathered}
\text { A system of linear equations with LU-decomposed banded real matrices. } \\
\hline \text { ier }=\mathrm{c} _ \text {dm_vblux(b, fa, k, n, nh1, nh2, ip, } \\
\text { \&icon); }
\end{gathered}
$$

1. Function

This routine solves a linear equation having an LU-decomposed banded matrix as coefficient.

$$
\mathbf{L U x}=\mathbf{b}
$$

where, \mathbf{L} is a unit lower banded matrix of lower bandwidth h_{1}, \mathbf{U} is an upper banded matrix of upper bandwidth $h(=\min$ $\left(h_{1}+h_{2}, n-1\right)$), and \mathbf{b} is an n-dimensional real constant vector. The order of matrix \mathbf{A} before LU decomposition, lower bandwidth, and upper bandwidth is n, h_{1}, and $h_{2} . n>h_{1} \geq 0, n>h_{2} \geq 0$.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vblux(b, (double*)fa, k, n, nh1, nh2, ip, &icon);
```

where:

b	double $\mathrm{b}[\mathrm{n}]$	Input	Constant vector \mathbf{b}.
		Output	Solution vector \mathbf{x}.
fa	double	Input	LU-decomposed matrices \mathbf{L} and \mathbf{U} are stored.
	$\mathrm{fa}[\mathrm{n}][\mathrm{k}]$		See Figure c_dm_vblux-1.
			The value of fa [i] [j] i i $=0, \ldots, \mathrm{n}-1, j=2 \times \mathrm{nh} 1+\mathrm{nh} 2+1, \ldots$,
			$\mathrm{k}-1$, is not assured after operation.
k	int	Input	C fixed dimension of array a ($\geq 2 \times \mathrm{nh} 1+\mathrm{nh} 2+1$).
n	int	Input	Order n of matrix A.
nh1	int	Input	Lower bandwidth size h_{1}.
nh2	int	Input	Upper bandwidth size h_{2}.
ip	int ip[n]	Output	The transposition vector to contain row exchange information is stored.
			See Comments on use.
icon	int	Output	Condition code. See below.

Figure c_dm_vblux-1. Storing LU-decomposed matrices \mathbf{L} and \mathbf{U} into array fa
LU-decomposed unit upper banded matrix except diagonal elements $u_{j-i+1, j}, i=1, \ldots, h_{1}+h_{2}, j=1, \ldots, n, j-i+1 \geq 1$ is stored in a[i] [j], $\mathbf{i}=0, \ldots, n-1, \mathrm{j}=0, \ldots, h_{1}+h_{2}$.

Lower banded matrix part:
$l_{j+i, j}, i=0, \ldots, h_{2}, j=1, \ldots, n, j+i \leq n$ is stored in a[i] [j], $\mathbf{i}=0, \ldots, n-1, j=h_{1}+h_{2}, \ldots, 2 \times h_{1}+h_{2}$.

* indicates undefined values.

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred: - $n<1$ - $n h 1 \geq n$ - $n h 1<0$ - $n h 2 \geq n$ - $\mathrm{nh} 2<0$ - $\mathrm{k}<2 \times \mathrm{nh} 1+\mathrm{nh} 2+1$ - Diagonal element of lower banded matrix was zero. - Contents of ip are invalid.	Bypassed.

3. Comments on use

How to use this function

A system of linear equations with banded matrices can be solved by calling this routine following the routine c_dm_vblu. In this case, specify the output parameters of the routine c_dm_vblu without modification of the input parameters (except the constant vector) of this routine. Normally, a solution can be obtained in one step by calling the routine C_dm_vlbx.

4. Example program

The system of linear equations with banded matrices is solved with the input of a banded real matrix of $n=10000, n h_{1}=$ $2000, n h_{2}=3000$.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
#define NH1 }200
#define NH2 3000
#define N 10000
#define KA (2*NH1+NH2+1)
#define NWORK 4500
int MAIN__()
{
    double a[N][KA], b[N], dwork[NWORK];
    double tt1, tt2, tmp, epsz;
    int ip[N], i, j, is, ix, icon, nptr, nbase, nn;
    ix = 123;
    nn = NH1+NH2+1;
    for (i=0; i<N; i++) {
        c_dvrau4(&ix,&a[i][NH1],nn,dwork,NWORK,&icon);
    }
    printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);
    /* zero clear */
    for (j=0; j<N; j++) {
        for (i=0; i<NH1; i++) {
            a[j][i] = 0.0;
        }
    }
    /* left upper triangular part */
    for (j=0; j<NH2; j++) {
        for (i=0; i<NH2-j; i++) {
            a[j][i+NH1] = 0.0;
        }
    }
    /* right rower triangular part */
    nbase = 2*NH1+NH2+1;
    for (j=0; j<NH1; j++) {
            a[N-NH1+j][nbase-i-1] = 0.0;
        }
    }
    /* set right hand constant vector */
    for (i=0; i<N; i++) {
        b[i] = 0.0;
    }
    for (i=0; i<N; i++) {
        nptr = i;
        for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {
```

```
        b[j] += a[i][j-i+NH1+NH2];
    }
    }
    epsz = 0.0;
    c_dm_vblu((double*)a, KA, N, NH1, NH2, epsz, &is, ip, &icon);
    c_dm_vblux(b, (double*)a, KA, N, NH1, NH2, ip, &icon);
    tmp = 0.0;
    for (i=0; i<N; i++) {
    tmp = max(tmp,fabs(b[i]-1));
    }
    printf("maximum error = %e\n", tmp);
    return(0);
}
```


5. Method

Consult the entry for DM_VBLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

c_dm_vegd

$$
\begin{aligned}
& \text { A system of linear equations with symmetric positive definite sparse } \\
& \text { matrices (preconditional CG method, diagonal format storage method) } \\
& \hline \text { ierr }=c _d m _v c g d(a, k, n w, n, \text { ndlt, } b, i p c, \\
& \text { itmax, isw, omega, eps, iguss, x, } \\
& \text { \&iter, \&rz, w, iw, \&icon); } \\
& \hline
\end{aligned}
$$

1. Function

This routine solves a linear equation having an $n \times n$ normalized symmetric positive definite sparse matrix as coefficient matrix using the preconditioned CG method.

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
$$

The $n \times n$ matrix coefficient is normalized so that its diagonal elements are 1 , and non-zero elements except the diagonal elements are stored using the diagonal format spares matrix storage method.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vcgd((double*)a, k, nw, n, ndlt, b, ipc, itmax, isw, omega, eps,
    iguss, x, &iter, &rz, (double*)w, (int*)iw, &icon);
```

where:

eps	double	put	≤ 1. Only use when ipc=3. See Comments on use. Tolerance for convergence test.		
			When eps is zero or less, eps is set to $\varepsilon \cdot\\|\mathbf{b}\\|$, with $\varepsilon=10^{-6}$. See Comments on use.		
iguss	int	Input	Sets the information indicating whether the iteration is started from an approximate value of solution vector specified in array x. When 0 is set, the approximate value of solution vector is not specified.		
X	double $\mathrm{x}[\mathrm{n}]$		When non-zero is set, the iterative computation is started from an approximate value of the solution vector specified in array x.		
		Input	An approximate value of the solution vector of the linear equation can be specified in X.		
		Output	The solution vector linear equation is stored in x .		
iter	int	Output	The actual iteration count.		
rz	double	Output	The square root of the residual $r z$ after the convergency judgment. See Comments on use.		
w	double w [Wlen1][Wlen2]	Work	When $\mathrm{ipc}=3$, Wlen $1=\mathrm{nw}+8$, Wlen $2=\mathrm{n}+$ maxt. When $\mathrm{ipc} \neq 3$, Wlen $1=7$, Wlen $2=\mathrm{n}+$ maxt, where maxt is the maximum number of threads executed in parallel.		
iw	$\begin{aligned} & \text { int } \\ & \text { iw[Iwlen1][Iwlen2] } \end{aligned}$	Work	When $\mathrm{ipc}=3$, Iwlen $1=4$, Iwlen $2=\mathrm{n}+2 \times$ maxt. When ipc $\neq 3$, Iwlen $1=2$, Iwlen $2=$ maxt, where maxt is the maximum number of threads executed in parallel.		
icon	int	Output	Condition code. See below.		

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
10000	Diagonal vectors in a were reordered as U/L in ascending distance order.	Processing is continued.
20001	The upper iteration count limit was reached.	Processing stopped.
The approximate value obtained is output in array		
x, but the precision is not assured.		

Code	Meaning	Processing
30104	The number of diagonal vectors in the upper triangular does not equal that in the lower triangular.	Processing stopped.
30105	isw $\neq 1$ or 2	
30200	abs $(\mathrm{ndl} \mathrm{t}[\mathrm{i}])>\mathrm{n}-1$ or ndlt $[\mathrm{i}]=0 ; 0 \leq \mathrm{i}<\mathrm{nw}$	

3. Comments on use

isw

When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc $=3$, the solution on the first call is with $i s w=1$, and solutions on subsequent calls are with isw $=2$. In subsequent calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

eps and rz

The solution is assumed to have converged in the m-th iteration when (2), the square root of residual $r z$ is less than the set tolerance, eps:

$$
\begin{align*}
\mathrm{rz} & =\sqrt{r z}<\mathrm{eps} \tag{2}\\
\mathbf{r} & =\mathbf{b}-\mathbf{A} \mathbf{x}_{m} \tag{3}
\end{align*}
$$

The residual vector \mathbf{r} for the solution at the m-th iteration is obtained from (3) and with the preconditioner matrix $\mathbf{M}, r z$ is calculated by equation (4).

$$
\begin{equation*}
r z=\mathbf{r}^{\mathrm{T}} \mathbf{M}^{-1} \mathbf{r} \tag{4}
\end{equation*}
$$

ipc and omega

Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If $\mathbf{A}=\mathbf{I}-\mathbf{N}$, the preconditioner \mathbf{M} of the linear equation $(\mathbf{I}-\mathbf{N}) \mathbf{x}=\mathbf{b}$ is as follows for the different values of ipc:

1. No preconditioner, $\mathbf{M}=\mathbf{I}$.
2. Neumann, $\mathbf{M}^{-1}=(\mathbf{I}+\mathbf{N})$.
3. Incomplete Cholesky decomposition, $\mathbf{M}=\mathbf{L L}^{\mathrm{T}}$.

When ipc $=2$, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix $(\mathbf{I}+\mathbf{N})$ is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not improve the convergence when the preconditioner does not approximate the inverse matrix of \mathbf{A} in some situations such that the maximum absolute value of the eigenvalues of the matrix \mathbf{N} is larger than one.

When ipc $=3$, the user must provide a value for omega $(0 \leq$ omega $\leq 1)$. For values of omega, 0 gives the incomplete Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was found empirically to be in the range of 0.92 to 1.00 .

4. Example program

This example solves a system of linear equations with symmetric positive definition matrices.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define MAXT (4)
#define ND (20)
#define N (ND*ND*ND)
#define K (N)
#define NW (6)
MAIN__()
{
    double a[NW][K], b[N], x[N], w[7][N+MAXT];
    double omega, eps, rz;
    int ndlt[NW], iw[2][MAXT];
    int k, nw, n, ipc, itmax,' isw, iguss, iter, icon;
    int i, j, nx, ny, iy, iz, l;
    int rhs(double*, int, int, int, double*, int*, double*);
    for(j=0; j<NW; j++) {
        for(i=0; i<N; i++) {
            a[j][i] = 0.0;
        }
    }
    for(i=0; i<NW; i++) {
        ndlt[i] = 0;
    }
    nx = ND;
    ny = ND;
    for(i=0; i<N; i++) {
        l = i+1;
        iz = (l-1)/(nx*ny);
        iy = (l-1-iz*nx*ny)/nx;
        if ((l/nx)*nx != l && l <= N-1) {
            a[0][i] = -1.0/6.0;
        }
        (1 <= N-nx && iy != ny-1) {
            a[1][i] = -1.0/6.0;
        }
        if (l <= N-nx*ny) {
            a[2][i] = -1.0/6.0;
        }
        if (((l-1)/nx)*nx != l-1 && l >= 2 && l <= N) {
            a[3][i] = -1.0/6.0;
        }
        if (l >= nx+1 && l <= N && iy != 0) {
                a[4][i] = -1.0/6.0;
        }
        if (l >= nx*ny+1 && l <= N) {
            a[5][i] = -1.0/6.0;
        }
    }
    ndlt[0] = 1, ndlt[1] = nx, ndlt[2] = nx*ny;
    ndlt[3] = -1, ndlt[4] = -nx, ndlt[5] = -nx*ny;
    rhs((double*)a, N, K, NW, (double*)w, ndlt, b);
    eps = 1e-6;
    itmax = 2000;
    isw = 1;
    iguss = 0;
    ipc = 2;
    c_dm_vcgd((double*)a, K, NW, N, ndlt, b, ipc, itmax, isw, omega, eps, iguss, x,
                        &iter, &rz, (double*)w, (int*)iw, &icon);
    printf("icon = %d\n", icon);
    printf("x[0] = %e, x[n-1]= %e\n", x[0], x[N-1]);
```

```
    return(0);
}
int rhs(double *a, int n, int k, int ndiag, double *dp, int *ndlt, double *b)
{
    int i, nlb, icon;
    nlb = 0;
    for (i=0; i < ndiag; i++) {
        nlb = max(fabs(ndlt[i]), nlb);
    }
    for (i=0; i < n*3; i++) {
        dp[i] = 0.0;
    }
    for (i=0; i < n; i++) {
        dp[i + nlb] = 1.0;
        b[i] = 0.0;
    }
    c_dm_vmvsd((double*)a, k, ndiag, n, ndlt, nlb, dp, b, &icon);
    for (i = 0; i < n; i++) {
        b[i] += dp[i+nlb];
    }
    return(0);
}
```


5. Method

Consult the entry for DM_VCGD in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43], [50], [51] and [55].

c_dm_vcge

A system of linear equations with symmetric positive definite sparse matrices (preconditional CG method, ELLPACK format storage method)
$\begin{gathered} \text { rr = c_dm_vcge(a, k, nw, n, icol, b, ipc, } \\ \text { itmax, isw, omega, eps, iguss, x, } \\ \text { \&iter, \&rz, w, iw, \&icon); } \\ \hline \end{gathered}$

1. Function

This routine solves a linear equation having an $n \times n$ normalized symmetric positive definite sparse matrix as a coefficient matrix using the preconditioned CG method.

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
$$

The $n \times n$ coefficient matrix is normalized so that the diagonal elements are 1 , and the non-zero elements except the diagonal elements are stored by the ELLPACK format storage method.

2. Arguments

The routine is called as follows:

```
ierr = c_dm_vcge((double*)a, k, nw, n, (int*)icol, b, ipc, itmax, isw, omega,
    eps, iguss, x, &iter, &rz, (double*)w, (int*)iw, &icon);
``` where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[nw][k] & Input & Sparse matrix A stored in the ELLPACK normalized symmetric positive definite storage format. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline nW & int & Input & When the maximum numbers of non-zero elements of row vectors of upper and lower triangular matrices are NSU and NSL, respectively, \(2 \times\) \(\max (N S U, N S L)\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline icol & int icol[nw][k] & Input & The information on the column vector to which non-zero elements belong is stored in icol. \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline ipc & int & Input & \begin{tabular}{l}
Preconditioner control information. See Comments on use. \\
1 No preconditioner. \\
2 Neumann preconditioner. \\
3 Preconditioner with incomplete Cholesky decomposition. In this case, omega must be specified.
\end{tabular} \\
\hline itmax & int & Input & Upper limit of iterations. \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. See Comments on use. \\
1 Initial call. \\
2 Subsequent calls. \\
The arrays, a, icol, \(w\) and iw, must NOT be changed as the values set on the initial call are reused.
\end{tabular} \\
\hline omega & double & Input & Modification factor for incomplete Cholesky decomposition, \(0 \leq\) omega \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Elements of a and icol are rearranged as U/L. & Processing continues. \\
\hline 20001 & The iteration count reaches the upper limit. & \multirow[t]{2}{*}{\begin{tabular}{l}
Processing stopped. \\
The approximate solution obtained up to this stage is returned, but its precision is not guaranteed.
\end{tabular}} \\
\hline 20003 & Break down occurred. & \\
\hline 30003 & itmax \(\leq 0\) & \multirow[t]{12}{*}{Processing stopped.} \\
\hline 30005 & \(\mathrm{k}<\mathrm{n}\) & \\
\hline 30006 & Incomplete \(\mathbf{L L}^{\mathrm{T}}\) decomposition could not be executed. & \\
\hline 30007 & Pivot became minus. & \\
\hline 30092 & \(\mathrm{n} \mathrm{w} \leq 0\) & \\
\hline 30093 & \(\mathrm{k} \leq 0, \mathrm{n} \leq 0\) & \\
\hline 30096 & omega \(<0\) or omega \(>1\) & \\
\hline 30097 & ipc \(<1\) or ipc \(>3\) & \\
\hline 30098 & isw \(\neq 1\) or 2 & \\
\hline 30100 & \(\mathrm{nw} \neq 2 \times \max (N S U, N S L)\) & \\
\hline 30104 & The upper triangular part or the lower triangular part is not correctly stored. & \\
\hline negative number & The non-diagonal element is present in the -icon row. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a, nw and icol}

The sparse matrix \(\mathbf{A}\) is normalized in such a way that the main diagonal elements are ones. The non-zero elements other than the main diagonal elements are stored using the ELLPACK storage format. For details on normalization of systems of linear equations and ELLPACK normalized symmetric positive definite storage format, see the Array storage formats section of the General description.

Apart from the incomplete Cholesky decomposition preconditioner (ipc \(=3\)), both the storage formats for ELLPACK, normalized and unnormalized, are acceptable for the function. In the standard case (unnormalized), \(\mathrm{nw}=2 \times \max (\mathrm{NSU}\), \(N S L\)) is not required.

\section*{isw}

When multiple sets of linear equations with the same coefficient matrix but different constant vectors are solved with ipc \(=3\), the solution on the first call is with \(i s w=1\), and solutions on subsequent calls are with \(i s w=2\). In subsequent calls, the result of the incomplete Cholesky decomposition obtained on the initial call is reused.

\section*{eps and rz}

The solution is assumed to have converged in the \(m\)-th iteration when (2), the square root of residual \(r z\) is less than the set tolerance, eps:
\[
\begin{align*}
\mathrm{rz} & =\sqrt{r z}<\mathrm{eps} \tag{2}\\
\mathbf{r} & =\mathbf{b}-\mathbf{A} \mathbf{x}_{m} \tag{3}
\end{align*}
\]

The residual vector \(\mathbf{r}\) for the solution at the \(m\)-th iteration is obtained from (3) and with the preconditioner matrix \(\mathbf{M}, r z\) is calculated by equation (4).
\[
\begin{equation*}
r z=\mathbf{r}^{\mathrm{T}} \mathbf{M}^{-1} \mathbf{r} \tag{4}
\end{equation*}
\]

\section*{ipc and omega}

Two types of preconditioners and a no-preconditioner option are provided.

Note, when elliptic partial differential equations are discretized into a system of linear equations, it is effective to use a preconditioner based on an incomplete Cholesky decomposition to obtain the solution.

If \(\mathbf{A}=\mathbf{I}-\mathbf{N}\), the preconditioner \(\mathbf{M}\) of the linear equation \((\mathbf{I}-\mathbf{N}) \mathbf{x}=\mathbf{b}\) is as follows for the different values of ipc:
1. No preconditioner, \(\mathbf{M}=\mathbf{I}\).
2. Neumann, \(\mathbf{M}^{-1}=(\mathbf{I}+\mathbf{N})\).
3. Incomplete Cholesky decomposition, \(\mathbf{M}=\mathbf{L} \mathbf{L}^{\mathrm{T}}\).

When ipc=2, the preconditioner also must be a positive definite matrix. For example, diagonal dominance of the matrix \((\mathbf{I}+\mathbf{N})\) is a sufficient condition for the positive definiteness. Additionally, note that using a preconditioner may not improve the convergence when the preconditioner does not approximate the inverse matrix of \(\mathbf{A}\) in some situations such that the maximum absolute value of the eigenvalues of the matrix \(\mathbf{N}\) is larger than one.

When ipc \(=3\), the user must provide a value for omega (\(0 \leq\) omega \(\leq 1\)). For values of omega, 0 gives the incomplete Cholesky decomposition, 1 the modified Cholesky decomposition, and all the values in between are a weighting of the two decompositions.

For a system of linear equations derived from discretizing partial differential equations, an optimal omega value was found empirically to be in the range of 0.92 to 1.00 .

\section*{4. Example program}

This example solves the system of linear equations with symmetric positive definition matrix.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define MAXT (4)
\#define ND (80)
\#define N (ND*ND*ND)
\#define K (N)
\#define NW (6)
MAIN__()
{
double a[NW][K], b[N], x[N], xx[N], w[7][N+MAXT];
double omega, eps, rz;
int icol[NW][K], iw[2][MAXT];
int ipc, itmax, isw, iguss, iter, icon;
int i, j, nx, ny, iy, iz, l;
for(j=0; j<NW; j++) {
for(i=0; i<N; i++) {
a[j][i] = 0.0;
icol[j][i] = j+1;
}
}
nx = ND;
ny = ND;
for(i=0; i<N; i++) {
l= i+1;
iz = i/(nx*ny);
iy = (i-iz*nx*ny)/nx;
if ((l/nx)*nx != l \&\& l <= N-1) {
a[0][i] = -1.0/6.0;
icol[0][i] = l+1;
}
if (l <= N-nx \&\& iy != ny-1) {
a[1][i] = -1.0/6.0;
icol[1][i] = l+nx;
}
if (l <= N-nx*ny) {
a[2][i] = -1.0/6.0;
icol[2][i] = l+nx*ny;
}
if (((l-1)/nx)*nx != l-1 \&\& l >= 2 \&\& l <= N) {
a[3][i] = -1.0/6.0;
icol[3][i] = l-1;
}
if (l >= nx+1 \&\& l <= N \&\& iy != 0) {
a[4][i] = -1.0/6.0;
icol[4][i] = l-nx;
}
if (l >= nx*ny+1 \&\& l <= N) {
a[5][i] = -1.0/6.0;
icol[5][i] = l-nx*ny;
}
}
for (i=0; i<N; i++) {
xx[i] = 1.0;
}
c_dm_vmvse((double*)a, K, NW, N, (int*)icol, xx, b, \&icon);
for (i=0; i<N; i++) {
b[i] += 1.0;
}

```
```

    itmax = 2000;
    eps = 1e-6;
    iSW = 1;
    ipc = 2;
    iguss = 0;
    c_dm_vcge((double*)a, K, NW, N, (int*)icol, b, ipc, itmax, isw, omega, eps, iguss,
    x, &iter, &rz, (double*)w, (int*)iw, &icon);
    printf("icon = %d\n", icon);
    printf("x[0] = %e, x[n-1]= %e\n", x[0], x[N-1]);
    return(0);
    }

```

\section*{5. Method}

Consult the entry for DM_VCGE in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [25], [43] and [51].

\section*{c_dm_vclu}
\[
\begin{aligned}
& \text { LU decomposition of complex matrices (blocked LU decomposition } \\
& \text { method) } \\
& \hline \text { ierr }=c _d m _ \text {vclu(za, k, } n, \text { epsz, ip, \&is, } \\
& \text { \&icon); }
\end{aligned}
\]

\section*{1. Function}

This routine executes LU decomposition for non-singular complex \(n \times n\) matrices using blocked outer product type Gaussian elimination.
\[
\begin{equation*}
\mathbf{P A}=\mathbf{L} \mathbf{U} \tag{1}
\end{equation*}
\]
where, \(\mathbf{P}\) is the permutation matrix which exchanges rows by partial pivoting, \(\mathbf{L}\) is the lower triangular matrix, and \(\mathbf{U}\) is unit upper triangular matrix (\(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vclu((dcomplex*)za, k, n, epsz, ip, \&is, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline za & dcomplex & Input & Matrix A. \\
\hline & za[n][k] & Output & Matrices \(\mathbf{L}\) and \(\mathbf{U}\). \\
\hline k & int & Input & C fixed dimension of array za (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline epsz & double & Input & \begin{tabular}{l}
Judgment of relative zero of the pivot \((\geq 0.0)\). \\
When epsz is 0.0 , the standard value is assumed. See Comments on use.
\end{tabular} \\
\hline ip & int ip[n] & Output & The transposition vector indicating the history of row exchange by partial pivoting. One-dimensional array of size \(n\). See Comments on use. \\
\hline is & int & Output & Information to obtain the determinant of matrix \(\mathbf{A}\). The determinant is obtained by multiplying the \(n\) diagonal elements of array za by the value of is after the operation. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
All elements in some row of array za were zero, \\
or the pivot became relatively zero. Matrix A \\
may be singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet\) \\
epsz<0.0
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If both the real and imaginary parts of the pivot value lose more than \(s\) significant digits during LU-decomposition by Crout's method, the pivot value is assumed to be zero and computation is discontinued with icon \(=20000\).

The standard value of epsz is normally \(16 \mu\), where \(\mu\) is the unit round off. If processing is to proceed at a low pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{ip}

The transposition vector corresponds to the permutation matrix \(\mathbf{P}\) of LU-decomposition with partial pivoting. In this function, the elements of the array za are actually exchanged in partial pivoting. In the \(J\)-th stage \((J=1, \ldots, n)\) of decomposition, if the \(I\)-th row has been selected as the pivotal row the elements of the \(I\)-th row and the elements of the \(J\) th row are exchanged. Then, in order to record the history of this exchange, \(I\) is stored in ip \([\mathrm{j}-1]\).

\section*{How to use this function}

The linear equation can be solved by calling routine c_dm_vclux following this routine. Normally, the linear equation can be solved in one step by calling routine \(c _d m _v l c x\).

\section*{4. Example program}

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define N (2000)
\#define K (N+1)
MAIN__()
{
dcomplex za[N][K], zb[N];
double epsz, c, t, s, error;
int ip[N];
int is, icon, i, j;
c = sqrt(1.0/(double)(N+1));
t = atan(1.0)*8.0/(N+1);
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
za[j][i].re = c** cos(t* (i+1)* (j+1));
za[j][i].im = c*sin(t*(i+1)*(j+1));
}
}
for (i=0; i<N; i++) {
s = 0.0;
for (j=0; j<N; j++) {
s += cos(t*(i+1)*(j+1));
zb[i].re = s*c;
zb[i].im = 0.0;
}
}
epsz = 0.0;
c_dm_vclu((dcomplex*)za, K, N, epsz, ip, \&is, \&icon);
c_dm_vclux(zb, (dcomplex*)za, K, N, ip, \&icon);

```
```

    printf("icon = %d\n", icon);
    error = 0.0;
    for (i=0; i<N; i++) {
        error = max(fabs(1.0-zb[i].re), error);
    }
    printf("error = %f\n", error);
    printf("ORDER = %d\n", N);
    printf("zb[0] = %e\n", zb[0].re);
    printf("zb[n-1] = %e\n", zb[N-1].re);
    return(0)
    }

```

\section*{5. Method}

Consult the entry for DM_VCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [1], [30] and [52].

\section*{c_dm_vclux}
\[
\begin{aligned}
& \text { A system of linear equations with LU-decomposed complex matrix } \\
& \hline \text { ierr = c_dm_vclux }(z b, \quad z f a, ~ k f a, ~ n, ~ i p, ~ \& i c o n) ; ~
\end{aligned}
\]

\section*{1. Function}

This routine solves a linear equation with an LU-decomposed complex coefficient matrices.
\[
\begin{equation*}
\mathbf{L U x}=\mathbf{P b} \tag{1}
\end{equation*}
\]
where, \(\mathbf{L}\) is a lower triangular matrix of \(n \times n, \mathbf{U}\) is a unit upper triangular matrix of \(n \times n\), and \(\mathbf{P}\) is a permutation matrix. (Rows are exchanged by partial pivoting when the coefficient matrix is LU-decomposed.) \(\mathbf{b}\) is an \(n\)-dimensional complex constant vector, and \(\mathbf{x}\) is an \(n\)-dimensional solution vector (\(n \geq 1\)).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vclux(zb, (dcomplex*)zfa, kfa, n, ip, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{zb} & dcomplex & Input & Constant vector \(\mathbf{b}\). \\
\hline & zb[n] & Output & Solution vector \(\mathbf{x}\). \\
\hline \(z f a\) & dcomplex & Input & Matrices \(\mathbf{L}\) and \(\mathbf{U}\). \\
\hline & \multicolumn{3}{|l|}{zfa[n][kfa]} \\
\hline kfa & int & Input & C fixed dimension of array \(z f a(\geq n)\). \\
\hline n & int & Input & Order of matrices \(\mathbf{L}\) and \(\mathbf{U}\). \\
\hline ip & int ip[n] & Input & The transposition vector which indicates the history of row exchange by partial pivoting. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The coefficient matrix was singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
\\
\(\bullet \quad \mathrm{n}<1\) \\
• kfa \(<\mathrm{n}\) \\
\(\bullet \quad\) ip was invalid.
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

The linear equations can be solved by calling routine c_dm_vclu, LU-decomposing the coefficient matrix, then calling this routine. Normally, the solution can be obtained in one step by calling routine c_dm_vlcx.

\section*{4. Example program}

A system of linear equations with a complex coefficient matrix is LU-decomposed and solved.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define N (2000)
\#define K (N+1)
MAIN__(
{
dcomplex za[N][K], zb[N];
double epsz, c, t, s, error;
int ip[N];
int is, icon, i, j;
c = sqrt(1.0/(double)(N+1))
t = atan(1.0)*8.0/(N+1);
for (j=0; j<N; j++)
for (i=0; i<N; i++) {
za[j][i].re = c*cos(t*(i+1)*(j+1));
za[j][i].im = c*sin(t*(i+1)*(j+1));
}
}
for (i=0; i<N; i++) {
s = 0.0;
for (j=0; j<N; j++) {
s += cos(t* (i+1)*(j+1));
zb[i].re = s*c;
zb[i].im = 0.0;
}
}
epsz = 0.0;
c_dm_vclu((dcomplex*)za, K, N, epsz, ip, \&is, \&icon);
c_dm_vclux(zb, (dcomplex*)za, K, N, ip, \&icon);
printf("icon = %d\n", icon);
error = 0.0;
for (i=0; i<N; i++) {
error = max(fabs(1.0-zb[i].re), error);
}
printf("error = %f\n", error);
printf("ORDER = %d\n", N);
printf("zb[0] = %e\n", zb[0].re);
printf("zb[n-1] = %e\n", zb[N-1].re);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VCLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52].

\section*{c_dm_veminv}
\begin{tabular}{|l|}
\hline Inverse of complex matrix (blocked Gauss-Jordan method) \\
\hline ierr = c_dm_vcminv (za, k, n, epsz, \&icon); \\
\hline
\end{tabular}

\section*{1. Function}

This routine obtains the inverse \(\mathbf{A}^{-1}\) of the \(n \times n\) non-singular complex matrix \(\mathbf{A}\) using the Gauss-Jordan method.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vcminv((dcomplex*)za, k, n, epsz, \&icon);
where:
\begin{tabular}{llll}
za & dcomplex & Input & Matrix A. \\
& \begin{tabular}{l}
za[n][k]
\end{tabular} & Output & Matrix \(\mathbf{A}^{-1}\). \\
k & int & Input & C fixed dimension of array za \((\geq \mathrm{n})\). \\
n & int & Input & Order of matrix A. \\
epsz & double & Input & \begin{tabular}{l}
Judgment of relative zero of the pivot. \((\geq 0.0)\) \\
\\
icon
\end{tabular} \\
int & When epsz is 0.0, the standard value is assumed. \\
& & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
All row elements in matrix A are zero or the pivot \\
becomes a relatively zero. Matrix A may be \\
singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet\) \\
epsz \(<0.0\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be relatively zero. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is 16 u . If the minimum value is assigned to epsz, processing is continued, but the result is not assured.

\section*{4. Example program}

The inverse of a matrix is computed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */

```
```

\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define N 2000
\#define K (N+1)
int MAIN__()
{
dcomplex a[N][K], as[N][K], tmpz;
double c, t, error, epsz;
int i, j, icon;
c = sqrt(1.0/(double)N);
t = atan(1.0)*8.0/N;
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
a[j][i].re = c**os(t*i**)
a[j][i].im = c*sin(t*i*j);
as[j][i].re = a[j][i].re;
as[j][i].im = -a[j][i].im;
}
}
epsz = 0.0;
c_dm_vcminv((dcomplex*)a, K, N, epsz, \&icon);
error = 0.0;
for (j=0; j<N; j++) {
for (i=0; i<N; i++)
tmpz.re = fabs(a[j][i].re-as[j][i].re)
tmpz.im = fabs(a[j][i].im-as[j][i].im);
error = max(error,tmpz.re+tmpz.im);
}
}
printf("order = %d, error = %e\n", N, error);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM VCMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vgevph}
\begin{tabular}{|l|}
\hline \begin{tabular}{l}
Generalized eigenvalue problem for real symmetric matrices \\
(eigenvalues and eigenvectors)
\end{tabular} \\
(Tridiagonalization, multisection method, and inverse iteration)
\end{tabular}

\section*{1. Function}

This routine obtains all the eigenvalues and eigenvectors to solve a generalized eigenvalue problem.
\[
\mathbf{A x}=\lambda \mathbf{B} \mathbf{x}
\]
where, \(\mathbf{A}\) is an \(n \times n\) real symmetric matrix and \(\mathbf{B}\) is an \(n \times n\) positive definite matrix.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vgevph((double*)a, k, n, (double*)b, epsz, nf, nl, ivec, \&etol,
\&ctol, nev, e, maxne, (int*)m, (double*)ev, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double \(\mathrm{a}[\mathrm{n}][\mathrm{k}]\) & Input & The upper triangular part \(\left\{a_{i j} \mid i \leq j\right\}\) of real symmetric matrix \(\mathbf{A}\) is stored in the upper triangular part \(\{\mathrm{a}[\mathrm{i}-1][\mathrm{j}-1], i \leq j\}\) of a. The value of a is not assured after operation. \\
\hline k & int & Input & C fix dimension of matrix \(\mathbf{A} .(\mathrm{k} \geq \mathrm{n})\) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{double b[n][k]} & Input & The upper triangular part \(\left\{b_{i j} \mid i \leq j\right\}\) of the positive definite symmetric matrix \(\mathbf{B}\) is stored in the upper triangular part \(\{\mathrm{b}[\mathrm{i}-1][\mathrm{j}-1], i \leq j\}\) of \(b\). \\
\hline & & Output & \begin{tabular}{l}
The \(L^{\mathrm{T}}\)-decomposed matrix is stored. \\
The upper triangular matrix \(\mathbf{L}\left\{l_{i j} \mid i \leq j\right\}\) is stored in the upper triangular part \(\{\mathrm{b}[\mathrm{i}-1][\mathrm{j}-1], i \leq j\}\) of b .
\end{tabular} \\
\hline epsz & double & Input & The zero judgment value of the pivot when \(\mathbf{B}\) is \(L^{T}\)-decomposed. \((\geq\) 0.0) \\
\hline & & & When epsz is 0.0 , the standard value is assumed. \\
\hline \(n f\) & int & Input & Number assigned to the first eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline nl & int & Input & Number assigned to the last eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline \multirow[t]{2}{*}{ivec} & int & Input & Control information. \\
\hline & & & \begin{tabular}{l}
ivec \(=1\) if both the eigenvalues and eigenvectors are sought. \\
ivec \(\neq 1\) if only the eigenvalues are sought.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline etol & double & Input & Criterion value for checking whether the eigenvalues are numerically different from each other or are multiple. \\
\hline & & Output & When etol is less than \(3.0 \times 10^{-16}\) this value is used as the standard value. See Comments on use. \\
\hline ctol & double & Input & \begin{tabular}{l}
Criterion value for checking whether the adjacent eigenvalues can be considered to be approximately equal to each other. This value is used to assure the linear independence of the eigenvector corresponding to the eigenvalue belonging to approximately multiple eigenvalues (clusters). \\
The value of ctol should be generally \(5.0 \times 10^{-12}\). For a very large cluster, a large ctol value is required. \(10^{-6} \geq\) ctol \(\geq\) etol.
\end{tabular} \\
\hline & & Output & \begin{tabular}{l}
When condition ctol \(>10^{-6}\) occurs, ctol is set to \(10^{-6}\). \\
When condition ctol <etol occurs, ctol \(=10 \times \mathrm{etol}\) is set as the standard value. See Comments on use.
\end{tabular} \\
\hline nev & int nev[5] & Output & \begin{tabular}{l}
Number of eigenvalues calculated. \\
Details are given below. \\
nev [0] indicates the number of different eigenvalues calculated. \\
nev [1] indicates the number of approximately multiple different eigenvalues (different clusters) calculated. \\
nev[2] indicates the total number of eigenvalues (including multiple eigenvalues) calculated. \\
nev[3] indicates the number representing the first of the eigenvalues calculated. \\
nev [4] indicates the number representing the last of the eigenvalues calculated.
\end{tabular} \\
\hline e & \begin{tabular}{l}
double \\
e[maxne]
\end{tabular} & Output & Eigenvalues. Stored in \(\mathrm{e}[\mathrm{i}-1], \mathrm{i}=1, \ldots, \mathrm{nev}[2]\). \\
\hline maxne & int & Input & \begin{tabular}{l}
Maximum number of eigenvalues that can be computed. \\
When it can be considered that there are two or more eigenvalues with multiplicity \(m\), maxne must be set to a larger value than \(\mathrm{nl}-\mathrm{nf}+1+\) \(2 \times m\) that is bounded by \(n\). When condition nev[2] > maxne occurs, the eigenvectors cannot be calculated. See Comments on use.
\end{tabular} \\
\hline m & \[
\begin{aligned}
& \text { int } \\
& \mathrm{m}[2][\text { maxne }]
\end{aligned}
\] & Output & Information about multiplicity of eigenvalues calculated. \(\mathrm{m}[0][\mathrm{i}-1]\) indicates the multiplicity of the \(i\)-th eigenvalue \(\lambda_{i}\). \(\mathrm{m}[1][\mathrm{i}-1]\) indicates the multiplicity of the \(i\)-th cluster when the adjacent eigenvalues are regarded as clusters. See Comments on use. \\
\hline ev & \begin{tabular}{l}
double \\
ev[maxne][k]
\end{tabular} & Output & \begin{tabular}{l}
When ivec \(=1\), the eigenvectors corresponding to the eigenvalues are stored in ev. \\
The eigenvectors are stored in \(\operatorname{ev}[i-1][j-1], i=1, \ldots, \operatorname{nev}[2], j\) \(=1, \ldots, \mathrm{n}\).
\end{tabular} \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 20000 & \begin{tabular}{l}
The pivot becomes negative at \(\mathrm{LL}^{\mathrm{T}}\) \\
decomposition of matrix B. Matrix \(\mathbf{B}\) is not \\
positive.
\end{tabular} & Discontinued. \\
\hline 20100 & \begin{tabular}{l}
The pivot becomes relatively zero at \(\mathrm{LL}^{\mathrm{T}}\) \\
decomposition of matrix \(\mathbf{B}\). Matrix \(\mathbf{B}\) may be \\
singular.
\end{tabular} & \begin{tabular}{l}
During calculation of clustered eigenvalues, the \\
total number of eigenvalues exceeded the value of \\
maxne.
\end{tabular} \\
\hline 20200 & \begin{tabular}{l}
Discontinued. The eigenvectors cannot be \\
calculated, but the different eigenvalues \\
themselves are already calculated. \\
A suitable value for maxne to allow calculation
\end{tabular} \\
to proceed is returned in nev [2]. \\
See Comments on use.
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of \(L^{T}\) decomposition. In this case, processing is discontinued with icon \(=20100\). When unit round off is \(u\), the standard value of epsz is \(16 u\). When the computation is to be continued even if the pivot is small, assign, the minimum value to epsz. In this case, however, the result is not assured.

\section*{etol and ctol}

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).
When \(\varepsilon=\) etol, the following condition is satisfied for consecutive eigenvalues \(\lambda_{j}(j=s-1, s, \ldots, s+k,(k \geq 0))\) :
\[
\begin{equation*}
\frac{\left|\lambda_{i}-\lambda_{i-1}\right|}{1+\max \left(\left|\lambda_{i-1}\right|,\left|\lambda_{i}\right|\right)} \leq \varepsilon, \tag{1}
\end{equation*}
\]

If formula (1) is satisfied for \(i\) when \(i=s, s+1, \ldots, s+k\) but not satisfied when \(i=s-1\) and \(i=s+k+1\), it is assumed that the eigenvalues \(\lambda_{j}(j=s-1, s, \ldots, s+k)\) are numerically multiple.

The standard value of etol is \(3.0 \times 10^{-16}\) (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (1) is not satisfied when \(\varepsilon=\) etol, it can be considered that \(\lambda_{i-1}\) and \(\lambda_{i}\) are distinct eigenvalues.

When \(\varepsilon=\) etol, assume that consecutive eigenvalues \(\lambda_{m}(m=t-1, t, \ldots, t+k(k \geq 0))\) are different eigenvalues. Also, when \(\varepsilon=\mathrm{ctol}\), assume that formula (1) is satisfied for \(i\) when \(i=t, t+1, \ldots, t+k\) but not satisfied when \(i=t-1\) and \(i=t\) \(+k+1\). In this case, it is assumed that the distinct eigenvalues \(\lambda_{m}(m=t-1, t, \ldots, t+k)\) are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to \(\lambda_{m}(m=t-1, t, \ldots, t+k)\) are reorthogonalized.

\section*{maxne}

The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne. In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon \(=20200\) is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in \(\mathrm{e}[\mathrm{i}-1], i=1, \ldots, n e v[0]\). The multiplicity of the corresponding eigenvalues is stored in \(m[0][i-1], i=1, \ldots, n e v[0]\).

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be \(n t(n t=\mathrm{nl}-\mathrm{nf}+1\) is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is \(m\), the maxne value must be at least \(n t+2 \times m\).

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

\section*{4. Example program}

This example calculates the specified eigenvalues and eigenvectors of a generalized eigenvalue problem whose eigenvalues and eigenvectors are known.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define N 2000
\#define K (N+1)
\#define NF 1
\#define NL N
\#define MAXNE (NL-NF+1)
int MAIN__()
{
double a[N][K], b[N][K], b2[N][K], c[N][K], d[N][K];
double e[MAXNE], ev[MAXNE][K];
double pai, coef, ctol, etol, epsz, temp;
int nev[5], m[2][MAXNE];
int i, j, k, ivec, icon;
pai = atan(1.0) * 4.0;
coef = sqrt(2.0/(N+1));
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {

```
```

        d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1));
    }
    }
    for (j=0; j<N; j++) {
        for (i=0; i<N; i++) {
        if (i==j) { c[j][i] = (double)(j+1); }
        else { c[j][i] = 0.0; }
    }
    }
    c_dm_vmggm((double*)d, K, (double*)c, K, (double*)b, K, N, N, N, \&icon);
c_dm_vmggm((double*)b, K, (double*)d, K, (double*)a, K, N, N, N, \&icon);
/* B = LL^t , A <- LALt */
for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
b[i][j] = 1.0/sqrt(1.0);
b2[i][j] = min(i+1,j+1)/1.0;
}
}
for (j=0; j<N; j++) {
for (k=N-1; k>=0; k--) {
temp =a[j][k];
a[j][k] *= b[k][k];
for (i=k+1; i<N; i++) {
a[j][i] += temp*b[k][i];
}
}
}
for (j=N-1; j>=0; j--) {
temp = b[j][j];
for (i=0; i<N; i++) {
a[j][i] *= temp;
}
for (k=0; k<j; k++) {
temp=b[j][k];
for (i=0; i<N; i++) {
a[j][i] += temp*a[k][i];
}
}
}
ivec = 1;
etol = 1.0e-15;
ctol = 1.0e-10;
epsz = 0;
c_dm_vgevph((double*)a, K, N, (double*)b2, epsz, NF, NL, ivec, \&etol, \&ctol,
nev, e, MAXNE, (int*)m, (double*)ev, \&icon);
for (i=0; i<nev[2]; i+=nev[2]/10) {
printf("eigen value in e[%d] = %f\n", i, e[i]);
}
return(0);
}

```

\section*{5. Method}

Consult the entry for DM VGEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vhevp}
```

Eigenvalues and eigenvectors of Hermite matrices
ierr = c_dm_vhevp(za, k, n, nf, nl, ivec,
\&etol, \&ctol, nev, eh, maxne, m,
zev, \&icon);

```

\section*{1. Function}

This routine calculates specified eigenvalues and, optionally, eigenvectors of an \(n\)-dimensional Hermite matrix.
\[
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vhevp((dcomplex*)za, k, n, nf, nl, ivec, \&etol, \&ctol, nev, eh,
maxne, (int*)m, (dcomplex*)zev, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline za & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { za[n][k] }
\end{aligned}
\] & Input & The upper triangular part \(\left\{a_{i j} \mid i \leq j\right\}\) of Hermite matrix \(\mathbf{A}\) whose eigenvalues and eigenvectors are to be calculated is stored in the upper triangular part \(\{\mathbf{z a}[i-1][j-1], i \leq j\}\) of \(z a\). The value of \(a\) is not assured after operation. \\
\hline k & int & Input & C fix dimension of matrix A. \((k \geq n)\) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nf & int & Input & Number assigned to the first eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline nl & int & Input & Number assigned to the last eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline ivec & int & Input & \begin{tabular}{l}
Control information. \\
ivec = 1 if both the eigenvalues and eigenvectors are sought. \\
ivec \(\neq 1\) if only the eigenvalues are sought.
\end{tabular} \\
\hline etol & double & Input & Criterion value for checking whether the eigenvalues are different from each other or equal to each other. \\
\hline & & Output & \begin{tabular}{l}
When etol is less than \(3 \times 10^{-16}\), this value is used as the standard value. \\
See Comments on use.
\end{tabular} \\
\hline ctol & double & Input & Criterion value for checking whether the adjacent eigenvalues are approximately equal to each other. ctol is used to assure the linear independence of the eigenvector corresponding to the eigenvalue belonging to approximately multiple eigenvalues (clusters). The ctol value should generally be \(5.0 \times 10^{-12}\). For a very large cluster, a large ctol value is required. \(10^{-6} \geq\) ctol \(\geq\) etol. \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
During calculation of clustered eigenvalues, the \\
total number of eigenvalues exceeded maxne.
\end{tabular} & \begin{tabular}{l}
Discontinued. The eigenvectors cannot be \\
calculated, but the different eigenvalues \\
themselves are already calculated. \\
A suitable value for maxne to allow calculation \\
to proceed is returned in nev [2]. \\
See Comments on use.
\end{tabular} \\
\hline 30000 & \begin{tabular}{lll}
One of the following has occurred: \\
\(\bullet\) & \(\mathrm{n}<1\) \\
\(\bullet\) & \(\mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
• \(\mathrm{nf}<1\) \\
\(\bullet\) & \(\mathrm{nl}>\mathrm{n}\) \\
\(\bullet\) & \(\mathrm{nl}<\mathrm{nf}\) \\
\(\bullet\) & \(m a x n e<\mathrm{nl}-\mathrm{nf}+1\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{etol and ctol}

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).
When \(\varepsilon=\) etol, the following condition is satisfied for consecutive eigenvalues \(\lambda_{j}(j=s-1, s, \ldots, s+k,(k \geq 0))\) :
\[
\begin{equation*}
\frac{\left|\lambda_{i}-\lambda_{i-1}\right|}{1+\max \left(\left|\lambda_{i-1}\right|,\left|\lambda_{i}\right|\right)} \leq \varepsilon, \tag{2}
\end{equation*}
\]

If formula (2) is satisfied for \(i\) when \(i=s, s+1, \ldots, s+k\) but not satisfied when \(i=s-1\) and \(i=s+k+1\), it is assumed that the eigenvalues \(\lambda_{j}(j=s-1, s, \ldots, s+k)\) are numerically multiple.

The standard value of etol is \(3.0 \times 10^{-16}\) (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (2) is not satisfied when \(\varepsilon=\) etol, it can be considered that \(\lambda_{i-1}\) and \(\lambda_{i}\) are distinct eigenvalues.

When \(\varepsilon=\) etol, assume that consecutive eigenvalues \(\lambda_{m}(m=t-1, t, \ldots, t+k(k \geq 0))\) are different eigenvalues. Also, when \(\varepsilon=\) ctol, assume that formula (2) is satisfied for \(i\) when \(i=t, t+1, \ldots, t+k\) but not satisfied when \(i=t-1\) and \(i=t\) \(+k+1\). In this case, it is assumed that the distinct eigenvalues \(\lambda_{m}(m=t-1, t, \ldots, t+k)\) are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to \(\lambda_{m}(m=t-1, t, \ldots, t+k)\) are reorthogonalized.

\section*{maxne}

The maximum number of eigenvalues calculated can be specified in maxne. When the ctol value is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the maxne value. In this case, decrease the ctol value or increase the maxne value.

If the total number of eigenvalues calculated exceeds the maxne value, icon \(=20000\) is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in eh[i-1], \(i=1, \ldots, n e v[0]\). The multiplicity of the corresponding eigenvalues is stored in \(m[0][i-1], i=1, \ldots, n e v[0]\).

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be \(n t(n t=\mathrm{nl}-\mathrm{nf}+1\) is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is \(m\), the maxne value must be at least \(n t+2 \times m\).

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

\section*{4. Example program}

This program obtains eigenvalues and prints the results.
```

\#include <stdio.h>

```
```

\#include <stdlib.h>
\#include "cssl.h" /* standard C-SSL II header file */

\#define N	512
\#define K	N
\#define NF	1
\#define NL	28
\#define MAXNE	NL-NF+1

ine MAXNE
MAIN__()
{
dcomplex za[N][K], zev[MAXNE][K];
double eh[MAXNE];
double etol, ctol;
int nev[5], m[2][MAXNE];
int ierr, icon;
int i, j, k, n, nf, nl, maxne, ivec;
n = N;
k}=\textrm{K
nf = NF;
nl = NL;
ivec = 1;
maxne = MAXNE
etol = 1.0e-14;
ctol = 5.0e-12;
printf(" Number of data points = %d\n", n);
printf(" Parameter k = %d\n", k);
printf(" Eigenvalue calculation tolerance = %12.4e\n", etol);
printf(" Cluster tolerance = %12.4e\n", ctol);
printf(" First eigenvalue to be found is %d\n", nf);
printf(" Last eigenvalue to be found is %d\n", nl);
/* Set up real and imaginary parts of matrix in AR and AI */
for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
za[i][j].re = (double)(i+j+2)/(double)n;
if(i==j)
za[i][j].im = 0.0;
za[i][j].re = (double)(j+1);
} else {
za[i][j].im = (double)((i+1)*(j+1))/(double)(n*n);
}
}
}
for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
if(i > j) za[i][j].im = -za[i][j].im;
}
}
/* Call complex eigensolver */
ierr = c_dm_vhevp ((dcomplex*)za, k, n, nf, nl, ivec, \&etol, \&ctol, nev, eh,
maxne, (int*)m, (dcomplex*)zev, \&icon);
if (icon > 20000) {
printf("ERROR: c_dm_vhevp failed with icon = %d\n", icon);
exit(1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */
printf(" Number of Hermitian eigenvalues = %d\n", nev[2]);
printf(" Eigenvaluse of complex Hermitian matrix\n");
for(i=0; i<nev[2]; i++) {
printf(" eh[%d] = %12.4e\n", i, eh[i]);
}
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VHEVP in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [57].

\section*{c_dm_vhtrid}
\[
\begin{array}{|l|}
\hline \text { Tridiagonalization of Hermite matrices } \\
\hline \text { ierr }=\text { c_dm_vhtrid(za, } k, ~ n, ~ d, ~ s l, ~ z s, ~ \\
\text { \&icon); }
\end{array}
\]

\section*{1. Function}

This routine reduces an Hermite matrix into an Hermite tridiagonal matrix and this matrix is transformed into a real tridiagonal matrix using diagonal unitary transform.
\[
\begin{aligned}
& \mathbf{H}=\mathbf{P}^{*} \mathbf{A P} \\
& \mathbf{T}=\mathbf{V}^{*} \mathbf{H V}
\end{aligned}
\]
\(\mathbf{A}\) is an \(n \times n\) Hermite matrix, \(\mathbf{P}\) is an \(n \times n\) unitary matrix. \(\mathbf{V}\) is an \(n \times n\) diagonal unitary matrix and \(\mathbf{T}\) is a real tridiagonal matrix.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vhtrid((dcomplex*)za, k, n, d, sl, zs, \&icon);
where:

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(k<n, n<2\). & Processing is discontinued. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{za}

Hermite tridiagonalization is performed by the repeated transforms varying \(k=1, \ldots, n-2\).
\[
\mathbf{A}^{k}=\mathbf{P}_{k}^{*} \mathbf{A}^{k-1} \mathbf{P}_{k}, \quad \mathbf{A}^{0}=\mathbf{A}
\]

Put \(\mathbf{b}^{\mathbf{T}}=\left(0, \ldots, 0, \mathbf{A}^{k}(k+1, k), \ldots, \mathbf{A}^{k}(n, k)\right) .\left(\mathbf{A}^{k-1}(i, j)\right.\) means \(i, j\) element of \(\left.\mathbf{A}^{k-1}\right)\)
\(\mathbf{b}^{\mathrm{T}}=\left(0, \ldots, 0, b_{k+1}, \ldots, b_{n}\right)\)
\(\mathbf{b}^{*} \cdot \mathbf{b}=\mathrm{S}^{2}\) and put \(\mathbf{w}^{\mathrm{T}}=\left(0, \ldots, 0, b_{k+1}\left(1+\frac{|\mathrm{S}|}{\left|b_{k+1}\right|}\right), b_{k+2}, \ldots, b_{n}\right)\).
Then the transform matrix is represented as follows.
\(\mathbf{P}_{k}=\mathrm{I}-\alpha \mathbf{w} \cdot \mathbf{w}^{*}, \alpha=\frac{1}{\mathrm{~S}^{2}+\left|b_{k+1} \mathrm{~S}\right|}\)
\(\mathbf{w}(i-1)(i=k+1, \ldots, n)\) and \(\alpha\) are stored in za[k-1][i-1] and za[k-1][k-1] respectively.

\section*{4. Example program}

This example calculates the tridiagonalization of a Hermite matrix with the known eigenvalues.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */

\#define N	2000
\#define K	N
\#define NE	N
\#define MAX NEV	NE

MAIN__()
{
dcomplex a[N][K],b[N][K],c[N][K],d[N][K],dh[N][K];
dcomplex alpha,beta,tr[N];
double eval[MAX_NEV],evec[MAX_NEV][K],dd[N],sld[N],sud[N];
double pai2, coef, part1, part2, eval_tol, clus_tol;
int nev[5],mult[2][MAX_NEV];
int i, j, k, n, nf, nl, ivec, icon ,in, im, ik;
n = N;
pai2 = 8.0 * atan(1.0);
coef = sqrt(1.0/(N));
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
part1 = coef * cos(pai2/N*i*j);
part2 = coef * sin(pai2/N*i*j);
d[i][j].re = part1;
d[i][j].im = part2;
dh[i][j].re = part1;
dh[i][j].im = -part2;
}
}
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
if (i == j) {
c[i][j].re = (double)(i+1);
c[i][j].im = 0.0;

```
```

        }
        else {
                c[i][j].re = 0.0;
                c[i][j].im = 0.0;
            }
        }
    }
    /* d x c -> b */
    for (im=0; im<N; im++) {
        for (in=0; in<N; in++) {
            b[im][in].re = 0.0;
        b[im][in].im = 0.0;
    }
    for (ik=0; ik<N; ik++) {
        for (in=0; in<N; in++) {
            b[im][in].re = b[im][in].re + d[im][ik].re * c[ik][in].re
    - d[im][ik].im * c[ik][in].im;
b[im][in].im = b[im][in].im + d[im][ik].re * c[ik][in].im
+ c[ik][in].re * d[im][ik].im;
}
}
}
/* b x dh -> a */
for (im=0; im<N; im++) {
for (in=0; in<N; in++) {
a[im][in].re = 0.0;
a[im][in].im = 0.0;
}
for (ik=0; ik<N; ik++) {
for (in=0; in<N; in++) {
a[im][in].re = a[im][in].re + b[im][ik].re * dh[ik][in].re
- b[im][ik].im * dh[ik][in].im;
a[im][in].im = a[im][in].im + b[im][ik].re * dh[ik][in].im
+ dh[ik][in].re * b[im][ik].im;
}
}
}
c_dm_vhtrid((dcomplex*)a, K, N, dd, sld, tr, \&icon);
if (icon != 0) {
printf(" icon of c_dm_vhtrid =%d\n", icon);
exit(0);
}
for (i=1; i<N; i++) {
sud[i-1]=sld[i];
}
sud[N-1]=0.0;
nf=1;
nl=N;
ivec=0;
eval_tol=1.0e-15;
clus_tol=1.0e-10;
c_dm_vtdevc(dd, sld, sud, N, nf, nl, ivec, \&eval_tol, \&clus_tol,
nev, eval, MAX_NEV,'(double*)evec, K, (int*)mult, \&icon);
for (i=0; i<NE; i=i+N/20) {
printf'("eigen value in eval(%d) = %f\n",i+1,eval[i]);
}
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VHTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vjdhecr}
```

Eigenvalues and eigenvectors of an Hermitian sparse matrix(Jacobi-
Davidson method, compressed row storage method)
ierr = c_dm_vjdhecr(zh, nz, ncol, nfrnz, n,
itrgt, dtrgt, nsel, \&nev, itmax,
\&iter, iflag, dprm, deval, zevec, kv, dhis,
kh, \&icon);

```

\section*{1. Function}

This routine computes a few of selected eigenvalues and corresponding eigenvectors of an Hermitian sparse eigenvalue problem
\[
\mathbf{A x}=\lambda \mathbf{x}
\]
using the Jacobi-Davidson method, where \(\mathbf{A}\) is an \(n \times n\) Hermitian sparse matrix, the lower triangular part of which is stored using the compressed row storage method, and \(\mathbf{x}\) is an \(n\)-dimensional vector.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vjdhecr(zh, nz, ncol, nfrnz, n, itrgt, dtrgt, nsel, \&nev, itmax,
\&iter, iflag, dprm, deval, (dcomplex*)zevec, kv, (double*)dhis,
kh, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline zh & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zh[nz] }
\end{aligned}
\] & Input & \begin{tabular}{l}
The non-zero elements of the lower triangular part of the sparse matrix A are stored. \\
For the compressed row storage method, refer to Figure c_dm_vjdhecr1.
\end{tabular} \\
\hline nz & int & Input & The total number of the nonzero elements which belong to the lower triangular part of the matrix \(\mathbf{A}\). \\
\hline ncol & int ncol[nz] & Input & The column indices used in the compressed row storage method, which indicate the column number of each nonzero element stored in the array zh. \\
\hline \(n f r n z\) & int \(\mathrm{nfrnz}[\mathrm{n}+1]\) & Input & The position of the first nonzero element of each row stored in the array zh in the compressed row storage method which stores the lower part of the nonzero elements row by row. Specify \(n f r n z[n]=n z+1\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline itrgt & int & Input & \begin{tabular}{l}
Select a way of specifying the eigenvalues to be sought
\[
(0 \leq \text { itrgt } \leq 4)
\] \\
Specify itrgt \(=0\) to compute eigenvalues closest to a target value dtrgt. \\
Specify itrgt \(=1\) to compute eigenvalues with largest magnitude. \\
Specify itrgt \(=2\) to compute eigenvalues with smallest magnitude.
\end{tabular} \\
\hline
\end{tabular}
dtrgt double Input
nsel int Input
\begin{tabular}{ll}
nev & int \\
itmax & int \\
iter & int \\
iflag & int iflag[32]
\end{tabular}
dprm double Input

\section*{Output}

Specify itrgt \(=3\) to compute eigenvalues with largest real part. Specify itrgt \(=4\) to compute eigenvalues with smallest real part. See Comments on use.
The target value \(\tau\) is specified when itrgt \(=0\). In the following cases, the convergence might be improved by specifying a value near the seeking eigenvalue even when itrgt \(\neq 0\).
1) The value \(\tau\) is used as a shift of the test subspace \(<\mathbf{W}>=<\) (At) \(\mathbf{V}>\) when \(\operatorname{dprm}[2]=1\) which indicates that the harmonic algorithm is to be used. See Comments on use.
2) When \(\operatorname{dprm}[8] \geq 1\), the value \(\tau\) is used as an approximated eigenvalue in the Jacobi-Davidson correction equation while the initial phase of the iteration is proceeding. See Comments on use.
3) When \(\operatorname{dprm}[14] \geq 1\), the value \(\tau\) is used as a shift value of the preconditioner for the Jacobi-Davidson correction equation. See Comments on use.
In other cases, dtrgt is not referred in this routine.
The number of eigenvalues to be computed \((1 \leq n s e l \leq n)\). See Comments on use.
The number of eigenvalues converged.
Output Upper limit of iterative count for the Jacobi-Davidson method \((\geq 0)\).
Output Actual iterative count for the Jacobi-Davidson method.
Input Control information array specifying whether the auxiliary parameter is specified explicitly in dprm array.
When iflag \([i] \neq 0\), the parameter specified in \(\operatorname{dprm}[i]\) is to be used.
When \(\mathrm{iflag}[i]=0\), a default parameter is used and \(\operatorname{dprm}[i]\) is not referred.
Set iflag [15] to [31] to be all zero since these area are preserved for future enhanced functionality.
Auxiliary parameters are specified as for the iflag [i] denotes that the user specified value is to be used.
For definition of each parameter in the algorithm, see "Method" of DM_VJDHECR in the Fortran SSL II Thread-Parallel Capabilities User's Guide
If all of iflag[0] to [31] are set to be zero, dprm[0] to [31] are not referred and default parameters are used. Changing the parameter is recommended when the iteration did not converge with default parameters.
dprm[0]: The dimension \(m_{\text {min }}\) of shrunk subspace when restarting
\(\left(1 \leq m_{\min }<\mathrm{n}\right)\). The default value is \(m_{\min }=50\).
dprm[1]: Upper limit of the dimension \(m_{\max }\) of subspace (\(m_{\min }<\) \(m_{\max } \leq \mathrm{n}\)). The default value is \(m_{\max }=m_{\min }+30\). See Comments on use.
dprm[2]: The type of the algorithm, which is associated with setting of a test subspace.
When dprm[2] \(=0\), the standard algorithm is adopted. The algorithm is appropriate for seeking the
extreme eigenvalues in the spectrum.
When \(\operatorname{dprm}[2]=1\), the harmonic algorithm is adopted. The algorithm is appropriate for seeking the internal eigenvalues in the spectrum.
The default value is the harmonic algorithm for itrgt
\(=0\) or 2 , or the standard algorithm in other cases.
dprm[3]: The criterion value for judgment of acceptable convergence. The default value is \(10^{-6}\). See Comments on use.
dprm[4]: The way how to calculate the residual norm with respect to the approximated eigenvalue \(\theta\) and eigenvector \(\mathbf{u}\).
When \(\operatorname{dprm}[4]=0\), the residual norm relative to the absolute value of approximated eigenvalue \(|\mathbf{A u}-\theta \mathbf{u}|||\theta|\) is adopted.
When dprm [4] = 1 , the residual norm relative to the 1-norm of the matrix \(|\mathbf{A u}-\theta \mathbf{u}| /|\mathbf{A}|_{1}\) is adopted. When \(\operatorname{dprm}[4]=2\), the residual norm relative to the Frobenius norm of the matrix \(|\mathbf{A u}-\theta \mathbf{u}| /|\mathbf{A}|_{\mathrm{F}}\) is adopted. When \(\operatorname{dprm}[4]=3\), the residual norm relative to the infinity-norm of the matrix \(|\mathbf{A u}-\theta \mathbf{u}| /|\mathbf{A}|_{\infty}\) is adopted. When dprm [4] \(=4\), the absolute residual norm
\(|\mathbf{A u}-\theta \mathbf{u}|\) is adopted.
The default is dprm[4] = 0 . See Comments on use.
dprm[5]: A criterion value for a delay-deflation scheme (\(\leq 1.0\)).
The default value is dprm[5] \(=0.9\).
See Comments on use.
dprm[6]: Control information indicating whether the iteration is started from a vector specified in the array
zevec[0][i-1], i=1,... n.
When dprm[6] = 0 , the iteration is started from a random vector generated in this routine internally. When \(\operatorname{dprm}[6]=1\), set an initial vector in the array zevec[0][i-1], i=1, ... \(n\).
The default setting is using a random vector.
dprm[7]: A seed to generate a random vector (\(\geq 1.0\)). The default value is 1 .
dprm[8]: While the iteration count is less or equal to dprm[8], the process is regarded as an initial phase of the iteration. Then the fixed value of \(\tau\) is used as an approximated eigenvalue instead of the value of \(\theta\) in the Jacobi-Davidson correction equation.
When \(\operatorname{dprm}[2]=0\), the default value is dprm[8]= 0.

When \(\operatorname{dprm}[2]=1\), the default value is dprm[8]= \(m_{\text {max }}\). See Comments on use.
dprm [9]: The method to solve the Jacobi-Davidson correction equation.
When \(\operatorname{dprm}[9]=0, \mathbf{t}=\mathbf{r}\) is set without using the correction equation.
When dprm[9] = 1 , the GMRES method is adopted.
When \(\operatorname{dprm}[9]=2\), the \(\operatorname{BiCGstab}(\mathrm{L})\) method is adopted.
When dprm[9] = 11 , the MINRES method is adopted. The default is using the MINRES method. See Comments on use.
dprm[10]: A parameter for the solver of the correction equation.
\(\begin{array}{cl}\text { deval } & \text { double } \\ \text { zevec } & \begin{array}{l}\text { deval[nsel] } \\ \text { dcomplex } \\ \\ \\ \\ \text { zevec[nsel][kv] }\end{array}\end{array}\)
\begin{tabular}{ll}
kv & int \\
dhis & double \\
& dhis[2][kh]
\end{tabular}
\begin{tabular}{ll}
kh & int \\
icon & int
\end{tabular}

Input
Output

When the BiCGstab(L) is used, specify the value of \(L\) \((\leq 10)\). The default value is 4 .
dprm[11]: Upper limit of the iteration count of the solver for the Jacobi-Davidson correction equation \((\geq 1)\). The default value is 30 .
dprm[12]: A parameter to determine the stopping criterion for the iterative solver of the correction equation (\(>0.0\)). The default value is 0.7 . See Comments on use.
dprm[13]: A parameter to determine the stopping criterion for the iterative solver of the correction equation \((0.0<\) \(\mathrm{dprm}[13] \leq 1.0)\). The stopping criterion is set to \(\mathrm{dprm}[12] \times \mathrm{dprm}[13]^{l}\), where \(l\) is an iteration counter of the outer loop which is reset in each deflation.
The default value is 0.7 . See Comments on use.
dprm [14]: The type of preconditioning of the correction equation \((\leq 1)\).
When \(\operatorname{dprm}[14]=0\), no preconditioning is used. When \(\operatorname{dprm}[14]=1\), the diagonal left preconditioning is exploited. See Comments on use. The default is dprm[14] \(=0\).
dprm[15] to [31]: Preserved area for future enhanced functionality.
Output Detected eigenvalues are stored in deval[i-1], \(i=1, \ldots\), nev. Output Detected eigenvectors are stored in zevec[i-1][j-1], \(i=1, \ldots\), \(n e v, j=1, \ldots, n\).
Set the initial vector in zevec [i-1][j-1], \(i=1, \ldots\), nev, \(j=\) \(1, \ldots, n\) when iflag[6] \(\neq 0\) and dprm[6] = 1.0.
\(C\) fixed dimension of array zevec \((\geq n)\).
The convergence history of the residuals of the eigenproblem are stored in dhis [0] [i-1], \(i=1, \ldots, \min (k h, i t e r)\). The final relative residual norm of the each correction equation are stored in dhis[1][i-1], \(i=1, \ldots, \min (k h, i t e r)\).
C fixed dimension of array dhis \((\geq 0)\). Setting \(\mathrm{kh}=\mathrm{itmax}\) is enough. If \(k h=0\) is set, the outputs to the array dhis are suppressed.
Condition code. See below.

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 1000 & \begin{tabular}{l}
Breakdown occurred in the iterative linear \\
equations solver.
\end{tabular} & \begin{tabular}{l}
Processing is continued with the approximated \\
solution until the point.
\end{tabular} \\
\hline 2000 & \begin{tabular}{l}
A null vector is detected in a sort of process of the \\
orthogonalization.
\end{tabular} & \begin{tabular}{l}
Processing is continued with the subspace \\
expanded by a random vector.
\end{tabular} \\
\hline 3000 & \begin{tabular}{l}
A recovery procedure is activated in a sort of \\
restorative process of the delay deflation.
\end{tabular} & Processing is continued. \\
\hline 10000 & \begin{tabular}{l}
The iteration count reached the maximum limit \\
before nsel-th eigenvalue is obtained.
\end{tabular} & The calculated eigenpairs up to nev are correct. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 20000 & The projected dense eigenproblem can not be solved. & \begin{tabular}{l}
Processing is discontinued. \\
The calculated eigenpairs up to nev are correct if nev \(>0\).
\end{tabular} \\
\hline 21000 & The iteration count reached the maximum limit without a single convergence. & \begin{tabular}{l}
Processing is discontinued. \\
The approximate values obtained up to this point are output in array deval[0] and zevec [0] [0] to [0] [n-1], but their precision cannot be guaranteed.
\end{tabular} \\
\hline 29000 & An internal error occurred. & \multirow[t]{4}{*}{Processing is discontinued.} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- itrgt \(<0\) \\
- itrgt>4 \\
- nsel<1 \\
- nsel \(>\mathrm{n}\) \\
- itmax<0 \\
- \(k v<n\) \\
- \(\mathrm{kh}<0\).
\end{tabular} & \\
\hline \[
\begin{aligned}
& 30001 \text { to } \\
& 30032
\end{aligned}
\] & The value of iflag or dprm is not correct. & \\
\hline 31000 & The value of nz , ncol or nfrnz is not correct. & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \downarrow \\
& \mathrm{nfrnz}=\left[\begin{array}{l}
1 \\
2 \\
4 \\
6 \\
8
\end{array}\right], \quad \mathrm{zh}=\left[\begin{array}{c}
-1 \\
2-4 i \\
5 \\
-9+3 i \\
8 \\
---9 i \\
6-9 i \\
10
\end{array}\right], \quad \mathrm{ncol}=\left[\begin{array}{l}
\frac{1}{1} \\
1 \\
\frac{2}{2} \\
3 \\
\frac{3}{2} \\
4
\end{array}\right]
\end{aligned}
\]

Figure \(\mathbf{c}_{-} \mathbf{d m}\) _vjdhecr-1 Storing a matrix \(\mathbf{A}\) in compressed row storage method

\section*{3. Comments on use}

\section*{Robustness of the Jacobi-Davidson algorithm}

The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices based on the reduction of matrix elements. The results obtained using the Jacobi-Davidson method depends on choice of the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified. This method is applicable when the seeking eigenvalues are only a few of the entire spectrum.

The convergence behavior of this routine is affected by various auxiliary parameters. For description of these parameters, refer to "Comments on use."

\section*{ITRGT and DTRGT parameter}

The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of itrgt, which specifies a way of selecting eigenvalues. However, an explicit specification of the value in dprm[2] by setting iflag \([2] \neq 0\) is prior to the default value of course. Which means that the standard algorithm can be used with itrgt \(=0\) or 2 , and that the harmonic algorithm can be used with itrgt \(=1,3,4,5\) or 6 , as long as user knows its adaptivity.

Note that the dtrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just setting itrgt \(=2\), which specifies to compute eigenvalues with smallest magnitude. Define the dtrgt to be 0.0 if other appropriate value is not known.

\section*{Calculating the residual norm}

In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to absolute value of the approximated eigenvalue. When the absolute value of the seeking eigenvalue is far smaller than the norm of the matrix, however, it is difficult to satisfy the convergence condition \(|\mathbf{A u} \mathbf{u}-\theta \mathbf{u}||\theta| \theta<\operatorname{dprm}[3]\). In that case, adjust the convergence criterion \(\mathrm{dprm}[3]\), or change the way of calculating the residual norm which can be specified by dprm[4] parameter.

\section*{Delay deflation procedure}

This routine adopts an ingenious scheme to improve the precision of the results. After the residual becomes below the convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the residual remains valid. This procedure is called delay-deflation here. The decrease ratio is regarded valid if the ratio of the residual norm relative to the preceding residual is less than the parameter dprm [5]. If the residual deteriorates while this extra iteration, the better previous variables are restored and the deflation with the vector takes place. With setting \(\operatorname{dprm}[5]=0.0\), this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary convergence criterion.

\section*{Approximated eigenvalue in the correction equation}

In the initial few steps of the process, the values of \(\theta\) are usually poor approximations of the wanted eigenvalue. This routine takes the target value \(\tau\) specified in the dtrgt as an approximated eigenvalue instead of \(\theta\) in the initial phase, since the validity of the expansion vector \(\boldsymbol{t}\) is affected by the closeness to the approximated eigenvalue in the JacobiDavidson correction equation. The process is regarded as the initial phase of the iteration while the iteration count is less than or equal to dprm[8]. However, the default value of this parameter is dprm[8] \(=0\) when \(\operatorname{dprm}\) [2] \(=0\) is adopted, because it is difficult to determine a value of \(\tau\) in advance when the standard algorithm is specified.

\section*{Stopping criterion for inner iteration}

The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm consists of two nested iterations. In the outer iteration the approximation for the eigenproblem is constructed, and in the inner iteration the correction equation is approximately solved. If the residual of the eigenproblem still not be small in the outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary. Therefore, the stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration. The criterion is set to be dprm[12] \(\times \mathrm{dprm}[13]^{l}\), where \(l\) is the outer iteration counter which is reset to zero at each deflation. Incidentally, the upper limit count for the inner iteration is specified by dprm[11].

\section*{Precondition for the correction equation}

It is known that a good preconditioner improves the convergence of the iterative method for linear equations. The preconditioner to be applied is controlled by the parameter dprm[14] in this routine. Note that the value of DTRGT is used for constructing a matrix \(\mathrm{M} \cong(\mathrm{A}-\tau \mathrm{I})\), which approximates a part of the coefficient matrix in some way. The preconditioner is derived from the inverse procedure of the matrix M and projections on both sides. If the preconditioner does not approximate the coefficient matrix of the correction equation properly or the parameter dtrgt is far from the seeking eigenvalue, the convergence may deteriorate. Additionally, dprm [9] must specify a kind of the iterative method that is applicable to nonsymmetric linear systems, because the coefficient matrix becomes nonsymmetric with a left preconditioner adopted in this routine.

\section*{Memory usage}

This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when the available area of the memory runs out. The necessary size for the outer iteration is at least \(n \times\left(2 \times m_{\max }+2 \times \mathrm{nsel}\right)\) \(\times 16\) bytes for the standard algorithm and \(n \times\left(3 \times m_{\max }+2 \times \mathrm{nsel}\right) \times 16\) bytes for the harmonic algorithm. And when the GMRES method is used as the solver of the correction equation, the additional necessary area is \(n \times \mathrm{dprm}\) [11] \(\times 16\) bytes for the inner iteration.

\section*{4. Example program}

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem \(\mathbf{A x}=\lambda \mathbf{x}\) are sought, where \(\mathbf{A}\) is a \(10000 \times 10000\) example Hermitian matrix of the random sparsity pattern with about 20 nonzero entries in each row.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include "cssl.h"
\#define NMAX 10000
\#define NZC 20
\#define NNZMAX NMAX*NZC
\#define LDK 10
int mkspmat(int, int, dcomplex*, int*, int*)
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
dcomplex d_c_mult(dcomplex, double);

```
```

int MAIN_() {

```
 static dcomplex zh[NNZMAX], zevec[LDK][NMAX];
 dcomplex rvec[NMAX], zw[NMAX], zh_w;
 double dtrgt, deval[LDK], derr, dprm[32], dhis[2][NMAX]
 int nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt;
 int iflag[32], nsel, nev, itmax, iter, ldx, ldh, icon;
 int \(i, j, k\), ncolj;
 n = NMAX;
 mkspmat(n, NZC, zh, ncol, nfrnz);
 \(n z=n f r n z[n]-1 ;\)
 itmax = 500
 nsel = 10;
 for (i = 0; i < 32; i++) \{
 iflag[i] = 0;
 \}
 ldx = NMAX;
 1dh = NMAX
 dtrgt \(=0.0\)
 itrgt = 1;
 c_dm_vjdhecr(zh, nz, ncol, nfrnz, n, itrgt, dtrgt, nsel,
 \&nev, itmax, \&iter, iflag, dprm,
 deval, (dcomplex *)zevec, ldx, (double *)dhis, ldh, \&icon);
 printf(" C_DM_VJDHECR ICON= \%d\n", icon);
 printf(" ITER= \%d\n", iter);
 for (\(k=0 ; k\) < nev; \(k++\)) \{
\#pragma omp parallel private(i, j, ncolj, zw, zh_w)
\{
 for (i = 0; i < n; i++) \{
 \(z w[i] . r e=0.0 ;\)
 \(\mathrm{zw}[i] . r e=0.0 ;\)
\(\mathrm{zw}=0.0\)
 \}
\#pragma omp for
 for (\(i=0\); \(i<n\); \(i++\)) \{
 rvec[i].re = 0.0;
 rvec[i].im = 0.0;
 for (\(\mathrm{j}=\mathrm{nfrnz[i]-1;} \mathrm{j}<\mathrm{nfrnz[i+1]-1;} \mathrm{j++)}\{\)
 ncolj \(=n \operatorname{col}[j]-1\);
 rvec[i] = comp_add(rvec[i], comp_mult(zh[j], zevec[k][ncolj]));
 if (i ! = ncolj) \{
 zh_w = zh[j];
 zh_w.im = -zh_w.im;
 zw[ncolj] = comp_add(zw[ncolj], comp_mult(zh_w, zevec[k][i]));
 \}
 \}
 \}
\#pragma omp critical
 for (i = 0; i < n; i++) \{
 rvec[i] = comp_add(rvec[i], zw[i]);
 \}
\}
 derr = 0.0;
 for (i = 0; i < n; i++) \{
 rvec[i] \(=\) comp_sub(rvec[i], d_c_mult(zevec[k][i], deval[k]));
 derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im);
 \}
 derr = sqrt(derr);
 printf(" EIGEN VALUE \%d =\%18.14lf\n", k+1, deval[k]);
 printf(" ERROR= \%22.16le\n", derr/fabs(deval[k]));
 \}
 return(0);
\}
int mkspmat(int \(n\), int nzc, dcomplex *zh, int *ncol, int *nfrnz) \{
\#define LDW 1350
 int i, ic, ict, j, k, iseed, icon, nnz;
 double *dwork, rndwork[LDW];
 dwork \(=(\) double *)malloc(nzc * sizeof(double));
 iseed = 1;
 nnz = 0;
 for (i \(\stackrel{\prime}{=} 1\); i <= n; i++)
 nfrnz[i-1] = nnz +1 ;
label_10: c_dvrau4(\&iseed, dwork, nzc, rndwork, LDW, \&icon);
 \(i c=0 ;\)
```

        for (j = 1; j <= nzc; j++) {
        ict = n * fabs(dwork[j-1]) + 1;
        if (ict <= i) {
            for (k = 1; k <= ic; k++) {
                if (ict == ncol[nnz - k]) {
                    nnz = nnz - ic;
                goto label_10;
                }
            }
            ic++;
            ncol[nnz] = ict;
            nnz++;
        }
    }
    }
    nfrnz[n] = nnz + 1;
    iseed = 1;
    c_dvran4(0.0, 1.0, &iseed, (double *)zh, 2 * nnz, rndwork, LDW,
        &icon);
    for (i = 0; i < n; i++) {
        for (j = nfrnz[i]-1; j < nfrnz[i+1]-1; j++) {
            if (i == ncol[j]-1) {
            zh[j].re = zh[j].re + zh[j].im;
            zh[j].im = 0.0;
        }
    }
    }
    free(dwork);
    return(0);
    }
dcomplex comp_add(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re + so2.re;
obj.im = so1.im + so2.im;
return obj;
}
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re - so2.re;
obj.im = so1.im - so2.im;
return obj;
}
dcomplex comp_mult(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re * so2.re - so1.im * so2.im;
obj.im = so1.re * so2.im + so1.im * so2.re;
return obj;
}
dcomplex d_c_mult(dcomplex so1, double so2) {
dcomplex obj;
obj.re = so1.re * so2;
obj.im = so1.im * so2;
return obj;
}

```

\section*{5. Method}

Consult the entry for DM_VJDHECR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7].

\section*{c_dm_vjdnher}
```

Eigenvalues and eigenvectors of a complex sparse matrix(Jacobi-
Davidson method, compressed row storage method)
ierr = c_dm_vjdnhcr(za, nz, ncol, nfrnz, n,
itrgt, ztrgt, nsel, \&nev, itmax, \&iter,
iflag, dprm, zeval, zevec, kv, dhis, kh,
\&icon);

```

\section*{1. Function}

This routine computes a few of selected eigenvalues and corresponding eigenvectors of a complex sparse eigenvalue problem
\[
\mathbf{A x}=\lambda \mathbf{x}
\]
using the Jacobi-Davidson method, where \(\mathbf{A}\) is an \(n \times n\) complex sparse matrix stored using the compressed row storage method and \(\boldsymbol{x}\) is an \(n\)-dimensional vector.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vjdnhcr (za, nz, ncol, nfrnz, n, itrgt, ztrgt, nsel, \&nev, itmax,
\&iter, iflag, dprm, zeval, (dcomplex*)zevec, kv, (double*)dhis,
kh, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline za & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { za[nz] }
\end{aligned}
\] & Input & \begin{tabular}{l}
The non-zero elements of the sparse matrix \(\mathbf{A}\) are stored. \\
For the compressed row storage method, refer to Figure c_dm_vjdnhcr1.
\end{tabular} \\
\hline nz & int & Input & The total number of the nonzero elements of the matrix \(\mathbf{A}\). \\
\hline ncol & int ncol[nz] & Input & The column indices used in the compressed row storage method, which indicate the column number of each nonzero element stored in the array za. \\
\hline nfrnz & int nfrnz[n+1] & Input & The position of the first nonzero element of each row stored in the array za in the compressed row storage method which stores the nonzero elements row by row. Specify \(n f r n z[n]=n z+1\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline itrgt & int & Input & \begin{tabular}{l}
Select a way of specifying the eigenvalues to be sought \((0 \leq\) itrgt \(\leq\) \\
6). \\
Specify itrgt \(=0\) to compute eigenvalues closest to a target value ztrgt. \\
Specify itrgt \(=1\) to compute eigenvalues with largest magnitude. \\
Specify itrgt \(=2\) to compute eigenvalues with smallest magnitude. \\
Specify itrgt \(=3\) to compute eigenvalues with largest real part. \\
Specify itrgt \(=4\) to compute eigenvalues with smallest real part.
\end{tabular} \\
\hline
\end{tabular}

extreme eigenvalues in the spectrum.
When \(\operatorname{dprm}[2]=1\), the harmonic algorithm is adopted. The algorithm is appropriate for seeking the internal eigenvalues in the spectrum.
The default value is the harmonic algorithm for itrgt
\(=0\) or 2 , or the standard algorithm in other cases.
dprm[3]: The criterion value for judgment of acceptable convergence. The default value is \(10^{-6}\). See Comments on use.
dprm[4]: The way how to calculate the residual norm with respect to the approximated eigenvalue \(\theta\) and eigenvector \(\boldsymbol{u}\).
When \(\operatorname{dprm}[4]=0\), the residual norm relative to the absolute value of approximated eigenvalue \(|\mathbf{A u}-\theta \mathbf{u}| /|\theta|\) is adopted.
When \(\operatorname{dprm}[4]=1\), the residual norm relative to the 1-norm of the matrix \(|\mathbf{A u}-\theta \mathbf{u}| /|\mathbf{A}|_{1}\) is adopted. When \(\operatorname{dprm}[4]=2\), the residual norm relative to the Frobenius norm of the matrix \(|\mathbf{A u}-\theta \mathbf{u}| /|\mathbf{A}|_{\mathrm{F}}\) is adopted. When \(\operatorname{dprm}[4]=3\), the residual norm relative to the infinity-norm of the matrix \(|\mathbf{A u}-\theta \mathbf{u}| /|\mathbf{A}|_{\infty}\) is adopted. When dprm [4] \(=4\), the absolute residual norm
\(|\mathbf{A u} \mathbf{u} \mathbf{u}|\) is adopted.
The default is dprm[4] \(=0\). See Comments on use.
dprm[5]: A criterion value for a delay-deflation scheme (\(\leq 1.0\)).
The default value is dprm[5] \(=0.9\).
See Comments on use.
dprm[6]: Control information indicating whether the iteration is started from a vector specified in the array
zevec[0][i-1], i=1, \(\ldots\), \(n\).
When dprm[6] = 0 , the iteration is started from a random vector generated in this routine internally. When dprm[6] = 1 , set an initial vector in the array zevec[0][i-1], \(i=1, \ldots, n\).
The default setting is using a random vector.
dprm[7]: A seed to generate a random vector (\(\geq 1.0\)). The default value is 1 .
dprm [8]: While the iteration count is less or equal to dprm [8], the process is regarded as an initial phase of the iteration. Then the fixed value of \(\tau\) is used as an approximated eigenvalue instead of the value of \(\theta\) in the Jacobi-Davidson correction equation.
When \(\operatorname{dprm}[2]=0\), the default value is dprm[8] = 0 .
When \(\operatorname{dprm}[2]=1\), the default value is \(\operatorname{dprm}[8]=\) \(m_{\text {max }}\). See Comments on use.
dprm[9]: The method to solve the Jacobi-Davidson correction equation.
When \(\operatorname{dprm}[9]=0, \mathbf{t}=\mathbf{r}\) is set without using the correction equation.
When \(\operatorname{dprm}[9]=1\), the GMRES method is adopted. When \(\operatorname{dprm}[9]=2\), the \(\operatorname{BiCGstab}(\mathrm{L})\) method is adopted.
The default is using the GMRES method. See
Comments on use.
dprm[10]: A parameter for the solver of the correction equation. When the \(\operatorname{BiCGstab}(\mathrm{L})\) is used, specify the value of L

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 1000 & \begin{tabular}{l}
Breakdown occurred in the iterative linear \\
equations solver.
\end{tabular} & \begin{tabular}{l}
Processing is continued with the approximated \\
solution until the point.
\end{tabular} \\
\hline 2000 & \begin{tabular}{l}
A null vector is detected in a sort of process of the \\
orthogonalization.
\end{tabular} & \begin{tabular}{l}
Processing is continued with the subspace \\
expanded by a random vector.
\end{tabular} \\
\hline 3000 & \begin{tabular}{l}
A recovery procedure is activated in a sort of \\
restorative process of the delay deflation.
\end{tabular} & Processing is continued. \\
\hline 10000 & \begin{tabular}{l}
The iteration count reached the maximum limit \\
before nsel-th eigenvalue is obtained.
\end{tabular} & The calculated eigenpairs up to nev are correct. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 20000 & The projected dense eigenproblem can not be solved. & \begin{tabular}{l}
Processing is discontinued. \\
The calculated eigenpairs up to nev are correct if \(n e v>0\).
\end{tabular} \\
\hline 21000 & The iteration count reached the maximum limit without a single convergence. & \begin{tabular}{l}
Processing is discontinued. \\
The approximate values obtained up to this point are output in array zeval[0] and zevec [0] [0] to [0] [n-1], but their precision cannot be guaranteed.
\end{tabular} \\
\hline 29000 & An internal error occurred. & \multirow[t]{4}{*}{Processing is discontinued.} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- itrgt \(<0\) \\
- itrgt>6 \\
- nsel<1 \\
- nsel > n \\
- itmax \(<0\) \\
- \(k v<n\) \\
- \(\mathrm{kh}<0\).
\end{tabular} & \\
\hline \[
\begin{aligned}
& 30001 \text { to } \\
& 30032
\end{aligned}
\] & The value of iflag or dprm is not correct. & \\
\hline 31000 & The value of nz , ncol or nfrnz is not correct. & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { な } \\
& \mathrm{nfrnz}=\left[\begin{array}{l}
1 \\
2 \\
4 \\
6 \\
8
\end{array}\right], \quad \mathrm{zh}=\left[\begin{array}{c}
1 \\
---- \\
2-4 i \\
5 \\
\hline 7+3 i \\
8 \\
---- \\
6-9 i \\
10
\end{array}\right], \quad \mathrm{zcol}=\left[\begin{array}{c}
1 \\
1 \\
2 \\
2 \\
3 \\
\frac{2}{2} \\
4
\end{array}\right]
\end{aligned}
\]

Figure c_dm_vjdnher-1 Storing a matrix \(A\) in compressed row storage method

\section*{3. Comments on use}

\section*{Robustness of the Jacobi-Davidson algorithm}

The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as robust as the method for dense matrices based on the reduction of matrix elements. The results obtained using the Jacobi-Davidson method depends on choice of the initial vector, and the order of obtained eigenvalues are not guaranteed to be the order of precedence user specified. This method is applicable when the seeking eigenvalues are only a few of the entire spectrum.

The convergence behavior of this routine is affected by various auxiliary parameters. For description of these parameters, refer to "Comments on use."

\section*{itrgt and ztrgt parameter}

The default value of dprm[2], which specifies a type of algorithm, is switched automatically according to the setting of itrgt, which specifies a way of selecting eigenvalues. However, an explicit specification of the value in dprm[2] by setting iflag \([2] \neq 0\) is prior to the default value of course. Which means that the standard algorithm can be used with itrgt \(=0\) or 2 , and that the harmonic algorithm can be used with itrgt \(=1,3,4,5\) or 6 , as long as user knows its adaptivity.

Note that the ztrgt parameter is referred as a shift of the test subspace for the default harmonic algorithm when just setting itrgt \(=2\), which specifies to compute eigenvalues with smallest magnitude. Define the ztrgt to be \((0.0,0.0)\) if other appropriate value is not known.

\section*{Calculating the residual norm}

In the default setting, convergence of the eigenproblem is judged based on the residual norm relative to the absolute value of the approximated eigenvalue. When the absolute value of the seeking eigenvalue is far smaller than the norm of the matrix, however, it is difficult to satisfy the convergence condition \(|\mathbf{A u} \mathbf{u} \boldsymbol{u}| /|\theta|<\mathrm{dprm}[3]\). In that case, adjust the convergence criterion \(\mathrm{dprm}[3]\), or change the way of calculating the residual norm which can be specified by dprm[4] parameter.

\section*{Delay deflation procedure}

This routine adopts an ingenious scheme to improve the precision of the results. After the residual becomes below the convergence criterion, this routine still continues some more iteration without deflation while the decrease ratio of the residual remains valid. This procedure is called delay-deflation here. The decrease ratio is regarded valid if the ratio of the residual norm relative to the preceding residual is less than the parameter dprm [5]. If the residual deteriorates while this extra iteration, the better previous variables are restored and the deflation with the vector takes place. With setting \(\operatorname{dprm}[5]=0.0\), this delay-deflation does not act and then the parameter dprm[3] is regarded as an ordinary convergence criterion.

\section*{Approximated eigenvalue in the correction equation}

In the initial few steps of the process, the values of \(\theta\) are usually poor approximations of the wanted eigenvalue. This routine takes the target value \(\tau\) specified in the ztrgt as an approximated eigenvalue instead of \(\theta\) in the initial phase, since the validity of the expansion vector \(\boldsymbol{t}\) is affected by the closeness to the approximated eigenvalue in the JacobiDavidson correction equation. The process is regarded as the initial phase of the iteration while the iteration count is less than or equal to dprm[8]. However, the default value of this parameter is dprm[8] \(=0\) when \(\operatorname{dprm}[2]=0\) is adopted, because it is difficult to determine a value of \(\tau\) in advance when the standard algorithm is specified.

\section*{Stopping criterion for inner iteration}

The Jacobi-Davidson correction equation is solved by some iterative method in this routine, thus the whole algorithm consists of two nested iterations. In the outer iteration the approximation for the eigenproblem is constructed, and in the inner iteration the correction equation is approximately solved. If the residual of the eigenproblem still not be small in the outer iteration, solving accurately the correction equation in the inner iteration might be unnecessary. Therefore, the stopping criterion for the inner iteration can be varied according to a counter associated with the outer iteration. The criterion is set to be \(\operatorname{dprm}[12] \times \operatorname{dprm}[13]^{l}\), where \(l\) is the outer iteration counter which is reset to zero at each deflation. Incidentally, the upper limit count for the inner iteration is specified by dprm[11].

\section*{Precondition for the correction equation}

It is known that a good preconditioner improves the convergence of the iterative method for linear equations. The preconditioner to be applied is controlled by the parameter dprm[14] in this routine. Note that the value of ztrgt is used for constructing a matrix \(\mathrm{M} \cong(\mathrm{A}-\tau \mathrm{I})\), which approximates a part of the coefficient matrix in some way. The preconditioner is derived from the inverse procedure of the matrix M and projections on both sides. If the preconditioner does not approximate the coefficient matrix of the correction equation properly or the parameter ztrgt is far from the seeking eigenvalue, the convergence may deteriorate.

\section*{Memory usage}

This routine exploits work area internally as auto allocatable arrays. Therefore an abnormal termination could occur when the available area of the memory runs out. The necessary size for the outer iteration is at least \(n \times\left(3 \times m_{\max }+2 \times\right.\) nsel \()\) \(\times 16\) bytes for the standard algorithm and \(n \times\left(4 \times m_{\max }+2 \times \mathrm{nsel}\right) \times 16\) bytes for the harmonic algorithm. And when the GMRES method is used as the solver of the correction equation, the additional necessary area is \(n \times \operatorname{dprm}[11] \times 16\) bytes for the inner iteration.

\section*{4. Example program}

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an eigenproblem \(\mathbf{A x}=\lambda \boldsymbol{x}\) are sought, where \(\mathbf{A}\) is a \(10000 \times 10000\) example matrix of the random sparsity pattern with 20 nonzero entries in each row.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on a system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NMAX 10000
\#define NZC 20
\#define NNZMAX NMAX*NZC
\#define LDK 10
int mkspmat(int, int, dcomplex*, int*, int*);
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
double cdabs(dcomplex);
int MAIN__() {

```
```

    static dcomplex za[NNZMAX], ztrgt, zeval[LDK], zevec[LDK][NMAX];
    dcomplex rvec[NMAX];
    double derr, dprm[32], dhis[2][NMAX];
    int nz, ncol[NNZMAX], nfrnz[NMAX+1], n, itrgt, iflag[32];
    int nsel, nev, itmax, iter, i, j, k, icon, ldx, ldh;
    n = NMAX;
    mkspmat(n, NZC, za, ncol, nfrnz);
    nz = nfrnz[n] - 1;
    itmax = 500;
    nsel = 10;
    for (i=0; i<32; i++) {
        iflag[i] = 0;
    }
    ldx = NMAX;
    ldh = NMAX;
    ztrgt.re = 0.0;
    ztrgt.im = 0.0;
    itrgt = 1
    c_dm_vjdnhcr(za, nz, ncol, nfrnz, n, itrgt, ztrgt, nsel, &nev,
                        itmax, &iter, iflag, dprm, zeval, (dcomplex*)zevec, ldx,
                        (double*)dhis, ldh, &icon);
    printf(" C_DM_VJDNHCR ICON= %d\n", icon);
    printf(" ITER= %d\n", iter);
    for (k=0; k<nev; k++) {
        for (i=0; i<n; i++) {
            rvec[i].re = 0.0;
            rvec[i].im = 0.0;
        }
    \#pragma omp parallel for private(j)
for (i=0; i<n; i++) {
for (j=nfrnz[i]-1; j<nfrnz[i+1]-1; j++) {
rvec[i] = comp_add(rvec[i], comp_mult(za[j], zevec[k][ncol[j]-1]));
}
rvec[i] = comp_sub(rvec[i], comp_mult(zeval[k], zevec[k][i]));
}
derr = 0.0;
for (i=0; i<n; i++) {
derr = derr + (rvec[i].re * rvec[i].re) + (rvec[i].im * rvec[i].im);
}
derr = sqrt(derr);
printf(" EIGEN VALUE %d = (%.15lf,%.15lf)\n", k+1, zeval[k].re, zeval[k].im);
printf(" ERROR= %3.15le\n", derr/cdabs(zeval[k]));
}
return(0);
}
int mkspmat(int n, int nzc, dcomplex *za, int *ncol, int *nfrnz) {
\#define LDW 1350
int i, ic, ict, j, k, iseed, icon;
double *dwork, rndwork[LDW];
dwork = (double *)malloc(nzc * sizeof(double));
iseed = 1;
c_dvran4(0.0, 1.0, \&iseed, (double*)za, (2*n*nzc), rndwork, LDW, \&icon);
iseed = 1;
for (i=0; i<n; i++) {
nfrnz[i] = i * nzc + 1;
LABEL_10: c_dvrau4(\&iseed, dwork, nzc, rndwork, LDW, \&icon);
ic = i * nzc;
for (j=0; j<nzc; j++) {
ict = n * fabs(dwork[j]) + 1;
for (k=0; (k<=j) \&\& (j!=0); k++) {
if (ict == ncol[ic-k]) goto LABEL_10;
}
ic = ic + 1;
ncol[ic-1] = ict;
}
}
nfrnz[n] = ic + 1;
free(dwork);
return 0;
}
dcomplex comp_add(dcomplex so1, dcomplex so2) {
dcomplex obj;

```
```

    obj.re = so1.re + so2.re;
    obj.im = so1.im + so2.im;
    return obj;
    }
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re - so2.re;
obj.im = so1.im - so2.im;
return obj;
}
dcomplex comp_mult(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re * so2.re - so1.im * so2.im;
obj.im = so1.re * so2.im + so1.im * so2.re;
return obj;
}
double cdabs(dcomplex so) {
double obj;
obj = sqrt(so.re * so.re + so.im * so.im);
return obj;
}

```

\section*{5. Method}

Consult the entry for DM_VJDNHCR in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [7].

\section*{c_dm_vlax}

A system of linear equations with a real matrix (blocked LU
decomposition method).
```

ierr = c_dm_vlax(a, k, n, b, epsz, isw, \&is,
ip, \&icon);

```

\section*{1. Function}

This function solves a system of real coefficient linear equations using the blocked LU-decomposition method of outer product type.
\[
\mathbf{A x}=\mathbf{b}
\]
where, \(\mathbf{A}\) is a non-singular real matrix of \(n \times n, \mathbf{b}\) is an \(n\)-dimensional real constant vector, and \(x\) is an \(n\)-dimensional solution vector. \((\mathrm{n} \geq 1)\)

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vlax((double*)a, k, n, b, epsz, isw, \&is, ip, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double & Input & Matrix A. \\
\hline & a [n][k] & Output & Matrices \(\mathbf{L}\) and \(\mathbf{U}\). \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & Tolerance for relative zero test of pivots in decomposition process of A \((\geq 0)\). When epsz is zero, a standard value is used. See Comments on use. \\
\hline isw & int & Input & Control information. \\
\hline & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument b is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline is & int & Output & Information for obtaining the determinant of matrix \(\mathbf{A}\). When the n elements of the calculated diagonal of array a are multiplied together, and the result is then multiplied by is, the determinant is obtained. \\
\hline ip & int ip[n] & Work & The transposition vector which indicates the history of row exchange by partial pivoting. A one-dimensional array of size \(n\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 20000 & \begin{tabular}{l}
Either all of the elements of some row are zero or \\
the pivot became relatively zero. It is highly \\
probable that the coefficient matrix is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad \mathrm{k}<\mathrm{n}\) \\
- \(\quad \mathrm{n}<1\) \\
-
\end{tabular} & Bypassed. \\
- \(\quad\) isw \(\neq 1\) or 2
\end{tabular}\(\quad\)\begin{tabular}{l}
\\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If a value is given for epsz as the tolerance for the relative zero test then it has the following meaning:

If the selected pivot element is smaller than the product of epsz and the largest absolute value of matrix \(\mathbf{A}=\left(a_{i j}\right)\), that is:
\[
\left|a_{k k}^{k}\right| \leq \max \left|a_{i j}\right| \text { epsz }
\]
then the relative pivot value is assumed to be zero and processing terminates with icon \(=20000\). The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If the processing is to proceed at a lower pivot value, epsz will be given the minimum value but the result is not always guaranteed.

\section*{isw}

When solving several sets of linear equations with same coefficient matrix, specify isw \(=2\) for any second and subsequent sets after successfully completing the first with \(i s w=1\). This will bypass the LU-decomposition section and go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise. The value of is is identical for all sets and any valid isw.

\section*{4. Example program}

A system of linear equations having on \(1000 \times 1000\) coefficient matrix is solved.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NMAX (1000)
\#define LDA (NMAX+1)
MAIN__()
{
int n, is, isw, i, j, icon, ierr;
int ip[NMAX];
double a[NMAX][LDA], b[NMAX];
double epsz, s, det;
n = NMAX;
epsz = 0.0;
isw = 1;
\#pragma omp parallel for shared(a,n) private(i,j)
for(i=0; i<n; i++)
for(j=0; j<n; j++) a[i][j] = min(i,j)+1;
\#pragma omp parallel for shared(b,n) private(i)

```
```

    for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
    ierr = c_dm_vlax((double*)a, LDA, n, b, epsz, isw, &is, ip, &icon);
    if (icon != 0) {
        printf("ERROR: c_dm_vlax failed with icon = %d\n", icon);
        exit(1);
    }
    s = 1.0;
    \#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];
printf("solution vector:\n");
for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);
det = is*s;
printf("\ndeterminant of the matrix = %e\n", det);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VLAX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vlbx}
\[
\begin{aligned}
& \text { A system of linear equations with banded real matrices (Gaussian } \\
& \text { elimination). } \\
& \hline \text { ierr = c_dm_vlbx(a, k, n, nh1, nh2, b, epsz, } \\
& \text { isw, \&is, ip, \&icon); }
\end{aligned}
\]

\section*{1. Function}

This routine solves a system of linear equations with the banded real matrix using Gaussian elimination.
\[
\mathbf{A x}=\mathbf{b}
\]
where, \(\mathbf{A}\) is an \(n \times n\) banded matrix, with the lower bandwidth \(h_{1}\), and upper bandwidth \(h_{2}\), \(\mathbf{b}\) is an \(n\)-dimensional real constant vector, and \(\mathbf{x}\) is an \(n\)-dimensional solution vector. \(n>h_{1} \geq 0, n>h_{2} \geq 0\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vlbx((double*)a, k, n, nh1, nh2, b, epsz, isw, \&is, ip, \&icon); where:

icon int Output Condition code. See below.

Figure c_dm_vlbx-1. Storing matrix \(\mathbf{A}\) in array a
The column vector of matrix \(\mathbf{A}\) is continuously stored in columns of array a in the same manner as diagonal elements of banded matrix \(\mathbf{A} a_{i i}, i=1, \ldots, n\), are stored in \(\mathrm{a}[i-1]\left[h_{1}+h_{2}\right]\).

Upper banded matrix part:
\(a_{j-i, j}, i=1, \ldots, h_{2}, j=1, \ldots, n, j-i \geq 1\) is stored in a [i] [j] \(, \mathbf{i}=0, \ldots, n-1, j=h_{1}, \ldots, h_{1}+h_{2}-1\).

Lower banded matrix part:
\(a_{j+i, j}, i=1, \ldots, h_{1}, j=1, \ldots, n, j+i \leq n\) is stored in a[i] [j], \(\mathbf{i}=0, \ldots, n-1, j=h_{1}+h_{2}+1, \ldots, 2 \times h_{1}+h_{2}\).

For \(\mathrm{a}[\mathrm{i}][\mathrm{j}], \mathbf{i}=0, \ldots, n-1, \mathbf{j}=0, \ldots, h_{1}-1\), set zero for the elements of matrix \(\mathbf{A}\) outside the band.
* indicates undefined values.

Figure c_dm_vlbx-2. Storing LU-decomposed matrix \(\mathbf{L}\) and \(\mathbf{U}\) in array a
LU-decomposed unit upper banded matrix except diagonal elements \(u_{j-i+1, j}, i=1, \ldots, h_{1}+h_{2}, j=1, \ldots, n, j-i+1 \geq 1\) is stored in a [i] [j], \(\mathbf{i}=0, \ldots, n-1, \mathbf{j}=0, \ldots, h_{1}+h_{2}\).

Lower banded matrix part:
\(l_{j+i, j}, i=0, \ldots, h_{2}, j=1, \ldots, n, j+i \leq n\) is stored in a[i][j], \(\mathbf{i}=0, \ldots, n-1, j=h_{1}+h_{2}, \ldots, 2 \times h_{1}+h_{2}\).
* indicates undefined values.

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & All elements in some row of array a were zero, or the pivot became relatively zero. Matrix A may be singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(n<1\) \\
- \(n h 1 \geq n\) \\
- \(n h 1<0\) \\
- \(n h 2 \geq n\) \\
- \(n h 2<0\) \\
- \(\mathrm{k}<2 \times \mathrm{nh} 1+\mathrm{nh} 2+1\) \\
- \(e p s z<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of \(L U\) decomposition. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is \(16 \times u\).

When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

\section*{ip}

In this routine, the row vector is exchanged using partial pivoting. That is, when the \(I\)-th row \((I \geq J)\) is selected as the pivot row in the \(J\)-th stage \((J=1, \ldots, n)\) of decomposition, the contents of the \(I\)-th row and \(J\)-th row are exchanged. To indicate this exchange, \(I\) is stored in ip \([J-1]\).

\section*{is}

The determinant can be obtained by multiplying is and a [i] [\(h_{1}+h_{2}\)], where \(\mathbf{i}=0, \ldots, n-1\).

\section*{4. Example program}

The system of linear equations with banded matrices is solved with the input of a banded real matrix of \(n=10000, n h_{1}=\) \(2000, n h_{2}=3000\).
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NH1 2000
\#define NH2 3000
\#define N 10000
\#define KA (2*NH1+NH2+1)
\#define NWORK 4500
int MAIN__()
{
double a[N][KA], b[N], dwork[NWORK];
double tt1, tt2, tmp, epsz;
int ip[N], i, j, is, ix, isw, icon, nptr, nbase, nn;
ix = 123;
nn = NH1+NH2+1;
for (i=0; i<N; i++) {
c_dvrau4(\&ix,\&a[i][NH1],nn, dwork,NWORK, \&icon);
}
printf("nh1 = %d, nh2 = %d, n = %d\n", NH1, NH2, N);
/* zero clear */
for (j=0; j<N; j++) {
for (i=0; i<NH1; i++) {
a[j][i] = 0.0;
}
}
/* left upper triangular part */
for ( j=0; j<NH2; j++) {
for (i=0; i<NH2-j; i++) {
a[j][i+NH1] = 0.0;
}
}
/* right rower triangular part */
nbase = 2*NH1+NH2+1;

```
```

    for (j=0; j<NH1; j++) {
        for (i=0; i<j; i++) {
        a[N-NH1+j][nbase-i-1] = 0.0;
    }
    }
    /* set right hand constant vector */
    for (i=0; i<N; i++) {
        b[i] = 0.0;
    }
    for (i=0; i<N; i++) {
        nptr = i;
        for (j=max(nptr-NH2,0); j<min(N,nptr+NH1+1); j++) {
            b[j] += a[i][j-i+NH1+NH2];
        }
    }
    epsz = 0.0;
    isw = 1;
    c_dm_vlbx((double*)a, KA, N, NH1, NH2, b, epsz, isw, &is, ip, &icon);
    tmp = 0.0;
    for (i=0; i<N; i++) {
        tmp = max(tmp,fabs(b[i]-1));
    }
    printf("maximum error = %e\n", tmp);
    return(0);
    }

```

\section*{5. Method}

Consult the entry for DM_VLBX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vlespsxcr1}
\[
\begin{aligned}
& \text { System of linear equations with non-Hermitian symmetric complex } \\
& \text { sparse matrices (Conjugate A-Orthogonal Conjugate Residual method } \\
& \text { with preconditioning by incomplete } \mathbf{L D L}^{\mathrm{T}} \text { decomposition, symmetric } \\
& \text { compressed row storage method) } \\
& \hline \text { ierr = c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, } \\
& \text { n, zb, isw, zx, ipar, rpar, zvw, } \\
& \text { \&icon); }
\end{aligned}
\]

\section*{1. Function}

This routine solves, using Conjugate A-Orthogonal Conjugate Residual method, COCR method, a system of linear equations with non-Hermitian symmetric complex sparse matrices as coefficient matrices.
\[
\mathbf{A x}=\mathbf{b}
\]

The \(n \times n\) coefficient matrix \(\mathbf{A}\) is stored using the symmetric compressed row storage method. Vectors \(\mathbf{b}\) and \(\mathbf{x}\) are \(n\) dimensional vectors.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, n zb, isw, zx, ipar, rpar, zvw,
\&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline zsa & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zsa[nz] }
\end{aligned}
\] & Input & \begin{tabular}{l}
The nonzero elements of the coefficient matrix are stored. \\
Regarding the symmetric compressed row storage method, see Fig. c_dm_vlcspsxcrl-1.
\end{tabular} \\
\hline nz & int & Input & Total number of the nonzero elements belong to the coefficient matrix \(\mathbf{A}(\geq 1)\). \\
\hline ncol & int ncol[nz] & Input & The column indices used in the compressed row storage method, which indicate the column number of each nonzero element stored in the array zsa. \\
\hline nfrnz & int \(\mathrm{nfrnz}[\mathrm{n}+1]\) & Input & The position of the first nonzero element stored in array zsa by the symmetric compressed row storage methods which stores the nonzero elements row by row of upper triangular portion of matrix \(\mathbf{A}\). \(n f r n z[n]=n z+1\). \\
\hline n & int & Input & Order \(n\) of the matrix \(\mathbf{A}(\geq 1)\). \\
\hline zb & dcomplex zb[n] & Input & The right-side constant vector of the system of linear equations is stored. \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
When solving multiple sets of equations having the same coefficient matrix, specify as follows; \\
Specify isw = 1 for the first set of equations. \\
Specify isw \(=3\) for the second and subsequent sets with the same
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \begin{tabular}{l}
coefficient matrix and different constant vector \(\mathbf{b}\). \\
When specifying \(i s w=3\), change only the value of \(z b\) and \(z x\) into a new constant vector \(\boldsymbol{b}\) and initial vector \(\mathbf{x}\) and do not change other parameters.
\end{tabular} \\
\hline zX & dcomplex zx[n] & \begin{tabular}{l}
Input \\
Output
\end{tabular} & The initial value of solution can be specified. The solution vector is stored. \\
\hline \multirow[t]{13}{*}{ipar} & \multirow[t]{13}{*}{int ipar[20]} & & Control parameters having integer values. Some parameters may be modified on output. When specify 0 for any parameter, it will be assumed to specify default value on it. If no convergence is met by using default parameters, it is recommended to try again by making parameters change. \\
\hline & & Input & ipar [0] to [4]: Reserved for future extensions. Specify 0 for each, just in case. \\
\hline & & Input & ipar [5]: Specify the upper limit of iteration counts for the COCR method (\(\geq 0\)). Default value is 2000. \\
\hline & & Output & ipar [6]: Actual iteration counts. \\
\hline & & Output & ipar [7]: Actual evaluation counts of matrix-vector multiplications Av \\
\hline & & & where \(\mathbf{A}\) is the coefficient matrix and \(\boldsymbol{v}\) is iterative vector in the \(C O C R\) method. \\
\hline & & Input & ipar [8] to [9]: Reserved for future extensions. Specify 0 for each, just in case. \\
\hline & & Input & ipar [10]: Specify control parameter how to make compensation for dropped new nonzero elements which are filled in during incomplete \(\mathbf{L D L}^{\mathbf{T}}\) decomposition. If specify as ipar[10] \(=0\), no compensation will be made. If specify as ipar [10] \(=1\), compensation will be made \\
\hline & & & by \\
\hline & & & reflecting dropped entries into diagonal elements. Default value is 0 . \\
\hline & & & For more detail, See Comments on use. \\
\hline & & Output & ipar [11]: Actual number of dropped new nonzero elements. \\
\hline & & Input & ipar [12] to [19]: Reserved for future extensions. Specify 0 for each, just in case. \\
\hline \multirow[t]{5}{*}{rpar} & \multirow[t]{5}{*}{\begin{tabular}{l}
double \\
rpar[20]
\end{tabular}} & & Control parameters having real values. Some parameters may be modified on output. When specify 0.0 for any parameter, it will be assumed to specify default value on it. If no convergence is met by using default parameters, it is recommended to try again by making parameters change. \\
\hline & & Input & rpar [0]: Reserved for future extensions. Specify 0.0 for each, just in case. \\
\hline & & Input & rpar [1]: Specify convergence criteria epst for iterative solution of given a system of linear equations by \(C O C R\) method (\(\geq 0.0\)). \\
\hline & & Output & rpar [2]: Relative residual norm for residual vector of the solution. \\
\hline & & Output & rpar [3]: Real part of the accumulated sum of dropped new nonzero \\
\hline
\end{tabular}
elements which are filled in during incomplete \(\mathbf{L D L}{ }^{\mathrm{T}}\) decomposition.
For more detail, See Comments on use.
zVW
icon
icon int
dcomplex
zvw[nz]

Output rpar [4]: Imaginary part of the accumulated sum of dropped new
rpar [4]: Imaginary part of the accumulated sum of dropped new
nonzero elements which are filled in during incomplete
LDL \({ }^{\text {T }}\) decomposition.
For more detail, See Comments on use.
Input rpar [5] to [19]: Reserved for future extensions. Specify 0.0 for each, just in case.

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The iteration counts reached the upper limit. & \begin{tabular}{l}
Processing is discontinued. \\
The already calculated approximate value is output to array \(\mathbf{Z X}\) along with relative residual error.
\end{tabular} \\
\hline 29000 & Matrix \(\mathbf{A}\) is singular. & Processing is discontinued. \\
\hline 30000 & \begin{tabular}{l}
Parameter error(s). \\
- \(\mathrm{n}<1\) \\
- \(n z<1\) \\
- \(\mathrm{nz} \neq \mathrm{nf} \mathrm{rnz}[\mathrm{n}]-1\) \\
- isw<1 \\
- isw=2 \\
- isw>3 \\
- ipar[5]<0 \\
- ipar[10]<0 \\
- ipar[10]>1 \\
- \(\operatorname{rpar}[1]<0.0\).
\end{tabular} & \\
\hline
\end{tabular}

\[
\mathrm{nfrnz}=\left[\begin{array}{l}
1 \\
4 \\
6 \\
8 \\
9
\end{array}\right], \quad \mathrm{zsa}=\left[\begin{array}{c}
1 \\
2 \\
3 \\
-- \\
5 \\
6 \\
-- \\
8 \\
9 \\
-11
\end{array}\right], \operatorname{ncol}=\left[\begin{array}{c}
1 \\
2 \\
3 \\
- \\
2 \\
4 \\
-- \\
3 \\
4 \\
-- \\
4
\end{array}\right]
\]

Figure c_dm_vlcspsxcr1-1 Storing matrix A in symmetric compressed row storage method

\section*{3. Comments on use}

\section*{About drop of the new nonzero and its compensation}

In this routine, the new nonzero elements which are filled in during incomplete \(\mathbf{L D L}^{\mathbf{T}}\) decomposition will be dropped in general. In order to ease up effect of such dropping, this routine attempts to compensate such dropping according to ipar [10]. If specify as ipar [10] = 1, it makes compensation for each diagonal elements by adding certain value which is accumulated sum of dropped new nonzero elements which are filled in on the row. By this compensation, it may affect to improve characteristic of the preconditioning matrix.

Further, this routine outputs the accumulated sum \(z d r p\) as an index regardless of ipar [10] specification. The real part and imaginary part of \(z d r p\) are stored in rpar [3] and rpar [4] respectively.

\section*{4. Example program}

Read a symmetric complex matrix, then solve a linear system of equations \(\mathbf{A x}=\mathbf{b}\) by this routine.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

\footnotetext{

TEST PROGRAM FOR KRYLOV ITERATION METHODS FOR SPARSE LINEAR EQUATIONS
}

WITH NON-HERMIT COMPLEX SYMMETRIC MATRIX.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#define NZMAX 500000
\#define NMAX 10000
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
void cmsvcr1(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, int);
void creadmat(char*, double*, int*, int*, int*, double*);
void cmatcopy(dcomplex*, int, int*, int*, dcomplex*, dcomplex*, dcomplex*,
int*, int*, dcomplex*, dcomplex*);
void cvecgen(dcomplex*, int, int*, int*, dcomplex*, dcomplex*);
double cnorm(dcomplex*, int);
int MAIN__() {
dcomplex zsa[NZMAX], zx[NMAX], zb[NMAX], zsat[NZMAX], zxt[NMAX],
zbt[NMAX], zvw[NZMAX];
int nfrnz[NMAX+1], ncol[NZMAX], nfrnzt[NMAX+1], ncolt[NZMAX], ipar[20];
double rpar[20];
char title[74];
int n, nz, isw, ii, ic, icmav, mdrp, nzdrp, icon;
double epst, relres, drpr, drpi,rel, relerr;
/* -------------------------------------------------
INPUT MATRIX FROM UF SPARSE MATRIX COLLECTION
-----------------------------------------------------------
creadmat(title, (double *)zsat, \&n, nfrnzt, ncolt, (double *)zsa);
cvecgen(zsat, n, nfrnzt, ncolt, zxt, zbt);
cmatcopy(zsat, n, nfrnzt, ncolt, zxt, zbt, zsa, nfrnz, ncol, zx, zb);
printf(
"\n-------------------------------------------------------------------------------
printf("TEST MATRIX : \n%s\n", title);
isw = 1;
for (ii = 0; ii < 20; ii++) {
ipar[ii] = 0;
rpar[ii] = 0.0;
}
nz = nfrnz[n] - 1;
c_dm_vlcspsxcr1(zsa, nz, ncol, nfrnz, n, zb,
isw, zx, ipar, rpar, zvw, \&icon);
ic = ipar[6];
icmav = ipar[7];
mdrp = ipar[10];
nzdrp = ipar[11];
epst = rpar[1];
relres = rpar[2];
drpr = rpar[3];
drpi = rpar[4];
rel = cnorm(zb, n);
cmsvcr1(zsa, n, nfrnz, ncol, zx, zb, 0);
relerr = cnorm(zb, n) / rel;
printf(
"\n----------------------------------------------------------------------------
printf(" SOLUTION RESULTS BY \"C_DM_VLCSPSXCR1\"\n\n");
printf(" N =%12d\n", n);
printf(" NZ
printf(" MDRP
printf(" ICON
printf(" IC
printf(" ICMAV
printf(" NZDRP
printf(" DRPR
printf(" DRPI
printf(" EPST
printf(" RELRES
=%12.2le\n", relres)
printf(" RELERR =%12.2le\n", relerr);
printf(
"----------------------------------------------------------------------------------
if ((relerr <= epst * 1.1) \&\& (icon == 0)) {
printf(" ********** OK **********\n");
} else {

```
```

        printf(" *********** NG **********\n");
    }
    return(0)
    }
dcomplex comp_add(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re + so2.re;
obj.im = so1.im + so2.im;
return obj;
}
dcomplex comp_mult(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re * so2.re - so1.im * so2.im;
obj.im = so1.re * so2.im + so1.im * so2.re;
return obj;
}
/* ========================================================
MATRIX VECTOR MULTIPLICATION.
COMPLEX SYMMETRIC MATRIX STORED IN CSR FORM
======================================================= */
void cmsver1(dcomplex *zsa, int n, int *nfrnz, int *ncol, dcomplex *zx,
dcomplex *zb, int isw) {
int i, j, k1, k2
dcomplex zsa_w;
if (isw == 1) { /* *** MULTIPLICATION (AX=>B) */
for (i = 0; i < n; i++) {
zb[i].re = 0.0;
zb[i].im = 0.0;
}
for (i = 0; i < n; i++) {
k1 = nfrnz[i] - 1;
k2 = nfrnz[i+ 1] - 1
if (zx[i].re != 0.0 || zx[i].im != 0.0) {
for (j = k1; j < k2; j++) {
zb[ncol[j] - 1] = comp_add(comp_mult(zsa[j], zx[i]),
zb[ncol[j] - 1]);
if (ncol[j] != i + 1)
zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] -1]), zb[i]);
}
} else {
for (j = k1; j < k2; j++) {
zb[i] = comp_add(comp_mult(zsa[j], zx[ncol[j] - 1]), zb[i]);
}
}
}
} else { /* *** RESIDUAL VECTOR (B-AX=>B) */
for (i = 0; i < n; i++) {
k1 = nfrnz[i] - 1;
k2 = nfrnz[i + 1] - 1;
if (zx[i].re != 0.0 || zx[i].im != 0.0) {
for (j = k1; j < k2; j++) {
zsa_w = zsa[j];
zsa_w.re = -zsa_w.re;
zsa w.im = -zsa w.im
zb[ncol[j] - 1] = comp_add(comp_mult(zsa_w, zx[i]), zb[ncol[j] - 1]);
if (ncol[j] != i + 1) {
zsa_w = zsa[j];
zsa_w.re = -zsa_w.re;
zsa_w.im = -zsa_w.im;
zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]);
}
}
} else {
for (j = k1; j < k2; j++) {
zsa_w = zsa[j];
zsa_w.re = -zsa_w.re;
zsa_w.im = -zsa_w.im;
zb[i] = comp_add(comp_mult(zsa_w, zx[ncol[j] - 1]), zb[i]);
}
}
}
}

```
```

    return;
    }

```

```

            READ TEST MATRIX FOR COMPLEX SYMMETRIC MATRIX.
    ================================================= */
    void creadmat(char *title, double *a, int *ncol, int *is, int *js, double *w) {
/* THIS ROUTINE READS MATRIX DATA OF RB SPARSE FORM.
THE FOLLOWING SAMPLE CODE IS ORIGINATED FROM MATRIX
MARKET;
char key[11], mxtype[4], rhstyp[4],
ptrfmt[17], indfmt[17], valfmt[21], rhsfmt[23];
char dummy[12];
int totcrd, ptrcrd, indcrd, valcrd, rhscrd,
nrow, nnzero, neltvl,
nrhs, nrhsix;
int i;
/* ------------------------
READ IN HEADER BLOCK
scanf("%72c%8c",----------------*/'
title[72] ='\0';
scanf("%14d%14d%14d%14d%14d", \&totcrd, \&ptrcrd, \&indcrd,
\&valcrd, \&rhscrd);
scanf("%3c%11c%14d%14d%14d%14d", mxtype, dummy, \&nrow, ncol,
\&nnzero, \&neltvl);
scanf("%16c%16c%20c%20c", ptrfmt, indfmt, valfmt, rhsfmt);
if (rhscrd > 0) {
scanf("%3c%11c%14d%14d", rhstyp, dummy, \&nrhs, \&nrhsix);
/*
READ MATRIX STRUCTURE
for (----------------------- */
scanf("%5d", \&is[i]);
}
for (i = 0; i < nnzero; i++) {
scanf("%4d", \&js[i]);
}
if (valcrd > 0) {
/* ---------------------
READ MATRIX VALUES
if (mxtype[0] == 'R') */
for (i = 0; i < nnzero; i++) {
scanf("%le", \&a[i]);
}
} else {
for (i = 0; i < 2 * nnzero; i++) {
scanf("%le", \&a[i]);
}
}
}
return;
}
/* ======================================================
COPY COMPLEX MATRIX AND VECTORS.
==================================================== */
void cmatcopy(dcomplex *zsat, int n, int *nfrnzt, int *ncolt,
dcomplex *zxt, dcomplex *zbt, dcomplex *zsa, int *nfrnz, int *ncol,
dcomplex *zx, dcomplex *zb) {
int nz, i;
nz = nfrnzt[n] - 1;
for (i = 0; i <= n; i++) {
nfrnz[i] = nfrnzt[i];
}
for (i = 0; i < nz; i++) {
zsa[i] = zsat[i];
ncol[i] = ncolt[i];
}
for (i = 0; i < n; i++) {
zx[i] = zxt[i];
zb[i] = zbt[i];
}
return;

```
```

}
/* ==========================================================
GENERATE COMPLEX B AND X VECTORS.
====================================================== */
void cvecgen(dcomplex *zsat, int n, int *nfrnzt, int *ncolt, dcomplex *zxt,
dcomplex *zbt) {
int ii;
/* COMPUTE RIGHT HAND SIDE VECTOR B. */
for (ii = 1; ii <= n; ii++) {
zxt[ii - 1].re = 1.0 + (double)ii / (double)n;
zxt[ii - 1].im = 0.0;
}
cmsvcr1(zsat, n, nfrnzt, ncolt, zxt, zbt, 1);
/* SET INITIAL VALUE */
for (ii = 0; ii < n; ii++) {
zxt[ii].re = 0.0;
zxt[ii].im = 0.0;
}
return;
}
/* ========================================================
L2 NORM OF A COMPLEX VECTOR.
======================================================= */
double cnorm(dcomplex *zx, int n) {
int i;
double cnorm_ret;
cnorm_ret = 0.0;
for (i = 0; i < n; i++) {
cnorm_ret += (zx[i].re * zx[i].re + zx[i].im * zx[i].im);
}
if (cnorm_ret != 0.0)
cnorm_ret = sqrt(cnorm_ret);
return(cnorm_ret);
}

```

\section*{5. Method}

Consult the entry for DM_VLCSPSXCR1 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [62], [70].

\section*{c_dm_vlcx}

A system of linear equations with complex matrices (blocked LU
decomposition method)
```

ierr = c_dm_vlcx(za, k, n, zb, epsz, isw, \&is,
ip, \&icon);

```

\section*{1. Function}

This routine solves a system of complex coefficient linear equations using blocked LU-decomposition method of an outer product type.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]
where, \(\mathbf{A}\) is a non-singular \(n \times n\) complex matrix, \(\mathbf{b}\) is an \(n\)-dimensional complex constant vector, and \(\mathbf{x}\) is an \(n\) dimensional solution vector \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vlcx((dcomplex*)za, k, n, zb, epsz, isw, \&is, ip, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline za & dcomplex & Input & Matrix \(\mathbf{A}\). \\
\hline & za[n][k] & Output & Matrices \(\mathbf{L}\) and \(\mathbf{U}\) are stored in za. \\
\hline k & int & Input & C fixed dimension of array za (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline zb & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zb[n] }
\end{aligned}
\] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline epsz & double & Input & \begin{tabular}{l}
Judgment of relative zero of the pivot (\(\geq 0.0\)). \\
When epsz is 0.0 , the standard value is assumed. See Comments on use.
\end{tabular} \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
When solving \(k(\geq 1)\) sets of equations having identical coefficient matrices, specify as follows. \\
Specify isw = 1 for the first set of equations. \\
Specify isw \(=2\) for the second and the subsequent sets of equations. When specifying isw \(=2\), change only the value of \(z b\) into a new constant vector. Do not change any other parameters. \\
See Comments on use.
\end{tabular} \\
\hline is & int & Output & \begin{tabular}{l}
Information to obtain the determinant of matrix \(\mathbf{A}\). \\
The determinant is obtained by multiplying \(n\) diagonal elements of array za by the value of is after the operation.
\end{tabular} \\
\hline ip & int ip[n] & Output & The transposition vector which indicates the history of the row exchange by partial pivoting. A one-dimensional array of size \(n\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
All the elements in some row of matrix A are \\
zero, or the pivot becomes relatively zero. Matrix \\
A may be singular.
\end{tabular} & Stopped. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
• \(\quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet \quad \mathrm{n}<1\) \\
• epsz \(<0.0\) \\
\(\bullet\) \\
isw \(\neq 1\) or 2
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}
epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(\mu\), the standard value of epsz is \(16 \mu\). When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

\section*{isw}

When several sets of linear equations with an identical coefficient matrix are successively solved, the value of isw should be 2 from the second time on. This reduces the execution time because \(L U\) decomposition of coefficient matrix \(\mathbf{A}\) is bypassed. The value of is does not change from the time \(i s w=1\).

\section*{4. Example program}

A system of linear equations having an \(n \times n\) complex coefficient matrix is solved.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define N (2000)
\#define K (N+1)
MAIN__()
{
dcomplex za[N][K], zb[N];
double epsz, c, t, s, error;
int ip[N];
int isw, is, icon, i, j;
c = sqrt(1.0/(double)(N+1));
t = atan(1.0)*8.0/(N+1);
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
za[j][i].re = c* cos(t* (i+1)*(j+1));
za[j][i].im = c*sin(t*(i+1)*(j+1));
}
}
for (i=0; i<N; i++) {
s = 0.0;
for (j=0; j<N; j++) {
s += cos(t* (i+1)*(j+1));
zb[i].re = s*c;

```
```

        zb[i].im = 0.0;
        }
    }
    epsz = 0.0;
    isw = 1;
    c_dm_vlcx((dcomplex*)za, K, N, zb, epsz, isw, &is, ip, &icon);
    printf("icon = %d\n", icon);
    error = 0.0;
    for (i=0; i<N; i++) {
    error = max(fabs(1.0-zb[i].re), error);
    }
    printf("error = %f\n", error);
    printf("ORDER = %d\n", N);
    printf("zb[0] = %e\n", zb[0].re);
    printf("zb[n-1] = %e\n", zb[N-1].re);
    return(0);
    }

```

\section*{c_dm_vldlx}
\begin{tabular}{l}
A system of linear equations with \(\mathrm{LDL}^{\mathrm{T}}\)-decomposed symmetric \\
positive definite matrices. \\
\hline ierr \(=\mathrm{c}\) _dm_vldlx(b, fa, kfa, \(n\), \&icon \() ;\) \\
\end{tabular}

\section*{1. Function}

This routine solves a system of linear equations with \(\mathrm{LDL}^{\mathrm{T}}\) - decomposed symmetric positive definite coefficient matrix.
\[
\mathbf{L D L}^{\mathrm{T}} \mathbf{x}=\mathbf{b}
\]

Where, \(\mathbf{L}\) and \(\mathbf{D}\) are a unit lower triangular matrix and an \(n \times n\) diagonal matrix respectively, \(\mathbf{b}\) is an \(n\)-dimensional real constant vector, \(\mathbf{x}\) is an n-dimensional solution vector, and \(n \geq 1\).
 linear equations.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vldlx(b, (double*)fa, kfa, n, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline b & double \(\mathrm{b}[\mathrm{n}]\) & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline fa & \[
\begin{aligned}
& \text { double } \\
& \text { fa[n][n] }
\end{aligned}
\] & Input & \begin{tabular}{l}
The \(\mathrm{LDL}^{\mathrm{T}}\)-decomposed matrices \(\mathbf{L}, \mathbf{D}^{-1}\), and \(\mathbf{L}^{\mathrm{T}}\) are stored. The upper triangular matrix \(\mathbf{L}, \mathbf{D}^{-1}\) and \(\mathbf{L}^{\mathrm{T}}\) is stored in the upper triangular part \(\{\mathrm{fa}[\mathrm{i}-1][\mathrm{j}-1], \mathrm{i} \leq j\}\) of fa . \\
See Figure c_dm_vldlx-1.
\end{tabular} \\
\hline kfa & int & Input & A fixed dimension of array fa. (\(\geq \mathrm{n}\)) \\
\hline n & int & Input & Order \(n\) of matrices \(\mathbf{L}\) and \(\mathbf{D}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline The com & e list of condition & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & Coefficient matrix is not positive definite. & Continued. \\
\hline 30000 & \(\mathrm{n}<1, \mathrm{kfa}<\mathrm{n}\) & Bypassed. \\
\hline
\end{tabular}

Array fa

Figure c dm vldlx-1. Storing matrices \(\mathbf{L}, \mathbf{D}^{-1}\) into array fa

After LDL \({ }^{\mathrm{T}}\) decomposition, matrix \(\mathbf{D}^{-1}\) is stored in diagonal elements and \(\mathbf{L}\) (excluding the diagonal elements) are stored in the upper triangular part respectively.

\section*{3. Comments on use}

A system of linear equations with a positive definite coefficient matrix can be solved by calling this function after calling function c_dm_vsldl. However, function c_dm_vlsx should be usually used to solve a system of linear equations in one step.

\section*{4. Example program}

A \(1000 \times 1000\) coefficient matrix is decomposed into \(\operatorname{LDL}^{\mathrm{T}}\)-decomposed matrix, then the system of linear equations is solved.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NMAX (1000)
\#define LDA (NMAX+1)
MAIN__()
{
int n, i, j, icon, ierr;
double a[NMAX][LDA], b[NMAX];
double epsz, s, det;
n = NMAX;
epsz = 0.0;
\#pragma omp parallel for shared(a,n) private(i,j)
for(i=0; i<n; i++)
for(j=0; j<n; j++) a[i][j] = min(i,j)+1;
\#pragma omp parallel for shared(b,n) private(i)
for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
ierr = c_dm_vsldl((double*)a, LDA, n, epsz, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon);

```
```

        exit(1);
    }
    ierr = c_dm_vldlx(b, (double*)a, LDA, n, &icon);
    if (icon != 0) {
        printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon);
    exit(1);
    }
    s = 1.0;
    \#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];
printf("solution vector:\n");
for(i=0; i<10; i++) printf("' b[%d] = %e\n", i, b[i]);
det = 1.0/s;
printf("\ndeterminant of the matrix = %e\n", det);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VLDLX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [52].

\section*{c_dm_vlspaxcr2}
\[
\begin{array}{|l}
\hline \begin{array}{l}
\text { System of linear equations with unsymmetric real sparse matrices } \\
\text { (Induced Dimension Reduction method with preconditioning by sparse } \\
\text { approximate inverse, compressed row storage method) }
\end{array} \\
\hline \text { ierr = c_dm_vlspaxcr2(} \mathrm{a}, \mathrm{nz}, \mathrm{ncol}, \mathrm{nfrnz}, \mathrm{n}, \\
\mathrm{~b}, ~ i s w, ~ x, ~ a m, ~ n z m, ~ n c o l m, ~ n f n z m, ~ \\
\text { nwm, ipar, rpar, vw1, ivw1, vw2, } \\
\text { ivw2, lmmax, lnmax, numt, \&icon); } \\
\hline
\end{array}
\]

\section*{1. Function}

This routine solves, using IDR method with stabilization, \(\operatorname{IDRstab}(s, l)\) method, a system of linear equations with unsymmetric real sparse matrices as coefficient matrices.
\[
\mathbf{A x}=\mathbf{b}
\]

The \(n \times n\) coefficient matrix \(\mathbf{A}\) is stored using the compressed row storage method. Vectors \(\mathbf{b}\) and \(\boldsymbol{x}\) are \(n\)-dimensional vectors. The parameter \(s\) is the order of shadow residual and \(l\) is the order of acceleration polynomial.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vlspaxcr2(a, nz, ncol, nfrnz, n b, isw, x, am, \&nzm, ncolm,
nfrnzm, nwm, ipar, rpar, vw1, ivw1, (double*)vw2, (int*)ivw2,
lmmax, lnmax, numt, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[nz] & Input & \begin{tabular}{l}
The nonzero elements of the coefficient matrix are stored. \\
The compressed row storage method is to store transposed matrix of the coefficient matrix \(\mathbf{A}\) in the compressed column storage method. Regarding the compressed column storage method, see Fig. c_dm_vmvscc-1.
\end{tabular} \\
\hline nz & int & Input & Total number of the nonzero elements belong to the coefficient matrix (\(\geq 1\)). \\
\hline ncol & int ncol[nz] & Input & The column indices used in the compressed row storage method, which indicate the column number of each nonzero element stored in the array a. \\
\hline nfrnz & int nfrnz[n+1] & Input & The position of the first nonzero element stored in array A by the compressed row storage methods which stores the nonzero elements row by row. \(\mathrm{nfrnz}[\mathrm{n}]=\mathrm{nz}+1\). \\
\hline n & int & Input & Order \(n\) of the matrix \(\mathbf{A}(\geq 1)\). \\
\hline b & double b[n] & Input & The right-side constant vector of the system of linear equations is stored. \\
\hline isw & int & Input & \begin{tabular}{l}
Control information. \\
When solving multiple sets of equations having the same sparse structure and /or the same coefficient matrix, specify as follows;
\end{tabular} \\
\hline
\end{tabular}

X
nwm
,
int ncolm[nwm]

Specify isw \(=1\) for the first set of equations.
Specify isw \(=2\) for the second and subsequent sets with the same sparse structure and different coefficient matrix \(\mathbf{A}\) and constant vector b.

Specify isw \(=3\) for the second and subsequent sets with different constant vector \(\mathbf{b}\).
When specifying \(i s w=2\) or 3 , change only the parameters necessary to be changed such as \(\mathrm{a}, \mathrm{b}\) and/or x and do not change other parameters.

\section*{double \(x[\mathrm{n}] \quad\) Input}
double am[nwm]
int
Input
Output
Input

The initial value of solution can be specified.
The solution vector is stored.
If any, the nonzero elements of the initial approximate inverse matrix \(\mathbf{M}_{0}\) are stored in am[i-1], \(\mathbf{i}=1, \ldots\), nzm using the compressed row storage method.
The compressed row storage method is the same with matrix \(\mathbf{A}\).
Output The approximate inverse matrix \(\mathbf{M}\).
Input If any, total number of the nonzero elements belong to the initial approximate inverse matrix \(\mathbf{M}_{\mathbf{0}}(\geq 1)\).
If not, specify as \(n z m=0\). In this case, this routine employs the unit matrix as the initial approximate inverse internally.
Output Total number of the nonzero elements of approximate inverse matrix M.

Input If any, the column indices used in the compressed row storage method, which indicate the column number of each nonzero element stored in the array am.
Output The column indices of approximate inverse matrix \(\mathbf{M}\).
Input If any, the position of the first nonzero element stored in array am by the compressed row storage method which stores the nonzero elements row by row. \(n f r n z m[n]=n z m+1\).
Output The position of the first nonzero element of each row of approximate inverse matrix \(\mathbf{M}\).
Input Specify the maximum size of areas used for computation of approximate inverse matrix \(\mathbf{M}(\geq 1)\).
Total number of the nonzero elements of approximate inverse matrix \(\mathbf{M}\) is calculated by the formula below where \(n z_{k}\) is number of nonzero elements in the \(k\)-th column of matrix \(\mathbf{A}\).
\(n z m=\sum_{k=1}^{n} \max \left(1, n z_{k} \times\right.\) ipar [1]/100 \()\)
Then nwm is specified as follows;
\(n w m=\max (n z m, n z)\).
For more detail, See Comments on use.
Control parameters having integer values. Some parameters may be modified on output. When specify 0 for any parameter, it will be assumed to specify default value on it. If no convergence is met by using default parameters, it is recommended to try again by making parameters change.
Input ipar [0]: Reserved for future extensions. Specify 0 for each, just in
case.

Input
ipar [1]: Input. Specify percentage(\%) which is the ratio of nonzero elements of approximate inverse against that of the coefficient matrix \(\mathbf{A}(\geq 0)\).

It is used as upper limit control for nonzero elements generations.
For instance, if specify as ipar [1] = 50, approximate inverse matrix will be generated having total nonzero number which is about \(50 \%\) of that of coefficient matrix as an upper limit. Default value is 100 .
For more detail, See Comments on use.
ipar [2]: Specify incremental number which is number of adding new indices during computation of column vector of approximate inverse matrix (\(n \geq\) ipar [2] \(\geq 0\)). For instance, if specify as ipar [2] \(=2\), the number of indices within each column of approximate inverse will be incremented by 2 indices which are the most effective indices in term of the norm minimization.
Default value is 1 .
For more detail, See Comments on use.
ipar [3]: Specify the order of shadow residual \(s\) of Induced
Dimension Reduction method \(\operatorname{IDRstab}(s, l)(n \geq s \geq 0)\). Default value is 4 .
ipar [4]: Specify the order of acceleration polynomial \(l\) of Induced Dimension Reduction method \(\operatorname{IDRstab}(s, l)(n \geq l \geq 0)\). Default value is 1 .
ipar [5]: Specify the upper limit of iteration counts for \(\operatorname{IDRstab}(s, l)\) method (\(\geq 0\)). Default value is 2000.
ipar [6]: Actual iteration counts.
ipar [7]: Actual evaluation counts of matrix-vector multiplications
\(\mathbf{A v}\) where \(\mathbf{A}\) is the coefficient matrix and \(\boldsymbol{v}\) is iterative vector in IDRstab(s,l) method.
ipar [8]: Estimated size nwm for am, ncolm etc. For more detail, See Comments on use.
ipar [9] to [11]: Reserved for future extensions. Specify 0 for each, just in case.
ipar[12]: Actual size lmmax used for Vw2 and ivw2.
ipar[13]: Actual size lnmax used for Vw2.
ipar [14] to [19]: Reserved for future extensions. Specify 0 for each, just in case.

Control parameters having real values. Some parameters may be modified on output. When specify 0.0 for any parameter, it will be assumed to specify default value on it. If no convergence is met by using default parameters, it is recommended to try again by making parameters change.
Input

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 11000 & Matrix A may be near singular. & Processing is continued. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 19000 & Non diagonal element(s) is detected in matrix \(\mathbf{A}\). & \\
\hline 20000 & The iteration counts reached the upper limit. & \begin{tabular}{l}
Processing is discontinued. \\
The already calculated approximate value is output to array X along with relative residual error.
\end{tabular} \\
\hline 25000 & Array am and ncolm overflow due to too small value nwm. & \begin{tabular}{l}
Processing is discontinued. \\
Estimated minimum size is output to ipar [8].
\end{tabular} \\
\hline 26000 & Work area Vw2, ivw2 overflow due to too small value Immax. & \multirow[t]{7}{*}{Processing is discontinued.} \\
\hline 27000 & Work area vw2 overflow due to too small value lnmax. & \\
\hline 29000 & Matrix \(\mathbf{A}\) is singular. & \\
\hline 30000 & \begin{tabular}{l}
Parameter error(s). \\
- \(\mathrm{n}<1\) \\
- \(n z<1\) \\
- \(n z \neq n f r f z[n]-1\) \\
- isw<1 \\
- isw>3 \\
- \(\mathrm{nwm}<\mathrm{n}\) \\
- nzm<0 \\
- ipar[1]<0 \\
- ipar[2]<0 \\
- ipar[3]<0 \\
- \(\mathrm{n}<\mathrm{ipar}[3]\) \\
- ipar[4]<0 \\
- n <ipar[4] \\
- ipar[5]<0 \\
- \(\operatorname{lmmax}<1\) \\
- lnmaz<1 \\
- numt < 1 \\
- \(\operatorname{rpar}[0]<0.0\) \\
- \(\operatorname{rpar}[1]<0.0\).
\end{tabular} & \\
\hline 30011 & Parameter error(s) related to matrix \(\mathbf{A}\). Some parameter value show following relation. \(\mathrm{nfrnz}[k]>\mathrm{nfrnz}[k+1], k=0, \ldots, n-1\). & \\
\hline 30012 & \begin{tabular}{l}
Parameter error(s) related to matrix \(\mathbf{A}\). \\
Some parameter value show following relation. \\
ncol[\(l]>\operatorname{ncol}[l+1]\), \\
\(l=\mathrm{nfrnz}[k], \ldots, \mathrm{nfrnz}[k+1], k=0, \ldots, n-1\).
\end{tabular} & \\
\hline 30021 & \begin{tabular}{l}
Parameter error(s) related to matrix \(\mathbf{M}_{\mathbf{0}}\). \\
Some parameter value show following relation. \(\mathrm{nfrnz}[k]>\mathrm{nfrnz}[k+1], k=0, \ldots, n-1\).
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30022 & \begin{tabular}{l}
Parameter error(s) related to matrix \(\mathbf{M 0}_{0}\). \\
Some parameter value show following relation. \\
ncol \([l]>\mathrm{ncol}[l+1]\), \\
\(l=\mathrm{nfrnz}[k], \ldots, \mathrm{nfrnz}[k+1], k=0, \ldots, n-1\).
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{About the size of arrays for approximate inverse matrix}

The size \(n z m\) of approximate inverse matrix \(\mathbf{M}\) is calculated by the formula below where \(n z_{k}\) is number of nonzero elements in the \(k\)-th column of matrix \(\mathbf{A}\).
\[
n z m=\sum_{k=1}^{n} \max \left(1, n z_{k} \times \text { ipar }[1] / 100\right)
\]

Then the size of array nwm is specified as follows;
```

nwm = max(nzm,nz)

```

In general, if you use default value for ipar[1], that is ipar[1] \(=0\), which specifies upper limit of percentage of nonzero elements generations, it is adequate to specify as \(n w m=n z\). When it is difficult to calculate nwm by above formula, it is recommended to specify enough big size such as \(n w m=2 \times n z\). As a result of operation of this routine, the suggested size is output on ipar [8]. This resultant value gives good suggestion for subsequent call to solve a system with a similar sparse matrix. If you solve another system having the same sparse structure and the equivalent nonzero percentage of approximate inverse, you can take ipar [8] as a suggestion. On the other hand, if you solve another system having much more nonzero elements than previous, or increasing percentage of nonzero elements in approximate inverse, you can take ipar [8] multiplied by each increasing ratio as a suggestion.

\section*{About the initial approximate inverse matrix}

If you have a good approximate inverse matrix \(\mathbf{M}_{\mathbf{0}}\), you can specify it as an initial value on relevant parameters. You can specify total nonzero number of the matrix \(\mathbf{M}_{\mathbf{0}}\) on nzm , and specify the initial approximate inverse matrix on am, ncolm and \(n f r n z m\) respectively.

Such usage is recommended for user who would process following type of problems in efficient manner.
\#1 to solve multiple set of equations with the same sparse structure and different coefficient matrix \(\boldsymbol{A}\) and constant vector b.
\#2 to solve multiple set of equations with similar sparse structure.

Process is controlled along with parameter isw. In these cases, change only the value of a and/or related parameters and \(\mathrm{b}, \mathrm{x}\), and do not change other parameters such as am and work areas in which previous results are stored.

In this case, it is possible to increase the upper limit by making parameter ipar [1] change.
About total nonzero number of approximate inverse matrix \(M\)
This routine solves a system of linear equations with preconditioning based on approximate inverse matrix,
\(\mathbf{A M y}=\mathbf{b}, \mathbf{x}=\mathbf{M y}\).

Approximate inverse matrix \(\mathbf{M}\) is computed so as to be satisfied \(\mathbf{A M} \doteqdot \mathbf{I}\). The total number of nonzero elements of \(\mathbf{M}\) affects not only accuracy of inverse but also performance of matrix vector multiplication which is appeared frequently during iterations. In this routine, it is able to control the total number of nonzero elements of matrix \(\mathbf{M}\) via parameter ipar [1]. In general, it is recommended the nonzero number take the same order with that of matrix \(\mathbf{A}\).

That is, ipar [1] = 100 is recommended.

This routine computes inverse matrix \(\mathbf{M}\) column by column, \(\boldsymbol{m}_{k}, k=1, \ldots, n\).

The iterate \(\boldsymbol{m}_{k}\) of inverse matrix \(\mathbf{M}\) is accepted as a minimum solution if
```

\| \boldsymbol { A m } _ { k } - \boldsymbol { e } _ { k } \| _ { 2 } \leq e p s

```
is satisfied even if nonzero number in \(\boldsymbol{m}_{k}\) does not reach upper limit
\(n z_{k} \times \operatorname{ipar}[1] / 100\).

Where \(n z_{k}\) is number of nonzero elements in \(k\)-th column of matrix \(\boldsymbol{A}\).

\section*{About incremental number during computation of column vector of inverse \\ This routine computes column vector \(\boldsymbol{m}_{k}\) of matrix \(\mathbf{M}\) by solving least squares problems as follows;}
\(\min _{m_{k}}\left\|\boldsymbol{A m}_{k}-\boldsymbol{e}_{k}\right\|_{2}, k=1, \ldots, n\)
Where \(\boldsymbol{e}_{k}\) is unit vector. Residual vector based on the solution above may lead candidates of new nonzeros in next step \(\boldsymbol{m}_{k}\). This routine selects new indices automatically from candidates in terms of the most profitable one which minimizes coming residual vector. Key point of this algorithm lies in determining a good sparsity structure of the column of approximate inverse. In order to increase nonzero elements gradually, it is recommended to specify as ipar[2] = 1 which is number of adding new indices during computation of column vector.

\section*{About work area vw2, ivw2}

Work area VW2 and ivw2 are three dimensional array respectively. These areas are used for solving least squares problems in order to compute column vector \(\boldsymbol{m}_{k}\) of approximate inverse matrix \(\mathbf{M}\). In general, column vector \(\boldsymbol{m}_{k}\) is sparse vector and its density of nonzero elements is varied during computation. The least squares problems are defined corresponding to the formula of previous section 4).

The residual vector \(\mathbf{A m}_{k}-\boldsymbol{e}_{k}\) can be formulated only by nonzero elements of \(\mathbf{m}_{k}\) and certain columns of \(\mathbf{A}\) related with nonzero elements of \(\boldsymbol{m}_{k}\). From such point of view, rectangular system which is constructed by nonzero elements is derived.

You can specify lmmax and Inmax as maximum number of rectangular matrix and allocate array VW2 and ivw2. Actual number of rectangular matrix desired in this routine depend on characteristics of matrix \(a\) and value of parameters such as ipar[1]. Therefore you can try to call this routine by using suggested manner below. If no solution is met, it is recommended to try again by making parameters change.
\(l\) mmax is a certain value related to the number of nonzero elements of matrix \(\mathbf{A}\). Lets see \(k\)-th column of matrix \(\mathbf{A}\), we defines the total number of nonzero elements in \(k\)-th column and another columns which are relatives of the nonzero elements of \(k\)-th column. You can specify the maximum number of the total number between columns. In general, it is adequate to specify as \(1 \operatorname{mmax}=1000\).

In case that density of nonzero elements is rather high or relation between elements tend to be strong or certain columns have more nonzero elements than others, it is recommended to increase 1 mmax.
lnmax is a certain value proportional to the maximum number of nonzero elements between columns of matrix \(\mathbf{A}\). The maximum number of nonzero is calculated by the formula below where \(n z_{k}\) is number of nonzero elements in the \(k\)-th column of matrix \(\mathbf{A}\).
\[
\max _{k}\left[\max \left(1, n z_{k} \times \operatorname{ipar}[1] / 100 \quad\right)\right]
\]

You can specify lnmax as this maximum number multiplied by 1.2.
After computation, this routine output the actual size in ipar[12] and ipar[13] corresponding to lmmax and Inmax respectively.

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where \(\mathbf{A}\) results from the finite difference method applied to the elliptic equation
\(-\Delta u+\boldsymbol{a} \nabla \boldsymbol{u}+\boldsymbol{u}=\boldsymbol{f}\)
with zero boundary conditions on a cube and the coefficient \(\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)\) where \(a_{1}, a_{2}\) and \(a_{3}\) are some constants. The matrix \(\mathbf{A}\) in Diagonal format is generated by the routine init_mat_diag. Then it is converted into the storage scheme in compressed storage.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"

\#define	NORD	60
\#define	NX	NORD
\#define	NY	NORD
\#define	NZ	NORD
\#define	N	$(N X * N Y * N Z)$
\#define	K	$(N+1)$
\#define	NDIAG	7
\#define	L	4
\#define	LMMAX	1000
\#define	LNMAX	200
\#define	NUMT	4

double errnrm(double*, double*, int);
void init_mat_diag(double, double, double, double, double*, int*, int, int,
int, double, double, double, int, int, int);
void convgcr(double*, int, int*, int*, double*, int*, int*, int*);

```
```

int MAIN__() {
int nofst[NDIAG];
int nrow[K * NDIAG], nfcnz[K], iw[K * NDIAG][2];
int ivw[N];
int *ivw2;
int ipar[20];
int nfrnz[K], nfrnzm[K];
int j, l, nbase, length, numnz, ncoll, ntopcfg, nnz, icon, isw, nwm,
nzm, itmax, icont;
int i;
double diag[NDIAG][K], diag2[NDIAG][K];
double a[K * NDIAG], w[K * NDIAG];
double x[N], b[N], solex[N], y[N];
double *vw2;
double rpar[20]
double va1, va2, va3, vc, xl, yl, zl, err1, err2, err3, err4, eps;
double *aa, *am, *vw1;
int *ncol, *ncolm, *ivw1;
VW2 = (double *)malloc(LMMAX * (LNMAX + 3) * NUMT * sizeof(double));
ivw2 = (int *)malloc(LMMAX * 3 * NUMT * sizeof(int));
if (vw2 == NULL || ivw2 == NULL)
exit(-1);
printf(" *** SPARSE LINEAR EQUATIONS BY IDR METHOD");
printf(" WITH PRECONDITIONING\n");
printf(" *** COMPRESSED ROW STORÁGE.\n");
printf("\n");
for (i = 0; i < N; i++)
solex[i] = 1.0;
printf(" *** EXPECTED SOLUTIONS\n");
printf(" X(1) = %18.15lf X(N) = %18.15lf\n", solex[0], solex[N-1]);
printf("\n");
va1 = 3.0;
va2 = 1.0/3.0
va3 = 5.0;
vc = 1.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0,l = nbase; j < length; j++,l++)
diag2[i][j] = diag[i][l];
} e
nbase = nofst[i]
length = N - nbase;
for (j = 0,l = nbase; j < length; j++,l++)
diag2[i][l] = diag[i][j];
}
}
numnz = 1;
for (j = 0; j < N; j++) {
ntopcfg = 1;
for (i = NDIAG; i > 0; i--) {
ncoll = (j+1) - nofst[i-1];
a[numnz-1] = diag2[i-1][j];
nrow[numnz-1] = ncoll;
if (ntopcfg == 1) {
nfcnz[j] = numnz;
ntopcfg = 0;
}
numnz++;
}
}
}

```
```

    nfcnz[N] = numnz;
    nnz = numnz - 1;
    c_dm_vmvscc(a, nnz, nrow, nfcnz, N, solex, b, w, (int *)iw, &icon);
    err1 = errnrm(solex, x, N);
    for (i = 0; i < N; i++)
        x[i] = 0.0;
    c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icon);
    err2 = errnrm(y, b, N);
    aa = (double *)malloc(sizeof(double) * nnz);
    am = (double *)malloc(sizeof(double) * nnz);
    vW1 = (double *)malloc(sizeof(double) * nnz);
    ncol = (int *)malloc(sizeof(int) * nnz);
    ncolm = (int *)malloc(sizeof(int) * nnz);
    ivw1 = (int *)malloc(sizeof(int) * nnz);
    if (aa == NULL || am == NULL || vw1 == NULL ||
        ncol == NULL || ncolm == NULL || ivw1 == NULL)
        exit(-1);
    isw = 1;
    for (i = 0; i < 20; i++) {
        ipar[i] = 0;
        rpar[i] = 0.0;
    }
    nwm = nnz
    nzm = 0;
    convgcr(a, N, nfcnz, nrow, aa, nfrnz, ncol, ivw);
    c_dm_vlspaxcr2(aa, nnz, ncol, nfrnz, N, b, isw, x,
                am, &nzm, ncolm, nfrnzm, nwm, ipar, rpar,
                vw1, ivw1, vw2, ivw2, LMMAX, LNMAX, NUMT, &icon);
    eps = rpar[1];
    itmax = 2000;
    err3 = errnrm(solex, x, N);
    c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int *)iw, &icont);
    err4 = errnrm(y, b, N);
    printf(" *** COMPUTED SOLUTIONS\n");
    printf(" X(1) = %19.16lf X(N) = %19.16lf\n", x[0], x[N-1]);
    printf("\n");
    printf(" C_DM_VLSPAXCR2 ICON = %d\n", icon);
    printf("\n");
    printf(" N
    printf(" NX = %d\n", NX)
    printf(" NY = %d\n",NY);
    printf(" NZ = %d\n", NZ);
    printf(" ITER MAX = %d\n", itmax);
    printf(" ITER = %d\n", ipar[6]);
    printf(" ICMAV = %d\n", ipar[7]);
    printf("\n");
    printf(" EPS = %21.15le\n", rpar[1]);
    printf("\n");
    printf(" INITIAL ERROR = %18.13lf\n", err1);
    printf(" INITIAL RESIDUAL ERROR = %18.10lf\n", err2);
    printf(" CRITERIA RESIDUAL ERROR = %20.15le\n", err2*eps);
    printf("\n");
    printf(" ERROR = %20.15le\n", err3);
    printf(" RESIDUAL ERROR = %20.15le\n", err4);
    printf("\n");
    printf("\n");
    if (err4 <= err2*eps*1.1 && icon == 0) {
        printf(" *********** OK ***********\n");
    } else {
    printf(" ********** NG ***********\n");
    }
    free(vw2);
    free(ivw2);
    free(aa);
    free(am);
    free(vw1);
    free(ncol);
    free(ncolm);
    free(ivw1)
    return(0)
    }
/* ==========================================
ABSOLUTE ERROR : | X1 - X2 |
======================================== */
double errnrm(double *x1, double *x2, int len) {
int i;

```
```

    double s, ss, errnrm_ret;
    s = 0;
    for (i = 0; i < len; i++) {
        ss = x1[i] - x2[i];
        s = s + ss * ss;
    }
    errnrm_ret = sqrt(s);
    return(errnrm_ret);
    }
/* ======================================
INITIALIZE COEFFICIENT MATRIX
===================================== */
void init_mat_diag(double va1, double va2, double va3, double vc,
double *d_l, int *offset, int nx, int ny, int nz,
double xl, double yl, double zl, int ndiag, int len,
int ndivp) {
if (ndiag < 1) {
printf("FUNCTION INIT_MAT_DIAG:\n");
printf(" NDIAG SHOULD BE GREATER THÁN OR EQUAL TO 1\n");
return;
}
\#pragma omp parallel default(shared)
{
int j, l, ndiag_loc, nxy, js, i0, j0, k0;
int i;
double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
ndiag_loc = ndiag;
if (ndiag > 7)
ndiag_loc = 7;
/* INITIAL SETTING */
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
\#pragma omp for
for (i = 0; i < ndivp; i++) {
for (j = 0; j < ndiag; j++) {
d_1[(j * ndivp) + i] = 0.0;
}
}
nxy = nx * ny:
/* OFFSET SETTING */
\#pragma omp single
{ = 0;
if (ndiag_loc >= 7) {
offset[1] = -nxy;
l++;
}
if (ndiag_loc >= 5) {
offset[l] = -nx;
l++;
}
if (ndiag_loc >= 3) {
offset[1] = -1;
1++;
}
offset[l] = 0;
l++;
if (ndiag_loc >= 2) {
offset[l] = 1;
l++;
}
if (ndiag_loc >= 4) {
offset[1] = nx;
l++;
}
if (ndiag_loc >= 6) {
offset[l] = nxy;
}
/* MAIN LOOP */
\#pragma omp for
for (j = 1; j <= len; j++) {
js = j;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
k0 = (js - 1) / nxy + 1;
if (k0 > nz) {

```
```

            printf("ERROR; K0.GH.NZ \n");
            continue;
        }
        j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
        i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
        l = 0;
        if (ndiag_loc >= 7) {
            if (k0 > 1)
            d_l[(l * ndivp) + (j-1)] = -(1.0 / hz + 0.5 * va3) / hz;
        l++;
    }
    if (ndiag_loc >= 5) {
        if (j0>> 1) nd_l[l * ndivp) + (j-1)] = -(1.0 / hy + 0.5 * va2) / hy;
        1++;
        }
        (ndiag_loc >= 3) {
            if (i0 > 1)
            d_l[(l * ndivp) + (j-1)] = -(1.0 / hx + 0.5 * va1) / hx;
            l++;
        }
        hx2 = hx * hx;
        hy2 = hy * hy;
        hz2 = hz * hz;
        d_l[(l * ndivp) + (j-1)] = 2.0 / hx2 + vc;
        if (ndiag_loc >= 5) {
            d_l[(l * ndivp) + (j-1)] += 2.0 / hy2;
            if (ndiag_loc >= 7) {
                d_l[(1 * ndivp) + (j-1)] += 2.0 / hz2;
            }
        }++;
        if (ndiag_loc >= 2) {
            if (i0 < nx)
            d_l[(l * ndivp) + (j-1)] = -(1.0 / hx -0.5 * va1) / hx;
            1++;
        }
        if (ndiag_loc >= 4) {
            if (j0< ny)
            1++;
        }
        if (ndiag_loc >= 6) {
            if (k0 < nz)
                d_l[(l * ndivp) + (j-1)] = -(1.0 / hz - 0.5 * va3) / hz;
        }
    }
    }
return;
}
/* ==================================================================
MODE CONV UNSYM MATRIX FROM COMPRESSED COLUMN TO ROW.
================================================================ */
void convgcr(double *ac, int n, int *ic, int *jc, double *ar,
int *ir, int *jr, int *iw) {
int j, icol, nz;
int i;
nz = ic[n] - 1;
for (i = 0; i <= n; i++) {
ir[i] = 0;
}
for (j = 0; j < nz; j++) {
ir[jc[j]] = ir[jc[j]]+1;
}
ir[0] = 1;
for (i = 1; i <= n; i++) {
ir[i] = ir[i] + ir[i-1];
}
for (i=0; i < n; i++) {
iw[i] = ir[i];
}
icol = 1;
for (j = 0; j < nz; j++) {
if (j == ic[icol]-1)
icol++;
jr[iw[jc[j]-1]-1] = icol;
ar[iw[jc[j]-1]-1] = ac[j];
iw[jc[j]-1] = iw[jc[j]-1] + 1;
}

```
```

    return;
    }

```

\section*{5. Method}

Consult the entry for DM_VLSPAXCR2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [29], [31], [68].

\section*{c_dm_vlsx}

A system of linear equations with symmetric positive definite matrices (blocked modified Cholesky decomposition method).
\[
\begin{gathered}
\text { ierr }=\text { c_dm_vlsx(a, } k, n, b, e p s z, ~ i s w, ~ \\
\text { \&icon); }
\end{gathered}
\]

\section*{1. Function}

This function solves a system of linear equations (1) with a real coefficient matrix by blocked modified Cholesky's method.
\[
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{1}
\end{equation*}
\]

In (1), \(\mathbf{A}\) is an \(n \times n\) positive definite symmetric real matrix, \(\mathbf{b}\) is a real constant vector, and \(\mathbf{x}\) is the real solution vector. Both the real vectors are of size \(n(n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vlsx((double*)a, k, n, b, epsz, isw, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{4}{*}{a} & \multirow[t]{4}{*}{double \(a[n][k]\)} & Input & The upper triangular part \(\left\{a_{i j}, i \leq j\right\}\) of \(\mathbf{A}\) is stored in the upper triangular part \(\{a[i-1][j-1], i \leq j\}\) of a for input. \\
\hline & & & See Figure c_dm_vlsx-1. \\
\hline & & & The contents of the array are altered on output. \\
\hline & & Output & Decomposed matrix. After the first set of equations has been solved, the upper triangular part of a[i-1] [j-1] (i<j) contains \(l_{i j}(i \leq j)\) of the upper triangular matrix \(\mathbf{L}, \mathbf{D}^{-1}\) and \(\mathbf{L}^{\mathrm{T}}\). \\
\hline k & int & Input & C fixed dimension of array a. (\(\geq \mathrm{n}\)) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline \multirow[t]{2}{*}{epsz} & double & Input & Tolerance for relative zero test (\(\geq 0\)). \\
\hline & int & Input & When epsz is zero, a standard value is assigned. See Comments on use. Control information. \\
\hline isw & & & When solving several sets of equations that have the same coefficient matrix, set isw=1 for the first set, and isw=2 for the second and subsequent sets. Only argument b is assigned a new constant vector \(\mathbf{b}\) and the others are unchanged. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline The co & list of condition & is given & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 10000 & \begin{tabular}{l}
Pivot became negative. \\
Coefficient matrix is not positive definite.
\end{tabular} & Processing continues. \\
\hline 20000 & \begin{tabular}{l}
Pivot became smaller then relative zero value. \\
Coefficient matrix might be singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet\) \\
\\
\(\bullet\)
\end{tabular}\(\quad\)\begin{tabular}{l}
epsz \(<0\) \\
\(\bullet\) \\
isw \(\neq 1\) or 2 \\
\(\bullet\) \\
\(\mathrm{k}<\mathrm{n}\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method
The diagonal elements and upper triangular part \(\left(a_{i j}\right)\) of the \(\mathrm{LDL}^{\mathrm{T}}\)-decomposed positive definite matrix are stored in array \(a[i-1][j-1], i=1, \ldots, n, j=i, \ldots, n\).
After \(\mathrm{LDL}^{\mathrm{T}}\) decomposition, matrix \(\mathbf{D}^{-1}\) is stored in diagonal elements and \(\mathbf{L}\) (excluding the diagonal elements) are stored in the upper triangular part respectively.

\section*{3. Comments on use}

\section*{epsz}

If the value \(10^{-s}\) is given for epsz as the tolerance for relative zero test then it has the following meaning:
If the pivot value loses more than \(s\) significant digits during LDL \(^{\mathrm{T}}\) decomposition in the modified Cholesky's method, the value is assumed to be zero and decomposition is discontinued with icon=20000. The standard value of epsz is normally \(16 \mu\), where \(\mu\) is the unit round-off.

Decomposition can be continued by assigning the smallest value (e.g. \(10^{-70}\)) to epsz even when pivot values become smaller than the standard value, however the result obtained may not be of the desired accuracy.

\section*{isw}

When solving several sets of linear equations with the same coefficient matrix, specify isw=2 for any second and subsequent sets after successfully completing the first with isw=1. This will bypass the \(\mathbf{L D L}^{\mathrm{T}}\) decomposition section and
go directly to the solution stage. Consequently, the computation for these subsequent sets is far more efficient than otherwise.

\section*{Negative pivot during the solution}

If the pivot value becomes negative during decomposition, it means the coefficient matrix is no longer positive definite. The calculation is to continued and icon \(=10000\) is returned on exit. Note, however, that the resulting calculation error may be significant, because no pivoting is performed.

\section*{Calculation of determinant}

To calculate the determinant of the coefficient matrix, multiply all the \(n\) diagonal elements of the array a together(i.e., diagonal elements of \(\mathbf{D}^{-1}\)) after calculation is completed, and take the reciprocal of this result.

\section*{4. Example program}

A system of linear equations with a \(1000 \times 1000\) coefficient matrix is solved.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NMAX (1000)
\#define LDA (NMAX+1)
MAIN__()
{
int n, isw, i, j, icon, ierr;
double a[NMAX][LDA], b[NMAX];
double epsz, s, det;
n = NMAX;
epsz = 0.0;
isw = 1;
\#pragma omp parallel for shared(a,n) private(i,j)
for(i=0; i<n; i++)
for(j=0; j<n; j++)
a[i][j] = min(i,j)+1;
\#pragma omp parallel for shared(b,n) private(i)
for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
ierr = c_dm_vlsx((double*)a, LDA, n, b, epsz, isw, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_vlsx failed with icon = %d\n", icon);
exit(1);
}
s = 1.0;
\#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];
printf("solution vector:\n");
for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);
det = 1.0/s;
printf("\ndeterminant of the matrix = %e\n", det);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VLSX in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [52].

\section*{c_dm_vlux}
\begin{tabular}{|l|}
\hline A system of linear equations with LU-decomposed real matrices. \\
\hline ierr \(=c _d m _v l u x(b, f a, ~ k f a, ~ n, ~ i p, ~ \& i c o n) ; ~\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine solves a system of linear equations having LU-decomposed real coefficient matrices.
\[
\begin{equation*}
\mathbf{L} \mathbf{U x}=\mathbf{P b} \tag{1}
\end{equation*}
\]
where, \(\mathbf{L}\) and \(\mathbf{U}\) are respectively a unit lower triangular matrix and a unit upper triangular \(n \times n\) matrix, \(\mathbf{P}\) is a permutation matrix (interchanging rows of the coefficient matrix for partial pivoting in LU-decomposition), \(\mathbf{b}\) is an n -dimensional real constant vector, and \(\mathbf{x}\) is an n-dimensional solution vector \((n \geq 1)\).

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vlux(b, (double*)fa, kfa, n, ip, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline b & double b[n] & Input & Constant vector \(\mathbf{b}\). \\
\hline & & Output & Solution vectors \(\mathbf{x}\). \\
\hline fa & \begin{tabular}{l}
double \\
fa[n][kfa]
\end{tabular} & Input & Matrix \(\mathbf{L}+(\mathbf{U}-\mathbf{I})\). See Comments on use. \\
\hline kfa & int & Input & C fixed dimension of array fa (\(\geq \mathrm{n}\)). \\
\hline n & int & Input & Order of matrices \(\mathbf{L}\) and \(\mathbf{U}\). \\
\hline ip & int ip[n] & Input & Transposition vector that provides the row exchanges that occurred during partial pivoting. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & Coefficient matrix was singular. & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
• \(\mathrm{n}<1\) \\
• \(\mathrm{kfa}<\mathrm{n}\) \\
\(\bullet\) \\
• error found in ip
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

A system of linear equations with a real coefficient matrix can be solved by calling the routine c_dm_valu to LUdecompose the coefficient matrix prior to calling this routine. The input arguments fa and ip of this routine are the same as the output arguments a and ip of routine c_dm_valu. Alternatively, the system of linear equations can be solved by calling the single routine \(\mathrm{C} _\)dm_vlax.

\section*{4. Example program}

A system of linear equations is solved by LU-decomposing the coefficient \(1000 \times 1000\) matrix.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NMAX (1000)
\#define LDA (NMAX+1)
MAIN__()
{
int n, is, isw, i, j, icon, ierr;
int ip[NMAX];
double a[NMAX][LDA], b[NMAX];
double epsz, s, det;
n = NMAX;
epsz = 0.0;
isw = 1;
\#pragma omp parallel for shared(a,n) private(i,j)
for(i=0; i<n; i++)
for(j=0; j<n; j++) a[i][j] = min(i,j)+1;
\#pragma omp parallel for shared(b,n) private(i)
for(i=0; i<n; i++) b[i] = (i+1)*(i+2)/2+(i+1)*(n-i-1);
ierr = c_dm_valu((double*)a, LDA, n, epsz, ip, \&is, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_valu failed with icon = %d\n", icon);
exit(1)
}
ierr = c_dm_vlux(b, (double*)a, LDA, n, ip, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_vlux failed with icon = %d\n", icon);
exit(1);
}
s = 1.0;
\#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];
printf("solution vector:\n");
for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);
det = is*s;
printf("\ndeterminant of the matrix = %e\n", det);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VLUX in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vmggm}
\[
\begin{array}{|l}
\hline \text { Matrix multiplication (real matrix). } \\
\hline \text { ierr }=\text { c_dm_vmggm(a, ka, b, kb, c, kc, m, n, } \\
\text { l, \&icon); }
\end{array}
\]

\section*{1. Function}

This function obtains product \(\mathbf{C}\) by multiplying a real matrix \(\mathbf{A}(m \times n)\) by a real matrix \(\mathbf{B}(n \times l)\).
\[
\mathbf{C}=\mathbf{A B}
\]
where \(\mathbf{C}\) is a real matrix \((m \times l)\), where \(m, n, l \geq 1\).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vmggm((double*)a, ka, (double*)b, kb, (double*)c, kc, m, n, l,
\&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[m][ka] & Input & Matrix A. \\
\hline ka & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline b & double \(\mathrm{b}[\mathrm{n}][\mathrm{kb}]\) & Input & Matrix B. \\
\hline kb & int & Input & C fixed dimension of array \(\mathrm{b}(\geq 1)\). \\
\hline C & double c [m][kc] & Output & Matrix C. See Comments on use. \\
\hline kc & int & Input & C fixed dimension of array \(\mathrm{C}(\geq 1)\). \\
\hline m & int & Input & The number of rows \(m\) in matrices \(\mathbf{A}\) and \(\mathbf{C}\). \\
\hline n & int & Input & The number of columns \(n\) in matrix \(\mathbf{A}\) and number of rows \(n\) in matrix \(\mathbf{B}\). \\
\hline 1 & int & Input & The number of columns \(l\) in matrices \(\mathbf{B}\) and \(\mathbf{C}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{m}<1\) \\
& \(\bullet \quad \mathrm{n}<1\) \\
& \(\bullet \quad \mathrm{l}<1\) \\
& \(\bullet \quad \mathrm{ka}<\mathrm{n}\) & \\
& \(\bullet \quad \mathrm{kb}<1\) & \\
& \(\bullet \quad \mathrm{kc}<1\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Storage space}

Storing the solution matrix \(\mathbf{C}\) in the same memory area used for matrix \(\mathbf{A}\) or \(\mathbf{B}\) is NOT permitted. \(\mathbf{C}\) must be stored in a separate array otherwise the result will be incorrect.

\section*{4. Example program}

This example program performs a matrix-matrix multiplication and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX (100)
MAIN__()
{
int ierr, icon;
int n, i, j;
double eps;
double a[NMAX][NMAX], b[NMAX][NMAX], c[NMAX][NMAX];
/* initialize matrices */
n = NMAX;
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
a[i][j] = j+1;
b[j][i] = 1.0/(j+1);
}
}
/* matrix matrix multiply */
ierr = c_dm_vmggm((double*)a, NMAX, (double*)b, NMAX,
(double*)c, NMAX, n, n, n, \&icon);
/* check result */
eps = 1e-5;
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
if (fabs((c[i][j]-n)/n) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}
}
}
printf("Result OK\n");
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VMGGM in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30].

\section*{c_dm_vminv}
\begin{tabular}{|l|}
\hline Inverse of real matrix (blocked Gauss-Jordan method) \\
\hline ierr = c_dm_vminv \((a, k, n\), epsz, \&icon \() ;\) \\
\hline
\end{tabular}

\section*{1. Function}

This routine obtains the inverse \(\mathbf{A}^{-1}\) of the \(n \times n\) non-singular real matrix \(\mathbf{A}\) using the Gauss-Jordan method.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vminv((double*)a, k, n, epsz, \&icon);

```
where:
\begin{tabular}{llll}
a & double & Input & Matrix \(\mathbf{A}\). \\
& a[n][k] & Output & Matrix \(\mathbf{A}^{-1}\). \\
k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
n & int & Input & Order of matrix A. \\
epsz & double & Input & Judgment of relative zero of the pivot. \((\geq 0.0)\) \\
icon & int & & When epsz is 0.0, the standard value is assumed. \\
& & Output & Condition code. See below.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
All row elements in matrix A are zero or the pivot \\
becomes a relatively zero. Matrix A may be \\
singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet\) \\
epsz \(<0.0\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{epsz}

When the pivot element selected by partial pivoting is 0.0 or the absolute value is less than epsz, it is assumed to be relatively zero. In this case, processing is discontinued with \(\mathrm{icon}=20000\). When unit round off is u , the standard value of epsz is 16 u . If the minimum value is assigned to epsz, processing is continued, but the result is not assured.

\section*{4. Example program}

The inverse of a matrix is computed.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */

```
```

\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define N 2000
\#define K (N+1)
int MAIN__()
{
double a[N][K], as[N][K];
double c, t, error, epsz;
int i, j, icon;
c = sqrt(2.0/(N+1));
t = atan(1.0)*4.0/(N+1);
for (j=0; j<N; j++) {
for (i=0; i<N; i++) {
as[j][i] = a[j][i] = c*sin(t*(i+1)*(j+1));
}
}
epsz = 0.0;
c_dm_vminv((double*)a, K, N, epsz, \&icon);
error = 0.0;
for (i=0; i<N; i++) {
for (j=0; j<N; ++j) {
error = max(error,fabs(a[j][i]-as[j][i]));
}
}
printf("order = %d, error = %e\n", N, error);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VMINV in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vmlbife}
```

System of linear equations with sparse matrices
(Multilevel iteration method based on incomplete block factorization,
ELLPACK format storage method)
ierr = c_dm_vmlbife(a, k, iwidt, n, icol, b,
isw, iguss, info, infoep, epsot,
epsin, epsep, x, w, nw, iw, niw,
\&icon);

```

\section*{1. Function}

This routine solves, using the iterative method, a system of linear equations with sparse matrices as coefficient matrices.
\[
\mathbf{A x}=\mathbf{b}
\]

The \(n \times n\) coefficient matrix is stored using the ELLPACK format storage method. Vectors \(\mathbf{b}\) and \(\mathbf{x}\) are \(n\)-dimensional vectors.

The solution method is ORTHOMIN if \(\mathbf{A}\) is symmetric and GMRES if \(\mathbf{A}\) is non-symmetric. The iteration (called outer iteration) is preconditioned by the multilevel incomplete block factorizations and stable. The iteration procedure is preconditioned by repeated elimination of certain sets of unknowns. The elimination procedure uses approximative inverses of the sub-matrices produced by the sets of eliminated unknowns. The elimination procedure is repeated until on the so-called coarsest level a smaller linear system is produced. For every step of the outer iteration this linear system is solved iteratively (called inner iteration).

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vmlbife((double*)a, k, iwidt, n, (int*)icol, b, isw, iguss, info,
infoep, epsot, epsin, epsep, x, w, nw, iw, niw, \&icon);

```
where:
\begin{tabular}{llll}
a & \begin{tabular}{l}
double \\
a[iwidt][k]
\end{tabular} & Input & The nonzero elements of a coefficient matrix A are stored in a. \\
k & \begin{tabular}{l}
int \\
iwidt \\
int
\end{tabular} & \begin{tabular}{l}
Input
\end{tabular} & \begin{tabular}{l}
C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
Maximum number of row-vector-direction nonzero elements of \\
coefficient matrix \(\mathbf{A}\). Size of first-dimension of a and icol.
\end{tabular} \\
n & int & Input & \begin{tabular}{l}
Order \(n\) of matrix \(\mathbf{A}\).
\end{tabular} \\
icol & \begin{tabular}{l}
int icol \\
[iwidt][k]
\end{tabular} & Input & \begin{tabular}{l}
Column index used in ELLPACK format. Used to indicate to which \\
column vector the corresponding element of a belongs.
\end{tabular} \\
b & \begin{tabular}{l}
double b[n] \\
isw
\end{tabular} & Input & \begin{tabular}{l}
The right-side constant vectors of a system of linear equations are stored. \\
int
\end{tabular}
\end{tabular}

1 Initial calling.
2 Second or subsequent calling.
The arrays, a, icol, iw and \(w\), must NOT be changed if the routine is called again with \(i s w=2\).
\begin{tabular}{|c|c|c|c|}
\hline iguss & int & Input & \begin{tabular}{l}
Control information specifying whether iterative computation is to be performed using the approximate values of the solution vectors specified in array X . \\
iguss \(=0 \quad\) the approximate values of the solution vectors are not specified and set to zero. \\
iguss \(\neq 0\) the iterative computation is performed using the approximate values of the solution vectors specified in array X .
\end{tabular} \\
\hline info & int info[14] & Input / Output & \begin{tabular}{l}
The control information of the iteration. \\
For example, for symmetric coefficient matrix \(\mathbf{A}\), info is set as follows;
\[
\begin{array}{lll}
\text { info[0] }=10 ; & \text { info[1] }=\text { NTHRD*100; } & \text { info[2] }=0 ; \\
\text { info[4] }=1 ; & \text { info[5] }=2000 ; & \text { info[9] }=1 ; \\
\text { info[10] }=1000 ; & &
\end{array}
\]
\end{tabular} \\
\hline
\end{tabular}

For example, for unsymmetric coefficient matrix \(\mathbf{A}\), info is set as follows;
```

info[0] = 10; info[1] = NTHRD*100; info[2] = 0;
info[4] = 2; info[5] = 2000; info[6] = 5;
info[7] = 20; info[9] = 2; info[10]= 1000;
info[11]= 10; info[12]= 0;

```

Where NTHRD is the number of threads which are executed in parallel.
See Comments on use.

It is recommendable to use symmetrical
normalization. However, in some cases the non-symmetrical normalization can produce faster convergence. Criterion value for judgment of convergency.
NORM \(\geq 1\) The matrix is normalized from the left by the inverse of the main diagonal of \(\mathbf{A}\). This effects that the main diagonal is equal to one but the normalized matrix will be nonsymmetric even if the matrix \(\mathbf{A}\) is symmetric.
info[3] Output Number of levels.
info[4] Input METHOT.
The iterative method used in the outer iteration. METHOT \(=1\) Preconditioned ORTHOMIN is used. It should be used if the matrix \(\mathbf{A}\) is symmetric and a symmetrical normalization is used.

METHOT \(\neq 1\) Restarted and truncated GMRES is used. It should be used if the matrix
\(\mathbf{A}\) is non-symmetric or a non-symmetrical normalization is used.
info[5] Input ITMXOT.
The maximal number of iteration steps in the outer iteration, for example 2000. If the maximum iteration number of outer iteration is reached the processing is terminated and the returned solution does not fulfill the stopping criterion.
info[6] Input NRESOT.
The number of residuals in the orthogonalization procedure of the outer iteration, i.e. truncation after NRESOT residuals. For example, 5. Only used if GMRES is applied.
info[7] Input NRSTOT.
After NRSTOT iteration steps the outer iteration is restarted. For example, 20. If it is NRSTOT \(<1\) there is no restart. Only used if GMRES is applied.
info[8] Output ITEROT.
The number of iteration steps in the outer iteration procedure.
info[9] Input METHIN.
The iterative method used in the inner iteration. METHIN \(=1\) Preconditioned ORTHOMIN is used. It should be used if the matrix \(\mathbf{A}\) is symmetric and a symmetrical normalization is
used.
METHIN \(\neq 1\) Restarted and truncated GMRES is used. It should be used if the matrix
\(\mathbf{A}\) is non-symmetric or a non-symmetrical normalization is used.
info[10] Input
ITMXIN.
The maximal number of iteration steps in the inner iteration, for example 1000.
If ITMXIN is reached the processing is continued on the outer iteration.
info[11] Input
NRESIN.
The number of residuals in the orthogonalization procedure of the inner iteration, ie. truncation after NRESIN residuals. For example, 10. Only used if GMRES is applied.
info[12] Input
NRSTIN.
After NRSTIN iteration steps the inner iteration is restarted.

Only used if GMRES is applied. If it is NRSTIN \(<1\) there is no restart.
info[13] Output The average number of the inner iteration. The control information for the block matrix of the removed unknowns and the reduced matrix.
For example, infoep is set as follows to specify the method for approximating the inverse matrix of a matrix block, which is used for calculating the Schur complement in each level:
In case of approximating the inverse matrix with a diagonal matrix.
```

infoep[0] = 1;
infoep[1] = 5;
infoep[2] = 2*nrow;

```

In case of seeking an approximative inverse matrix with an iterative method.
infoep[0] = nrow;
infoep[1] = 5;
infoep[2] = 2*nrow;
Where, nrow indicates the representative number of nonzero entries per row in the coefficient matrix \(\mathbf{A}\).
\begin{tabular}{lll}
infoep[0] & Input & \begin{tabular}{l}
MAXNCV. \\
\\
\\
\\
\\
\\
\\
in the approximative inverse of the eliminated \\
matrix block. Typically it is set MAXNCV \\
\\
\(=1\) or MAXNCV=MAXNC. Notice that
\end{tabular} \\
& & MAXNCV=1 effects that the matrix block is \\
infoep[1] & Input & MAXITV.
\end{tabular}
\(\left.\begin{array}{ll} & \begin{array}{l}\text { Maximal number of approximative inverse } \\ \text { steps. MAXITV specifies the maximal } \\ \text { number of iteration steps which are allowed } \\ \text { to calculate the approximative inverse matrix }\end{array} \\ \text { with accuracy TAUV. If the number of } \\ \text { iteration steps reaches MAXITV the } \\ \text { procedure is terminated. Notice that in any } \\ \text { case the approximation procedure will need }\end{array}\right]\)

It has to be \(0 \leq \mathrm{TAU}<1\).
epsep[1] Input
TAUV.
The tolerance of the approximative inverse. A small value for TAUV will increase the time for the elimination procedure but improve the quality of the preconditioner. Normally epsin = TAUV is optimal.
epsep[2] Input LAMBDA.
Diagonal threshold for the block matrix. The entries in the block matrix of the removed unknowns are selected such that the absolute sum per row is less than LAMBDA times the main diagonal entry. A larger value for LAMBDA will produce a smaller set of removed unknowns but will increase the costs for the calculation of the approximative inverse of the block. Recommendation:
LAMBDA \(=0.2\). It should be \(\mathrm{TAUV} \leq\)
LAMBDA \(<1\) or \(\operatorname{LAMBDA}=0\).
epsep[3] Input RHO.
Unknowns with small entries in their main diagonal are not considered in the elimination procedure. A main diagonal entry is small if it is smaller than RHO times the absolute sum of the row entries.
Recommendation: \(\mathrm{RHO}=1.0 \mathrm{e}-3\). It has to be \(0<\mathrm{RHO}<1\).
\begin{tabular}{ll}
double \(x[n]\) & Input \\
Output \\
double \(w[n w]\) & Work \\
int & Input
\end{tabular}

The approximate values of solution vectors can be specified.
Solution vectors are stored.

Size of the work array W .
\(n \mathrm{n} \leq \max (2 \times \operatorname{MAXLVL}+2,10) \times\) NBAND \(\times\) MAXT \(+(4 \times \mathrm{NC}+6) \times(\mathrm{n}\)
+ MAXT \()+\max (2 \times N C \times(\mathrm{n}+\operatorname{MAXT}), \operatorname{LRO}(\mathrm{n}))+\max (\mathrm{LRO}(\mathrm{nf})+\mathrm{n}+\)
MAXT, \(6 \times(\mathrm{n}+\) MAXT \())\))
MAXT is the maximum number of threads which are created in this routine.
NBAND denotes the bandwidth of the matrix.
NC an upper bound for the number of non-zero entries per row (typically NC = MAXNC).
\(n f\) the number of unknowns in the final level (typically \(n f=2^{- \text {MAXLVL }} \times\)
(\(n+\) MAXT).
Moreover it is
LRO \((\mathrm{N})= \begin{cases}4 \times \mathrm{N} & : \text { ORTHOMIN method }, \\ (2 \times \mathrm{NRES}+1) \times \mathrm{N} & : \text { GMRES method },\end{cases}\)
where NRES denotes the number of residuals used in GMRES.
Normally the term LR0(nf) can be neglected.
\begin{tabular}{lll}
iw & int iw[niw] & Work \\
niw & int & Input
\end{tabular}

Size of the work array iw.
niw \(\leq((4 \times\) MAXLVL +10\() \times\) MAXT \(+12 \times\) NBAND \()+3400) \times\) MAXT
\(+(6 \times N C+11) \times(n+\) MAXT \()\)
MAXT is the maximum number of threads which are created in this routine.
NBAND denotes the bandwidth of the matrix.
NC an upper bound for the number of non-zero entries per row (typically NC = MAXNC).
icon int Output Condition code. See below.
The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10100 & \begin{tabular}{l}
Inverse matrix could not be calculated with \\
sufficient accuracy.
\end{tabular} & Processing is continued. \\
\hline 10800 & Curable break down in GMRES. & \\
\hline 20001 & \begin{tabular}{l}
Stopping criterion could not be reached within the \\
given number of iteration steps.
\end{tabular} & \begin{tabular}{l}
Processing is discontinued. \\
The approximate value obtained is output in array \\
x, but the precision is not assured.
\end{tabular} \\
\hline 20003 & \begin{tabular}{l}
Non-curable break down in GMRES.
\end{tabular} & \begin{tabular}{l}
Non-curable break down in ORTHOMIN by \\
\(\mathbf{p}^{\mathrm{T}} \mathbf{A} \mathbf{p}=0\) with \(\mathbf{p} \neq 0\).
\end{tabular} \\
\hline 20005 & \begin{tabular}{l}
Non-curable break down in ORTHOMIN by \\
\(\mathbf{p}^{\mathrm{T}} \mathbf{r}=0\).
\end{tabular} & \\
\hline 20006 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet\) \\
\(\mathrm{n}<1\) \\
\(\bullet\) \\
\(\mathrm{n}>\mathrm{k}\)
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
\(\bullet\) \\
iwidt \(<1\) \\
isw \(\neq 1,2\)
\end{tabular} & \\
\hline 30103 & Incorrect entry in column list icol. & \\
\hline 30105 & Main diagonal is missed. & \\
\hline 30210 & Matrix condensation fails by non-positive value. & \\
\hline 30213 & There is a row with only non-zero entries. & \\
\hline 30310 & Too small integer work array. & \\
\hline 30320 & Too small real work array. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{isw}

When multiple linear equations with the same coefficient matrix but different right hand side vectors are solved set isW= 1 in the first call and isw \(=2\) in the second and all subsequent calls. Then the coarse level matrices assembled in the first call are reused.

\section*{nw, niw}

Normally it is sufficient to set \(\mathrm{NC}=\mathrm{i}\) widt \(\times 1.5\) in the formulas for the length for the work arrays. In general, if the work arrays are too small it is recommendable to increase NC. If the given matrix has a very large bandwidth it is recommendable to increase NBAND first.

\section*{ORTHOMIN}

It is always recommendable to use ORTHOMIN if possible. This requires that the matrix is symmetric. As this routine removes easily computable unknowns from the matrix before the iteration starts it can happen that the actual iteration matrix is symmetric even if the given matrix is not. Therefore it is recommendable to try ORTHOMIN with symmetrical normalization first if there is a chance that the iteration matrix is symmetric.

\section*{GMRES}

If the matrix is non-symmetric it is recommendable to use the non-symmetric normalization together with GMRES. Normally it is sufficient to truncate after NRESOT \(=5\) residuals and to restart after 20 steps in the outer iteration. In the inner iteration it can be necessary to select a higher value for the truncation NRESIN and to restart after a larger number of iteration steps or even to forbid a restart. If NRESIN is increased it can happen that more real work space is required. Then it is necessary to increase NRES in the formula for the length workspace nw but, NRES can be set to a smaller value than NRESOT. In general the convergence of GMRES method becomes better as NRESOT and NRESIN are set to larger. But it requires longer computation time and larger amount of memory.

\section*{The elimination of unknowns}

The elimination of unknowns is stopped if one of the following conditions is fulfilled:
- the number of level is greater or equal MAXLVL.
- the coefficient matrix of the final level is a diagonal matrix.
- the number of eliminated unknowns is less than \(10 \%\) of the number of unknowns in the final level.

\section*{classical ILUM preconditioner}

When setting TAU \(=0\), LAMBDA \(=0, \mathrm{RHO}=0.99, \mathrm{MAXNC}=\) iwidt the routine is (similar to) the classical ILUM preconditioner with wavefront ordering. For \(\mathrm{TAU}>0, \mathrm{LAMBDA}=0, \mathrm{RHO}<1\), and MAXNC \(\gg\) iwidt the routine is the ILUM preconditioner with threshold.

\section*{parameters}

It is emphasized that not every setting of the parameters produces necessarily an efficient preconditioner. So it can be necessary to test some values for the parameters till an optimal selection has been found.

\section*{Preconditioning}

The preconditioner bases on nested incomplete block factorizations using the Schur complement. The matrix \(\mathbf{A}_{n}, n=1, \ldots\), MAXLVL-1 in each level can be blocked as follows choosing the appropriate sets of eliminated unknowns:
\[
\mathbf{A}_{n}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right]
\]

And define a matrix \(\mathbf{S}=\mathbf{A}_{22}-\mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12}\), which is called Schur complement. \(\mathbf{A}_{n}\) can be factorized as follows:
\[
\mathbf{A}_{n}=\left[\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{0} \\
\mathbf{A}_{21} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{I} & \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \\
\mathbf{0} & \mathbf{S}
\end{array}\right]
\]

The matrix \(\mathbf{A}_{n+1}\) of next level \(n+1\) can be regarded as a Schur complement matrix with approximating the \(\mathbf{A}_{11}^{-1}\). These incomplete factorization are used for preconditioning in this routine.

\section*{4. Example program}

The partial differential equation
\[
-\left(\frac{\partial^{2}}{\partial^{2} x_{1}} u+\frac{\partial^{2}}{\partial^{2} x_{2}} u+\frac{\partial^{2}}{\partial^{2} x_{3}} u\right)+t\left(\left(x_{2}-x_{3}\right) \frac{\partial u}{\partial x_{1}}+\left(x_{3}-x_{1}\right) \frac{\partial u}{\partial x_{2}}+\left(x_{1}-x_{2}\right) \frac{\partial u}{\partial x_{3}}\right)=f
\]
is solved on the domain \([0,1]^{2}\). Dirichlet boundary condition \(u=0\) is imposed and the value of \(t\) is set to 1.0 .
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define MAXT
\#define N1 39
\#define N2 (N1)
\#define N3 (N1)
\#define L1 (N1)
\#define L2 (N2)
\#define L3 (N3)
\#define KA (N1*N2*N3)
\#define NA }
\#define NLBMAX (N1*N2)
\#define MAXNC 11
\#define NW ((KA+MAXT)*(6*MAXNC+11)+(85*NLBMAX+100)*MAXT)
\#define NIW ((KA+MAXT)*(6*MAXNC+11)+(13*NLBMAX+200+61*51+13)*MAXT)
int MAIN__()
{
double a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1];
double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1];
double x1[L1], x2[L2], x3[L3], c[L3][L2][L1], f[L3][L2][L1];
double w[NW], epsin, epsot, epsep[4], mat[NA][KA], rhs[KA], v[KA];
double sol[KA*3], rhsx[KA], rhsc[KA];
double tmp, t, hr1, hr2, hr3, hr4, hr6, hr7, hr13, one=1.0;
int ndlt[NA], iw[NIW], info[14], infoep[3], icol[NA][KA];
int isw, iguss, nband, ndiag, icon;
int z, z1, z2, z3, n, i, nc;
/* THESE ARE PARAMETERS OF THE TEST PDES. CHANGES OF THE */
/* VALUES CAN PRODUCE DIVERGENCE IN THE ITERATIVE SOLVER. */
t = 1.0;
/* CREATE NODE COORDINATES */
for (z1=0; z1<N1; z1++) {
x1[z1] = (double)z1/(double)(N1-1);
}
for (z2=0; z2<N2; z2++) {
x2[z2] = (double)z2/(double)(N2-1);
}
for (z3=0; z3<N3; z3++) {
x3[z3] = (double)z3/(double)(N3-1);
}
/* -UX1X1-UX2X2-UX3X3+T*((X2-X3)*UX1+(X3-X1)*UX2+(X1-X2)*UX3)=F */
/** REMARK: IF T IS TO LARGE THE PDE IS SINGULAR. */
for (z3=0; z3<N3; z3++) {
for (z2=0; z2<N2; z2++) {
for (z1=0; z1<N1; z1++) {
a1[z3][z2][z1] = 1.0;
a2[z3][z2][z1] = 1.0;
a3[z3][z2][z1] = 1.0;
b1[z3][z2][z1] = t*(x2[z2]-x3[z3]);
b2[z3][z2][z1] = t*(x3[z3]-x1[z1]);
b3[z3][z2][z1] = t*(x1[z1]-x2[z2]);
c[z3][z2][z1] = 0.0;
hr1 = one-x2[z2];
hr2 = x2[z2]*hr1;
hr3 = one-x3[z3];
hr4 = x3[z3]*hr3;
hr6 = one-x1[z1];
hr7 = x1[z1]*hr6;

```
```

            hr13 = hr1*x3[z3]*hr3;
            f[z3][z2][z1] = 2*hr2*hr4+2*hr7*hr4+2*hr7*hr2+
                                    t*((x2[z2]-x3[z3])*(hr6*x2[z2]*hr13-x1[z1]*x2[z2]*hr13)
                                    +(x3[z3]-x1[z1])*(hr7*hr13-hr7*x2[z2]*x3[z3]*hr3)
                                    +(x1[z1]-x2[z2])*(hr7*hr2*hr3-hr7*hr2*x3[z3]));
        }
    }
    }
/* DIRICHLET CONDITIONS: */
for (z3=0; z3<N3; z3++) {
for (z2=0; z2<N2; z2++) {
c[z3][z2][0] = 1.0;
b1[z3][z2][0] = 0.0;
b2[z3][z2][0] = 0.0;
b3[z3][z2][0] = 0.0;
f[z3][z2][0] = 0.0;
c[z3][z2][N1-1] = 1.0;
b1[z3][z2][N1-1] = 0.0;
b2[z3][z2][N1-1] = 0.0;
b3[z3][z2][N1-1] = 0.0;
f[z3][z2][N1-1] = 0.0;
if (z2 == 0) {
for (z1=0; z1<N1; z1++) {
c[z3][0][z1] }=1.0
b1[z3][0][z1] = 0.0;
b2[z3][0][z1] = 0.0;
b3[z3][0][z1] = 0.0;
f[z3][0][z1] = 0.0;
}
} else if (z2 == N2-1) {
for (z1=0; z1<N1; z1++) {
c[z3][N2-1][z1] = 1.0;
b1[z3][N2-1][z1] = 0.0;
b2[z3][N2-1][z1] = 0.0;
b3[z3][N2-1][z1] = 0.0;
f[z3][N2-1][z1] = 0.0;
}
}
if (z3 == 0) {
for (z1=0; z1<N1; z1++) {
c[0][z2][z1] = 1.0;
b1[0][z2][z1] = 0.0;
b2[0][z2][z1] = 0.0;
b3[0][z2][z1] = 0.0;
f[0][z2][z1] = 0.0;
}
} else if (z3 == N3-1) {
for (z1=0; z1<N1; z1++) {
c[N3-1][z2][z1] = 1.0;
b1[N3-1][z2][z1] = 0.0;
b2[N3-1][z2][z1] = 0.0';
b3[N3-1][z2][z1] = 0.0;
f[N3-1][z2][z1] = 0.0;
}
}
}
}
n = N1*N2*N3;
c_dm_vpde3d((double*)a1, L1, L2, N1, N2, N3, (double*)a2, (double*)a3, x1, x2, x3,
(double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f,
(double*)mat,
KA, NA, n, \&ndiag, ndlt, rhs, \&icon);
printf("icon of c_dm_vpde3d = %d\n", icon);
for (z =0; z<n; z++) {
rhsx[z] = rhs[z];
}
nband = 0;
for (i=0; i<ndiag; i++) {
nband=max(nband,fabs(ndlt[i]));
}
/* CHANGE TO ELLPACK FORMAT: */
nc = ndiag;
for (i=0; i<nc; i++) {
for (z=0; z<KA; z++) {

```
```

    icol[i][z] = z+ndlt[i]+1;
    }
    }
    /* CALL THE ITERATIVE SOLVER: */
    isw = 1;
    iguss = 0;
    epsot = 1.0e-6;
    epsin = 1.0e-3;
    info[0] = 10;
    info[1] = MAXT*100;
    info[2] = 1;
    info[4] = 2;
    info[5] = 5000;
    info[6] = 5;
    info[7] = 20;
    info[9] = 2;
    info[10] = 5000;
    info[11] = 20;
    info[12] = 0;
    infoep[0] = 1.
    infoep[1] = 5;
    infoep[2] = 14;
    epsep[0] = 1.0e-2;
    epsep[1] = 1.0e-2;
    epsep[2] = 0.2;
    epsep[3] = 1.0e-3;
    c_dm_vmlbife((double*)mat, KA, nc, n, (int*)icol, rhs, isw, iguss, info,
                infoep, epsot, epsin, epsep, v, w, NW, iw, NIW, &icon);
    printf("icon of c_dm_vmlbife = %d\n", icon);
    for (i=0; i<nband; i++) {
        sol[i] = 0.0;
        sol[nband+n+i] = 0.0;
    }
    for (z=0; z<n; z++) {
    sol[nband+z] = v[z];
    }
    c_dm_vmvsd((double*)mat, KA, ndiag, n, ndlt, nband, sol, rhsc, &icon);
    tmp = 0.0;
    for (z=0; z<n; z++) {
        tmp = max(tmp,fabs((rhsx[z]-rhsc[z])/(rhsx[z]+1.0)));
    }
    printf("error = %e\n", tmp);
    return(0);
    }

```

\section*{5. Method}

Consult the entry for DM_VMLBIFE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c dm vmvsce}
\[
\begin{aligned}
& \text { Multiplication of a real sparse matrix and a real vector (compressed } \\
& \text { column storage method) } \\
& \hline \text { ierr }=c _d m _v m v s c c(a, n z, n r o w, ~ n f c n z, n, x, \\
& y, w, i w, ~ \& i c o n) ;
\end{aligned}
\]

\section*{1. Function}

This routine obtains a product by multiplying an \(n \times n\) sparse matrix by a vector.
\[
\mathbf{y}=\mathbf{A x}
\]

The sparse matrix \(\mathbf{A}\) is stored by the compressed column storage method. Vectors \(\mathbf{x}\) and \(\mathbf{y}\) are \(n\)-dimensional vectors.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vmvscc(a, nz, nrow, nfcnz, n, x, y, w, (int*)iw, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a

\(n z\) & double a[nz] & Input
Input & The non-zero elements of a coefficient matrix are stored. The non-zero elements of a sparse matrix are stored in \(\mathrm{a}[i], i=0, \ldots, \mathrm{nz}-1\). For the compressed column storage method, refer to Figure c_dm_vmvscc-1. \\
\hline nz & int & Input & The total number of the nonzero elements belong to a coefficient matrix A. \\
\hline nrow & int nrow[nz] & Input & The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array a. \\
\hline nfenz & \[
\begin{aligned}
& \text { int } \\
& \text { nfenz }[n+1]
\end{aligned}
\] & Input & \begin{tabular}{l}
The position of the first nonzero element stored in an array a by the compressed column storage method which stores the nonzero elements column by column. \\
\(n f c n z[n]=n z+1\).
\end{tabular} \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline X & double \(\times[\mathrm{n}]\) & Input & Vector \(\mathbf{x}\) is stored in \(\times[i-1], 1 \leq i \leq \mathrm{n}\). \\
\hline y & double \(\mathrm{y}[\mathrm{n}]\) & Output & The product of a matrix and vector is stored in \(\mathrm{y}[i-1], 1 \leq i \leq \mathrm{n}\). \\
\hline W & double w[nz] & Work & \\
\hline iw & int iw[nz][2] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet n<1\) \\
& \(\bullet n z<0\) \\
& \(\bullet n f c n z[n] \neq n z+1\) & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \theta \\
& \mathrm{nfcnz}=\left[\begin{array}{c}
1 \\
3 \\
6 \\
9 \\
12
\end{array}\right], \quad \mathrm{a}=\left[\begin{array}{c}
1 \\
4 \\
-- \\
2 \\
5 \\
7 \\
-- \\
3 \\
8 \\
10 \\
-2 \\
6 \\
9 \\
11
\end{array}\right], \quad \mathrm{nrow}=\left[\begin{array}{c}
1 \\
2 \\
-. \\
1 \\
2 \\
3 \\
1 \\
3 \\
4 \\
4 \\
2 \\
3 \\
4
\end{array}\right]
\end{aligned}
\]

Figure c_dm_vmvscc-1 Storing a coefficient matrix A in compressed column storage method
The way how to store a coefficient matrix \(\mathbf{A}\) in compressed column storage method is explained.

The nonzero elements of each column vector of a matrix \(\mathbf{A}\) are stored in compressed mode into a one-dimensional array a column by column. The position in the array a where the first nonzero element in the \(i\)-th column vector is stored is set into \(\mathrm{nfcnz}[i-1]\).

The value of \(\operatorname{nfcnz}[n]\) is set to \(n z+1\), where \(n\) is an order of the matrix \(\mathbf{A}\) and \(n z\) is the total number of the nonzero elements in this matrix.

The row number of the nonzero element of the matrix \(\mathbf{A}\) stored in the \(i\)-th array element \(\mathrm{a}[i-1]\) is set into nrow[i-1].

\section*{3. Example program}

A product is obtained by multiplying the sparse matrix by a vector.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define NORD (60)
\#define NX
\#define NY
\#define NZ
\#define N
\#define K
\#define NDIAG (7)
MAIN_
{

```
```

int ierr, icon
i, ii, j;
int ne, ns, nnz;
int numnz, ntopcfg, ncol;
int length, nbase;
int nofst[NDIAG];
int nrow[K*NDIAG];
int nfcnz[N+1];
int iw[K*NDIAG][2];
double s;
double diag[NDIAG][K];
double a[K*NDIAG];
double w[K*NDIAG];
double x[N];
double b[N];
double y[N];
for (i=1; i<=N; i++){
x[i-1]=1.0;
}
nofst[1]=-NX*NY;
nofst[2]=-NX;
nofst[3]=-1;
nofst[4]=0;
nofst[5]=1
nofst[6]=NX;
nofst[7]=NX*NY;
for (i=1; i<=NDIAG; i++){
if (nofst[i-1]< 0){
nbase=-nofst[i-1];
length=N-nbase;
for (j=1; j<=length; j++){
diag[i-1][j-1]=(double)(i-1);
}
}
else{
nbase=nofst[i-1];
length=N-nbase;
for ( j=nbase+1; j<=N; j++){
diag[i-1][j-1]=(double)(i-1);
}
}
}
numnz = 1;
for (j=1; j<=N; j++){
ntopcfg = 1;
for (i=NDIAG; i>=1; i--){
if (diag[i-1][j-1] != 0){
ncol = j-nofst[i-1]
a[numnz-1] = diag[i-1][j-1];
nrow[numnz-1] = ncol;
if (ntopcfg == 1){
nfcnz[j-1] = numnz;
ntopcfg = 0;
}
numnz = numnz+1;
}
}
}
nfcnz[N] = numnz;
nnz = numnz-1;
ierr = c_dm_vmvscc(a, nnz, nrow, nfcnz, N, x, y, w, (int*)iw, \&icon);
for (i=1; i<=N; i++){
b[i-1]=0.0;
}
for (i=1; i<=N; i++){
ns = nfcnz[i-1];
ne = nfcnz[i]-1;
for (j=ns; j<=ne; j++){
ii = nrow[j-1]
b[ii-1] = b[ii-1]+a[j-1]*x[i-1];
}
}
s = 0.0;

```
```

    for (i=1; i<=N; i++){
        s=max(s,fabs(y[i-1]-b[i-1]));
    }
    printf("ERROR=%e\n", s);
    }

```

\section*{4. Method}

Consult the entry for DM_VMVSCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vmvscce}
\[
\begin{aligned}
& \text { Multiplication of a complex sparse matrix and a complex vector } \\
& \text { (compressed column storage method) } \\
& \hline \text { ierr }=c _d m _v m v s c c c(z a, n z, ~ n r o w, ~ n f c n z, ~ n, ~ \\
& z x, z y, z w, i w, \& i c o n) ;
\end{aligned}
\]

\section*{1. Function}

This routine obtains a product by multiplying an \(n \times n\) complex sparse matrix by a complex vector.
\[
\mathbf{y}=\mathbf{A x}
\]

The sparse matrix A is stored by the compressed column storage method. Vectors \(\mathbf{x}\) and \(\mathbf{y}\) are \(n\)-dimensional vectors.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vmvsccc(za, nz, nrow, nfcnz, n, zx, zy, zw, (int*)iw, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline za & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { za[nz] }
\end{aligned}
\] & Input & The non-zero elements of a coefficient matrix are stored. The non-zero elements of a sparse matrix are stored in \(\mathrm{za}[i], i=0, \ldots, \mathrm{nz}-1\). For the compressed column storage method, refer to Figure c_dm_vmvscc-1. For a complex matrix, the real array \(a\) in this Figure is replaced with complex array. \\
\hline \(n z\) & int & Input & The total number of the nonzero elements belong to a coefficient matrix A. \\
\hline nrow & int nrow[nz] & Input & The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array za. \\
\hline nfenz & \[
\begin{aligned}
& \text { int } \\
& \text { nfenz[n+1] }
\end{aligned}
\] & Input & \begin{tabular}{l}
The position of the first nonzero element stored in an array za by the compressed column storage method which stores the nonzero elements column by column. \\
\(\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1\).
\end{tabular} \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline zX & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zx[n] }
\end{aligned}
\] & Input & Vector \(\mathbf{x}\) is stored in \(\mathrm{zx}[i-1], 1 \leq i \leq \mathrm{n}\). \\
\hline zy & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zy[n] }
\end{aligned}
\] & Output & The product of a matrix and vector is stored in \(\mathrm{zy}[i-1], 1 \leq i \leq \mathrm{n}\). \\
\hline ZW & \[
\begin{aligned}
& \text { dcomplex } \\
& \text { zw[nz] }
\end{aligned}
\] & Work & \\
\hline iw & int iw[nz][2] & Work & \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet n<1\) \\
& \(\bullet n z<0\) \\
& \(\bullet n f c n z[n] \neq n z+1\) & \\
\hline
\end{tabular}

\section*{3. Example program}

A product is obtained by multiplying the complex sparse matrix by a complex vector.
The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

    /* **EXAMPLE** */
    \#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#define NORD 60
\#define NX NORD
\#define NY NORD
\#define NZ NORD
\#define N NX * NY * NZ
\#define K (N + 1)
\#define NDIAG 7
dcomplex comp_add(dcomplex, dcomplex);
dcomplex comp_sub(dcomplex, dcomplex);
dcomplex comp_mult(dcomplex, dcomplex);
double cdabs(dcomplex);
int MAIN__() {
int nofst[NDIAG];
dcomplex zdiag[NDIAG][K], za[K * NDIAG], zw[K * NDIAG];
int nrow[K * NDIAG], nfcnz[N + 1],
iw[K * NDIAG][2];
dcomplex zx[N], zb[N], zy[N];
int i, ii, j, icon, nbase, length, ncol, numnz, ntopcfg, nnz, ns, ne;
double s;
for (i = 0; i < N; i++) {
zx[i].re = 1.0;

```
```

    zx[i].im = 0.0;
    }
nofst[0] = -NX * NY;
nofst[1] = -NX;
nofst[2] = -1;
nofst[3] = 0;
nofst[4] = 1;
nofst[5] = NX;
nofst[6] = NX * NY;
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
zdiag[i][j].re = (double)i;
zdiag[i][j].im = 0.0;
}
} else {
nbase = nofst[i];
length = N - nbase;
for (j = nbase; j < N; j++) {
zdiag[i][j].re = (double)i;
zdiag[i][j].im = 0.0;
}
}
}

```
numnz = 1;
for (\(j=0 ; j<N ; j++\)) \(\{\)
 ntopcfg = 1;
 for (i = NDIAG - 1; i >= 0; i--) \{
 if (zdiag[i][j].re != 0.0 || zdiag[i][j].im != 0.0) \{
 ncol \(=(j+1)-n o f s t[i] ;\)
 za[numnz - 1] = zdiag[i][j];
 nrow[numnz - 1] = ncol;
 if (ntopcfg == 1) \{
 nfenz[j] = numnz;
 ntopcfg \(=0\);
 \}
 numnz++;
 \}
 \}
```

    }
    nfcnz[N] = numnz;
    nnz = numnz - 1;
    c_dm_vmvsccc(za, nnz, nrow, nfcnz, N, zx,
        zy, zw, (int *)iw, &icon);
    for (i = 0; i < N; i++) {
        zb[i].re = 0.0;
        zb[i].im = 0.0;
    }
    for (i = 0; i < N; i++) {
        ns = nfcnz[i];
        ne = nfcnz[i + 1] - 1;
        for (j = ns - 1; j < ne; j++) {
            ii = nrow[j];
            zb[ii - 1] = comp_add(zb[ii - 1], comp_mult(za [j], zx[i]));
    }
    }
    s = 0.0;
    for (i = 0; i < N; i++) {
        s = fmax(s, cdabs(comp_sub(zy[i], zb[i])));
    }
    printf("ERROR=%18.15lf\n", s);
    return(0);
    }
dcomplex comp_add(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re + so2.re;
obj.im = so1.im + so2.im;
return obj;
}
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re - so2.re;

```
```

    obj.im = so1.im - so2.im;
    return obj;
    }
dcomplex comp_mult(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re * so2.re - so1.im * so2.im;
obj.im = so1.re * so2.im + so1.im * so2.re;
return obj;
}
double cdabs(dcomplex so) {
double obj;
obj = sqrt(so.re * so.re + so.im * so.im);
return obj;
}

```

\section*{4. Method}

Consult the entry for DM_VMVSCCC in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vmvsd}

Multiplication of a real sparse matrix and a real vector (diagonal format storage method).
ierr = c_dm_vmvsd(a, k, ndiag, n, nofst, nlb, \(\mathrm{x}, \mathrm{y}\), \&icon);

\section*{1. Function}

This function obtains a product by multiplying an \(n \times n\) sparse matrix by a vector.
\[
\mathbf{y}=\mathbf{A x}
\]

The sparse matrix \(\mathbf{A}\) is stored by the diagonal format storage method. Vectors \(\mathbf{x}\) and \(\mathbf{y}\) are \(n\)-dimensional vectors.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vmvsd((double*)a, k, ndiag, n, nofst, nlb, x, y, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
a[ndiag][k]
\end{tabular} & Input & Sparse matrix A stored in diagonal storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array a (\(\geq \mathrm{n}\)). \\
\hline ndiag & int & Input & The number of diagonal vectors in the coefficient matrix \(\mathbf{A}\) having nonzero elements. \\
\hline n & int & Input & Order \(n\) of matrix A. \\
\hline nofst & int nofst[ndiag] & Input & Distance from the main diagonal vector corresponding to diagonal vectors in array a. Super-diagonal vectors have positive values. Subdiagonal vectors have negative values. See Comments on use. \\
\hline nlb & int & Input & Lower bandwidth of matrix \(\mathbf{A}\). \\
\hline X & double x [Xlen] & Input & Vector x is stored in \(\mathrm{x}[\mathrm{i}], \mathrm{nlb} \leq \mathrm{i}<\mathrm{nlb}+\mathrm{n}\). Xlen \(=\mathrm{n}+\mathrm{nlb}+\) nub. Where nlb is the lower band width and nub is the upper band width. \\
\hline y & double y[n] & Output & Product vector \(\mathbf{y}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{k}<1\) \\
& \(\bullet \mathrm{n}<1\) \\
& \(\bullet \mathrm{n}>\mathrm{k}\) \\
& \(\bullet \quad \mathrm{ndiag}<1\) \\
& \(\bullet \quad \mathrm{nlb}=\max (-\mathrm{nofst}[\mathrm{i}]) ; 0 \leq \mathrm{i}<\) ndiag & \\
& \(\bullet \quad \operatorname{abs(nofst[i])>\mathrm {n}-1;0\leq \mathrm {i}<\text {ndiag}}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a and nofst}

The coefficients of matrix A are stored in two arrays using the diagonal storage format. For full details, see the Array storage formats section of the General Descriptions.

The advantage of this method lies in the fact that the matrix-vector product can be computed without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

\section*{4. Example program}

This example program calculates a matrix-vector multiplication and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX (100)
\#define UBANDW (2)
\#define LBANDW (1)
\#define NDIAG (UBANDW + LBANDW + 1)
MAIN__()
{
double one=1.0, eps=1.e-6;
int ierr, icon;
int nlb, nub, n, i, j, k;
int nofst[UBANDW + LBANDW + 1];
double a[NDIAG][NMAX], x[NMAX + UBANDW + LBANDW], y[NMAX];
/* initialize matrix and vector */
nlb = LBANDW;
nub = UBANDW;
n = NMAX;
k = NMAX;
for (i=1; i<=nub; i++) {
for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
for (j=n-i; j<n ; j++) a[i][j] = 0.0;
nofst[i] = i;
}
for (i=1; i<=nlb; i++) {
for (j=0; j<i; j++) a[nub+i][j] = 0.0;
for (j=i; j<n; j++) a[nub+i][j] = -2.0;
nofst[nub+i] = -i;
}
for (i=0; i<n+nlb+nub; i++) x[i] = 0.0;
nofst[0] = 0;
for ( j=0; j<n; j++) {
a[0][j] = one;
for (i=1; i<NDIAG; i++) a[0][j] -= a[i][j];
x[nlb+j] = one;
}
/* perform matrix-vector multiply */
ierr = c_dm_vmvsd((double*)a, k, NDIAG, n, nofst, nlb, x, y, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_vmvsd failed with icon = %d\n", icon);
exit(1);
}
/* check vector */
for (i=0;i<n;i++) {
if (fabs(y[i]-one) > eps) {
printf("WARNING: result inaccurate\n");
exit(1);
}

```
```

    printf("Result ok\n");
    return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VMVSD in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vmvse}
\[
\begin{aligned}
& \text { Multiplication of a real sparse matrix and a real vector (ELLPACK } \\
& \text { format storage method). } \\
& \hline \text { ierr }=c _d m _v m v s e(a, k, n w, n, \text { icol, } x, y, \\
& \text { \&icon }) ;
\end{aligned}
\]

\section*{1. Function}

This function obtains a product by multiplying an \(n \times n\) sparse matrix by a vector.
\[
\mathbf{y}=\mathbf{A x}
\]

The coefficient matrix (\(n \times n\)) is stored by the ELLPACK format storage method using two arrays. Vectors \(\mathbf{x}\) and \(\mathbf{y}\) are \(n\) dimensional vectors.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vmvse((double*)a, k, nw, n, (int*)icol, x, y, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline a & \begin{tabular}{l}
double \\
\(a[n w][k]\)
\end{tabular} & Input & Sparse matrix A stored in ELLPACK storage format. See Comments on use. \\
\hline k & int & Input & C fixed dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline nW & int & Input & The maximum number of non-zero elements in any row of matrix \(\mathbf{A}\) \((\geq 0)\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline icol & \[
\begin{aligned}
& \text { int } \\
& \text { icol[nw][k] }
\end{aligned}
\] & Input & Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong. See Comments on use. \\
\hline \(x\) & double \(\times[\mathrm{n}]\) & Input & Vector \(\mathbf{x}\). \\
\hline y & double y[n] & Output & Solution vector \(\mathbf{y}\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{k}<1\) \\
& \(\bullet \mathrm{n} \leq 0\) \\
& \(\bullet \mathrm{nw}<1\) & \\
& \(\bullet \mathrm{n}>\mathrm{k}\) & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{a and icol}

The coefficients of matrix A are stored in two arrays using the ELLPACK storage format. For full details, see the Array storage formats section of the General Descriptions.

Before storing data in the ELLPACK format, it is recommended that the user initialize the arrays a and icol with zero and the row number, respectively.

\section*{4. Example program}

This example program calculates a matrix-vector multiplication and checks the results.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NMAX (1000)
\#define UBANDW (2)
\#define LBANDW (1)
\#define NW (UBANDW + LBANDW + 1)
MAIN__()
{
double lcf=-2.0, ucf=-1.0, one=1.0, eps=1.e-6;
int ierr, icon;
int nlb, nub, n, i, j, k, ix;
int icol[NW][NMAX];
double a[NW][NMAX], x[NMAX], y[NMAX];
/* initialize matrix and vector */
nub = UBANDW;
nlb = LBANDW;
n = NMAX;
k = NMAX;
for (i=0; i<n; i++) x[i] = one;
for (i=0; i<NW; i++) {
for (j=0; j<n; j++) {
a[i][j] = 0.0;
icol[i][j] = j+1;
}
}
for (j=0; j<nlb; j++) {
for (i=0; i<j; i++) a[i][j] = lcf;
a[j][j] = one-(double)j*lcf-(double)nub*ucf;
for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
}
for (j=nlb; j<n-nub; j++) {
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = one-(double)nlb*lcf-(double)nub*ucf;
for (i=nlb+1; i<NW; i++) a[i][j] = ucf;
for (i=0; i<NW; i++) icol[i][j] = i+1+j-nlb;
}
for (j=n-nub; j<n; j++){
for (i=0; i<nlb; i++) a[i][j] = lcf;
a[nlb][j] = one-(double)nlb*lcf-(double)(n-j-1)*ucf;
for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
ix = n-(j+nub-nlb-1);
for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
}
/* perform matrix-vector multiply */
ierr = c_dm_vmvse((double*)a, k, NW, n, (int*)icol, x, y, \&icon);
if (icon != 0) {

```
```

        printf("ERROR: c_dm_vmvse failed with icon = %d\n", icon);
        exit(1);
    }
    /* check vector */
    for (i=0; i<n; i++) {
        if (fabs(y[i]-one) > eps) {
        printf("WARNING: result inaccurate\n");
        exit(1);
    }
    }
    printf("Result OK\n");
    return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VMVSE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vpde2d}
\begin{tabular}{l}
Generation of System of linear equations with sparse matrices by the \\
finite difference discretization of a two dimensional boundary value \\
problem for second order partial differential equation. \\
\hline ierr = c_dm_vpde2d(a1, l1, n1, n2, a2, x1, x2, \\
b1, b2, c, f, a, k, na, n, \&ndiag, \\
nofst, r, \&icon);
\end{tabular}

\section*{1. Function}

This routine assembles the system of linear equations by the finite difference discretization of the linear, two dimensional boundary value problem on the rectangular domain B :

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is satisfied.
\[
\begin{gather*}
-\left(\frac{\partial}{\partial x_{1}} a_{1} \frac{\partial u}{\partial x_{1}}+\frac{\partial}{\partial x_{2}} a_{2} \frac{\partial u}{\partial x_{2}}\right)+b_{1} \frac{\partial u}{\partial x_{1}}+b_{2} \frac{\partial u}{\partial x_{2}}+c u=f \tag{1}\\
\beta_{1} \frac{\partial u}{\partial x_{1}}+\beta_{2} \frac{\partial u}{\partial x_{2}}+\gamma u=\phi \tag{2}
\end{gather*}
\]
\(a_{1}, a_{2}, b_{1}, b_{2}, c\) and \(f\) are given functions on the domain and \(\beta_{1}, \beta_{2}, \gamma\) and \(\phi\) are given functions on the boundary of the domain.

The \(\mathrm{n} 1 \times \mathrm{n} 2\) grid is defined by \(x_{i, j}=(\mathrm{x} 1[i-1], \mathrm{x} 2[j-1])\)
\[
\begin{aligned}
& i=1, \ldots, \mathrm{n} 1, j=1, \ldots, \mathrm{n} 2 \text { with } \\
& \mathrm{B}=[\mathrm{x} 1[0], \mathrm{x} 1[\mathrm{n} 1-1]] \times[\mathrm{x} 2[0], \mathrm{x} 2[\mathrm{n} 2-1]]
\end{aligned}
\]

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the grid points. The returned coefficient matrix is stored by the diagonal format storage method.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vpde2d((double*)a1, l1, n1, n2, (double*)a2, x1, x2, (double*)b1, (double*)b2, (double*)c, (double*)f, (double*)a, k, na, n, \&ndiag, nofst, r, \&icon);
where:
\begin{tabular}{llll}
a1 & \begin{tabular}{l}
double \\
a1[n2][l1]
\end{tabular} & Input & \begin{tabular}{l}
The coefficients of \(a_{1}\left(x_{i j}\right)\) are stored in \(\mathrm{a} 1[j-1][i-1], i=1, \ldots, \mathrm{n} 1, j\) \\
\(=1, \ldots, \mathrm{n} 2\).
\end{tabular} \\
l1 & int & Input & Size of second-dimension of array a1, a2, b1, b2, c and f \((\mathrm{ll} \geq \mathrm{n} 1)\). \\
n 1 & int & Input & Number of grid points in the \(x_{1}\)-direction \((\mathrm{n} 1>2)\). \\
n 2 & int & Input & Number of grid points in the \(x_{2}\)-direction \((\mathrm{n} 2>2)\).
\end{tabular}
a2 double Input The coefficients of \(a_{2}\left(x_{i j}\right)\) are stored in a2[j-1][i-1],i=1, .., n1, \(j\)
x1
double x1[n1]
Input \(=1, \ldots, \mathrm{n} 2\).
The \(x_{1}\)-coordinates of the grid points are stored in \(\times 1[i], i=0, \ldots\), \(\mathrm{n} 1-1\). The coordinates of the grid points have to be increasing: \(x 1[i]<x 1[i+1], i=0, \ldots, n 1-2\).
double \(\times 2[\mathrm{n} 2]\) Input The \(x_{2}\)-coordinates of the grid points are stored in \(\times 2[i], i=0, \ldots\), \(\mathrm{n} 2-1\). The coordinates of the grid points have to be increasing: \(x 2[i]<x 2[i+1], i=0, \ldots, n 2-2\).
b1 double Input The coefficients of \(b_{1}\left(x_{i, j}\right)\) and the boundary condition \(\beta_{1}\) are stored in b1.
\(\mathrm{b} 1[\mathrm{j}-1][\mathrm{i}-1]= \begin{cases}\beta_{1}\left(x_{1, j}\right) & i=1 \\ \beta_{1}\left(x_{\mathrm{n} 1, j}\right) & i=\mathrm{n} 1 \\ \beta_{1}\left(x_{i, 1}\right) & j=1 \\ \beta_{1}\left(x_{i, \mathrm{n} 2}\right) & j=\mathrm{n} 2 \\ b_{1}\left(x_{i, j}\right) & \text { else; }\end{cases}\)
\(\begin{array}{ll}\text { b2 } & \text { double } \\ & \text { b2[n2][l1] }\end{array}\)

C
double
c[n2][11]
f double
Input
The coefficients of \(f\left(x_{i, j}\right)\) and the boundary condition \(\phi\) are stored in \(f\).
\(\mathrm{f}[\mathrm{j}-1][\mathrm{i}-1]= \begin{cases}\phi\left(x_{1, j}\right) & i=1 \\ \phi\left(x_{\mathrm{n} 1, j}\right) & i=\mathrm{n} 1 \\ \phi\left(x_{i, 1}\right) & j=1 \\ \phi\left(x_{i, \mathrm{n} 2}\right) & j=\mathrm{n} 2 \\ f\left(x_{i, j}\right) & \text { else; }\end{cases}\)
a double
a[na][k]
k int
na int
n int
ndiag int
nofst int
nofst[ndiag]
\(r\) double r[k]
icon int
Output
The nonzero elements of a coefficient matrix are stored in a.

Input Size of second-dimension of array a (\(\geq \mathrm{n})\).
Input \(\quad\) Size of first-dimension of array \(\mathrm{a}(\geq \mathrm{ndiag})\).
Input Order \(n\) of matrix \(\mathbf{A}(\mathrm{n}=\mathrm{n} 1 \times \mathrm{n} 2)\).
Output Number of columns in array a and size of array nofst (=5).
Output Offsets of diagonals of \(\mathbf{A}\) stored a. Main diagonal has offset 0 , subdiagonals have negative offsets, and superdiagonals have positive offsets.
Output The right-side constant vectors of a system of linear equations are stored in \(r\).
Output Condition code. See below.
The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad 11<\mathrm{n} 1\) \\
- \(\mathrm{n} 1<3\) \\
- \(\mathrm{n} 2<3\) \\
- \(n a<5\) \\
- \(\mathrm{k}<\mathrm{n} 1 \times \mathrm{n} 2\)
\end{tabular} & Bypassed. \\
\hline 30001 & The coordinates of the grid points is not increasing. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{The value of the solution at the grid points}

The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue problem solver depends strictly on the number and the location of the grid points.

\section*{The grid points to their nearest neighbor}

The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in \(x_{1}\)-direction the condition
\[
0.5 \leq \frac{\mathrm{x} 1[i-1]-\mathrm{x} 1[i-2]}{\mathrm{x} 1[i]-\mathrm{x} 1[i-1]} \leq 2 \quad, i=2, \ldots, \mathrm{n} 1-1
\]
should be met (for the \(x_{2}\)-direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of the coefficient matrix is not only determined by the grid but also by the coefficient functions.

\section*{4. Example program}

The domain is the box \([-1,1]^{2}\). The partial differential equation is
\[
-\left(\frac{\partial^{2} u}{\partial^{2} x_{1}}+\frac{\partial^{2} u}{\partial^{2} x_{2}}\right)+v_{1} \frac{\partial u}{\partial x_{1}}+v_{2} \frac{\partial u}{\partial x_{2}}=0
\]
modeling a diffusion of the quantity \(u\) through the cannel driven by the rotating velocity field
\[
v=\left(v_{1}, v_{2}\right)=v_{0} \cdot\left(\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \frac{-x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right)
\]
where \(v_{0}\) is real constant (e.g. \(v_{0}=1\)). The boundary conditions are set as follows:
\[
\begin{array}{ll}
u=0 & x_{2}=-1 \\
u=1 & x_{2}=1 \\
\frac{\partial u}{\partial n}=0 & \text { else }
\end{array}
\]
where \(n\) denotes the outer normal field at the boundary of the box.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define N1 49
\#define N2 (N1)
\#define L1 (N1)
\#define L2 (N2)
\#define KA (N1*N2)
\#define NA 5
int MAIN__()
{
double x1[L1], x2[L2], a1[L2][L1], a2[L2][L1], b1[L2][L1], b2[L2][L1];
double c[L2][L1], f[L2][L1], a[NA][KA], r[KA], v0;
int nofst[NA], z1, z2, i, j, n, ndiag, icon;
v0 = 1.0;
/* create grid nodes nodes: */
for (z1=0; z1<N1; z1++) {
x1[z1] = 2*(double)(z1)/(double)(N1-1)-1.0;
}
for (z2=0; z2<N2; z2++) {
x2[z2] ' 2*(double)(z2)/(double)(N2-1)-1.0;
}
/* coefficient functions: */
for (z2=0; z2<N2; z2++) {
for (z1=0; z1<N1; z1++) {
a1[z2][z1] = 1.0;
a2[z2][z1] = 1.0
}
for (z1=1; z1<N1-1; z1++) {
b1[z2][z1] = v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
b2[z2][z1] = -v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
c[z2][z1] = 0.0;
f[z2][z1] = 0.0;
}
/* boundary conditions at faces X1=-1 and X1=1: */
b1[z2][0] = -1.0;
b2[z2][0] = 0.0;
c[z2][0] = 0.0;
f[z2][0] = 0.0;
b1[z2][N1-1] = 1.0;
b2[z2][N1-1] = 0.0;
c[z2][N1-1] = 0.0;
f[z2][N1-1] = 0.0;
/* boundary conditions at faces X2=-1 and X2=1: */
if (z2 == 0) {
for (z1=0; z1<N1; z1++) {
b1[z1][0] = 0.0;
b2[z1][0] = 0.0;
c[z1][0] = 1.0;
f[z1][0] = 0.0;
}
} else if (z2 == N2-1) {
for (z1=0; z1<N1; z1++) {
b1[z1][N2-1] = 0.0;
b2[z1][N2-1] = 0.0;
c[z1][N2-1] = 1.0;
f[z1][N2-1] = 1.0;
}
}
}
/* build the linear system: */
n = N1*N2;
c_dm_vpde2d((double*)a1, L1, N1, N2, (double*)a2, x1, x2, (double*)b1, (double*)b2,
(double*)c, (double*)f, (double*)a, KA, NA, n, \&ndiag, nofst, r, \&icon);
printf("icon of c_dm_vpde2d = %d\n", icon);
/* write the matrix to a file: */
for (j=0; j<ndiag; j++) {

```
```

        for (i=0; i<n; i+=100) {
        if(i%3 == 0) { printf("\n");};
        printf("%23.16e ", a[j][i]);
    }
    }
    for (i=0; i<ndiag; i++) {
        if(i%3 == 0) { printf("\n");};
        printf("%10d ", nofst[i]);
    }
    for (i=0; i<n; i+=100) {
        if(i%3'== 0) { printf("\n");};
        printf("%23.16e ", r[i]);
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for DM_VPDE2D in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vpde3d}
```

Generation of System of linear equations with sparse matrices by the finite difference discretization of a three dimensional boundary value problem for second order partial differential equation.
ierr = c_dm_vpde3d(a1, l1, l2, n1, n2, n3, a2,
a3, x1, x2, x3, b1, b2, b3, c, f,
a, k, na, n, \&ndiag, nofst, r,
\&icon);

```

\section*{1. Function}

This routine assembles the system of linear equations by the finite difference discretization of the linear, three dimensional boundary value problem on the rectangular domain \(B\) :

The partial differential equation (1) on the domain B with the boundary conditions (2) on the boundary of the domain B is satisfied.
\[
\begin{gather*}
-\left(\frac{\partial}{\partial x_{1}} a_{1} \frac{\partial u}{\partial x_{1}}+\frac{\partial}{\partial x_{2}} a_{2} \frac{\partial u}{\partial x_{2}}+\frac{\partial}{\partial x_{3}} a_{3} \frac{\partial u}{\partial x_{3}}\right)+b_{1} \frac{\partial u}{\partial x_{1}}+b_{2} \frac{\partial u}{\partial x_{2}}+b_{3} \frac{\partial u}{\partial x_{3}}+c u=f \tag{1}\\
\beta_{1} \frac{\partial u}{\partial x_{1}}+\beta_{2} \frac{\partial u}{\partial x_{2}}+\beta_{3} \frac{\partial u}{\partial x_{3}}+\gamma u=\phi \tag{2}
\end{gather*}
\]
\(a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}, c\) and \(f\) are given functions on the domain and \(\beta_{1}, \beta_{2}, \beta_{3}, \gamma\) and \(\phi\) are given functions on the boundary of the domain.

The \(\mathrm{n} 1 \times \mathrm{n} 2 \times \mathrm{n} 3\) grid is defined by \(x_{i, j, k}=(\mathrm{x} 1[i-1], \mathrm{x} 2[j-1], \mathrm{x} 3[k-1])\)
\[
\begin{aligned}
& i=1, \ldots, \mathrm{n} 1, j=1, \ldots, \mathrm{n} 2, k=1, \ldots, \mathrm{n} 3 \\
& \mathrm{~B}=[\mathrm{x} 1[0], \times \mathrm{x} 1[\mathrm{n} 1-1]] \times[\mathrm{x} 2[0], \mathrm{x} 2[\mathrm{n} 2-1]] \times[\mathrm{x} 3[0], \times 3[\mathrm{n} 3-1]]
\end{aligned}
\]

The functions involved in the partial differential equation and the boundary conditions are defined by their values at the grid points. The returned coefficient matrix is stored by the diagonal format storage method.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vpde3d((double*)a1, l1, l2, n1, n2, n3, (double*)a2, (double*)a3, x1, x2, x3, (double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f, (double*)a, k, na, \(n, ~ \& n d i a g, ~ n o f s t, r, ~ \& i c o n) ;\)
where:
a1
double Input The coefficients of \(a_{1}\left(x_{i, j, k}\right)\) are stored in a1[\(\left.k-1\right][j-1][i-1], i=\) a1[n3][12][11] \(1, \ldots, \mathrm{n} 1, j=1, \ldots, \mathrm{n} 2, k=1, \ldots, \mathrm{n} 3\).
11 int Input Size of second-dimension of array a1, a2, a3, b1, b2, b3, c and f (\(11 \geq \mathrm{n} 1\)).
int
int
int
int
double a2[n3][12][11] double a3[n3][12][11] double x1[n1]
double \(\times 2[\mathrm{n} 2]\)
double x3[n3]
double
b1[n3][12][11]
double b2[n3][12][11]
double b3[n3][12][11]

Input

Input
Input
Input
Input

Input

Input
nput

Input

Input
The coefficients of \(b_{1}\left(x_{i, j, k}\right)\) and the boundary condition \(\beta_{1}\) are stored in b1.
\[
\mathrm{b} 1[\mathrm{k}-1][\mathrm{j}-1][\mathrm{i}-1]= \begin{cases}\beta_{1}\left(x_{1, j, k}\right) & i=1 \\ \beta_{1}\left(x_{\mathrm{n} 1, j, k}\right) & i=\mathrm{n} 1 \\ \beta_{1}\left(x_{i, 1, k}\right) & j=1 \\ \beta_{1}\left(x_{i, \mathrm{n} 2, k}\right) & j=\mathrm{n} 2 \\ \beta_{1}\left(x_{i, j, 1}\right) & k=1 \\ \beta_{1}\left(x_{i, j, \mathrm{n} 3}\right) & k=\mathrm{n} 3 \\ b_{1}\left(x_{i, j, k}\right) & \text { else } ;\end{cases}
\]

The coefficients of \(b_{2}\left(x_{i, j, k}\right)\) and the boundary condition \(\beta_{2}\) are stored in b2.
\[
\mathrm{b} 2[\mathrm{k}-1][\mathrm{j}-1][\mathrm{i}-1]= \begin{cases}\beta_{2}\left(x_{1, j, k}\right) & i=1 \\ \beta_{2}\left(x_{\mathrm{n} 1, j, k}\right) & i=\mathrm{n} 1 \\ \beta_{2}\left(x_{i, 1, k}\right) & j=1 \\ \beta_{2}\left(x_{i, \mathrm{n} 2, k}\right) & j=\mathrm{n} 2 \\ \beta_{2}\left(x_{i, j, 1}\right) & k=1 \\ \beta_{2}\left(x_{i, j, \mathrm{n} 3}\right) & k=\mathrm{n} 3 \\ b_{2}\left(x_{i, j, k}\right) & \text { else } ;\end{cases}
\]

The coefficients of \(b_{3}\left(x_{i, j, k}\right)\) and the boundary condition \(\beta_{3}\) are stored in b3.
\[
\mathrm{b} 3[\mathrm{k}-1][\mathrm{j}-1][\mathrm{i}-1]= \begin{cases}\beta_{3}\left(x_{1, j, k}\right) & i=1 \\ \beta_{3}\left(x_{\mathrm{n} 1, j, k}\right) & i=\mathrm{n} 1 \\ \beta_{3}\left(x_{i, 1, k}\right) & j=1 \\ \beta_{3}\left(x_{i, \mathrm{n} 2, k}\right) & j=\mathrm{n} 2 \\ \beta_{3}\left(x_{i, j, 1}\right) & k=1 \\ \beta_{3}\left(x_{i, j \mathrm{n} 3}\right) & k=\mathrm{n} 3 \\ b_{3}\left(x_{i, j, k}\right) & \text { else } ;\end{cases}
\]
\begin{tabular}{|c|c|c|c|}
\hline C & \[
\begin{aligned}
& \text { double } \\
& c[n 3][12][11]
\end{aligned}
\] & Input & The coefficients of \(c\left(x_{i, j, k}\right)\) and the boundary condition \(\gamma\) are stored in C .
\[
\mathrm{c}[\mathrm{k}-1][\mathrm{j}-1][\mathrm{i}-1]= \begin{cases}\gamma\left(x_{1, j, k}\right) & i=1 \\ \gamma\left(x_{\mathrm{n} 1, j, k}\right) & i=\mathrm{n} 1 \\ \gamma\left(x_{i, 1, k}\right) & j=1 \\ \gamma\left(x_{i, \mathrm{n} 2, k}\right) & j=\mathrm{n} 2 \\ \gamma\left(x_{i, j, 1}\right) & k=1 \\ \gamma\left(x_{i, j, \mathrm{n} 3}\right) & k=\mathrm{n} 3 \\ c\left(x_{i, j, k}\right) & \text { else } ;\end{cases}
\] \\
\hline f & \[
\begin{aligned}
& \text { double } \\
& \mathrm{f}[\mathrm{n} 3][12][11]
\end{aligned}
\] & Input & The coefficients of \(f\left(x_{i, j, k}\right)\) and the boundary condition \(\phi\) are stored in f .
\[
\mathrm{f}[\mathrm{k}-1][\mathrm{j}-1][\mathrm{i}-1]= \begin{cases}\phi\left(x_{1, j, k}\right) & i=1 \\ \phi\left(x_{\mathrm{n} 1, j, k}\right) & i=\mathrm{n} 1 \\ \phi\left(x_{i, 1, k}\right) & j=1 \\ \phi\left(x_{i, \mathrm{n} 2, k}\right) & j=\mathrm{n} 2 \\ \phi\left(x_{i, j, 1}\right) & k=1 \\ \phi\left(x_{i, j \mathrm{n} 3}\right) & k=\mathrm{n} 3 \\ f\left(x_{i, j, k}\right) & \text { else } ;\end{cases}
\] \\
\hline a & double a[na][k] & Output & The nonzero elements of a coefficient matrix are stored in a. \\
\hline k & int & Input & Size of second-dimension of array \(\mathrm{a}(\geq \mathrm{n})\). \\
\hline na & int & Input & Size of first-dimension of array a (\(\geq\) ndiag). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}(\mathrm{n}=\mathrm{n} 1 \times \mathrm{n} 2 \times \mathrm{n} 3)\). \\
\hline ndiag & int & Output & Number of columns in array a and size of array nofst (=7). \\
\hline nofst & int nofst[ndiag] & Output & Offsets of diagonals of \(\mathbf{A}\) stored a. Main diagonal has offset 0 , subdiagonals have negative offsets, and superdiagonals have positive offsets. \\
\hline \(r\) & double r[n] & Output & The right-side constant vectors of a system of linear equations are stored in \(r\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\quad 11<\mathrm{n} 1\) \\
- \(12<\mathrm{n} 2\) \\
- \(\mathrm{n} 1<3\) \\
- \(\mathrm{n} 2<3\) \\
- \(\mathrm{n} 3<3\) \\
- \(n a<7\) \\
- \(\mathrm{k}<\mathrm{n} 1 \times \mathrm{n} 2 \times \mathrm{n} 3\)
\end{tabular} & Bypassed. \\
\hline 30001 & The coordinates of the grid points is not increasing. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{The value of the solution at the grid points}

The quality of the value of the solution at the grid points delivered by the solver of the linear system or an eigenvalue problem solver depends strictly on the number and the location of the grid points.

\section*{The grid points to their nearest neighbor}

The changes of the distances of the grid points to their nearest neighbor should be moderate. For instance in \(x_{1}\)-direction the condition
\[
0.5 \leq \frac{\mathrm{x} 1[i-1]-\mathrm{x} 1[i-2]}{\mathrm{x} 1[i]-\mathrm{x} 1[i-1]} \leq 2 \quad, i=2, \ldots, \mathrm{n} 1-1
\]
should be met (for the \(\boldsymbol{x}_{2}\)-direction and \(\boldsymbol{x}_{3}\)-direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill--posed. Keep in mind that the condition number of the coefficient matrix is not only determined by the grid but also by the coefficient functions.

\section*{4. Example program}

The domain is the channel \([-1,1]^{2} \times[0,5]\). The partial differential equation is
\[
-\left(\frac{\partial^{2} u}{\partial^{2} x_{1}}+\frac{\partial^{2} u}{\partial^{2} x_{2}}+\frac{\partial^{2} u}{\partial^{2} x_{3}}\right)+v_{1} \frac{\partial u}{\partial x_{1}}+v_{2} \frac{\partial u}{\partial x_{2}}=0
\]
modeling a diffusion of the quantity \(u\) through the cannel driven by the rotating velocity field
\[
v=\left(v_{1}, v_{2}, v_{3}\right)=v_{0} \cdot\left(\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \frac{-x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, 0\right)
\]
where \(v_{0}\) is real constant (e.g. \(v_{0}=1\)). The boundary conditions are set as follows:
\[
\begin{array}{ll}
u=0 & x_{3}=0 \\
u=1 & x_{3}=5 \\
\frac{\partial u}{\partial n}=0 & \text { else }
\end{array}
\]
where \(n\) denotes the outer normal field at the boundary of the channel.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define max(a,b) ((a) > (b) ? (a) : (b))
\#define N1 49
\#define N2 49
\#define N3 25
\#define L1 (N1)
\#define L2 (N2)
\#define L3 (N3)
\#define KA (N1*N2*N3)
\#define NA 7
int MAIN__()
{
double x1[L1], x2[L2], x3[L3], a1[L3][L2][L1], a2[L3][L2][L1], a3[L3][L2][L1];
double b1[L3][L2][L1], b2[L3][L2][L1], b3[L3][L2][L1], c[L1][L2][L3];

```
```

double f[L3][L2][L1], a[NA][KA], r[KA], v0;
int nofst[NA], z1, z2, z3, i, j, n, ndiag, icon;
v0 = 1.0;
for (z1=0; z1<N1; z1++) {
x1[z1] = 2*(double)z1/(double)(N1-1)-1.0
}
for (z2=0; z2<N2; z2++) {
x2[z2] = 2*(double)z2/(double)(N2-1)-1.0;
}
for (z3=0; z3<N3; z3++) {
x3[z3] = (double)z3/(double)(N3-1);
}
/* coefficient functions: */
for (z3=0; z3<N3; z3++)
for (z2=0; z2<N2; z2++) {
for (z1=0; z1<N1; z1++) {
a1[z3][z2][z1] = 1.0;
a2[z3][z2][z1] = 1.0;
a3[z3][z2][z1] = 1.0;
}
}
for (z2=1; z2<N2-1; z2++) {
for (z1=1; z1<N1-1; z1++) {
b1[z3][z2][z1] = v0*x2[z2]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
b2[z3][z2][z1] = v0*x1[z1]/sqrt(x1[z1]*x1[z1]+x2[z2]*x2[z2]+1.0e-10);
b3[z3][z2][z1] = 0.0;
c[z3][z2][z1] = 0.0;
f[z3][z2][z1] = 0.0;
}
}
/* boundary conditions at faces X1=-1 and X1=1: */
for (z2=0; z2<N2; z2++) {
b1[z3][z2][0] = -1.0
b2[z3][z2][0] = 0.0;
= 0.0
c[z3][z2][0] = 0.0;
b1[z3][z2][N1-1] = 1.0;
b2[z3][z2][N1-1] = 0.0;
b3[z3][z2][N1-1] = 0.0;
c[z3][z2][N1-1] = 0.0;
f[z3][z2][N1-1] = 0.0;
}
/* boundary conditions at faces X2=-1 and X2=1: */
for (z1=0; z1<N1; z1++) {
b1[z3][0][z1] = 0.0
b2[z3][0][z1] = -1.0
b3[z3][0][z1] = 0.0
c[z3][0][z1] = 0.0
[z3][0][z1] = 0.0;
b1[z3][N2-1][z1] = 0.0;
b2[z3][N2-1][z1] = 1.0;
b3[z3][N2-1][z1] = 0.0;
c[z3][N2-1][z1] = 0.0;
f[z3][N2-1][z1] = 0.0;
}
/* boundary conditions at faces X3=0 and X3=5: */
if (z3==0) {
for (z1=0; z1<N1; z1++) {
for (z2=0; z2<N2; z2++) {
b1[0][z2][z1] = 0.0;
b2[0][[z2][z1] = 0.0;
c[0][z2][z1] = 1.0;
f[0][z2][z1] = 0.0;
}
}
} else if (z3==N3-1) {
for (z1=0; z1<N1; z1++) {
for (z2=0; z2<N2; z2++) {
b1[N3-1][z2][z1] = 0.0;
b2[N3-1][z2][z1] = 0.0;

```
```

                b3[N3-1][z2][z1] = 0.0;
                c[N3-1][z2][z1] = 1.0;
                f[N3-1][z2][z1] = 1.0;
            }
        }
    }
    }
    /* build the linear system: */
    n = N1*N2*N3
    c_dm_vpde3d((double*)a1, L1, L2, N1, N2, N3, (double*)a2, (double*)a3, x1, x2, x3,
                            (double*)b1, (double*)b2, (double*)b3, (double*)c, (double*)f, (double*)a,
                            KA, NA, n, &ndiag, nofst, r, &icon);
    printf("c_dm_vpde3d : icon = %d\n", icon);
    /* write the matrix to a file: */
    for (j=0; j<ndiag; j++) {
    for (i=0; i<n; i+=1000) {
        if(i%3 == 0) { printf("\n");};
        printf("%23.16e ", a[j][i]);
    }
    }
    for (i=0; i<ndiag; i++) {
        if(i%3 == 0) { printf("\n");};
        printf("%10d ", nofst[i]);
    }
    for (i=0; i<n; i+=1000) {
        if(i%3 == 0) { printf("\n");};
        printf("%23.16e ", r[i]);
    }
    return(0);
    }

```

\section*{5. Method}

Consult the entry for DM_VPDE3D in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c dm vradau5}
```

System of stiff ordinary differential equations or differential-algebraic
equations (Implicit Runge-Kutta method)
ierr = c_dm_vradau5(n, fcn, \&x, y, xend, \&h,
rtol, Atol, itol, jac, ijac,
mljac, mujac, mas, imas, mlmas,
mumas, solout, iout, work, lwork,
iwork, liwork, rpar, \&ipar,
\&icon);

```

\section*{1. Function}

This routine solves a system of stiff ordinary differential equations or differential-algebraic equations of the following form:
\[
\mathbf{M} \mathbf{y}^{\prime}=\boldsymbol{f}(x, y) \quad \mathbf{y}\left(\mathbf{x}_{0}\right)=\mathbf{y}_{\mathbf{0}}
\]
, where \(\mathbf{M}\) is a constant \(n\)-by- \(n\) matrix (called mass-matrix), \(\mathbf{y}\) is the solution vector of size \(n\) (with components \(\left.y_{1}, y_{2}, \ldots, y_{n}\right), \boldsymbol{f}(x, \boldsymbol{y})\) is function vector of size \(n\) (with components \(f_{1}, f_{2}, \ldots, f_{n}\)) and \(\boldsymbol{y}_{0}\) is the initial value at \(x=x_{0}\) (with components \(\left.y_{01}, y_{02}, \ldots, y_{0 n}\right)\).

When \(\mathbf{M}\) is a non-singular matrix other than identity matrix, the system becomes an implicit system of ordinary differential equations. When \(\mathbf{M}\) is a singular matrix, the system becomes a system of differential-algebraic equations.

This routine returns to the caller program when a numerical solution at \(x_{\text {end }}\left(\neq x_{0}\right)\) is obtained. When integrating the system from \(x_{0}\) toward \(x_{\text {end }}\), a numerical solution after each successful step can be provided to a user's routine (its routine name is given as parameter solout).

This routine calls DM_VRADAU5 in Fortran SSL II which is based on RADAU5, a free software developed by E. Haier and G. Wanner (Universite de Geneve, as of March 2011). The license of RADAU5 is listed in Appendix 2 of "FUJITSU SSL II Thread-Parallel Capabilities User's Guide".

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vradau5(n, fcn, \&x, y, xend, \&h, rtol, Atol, itol, jac, ijac,
mljac, mujac, mas, imas, mlmas, mumas, solout, iout, work, lwork,
iwork, liwork, rpar, \&ipar, \&icon);

```
where:
\begin{tabular}{lccc}
\(n\) & int \\
int & Input & Input
\end{tabular} \begin{tabular}{l}
Dimension of the system \((\mathrm{n} \geq 1)\). \\
\\
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline ijac & int & Input & \begin{tabular}{l}
Switch for the computation of the Jacobian: \\
ijac \(=0\) : Jacobian is computed internally by finite differences, user function " jac " is never called.
\end{tabular} \\
\hline & & & ijac \(\neq 0\) : Jacobian is supplied by user function jac. \\
\hline \multirow[t]{2}{*}{mljac} & \multirow[t]{2}{*}{int} & \multirow[t]{2}{*}{Input} & \begin{tabular}{l}
Switch for the banded structure of the Jacobian: \\
\(\mathrm{mljac}=\mathrm{n}\) : Jacobian is a full matrix. The linear algebra is done by full-matrix Gauss-elimination.
\end{tabular} \\
\hline & & & \(0 \leq \mathrm{mljac}<\mathrm{n}: \mathrm{mljac}\) is the lower bandwidth of Jacobian matrix (\(\geq\) number of non-zero diagonals below the main diagonal). \\
\hline mujac & int & Input & Upper bandwidth of Jacobian matrix (\(\geq\) number of non-zero diagonals above the main diagonal). Need not be defined if \(\mathrm{mljac}=\mathrm{n}\). \\
\hline \multirow[t]{6}{*}{mas} & \multirow[t]{6}{*}{int} & \multirow[t]{6}{*}{Input} & Name of user function computing the mass-matrix \(\mathbf{M}\). \\
\hline & & & \begin{tabular}{l}
If imas \(=0\), the matrix is assumed to be the identity matrix and needs not to be defined; Supply a dummy routine in this case. \\
If imas \(\neq 0\), the routine mas is of the form.
\end{tabular} \\
\hline & & & Its prototype is: \\
\hline & & & void mas(int \(n\), double am[], int lmas, double *rpar, int *ipar); \\
\hline & & & If \(\mathrm{mlmas}=\mathrm{n}\) the mass-matrix is stored as full matrix like am[(i-1)*lmas+j-1] \(=\boldsymbol{M}_{i j}\) \\
\hline & & & else, the matrix is taken as banded and stored diagonal-wise as \(\operatorname{am}\left[(\mathrm{i}-\mathrm{j}+\mathrm{mumas}) *\right.\) lmas+j-1] \(=\boldsymbol{M}_{i j}\) \\
\hline \multirow[t]{2}{*}{imas} & \multirow[t]{2}{*}{int} & \multirow[t]{2}{*}{Input} & Information on the mass-matrix; \\
\hline & & & imas \(=0: \mathbf{M}\) is supposed to be the identity matrix, mas is never called. imas \(\neq 0\) : Mass-matrix is supplied. \\
\hline \multirow[t]{4}{*}{mlmas} & \multirow[t]{4}{*}{int} & \multirow[t]{4}{*}{Input} & Switch for the banded structure of the mass-matrix: \\
\hline & & & mlmas \(=\mathrm{n}\) : the full matrix case. The linear algebra is done by fullmatrix Gauss-elimination. \\
\hline & & & \(0 \leq \mathrm{mlmas}<\mathrm{n}\) : mlmas is the lower bandwidth of the matrix \\
\hline & & & (\(\geq\) number of non-zero diagonals below the main diagonals). mlmas \(\leq \mathrm{mljac}\). \\
\hline mumas & int & Input & Upper bandwidth of mass-matrix (\(\geq\) number of non-zero diagonals above the main diagonal). Need not be defined if mlmas \(=n\). mumas \(\leq\) mujac. \\
\hline \multirow[t]{5}{*}{solout} & \multirow[t]{5}{*}{int} & \multirow[t]{5}{*}{Input} & Name of user function providing the numerical solution during integration. \\
\hline & & & If iout \(\neq 0\), it is called after every successful step. Supply a dummy function if iout \(=0\). \\
\hline & & & It must have the form. Its prototype is: \\
\hline & & & ```
void solout(int nr, double xold, double x,
 double y[], double cont[], int lrc, int n,
 double *rpar, int *ipar, int irtrn,
 double *work2, int *iwork2);
``` \\
\hline & & & solout furnishes the solution " y " at the nr -th grid-point " x " (thereby \\
\hline
\end{tabular}
iout int Input

\section*{work double}
work[lwork] area
\begin{tabular}{lll} 
lwork & int & Input \\
iwork & int & Work \\
& iwork[liwork] & area
\end{tabular}
the initial value is the first grid-point with \(\mathrm{nr}=1\) and xend is the final grid-point).
"xold" is the preceding grid-point. "irtan" serves to interrupt the integration. If irtan is set \(<0\), c_dm_vradau5 returns to the calling program.

\section*{----- CONTINUOUS OUTPUT: ------}

During calls to " solout ", a continuous solution for the interval [xold, x ] is available through the function of type double:
c_dm_vcontr5(i, s, cont, lrc, work2, iwork2)
which provides an approximation to the I-th component of the solution \((1 \leq \mathrm{i} \leq \mathrm{n})\) at the point S . The value S should lie in the interval [xold,x]. Do not change the entries of cont [lrc], work2[*], and iwork2[*].
Switch for calling the routine solout:
iout \(=0\) : Routine is never called
iout \(\neq 0\) : Routine is available for output.
Work work [0], work [1], ..., work [19] serve as parameters for the code. area For standard use of the code work [0], ..., work [19] must be set to zero before calling. See below for a more sophisticated use. work [20], ..., work [lwork-1] serve as working space for all vectors and matrices.
"lwork " must be at least
\(\mathrm{n} *(\mathrm{ljac}+1 \mathrm{mas}+3 * 1 \mathrm{e} * 12)+20\)
where
\(\mathrm{ljac}=\mathrm{n}\) if \(\mathrm{ml} j \mathrm{ac}=\mathrm{n}(\) full Jacobian \()\)
\(\mathrm{ljac}=\mathrm{mljac}+\mathrm{mujac}+1 \mathrm{if} \mathrm{mljac}<\mathrm{n}(\) banded jac.)
and
\(\operatorname{lmas}=0\) if imas \(=0\)
\(\operatorname{lmas}=\mathrm{n}\) if imas \(\neq 0\) and mlmas \(=\mathrm{n}\) (full)
lmas \(=\) mlmas + mumas +1 if mlmas \(<\mathrm{n}\) (banded mass-M.)
and
\[
\begin{aligned}
& l e=n \quad \text { if } \mathrm{mljac}=n(\text { full Jacobian }) \\
& l e=2 * \mathrm{mljac}+\text { mujac }+1 \text { if } \mathrm{mljac}<n(\text { banded jac. })
\end{aligned}
\]

In the usual case where the Jacobian is full and the mass-matrix is the identity (imas \(=0\) ), the minimum storage requirement is
lwork \(=4 * \mathrm{n} * \mathrm{n}+12 * \mathrm{n}+20\).
If iwork[8] \(=\mathrm{M} 1>0\) then " lwork " must be at least \(\mathrm{n} *(\mathrm{ljac}+12)+(\mathrm{n}-\mathrm{M} 1) *(\mathrm{lmas}+3 * \operatorname{le})+20\)
where in the definitions of \(l j a c, 1\) mas and \(l e\) the number \(n\) can be replaced by n - M1.
Declared length of array "work".
iwork[0], iwork[1], ..., iwork[19] serve as parameters for the code. For standard use, set iwork [0], ..., iwork [19] to zero before calling.
iwork[20], ..., iwork[liwork-1] serve as working space.
\begin{tabular}{llll} 
liwork & int & Input & Declared length of array "iwork". \\
rpar & double* & paramet & which can be used for communication between your calling program \\
ipar & int* & ers & and functions fcn, jac, mas, and solout. \\
icon & int & Output & Condition code. See below.
\end{tabular}
\[
\left(\begin{array}{llllll}
a_{11} & a_{12} & & & & \\
a_{21} & a_{22} & a_{23} & & & \\
a_{31} & a_{32} & a_{33} & a_{34} & & \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & \\
& a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\
& & a_{63} & a_{64} & a_{65} & a_{66}
\end{array}\right)
\]
\begin{tabular}{|l|l|l|l|l|l|}
\hline\(*\) & \(a_{12}\) & \(a_{23}\) & \(a_{34}\) & \(a_{45}\) & \(a_{56}\) \\
\hline\(a_{11}\) & \(a_{22}\) & \(a_{33}\) & \(a_{44}\) & \(a_{55}\) & \(a_{66}\) \\
\hline\(a_{21}\) & \(a_{32}\) & \(a_{43}\) & \(a_{54}\) & \(a_{65}\) & \(*\) \\
\hline\(a_{31}\) & \(a_{42}\) & \(a_{53}\) & \(a_{64}\) & \(*\) & \(*\) \\
\hline\(a_{41}\) & \(a_{52}\) & \(a_{63}\) & \(*\) & \(*\) & \(*\) \\
\hline
\end{tabular}
where \(a_{i j}=\partial f_{i} / \partial y_{j}\) The elements marked *are not used.
Fig. c_dm_vradau5-1

\section*{Sophisticated Setting of Parameters:}

Several parameters of the code are tuned to make it work well. They may be defined by setting work [0], ... as well as iwork [0], ... different from zero. For zero input, the code chooses default values:
\begin{tabular}{lll} 
iwork[0] & Input & If iwork \([0] \neq 0\), the code transforms the Jacobian matrix to Hessenberg \\
form. This is particularly advantageous for large systems with full Jacobian. It \\
does not work for banded Jacobian \((\mathrm{mljac}<\mathrm{n})\) and not for implicit systems \\
\((\) imas \(\neq 0)\).
\end{tabular}
iwork[1] = 0 ) is 100000 .
iwork[2] Input The maximum number of Newton iterations for the solution of the implicit system in each step. The default value ( for iwork[2] =0) is 7 .
iwork[3] Input If iwork[3] =0 the extrapolated collocation solution is taken as starting value for Newton's method. If iwork [3] \(\neq 0\) zero starting values are used. The latter is recommended if Newton's method has difficulties with convergence (This is the case when NSTEP is larger than NACCPT + NREJCT; See output parameters). Default is iwork[3] \(=0\).
The following 3 parameters are important for differential-algebraic systems of index \(>1\). The function-routine should be written such that the index 1, 2, 3 variables appear in this order. In estimating the error the index 2 variables are multiplied by h , the index 3 variables by \(\mathrm{h}^{2}\). (In the cases where \(\mathbf{M}\) is the identity matrix or non-singular, the system is just ordinary differential equations, so all variables are index 1 variables and it is sufficient to set 3 parameters to zero.)

If the user sets any of these 3 parameters different from 0 , the sum of 3 parameters must be \(n\).
\begin{tabular}{|c|c|c|}
\hline iwork[4] & Input & Dimension of the index 1 variables. \\
\hline iwork[5] & Input & Dimension of the index 2 variables. Default iwork [5] \(=0\). \\
\hline iwork[6] & Input & Dimension of the index 3 variables. Default iwork [6] \(=0\). \\
\hline iwork[7] & Input & \begin{tabular}{l}
Switch for step size strategy. \\
If iwork[7] = 1 modified predictive controller (Gustafsson) \\
If iwork[7] > 1 classical step size control \\
The default value (for iwork[7] = 0) is iwork[7] = 1. The choice iwork[7] = 1 seems to produce safer results. For simple problems, the choice iwork[7] > 1 produces often slightly faster runs.
\end{tabular} \\
\hline
\end{tabular}

If the differential system has the special structure that
\[
y(i)^{\prime}=y[i+M 2] \text { for } i=0, \ldots, M 1
\]
with M1 a multiple of M2, a substantial gain in computer time can be achieved by setting the parameters iwork [8] and iwork[9]. For example, second order systems \(\boldsymbol{p}^{\prime \prime}=\boldsymbol{g}\left(x, \boldsymbol{p}, \boldsymbol{p}^{\prime}\right)\) can be rewritten as
\[
\begin{aligned}
\boldsymbol{p}^{\prime} & =\boldsymbol{v} \\
\boldsymbol{v}^{\prime} & =\boldsymbol{g}(x, \boldsymbol{p}, \boldsymbol{v})
\end{aligned}
\]
, where \(\mathbf{p}\) and \(\boldsymbol{v}\) are vectors of dimension \(\mathrm{n} / 2\). In this case one has to put \(\mathrm{M} 1=\mathrm{M} 2=\mathrm{n} / 2\). For \(\mathrm{M} 1>0\) some of the input parameters have different meanings:
jac Input Only the elements of the non-trivial part of the Jacobian have to be stored. For example, with the above first order system reduced from the second order system, routine jac has to store only
\[
\left(\begin{array}{ll}
\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{p}} & \frac{\partial \boldsymbol{g}}{\partial \boldsymbol{v}}
\end{array}\right)
\]
, which is \(\mathrm{n} / 2 \times \mathrm{n}\) non-trivial matrix.
Suppose \(y\) and \(f\) are solution vector and right hand side function vector, respectively, of resulting first order system.
If \(\mathrm{mljac}=\mathrm{n}-\mathrm{M} 1\) the Jacobian is supposed to be full;
\[
\operatorname{dfy}\left[(i-1)^{*} l d f y+j-1\right]=\frac{\partial f(i+M 1)}{\partial y(j)}, i=1, \ldots, n-M 1, j=1, \ldots
\]
n

If \(0 \leq \mathrm{mljac}<\mathrm{n}-\mathrm{M} 1\) the Jacobian is banded ( \(\mathrm{M} 1=\mathrm{M} 2 * \mathrm{MM}\) );
\[
\begin{aligned}
& \text { dfy }[(i-j+m u j a c) * l d f y+(j+k \times M 2-1)]=\frac{\partial F(I+M 1)}{\partial Y(J+K \times M 2)} \\
& \quad i=1, \ldots, n-M 1, j=1, \ldots, M 2, k=0, . ., M M \\
& \text { In the banded case, } n=M 1+M 2 \text { has to be met. } \\
& m l j a c=n-M 1: \text { if the non-trivial part of the Jacobian is full. } \\
& 0 \leq m l j a c<n-M 1 \text { : if the }(M M+1) \text { submatrices }(M 1=M 2 * M M), \\
& \quad \frac{\partial f(i+M 1)}{\partial y(j+k \times M 2)}, i=0, \ldots, n-M 1, j=1, \ldots, M 2, k=0, \ldots, M M
\end{aligned}
\]
mljac Input
mujac
mas

Input

Input

Input
Input

Input

Input
mlmas
mumas
iwork[8]
iwork[9]
work[0]
work[1]
are all banded, and mljac is the maximal lower bandwidth of these \(\mathrm{MM}+1\) submatrices.
Maximal upper bandwidth of these \(\mathrm{MM}+1\) submatrices. Need not be defined if mujac \(=\mathrm{n}-\mathrm{M} 1\).
If imas \(=0\) this matrix is assumed to be the identity and need not be defined.
Supply a dummy routine in this case.
If imas \(\neq 0\) it is assumed that only the elements of right lower block of dimension \(\mathrm{n}-\mathrm{M} 1\) differ from that of the identity matrix and only the elements of right lower block of dimension n - M1 must be given in routine mas. For example, consider the following system.
\[
\mathbf{M} \boldsymbol{p}^{\prime \prime}=\boldsymbol{g}\left(x, \boldsymbol{p}, \boldsymbol{p}^{\prime}\right)
\]

This can be rewritten as
\[
\begin{aligned}
& \boldsymbol{p}^{\prime}=\boldsymbol{v} \\
& \boldsymbol{M} \boldsymbol{v}^{\prime}=\boldsymbol{g}(x, \boldsymbol{p}, \boldsymbol{v})
\end{aligned}
\]
and expressed in the following form.
\(\left(\begin{array}{cc}\boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M}\end{array}\right)\binom{\boldsymbol{p}^{\prime}}{\boldsymbol{v}^{\prime}}=\binom{\boldsymbol{v}}{\boldsymbol{g}(x, \boldsymbol{p}, \boldsymbol{v})}\)
In this case the coefficient matrix of the left hand side corresponds to \(\mathbf{M}\) in (1.1). Denoting by \(\mathbf{M}\) the coefficient matrix of the left hand side, if mlmas \(=\mathrm{n}\) - M1 the right lower block is supposed to be full; the array am in the routine mas should be set as
\(a m[(i-1) * \operatorname{lmas}+j-1]=M(j+M 1, i+M 1), \quad i=1, \ldots, n-M 1, j=\) \(1, \ldots, \mathrm{n}\) - M1.
If \(\mathrm{mlmas} \neq \mathrm{n}-\mathrm{M} 1\) the right low block is supposed to be banded:
\(\operatorname{am}[(\mathrm{i}-\mathrm{j}+\) mumas +1\() *\) lmas \(+\mathrm{j}-1]=\mathrm{M}(\mathrm{j}+\mathrm{M} 1, \mathrm{i}+\mathrm{M} 1)\)
mlmas \(=\mathrm{n}-\mathrm{M} 1\) : If the non-trivial part of \(\mathbf{M}\) is full.
\(0 \leq\) mlmas \(<\mathrm{n}-\mathrm{M} 1\) : Lower bandwidth of the mass matrix.
mlmas \(\leq\) mljac must be met.
Upper bandwidth of the mass matrix. mumas \(\leq\) mujac must be met. Need not be defined if \(\mathrm{mlmas}=\mathrm{n}-\mathrm{M} 1\)
The value of M1 \((\geq 0)\). Default M1 \(=0\).
The value of M2 \((\geq 0)\). Default M2 \(=\) M1.
If iwork [8] >0, iwork[8] + iwork[9] n must be met.
The round off unit u. c_dmach ( ) \(\leq \operatorname{work}[0]<1.0\) must be met. Default u = c_dmach ( ) .
The safety factor in step size prediction.
\(0.001<\) work[1] < 1.0 must be met. Default 0.9.
\begin{tabular}{|c|c|c|}
\hline work[2] & Input & \begin{tabular}{l}
Decides whether the Jacobian should be recomputed; increase work [2], to 0.1 say, when Jacobian evaluations are costly. For small systems work [2] should be smaller (0.001, say). Negative work [2] forces the code to compute the Jacobian after every accepted step. \\
Default 0.001. work[2] < 1.0 must be met.
\end{tabular} \\
\hline work[3] & Input & \begin{tabular}{l}
Stopping criterion for Newton's method, usually chosen \(<1\). Smaller values of work [3] make the code slower, but safer. \\
DEFAULT MAX \((10 \mathrm{u} /\) TOLST, \(\operatorname{MIN}(0.03, \sqrt{\text { TOLST }})\) ), where u is the round off unit, TOLST \(=0.1 \cdot r\) tol \(* *(2 / 3)\), and \(r\) tol \(=r\) tol [0] when \(r\) tol is vector. work[3] \(>\mathrm{u} /\) TOLST must be met.
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { work[4], } \\
& \text { work[5] }
\end{aligned}
\] & Input & If work [4] < HNEW / HOLD < work [5], then the step size is not changed. This saves, together with a large work [2], LU-decompositions and computing time for large systems. For smaller systems one may have work [4] = 1.0, work[5] = 1.2, for large full systems work [4] = 0.99, work [5] \(=2.0\) might be good. DEFAULTS work [4] = 1.0, work[5] = 1.2 . work[4] \(\leq 1.0\) and work[5] \(\geq 1.0\) must be met. \\
\hline work[6] & Input & Maximal step size. Default \(x_{\text {end }}-x_{0}\). \\
\hline \[
\begin{aligned}
& \text { work[7], } \\
& \text { work[8] }
\end{aligned}
\] & Input & \begin{tabular}{l}
Parameters for step size selection. \\
The new step size is chosen subject to the restriction work[7] \(\leq\) HNEW / HOLD \(\leq\) work [8] Default values : work[7] = 0.20, work[8] = 8.0. work[7] \(\leq 1.0\) and work[8] \(\geq 1.0\) must be met.
\end{tabular} \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 100 & \begin{tabular}{l} 
In routine solout, parameter irtrn was set to \\
be negative.
\end{tabular} & \begin{tabular}{l} 
Processing is discontinued. Solutions obtained so \\
far were correct.
\end{tabular} \\
\hline 10000 & \begin{tabular}{l} 
Number of steps exceeded the value specified in \\
iwork[1].
\end{tabular} & \begin{tabular}{l} 
Processing is discontinued. Integration did not \\
reach xend. The user can try a larger value for \\
iwork [1].
\end{tabular} \\
\hline 21000 & Step size became too small. & Processing is discontinued. \\
\hline 22000 & Matrix was repeatedly singular. & \\
\hline 30000 & There was an inconsistent input. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{Role of SOLOUT}

During integration from \(x_{0}\) to \(x_{\text {end }}\) this routine provides numerical solutions after every accepted step to the routine solout when iout \(\neq 0\).
Namely, when \(x_{0}<x_{\text {end }}\), every accepted step results in a sequence of grid-point such as
\[
x_{0}<x_{1}<x_{2}<\ldots<x_{e n d}
\]
and \(x_{i}\) and solutions at \(x_{i}\) are passed to solout ( \(x_{0}\) and \(x_{\text {end }}\) included). \(x_{i}\) is determined under step size control to meet required accuracies.
If the user requires solutions at intended grid-points, the function subprogram \(c \_d m \_v c o n t r 5\) can be used for dense output. For instance, if solutions are required at equally spaced grid-points one can refer to Example 1 below.
Note that repeated calls to \(\mathrm{C} \_\)dm_vradau5 by incrementing xend is inefficient way for that purpose.

\section*{Thread parallelization of user's routines}

In any of user's routines fcn, jac, mas, and solout, the user can use OpenMP parallelization when necessary.

\section*{Index and initial values for differential-algebraic equations}

In the model \(\boldsymbol{M y} y^{\prime}=\boldsymbol{f}(x, \boldsymbol{y})\) if \(\mathbf{M}\) is non-singular the system is just ordinary differential equations, and "index" of variables in \(\boldsymbol{y}\) is 1 . In this case iwork [4] to iwork [6] should be set to 0 .
If \(\mathbf{M}\) is singular, the system becomes a differential-algebraic equations, and iwork [4] to iwork [6] and initial values should be given carefully. Here is a brief guideline.
For singular M, we can decompose the matrix (e.g., by Gaussian elimination with total pivoting) as
\[
M=S\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right) T
\]
where \(\mathbf{S}\) and \(\mathbf{T}\) are \(n\)-by- \(n\) non-singular matrices, and \(\mathbf{I}\) is the identity matrix of smaller size. Inserting this into (1.1), multiplying by \(\mathbf{S}^{-1}\), and using the transformed variables
\[
\boldsymbol{T} y=\binom{u}{w}
\]
gives
\[
\left(\begin{array}{ll}
\boldsymbol{I} & \mathbf{0} \\
\mathbf{0} & 0
\end{array}\right)\binom{\boldsymbol{u}^{\prime}}{\boldsymbol{w}^{\prime}}=\boldsymbol{S}^{-1} \boldsymbol{f}\left(x, \boldsymbol{T}^{-1}\binom{\boldsymbol{u}}{\boldsymbol{w}}=:\binom{\boldsymbol{g}(x, \boldsymbol{u}, \boldsymbol{w})}{\boldsymbol{h}(x, \boldsymbol{u}, \boldsymbol{w})}\right.
\]
or
\[
\begin{aligned}
& \boldsymbol{u}^{\prime}=\boldsymbol{g}(x, \boldsymbol{u}, \boldsymbol{w}) \\
& \mathbf{0}=\boldsymbol{h}(x, \boldsymbol{u}, \boldsymbol{w})
\end{aligned}
\]

These are called Hessenberg form of the differential-algebraic equations, where the system is split into a smaller ordinary differential equations and a smaller algebraic equations. The Hessenberg forms are often encountered in practice, and can be said as differential equations with algebraic constraints. Below, we give some typical Hessenberg forms which illustrate index 1,2 and 3 variables.
We omit, from now on, the independent variable in equations to simplify mathematical expressions.

\section*{a)System of index 1}

Let us consider the following system
\[
\begin{align*}
& y^{\prime}=f(y, z)  \tag{3.1a}\\
& 0=g(y, z) \tag{3.1b}
\end{align*}
\]
, where \(\boldsymbol{y}\) and \(\mathbf{z}\) are unknown function vectors, and sum of each size is \(n\).
The mass-matrix \(\mathbf{M}\) here is
\[
M=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
\]

Differentiating (3.1b) and using (3.1a) we get
\[
\begin{equation*}
0=g_{y}(y, z) f(y, z)+g_{z}(y, z) z^{\prime} \tag{3.1c}
\end{equation*}
\]
, where \(\boldsymbol{g}_{\boldsymbol{y}}(\boldsymbol{y}, \mathbf{z})\) and \(\boldsymbol{g}_{z}(\boldsymbol{y}, \mathbf{z})\) are \(\partial \boldsymbol{g}(\boldsymbol{y}, \mathbf{z}) / \partial \boldsymbol{y}\) and \(\partial \boldsymbol{g}(\boldsymbol{y}, \mathbf{z}) / \partial \mathbf{z}\) respectively. If \(\boldsymbol{g}_{z}(\boldsymbol{y}, \mathbf{z})\), the coefficient of \(\boldsymbol{z}^{\prime}\), is nonsingular in a neighborhood of the solution we get
\[
z^{\prime}=-g_{z}^{-1}(y, z) g_{y}(y, z) f(y, z)
\]

In this case, \(\boldsymbol{y}\) and \(\boldsymbol{z}\) are index 1 variables. Initial values \(\boldsymbol{y}_{0}\) and \(\boldsymbol{z}_{0}\) should be given to satisfy (3.1b).
b) System of index 2

Next, we consider the following
\[
\begin{align*}
& y^{\prime}=f(y, z)  \tag{3.2a}\\
& 0=g(y) \tag{3.2b}
\end{align*}
\]
, where \(\mathbf{z}\) is absent in the algebraic constraint and \(\boldsymbol{M}\) is as follows.
\[
M=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
\]

Differentiating (3.2b) gives
\[
\begin{equation*}
0=g_{y}(y) f(y, z) \tag{3.2c}
\end{equation*}
\]

Differentiating (3.2c) gives the coefficient of \(\boldsymbol{z}^{\prime}\) as
\[
\begin{equation*}
g_{y}(y) f_{z}(y, z) \tag{3.2~d}
\end{equation*}
\]

If (3.2d) is non-singular in a neighborhood of the solution, \(y\) is index 1 variable and \(z\) is index 2 variable. Initial values \(y_{0}\) and \(z_{0}\) should be given to satisfy not only (3.2b) but (3.2c).
c) System of index 3

Finally, we consider the following system.
\[
\begin{align*}
& y^{\prime}=f(y, z)  \tag{3.3a}\\
& z^{\prime}=k(y, z, u)  \tag{3.3b}\\
& 0=g(y) \tag{3.3c}
\end{align*}
\]

Here the sum of length of \(\boldsymbol{y}, \mathbf{z}\), and \(\boldsymbol{u}\) is \(n . \boldsymbol{M}\) is written as
\[
\boldsymbol{M}=\left(\begin{array}{lll}
\boldsymbol{I} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{I} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right)
\]

Differentiating (3.3c) and using (3.3a) we get
\[
\begin{equation*}
0=g_{y} f \tag{3.3d}
\end{equation*}
\]

Differentiating (3.3d) and using (3.3a,b) we get
\[
\begin{equation*}
0=g_{y y}(f, f)+g_{y} f_{y} f+g_{y} f_{z} k \tag{3.3e}
\end{equation*}
\]
, where the first term of the right hand side means matrix vector multiplication with the matrix \(\boldsymbol{g}_{y y}\) obtained by differentiating matrix \(\boldsymbol{g}_{\boldsymbol{y}}\) and the vector \(\boldsymbol{f}\). Furthermore, differentiating (3.3e) brings about \(\boldsymbol{u}\). If its coefficient, written as
\(\boldsymbol{g}_{\boldsymbol{y}} \boldsymbol{f}_{\boldsymbol{z}} \boldsymbol{k}_{\boldsymbol{u}}\), is non-singular in a neighborhood of the solution, \(\boldsymbol{y}\) is index 1 variable, \(\boldsymbol{z}\) is index 2 variable, and \(\boldsymbol{u}\) is index 3 variable in the original system (3.3a,b,c). Initial values \(\boldsymbol{y}_{0}, \boldsymbol{z}_{0}\) and \(\boldsymbol{u}_{0}\) should be given to satisfy the three constraints (3.3 \(\mathrm{c}, \mathrm{d}, \mathrm{e})\).

\section*{4. Example program}

■ Example 1:Ordinary differential equations of the form \(\boldsymbol{y}^{\prime}=\boldsymbol{f}(x, \boldsymbol{y})\)
Let us consider a simple system:
\[
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=\frac{\left(\left(1-y_{1}^{2}\right) y_{2}-y_{1}\right)}{\varepsilon}, \quad \varepsilon=10^{-6} \\
& y_{1}(0)=2, y_{2}(0)=0
\end{aligned}
\]

Suppose we want to find solutions at \(x=1,2, \ldots, 11\) and print them out. In this problem, the Jacobian matrix \(\partial \boldsymbol{\partial} / \partial y\) is as follows.
\[
\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial y_{1}} & \frac{\partial f_{1}}{\partial y_{2}} \\
\frac{\partial f_{2}}{\partial y_{1}} & \frac{\partial f_{2}}{\partial y_{2}}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
\left(-2 y_{1} y_{2}-1\right) / \varepsilon & \left(1-y_{1}^{2}\right) / \varepsilon
\end{array}\right)
\]

We provide routine \(\mathrm{j} v \mathrm{pol}\) as real argument of jac .
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#define ND 2
\#define LIWORK (3 * ND + 20) /* 26 */
void solout(int, double, double, double*, double*, int, int,
double*, int*, int*, double*, int*);
void jvpol(int, double, double*, double*, int, double*, int*);
void fvpol(int, double, double*, double*, double*, int*);
void dummy(int, double*, int, double*, int*);
int MAIN__() {
double y[ND], work[LWORK];
int iwork[LIWORK];
double rpar[2];
int i, n, ijac, mljac, imas, itol, mujac, iout, icon, mlmas, mumas;
int ipar;
double x, xend, rtol, Atol, h;
rpar[0] = 1.0e-6;
rpar[1] = 0.2;
n = ND;
ijac = 1;
mljac = n;
imas = 0;
iout = 1;
x = 0.0;
y[0] = 2.0;
y[1] = -0.66;
xend = 11.0;
rtol = 1.0e-4;
Atol = 1.0 * rtol;
itol = 0;
h = 1.0e-6;
for (i = 0; i < 20; i++) {
iwork[i] = 0;
work[i] = 0.0;
}
c_dm_vradau5(n, fvpol, \&x, y, xend, \&h,
rtol, Atol, itol,
jvpol, ijac, mljac, mujac,
dummy, imas, mlmas, mumas,
solout, iout,
work, LWORK, iwork, LIWORK,
rpar, \&ipar, \&icon);
printf(" ICON= %d\n", icon);
printf(" X =%5.2lf Y =%18.10e%18.10e\n", x, y[0], y[1]);
return(0);
}
void solout(int nr, double xold, double x, double *y, double *cont,
int lrc, int n, double *rpar, int *ipar, int *irtrn,
double *work2, int *iwork2) {
double prm1, prm2;
if (nr == 1) {

```
```

 printf(" X =%5.2lf Y =%18.10le%18.10le NSTEP =%4d\n"
 else { x, y[0], y[1], nr - 1);
 label 10:
;
if (x >= rpar[1]) {
/* --- CONTINUOUS OUTPUT FOR RADAU5 */
prm1 = c_dm_vcontr5(1, rpar[1], cont, lrc, work2, iwork2);
prm2 = c_dm_vcontr5(2, rpar[1], cont, lrc, work2, iwork2);
printf(" X =%5.2lf Y =%18.10le%18.10le NSTEP =%4d\n",
rpar[1], prm1, prm2, nr - 1);
rpar[1] = rpar[1] + 0.2;
goto label_10;
}
}
return;
}
void fvpol(int n, double x, double *y, double *f, double *rpar, int *ipar) {
f[0] = y[1];
f[1] = ((1-(y[0] * y[0])) * y[1] - y[0]) / rpar[0];
}
void jvpol(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
int *ipar) {
dfy[0] = 0.0;
dfy[1] = 1.0;
dfy[ldfy] = (-2.0 * y[0] * y[1] - 1.0) / rpar[0];
dfy[ldfy + 1] = (1.0 - (y[0] * y[0])) / rpar[0];
return;
}
void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {
return;
}

```

■ Example 2: \(\boldsymbol{y}^{\prime}=\boldsymbol{f}(x, y)\) with banded Jacobian.
Consider the following partial differential equations. " \(f\) " means time and " \(x\) " is scalar space variable.
\[
\begin{aligned}
& \frac{\partial u}{\partial t}=A+u^{2} v-(B+1) u+\alpha \frac{\partial^{2} u}{\partial x^{2}} \\
& \frac{\partial v}{\partial t}=B u-u^{2} v+\alpha \frac{\partial^{2} v}{\partial x^{2}}
\end{aligned}
\]
\(0 \leq x \leq 1, A=1, B=3, \alpha=1 / 50\)
Boundary conditions : \(u(0, t)=u(1, t)=1, v(0, t)=v(1, t)=3\)
Initial values : \(u(x, 0)=1+\frac{1}{2} \sin (2 \pi x), v(x, 0)=3\)
We replace the second spatial derivatives by finite differences on a grid of N points, \(x_{i}=i /(N+1)(1 \leq i \leq \mathrm{N})\), \(\Delta x=1 /(N+1)\) and then obtain a system of ordinary differential equations with independent variable " t " and 2 N unknowns
\(u_{i}=u\left(t, x_{i}\right)\) and \(v_{i}=v\left(t, x_{i}\right)\).
\(u_{i}^{\prime}=1+u_{i}^{2} v_{i}-4 u_{i}+\alpha /(\Delta x)^{2}\left(u_{i-1}-2 u_{i}+u_{i+1}\right)\)
\(v_{i}^{\prime}=3 u_{i}-u_{i}^{2} v_{i}+\alpha /(\Delta x)^{2}\left(v_{i-1}-2 v_{i}+v_{i+1}\right)\)
\(u_{0}(t)=u_{N+1}(t)=1, v_{0}(t)=v_{N+1}(t)=3\)
\(u_{i}(0)=1+\frac{1}{2} \sin \left(2 \pi x_{i}\right), v_{i}(0)=3, i=1,2, \ldots, N\)

When using this routine we define \(\boldsymbol{y}\) as \(\boldsymbol{y}=\left(u_{1}, v_{1}, u_{2}, v_{2}, \ldots, u_{N}, v_{N}\right)^{\mathrm{T}}\). Then the Jacobian becomes a banded matrix with the upper and lower bandwidth 2 . In the following example, we set \(\mathrm{n}=500\), xend \(=10\), and iout \(=0\) and print some components of the solutions at xend.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#define ND 1000
\#define NL }
\#define NU 2
\#define LWORK ((7 * NL + 4 * NU + 16) * ND + 20) /* 38020 */
\#define LIWORK (3 * ND + 20) /* 3020 */
void fbrus(int, double, double*, double*, double*, int*);
void jbrus(int, double, double*, double*, int, double*, int*);
void solout(int, double, double, double*, double*, int, int,
double*, int*, int*, double*, int*);
void dummy(int, double*, int, double*, int*);
int MAIN__() {
double x, xend, y[ND], work[LWORK];
int iwork[LIWORK];
double rpar[2];
int ipar;
double pi, usdelq, gamma, gamma2, anp1, xi, rtol, Atol, h;
int i, n, n2, ijac, mljac, mujac, mlmas, mumas, imas, iout, itol, icon;
pi = 3.14159265358979324;
n = 500;
n2 = 2 * n;
usdelq = ((double)(n + 1)) * ((double)(n + 1));
gamma = 0.02 * usdelq;
gamma2 = 2.0 * gamma;
rpar[0] = gamma;
rpar[1] = gamma2
x = 0.0;
xend = 10.0;
anp1 = n + 1;
for (i = 1; i <= n; i++) {
xi = i / anp1;
y[(2 * i (- 1] = 3.0;
y[(2 * i) - 2] = 1.0 + 0.5 * sin(2.0 * pi * xi);
}
ijac = 1;
/* Jacobian is a banded matrix. */
mljac = NL;
mujac = NU;
imas = 0;
/* Output Routine is not used. */
iout = 0;
rtol = 1.0e-6;
Atol = rtol;
itol = 0;
h = 1.0e-6;
for (i = 0; i < 20; i++) {
work[i] = 0.0;
iwork[i] = 0;
}
mlmas = 0;
mumas = 0;
c_dm_vradau5(n2, fbrus, \&x, y, xend, \&h,
rtol, Atol, itol,
jbrus, ijac, mljac, mujac,
dummy, imas, mlmas, mumas,
solout, iout,
work, LWORK, iwork, LIWORK,
rpar, \&ipar, \&icon);
printf(" ICON= %d\n", icon);
printf(" %18.10e%18.10e%18.10e%18.10e\n", y[0], y[1], y[n2 - 2], y[n2 - 1]);
return(0);
}
void solout(int nr, double xold, double x, double *y, double *cont,

```
```

 int lrc, int n, double *rpar, int *ipar, int *irtrn
 double *work2, int *iwork2) {
 return;
 }
void fbrus(int n2, double x, double *y, double *f, double *rpar, int *ipar) {
int i, n, iu, iv;
double gamma, ui, vi, uim, vim, uip, vip, prod;
n = n2 / 2;
gamma = rpar[0];
i = 1;
iu = 2 * i - 1;
iv = 2 * i;
ui = y[iu -1];
vi = y[iv - 1];
uim = 1.0;
vim = 3.0;
uip = y[iu + 1];
vip = y[iv + 1];
prod = ui * ui * vi;
f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip);
f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
for (i = 2; i <= n-1; i++) {
iu = 2 * i - 1;
iv = 2 * i;
ui = y[iu - 1]
vi = y[iv - 1];
uim = y[iu - 3];
vim = y[iv - 3]
uip = y[iu + 1]
vip = y[iv + 1]
prod = ui * ui * vi;
f[iu - 1] = 1.0 + prod -4.0 * ui + gamma * (uim - 2.0 * ui + uip);
f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
}
i = n;
iu = 2 * i - 1;
iv = 2 * i;
ui = y[iu - 1];
vi = y[iv - 1];
uim = y[iu - 3];
vim = y[iv - 3];
uip = 1.0;
vip = 3.0;
prod = ui * ui * vi;
f[iu - 1] = 1.0 + prod - 4.0 * ui + gamma * (uim - 2.0 * ui + uip);
f[iv - 1] = 3.0 * ui - prod + gamma * (vim - 2.0 * vi + vip);
return;
}
void jbrus(int n2, double x, double *y, double *dfy, int ldfy, double *rpar,
int *ipar) {
int i, n, iu, iv;
double gamma, gamma2, ui, ui2, vi, uivi;
n = n2 / 2;
gamma = rpar[0];
gamma2 = rpar[1];
for (i = 1; i <= n; i++) {
iu = 2 * i - 1;
iv = 2 * i;
ui = y[iu - 1];
vi = y[iv - 1];
uivi = ui * vi;
ui2 = ui * ui;
dfy[(2 * ldfy) + (iu - 1)] = 2.0 * uivi - 4.0 - gamma2;
dfy[ldfy + (iv - 1)] = ui2;
dfy[(3 * ldfy) + (iu - 1)] = 3.0 - 2.0 * uivi;
dfy[(2 * ldfy) + (iv - 1)] = -ui2 - gamma2;
dfy[ldfy + (iu - 1)] = 0.0;
dfy[(3 * ldfy) + (iv - 1)] = 0.0;
}
for (i = 1; i <= n2 - 2; i++) {
dfy[i + 1] = gamma;
dfy[(4 * Idfy) + (i - 1)] = gamma;
}
return;
}

```
```

void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {
return;
}

```

■ Example 3:Second order system \(\boldsymbol{y}^{\prime \prime}=\boldsymbol{f}\left(x, \boldsymbol{y}, \boldsymbol{y}^{\prime}\right)\)
Next, we consider a partial differential equations defined in rectangular plate \(\Omega=\{(x, y) ; 0 \leq x \leq 2,0 \leq y \leq 4 / 3\}\) :
\(\frac{\partial^{2} u}{\partial t^{2}}+\omega \frac{\partial u}{\partial t}+\sigma \Delta \Delta u=f(x, y, t)\), where \(\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\)
Boundary conditions: \(\left.u\right|_{\partial \Omega}=0,\left.\Delta u\right|_{\partial \Omega}=0\)
Initial conditions : \(u(x, y, 0)=0, \frac{\partial u}{\partial t}(x, y, 0)=0\)
The plate \(\Omega\) is discretized on a grid \(8 \times 5\) interior points
\(x_{i}=i h, y_{j}=j h, i=1,2, \ldots, 8, j=1,2, \ldots, 5, h=2 / 9\).
We replace the special derivatives by finite differences, then setting \(v_{i j}=u_{i j}^{\prime}\) gives the following ordinary differential system.
\(u_{i j}=v_{i j}\)
\(v_{i j}^{\prime}=-\omega v_{i j}-\frac{\sigma}{h^{4}}\left(20 u_{i j}-8 u_{i-1 j}-8 u_{i+1 j}+2 u_{i+1 ~ j+1}+2 u_{i+1 ~ j-1}\right.\)
\(\left.+2 u_{i-1 j-1}+2 u_{i-1 j+1}+u_{i-2 j}+u_{i+2 j}+u_{i j-2}+u_{i j+2}\right)+f\left(x_{i}, y_{j}, t\right)\)
With mapping \(k=i+8(j-1)\) from \((i, j)\), we set \(y_{k}=u_{i j}\) and \(y_{k+40}=v_{i j}\). Then we obtain system with \(\left(y_{1}, y_{2}, \ldots, y_{40}, y_{41}, \ldots, y_{80}\right)^{\mathrm{T}}\) as unknown vector. In the following program we set iwork [8] \(=40\) and routine jplatsb computes only non-trivial part of the Jacobian.
\[
\begin{aligned}
& \omega=1000, \sigma=100 \\
& f(x, y, t)=\left\{\begin{array}{cl}
2000\left(\mathbf{e}^{-5(t-x-2)^{2}}+\mathbf{e}^{-5(t-x-5)^{2}}\right) & \text { if } y=y_{2} \text { or } y_{4} \\
0 & \text { for all other } y
\end{array}\right.
\end{aligned}
\]
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#define MX 8
\#define MY 5
\#define ND (2 * MX * MY) /* 80 */
\#define LWORK (4 * ND * ND + 12 *ND + 20) /* 26580 */
\#define LIWORK (3 * ND + 20) /* 260 */
void fplate(int, double, double*, double*, double*, int*);
void jplatsb(int, double, double*, double*, int, double*,'int*);
void solout(int, double, double, double*, double*, int, int,
double*, int*, int*, double*, int*);
void dummy(int, double*, int, double*, int*);

```
```

int MAIN__() {

```
int MAIN__() {
    double y[ND], work[LWORK];
    double y[ND], work[LWORK];
    int iwork[LIWORK];
```

 int iwork[LIWORK];
    ```
```

 double rpar[4];
 int ipar[9];
 int i, k, n, nx, ny, nachs1, nachs2, nxm1, nym1, ndemi, imas, iout;
 int itol, ijac, mljac, mujac, mlmas, mumas, icon;
 double omega, stiffn, weight, denom, delx, ush4, fac, x, rtol, Atol;
 double h, xend;
 nx = MX;
 ny = MY;
 nachs1 = 2;
 nachs2 = 4;
 nxm1 = nx - 1
 nym1 = ny - 1;
 ndemi = nx * ny;
 omega = 1000.0;
 stiffn = 100.0;
 weight = 200.0;
 denom = nx + 1;
 delx = 2.0 / denom;
 ush4 = 1.0 / ((delx * delx) * (delx * delx));
 fac = stiffn * ush4
 n = ND;
 imas = 0;
 /* --- OUTPUT ROUTINE IS USED DURING INTEGRATION */
iout = 1;
/* --- INÍTIAL VALUES */
x = 0.0;
for (i = 0; i < n; i++) {
y[i] = 0.0;
/*
--- REQUIRED TOLERANCE */
rtol = 1.0e-6;
Atol = rtol * 1.0e-3;
itol = 0;
/* --- INITIAL STEP SIZE */
h = 1.0e-2;
/* --- SET DEFAULT VALUES */
for (i = 0; i < 20; i++) {
work[i] = 0.0;
iwork[i] = 0;
}
/* --- SECOND ORDER OPTION AND BANDED */
ijac = 1;
iwork[8] = n / 2;
mljac = 2 * MX;
mujac = 2 * MX;
/* --- ENDPOINT OF INTEGRATION */
xend = 7.0;
/* --- COMMUNICATION VALUES */
ipar[0] = nx;
ipar[1] = nxm1;
ipar[2] = ny;
ipar[3] = nym1;
ipar[4] = ndemi;
ipar[5] = nachs1;
ipar[6] = nachs2;
ipar[7] = mljac;
ipar[8] = mujac;
rpar[0] = omega;
rpar[1] = delx;
rpar[2] = fac;
rpar[3] = weight
/* --- CALL OF THE FUNCTION RADAU5 */
c_dm_vradau5(n, fplate, \&x, y, xend, \&h,
rtol, Atol, itol,
jplatsb, ijac, mljac, mujac,
dummy, imas, mlmas, mumas,
solout, iout,
work, LWORK, iwork, LIWORK,
rpar, ipar, \&icon);
printf(" ICON= %d\n", icon);
for (k = 0; k < n; k++) {
printf(" %-22.15le\n", y[k]);
}
return(0);
}
void solout(int nr, double xold, double x, double *y, double *cont
int lrc, int n, double *rpar, int *ipar, int *irtrn,
double *work2, int *iwork2) {

```
```

 int nhalf;
 nhalf = n / 2;
 printf(" X =%9.5lf Y(1) and Y(%3d)=%18.10lf%18.10lf NSTEP =%4d\n",
 x, nhalf, y[0], y[nhalf - 1], nr - 1);
 return;
 }
void fplate(int n, double x, double *y, double *f, double *rpar, int *ipar) {
int i, j, k, nx, nxm1, ny, nym1, ndemi, nachs1, nachs2;
double omega, delx, fac, weight, uc, xi, force;
nx = ipar[0];
nxm1 = ipar[1];
ny = ipar[2];
nym1 = ipar[3];
ndemi = ipar[4];
nachs1 = ipar[5];
nachs2 = ipar[6];
omega = rpar[0];
delx = rpar[1];
fac = rpar[2];
weight = rpar[3];
for (i = 1; i <= nx; i++) {
for (}\textrm{j}=1;\textrm{j}<<=ny; j++)
k = i + nx * (j - 1);
/* ------- SECOND DERIVATIVE ---- */
f[k-1] = y[(k - 1) + ndemi];
/* ------ CENTRAL POINT--- */
uc = 16.0 * y[k - 1];
if (i > 1) {
uc = uc + y[k - 1];
uc = uc - 8.0 * y[k - 2];
}
if (i < nx) {
uc = uc + y[k - 1]
uc = uc - 8.0 * y[k];
}
if (j > 1) {
uc = uc + y[k - 1]
uc = uc - 8.0 * y[(k - 1) - nx];
}
if (j < ny) {
uc = uc + y[k - 1]
uc = uc - 8.0 * y[(k - 1) + nx];
}
if (i>1 \&\& j> 1)
uc = uc + 2.0 * y[k - nx - 2];
if (i < nx \&\& j > 1)
uc = uc + 2.0 * y[k - nx];
if (i > 1 \&\& j < ny)
uc = uc + 2.0 * y[k + nx - 2];
if (i < nx \&\& j < ny)
uc = uc + 2.0 * y[k + nx];
if (i > 2)
uc = uc + y[k - 3];
if (i < nxm1)
uc = uc + y[k + 1]
if (j > 2)
uc = uc + y[(k - 2 * nx) - 1];
if (j < nym1)
uc = uc + y[(k + 2 * nx) - 1];
if (j == nachs1 || j == nachs2) {
xi = i * delx;
force = exp(-5.0 * ((x - xi - 2.0) * (x - xi - 2.0))) +
exp(-5.0 * ((x - xi - 5.0) * (x - xi - 5.0)));
} else {
force = 0.0
}
f[k + ndemi - 1] = -omega * y[k + ndemi - 1] - fac * uc + force * weight;
}
}
return;
}
void jplatsb(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
int *ipar) {
int i, j, k, nx, nxm1, ny, nym1, ndemi, mu, mljac, mujac;
double omega, fac, fac2, fac8, fac16;

```
```

 nx = ipar[0];
 nxm1 = ipar[1];
 ny = ipar[2];
 nym1 = ipar[3];
 ndemi = ipar[4];
 mljac = ipar[7];
 mujac = ipar[8]
 omega = rpar[0]
 fac = rpar[2];
 for (i = 0; i < mljac + mujac + 1; i++) {
 for (j = 0; j < ldfy; j++) {
 dfy[(i * ldfy) + j] = 0.0;
 }
 }
 mu = 2 * nx + 1;
 fac2 = fac * 2.0
 fac8 = fac * 8.0;
 fac16 = fac * 16.0;
 for (i = 1; i <= nx; i++) {
 for (j = 1; j <= ny; j++) {
 k = i + nx * (j - 1);
 dfy[((mu - 1) * ldfy) + (k - 1)] = -fac16;
 if (i > 1) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[(mu * ldfy) + (k - 2)] = fac8;
 }
 if (i < nx) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[((mu - 2) * ldfy) + k] = fac8;
 }
 f (j > 1) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[((mu + nx - 1) * ldfy) + (k - nx - 1)] = fac8;
 }
 f (j < ny) {
 dfy[((mu - 1) * ldfy) + (k - 1)] =
 dfy[((mu - 1) * ldfy) + (k - 1)] - fac;
 dfy[((mu - nx - 1) * ldfy) + (k + nx - 1)] = fac8;
 }
 f (i > 1 && j > 1)
 dfy[((mu + nx) * ldfy) + (k - nx - 2)] = -fac2;
 if (i < nx && j > 1)
 dfy[((mu + nx - 2) * ldfy) + (k - nx)] = -fac2;
 if (i > 1 && j < ny)
 dfy[((mu - nx) * ldfy) + (k + nx - 2)] = -fac2;
 if (i < nx && j < ny)
 dfy[((mu - nx - 2) * ldfy) + (k + nx)] = -fac2;
 if (i > 2)
 dfy[((mu + 1) * ldfy) + (k - 3)] = -fac;
 if (i < nxm1)
 dfy[((mu - 3) * ldfy) + (k + 1)] = -fac;
 if (j > 2)
 dfy[((mu + 2 * nx - 1) * ldfy) + (k - 2 * nx - 1)] = -fac;
 if (j < nym1)
 dfy[((mu - 2 * nx - 1) * ldfy) + (k + 2 * nx - 1)] = -fac;
 dfy[((mu - 1) * ldfy) + (k + ndemi - 1)] = -omega;
 }
 }
 return;
 }
void dummy(int n, double *am, int lmas, double *rpar, int *ipar) {
return;
}

```

■ Example 4:Differential-algebraic system \(\boldsymbol{M} \boldsymbol{y}^{\prime}=\boldsymbol{f}(x, \boldsymbol{y})\).
Finally, we consider the following system with independent variable \(t\) and 8 unknowns \(y_{1}, y_{2}, \ldots, y_{8}\).
```

$C_{5}\left(y_{2}^{\prime}-y_{1}^{\prime}\right)=y_{1} / R_{9}$
$-C_{5}\left(y_{2}^{\prime}-y_{1}^{\prime}\right)=\alpha f\left(y_{4}-y_{3}\right)-U_{b} / R_{8}+y_{2} / R_{8}$
$-C_{4} y_{3}^{\prime}=y_{3} / R_{7}-f\left(y_{4}-y_{3}\right)$
$C_{3}\left(y_{5}^{\prime}-y_{4}^{\prime}\right)=-U_{b} / R_{6}+y_{4}\left(1 / R_{5}+1 / R_{6}\right)+(1-\alpha) f\left(y_{4}-y_{3}\right)$
$-C_{3}\left(y_{5}^{\prime}-y_{4}^{\prime}\right)=-U_{b} / R_{4}+y_{5} / R_{4}+\alpha f\left(y_{7}-y_{6}\right)$
$-C_{2} y_{6}=y_{6} / R_{3}-f\left(y_{7}-y_{6}\right)$
$C_{1}\left(y_{8}^{\prime}-y_{7}^{\prime}\right)=-U_{b} / R_{2}+y_{7}\left(1 / R_{1}+1 / R_{2}\right)+(1-\alpha) f\left(y_{7}-y_{6}\right)$
$C_{1}\left(y_{7}^{\prime}-y_{8}^{\prime}\right)=y_{8} / R_{0}-U_{e}(t) / R_{0}$

```
where
\(C_{k}=k \cdot 10^{-6}, k=1,2, \ldots, 5\)
\(R_{0}=1000, R_{k}=9000, k=1,2, \ldots, 9\)
\(f\left(y_{i}-y_{j}\right)=\beta\left(\mathbf{e}^{\left(\mathrm{y}_{\mathbf{i}}-y_{j}\right) / v_{F}}-1\right)\)
\(U_{F}=0.026, \alpha=0.99, \beta=10^{-6}, U_{b}=6\)
\(U_{e}(t)=0.1 \cdot \sin (200 \pi t)\)

With \(\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{8}\right)^{\mathbf{T}}\) the left hand side of the above 8 equations can be written as \(\mathbf{M} \boldsymbol{y}\), where \(\mathbf{M}\) is a tridiagonal matrix.


Obviously, \(\mathbf{M}\) is singular and its rank is 5 . Because of this, the system is a differential-algebraic system. According to a detailed analysis this system is index 1 problem.

We integrate from \(t=0\) through \(t=0.2\). Initial values \(\mathbf{y}(0)\) must be chosen so that the vector with 8 components from the right hand side of the above equations lies in the range of the matrix \(\mathbf{M}\). Such initial values are as follows.
\(y_{1}(0)=0, y_{2}(0)=U_{b}-y_{1}(0) \cdot R_{8} / R_{9}, y_{3}(0)=y_{4}(0)=U_{b} /\left(R_{6} / R_{5}+1\right)\)
\(y_{5}(0)=U_{b}, y_{6}(0)=y_{7}(0)=U_{b} /\left(R_{2} / R_{1}+1\right), y_{8}(0)=0\)

The Jacobian matrix in this model becomes a banded matrix with upper bandwidth 2 and lower bandwidth 1 . Additionally, all the unknown variables can be proved to be index 1 .
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>

```
```

\#include "cssl.h"
\#define ND 8
\#define LJAC 4
\#define LMAS 3
\#define LE 5
\#define LWORK (ND * (LJAC + LMAS + 3 * LE + 12) + 20) /* 292 */
\#define LIWORK (3 * ND + 20) /* 44 */
void fampl(int, double, double*, double*, double*, int*);
void jbampl(int, double, double*, double*, int, double*, int*);
void bbampl(int, double*, int, double*, int*);
void solout(int, double,' double, double*, double*, int, int,
double*, int*, int*, double*, int*);
int MAIN__() {
double y[ND], work[LWORK], rpar[16];
int iwork[LIWORK];
double ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
double x, xend, rtol, Atol, h;
int i, n, ijac, mljac, mujac, imas, mlmas, mumas, iout, itol, ipar;
int icon;
ue = 0.1;
rpar[0] = ue;
ub = 6.0;
rpar[1] = ub;
uf = 0.026;
rpar[2] = uf
alpha = 0.99;
rpar[3] = alpha;
beta = 1.0e-6;
rpar[4] = beta;
r0 = 1000.0;
rpar[5] = r0;
r1 = 9000.0;
rpar[6] = r1;
r2 = 9000.0;
rpar[7] = r2;
r3 = 9000.0;
rpar[8] = r3;
r4 = 9000.0;
rpar[9] = r4
r5 = 9000.0;
rpar[10] = r5;
r6 = 9000.0;
rpar[11] = r6;
r7 = 9000.0;
rpar[12] = r7;
r8 = 9000.0;
rpar[13] = r8;
r9 = 9000.0;
rpar[14] = r9;
rpar[15] = 0.0025
ipar = 0;
n = 8;
ijac = 1;
mljac = 1;
mujac = 2;
imas = 1;
mlmas = 1
mumas = 1;
iout = 1;
x = 0.0;
y[0] = 0.0;
y[1] = ub - y[0] * r8 / r9;
y[2] = ub / (r6 / r5 + 1.0)
y[3] = ub / (r6 / r5 + 1.0);
y[4] = ub;
y[5] = ub / (r2 / r1 + 1.0)
y[6] = ub / (r2 / r1 + 1.0);
y[7] = 0.0;
xend = 0.2;
rtol = 1.0e-5;
Atol = 1.0e-6 * rtol
itol = 0;
h = 1.0e-6;
for (i = 0; i < 20; i++) {
iwork[i] = 0;
work[i] = 0.0;
}

```
```

 c_dm_vradau5(n, fampl, &x, y, xend, &h,
 rtol, Atol, itol,
 jbampl, ijac, mljac, mujac,
 bbampl, imas, mlmas, mumas,
 solout, iout,
 work, LWORK, iwork, LIWORK, rpar, &ipar, &icon);
 printf(" ICON= %d\n", icon);
 printf(" X =%7.4lf Y =%18.10le%18.10le\n", x, y[0], y[1]);
 return(0);
 }
void solout(int nr, double xold, double x, double *y, double *cont,
int lrc, int n, double *rpar, int *ipar, int *irtrn,
double *work2, int *iwork2) {
double prm1, prm2;
if (nr == 1) {
printf(" X =%7.4lf Y =%18.10le%18.10le NSTEP =%4d\n",
x, y[0], y[1], nr - 1);
} else {
Label_10: ;
if (x >= rpar[15]) {
prm1 = c_dm_vcontr5(1, rpar[15], cont, lrc, work2, iwork2);
prm2 = c_dm_vcontr5(2, rpar[15], cont, lrc, work2, iwork2);
printf(" X =%7.4lf Y =%18.10le%18.10le NSTEP =%4d\n",
rpar[15], prm1, prm2, nr - 1);
rpar[15] = rpar[15] + 0.0025;
goto Label_10;
}
}
return;
}
void fampl(int n, double x, double *y, double *f, double *rpar, int *ipar) {
double ue, ub, uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
double w, uet, fac1, fac2;
ue = rpar[0];
ub = rpar[1];
uf = rpar[2];
alpha = rpar[3];
beta = rpar[4];
r0 = rpar[5];
r1 = rpar[6];
r2 = rpar[7];
r3 = rpar[8];
r4 = rpar[9];
r5 = rpar[10];
r6 = rpar[11];
r7 = rpar[12];
r8 = rpar[13];
r9 = rpar[14];
w = 2.0 * 3.141592654 * 100.0;
uet = ue * sin(w * x);
fac1 = beta * (exp((y[3] - y[2]) / uf) - 1.0);
fac2 = beta * (exp((y[6] - y[5]) / uf) - 1.0);
f[0] = y[0] / r9;
f[1] = (y[1] - ub) / r8 + alpha * fac1;
f[2] = y[2] / r7 - fac1;
f[3] = y[3] / r5 + (y[3] - ub) / r6 + (1.0 - alpha) * fac1;
f[4] = (y[4] - ub) / r4 + alpha * fac2;
f[5] = y[5] / r3 - fac2;
f[6] = y[6] / r1 + (y[6] - ub) / r2 + (1.0 - alpha) * fac2;
f[7] = (y[7] - uet) / r0;
return;
}
void jbampl(int n, double x, double *y, double *dfy, int ldfy, double *rpar,
int *ipar) {
double uf, alpha, beta, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9;
double fac14, fac27;
int j;
uf = rpar[2];
alpha = rpar[3];
beta = rpar[4];
r0 = rpar[5];
r1 = rpar[6];
r2 = rpar[7]
r3 = rpar[8];
r4 = rpar[9];

```
```

 r5 = rpar[10];
 r6 = rpar[11]
 r7 = rpar[12]
 r8 = rpar[13]
 r9 = rpar[14]
 fac14 = beta* * exp((y[3] - y[2]) / uf) / uf;
 fac27 = beta * exp((y[6] - y[5]) / uf) / uf;
 for (j = 0; j < 8; j++) {
 dfy[j] = 0.0;
 dfy[ldfy + j] = 0.0;
 dfy[3 * ldfy + j] = 0.0;
 }
 dfy[2 * ldfy] = 1.0 / r9;
 dfy[2 * ldfy + 1] = 1.0 / r8;
 dfy[ldfy + 2] = -alpha * fac14;
 dfy[3] = alpha * fac14;
 dfy[2 * ldfy + 2] = 1.0 / r7 + fac14;
 dfy[ldfy + 3] = -fac14;
 dfy[2 * ldfy + 3] = 1.0 / r5 + 1.0 /r6 + (1.0 - alpha) * fac14;
 dfy[3 * ldfy + 2] = -(1.0 - alpha) * fac14;
 dfy[2 * ldfy + 4] = 1.0 / r4;
 dfy[ldfy + 5] = -alpha * fac27;
 dfy[6] = alpha * fac27;
 dfy[2 * ldfy + 5] = 1.0 / r3 + fac27;
 dfy[ldfy + 6] = -fac27;
 dfy[2 * ldfy + 6] = 1.0 / r1 + 1.0/ r2 + (1.0 - alpha) * fac27;
 dfy[3 * ldfy + 5] = -(1.0 - alpha) * fac27;
 dfy[2 * ldfy + 7] = 1.0 / ro;
 return;
 }
void bbampl(int n, double *b, int lb, double *rpar, int *ipar) {
int i;
double c1, c2, c3, c4, c5;
for (i = 0; i < 8; i++) {
b[i] = 0.0;
b[2 * lb + i] = 0.0;
}
c1 = 1.0e-6;
c2 = 2.0e-6;
c3 = 3.0e-6;
c4 = 4.0e-6;
c5 = 5.0e-6;
b[lb] = -c5;
b[1] = c5;
b[2 * lb] = c5;
b[lb + 1] = -c5;
b[lb + 2] = -c4;
b[lb + 3] = -c3;
b[4] = c3;
b[2* lb + 3] = c3;
b[lb + 4] = -c3;
b[lb + 5] = -c2;
b[lb + 6] = -c1;
b[7] = c1;
b[2 * lb + 6] = c1;
b[lb + 7] = -c1;
return;
}

```

\section*{5. Method}

Consult the entry for DM_VRADAU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [34] and [69].

\section*{c_dm_vrann3}
```

Generation of normal random numbers.
ierr = c_dm_vrann3(dam, dsd, \&ix, da, k, n,
dwork, nwork, \&icon);

```

\section*{1. Function}

This routine generates normal random numbers from a normal-distribution density function (1) with given mean \(m\) and standard deviation \(\sigma\).
\[
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-(x-m)^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vrann3(dam, dsd, \&ix, (double*)da, k, n, (double*)dwork, nwork, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline dam & double & Input & Mean \(m\) of normal distribution. \\
\hline dsd & double & Input & Standard deviation \(\sigma\) of normal distribution. ( \(>0\) ) \\
\hline ix & int & Input & \begin{tabular}{l}
Starting point. \\
On the first call, the value of ix must be positive. On the second and later calls, return value 0 must be used. When a different starting point is specified for the initial call, a different random number sequence is created.
\end{tabular} \\
\hline & & Output & Return value is 0 . \\
\hline da & \begin{tabular}{l}
double \\
da[NUMT][k]
\end{tabular} & Output & \begin{tabular}{l}
n normal pseudorandom numbers generated by each thread. \\
Where, NUMT is the number of threads. \\
\(n\) pseudo random numbers generated by thread number \(p\) (which is from 0 to NUMT-1) are stored in da[P][0], ... da [P] [n-1].
\end{tabular} \\
\hline k & int & Input & C fixed dimension of array da ( \(\geq \mathrm{n}\) ). \\
\hline n & int & Input & Number of normally distributed pseudorandom numbers to be returned by each thread in da. Comments on use. \\
\hline dwork & \begin{tabular}{l}
double \\
dwork[NUMT] \\
[nwork]
\end{tabular} & Work & When this routine is called repeatedly, the contents and NUMT must not be changed. dwork contains all the current information required to restart this routine from its current point. \\
\hline nwork & int & Input & Size of second-dimension of workspace. nwork \(\geq 1156\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{k}>\mathrm{n}\) or \(\mathrm{k}<1\) & Bypassed. \\
\hline 30001 & \begin{tabular}{l} 
One of the following has occurred: \\
\(\bullet \quad\) nwork is too small. \\
\(\bullet \quad \mathrm{ix}<0\) \\
• dsd \(\leq 0\)
\end{tabular} & \\
\hline 30002 & The internal check failed. & \\
\hline 30003 to 30008 & dwork overwritten or \(\mathrm{ix}=0\) on first call. & \\
\hline 30009 & ix is too large. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, ix is returned as zero after the first call to this function.

This function appends the thread number +1 , omp_get_thread_num () +1 , to the seed, as in seed \(=\) seed \(*\) omp_get_num_threads( ) + omp_get_thread_num( ) +1. Thus the seeds used on different threads are assured to be distinct, and hence subsequences of length less than \(10^{18}\) will not overlap.

\section*{n}

This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If \(\mathrm{n} \leq\) 0 , no pseudo random numbers are returned.

For efficiency, n should be large (for example, \(\mathrm{n}=100,000\) ). This reduces the overhead of function calls. n may be different on successive calls to this routine, provided that \(k\) (the size of the first dimension of the array da) is larger than the maximum value of \(n\).

\section*{dwork}

When this routine is to be called two or more times, dwork is used as the work area for storing the information for the next call. While this routine is called, the contents of dwork must not be changed by the called program.

\section*{nwork}
dwork[i] [0], \(\ldots\), dwork[i][nwork-1] ( \(i=0, \ldots\), NUMT-1) are used by this routine. The value of nwork must not be changed at any call of this routine. For efficient processing, nwork must be set to 1,156 or higher. When this routine is to be used on a vector processor, the value of nwork must be 100,000 or higher.

\section*{Regeneration of the same random numbers}

When dwork[i] [0], ... dwork[i] [nwork-1] (i=0, ... , NUMT-1) are saved, the same random number sequence as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition \(i x=0\).

\section*{NUMT}

The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the number of threads with run-time library omp_set_num_threads ( ), assign the same number of threads as that of first calling immediately before the second or later calling also with omp_set_num_threads( ).

\section*{4. Example program}
\(10,000,000 \times 4\) normal pseudo random numbers are generated, and their mean and standard deviation are calculated.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <omp.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NUMT 4
\#define NRAN 10000000
\#define SEED 12345
\#define NWMAX 100000
\#define NBUF 120000
\#define K (NBUF)
int MAIN__()
{
double da[NUMT][K], dwork[NUMT][NWMAX];
double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd;
int ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon;
/* Initialize ix,n and nwork */
ix = SEED;
n = NBUF;
nwork = NWMAX;
dam = 0.0;
dsd = 1.0;
dsum = 0.0;
dssum = 0.0;
printf("Seed = %d\n", ix);
printf("Mean = %e\n", dam);
printf("Standard deviation = %e\n", dsd);
/* ngen counts down to 0 */
ngen = NRAN;
ntot = NRAN*NUMT;
/* Generate ngen numbers with maximum NBUF at a time. */
krpt = (NRAN+NBUF-1)/NBUF;
printf("Generating %d numbers with %d calls to c_dm_vrann3 on %d threads.\n",
ntot, krpt, NUMT);
omp_set_num_threads(NUMT);
for (iz=0; iz<krpt; iz++) {
n = min(NBUF,ngen);
c_dm_vrann3(dam, dsd, \&ix, (double*)da, K, n, (double*)dwork, nwork, \&icon);
if(icon != 0) printf("c_dm_vrann3 : icon = %d\n", icon);
/* Accumulate sum of numbers */
dsum2 = 0.0;
for (j=0; j<NUMT; j++) {
for (i=0; i<n; i++) {
dsum2 += da[j][i];
}
}
/* Accumulate sum of numbers globally. */
dssum2 = 0.0;
for (j=0; j<NUMT; j++) {

```
```

 for (i=0; i<n; i++) {
 dssum2 += da[j][i]*da[j][i];
 }
 }
 dsum += dsum2;
 dssum += dssum2;
 /* Count down numbers still to generate on each processor */
 ngen -= n;
 }
 /* Compute overall mean. */
 dmean = dsum / (double)ntot;
 printf("Sample mean %e\n", dmean);
 /* Compute overall sample standard deviation. */
 dsig = dssum / (double)ntot;
 printf("Sample standard deviation %e\n", dsig);
 return(0);
 }

```

\section*{5. Method}

Consult the entry for DM_VRANN3 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vrann4}
```

Generation of normal random numbers (Wallace's method)
ierr = c_dm_vrann4(dam, dsd, \&ix, da, k, n,
dwork, nwork, \&icon);

```

\section*{1. Function}

This routine generates normal random numbers from a normal-distribution density function (1) with given mean \(m\) and standard deviation \(\sigma\).
\[
\begin{equation*}
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-(x-m)^{2}}{2 \sigma^{2}}\right) \tag{1}
\end{equation*}
\]

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vrann4(dam, dsd, \&ix, (double*)da, k, n, (double*)dwork, nwork, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline dam & double & Input & Mean \(m\) of normal distribution. \\
\hline dsd & double & Input & Standard deviation \(\sigma\) of normal distribution. ( \(>0\) ) \\
\hline ix & int & Input & \begin{tabular}{l}
Starting point. \\
On the first call, the value of ix must be positive. On the second and later calls, return value 0 must be used. When a different starting point is specified for the initial call, a different random number sequence is created.
\end{tabular} \\
\hline & & Output & Return value is 0 . \\
\hline da & double da[NUMT][k] & Output & \begin{tabular}{l}
n normal pseudorandom numbers generated by each thread. \\
Where, NUMT is the number of threads. \\
\(n\) pseudo random numbers generated by thread number \(p\) (which is from 0 to NUMT-1) are stored in da [P][0], ... da [P] [n-1].
\end{tabular} \\
\hline k & int & Input & \(C\) fixed dimension of array da ( \(\geq \mathrm{n}\) ). \\
\hline n & int & Input & Number of normally distributed pseudorandom numbers to be returned by each thread in da. Comments on use. \\
\hline dwork & \begin{tabular}{l}
double \\
dwork[NUMT] \\
[nwork]
\end{tabular} & Work & When this routine is called repeatedly, the contents and NUMT must not be changed. dwork contains all the current information required to restart this routine from its current point. \\
\hline nwork & int & Input & Size of second-dimension of workspace. nwork \(\geq 1350\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{k}>\mathrm{n}\) or \(\mathrm{k}<1\) & Bypassed. \\
\hline 30001 & \begin{tabular}{l} 
One of the following has occurred: \\
- nwork is too small. \\
- \(\quad \mathrm{ix}<0\) \\
- \(\quad\) dsd \(\leq 0\)
\end{tabular} & \\
\hline 30002 & The internal check failed. & \\
\hline 30003 to 30008 & dwork overwritten or \(\mathrm{ix}=0\) on first call. & \\
\hline 30009 & ix is too large. & \\
\hline 40000 to 40002 & dwork overwritten or \(\mathrm{ix}=0\) on first call. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, \(i x\) is returned as zero after the first call to this function.

\section*{n}

This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If \(\mathrm{n} \leq\) 0 , no pseudo random numbers are returned.

For efficiency, n should be large (for example, \(\mathrm{n}=100,000\) ). This reduces the overhead of function calls. n may be different on successive calls to this routine, provided that \(k\) (the size of the first dimension of the array da) is larger than the maximum value of \(n\).

\section*{dwork}

When this routine is to be called two or more times, dwork is used as the work area for storing the information for the next call. While this routine is called, the contents of dwork must not be changed by the called program.

\section*{nwork}
dwork[i][0], ... , dwork[i][nwork-1] ( \(i=0, \ldots\), NUMT-1) are used by this routine. The value of nwork must not be changed at any call of this routine. For efficient processing, nwork must be set to 1,350 or higher. When this routine is to be used on a vector processor, the value of nwork must be 500,000 or higher.

\section*{Regeneration of the same random numbers}

When dwork[i][0], ... , dwork[i][nwork-1] (i=0, ... ,NUMT-1) are saved, the same random number sequence as that used during the saving can be regenerated by reusing the dwork and by calling this routine with condition \(i x=0\).

\section*{NUMT}

The number of the threads or NUMT, used with this routine can be assigned by user with an OpenMP environment variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the number of threads with run-time library omp_set_num_threads( ), assign the same number of threads as that of first calling immediately before the second or later calling also with omp_set_num_threads( ).

\section*{Wallece's method}

The implementation of Wallece's method in this routine is about three times faster than the implementation of the Polar method in c_dm_vrann3.

\section*{4. Example program}
\(10,000,000 \times 4\) normal pseudo random numbers are generated, and their mean and standard deviation are calculated.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <omp.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NUMT 4
\#define NRAN 10000000
\#define SEED 12345
\#define NWMAX 100000
\#define NBUF 120000
\#define K (NBUF)
int MAIN__()
{
double da[NUMT][K], dwork[NUMT][NWMAX];
double dsum, dsum2, dssum, dssum2, dmean, dsig, dam, dsd;
int ngen, ntot, krpt, ix, iz, i, j, n, nwork, icon;
/* Initialize ix,n and nwork */
ix = SEED;
n = NBUF
nwork = NWMAX
dam = 0.0;
dsd = 1.0;
dsum = 0.0;
dssum = 0.0;
printf("Seed = %d\n", ix);
printf("Mean = %e\n", dam);
printf("Standard deviation = %e\n", dsd);
/* ngen counts down to 0 */
ngen = NRAN;
ntot = NRAN*NUMT;
/* Generate ngen numbers with maximum NBUF at a time. */
krpt = (NRAN+NBUF-1)/NBUF;
printf("Generating %d numbers with %d calls to c_dm_vrann4 on %d threads.\n",
ntot, krpt, NUMT);
omp_set_num_threads(NUMT);
for (iz=0; iz<krpt; iz++) {
n = min(NBUF,ngen);
c_dm_vrann4(dam, dsd, \&ix, (double*)da, K, n, (double*)dwork, nwork, \&icon);
if(icon != 0) printf("c_dm_vrann4 : icon = %d\n", icon);
/* Accumulate sum of numbers */
dsum2 = 0.0
for (j=0; j<NUMT; j++) {
for (i=0; i<n; i++) {
dsum2 += da[j][i];
}
}
/* Accumulate sum of numbers globally. */
dssum2 = 0.0;
for (j=0; j<NUMT; j++) {
for (i=0; i<n; i++) {
dssum2 += da[j][i]*da[j][i];
}

```
```

 }
 dsum += dsum2;
 dssum += dssum2;
 /* Count down numbers still to generate on each processor */
 ngen -= n;
 }
 /* Compute overall mean. */
 dmean = dsum / (double)ntot;
 printf("Sample mean %e\n", dmean);
 /* Compute overall sample standard deviation. */
 dsig = dssum / (double)ntot;
 printf("Sample standard deviation %e\n", dsig);
 return(0);
 }

```

\section*{5. Method}

Consult the entry for DM_VRANN4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

\section*{c_dm_vranu4}
```

Generation of uniform random numbers [0,1).
ierr = c_dm_vranu4(\&ix, da, k, n, dwork,
nwork, \&icon);

```

\section*{1. Function}

This function generates different sequences of pseudo random numbers from a uniform distribution on \([0,1\) ) on each thread.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vranu4(\&ix, (double*)da, k, n, (double*)dwork, nwork, \&icon); where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{ix} & \multirow[t]{3}{*}{int} & \multirow[t]{2}{*}{Input} & Starting point. \\
\hline & & & On the first call, ix should be positive. ix is returned as zero and should remain zero for subsequent calls. ix \(<8000000\). See Comments on use. \\
\hline & & Output & Return value is 0 . \\
\hline da & \begin{tabular}{l}
double \\
da[NUMT][k]
\end{tabular} & Output & n uniform pseudo random numbers on \([0,1)\) generated by each thread. Where, NUMT is the number of threads. n pseudo random numbers generated by thread number \(P\) (which is from 0 to NUMT-1) are stored in \(\mathrm{da}[\mathrm{P}][0], \ldots, \mathrm{da}[\mathrm{P}][\mathrm{n}-1]\). \\
\hline k & int & Input & \(C\) fixed dimension of array da ( \(\geq \mathrm{n}\) ). \\
\hline n & int & Input & The number of uniformly distributed pseudo random numbers on each processor to be returned in da. Comments on use. \\
\hline dwork & \begin{tabular}{l}
double \\
dwork[NUMT] \\
[nwork]
\end{tabular} & Work & When this function is called repeatedly, the contents and NUMT must not be changed. dwork contains all the current information required to restart this function from its current point. \\
\hline nwork & int & Input & Size of second-dimension of workspace. nwork \(\geq 388\). \\
\hline icon & int & Output & Condition code. See below. \\
\hline The comp & list of condition & is give & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & \(\mathrm{k}>\mathrm{n}\) or \(\mathrm{k}<1\) & Bypassed. \\
\hline 30001 & nwork is too small. & \\
\cline { 1 - 2 } 30002 & The internal check failed. & \\
\cline { 1 - 2 } 30003 to 30008 & dwork overwritten or \(\mathrm{i} \times=0\) on first call. & \\
\cline { 1 - 2 } 30009 & ix is too large. & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, \(i x\) is returned as zero after the first call to this function.

This function appends the thread number +1 , omp_get_thread_num( ) +1 , to the seed, as in seed \(=\) seed \(*\) omp_get_num_threads( ) + omp_get_thread_num( ) +1. Thus the seeds used on different threads are assured to be distinct, and hence subsequences of length less than \(10^{18}\) will not overlap.

\section*{n}

This function returns the next n pseudo random numbers from the infinite sequence defined by the initial seed ix. If \(\mathrm{n} \leq\) 0 , no pseudo random numbers are returned.

For efficiency, n should be large (for example, \(\mathrm{n}=100,000\) ). This reduces the overhead of function calls. n may be different on successive calls to this routine, provided that \(k\) (the size of the first dimension of the array da) is larger than the maximum value of \(n\).

\section*{dwork}
dwork is used as a work area to store state information between calls to this function. The calling program must not change the contents of the array dwork between calls.

\section*{nwork}
dwork[i][0], ... dwork[i][nwork-1] (i=0, .., NUMT-1) are used by this function. nwork should be the same on each call to this function. nwork should be at least 388 .

\section*{Checkpointing}

If dwork[i] [0], ... , dwork[i] [nwork-1] ( \(i=0, \ldots\), NUMT-1) are saved, the same sequence of random numbers can be generated again (from the point where dwork was saved) by restoring dwork and calling this routine with argument \(i x=0\).

\section*{NUMT}

The number of the threads or NUMT, used with this function can be assigned by user with an OpenMP environment variable OMP_NUM_THREADS or a run-time library routine omp_set_num_threads(). In case of specifying the number of threads with run-time library omp_set_num_threads ( ), assign the same number of threads as that of first calling immediately before the second or later calling also with omp_set_num_threads( ).

\section*{4. Example program}
\(1,000,000 \times 4\) uniform pseudo random numbers are generated and their mean value is calculated.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <omp.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))

```
```

\#define NT
\#define RAN
\#define NWMAX
\#define BUF

```
(4) (1000000) (5000) (25000)
```

MAIN__()
{
double da[NT][BUF], dwork[NT][NWMAX];
double sum, sum2, mean, sig;
unsigned int gen, tot, rpt, i, j;
int tno, ix, n, nwork, icon, ierr;
/* Initialize ix, n and nwork */
ix = 123;
printf("Seed = %d\n", ix);
/* n = BUF;*/
nwork = NWMAX;
sum = 0.0;
/* gen counts down to 0 */
gen = RAN;
tot = RAN*NT;
/* Generate ngen numbers on each thread with maximum BUF at a time */
rpt = (RAN+BUF-1)/BUF;
printf("Generating %d numbers with %d calls to c_dm_vranu4 on %d threads.\n",
tot, rpt, NT);
for(j=0; j<rpt; j++) {
n = min(BUF,gen);
sum2 = 0.0;
omp_set_num_threads(NT);
ier\overline{r}= c_dm_vranu4(\&ix, (double*)da, BUF, n, (double*)dwork, nwork, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_vranu4 failed with icon = %d\n", icon);
exit(1);
}
/* Accumulate sum of numbers locally */
for(tno=0; tno<NT; tno++)
for(i=0; i<n; i++) sum2 += da[tno][i];
/* Accumulate sum of numbers globally */
sum += sum2;
/* Count down numbers still to generate on each processor */
gen -= n;
}
/* Compute overall mean */
mean = sum/tot;
printf("mean = %e\n", mean);
/* Compute deviation from 0.5 normalized by expected value 1/sqrt(12*ntot). */
/* This should be (approximately) normally distributed with mean 0, variance 1. */
sig = (mean-0.50)*sqrt(12.0*tot);
printf("Normalized deviation = %e\n", sig);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VRANU4 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [4], [9], [10], [24], [40] and [51].

\section*{c_dm_vranu5}
```

Generation of uniform random numbers [0,1) (MRG8).
ierr = c_dm_vranu5(\&ix, da, n, j, dwork,
\&icon);

```

\section*{1. Function}

This routine generates sequence of pseudo random numbers from a uniform distribution on \([0,1\) ) by Multiple Recursive Generator with 8th-order full primitive polynomials (MRG8).

This function generates same sequence of random number in any thread numbers. When the reproducibility is needed, use this function instead of c dm_vranu4. The interface of this function is different from the interface of \(\mathrm{c} \_\mathrm{dm}\) vranu4.

This function supports jumping-ahead method, which jumps \(j\) steps in a sequence of pseudo random numbers. This is useful to generate distinct sub sequence in parallel execution.

The performance of c_dm_vranu4 is better than this function.

Both this function and c_dm_vranu4 passed the bigCrush test of TESTU01 which is the statistical testing program of uniform random number generators.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vranu5(\&ix, da, n, j, dwork, \&icon);
where:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{ix} & \multirow[t]{3}{*}{int} & Input & Starting point. \\
\hline & & & On the first call, ix should be positive. ix is returned as zero and should remain zero for subsequent calls. See Comments on use. \\
\hline & & Output & Return value is 0 . \\
\hline da & double da[n] & Output & n uniform pseudo random numbers on \([0,1)\). \\
\hline n & int & Input & The number of uniformly distributed pseudo random numbers to be returned in da. \\
\hline j & long & Input & Number of jumping steps in the sequence of pseudo random numbers. 0 is to be set to generate pseudo random numbers just after the sequence. See Comments on use. \\
\hline dwork & double dwork[8] & Work & When this function is called repeatedly, the contents must not be changed. dwork contains all the current information required to restart this function from its current point. See Comments on use. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is given below.
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 30000 & ix \(<0, \mathrm{n}<1\) or \(\mathrm{j}<0\) & Bypassed. \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{ix}

When a sequence of pseudo random numbers is to be generated by a deterministic program, there must be some random input. Thus, the user must give a starting point ix. This is often called a "seed". On the first call to this function the seed ix should be a positive integer. On the subsequent call ix should be zero. This indicates that more pseudo random numbers from the same sequence are to be generated. To simplify programming, \(i x\) is returned as zero after the first call to this function.

\section*{j}

This function supports jumping-ahead method, which jumps \(j\) steps in a sequence of pseudo random numbers by setting \(\mathrm{j} \geq 0\).

This function generates distinct sub sequence of pseudo random numbers in each process by setting same \(\mathbf{i x}\) and different \(j\) in parallel execution.

\section*{dwork}
dwork is used as a work area to store state information between calls to this function. The calling program must not change the contents of the array dwork between calls.

\section*{Checkpointing}

If dwork are saved, the same sequence of random numbers can be generated again (from the point where dwork was saved) by restoring dwork and calling this function with argument \(i x=0\).

\section*{4. Example program}

Example 1.
\(1,000,000\) uniform pseudo random numbers are generated and their mean value is calculated. The starting point is 123. The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE 1** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#define NRAN 10000000
\#define NSEED 123
\#define NBUF 25000
\#define min(x,y) ((x)>(y)?(y):(x))
int MAIN__() {
double da[NBUF];
double dwork[8];
double dsum, dsum2;
double dmean;
int ix, n, icon;
int i, j;
/* Generate NRAN numbers with maximum NBUF at a time */
ix = NSEED;
printf(" Seed %d\n", ix);
printf(" Generating %d numbers\n", NRAN);

```
```

 dsum = 0.0;
 for (j = 1; j <= NRAN; j += NBUF) {
 n = min(NBUF, NRAN - j + 1);
 c_dm_vranu5(&ix, da, n, (long)0, dwork, &icon);
 if (icon != 0) {
 printf(" Error return ICON %d\n", icon);
 }
 dsum2 = 0.0;
 for (i = 0; i < n; i++) {
 dsum2 += da[i];
 }
 dsum += dsum2;
 /**
/* Compute mean */
dmean = dsum / (double)NRAN;
printf(" Mean %20.16lf\n", dmean);
return(0);
}

```

Example 2.

Distinct 100,000 uniform pseudo random numbers are generated in each MPI processes and their mean value is calculated. The starting point is 123 .
In this program, j is set to \(2^{31}-1\). As far as the length of each sub sequences is smaller than \(2^{31}-1\) they are not overlapping.
```

/* **EXAMPLE 2** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <mpi.h>
\#include "cssl.h"
\#define N 10000
int MAIN__(int argc, char *argv[]) {
const long jump = (long)2147483647; /* =2**31-1 */
double x[N];
double dnall;
int irank, np;
int ix, icon;
int i;
long j;
double work[8];
double dsum, dsumall, dmean;
MPI_Init(\&argc, \&argv);
MPI_Comm_rank(MPI_COMM_WORLD, \&irank);
MPI_Comm_size(MPI_COMM_WORLD, \&np);
ix = 123;
j = irank * jump;
c_dm_vranu5(\&ix, x, N, j, work, \&icon);
if (icon != 0) {
printf("C_DM_VRANU5 ERROR ICON= %d\n", icon);
}
dsum = 0.0;
for (i = 0; i < N; i++) {
dsum += x[i];
}
MPI_Reduce(\&dsum, \&dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
/* Compute overall mean */
dnall = (double)N * (double)np;
if (irank == 0) {
dmean = dsumall / dnall;
printf(" Mean %19.16lf\n", dmean);
}
MPI_Finalize();
return(0);
}

```

\section*{Example 3.}

Two uniform pseudo random number sequences \(x\) and \(y\) are generated by four MPI process and their mean values are calculated. The total number of each vector is \(1,000,000\) and the starting point is 123 .
In this program, \(1,000,000\) pseudo random numbers are split into NP blocks, where NP is the number of processes, and each of the sequences is generated by each of the processes. Even if NP is changed, the whole sequence of pseudo random numbers is the same.
```

/* **EXAMPLE 3** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h"
\#include <mpi.h>
\#define NX 100000
\#define NY 100000
\#define NP 4 /* NUMBER OF PROCESS */
\#define min(x,y) ((x)>(y)?(y):(x))
int MAIN__(int argc, char *argv[]) {
double x[(NX + NP - 1) / NP], y[(NY + NP - 1) / NP];
int irank, nsize;
int ix, nl, icon, jump;
int i;
long j0, j;
double work[8];
double dsum, dsumall, dmean;
MPI_Init(\&argc, \&argv);
MPI_Comm_rank(MPI_COMM_WORLD, \&irank);
MPI_Comm_size(MPI_COMM_WORLD, \&nsize);
if (NP != nsize) {
MPI_Finalize();
return(-1);
}
ix = 123;
jump = (NX + NP - 1) / NP;
j = min(irank * jump, NX);
nl = min(jump,NX - j);
if (nl >= 1) {
c_dm_vranu5(\&ix, x, nl, j, work, \&icon);
if (icon != 0) {
printf("DM_VRANU5 ERROR ICON= %d\n", icon);
}
j0 = NX - (j + nl);
} else {
j0 = NX;
}
dsum = 0.0;
for (i = 0; i < nl; i++) {
dsum += x[i];
}
MPI_Reduce(\&dsum, \&dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
/* Compute overall mean of X */
if (irank == 0) {
dmean = dsumall / (double)NX;
printf(" Mean of x %19.16lf\n", dmean);
}
jump = (NY + NP - 1) / NP;
j = min(irank * jump, NY);
nl = min(jump, NY - j);
j += j0;
if (nl >= 1) {
c_dm_vranu5(\&ix, y, nl, j, work, \&icon);
if (icon != 0) {
printf("C_DM_VRANU5 ERROR ICON= %d\n", icon);

```
```

 }
 }
 dsum = 0.0;
 for (i = 0; i < nl; i++) {
 dsum += y[i];
 }
 MPI_Reduce(\&dsum, \&dsumall, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD);
/* Compute overall mean of Y */
if (irank == 0) {
dmean = dsumall / (double) NY;
printf(" Mean of Y %19.16lf\n", dmean);
}
MPI_Finalize();
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VRANU5 in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [78], [79], and [80].

\section*{c_dm_vschol}
```

LDL }\mp@subsup{}{}{\textrm{T}}\mathrm{ decomposition of a symmetric positive definite sparse matrix
(Left-looking Cholesky decomposition method)
ierr = c_dm_vschol(a, nz, nrow, nfcnz, n,
iordering, nperm, isw, \&epsz,
nassign, \&nsupnum, nfcnzfactor,
panelfactor, \&nsizefactor,
nfcnzindex,npanelindex,
\&nsizeindex, ndim, nposto, w, iw1,
iw2, iw3, \&icon);

```

\section*{1. Function}

This routine executes LDL \(^{\mathrm{T}}\) decomposition for an \(n \times n\) symmetric positive definite sparse matrix using modified Cholesky decomposition method, so that
\[
\mathbf{Q P A P} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}}=\mathbf{L D L}^{\mathrm{T}},
\]
where \(\mathbf{P}\) is a permutation matrix of ordering and \(\mathbf{Q}\) is a permutation matrix of post ordering. \(\mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices, \(\mathbf{L}\) is a unit lower triangular matrix, and \(\mathbf{D}\) is a diagonal matrix.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vschol(a, nz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz,
nassign, \&nsupnum, nfcnzfactor, panelfactor, \&nsizefactor,
nfcnzindex, npanelindex, \&nsizeindex,(int*)ndim, nposto, w, iw1,
iw2, iw3, \&icon);

```
where:

\begin{tabular}{|c|c|c|c|}
\hline iordering & int & Input & Control information whether to decompose the reordered matrix \(\mathbf{P A P}{ }^{\mathrm{T}}\) permuted by the matrix \(\mathbf{P}\) of ordering or to decompose the matrix \(\mathbf{A}\). \\
\hline & & & Specify iordering=1 for the decomposition of the matrix \(\mathbf{P A P}^{\mathrm{T}}\). \\
\hline & & & Specify the other value for the decomposition of the matrix \(\mathbf{A}\) as it is. \\
\hline nperm & int nperm[n] & Input & The permutation matrix \(\mathbf{P}\) is stored as a vector. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{36}{*}{isw} & \multirow[t]{36}{*}{int} & \multirow[t]{36}{*}{Input} & Control information. \\
\hline & & & Initial calling. \\
\hline & & & 2 Subsequent call if the previous call has \\
\hline & & & failed with icon=31000, that means the \\
\hline & & & size of panelfactor or npanelindex \\
\hline & & & were not enough. In this case, the \\
\hline & & & panelfactor or npanelindex must \\
\hline & & & be reallocated with the necessary sizes \\
\hline & & & which are returned in the nsizefactor \\
\hline & & & or nsizeindex at the precedent call. \\
\hline & & & Besides, the values of a, nz, nrow, nfcnz, \(n\) iordering, nperm, \\
\hline & & & nassign, nsupnum, nfenzfactor, \\
\hline & & & nfonzindex, npanelindex, \\
\hline & & & nposto, ndim, w, iw1, iw2, and iw3 \\
\hline & & & \\
\hline & & & 3 Second and subsequent calls when solving another system of equations \\
\hline & & & \begin{tabular}{l}
solving another system of equations \\
which have the same non-zero pattern of
\end{tabular} \\
\hline & & & the matrix A but the values of its \\
\hline & & & elements are different. In this case, the \\
\hline & & & information obtained in symbolic \\
\hline & & & decomposition and the array \\
\hline & & & the same size required in previous call \\
\hline & & & can be reused. Then numerical \(\mathrm{LDL}^{\mathrm{T}}\) \\
\hline & & & decomposition will proceed with that \\
\hline & & & information and the new linear equations \\
\hline & & & can be solved efficiently. Store the \\
\hline & & & values of the matrix elements in the array \\
\hline & & & \(a\), or store in another array \(b\) and let it be \\
\hline & & & as the parameter a. \\
\hline & & & Besides, the values of nz , nrow, \\
\hline & & & nfcnz, n, iordering, nperm, \\
\hline & & & nassign, nsupnum, nfenzfactor, \\
\hline & & & nsizefactor, nfcnzindex, \\
\hline & & & npanelindex, nsizeindex, \\
\hline & & & nposto, ndim, w, iw1, iw2, and iw3 \\
\hline & & & must be unchanged as the previous call. \\
\hline \multirow[t]{2}{*}{epsz} & \multirow[t]{2}{*}{double} & Input & Judgment of relative zero of the pivot ( \(\geq 0.0\) ). \\
\hline & & Output & When epsz is 0.0 , the standard value is assumed. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & See Comments on use. \\
\hline \multirow[t]{4}{*}{nassign} & \multirow[t]{4}{*}{int nassign[n]} & Output & Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the one-dimensional array panelfactor. When \(j=\) nassign[ \(i-1\) ], the \(i\)-th supernode is allocated at \(j\)-th position. \\
\hline & & \multirow[t]{3}{*}{Input} & The values of the first call are reused when isw \(\neq 1\) specified. \\
\hline & & & For the storage method of the decomposed results, refer to Figure c_dm_vschol-1. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{2}{*}{nsupnum} & \multirow[t]{2}{*}{int} & Output & The total number of supernodes. \\
\hline & & Input & The values of the first call are reused when isw \(\neq 1\) specified. ( \(\leq n\) ) \\
\hline \multirow[t]{3}{*}{nfcnzfactor} & \multirow[t]{3}{*}{long long int nfenzfactor [ \(n+1]\)} & \multirow[t]{2}{*}{Output} & Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in twodimensional panel by compressing rows containing nonzero elements with a common row indices vector. \\
\hline & & & The elements of this array indicate the position of the first element panel [0] [0] of the \(i\)-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. \\
\hline & & Input & \begin{tabular}{l}
The values set by the first call are reused when isw \(\neq 1\) specified. \\
For the storage method of the decomposed results, refer to Figure c_dm_vschol-1.
\end{tabular} \\
\hline \multirow[t]{4}{*}{panelfactor} & \multirow[t]{4}{*}{double panelfactor [nsizefactor]} & \multirow[t]{4}{*}{Output} & Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These panels are stored in this matrix. \\
\hline & & & The positions of the panel corresponding to the \(i\)-th supernode are indicated as \(j=\) nassign[i-1]. The first position is stored in nfenzfactor [j1]. The decomposed result is stored in each panel. \\
\hline & & & The size of the \(i\)-th panel can be considered to be two-dimensional array of ndim[i-1][1]×ndim [i-1][0]. The corresponding part where the lower triangular unit matrix except the diagonal part is transposed and is stored in panel[t-1] [s-1], \(s>t, s=1, \ldots, n d i m[i-1][0], t=1, \ldots\), ndim[i1] [1] of the \(i\)-th panel. The corresponding part of the diagonal matrix \(\mathbf{D}\) is stored in panel[t-1][t\(1]\). \\
\hline & & & For the storage method of the decomposed results, refer to Figure c_dm_vschol-1. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline W & double w[Iwlen1] & \begin{tabular}{l}
Work area \\
Output/Input
\end{tabular} & \begin{tabular}{l}
When this routine is called repeatedly with isw= \(1,2,3\). This work area is used for preserving information among calls. The contents must not be changed. \\
When iordering \(=1\), Iwlen \(1=n z\). \\
When iordering \(\neq 1\), Iwlen \(1=1\).
\end{tabular} \\
\hline iw1 & int iw1[Iwlen2] & Work area Output/Input & \begin{tabular}{l}
When this routine is called repeatedly with \(i s w=1,2,3\), \\
This work area is used for preserving information among calls. The contents must not be changed. \\
When iordering \(=1\), Iwlen \(2=n z+n+1\). \\
When iordering \(\neq 1\), Iwlen \(2=1\).
\end{tabular} \\
\hline iw2 & int iw2[nz+n+1] & Work area Output/Input & When this routine is called repeatedly with \(i s w=1,2,3\), This work area is used for preserving information among calls. The contents must not be changed. \\
\hline iw3 & \[
\begin{aligned}
& \text { int } \\
& \text { iw3[n*35+35] }
\end{aligned}
\] & Work area Output/Input & When this routine is called repeatedly with \(i s w=1,2,3\), This work area is used for preserving information among calls. The contents must not be changed. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & The coefficient matrix is not positive definite. & Processing is continued. \\
\hline 20000 & The pivot became relatively zero. The coefficient matrix A may be singular. & \multirow[t]{6}{*}{Processing is discontinued.} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(n<1\) \\
- \(n z<0\) \\
- nfenz[n] \(\neq n z+1\) \\
- nsizefactor \(<1\) \\
- nsizeindex<1 \\
- epsz<0.0 \\
- isw<0 \\
- isw>3
\end{tabular} & \\
\hline 30100 & The permutation matrix specified in nprem is not correct. & \\
\hline 30200 & The row pointer \(k\) stored in \(\operatorname{nrow}[j-1]\) is \(k\) \(<\) i or \(\mathrm{k}>\mathrm{n}\). & \\
\hline 30300 & The number of row indices belong to \(i\)-th column is nfenz[i]-nfenz[i-1]>ni+1. & \\
\hline 30400 & There is a column without a diagonal element. & \\
\hline 31000 & The value of nsizefactor is not enough as the size of panelfactor, or the value of nsizeindex is not enough as the size of npanelindex. & Reallocate the panelfactor or npanelindex with the necessary size which are returned in the nsizefactor or nsizeindex, and call this routine again with isw=2. \\
\hline
\end{tabular}


Figure c_dm_vschol-1 concept of storing the data for decomposed result
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th position.
\(\mathrm{p}=\mathrm{nfcnzfactor}[\mathrm{j}-1] \rightarrow\) The \(j\)-th panel occupies the area with a length ndim[j-1][1] \(\times \operatorname{ndim}[j-1][0]\) from the \(p\)-th element of panelfactor.
\(\mathrm{q}=\mathrm{nfcnzindex[j-1]} \rightarrow\) The row pointer vector of the \(j\)-th panel occupies the area with a length ndim [j-1][0] from the \(q\)-th element of panelindex.

A panel is regarded as an array of the size \(\operatorname{ndim}[j-1][1] \times \operatorname{ndim}[j-1][0]\).

The lower triangular unit matrix \(\mathbf{L}\) except the diagonal part is transposed and is stored in
\[
\begin{array}{r}
\operatorname{panel}[t-1][s-1], s>t, s=1, \ldots, \operatorname{ndim}[j-1][0], \\
t=1, \ldots, \operatorname{ndim}[j-1][1]
\end{array}
\]

The corresponding part of the diagonal matrix \(\mathbf{D}\) is stored in panel[t-1][t-1].
The row pointers indicate the column indices of the matrix \(\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}\) to which the node of the matrix \(\mathbf{A}\) is permuted by post ordering.

\section*{3. Comments on use}

\section*{nperm}

When the element \(\mathrm{p}_{\mathrm{ij}}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1]=j.
The inverse of the matrix can be obtained as follows:
```

for(i=1; i<=n; i++)\{
j=nperm[i-1];
perminv[j-1]=i;
\}

```

\section*{epsz}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LDL \(^{\mathrm{T}}\) decomposition. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is 16 \(\times u\). When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite. In this case, processing is continued as icon \(=10000\), but the numerical error may be large because of no pivoting.

\section*{c_dm_vscholx}

The linear equations \(\mathbf{L D L}^{\mathrm{T}} \mathbf{P Q x}=\mathbf{P Q b}\) which is a derived form from \(\mathbf{A x}=\mathbf{b}\) can be solved by calling routine c_dm_vscholx following this routine with the decomposed result data such as nassign, nsupnum, nfenzfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, nposto, ndim, iw3 unchanged.

\section*{nsizefactor and nsizeindex}

The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor and nsizeindex. This routine ends with icon \(=31000\), and the necessary sizes for nsizefactor and nsizeindex are returned. Then the suspended process can be resumed by calling it with isw \(=2\) after reallocating the arrays with the necessary sizes.

\section*{nposto}

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(\mathrm{j}=\) nposto[i-1].

This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note nperm above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}\).

The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for(i=1; i<=n; i++){
j=nposto[i-1];
npostoinv[j-1]=i;
}

```

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where \(\mathbf{A}\) results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\) where \(a_{1}, a_{2}, a_{3}\) and \(c\) are zero constants, that means the operator is Laplacian. The matrix \(\mathbf{A}\) in Diagonal format is generated by the routine init_mat_diag, and transferred into compressed column storage format.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

\#include "cssl.h" /* standard C-SSL header file */

| \#define NORD | (39) |
| :--- | :--- |
| \#define NX | (NORD) |
| \#define NY | (NORD) |
| \#define NZ | (NORD) |
| \#define N | (NX*NY*NZ) |
| \#define K | (N+1) |
| \#define NDIAG | (7) |
| \#define NDIAGH | (4) |

MAIN__()
{
int ierr, icon, iguss, iter, itmax;
int nord, n, l, i, j, k;
int nx, ny, nz, nnz, nnzc;
int length, nbase, ndiag, ntopcfgc;
int numnz, numnzc, nsupnum, ntopcfg, ncol;
int iordering, isw;
int *npanelindex;
int ndummyi;
int nofst[NDIAG];
int nrow[NDIAG*K];
int nrowc[NDIAG*K];
int nfcnz[N+1];
int nfcnzc[N+1];
int nperm[N];
int nassign[N];
int nposto[N];
int ndim[N][2]:
int iw1[N*NDIAGH+N+1];
int iw2[N*NDIAGH+N+1];
int iw3[N*35+35];
int iwc[NDIAG*K][2];
double err, epsz;
double t0, t1, t2;
double va1, va2, va3, vc;
double xl, yl, zl;
double dummyf;
double *panelfactor;
double diag[NDIAG][K];
double diag2[NDIAG][K];
double a[N*NDIAGH];
double b[N];
double c[NDIAG*K];
double w[N*NDIAGH];
double WC[NDIAG*K];
double x[N];
double solex[N];
long long int nsizefactor;
long long int nsizeindex;
long long int nfcnzfactor[N+1];
long long int nfcnzindex[N+1];
void init_mat_diag(double va1, double va2, double va3, double vc,
double d_l[], int offset[], int nx, int ny, int nz,
double xl, double yl,double zl, int ndiag, int len, int ndivp);
double errnrm(double *x1, double *x2, int len);
nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;
printf(" LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
printf(" FOR SPARSE POSITIVE DEFINITE MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n");
printf("\n");
for (i=1; i<=n; i++){
solex[i-1]=1.0;
}
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
printf("\n");
va1 = 0.0;
va2 = 0.0;
va3 = 0.0;
vc = 0.0;
xl = 1.0;

```
```

yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
nx, ny, nz, xl, yl, zl, ndiag, n, k);
for (i=1; i<=ndiag; i++){
if (nofst[i-1] < 0){
nbase=-nofst[i-1];
length=n-nbase;
for (j=1; j<=length; j++){
diag2[i-1][j-1]=diag[i-1][nbase+j-1];
}
}
else{
nbase=nofst[i-1];
length=n-nbase;
for (j=nbase+1; j<=n; j++){
diag2[i-1][j-1]=diag[i-1][j-nbase-1];
}
}
}
numnzc=1;
numnz=1;
for (j=1; j<=n; j++){
ntopcfgc = 1;
ntopcfg = 1;
for (i=ndiag; i>=1; i--){
if (diag2[i-1][j-1]!=0.0){
ncol=j-nofst[i-1];
c[numnzc-1]=diag2[i-1][j-1];
nrowc[numnzc-1]=ncol;
if (ncol>=j){
a[numnz-1]=diag2[i-1][j-1];
nrow[numnz-1]=ncol;
}
if (ntopcfgc==1){
nfcnzc[j-1]=numnzc;
ntopcfgc=0;
}
if (ntopcfg==1){
nfcnz[j-1]=numnz;
ntopcfg=0;
}
if (ncol>=j){
numnz=numnz+1;
}
numnzc=numnzc+1;
}
}
}
nfcnzc[n]=numnzc;
nnzc=numnzc-1;
nfcnz[n]=numnz;
nnz=numnz-1;
ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, \&icon);
for(i=1; i<=n; i++){
x[i-1]=b[i-1];
}
iordering=0;
isw=1;
epsz=0;
nsizefactor=1;
nsizeindex=1;
ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz, nassign, \&nsupnum, nfcnzfactor, \&dummyf, \&nsizefactor, nfcnzindex, \&ndummyi, \&nsizeindex, (int*)ndim, nposto, w, iw1, iw2, iw3, \&icon);
printf("\n");
printf(" ${ }^{\prime \prime}$ ICON = \%d NSIZEFACTOR = \%lld NSIZEINDEX = \%lld\n", icon,
nsizefactor, nsizeindex);
printf("\n");
panelfactor $=($ double *)malloc(sizeof(double)*nsizefactor);
npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
isw=2;

```
ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz, nassign, \&nsupnum, nfcnz̄actor, panelfactor, \&nsizefactor, nfcnzindex, npanelindex, \&nsizeindex, (int*)ndim, nposto, w, iw1, iw2, iw3, \&icon);
ierr=c_dm_vscholx(n, iordering, nperm, x, nassign, nsupnum,
nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, (int*)ndim, nposto, iw3, \&icon);
```

 err \(=\) errnrm(solex, \(x, n) ;\)
    ```
    printf(" COMPUTED VALUES\n");
    printf(" \(\left.\quad X(1)=\% .15 l f \quad X(N)^{\prime}=\% .15 l f \backslash n ", x[0], x[n-1]\right)\);
    printf("\n");
    printf(" ICON = \%d\n", icon);
    printf("\n");
    printf(" \(\quad N=\% d \quad:: N X=\% d \quad N Y=\% d \quad N Z=\% d \backslash n ", n, n x, n y, n z) ;\)
    printf("\n");
    printf(" ERROR = \%.15e\n", err);
    printf("\n");
    printf("\n");
    if \((\mathrm{err}<(1.0 \mathrm{e}-8)\) \&\& icon==0) \{
        printf(" ********** OK **********\n");
    \}
    else\{
        printf(" ********** NG **********\n");
    \}
        free(panelfactor);
        free(npanelindex);
        return 0;
\}
void init_mat_diag(double va1, double va2, double va3, double vc,
                    double d_l[], int offset[], int nx, int ny, int nz,
            double xl, double yl, double zl, int ndiag, int len, int ndivp)
\{
    int i, l, j;
    int length, numnz, js;
    int i0, j0, k0;
    int ndiag_loc;
    int nxy;
    double hx, hy, hz;
    double x1, x2;
    double base;
    double ret, remark;
    if (ndiag<1)
        printf("FUNCTION INIT_MAT_DIAG: \n");
        printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
        return;
    \}
    ndiag_loc = ndiag;
    if (ndiag>7)\{
        ndiag_loc=7;
    \}
    \(h x=x l /(n x+1) ;\)
    \(h y=y l /(n y+1) ;\)
    hz = zl / (nz + 1);
    for (i=1; i<=ndivp; i++)\{
        for (j=1; j<=ndiag; j++)\{
        d_l[i-1+(j-1)*ndivp]= 0.;
        \}
\}
\(n x y=n x\) * ny;
1 = 1;
if (ndiag_loc >= 7) \{
        offset[l-1] = -nxy;
        ++1;
\}
if (ndiag_loc >= 5) \{
        offset[l-1] =-nx;
        ++l;
\}
if (ndiag_loc >= 3) \{
        offset[1-1] = -1 ;
        ++l;
\}
```

 offset[l-1] = 0;
 ++l;
 if (ndiag_loc >= 2) {
 offset[l-1] = 1;
 ++l;
 }
 if (ndiag_loc >= 4) {
 offset[l-1] = nx;
 ++l;
 }
 if (ndiag_loc >= 6) {
 offset[l-1] = nxy;
 }
 for (j = 1; j <= len; ++j) {
 js=j;
 k0 = (js - 1) / nxy + 1;
 if (k0 > nz) {
 printf("ERROR; K0.GH.NZ\n");
 return;
 }
 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
 l = 1;
 if (ndiag_loc >= 7) {
 if (k0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
 }
 ++l;
 }
 if (ndiag_loc >= 5) {
 if (j0 > 1) {
 d_1[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
 }
 ++l;
 }
 if (ndiag_loc >= 3) {
 if (i0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
 }
 ++l;
 }
 d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
 if (ndiag_loc >= 5) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
 if (ndiag_loc >= 7) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
 }
 }
 ++l;
 if (ndiag_loc >= 2) {
 if (i0 < nx) {
 d_l[j-1+(1-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
 }
 ++l;
 }
 if (ndiag_loc >= 4) {
 if (j0< ny) {
 d_1[j-1+(1-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
 }
 ++l;
 }
 if (ndiag_loc >= 6) {
 if (k0 < nz) {
 d_l[j-1+(1-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
 }}
 }
 }
 return;
 }
double errnrm(double *x1, double *x2, int len)
{
double ret_val;

```
}
```

```
```

 int i;
    ```
```

 int i;
 double s, ss;
 double s, ss;
 s = 0.;
 s = 0.;
 for (i = 1; i <= len; ++i) {
 for (i = 1; i <= len; ++i) {
 ss (i = 1; i <= len; ++i)
 ss (i = 1; i <= len; ++i)
 S += SS * SS;
 S += SS * SS;
 }
 }
 ret_val = sqrt(s);
 ret_val = sqrt(s);
 return ret_val;

```
return ret_val;
```


5. Method

Consult the entry for DM_VSCHOL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19].

c_dm_vscholx

```
A system of linear equations with LDL'T}\mathrm{ -decomposed symmetric positive
definite sparse matrices
ierr = c_dm_vscholx(n, iordering, nperm, b,
    nassign, nsupnum, nfcnzfactor,
    panelfactor, nsizefactor,
    nfcnzindex, npanelindex,
    nsizeindex,ndim, nposto, iw3,
    &icon);
```


1. Function

This routine solves a system of equations with a $\mathrm{LDL}^{\mathrm{T}}$-decomposed symmetric positive definite sparse coefficient $n \times n$ matrix.

$\mathbf{L D L}^{\mathrm{T}} \mathbf{Q P x}=\mathbf{Q P b}$,

where \mathbf{P} is a permutation matrix of ordering and \mathbf{Q} is a permutation matrix of post ordering. \mathbf{P} and \mathbf{Q} are orthogonal matrices, \mathbf{L} is a unit lower triangular matrix, \mathbf{D} is a diagonal matrix, \mathbf{b} is a constant vector, and \boldsymbol{x} is a solution vector.

2. Arguments

The routine is called as follows:
ierr = c_dm_vscholx(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, (int*)ndim, nposto, iw3, \&icon);
where:

| n | int | Input | Order n of matrix. |
| :---: | :---: | :---: | :---: |
| iordering | int | Input | Control information whether the coefficient matrix was permuted into $\mathbf{P A} \mathbf{P}^{\mathrm{T}}$ by the permutation matrix \mathbf{P} before decomposition. |
| | | | Specify iordering=1 for the $\operatorname{LDL}^{\mathrm{T}}$ decomposed from $\mathbf{P A P}^{\mathrm{T}}$. |
| | | | Specify the other value for the $\operatorname{LDL}^{\mathrm{T}}$ decomposed matrix from \mathbf{A} as it is. |
| nperm | int nperm[n] | Input | The permutation matrix \mathbf{P} is specified as a vector when iordering=1. |
| | | | See Comments on use. |
| b | double $\mathrm{b}[\mathrm{n}]$ | Input | The right-hand side constant vector \mathbf{b} of a system of linear equations $\mathbf{A x}=\mathbf{b}$. |
| | | Output | Solution vector \mathbf{x}. |
| nassign | int nassign[n] | Input | Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where |

| nsupnum | int |
| :--- | :--- |
| nfcnzfactor | long long int |
| | nfcnzfactor |
| | $[n+1]$ |

| panelfactor | double | Input |
| :--- | :--- | ---: |
| | panelfactor | |
| | $[$ nsizefactor $]$ | |

| nsizefactor | long long int | Input |
| :--- | :--- | :--- |
| nfcnzindex | long long int

 $\left[\begin{array}{l}\text { nfenzindex }\end{array}\right.$ | Input |

Input
Input
this panel is allocated as a part of the onedimensional array panelfactor. When $j=$ nassign[i-1], the i-th supernode is allocated at j-th position.

For the storage method of the decomposed results, refer to Figure c_dm_vscholx-1.

The total number of supernodes.
Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel[0][0] of the i-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor.

For the storage method of the decomposed results, refer to Figure c_dm_vscholx-1.

See Comments on use.
Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These panels are stored in this matrix.

The positions of the panel corresponding to the i-th supernode are indicated as $j=$ nassign[i-1]. The first position is stored in nfenzfactor [j1]. The decomposed result is stored in each panel.

The size of the i-th panel can be considered to be two-dimensional array of ndim[i-1][1]×ndim [i-1][0]. The corresponding part where the lower triangular unit matrix except the diagonal part is transposed and is stored in panel $[t-1][s-1]$, $s>t, s=1, \ldots$, ndim[i-1] [0], $t=1, \ldots$, ndim[i-1][1] of the i-th panel. The corresponding part of the diagonal matrix \mathbf{D} is stored in panel[t-1][t-1].
For the storage method of the decomposed results, refer to Figure c_dm_vscholx-1.

The size of the array panelfactor.
Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element of the i-th row indices vector, where this panel is allocated as a part of the onedimensional array npanelindex.

For the storage method of the decomposed results, refer to Figure c_dm_vscholx-1.

| npanelindex | int npanelindex [nsizeindex] | Input | Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. These row pointer vectors are stored in this matrix. The positions of the row pointer vector corresponding to the i-th supernode are indicated as $j=$ nassign[i-1]. The first position is stored in nfcnzindex[j-1]. The row indices vector is stored by each panel. This row indices are the row indices of the matrix $\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}$ to which the matrix \mathbf{A} is permuted by post ordering.
 For the storage method of the decomposed results, refer to Figure c dm vscholx-1. |
| :---: | :---: | :---: | :---: |
| nsizeindex | long long int | Input | The size of the array panelindex. |
| ndim | int ndim[n][2] | Input | The size of first and second dimension of the i-th panel are stored in ndim[i-1][0] and ndim[i-1][1] respectively. |
| nposto | int nposto[n] | Input | The one dimensional vector is stored which indicates what column index of \mathbf{A} the i-th node in post ordering corresponds to. |
| | | | See Comments on use. |
| iw3 | int | Input | Specify the iw3 which is used by c_dm_vschol before calling this routine. The contents must not be changed. |
| | iw3[n*35+35] | | |
| icon | int | Output | Condition code. See below. |

The complete list of condition codes is:

| Code | Meaning | Processing |
| :---: | :---: | :---: |
| 0 | No error. | Completed. |
| 30000 | One of the following has occurred:
 - $\mathrm{n}<1$
 - nsizefactor <1
 - nsizeindex < 1
 - nsupnum < 1 | Processing is discontinued. |
| 30100 | The permutation matrix specified in nprem is not correct. | |

Figure c_dm_vscholx-1 concept of storing the data for decomposed result

$$
\begin{aligned}
j=\text { nassign[i-1] } \rightarrow & \text { The } i \text {-th supernode is stored at the } j \text {-th position. } \\
\mathrm{p}=\text { nfcnzfactor }[j-1] \rightarrow & \text { The } j \text {-th panel occupies the area with a length } \\
& \text { ndim[j-1][1]×} \times \text { ndim[j-1][0] from the } p \text {-th element of } \\
& \text { panelfactor. }
\end{aligned}
$$

$\mathrm{q}=\mathrm{nfcnzindex[j-1]} \rightarrow$ The row pointer vector of the j-th panel occupies the area with a length ndim [j-1][0] from the q-th element of panelindex.
A panel is regarded as an array of the size ndim[j-1][1]×ndim[j-1][0].

The lower triangular unit matrix \mathbf{L} except the diagonal part is transposed and is stored in

$$
\begin{array}{r}
\operatorname{panel}[t-1][s-1], s>t, s=1, \ldots, \operatorname{ndim}[j-1][0], \\
t=1, \ldots, \operatorname{ndim}[j-1][1]
\end{array}
$$

The corresponding part of the diagonal matrix \mathbf{D} is stored in panel[t-1][t-1].
The row pointers indicate the column indices of the matrix $\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}$ to which the node of the matrix \mathbf{A} is permuted by post ordering.

3. Comments on use

nperm

When the element $\mathrm{p}_{\mathrm{ij}}=1$ of the permutation matrix \mathbf{P}, set nperm[i-1]=j.
The inverse of the matrix can be obtained as follows:

```
for(i=1; i<=n; i++){
    j=nperm[i-1];
    nperminv[j-1]=i;
}
```


nposto

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when $j=n p o s t o[i-1]$.

This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note nperm above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}$.

The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for(i=1; i<=n; i++){
    j=nposto[i-1];
    npostoinv[j-1]=i;
}
```


The linear system of equations

The linear system of equations can be solved by calling this routine with specifying the LDL $^{\mathrm{T}}$-decomposed results which are calculated by c_dm_vschol routine.

4. Example program

The linear system of equations $\mathbf{A x}=\mathbf{f}$ is solved, where \mathbf{A} results from the finite difference method applied to the elliptic equation

$$
-\Delta u+a \nabla u+c u=f
$$

with zero boundary conditions on a cube and the coefficient $a=\left(a_{1}, a_{2}, a_{3}\right)$ where a_{1}, a_{2}, a_{3} and c are zero constants, that means the operator is Laplacian. The matrix \mathbf{A} in Diagonal format is generated by the routine init_mat_diag, and transferred into compressed column storage format.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include "cssl.h" /* standard C-SSL header file */
#define NORD (39)
#define NX (NORD)
#define NY (NORD)
#define NZ (NORD)
#define N (NX*NY*NZ)
#define K (N+1)
#define NDIAG (7)
#define NDIAGH (4)
MAIN__()
{
    int ierr, icon, iguss, iter, itmax;
    int nord, n, l, i, j, k;
    int nx, ny, nz, nnz, nnzc;
    int length, nbase, ndiag, ntopcfgc;
    int numnz, numnzc, nsupnum, ntopcfg, ncol;
    int iordering, isw;
    int *npanelindex;
    int ndummyi;
    int nofst[NDIAG];
    int nrow[NDIAG*K];
    int nrowc[NDIAG*K];
    int nfcnz[N+1];
    int nfcnzc[N+1];
    int nperm[N];
    int nassign[N];
    int nposto[N];
    int ndim[N][2];
    int iw1[N*NDIAGH+N+1];
```

```
int iw2[N*NDIAGH+N+1];
int iw3[N*35+35];
int iwc[NDIAG*K][2];
double err, epsz;
double t0, t1, t2
double va1, va2, va3, vc;
double xl, yl, zl;
double dummyf;
double *panelfactor;
double diag[NDIAG][K];
double diag2[NDIAG][K];
double a[N*NDIAGH];
double b[N];
double c[NDIAG*K];
double w[N*NDIAGH];
double wc[NDIAG*K];
double x[N];
double solex[N];
long long int nsizefactor;
long long int nsizeindex;
long long int nfcnzfactor[N+1];
long long int nfcnzindex[N+1];
void init_mat_diag(double va1, double va2, double va3, double vc,
                                    double d_l[], int offset[], int nx, int ny, int nz,
                                    double xl, double yl,double zl, int ndiag, int len, int ndivp);
double errnrm(double *x1, double *x2, int len);
nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;
```

```
printf(" LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
```

printf(" LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
printf(" FOR SPARSE POSITIVE DEFINITE MATRICES\n");
printf(" FOR SPARSE POSITIVE DEFINITE MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n");
printf(" IN COMPRESSED COLUMN STORAGE\n");
printf("\n");
printf("\n");
for (i=1; i<=n; i++){
for (i=1; i<=n; i++){
solex[i-1]=1.0;
solex[i-1]=1.0;
}
}
printf(" EXPECTED SOLUTIONS\n");
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
printf(" X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
printf("\n");
printf("\n");
va1 = 0.0;
va1 = 0.0;
va2 = 0.0;
va2 = 0.0;
va3 = 0.0;
va3 = 0.0;
vc = 0.0;
vc = 0.0;
xl = 1.0;
xl = 1.0;
yl = 1.0;
yl = 1.0;
zl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
nx, ny, nz, xl, yl, zl, ndiag, n, k);
nx, ny, nz, xl, yl, zl, ndiag, n, k);
for (i=1; i<=ndiag; i++){
for (i=1; i<=ndiag; i++){
if (nofst[i-1] < 0){
if (nofst[i-1] < 0){
nbase=-nofst[i-1];
nbase=-nofst[i-1];
length=n-nbase;
length=n-nbase;
for (j=1; j<=length; j++){
for (j=1; j<=length; j++){
diag2[i-1][j-1]=diag[i-1][nbase+j-1];
diag2[i-1][j-1]=diag[i-1][nbase+j-1];
}
}
}
}
else{
else{
nbase=nofst[i-1];
nbase=nofst[i-1];
length=n-nbase;
length=n-nbase;
for (j=nbase+1; j<=n; j++){
for (j=nbase+1; j<=n; j++){
diag2[i-1][j-1]=diag[i-1][j-nbase-1];
diag2[i-1][j-1]=diag[i-1][j-nbase-1];
}
}
}
}
}
}
numnzc=1;
numnzc=1;
numnz=1;
numnz=1;
for (j=1; j<=n; j++){
for (j=1; j<=n; j++){
ntopcfgc = 1;
ntopcfgc = 1;
ntopcfg = 1;
ntopcfg = 1;
for (i=ndiag; i>=1; i--){
for (i=ndiag; i>=1; i--){
if (diag2[i-1][j-1]!=0.0){
if (diag2[i-1][j-1]!=0.0){
ncol=j-nofst[i-1];
ncol=j-nofst[i-1];
c[numnzc-1]=diag2[i-1][j-1];

```
            c[numnzc-1]=diag2[i-1][j-1];
```

```
            nrowc[numnzc-1]=ncol;
            if (ncol>=j){
                        a[numnz-1]=diag2[i-1][j-1];
                        nrow[numnz-1]=ncol;
                }
                    if (ntopcfgc==1){
                    nfcnzc[j-1]=numnzc;
                    ntopcfgc=0;
                    }
                    if (ntopcfg==1){
                    nfcnz[j-1]=numnz;
                    ntopcfg=0;
                    }
            if (ncol>=j){
                    numnz=numnz+1
                    }
            numnzc=numnzc+1;
        }
        }
    }
```

nfcnzc[n]=numnzc;
nnzc=numnzc-1;
nfcnz[n]=numnz;
nnz=numnz-1;
ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, \&icon);
for (i=1; i<=n; i++)\{
$x[i-1]=b[i-1] ;$
\}
iordering=0;
isw=1;
epsz=0;
nsizefactor=1;
nsizeindex=1;
ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz, nassign,
\&nsupnum, nfcnzfactor, \&dummyf, \&nsizefactor, nfcnzindex, \&ndummyi, \&nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, \&icon)
printf("\n");
printf(" ICON = \%d NSIZEFACTOR = \%lld NSIZEINDEX = \%lld\n", icon,
nsizefactor, nsizeindex);
printf("\n");
panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
isw=2;
ierr=c_dm_vschol(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz, nassign,
\&nsupnum, nfcnzfactor, panelfactor, \&nsizefactor, nfcnzindex, npanelindex, \&nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, \&icon);
ierr=c_dm_vscholx(n, iordering, nperm, x, nassign, nsupnum,
nfcnzfactor, panelfactor, nsizefactor, nfcnzindex, npanelindex, nsizeindex, (int*)ndim, nposto, iw3, \&icon);

```
    err = errnrm(solex,x,n);
    printf(" COMPUTED VALUES\n");
    printf(" X(1) = %.15lf X(N) = %.15lf\n", x[0], x[n-1]);
    printf("\n");
    printf(")'ICON = %d\n", icon);
    printf("\n");
    printf(" N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
    printf("\n");
    printf(" ");ERROR = %.15e\n",err);
    printf("\n");
    printf("\n");
    if (err<(1.0e-8) && icon==0){
        printf(" ********** OK **********\n");
    }
    else{
        printf(" ********** NG **********\n");
    }
        free(panelfactor);
        free(npanelindex);
        return 0;
```

\}

```
void init_mat_diag(double va1, double va2, double va3, double vc,
            double d_l[], int offset[], int nx, int ny, int nz,
            double xl, double yl, double zl, int ndiag, int len, int ndivp)
{
    int i, l, j;
    int length, numnz, js;
    int i0, j0, k0;
    int ndiag_loc;
    int nxy;
    double hx, hy, hz;
    double x1, x2;
    double base;
    double ret, remark;
    if (ndiag<1){
        printf("FUNCTION INIT_MAT_DIAG:\n");
        printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
        return;
    }
ndiag_loc = ndiag;
if (ndiag>7){
    ndiag_loc=7;
}
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
for (i=1; i<=ndivp; i++){
        for (j=1; j<=ndiag; j++){
        d_l[i-1+(j-1)*ndivp]= 0.;
        }
}
nxy = nx * ny;
l = 1;
if (ndiag_loc >= 7) {
        offset[l-1] = -nxy;
        ++l;
}
if (ndiag_loc >= 5) {
    offset[l-1] = -nx;
        ++l;
}
if (ndiag_loc >= 3) {
    offset[l-1] = -1;
    ++l;
}
offset[l-1] = 0;
++l;
if (ndiag_loc >= 2) {
    offset[l-1] = 1;
        ++l;
}
if (ndiag_loc >= 4) {
    offset[l-1] = nx;
        ++1;
}
if (ndiag_loc >= 6) {
    offset[l-1] = nxy;
}
for (j = 1; j <= len; ++j) {
    js=j;
    k0 = (js - 1) / nxy + 1;
    if (k0 > nz) {
        printf("ERROR; K0.GH.NZ\n");
        return;
    }
    j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
    i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
    l = 1;
    if (ndiag_loc >= 7) {
            if (k0 > 1) {
            d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
        }
        ++l;
    }
```

```
            if (ndiag_loc >= 5) {
                if (j0> 1) {
            d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
            }
            ++l;
        }
        if (ndiag_loc >= 3) {
            if (i0 > 1) {
                d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
            }
            ++l;
        }
        d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
        if (ndiag_loc >= 5) {
            d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
            if (ndiag_loc >= 7) {
                d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
            }
        }
        ++l;
        if (ndiag_loc >= 2) {
            if (i0<nx) {
                d_l[j-1+(1-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
            }
        }
        if (ndiag_loc >= 4) {
            if (j0< < ny) {
                d_1[j-1+(1-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
            }
        }
        if (ndiag_loc >= 6) {
            if (k0< nz) {
                d_l[j-1+(1-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
            }
        }
    }
    return;
}
double errnrm(double *x1, double *x2, int len)
{
    double ret_val;
    int i;
    double s, ss;
    s = 0.;
    for (i = 1; i <= len; ++i) {
        ss = x1[i-1] - x2[i-1];
        s += ss * ss;
    }
    ret_val = sqrt(s);
    return ret_val;
}
```


c_dm_vsclu

```
LU decomposition of an unsymmetric complex sparse matrix.
ierr = c_dm_vsclu(za, nz, nrow, nfcnz, n,
    ipledsm, mz, isclitermax,
    &iordering, nperm, isw,
    nrowsym, nfcnzsym,
    nassign, &nsupnum,
    nfcnzfactorl, zpanelfactorl,
    &nsizefactorl, nfcnzindexl,
    npanelindexl,
    &nsizeindexl, ndim,
    nfcnzfactoru, zpanelfactoru,
    &nsizefactoru,
    nfcnzindexu, npanelindexu,
    &nsizeindexu, nposto,
    sclrow, sclcol,
    &epsz, &thepsz, ipivot, istatic,
    &spepsz, nfcnzpivot,
    npivotp, npivotq, zw, w, iw1, iw2,
    &icon);
```


1. Function

The large entries of an $n \times n$ unsymmetric complex sparse matrix \mathbf{A} are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.
The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for the permutation of elements, scaling and pivot.

The unsymmetric complex sparse matrix is transformed as below.

$$
\mathbf{A}_{1}=\mathbf{D}_{\mathrm{r}} \mathbf{A P}_{\mathrm{c}} \mathbf{D}_{\mathrm{c}}
$$

where $\mathbf{P}_{\mathbf{c}}$ is an orthogonal matrix for column permutation, $\mathbf{D}_{\mathbf{r}}$ is a diagonal matrix for scaling rows and $\mathbf{D}_{\mathbf{c}}$ is also a diagonal matrix for scaling columns.

$\mathbf{A}_{\mathbf{2}}=\mathbf{Q P A} \mathbf{P}_{\mathbf{1}} \mathbf{Q}^{\mathbf{T}}$

$\mathbf{A}_{\mathbf{2}}$ is decomposed into $\mathbf{L \mathbf { U }}$ decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
In the right term \mathbf{P} is a permutation matrix of ordering which is sought for a pattern of nonzero elements for $\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}$ and \mathbf{Q} is a permutation matrix of postorder for $\mathbf{S Y M} . \mathbf{P}$ and \mathbf{Q} are orthogonal matrices. \mathbf{L} is a lower triangular matrix and \mathbf{U} is a unit upper triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU
specifying an appropriate small value as a static pivot in place of the candidate sought.

2. Arguments

The routine is called as follows:

| ier $=$ | c_dm_vsclu(za, nz, nrow, nfcnz, $n, ~ i p l e d s m, ~ m z, ~ i s c l i t e r m a x, ~$ |
| ---: | :--- |
| | \&iordering, nperm, isw, nrowsym, nfcnzsym, nassign, \&nsupnum, |
| | nfcnzfactorl, zpanelfactorl, \&nsizefactorl, nfcnzindexl, |
| | npanelindexl, \&nsizeindexl, (int *)ndim, nfcnzfactoru, |
| | zpanelfactoru, \&nsizefactoru, nfcnzindexu, npanelindexu, |
| | \&nsizeindexu, nposto, sclrow, sclcol, \&epsz, \&thepsz, ipivot, |
| | istatic, \&spepsz, nfcnzpivot, npivotp, npivotq, zw, w, iw1, iw2, |
| | \&icon); |

where:

| za | dcomplex za[nz] | Input | The nonzero elements of an unsymmetric sparse matrix \mathbf{A} are stored.
 For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector). For a complex matrix , a real array a in this Figure is replaced with a complex array. |
| :---: | :---: | :---: | :---: |
| $n z$ | int | Input | The total number of the nonzero elements belong to an unsymmetric complex sparse matrix \mathbf{A}. |
| nrow | int nrow[nz] | Input | The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array za. |
| nfenz | int $\mathrm{nfcnz}[\mathrm{n}+1]$ | Input | The position of the first nonzero element of each column stored in an array za in the compressed column storage method which stores the nonzero elements column by column. $\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1$. |
| n | int | Input | Order n of matrix \mathbf{A}. |
| ipledsm | int | Input | Control information whether to permute the large entries to the diagonal of a matrix \mathbf{A}. When ipledsm $=1$ is specified, a matrix \mathbf{A} is transformed internally permuting large entries to the diagonal.
 Otherwise no permutation is performed. |
| mz | int mz[n] | Output | When ipledsm $=1$ is specified, it indicates a permutation of columns. $m z[i-1]=j$ indicates that the j-th column which the element of $\boldsymbol{a}_{i j}$ belongs to is permutated to i-th column. The element of $\boldsymbol{a}_{i j}$ is the large entry to be permuted to the diagonal. |
| isclitermax | int | Input | The upper limit for the number of iteration to seek scaling matrices of $\mathbf{D}_{\mathbf{r}}$ and $\mathbf{D}_{\mathbf{c}}$ to equilibrate both rows and |

| nrowsym | int nrowsym[nz+n] | Output | When it is called with iordering $=10$, the row indices of nonzero pattern of the lower triangular part of $\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}$ in the compressed column storage method are generated. |
| :---: | :---: | :---: | :---: |
| nfenzsym | int nfenzsym[n+1] | Output | When it is called with iordering $=10$, the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column.
 $n f c n z s y m[n]=n s y m z+1$ where nsymz is the total nonzero elements in the lower triangular part. |
| nassign | int nassign[n] | Output | \mathbf{L} and \mathbf{U} belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in zpanelfactorl and zpanelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the i-th supernode is stored into the j-th block of a subarray, where $\mathrm{j}=$ nassign[i-1]. |
| | | Input | When isw $\neq 1$, the values stored in the first call are reused. Regarding
 the storage methods of decomposed matrices, refer to Figure c_dm_vsclu-1. |
| nsupnum | int | Output | The total number of supernodes. |
| | | Input | The values in the first call are reused when isw $\neq 1$ specified. ($\leq \mathrm{n}$) |
| nfenzfactorl | long | Output | The decomposed matrices \mathbf{L} and \mathbf{U} of an unsymmetric |

| nsizefactoru | long | Input Output | The size of the array zpanelfactoru.
 The necessary size for the array zpanelfactoru is returned. See Comments on use. |
| :---: | :---: | :---: | :---: |
| nfcnzindexu | long
 nfcnzindexu[n+1] | Output | The rows of the decomposed matrix \mathbf{U} belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the i-th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored.
 Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclu-1. |
| | | Input | When isw $\neq 1$, the values set by the first call are reused. |
| npanelindexu | int npanelindexu [nsizeindexu] | Output | The rows of the decomposed matrix \mathbf{U} belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the i-th supernode is assigned is known from $j=$ nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix into which SYM is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclu-1. See Comments on use. |
| nsizeindexu | long | Input | The size of the array npanelindexu. |
| | | Output | The necessary size is returned. See Comments on use. |
| nposto | int nposto[n] | Output | The information about what column number of \mathbf{A} the i-th node in post order corresponds to is stored. |
| | | Input | When isw $\neq 1$, the values set by the first call are reused. |

| sclrow | double sclrow[n] | | See Comments on use. |
| :---: | :---: | :---: | :---: |
| | | Output | The diagonal elements of $\mathbf{D}_{\mathbf{r}}$ or a diagonal matrix for scaling rows are stored in one dimensional array. |
| | | Input | When isw $\neq 1$, the values set by the first call are reused. |
| sclcol | double sclcol[n] | Output | The diagonal elements of $\mathbf{D}_{\mathbf{c}}$ or a diagonal matrix for scaling columns are stored in one dimensional array. |
| | | Input | The values set by the first call are reused when isw $\neq 1$ specified. |
| epsz | double | Input | Judgment of relative zero of the pivot (≥ 0.0). |
| | | Output | When epsz ≤ 0.0, it is set to the standard value. |
| | | | See Comments on use. |
| thepsz | double | Input | Threshold used in judgement for a pivot. Immediately after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, 10^{-2}. |
| | | Output | When thepsz $\leq 0.0,10^{-2}$ is set. |
| | | | When eps $z \geq$ thepsz >0.0, it is set to the value of epsz. |
| ipivot | int | Input | Control information on pivoting which indicates whether a pivot is searched and what kind of pivoting is chosen if any. |
| | | | For example, 40 for complete pivoting. ipivot <10 or ipivot ≥ 50, no pivoting. $10 \leq$ ipivot <20, partial pivoting |
| | | | $20 \leq$ ipivot <30, diagonal pivoting |
| | | | 21 : When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. |
| | | | 22 : When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. If Rook pivoting fails, it is changed to complete pivoting. |
| | | | $30 \leq$ ipivot <40, Rook pivoting |
| | | | 32 : When within a supernode Rook pivoting fails, it is changed to complete pivoting. |
| | | | $40 \leq$ ipivot <50, complete pivoting |
| istatic | int | Input | Control information indicating whether Static pivoting is taken. |
| | | | 1) When istatic $=1$ is specified.
 When the pivot searched within a supernode is not greater than spepsz, it is replaced with its approximate value of a complex number with the absolute value of spepsz. |
| | | | If its value is 0.0 , spepsz is used as an approximation value. |
| | | | The following conditions must be satisfied.
 a) epsz must be less than or equal to the standard value of epsz. |
| | | | b) Scaling must be performed with isclitermax |

| Code | Meaning | Processing |
| :---: | :---: | :---: |
| 20000 | The pivot became relatively zero. The coefficient matrix A may be singular. | Processing is discontinued. |
| 20100 | When ipledsm is specified, maximum matching with the length n is sought in order to permute large entries to the diagonal but can not be found. The coefficient matrix A may be singular. | |
| 20200 | When seeking diagonal matrices for equilibrating both rows and columns, there is a zero vector in either rows or columns of the matrix \mathbf{A}. The coefficient matrix A may be singular. | Processing is discontinued. |
| 30000 | One of the following has occurred:
 - $\mathrm{n}<1$
 - $\mathrm{nz}<0$
 - nfcnz[n] $=\mathrm{nz}+1$
 - nsizefactorl<1
 - nsizefactoru<1
 - nsizeindexl<1
 - nsizeindexu<1
 - isw<1
 - isw>2 | |
| 30100 | The permutation matrix specified in nperm is not correct. | |
| 30200 | The row index k stored in nrow [j-1] is $k<1$ or $k>n$. | |
| 30300 | The number of row indices belong to i-th column is $n f c n z[i]-n f c n z[i-1]>n$. | |
| 30500 | When istatic $=1$ is specified, the required conditions are not satisfied.
 epsz is greater than $16 u$ of the standard value or isclitermax < 10
 or spepsz > thepsz | |
| 31000 | The value of nsizefactorl is not enough as the size of zpanelfactorl, or the value of nsizeindexl is not enough as the size of npanelindexl, or the value of nsizefactoru is not enough as the size of zpanelfactoru, or the value of nsizeindexu is not enough as the size of npanelindexu. | Reallocate the zpanelfactorl or npanelindexl or zpanelfactoru or npanelindexu with the necessary size which are returned in the nsizefactorl or nsizeindexl or nsizefactoru or nsizeindexu respectively and call this routine again with $i s w=2$ specified. |

Figure c_dm_vsclu-1. Conceptual scheme for storing decomposed results
$j=$ nassign[i-1] $\rightarrow \quad$ The i-th supernode is stored at the j-th section.

[j-1][1] from the p-th element of zpanelfactorl.
$\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad$ The row indices vector of the j-th panel occupies the area with a length ndim [j-1] [0] from the q-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] $\times \operatorname{ndim}[j-1][1]$.
The lower triangular matrix \mathbf{L} of decomposed results is stored in

$$
\operatorname{panel}[t-1][s-1], \quad s \geq t, s=1, \ldots, \operatorname{ndim}[j-1][0]
$$

$$
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
$$

The block diagonal portion except diagonals of the unit upper triangular matrix \mathbf{U} of decomposed results is stored in

$$
\operatorname{panel}[t-1][s-1], \quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1],
$$

$$
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
$$

$u=n f c n z f a c t o r u[j-1] \rightarrow \quad$ The j-th panel occupies the area with a length (ndim[j-1][2] -ndim[j-1][1]) $\times \operatorname{ndim}[j-1][1]$ from the u-th element of zpanelfactoru.
$\mathrm{v}=\mathrm{nfcnzindexu}[\mathrm{j}-1] \rightarrow$ The column indices vector of the j-th panel occupies the area with a length ndim[j-1][2] from the v-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2]-ndim[j-1][1]) $\times \operatorname{ndim}[j-1][1]$.
The transposed unit upper triangular matrix \mathbf{U}^{T} except its block diagonal portion of decomposed results is stored in

$$
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][2]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1] .
$$

The indices indicate the column numbers of the matrix $\mathbf{Q A} \mathbf{Q}^{T}$ to which the nodes of the matrix \mathbf{A} is permuted in post ordering.

3. Comments on use

a)

When the element $p_{i j}=1$ of the permutation matrix \mathbf{P}, set nperm[i-1] $=j$.
The inverse of the matrix can be obtained as follows:
for (i = 1; i <= n; i++) \{

```
    j = nperm[i-1];
nperminv[j-1] = i;
}
```

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [41], [42] in Appendix, "References." in detail.

b)

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of $L U$ decomposition. In this case, processing is discontinued with icon $=20000$. When unit round off is u, the standard value of epsz is $16 \times u$. The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for pivot.
When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz.

c)

The necessary sizes for the array zpanelfactorl, npanelindexl, zpanelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.
For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw=1. This routine ends with icon $=31000$, and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw=2 after reallocating the arrays with the necessary sizes.

d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the i-th node in post order is corresponding. It means j-th position when $j=$ nposto[i-1].
This array represents a permutation matrix \mathbf{Q} which is an orthogonal matrix also as well as note \mathbf{a}) above, and corresponds to permute the matrix \mathbf{A} into $\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}$.
The inverse matrix \mathbf{Q}^{T} can be obtained as follows:

```
for (i = 1; i <= n; i++) {
    j = nposto[i-1];
    npostoinv[j-1] = i;
}
```


e)

A system of equations $\mathbf{A x}=\mathbf{b}$ can be solved by calling c_dm_vsclux subsequently in use of the results of LU decomposition obtained by this routine.
The following arguments used in this routine are specified.

```
za, nz, nrow, nfcnz, n,
ipledsm, mz, iordering, nperm,
nassign, nsupnum,
nfcnzfactorl, zpanelfactorl,
nsizefactorl, nfcnzindexl, npanelindexl,
```

```
nsizeindexl, ndim,
nfcnzfactoru, zpanelfactoru, nsizefactoru,
nfcnzindexu, npanelindexu, nsizeindexu, nposto,
sclrow,sclcol,
nfcnzpivot,
npivotp, npivotq,iw2
```


4. Example program

The linear system of equations $\mathbf{A x}=\mathbf{f}$ is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation

$$
-\Delta u+a \nabla u+c u=f
$$

with zero boundary conditions on a cube and the coefficient $a=\left(a_{1}, a_{2}, a_{3}\right)$.
The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix \mathbf{A} built in this way is stored into a complex sparse array and is solved.

The number of the threads can be specified with an environment variable (OMP NUM THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.

```
/* **EXAMPLE** */
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <malloc.h>
#include <omp.h>
#include "cssl.h"
#define NORD 40
#define KX NORD
#define KY NORD
#define KZ NORD
#define N KX * KY * KZ
#define NBORDER (N + 1)
#define NOFFDIAG 6
#define K (N + 1)
#define NDIAG 7
#define NALL NDIAG * N
#define ZWL 2 * NALL
#define WL 4 * NALL + 6 * N
#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N
#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)
```

```
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
    double, double, double, int, int, int);
double errnrm(dcomplex*, dcomplex*, int);
dcomplex comp_sub(dcomplex, dcomplex);
int MAIN__() {
    int nofst[NDIAG];
    double diag[NDIAG][K], diag2[NDIAG][K];
    dcomplex za[K * NDIAG], zwc[K * NDIAG],
            zw[ZWL], zone;
    int nrow[K * NDIAG], nfcnz[N + 1],
        nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
        iwc[K * NDIAG][2];
    int nperm[N],
        nposto[N], ndim[N][3],
        nassign[N],
        mz[N],
        iw1[IW1L], iw2[IW2L];
    double w[WL];
    dcomplex *zpanelfactorl, *zpanelfactoru;
    int *npanelindexl, *npanelindexu;
    dcomplex zdummyfl, zdummyfu;
    int ndummyil,
        ndummyiu;
    long nsizefactorl,
        nsizeindexl,
        nsizeindexu,
        nsizefactoru,
        nfcnzfactorl[N + 1],
        nfcnzfactoru[N + 1],
        nfcnzindexl[N + 1],
        nfcnzindexu[N + 1];
    dcomplex zb[N], zsolex[N];
    double epsz, thepsz, spepsz,
            sclrow[N], sclcol[N];
    int ipivot, istatic, nfcnzpivot[N + 1],
        npivotp[N], npivotq[N],
        irefine, itermax, iter, ipledsm;
    double err, va1, va2, va3, vc, xl, yl, zl, epsr;
    int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
        isclitermax, isw, nsupnum;
    zone.re = 1.0;
    zone.im = 0.0;
```

```
printf(" LU DECOMPOSITION METHOD\n");
printf(" FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
```

```
for (i = 0; i < N; i++) {
```

for (i = 0; i < N; i++) {
zsolex[i] = zone;
zsolex[i] = zone;
}
}
printf(" EXPECTED SOLUTIONS\n");
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n",
printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n",
zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);
zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
KX, KY, KZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][j] = diag[i][nbase + j];
}
} else {
nbase = nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][nbase + j] = diag[i][j];
}
}
}

```
```

numnz = 1;
for (j = 0; j < N; j++) {
ntopcfg = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (ntopcfg == 1) {
nfcnz[j] = numnz;
ntopcfg = 0;
}
if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
continue;
} else {
if (diag2[i][j] != 0.0) {
ncol = (j + 1) - nofst[i];
za[numnz - 1].re = diag2[i][j];
za[numnz - 1].im = 0.0;
nrow[numnz - 1] = ncol;
numnz++;
}
}
}
}
nfcnz[N] = numnz;
nz = numnz - 1;
c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,
zb, zwc, (int *)iwc, \&icon);
/* INITIAL CALL WITH IORDER=1 */
iordering = 0;
ipledsm = 1;
isclitermax = 10;
isw = 1;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindexl = 1;
nsizeindexu = 1;

```
```

epsz = 1.0e-16;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40;
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;
c_dm_vsclu(za, nz, nrow, nfcnz, N,
ipledsm, mz, isclitermax, \&iordering,
nperm, isw,
nrowsym, nfcnzsym,
nassign,
\&nsupnum,
nfcnzfactorl, \&zdummyfl,
\&nsizefactorl,
nfcnzindexl,
\&ndummyil, \&nsizeindexl,
(int *)ndim
nfcnzfactoru, \&zdummyfu,
\&nsizefactoru,
nfcnzindexu,
\&ndummyiu, \&nsizeindexu,
nposto,
sclrow, sclcol,
\&epsz, \&thepsz,
ipivot, istatic, \&spepsz, nfcnzpivot,
npivotp, npivotq,
ZW, W, iw1, iw2, \&icon);
printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",
icon, nsizefactorl, nsizefactoru, nsizeindexl)
printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);
zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));
zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isW = 2;
c_dm_vsclu(za, nz, nrow, nfcnz, N,
ipledsm, mz, isclitermax, \&iordering,
nperm, isw,
nrowsym, nfcnzsym,

```
```

 nassign,
 &nsupnum,
 nfcnzfactorl, zpanelfactorl,
 &nsizefactorl,
 nfcnzindexl,
 npanelindexl, &nsizeindexl,
 (int *)ndim,
 nfcnzfactoru, zpanelfactoru,
 &nsizefactoru
 nfcnzindexu,
 npanelindexu, &nsizeindexu,
 nposto,
 sclrow, sclcol,
 &epsz, &thepsz,
 ipivot, istatic, &spepsz, nfcnzpivot,
 npivotp, npivotq,
 zw, w, iw1, iw2, &icon);
 c_dm_vsclux(N,
iordering,
nperm,
zb,
nassign,
nsupnum,
nfcnzfactorl, zpanelfactorl,
nsizefactorl,
nfcnzindexl,
npanelindexl, nsizeindexl,
(int *)ndim
nfcnzfactoru, zpanelfactoru,
nsizefactoru,
nfcnzindexu
npanelindexu, nsizeindexu,
nposto,
ipledsm, mz
sclrow, sclcol,
nfcnzpivot,
npivotp, npivotq,
irefine, epsr, itermax, \&iter,
za, nz, nrow, nfcnz,
iw2, \&icon);
err = errnrm(zsolex, zb, N);
printf(" COMPUTED VALUES\n");
printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1])

```
```

 printf(" ICON = %d\n\n", icon);
 printf(" N = %d\n\n", N);
 printf(" ERROR = %lf\n", err);
 printf(" ITER=%d\n\n\n", iter);
 if (err < 1.0e-8 && icon == 0) {
 printf("*********** OK **********\n");
 } else {
 printf("********** NG **********\n");
 }
 free(zpanelfactorl);
 free(zpanelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
 }
/* ==
INITIALIZE COEFFICIENT MATRIX
=== */
void init_mat_diag(double va1, double va2, double va3, double vc,
double *d_l, int *offset,
int nx, int ny, int nz, double xl, double yl, double zl,
int ndiag, int len, int ndivp) {
if (ndiag < 1) {
printf("FUNCTION INIT_MAT_DIAG:\n");
printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
return;
}
\#pragma omp parallel default(shared)
{
int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
ndiag_loc = ndiag;
if (ndiag > 7)
ndiag_loc = 7;
/* INITIAL SETTING */
hx = xl / (nx + 1);
hy = yl / (ny + 1);

```
```

 hz = zl / (nz + 1);
 \#pragma omp for
for (i = 0; i < ndivp; i++) {
for (j = 0; j < ndiag; j++) {
d_l[(j * ndivp) + i] = 0.0;
}
}
nxy = nx * ny;
/* OFFSET SETTING */
\#pragma omp single
{
l = 0;
if (ndiag_loc >= 7) {
offset[l] = -nxy;
l++;
}
if (ndiag_loc >= 5) {
offset[l] = -nx;
l++;
}
if (ndiag_loc >= 3) {
offset[l] = -1;
l++;
}
offset[l] = 0;
l++;
if (ndiag_loc >= 2) {
offset[l] = 1;
l++;
}
if (ndiag_loc >= 4) {
offset[l] = nx;
l++;
}
if (ndiag_loc >= 6) {
offset[l] = nxy;
}
}
/* MAIN LOOP */
\#pragma omp for
for (j = 0; j < len; j++) {
js = j + 1;

```
```

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
k0 = (js -1) / nxy + 1;
if (k0 > nz) {
printf("ERROR; K0.GH.NZ \n");
goto label_100;
}
j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
l = 0;
if (ndiag_loc >= 7) {
if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
l++;
}
if (ndiag_loc >= 5) {
if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
l++;
}
if (ndiag_loc >= 3) {
if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;
l++;
}
hx2 = hx * hx;
hy2 = hy * hy;
hz2 = hz * hz;
d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;
if (ndiag_loc >= 5) {
d_l[(l * ndivp) + j] += 2.0 / hy2;
if (ndiag_loc >= 7) {
d_l[(l * ndivp) + j] += 2.0 / hz2;
}
}
l++;
if (ndiag_loc >= 2) {
if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;
l++;
}
if (ndiag_loc >= 4) {
if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
l++;
}
if (ndiag_loc >= 6) {
if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
}
label_100: ;

```
```

 }
 }
return;
}
/* ===================================
* Solute ERror
* | Z1 - Z2 |
=== */
double errnrm(dcomplex *z1, dcomplex *z2, int len) {
double rtc, s;
dcomplex ss;
int i;
s = 0.0;
for (i = 0; i < len; i++) {
ss = comp_sub(z1[i], z2[i]);
s += ss.re * ss.re + ss.im * ss.im;
}
rtc = sqrt(s);
return(rtc);
}
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re - so2.re;
obj.im = so1.im - so2.im;
return obj;
}

```

\section*{5. Method}

Consult the entry for DM_VSCLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as[2], [13], [17] , [19] , [22] , [23] , [46] , [53], [59] , [64] and [65].

\section*{c_dm_vsclux}
```

A system of linear equations with LU-decomposed unsymmetric
complex sparse matrices
ierr = c_dm_vsclux(n, iordering, nperm
zb, nassign, nsupnum,
nfcnzfactorl, zpanelfactorl,
nsizefactorl, nfcnzindexl,
npanelindexl,
nsizeindexl, ndim,
nfcnzfactoru, zpanelfactoru,
nsizefactoru,
nfcnzindexu, npanelindexu,
nsizeindexu, nposto,
ipledsm, mz,
sclrow, sclcol, nfcnzpivot,
npivotp, npivotq, irefine, epsr,
itermax, \&iter,
za, nz, nrow, nfcnz,
iw2, \&icon);

```

\section*{1. Function}

An \(n \times n\) unsymmetric complex sparse matrix \(\mathbf{A}\) of which LU decomposition is made as below is given. In this decomposition the large entries of an \(n \times n\) unsymmetric complex sparse matrix \(\mathbf{A}\) are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following form. This routine solves the following linear equation in use of these results of LU decomposition.
The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for the permutation of elements, scaling and pivot.
\[
\mathbf{A x}=\mathbf{b}
\]

A matrix \(\mathbf{A}\) is decomposed into as below.

\section*{\(\mathbf{P}_{\mathrm{rs}} \mathbf{Q P D}_{\mathrm{r}} \mathbf{A P}_{\mathrm{c}} \mathbf{D}_{\mathrm{c}} \mathbf{P}^{\mathbf{T}} \mathbf{Q}^{\mathbf{T}} \mathbf{P}_{\mathrm{cs}}=\mathbf{L U}\)}

The unsymmetric complex sparse matrix \(\mathbf{A}\) is transformed as below.
\[
\mathbf{A}_{1}=\mathbf{D}_{\mathrm{r}} \mathbf{A} \mathbf{P}_{\mathrm{c}} \mathbf{D}_{\mathbf{c}}
\]
where \(\mathbf{P}_{\mathbf{c}}\) is an orthogonal matrix for column permutation, \(\mathbf{D}_{\mathbf{r}}\) is a diagonal matrix for scaling rows and \(\mathbf{D}_{\mathbf{c}}\) is also a diagonal matrix for scaling columns.
\[
\mathbf{A}_{\mathbf{2}}=\mathbf{Q P} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathbf{T}}
\]
\(\mathbf{A}_{2}\) is decomposed into \(\mathbf{L U}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
\(\mathbf{P}_{\mathrm{rs}}\) and \(\mathbf{P}_{\text {cs }}\) represent row and column exchanges in orthogonal matrices respectively.
The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of nonzero elements for \(\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\) \(\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}\) and \(\mathbf{Q}\) is a permutation matrix of postorder for \(\mathbf{S Y M} . \mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix.
It can be specified to improve the precision of the solution by iterative refinement.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsclux(n, iordering, nperm, zb, nassign, nsupnum, nfcnzfactorl,
zpanelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindexl, (int *)ndim, nfcnzfactoru, zpanelfactoru,
nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,
ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,
irefine, epsr, itermax, \&iter, za, nz, nrow, nfcnz, iw2, \&icon);

```
where:

\begin{tabular}{|c|c|c|c|}
\hline & nfcnzfactorl[n+1] & & \begin{tabular}{l}
complex sparse matrix are computed for each supernode respectively. The columns of \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into zpanelfactorl consecutively or the location of panel[0][0] is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
\end{tabular} \\
\hline zpanelfactor 1 & \begin{tabular}{l}
dcomplex \\
zpanelfactorl \\
[nsizefactorl]
\end{tabular} & Input & \begin{tabular}{l}
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign [i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfenzfactorl[j-1]. \\
The size of the panel in the \(i\)-th block can be considered to be two dimensional array of ndim [j-1] [0] \(\times\) ndim[j-1][1]. The corresponding parts of the lower triangular matrix \(\mathbf{L}\) are store in this panel
\[
[t-1][s-1], s \geq t, s=1, \ldots, \text { ndim }[i-1][0], t=1,
\] ..., ndim[i-1] [1]. The corresponding block diagonal portion of the unit upper triangular matrix \(\mathbf{U}\) except its diagonals is stored in the panel \([\mathrm{t}-1][\mathrm{s}-1], \mathrm{s}<\mathrm{t}\), \(\mathrm{t}=1, \ldots\), ndim[i-1][1]. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
\end{tabular} \\
\hline nsizefactorl nfcnzindexl & \begin{tabular}{l}
long \\
long \\
nfenzindexl[n+1]
\end{tabular} & \begin{tabular}{l}
Input \\
Input
\end{tabular} & \begin{tabular}{l}
The size of the array zpanelfactorl. \\
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th row indices vector is mapped into npanelindexl consecutively is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
\end{tabular} \\
\hline npanelindexl & int npanelindexl [nsizeindexl] & Input & The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel \\
\hline
\end{tabular}

with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfcnzindexl[j-1]. This row indices are the row numbers of the matrix into which SYM is permuted in its post order.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
The size of the array npanelindexl. ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix \(\mathbf{L}\) respectively, which is allocated in the \(i\)-th location. ndim[i-1] [2] indicates the total amount of the size of the first dimension of the panel where a matrix \(\mathbf{U}\) is transposed and stored and the size of its block diagonal portion.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of an unsymmetric complex sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into zpanelfactoru consecutively or the location of panel[0][0] is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.

The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(\mathrm{j}=\) nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactoru[j-1]. The size of the panel in the \(i\)-th block can be considered to be two dimensional array of \(\{\) ndim[i-1][2] - ndim[i-1][1]\} \(\times\) ndim [i-1] [1]. The rows of the unit upper triangular matrix \(\mathbf{U}\) except the block diagonal portion are compressed,
\begin{tabular}{|c|c|c|c|}
\hline nsizefactoru & long & Input & The size of the array zpanelfactoru. See Comments on use. \\
\hline nfcnzindexu & \begin{tabular}{l}
long \\
nfenzindexu[n+1]
\end{tabular} & Input & \begin{tabular}{l}
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
\end{tabular} \\
\hline npanelindexu & int npanelindexu [nsizeindexu] & Input & \begin{tabular}{l}
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix into which SYM is permuted in its post order. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsclux-1.
\end{tabular} \\
\hline nsizeindexu nposto & long int nposto[n] & \begin{tabular}{l}
Input \\
Input
\end{tabular} & \begin{tabular}{l}
The size of the array npanelindexu. \\
The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. \\
See Comments on use.
\end{tabular} \\
\hline ipledsm & int & Input & \begin{tabular}{l}
Information indicating whether for LU decomposition it is specified to permute the large entries to the diagonal of a matrix \(\mathbf{A}\). \\
When ipledsm = 1 is specified, a matrix \(\mathbf{A}\) is transformed internally permuting large entries to the diagonal. \\
Otherwise no permutation is performed.
\end{tabular} \\
\hline mz & int mz[n] & Input & When ipledsm \(=1\) is specified, it indicates a permutation of columns. \(m z[i-1]=j\) indicates that the \(j\)-th column which the element of \(\boldsymbol{a}_{i j}\) belongs to is permutated to \(i\)-th column. The element of \(\boldsymbol{a}_{i j}\) is the large \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline sclrow & double sclrow[n] & Input & \begin{tabular}{l}
entry to be permuted to the diagonal. \\
The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for scaling rows are stored in one dimensional array.
\end{tabular} \\
\hline sclcol & double sclcol[n] & Input & The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. \\
\hline nfenzpivot & int nfenzpivot [nsupnum+1] & Input & \begin{tabular}{l}
The location for the storage where the history of relative row and column exchanges for pivoting within each supernode is stored. \\
The block number of the section where the information on the \(i\)-th supernode is assigned is known by \(\mathrm{j}=\) nassign[i-1]. The position of the first element of that section is stored in nfenzpivot[j-1]. The information of exchange rows and columns within the \(i\)-th supernode is stored in the elements of is \(=\) nfcnzpivot[j-1],..., ie = nfcnzpivot[j-1] + ndim[j-1][1]-1 in npivotp and npivotq respectively
\end{tabular} \\
\hline npivotp & int npivotp[n] & Input & The information on exchanges of rows within each supernode is stored. \\
\hline npivotq & int npivotq[n] & Input & The information on exchanges of columns within each supernode is stored. \\
\hline irefine & int & Input & \begin{tabular}{l}
Control information indicating whether iterative refinement is performed when the solution is computed in use of results of \(L U\) decomposition. A residual vector is computed in quadruple precision. When irefine \(=1\) is specified. \\
The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones. \\
When irefine \(\neq 1\) is specified. \\
No iterative refinement is performed.
\end{tabular} \\
\hline epsr & double & Input & \begin{tabular}{l}
Criterion value to judge if the absolute value of the residual vector \\
b-Ax is sufficiently smaller compared with the absolute value of \(\boldsymbol{b}\). \\
When epsr \(\leq 0.0\), it is set to \(10^{-6}\).
\end{tabular} \\
\hline itermax & int & Input & Upper limit of iterative count for refinement ( \(\geq 1\) ). \\
\hline iter & int & Output & Actual iterative count for refinement. \\
\hline za & dcomplex za[nz] & Input & \begin{tabular}{l}
The nonzero elements of an unsymmetric complex sparse matrix \(\mathbf{A}\) are stored. \\
For the compressed column storage method, refer to Figure c_dm_vmvscce-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector). For a complex matrix , a real
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline nz & int & \[
\begin{array}{ll} 
& \text { array } \\
\text { Input } & \text { The t } \\
\text { unsy }
\end{array}
\] & array a in this Figure is replaced with a complex array. The total number of the nonzero elements belong to an unsymmetric complex sparse matrix \(\mathbf{A}\). \\
\hline nrow & int nrow[nz] & \begin{tabular}{l}
Input The \\
meth \\
elem
\end{tabular} & The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array za. \\
\hline nfcnz & int \(\mathrm{nfcnz}[\mathrm{n}+1]\) &  & The position of the first nonzero element of each column stored in an array za in the compressed column storage method which stores the nonzero elements column by column. \(\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1\). \\
\hline iw2 & ```
int
iw2[47*n+47+nz+4*
(n+1)+2*}(nz+n)
``` & \begin{tabular}{ll}
\begin{tabular}{l}
Work \\
area
\end{tabular} & \begin{tabular}{l}
The \\
deco
\end{tabular} \\
& \begin{tabular}{l}
is tra \\
chan
\end{tabular}
\end{tabular} & The data derived from calling c_dm_vsclu of LU decomposition of an unsymmetric complex sparse matrix is transferred in this work area. The contents must not be changed among calls. \\
\hline icon & int & Output Con & Condition code. See below. \\
\hline \multicolumn{4}{|l|}{The complete list of condition codes is:} \\
\hline Code & Meaning & & Processing \\
\hline 0 & No error. & & Completed. \\
\hline 20400 & \multicolumn{2}{|l|}{There is a zero element in diagonal of resultant matrices of LU decomposition.} & \multirow[t]{6}{*}{Processing is discontinued.} \\
\hline 20500 & \multicolumn{2}{|l|}{The norm of residual vector for the solution vector is greater than that of \(\mathbf{b}\) multiplied by epsr, which is the right term constant vector in \(\mathbf{A x}=\mathbf{b}\). The coefficient matrix A may be close to a singular matrix.} & \\
\hline 30000 & \multicolumn{2}{|l|}{\begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(n z<0\) \\
- nfcnz[n] \(=\mathrm{nz}+1\) \\
- nsizefactorl<1 \\
- nsizefactoru<1 \\
- nsizeindexl<1 \\
- nsizeindexu<1 \\
- itermax \(<1\) when irefine \(=1\).
\end{tabular}} & \\
\hline 30100 & \multicolumn{2}{|l|}{The permutation matrix specified in nperm is not correct.} & \\
\hline 30200 & \multicolumn{2}{|l|}{The row index \(k\) stored in nrow [j-1] is \(k<1\) or \(k>n\).} & \\
\hline 30300 & \multicolumn{2}{|l|}{The number of row indices belong to \(i\)-th column is \(n f c n z[i]-n f c n z[i-1]>n\).} & \\
\hline
\end{tabular}

Figure c_dm_vsclux-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th section.

[j-1][1] from the \(p\)-th element of zpanelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim [j-1] [0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\begin{aligned}
\operatorname{panel}[t-1][\mathrm{s}-1], & \mathrm{s} \geq \mathrm{t}, \quad \mathrm{~s}=1, \ldots, \operatorname{ndim}[j-1][0], \\
\mathrm{t} & =1, \ldots, \operatorname{ndim}[j-1][1] .
\end{aligned}
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][2] -ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\) from the \(u\)-th element of zpanelfactoru.
\(\mathrm{v}=\mathrm{nfcnzindexu}[j-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][2] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathbf{T}}\) except its block diagonal portion of decomposed results is stored in
\[
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][2]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1]
\]

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

The results of LU decomposition obtained by c_dm_vsclu is used.
See note c), "Comments on use." of c_dm_vsclu and Example program of c_dm_vsclux.

\section*{b)}

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=j\).
The inverse of the matrix can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nperm[i-1];
nperminv[j-1] = i;
}
c)

```

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.
This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(j=n\) posto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note \(\mathbf{a}\)) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix \(\mathbf{A}\) built in this way is stored into a complex sparse matrix and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NORD 40
\#define KX NORD
\#define KY NORD
\#define KZ NORD
```

\#define N KX * KY * KZ
\#define NBORDER (N + 1)
\#define NOFFDIAG 6
\#define K (N + 1)
\#define NDIAG 7
\#define NALL NDIAG * N
\#define ZWL 2 * NALL
\#define WL 4 * NALL + 6 * N
\#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N
\#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
double, double, double, int, int, int);
double errnrm(dcomplex*, dcomplex*, int);
dcomplex comp_sub(dcomplex, dcomplex);
int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];
dcomplex za[K * NDIAG], zwc[K * NDIAG],
zw[ZWL], zone;
int nrow[K * NDIAG], nfcnz[N + 1],
nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
iwc[K * NDIAG][2];
int nperm[N],
nposto[N], ndim[N][3],
nassign[N],
mz[N],
iw1[IW1L], iw2[IW2L];
double w[WL];
dcomplex *zpanelfactorl, *zpanelfactoru;
int *npanelindexl, *npanelindexu;
dcomplex zdummyfl, zdummyfu;
int ndummyil,
ndummyiu;
long nsizefactorl,
nsizeindexl,
nsizeindexu,
nsizefactoru,
nfcnzfactorl[N + 1],
nfcnzfactoru[N + 1],
nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
dcomplex zb[N], zsolex[N];

```
```

double epsz, thepsz, spepsz,
sclrow[N], sclcol[N];
int ipivot, istatic, nfcnzpivot[N + 1],
npivotp[N], npivotq[N],
irefine, itermax, iter, ipledsm;
double err, va1, va2, va3, vc, xl, yl, zl, epsr;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
isclitermax, isw, nsupnum;
zone.re = 1.0;
zone.im = 0.0;
printf(" LU DECOMPOSITION METHOD\n");
printf(" FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) {
zsolex[i] = zone;
}
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n",
zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
KX, KY, KZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {

```
```

            diag2[i][j] = diag[i][nbase + j];
        }
    } else {
        nbase = nofst[i];
        length = N - nbase;
        for (j = 0; j < length; j++) {
            diag2[i][nbase + j] = diag[i][j];
        }
    }
    }
numnz = 1;
for (j = 0; j < N; j++) {
ntopcfg = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (ntopcfg == 1) {
nfcnz[j] = numnz;
ntopcfg = 0;
}
if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
continue;
} else {
if (diag2[i][j] != 0.0) {
ncol = (j + 1) - nofst[i];
za[numnz - 1].re = diag2[i][j];
za[numnz - 1].im = 0.0;
nrow[numnz - 1] = ncol;
numnz++;
}
}
}
}
nfcnz[N] = numnz;
nz = numnz - 1;
c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,

```
```

zb, zwc, (int *)iwc, \&icon);
/* INITIAL CALL WITH IORDER=1 */
iordering = 0;
ipledsm = 1;
isclitermax = 10;
iSW = 1;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindexl = 1;
nsizeindexu = 1;
epsz = 1.0e-16;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40;
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;
c_dm_vsclu(za, nz, nrow, nfcnz, N,
ipledsm, mz, isclitermax, \&iordering,
nperm, isw
nrowsym, nfcnzsym,
nassign,
\&nsupnum,
nfcnzfactorl, \&zdummyfl,
\&nsizefactorl,
nfcnzindexl,
\&ndummyil, \&nsizeindexl,
(int *)ndim,
nfcnzfactoru, \&zdummyfu,
\&nsizefactoru,
nfcnzindexu,
\&ndummyiu, \&nsizeindexu,
nposto,
sclrow, sclcol,
\&epsz, \&thepsz,
ipivot, istatic, \&spepsz, nfcnzpivot,
npivotp, npivotq,
zw, w, iw1, iw2, \&icon);
printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",
icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum);

```
```

zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));
zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsclu(za, nz, nrow, nfcnz, N,
ipledsm, mz, isclitermax, \&iordering,
nperm, isw,
nrowsym, nfcnzsym,
nassign,
\&nsupnum,
nfcnzfactorl, zpanelfactorl,
\&nsizefactorl,
nfcnzindexl,
npanelindexl, \&nsizeindexl,
(int *)ndim,
nfcnzfactoru, zpanelfactoru,
\&nsizefactoru,
nfcnzindexu,
npanelindexu, \&nsizeindexu,
nposto,
sclrow, sclcol,
\&epsz, \&thepsz,
ipivot, istatic, \&spepsz, nfcnzpivot,
npivotp, npivotq,
zw, w, iw1, iw2, \&icon);
c_dm_vsclux(N,
iordering,
nperm,
zb,
nassign,
nsupnum,
nfcnzfactorl, zpanelfactorl,
nsizefactorl,
nfcnzindexl,
npanelindexl, nsizeindexl,
(int *)ndim,
nfcnzfactoru, zpanelfactoru,
nsizefactoru,
nfcnzindexu,
npanelindexu, nsizeindexu,
nposto,

```
```

        ipledsm, mz,
        sclrow, sclcol,
        nfcnzpivot,
        npivotp, npivotq,
        irefine, epsr, itermax, &iter,
        za, nz, nrow, nfcnz,
        iw2, &icon);
    err = errnrm(zsolex, zb, N);
    printf(" COMPUTED VALUES\n");
    printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]);
    printf(" ICON = %d\n\n", icon);
    printf(" N = %d\n\n", N);
    printf(" ERROR = %lf\n", err);
    printf(" ITER=%d\n\n\n", iter);
    if (err < 1.0e-8 && icon == 0) {
        printf("*********** OK ***********\n");
    } else {
        printf("*********** NG ***********\n");
    }
    free(zpanelfactorl);
    free(zpanelfactoru);
    free(npanelindexl);
    free(npanelindexu);
    return(0);
    }
/* ==========================================
INITIALIZE COEFFICIENT MATRIX
========================================= */
void init_mat_diag(double va1, double va2, double va3, double vc,
double *d_l, int *offset,
int nx, int ny, int nz, double xl, double yl, double zl,
int ndiag, int len, int ndivp) {
if (ndiag < 1) {
printf("FUNCTION INIT_MAT_DIAG:\n");
printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
return;
}
\#pragma omp parallel default(shared)

```
```

{
int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
ndiag_loc = ndiag;
if (ndiag > 7)
ndiag_loc = 7;
/* INITIAL SETTING */
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
\#pragma omp for
for (i = 0; i < ndivp; i++) {
for (j = 0; j < ndiag; j++) {
d_l[(j * ndivp) + i] = 0.0;
}
}
nxy = nx * ny;
/* OFFSET SETTING */
\#pragma omp single
{
l = 0;
if (ndiag_loc >= 7) {
offset[l] = -nxy;
l++;
}
if (ndiag_loc >= 5) {
offset[l] = -nx;
l++;
}
if (ndiag_loc >= 3) {
offset[l] = -1;
l++;
}
offset[l] = 0;
l++;
if (ndiag_loc >= 2) {
offset[l] = 1;
l++;
}
if (ndiag_loc >= 4) {

```
```

        offset[l] = nx;
        l++;
        }
        if (ndiag_loc >= 6) {
        offset[l] = nxy;
    }
    }
/* MAIN LOOP */
\#pragma omp for
for (j = 0; j < len; j++) {
js = j + 1;

```
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
 \(\mathrm{k} 0=(j \mathrm{~s}-1) / \mathrm{nxy}+1\);
 if (k0 > nz) \{
 printf("ERROR; K0.GH.NZ \n");
 goto label_100;
 \}
 \(j 0=(j s-1-n x y *(k 0-1)) / n x+1 ;\)
 \(i 0=j s-n x y\) * (k0 - 1) - nx * (j0 - 1) ;
 \(1=0 ;\)
 if (ndiag_loc >= 7) \{
 if \((k 0>1) d _l[(1\) * ndivp \()+j]=-(1.0 / h z+0.5\) * va3) / hz;
 l++;
 \}
 if (ndiag_loc >= 5) \{
 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
 l++;
 \}
 if (ndiag_loc >= 3) \{
 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 /hx + 0.5 * va1) / hx;
 l++;
 \}
 \(h x 2=h x\) * \(h x\);
 hy2 = hy * hy;
 hz2 = hz * hz;
 d_l[(1 * ndivp) + j] = \(2.0 / h x 2+v c\);
 if (ndiag_loc >= 5) \{
 d_l[(l * ndivp) + j] += \(2.0 /\) hy2;
 if (ndiag_loc >= 7) \{
 d_l[(1 * ndivp) + j] += 2.0 / hz2;
 \}
 \}
 l++;
```

    if (ndiag_loc >= 2) {
        if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;
        l++;
    }
    if (ndiag_loc >= 4) {
        if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
        l++;
    }
    if (ndiag_loc >= 6) {
        if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
    }
    label_100: ;
}
}
return;
}
/* =========================================
* SOLUTE ERROR
* | z1 - Z2 |
======================================== */
double errnrm(dcomplex *z1, dcomplex *z2, int len) {
double rtc, s;
dcomplex ss;
int i;
s = 0.0;
for (i = 0; i < len; i++) {
ss = comp_sub(z1[i], z2[i]);
s += ss.re * ss.re + ss.im * ss.im;
}
rtc = sqrt(s);
return(rtc);
}
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re - so2.re;
obj.im = so1.im - so2.im;
return obj;
}

```

\section*{c_dm_vscs}
```

A system of linear equations with unsymmetric complex sparse matrices
(LU decomposition method)
ierr = c_dm_vscs(za, nz, nrow, nfcnz, n,
ipledsm, mz, isclitermax,
\&iordering, nperm, isw,
nrowsym, nfcnzsym, zb,
nassign, \&nsupnum,
nfcnzfactorl, zpanelfactorl,
\&nsizefactorl, nfcnzindexl,
npanelindexl,
\&nsizeindexl, ndim,
nfcnzfactoru, zpanelfactoru,
\&nsizefactoru,
nfcnzindexu, npanelindexu,
\&nsizeindexu, nposto,
sclrow, sclcol,
\&epsz, \&thepsz, ipivot, istatic,
\&spepsz, nfcnzpivot,
npivotp, npivotq, irefine, epsr,
itermax, \&iter,
zW, w, iw1, iw2, \&icon);

```

\section*{1. Function}

The large entries of an \(n \times n\) unsymmetric complex sparse matrix \(\mathbf{A}\) are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations \(\mathbf{A x}=\mathbf{b}\) in use of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.
The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for the permutation of elements, scaling and pivot.
\[
\mathbf{A x}=\mathbf{b}
\]

The unsymmetric complex sparse matrix is transformed as below.
\[
\mathbf{A}_{\mathbf{1}}=\mathbf{D}_{\mathrm{r}} \mathbf{A P}_{\mathrm{c}} \mathbf{D}_{\mathbf{c}}
\]
where \(\boldsymbol{P}_{\boldsymbol{c}}\) is an orthogonal matrix for column permutation, \(\boldsymbol{D}_{\boldsymbol{r}}\) is a diagonal matrix for scaling rows and \(\boldsymbol{D}_{\boldsymbol{c}}\) is also a diagonal matrix for scaling columns.
\[
\mathbf{A}_{\mathbf{2}}=\mathbf{Q P A} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathbf{T}}
\]
\(\mathbf{A}_{\mathbf{2}}\) is decomposed into \(\mathbf{L \mathbf { U }}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of nonzero elements for \(\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\)
\(\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}\) and \(\mathbf{Q}\) is a permutation matrix of postorder for \(\mathbf{S Y M} . \mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.
The solution is computed using LU decomposition.
It can be specified to improve the precision of the solution by iterative refinement.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vscs(za, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,
\&iordering, nperm, isw, nrowsym, nfcnzsym, zb, nassign, \&nsupnum,
nfcnzfactorl, zpanelfactorl, \&nsizefactorl, nfcnzindexl,
npanelindexl, \&nsizeindexl, (int *)ndim, nfcnzfactoru,
zpanelfactoru, \&nsizefactoru, nfcnzindexu, npanelindexu,
\&nsizeindexu, nposto, sclrow, sclcol, \&epsz, \&thepsz, ipivot,
istatic, \&spepsz, nfcnzpivot, npivotp, npivotq, irefine, epsr,
itermax, \&iter, zw, w, iw1, iw2, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline za & dcomplex za[nz] & Input & \begin{tabular}{l}
The nonzero elements of an unsymmetric complex sparse matrix \(\mathbf{A}\) are stored. \\
For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector). For a complex matrix, a real array \(\mathbf{a}\) in this Figure is replaced with a complex array.
\end{tabular} \\
\hline nz & int & Input & The total number of the nonzero elements belong to an unsymmetric complex sparse matrix \(\mathbf{A}\). \\
\hline nrow & int nrow[nz] & Input & The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array za. \\
\hline nfenz & int \(\mathrm{nfcnz}[\mathrm{n}+1]\) & Input & The position of the first nonzero element of each column stored in an array za in the compressed column storage method which stores the nonzero elements column by column. \(\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline ipledsm & int & Input & Control information whether to permute the large entries to the diagonal of a matrix \(\mathbf{A}\). When ipledsm = 1 is specified, a matrix \(\mathbf{A}\) is transformed internally permuting large entries to the diagonal. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(m z\)} & \multirow[b]{2}{*}{int mz[n]} & & Otherwise no permutation is performed. \\
\hline & & Output & When ipledsm = 1 is specified, it indicates a permutation of columns. \(m z[i-1]=j\) indicates that the \(j\)-th column which the element of \(\boldsymbol{a}_{\boldsymbol{i j}}\) belongs to is permutated to \(i\)-th column. The element of \(\boldsymbol{a}_{i j}\) is the large entry to be permuted to the diagonal. \\
\hline isclitermax & int & Input & \begin{tabular}{l}
The upper limit for the number of iteration to seek scaling matrices of \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) to equilibrate both rows and columns of matrix \(\mathbf{A}\). \\
When isclitermax \(\leq 0\) is specified no scaling is done. In this case \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) are assumed as unit matrices. When isclitermax \(\geq 10\) is specified, the upper limit for the number of iteration is considered as 10 .
\end{tabular} \\
\hline \multirow[t]{6}{*}{iordering} & \multirow[t]{6}{*}{int} & \multirow[t]{5}{*}{Input} & Control information whether to decompose the reordered matrix \(\mathbf{P A}_{1} \mathbf{P}^{\mathrm{T}}\) permuted by the matrix \(\mathbf{P}\) of ordering or to decompose the matrix \(\mathbf{A}\). \\
\hline & & & When iordering \(=10\) is specified, calling this routine with \(i s w=1\) produces the informations which is needed to generate an ordering regarding \(\mathbf{A}_{\mathbf{1}}\) and they are set in nrowsym and nfenzsym. \\
\hline & & & When iordering 11 is specified, it is indicated that after an ordering is set in nperm, the computation is resumed. \\
\hline & & & Using the informations obtained in nrowsym and nfenzsym after calling this routines with isw = 1 and iordering = 10 , an ordering is determined. After specifying this ordering in nperm, this routine is called again with isw \(=1\) and iordering \(=11\) and the computation is resumed. \\
\hline & & & LU decomposition of the matrix \(\mathbf{P A} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}}\) is continued. Otherwise. Without any ordering, the matrix \(\mathbf{A}_{1}\) is decomposed into LU. \\
\hline & & Output & iordering is set to 11 after this routine is called with iordering \(=10\) and isw \(=1\). Therefore after an ordering is set in nperm the computation is resumed in the subsequent call without iordering \(=11\) being specified explicitly. See Comments on use. \\
\hline nperm & int nperm[n] & Input & The permutation matrix \(\mathbf{P}\) is stored as a vector. See Comments on use. \\
\hline \multirow[t]{2}{*}{isw} & \multirow[t]{2}{*}{int} & \multirow[t]{2}{*}{Input} & Control information. \\
\hline & & & \begin{tabular}{l}
1) When isw \(=1\) is specified. \\
After symmetrization of a matrix and symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed. \\
Call with iordering \(=10\) produces the
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline nrowsym & int nrowsym[nz+n] & Output & When it is called with iordering \(=10\), the row indices of nonzero pattern of the lower triangular part of \(\mathbf{S Y M}=\) \(\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}\) in the compressed column storage method are generated. \\
\hline nfenzsym & int nfenzsym[n+1] & Output & When it is called with iordering = 10 , the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \(\mathrm{nfcnzsym}[\mathrm{n}]=\mathrm{nsymz}+1\) where nsymz is the total nonzero elements in the lower triangular part. \\
\hline \multirow[t]{2}{*}{zb} & \multirow[t]{2}{*}{dcomplex zb[n]} & Input & The right-hand side constant vector \(\mathbf{b}\) of a system of linear equations \(\mathbf{A x}=\mathbf{b}\). \\
\hline & & Output & Solution vector \(\boldsymbol{x}\). \\
\hline \multirow[t]{2}{*}{nassign} & \multirow[t]{2}{*}{int nassign[n]} & Output & \(\mathbf{L}\) and \(\mathbf{U}\) belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in zpanelfactorl and zpanelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the \(i\)-th supernode is stored into the \(j\)-th block of a subarray, where \(j=\) nassign [i-1]. \\
\hline & & Input & \begin{tabular}{l}
When isw \(\neq 1\), the values stored in the first call are reused. Regarding \\
the storage methods of decomposed matrices, refer to Figure c_dm_vscs-1.
\end{tabular} \\
\hline nsupnum & int & Output & The total number of supernodes. \\
\hline & & Input & The values in the first call are reused when isw \(\neq 1\) specified. (\(\leq \mathrm{n}\)) \\
\hline nfenzfactorl & \begin{tabular}{l}
long \\
nfcnzfactorl[n+1]
\end{tabular} & Output & \begin{tabular}{l}
The decomposed matrices \(\mathbf{L}\) and \(\mathbf{U}\) of an unsymmetric complex sparse matrix are computed for each supernode respectively. The columns of \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into zpanelfactorl consecutively or the location of panel [0] [0] is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1.
\end{tabular} \\
\hline & & Input & The values set by the first call are reused when isw \(\neq 1\) specified. \\
\hline zpanelfactor 1 & ```
dcomplex
zpanelfactorl
[nsizefactorl]
``` & Output & \begin{tabular}{l}
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactorl [j-1]. \\
The size of the panel in the \(i\)-th block can be considered
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline nsizefactorl & long & \begin{tabular}{l}
Input \\
Output
\end{tabular} & The size of the array panelfactorl. The necessary size for the array panelfactorl returned. See Comments on use. \\
\hline nfcnzindexl & long nfcnzindexl[n+1] & Output & \begin{tabular}{l}
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th row indices vector is mapped into npanelindexl consecutively is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1.
\end{tabular} \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline npanelindexl & int npanelindexl [nsizeindexl] & Output & The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in \(n f c n z i n d e x l[j-1]\). This row indices are the row numbers of the matrix into which SYM is permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1. See Comments on use. \\
\hline nsizeindexl & long & Input & The size of the array npanelindexl. \\
\hline & & Output & The necessary size is returned. See Comments on use. \\
\hline ndim & int ndim[n][3] & Output & ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix \(\mathbf{L}\) respectively, which is allocated in the \(i\)-th location. ndim[i-1][2] indicates the total amount of the size of the first dimension of the panel where a matrix \(\mathbf{U}\) is \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{7}{*}{nfenzfactoru} & \multirow{6}{*}{long nfenzfactoru[n+1]} & & transposed and stored and the size of its block diagonal portion. \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline & & Output & Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of an unsymmetric complex sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. \\
\hline & & & The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into zpanelfactoru consecutively or the location of panel[0][0] is stored. \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1. \\
\hline & \multirow{13}{*}{\begin{tabular}{l}
dcomplex \\
zpanelfactoru \\
[nsizefactoru]
\end{tabular}} & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline \multirow[t]{12}{*}{\[
\begin{aligned}
& \text { zpanelfactor } \\
& \text { u }
\end{aligned}
\]} & & \multirow[t]{12}{*}{Output} & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each \\
\hline & & & supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional \\
\hline & & & panel without its block diagonal portion. The block number of the section where the panel corresponding to \\
\hline & & & the \(i\)-th supernode is assigned is known from \(\mathrm{j}=\) \\
\hline & & & nassign[i-1]. The location of is top of subarray \\
\hline & & & including the portion of decomposed matrices is stored in \\
\hline & & & nfcnzfactoru[j-1]. The size of the panel in the \\
\hline & & & \(i\)-th block can be considered to be two dimensional array of \(\{n d i m[i-1][2]-\operatorname{ndim}[i-1][1]\} \times \operatorname{ndim}\) \\
\hline & & & [ \(\mathrm{i}-1][1]\). The rows of the unit upper triangular matrix \\
\hline & & & \(\mathbf{U}\) except the block diagonal portion are compressed, transposed and stored in this panel[t-1][s-1], s= \\
\hline & & & ```
1,...ndim[i-1][2] - ndim[i-1][1], t= 1,
..., ndim[i-1][1].
``` \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1. See Comments on use. \\
\hline \multirow[t]{2}{*}{nsizefactoru} & \multirow[t]{2}{*}{long} & Input & The size of the array zpanelfactoru. \\
\hline & & Output & The necessary size for the array zpanelfactoru is returned. See Comments on use. \\
\hline \multirow[t]{7}{*}{nfcnzindexu} & \multirow[t]{7}{*}{long nfenzindexu[n+1]} & \multirow[t]{7}{*}{Output} & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each \\
\hline & & & supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional \\
\hline & & & panel without its block diagonal portion. The index \\
\hline & & & number of the top array element of the one dimensional \\
\hline & & & subarray where the \(i\)-th column indices vector including \\
\hline & & & indices of the block diagonal portion is mapped into \\
\hline & & & npanelindexu consecutively is stored. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{12}{*}{npanelindexu} & \multirow{12}{*}{int npanelindexu [nsizeindexu]} & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vscs-1. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline & & Output & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. \\
\hline & & & The column indices vector including indices of the block diagonal portion is mapped into npanelindexu \\
\hline & & & consecutively. The block number of the section where the \\
\hline & & & column indices vector corresponding to the \(i\)-th supernode \\
\hline & & & is assigned is known from \(\mathrm{j}=\) nassign[i-1]. The \\
\hline & & & location of its top of subarray is stored in \\
\hline & & & nfenzindexu[j-1]. These column indices are the \\
\hline & & & column numbers of the matrix into which SYM is \\
\hline & & & permuted in its post order. \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c dm vscs-1. See Comments on use. \\
\hline \multirow[t]{2}{*}{nsizeindexu} & \multirow[t]{2}{*}{long} & Input & The size of the array npanelindexu. \\
\hline & & Output & The necessary size is returned. See Comments on use. \\
\hline \multirow[t]{3}{*}{nposto} & \multirow[t]{3}{*}{int nposto[n]} & Output & The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{2}{*}{sclrow} & \multirow[t]{2}{*}{double sclrow[n]} & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for scaling rows are stored in one dimensional array. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline \multirow[t]{2}{*}{sclcol} & \multirow[t]{2}{*}{double sclcol[n]} & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. \\
\hline & & Input & The values set by the first call are reused when isw \(\neq 1\) specified. \\
\hline \multirow[t]{3}{*}{epsz} & \multirow[t]{3}{*}{double} & Input & Judgment of relative zero of the pivot (\(\geq 0.0\)). \\
\hline & & Output & When epsz \(\leq 0.0\), it is set to the standard value. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{4}{*}{thepsz} & \multirow[t]{4}{*}{double} & Input & Threshold used in judgement for a pivot. Immediately \\
\hline & & & after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, \(10^{-2}\). \\
\hline & & Output & When thepsz \(\leq 0.0,10^{-2}\) is set. \\
\hline & & & When epsz \(\geq\) thepsz \(>0.0\), it is set to the value of epsz. \\
\hline \multirow[t]{4}{*}{ipivot} & \multirow[t]{4}{*}{int} & \multirow[t]{4}{*}{Input} & Control information on pivoting which indicates whether \\
\hline & & & a pivot is searched and what kind of pivoting is chosen if any. \\
\hline & & & For example, 40 for complete pivoting. \\
\hline & & & ipivot \(<10\) or ipivot \(\geq 50\), no pivoting. \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline npivotq & int npivotq[n] & Output & The information on exchanges of columns within each supernode is stored. \\
\hline irefine & int & Input & \begin{tabular}{l}
Control information indicating whether iterative refinement is performed when the solution is computed in use of results of LU decomposition. A residual vector is computed in quadruple precision. When irefine = 1 is specified. \\
The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones. \\
When irefine \(\neq 1\) is specified. \\
No iterative refinement is performed. \\
When istatic \(=1\) is specified, irefine \(=1\) must be specified.
\end{tabular} \\
\hline epsr & double & Input & \begin{tabular}{l}
Criterion value to judge if the absolute value of the residual vector \(\mathbf{b}-\mathbf{A x}\) is sufficiently smaller compared with the absolute value of \(\mathbf{b}\). \\
When epsr \(\leq 0.0\), it is set to \(10^{-6}\).
\end{tabular} \\
\hline itermax & int & Input & Upper limit of iterative count for refinement (\(\geq 1\)). \\
\hline iter & int & Output & Actual iterative count for refinement. \\
\hline zW & dcomplex \(\mathrm{zw}[2 * \mathrm{nz}]\) & Work area & When this routine is called repeatedly with isw \(=1,2\) this work area is used for preserving information among calls. The contents must not be changed. \\
\hline W & double
\[
\mathrm{w}[4 * \mathrm{nz}+6 * \mathrm{n}]
\] & Work area & When this routine is called repeatedly with \(i s w=1,2\) this work area is used for preserving information among calls. The contents must not be changed. \\
\hline iw1 & \[
\begin{aligned}
& \text { int } \\
& \text { iw1[2*nz+2* } \\
& \left.(n+1)+16^{*} n\right]
\end{aligned}
\] & Work area & When this routine is called repeatedly with isw \(=1,2\) this work area is used for preserving information among calls. The contents must not be changed. \\
\hline iw2 & \[
\begin{aligned}
& \text { int } \\
& \text { iw2[47*n+47+nz+4* } \\
& \left.(n+1)+2^{*}(n z+n)\right]
\end{aligned}
\] & Work area & When this routine is called repeatedly with isw \(=1,2,3\) this work area is used for preserving information among calls. The contents must not be changed. \\
\hline icon & int & Output & Condition code. See below. \\
\hline
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l}
The pivot became relatively zero. The coefficient \\
matrix A may be singular.
\end{tabular} & Processing is discontinued. \\
\hline 20100 & \begin{tabular}{l}
When ipledsm is specified, maximum \\
matching with the length n is sought in order to \\
permute large entries to the diagonal but can not \\
be found. The coefficient matrix A may be \\
singular.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 20200 & When seeking diagonal matrices for equilibrating both rows and columns, there is a zero vector in either rows or columns of the matrix \(\mathbf{A}\). The coefficient matrix A may be singular. & \\
\hline 20400 & There is a zero element in diagonal of resultant matrices of LU decomposition. & \\
\hline 20500 & The norm of residual vector for the solution vector is greater than that of \(\mathbf{b}\) multiplied by epsr, which is the right term constant vector in \(\mathbf{A x}=\mathbf{b}\). The coefficient matrix \(\mathbf{A}\) may be close to a singular matrix. & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(n z<0\) \\
- \(n f c n z[n] \neq n z+1\) \\
- nsizefactorl<1 \\
- nsizefactoru<1 \\
- nsizeindexl<1 \\
- nsizeindexu<1 \\
- isw<1 \\
- isw>3 \\
- itermax \(<1\) when irefine \(=1\).
\end{tabular} & Processing is discontinued. \\
\hline 30100 & The permutation matrix specified in nperm is not correct. & \\
\hline 30200 & The row index \(k\) stored in nrow [j-1] is \(k<1\) or \(k>n\). & \\
\hline 30300 & The number of row indices belong to \(i\)-th column is \(n f e n z[i]-n f e n z[i-1]>n\). & \\
\hline 30500 & \begin{tabular}{l}
When istatic \(=1\) is specified, the required conditions are not satisfied. \\
epsz is greater than \(16 \boldsymbol{u}\) of the standard value or isclitermax \(<10\) \\
or irefine \(\neq 1\) \\
or spepsz > thepsz \\
or spepsz \(>10^{-8}\)
\end{tabular} & \\
\hline 31000 & The value of nsizefactorl is not enough as the size of zpanelfactorl, or the value of nsizeindexl is not enough as the size of npanelindexl, or the value of nsizefactoru is not enough as the size of zpanelfactoru, or the value of nsizeindexu is not enough as the size of npanelindexu. & Reallocate the zpanelfactorl or npanelindexl or zpanelfactoru or npanelindexu with the necessary size which are returned in the nsizefactorl or nsizeindexl or nsizefactoru or nsizeindexu respectively and call this routine again with \(i s w=2\) specified. \\
\hline
\end{tabular}

Figure c_dm_vscs-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\quad \rightarrow \quad\) The \(i\)-th supernode is stored at the \(j\)-th section.
\(\mathrm{p}=\mathrm{nfcnzfactorl[j-1]} \rightarrow\) The \(j\)-th panel occupies the area with a length ndim[j-1][0]×
ndim[j-1][1] from the \(p\)-th element of zpanelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\operatorname{panel}[\mathrm{t}-1][\mathrm{s}-1], \quad \mathrm{s} \geq \mathrm{t}, \mathrm{~s}=1, \ldots, \operatorname{ndim}[j-1][0],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][2]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\) from the \(u\)-th element of zpanelfactoru.
\(v=n f c n z i n d e x u[j-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][2] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathbf{T}}\) except its block diagonal portion of decomposed results is stored in
\[
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][2]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1]
\]

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=j\).
The inverse of the matrix can be obtained as follows:
for (i = 1; i <= n; i++) \{
```

    j = nperm[i-1];
    nperminv[j-1] = i;
}

```

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [41], [42] in Appendix, "References." in detail.

\section*{b)}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of \(L U\) decomposition. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is \(16 \times u\). The absolute value of a complex number is approximated as a sum of the absolute value of both its real part ant its imaginary part for pivot. When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

\section*{c)}

The necessary sizes for the array zpanelfactorl, npanelindexl, zpanelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw=1. This routine ends with icon \(=31000\), and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw \(=2\) after reallocating the arrays with the necessary sizes.

\section*{d)}

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(j=\) nposto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note \(\mathbf{a}\)) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```

\section*{e)}

Instead of this routine, a system of equations \(\mathbf{A x}=\mathbf{b}\) can be solved by calling both c_dm_vsclu to perform LU decomposition of an unsymmetric complex sparse matrix \(\mathbf{A}\) and c_dm_vsclux to solve the linear equation in use of decomposed results.

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix \(\mathbf{A}\) built in this way is stored into a complex sparse matrix and is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NORD 40
\#define KX NORD
\#define KY NORD
\#define KZ NORD
\#define N KX * KY * KZ
\#define NBORDER (N + 1)
\#define NOFFDIAG 6
\#define K (N + 1)
\#define NDIAG 7
\#define NALL NDIAG * N
\#define ZWL 2 * NALL
\#define WL 4 * NALL + 6 * N
\#define IW1L 2 * NALL + 2 * (N + 1) + 16 * N
\#define IW2L 47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N)
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
double, double, double, int, int, int);
double errnrm(dcomplex*, dcomplex*, int);
dcomplex comp_sub(dcomplex, dcomplex);
int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];
dcomplex za[K * NDIAG], zwc[K * NDIAG],
zw[ZWL], zone;
int nrow[K * NDIAG], nfcnz[N + 1],
nrowsym[K * NDIAG + N], nfcnzsym[N + 1],

```
```

    iwc[K * NDIAG][2];
    int nperm[N],
nposto[N], ndim[N][3],
nassign[N],
mz[N],
iw1[IW1L], iw2[IW2L];
double w[WL];
dcomplex *zpanelfactorl, *zpanelfactoru;
int *npanelindexl, *npanelindexu;
dcomplex zdummyfl, zdummyfu;
int ndummyil,
ndummyiu;
long nsizefactorl,
nsizeindexl,
nsizeindexu,
nsizefactoru,
nfcnzfactorl[N + 1],
nfcnzfactoru[N + 1],
nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
dcomplex zb[N], zsolex[N];
double epsz, thepsz, spepsz,
sclrow[N], sclcol[N];
int ipivot, istatic, nfcnzpivot[N + 1],
npivotp[N], npivotq[N],
irefine, itermax, iter, ipledsm;
double err, va1, va2, va3, vc, xl, yl, zl, epsr;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
isclitermax, isw, nsupnum;
zone.re = 1.0;
zone.im = 0.0;
printf(" LU DECOMPOSITION METHOD\n");
printf(" FOR SPARSE UNSYMMETRIC COMPLEX MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) {
zsolex[i] = zone;
}
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n",
zsolex[0].re, zsolex[0].im, zsolex[N - 1].re, zsolex[N - 1].im);
va1 = 1.0;

```
```

va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
KX, KY, KZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][j] = diag[i][nbase + j];
}
} else {
nbase = nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][nbase + j] = diag[i][j];
}
}
}
numnz = 1;
for (j = 0; j < N; j++) {
ntopcfg = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (ntopcfg == 1) {
nfcnz[j] = numnz;
ntopcfg = 0;
}
if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
continue;
} else {

```
```

            if (diag2[i][j] != 0.0) {
            ncol = (j + 1) - nofst[i];
                    za[numnz - 1].re = diag2[i][j];
                    za[numnz - 1].im = 0.0;
                    nrow[numnz - 1] = ncol;
                    numnz++;
            }
        }
    }
    }
nfcnz[N] = numnz;
nz = numnz - 1;
c_dm_vmvsccc(za, nz, nrow, nfcnz, N, zsolex,
zb, zwc, (int *)iwc, \&icon);
/* INITIAL CALL WITH IORDER=1 */
iordering = 0;
ipledsm = 1;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindexl = 1;
nsizeindexu = 1;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40;
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;
c_dm_vscs(za, nz, nrow, nfcnz, N,
ipledsm, mz, isclitermax, \&iordering,
nperm, isw,
nrowsym, nfcnzsym,
zb,
nassign,
\&nsupnum,

```
```

    nfcnzfactorl, &zdummyfl,
    &nsizefactorl,
    nfcnzindexl,
    &ndummyil, &nsizeindexl,
    (int *)ndim,
    nfcnzfactoru, &zdummyfu,
    &nsizefactoru,
    nfcnzindexu,
    &ndummyiu, &nsizeindexu
    nposto,
    sclrow, sclcol,
    &epsz, &thepsz
    ipivot, istatic, &spepsz, nfcnzpivot,
    npivotp, npivotq,
    irefine, epsr, itermax, &iter,
    zw, w, iw1, iw2, &icon);
    printf("ICON=%d NSIZEFACTORL=%d NSIZEFACTORU=%d NSIZEINDEXL=%d",
icon, nsizefactorl, nsizefactoru, nsizeindexl)
printf(" NSIZEINDEXU=%d NSUPNUM=%d\n", nsizeindexu, nsupnum)
zpanelfactorl = (dcomplex *)malloc(nsizefactorl * sizeof(dcomplex));
zpanelfactoru = (dcomplex *)malloc(nsizefactoru * sizeof(dcomplex));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vscs(za, nz, nrow, nfcnz, N,
ipledsm, mz, isclitermax, \&iordering,
nperm, isw,
nrowsym, nfcnzsym,
zb,
nassign,
\&nsupnum,
nfcnzfactorl, zpanelfactorl,
\&nsizefactorl,
nfcnzindexl,
npanelindexl, \&nsizeindexl,
(int *)ndim
nfcnzfactoru, zpanelfactoru
\&nsizefactoru,
nfcnzindexu,
npanelindexu, \&nsizeindexu,
nposto,
sclrow, sclcol,

```
```

            &epsz, &thepsz,
            ipivot, istatic, &spepsz, nfcnzpivot,
            npivotp, npivotq,
            irefine, epsr, itermax, &iter,
            zw, w, iw1, iw2, &icon);
    err = errnrm(zsolex, zb, N);
    printf(" COMPUTED VALUES\n");
    printf(" X(1) = (%lf,%lf) X(N) = (%lf,%lf)\n\n", zb[0], zb[N - 1]);
    printf(" ICON = %d\n\n", icon);
    printf(" N = %d\n\n", N);
    printf(" ERROR = %lf\n", err);
    printf(" ITER=%d\n\n\n", iter);
    if (err < 1.0e-8 && icon == 0) {
    printf("********** OK **********\n");
    } else {
    printf("*********** NG **********\n");
    }
    free(zpanelfactorl);
    free(zpanelfactoru);
    free(npanelindexl);
    free(npanelindexu);
    return(0);
    }
/* ==========================================
INITIALIZE COEFFICIENT MATRIX
========================================= */
void init_mat_diag(double va1, double va2, double va3, double vc,
double *d_l, int *offset,
int nx, int ny, int nz, double xl, double yl, double zl,
int ndiag, int len, int ndivp) {
if (ndiag < 1) {
printf("FUNCTION INIT_MAT_DIAG:\n");
printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
return;
}
\#pragma omp parallel default(shared)
{
int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
double hx, hy, hz, hx2, hy2, hz2;

```
```

    ndiag_loc = ndiag;
    if (ndiag > 7)
        ndiag_loc = 7;
    /* INITIAL SETTING */
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
\#pragma omp for
for (i = 0; i < ndivp; i++) {
for (j = 0; j < ndiag; j++) {
d_l[(j * ndivp) + i] = 0.0;
}
}
nxy = nx * ny;
/* OFFSET SETTING */
\#pragma omp single
{
l = 0;
if (ndiag_loc >= 7) {
offset[l] = -nxy;
l++;
}
if (ndiag_loc >= 5) {
offset[l] = -nx;
l++;
}
if (ndiag_loc >= 3) {
offset[l] = -1;
l++;
}
offset[l] = 0;
l++;
if (ndiag_loc >= 2) {
offset[l] = 1;
l++;
}
if (ndiag_loc >= 4) {
offset[l] = nx;
l++;
}
if (ndiag_loc >= 6) {
offset[l] = nxy;

```
```

        }
    }
    /* MAIN LOOP */
\#pragma omp for
for (j = 0; j < len; j++) {
js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
k0 = (js -1) / nxy + 1;
if (k0 > nz) {
printf("ERROR; K0.GH.NZ \n");
goto label_100;
}
j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
l = 0;
if (ndiag_loc >= 7) {
if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
l++;
}
if (ndiag_loc >= 5) {
if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
l++;
}
if (ndiag_loc >= 3) {
if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;
l++;
}
hx2 = hx * hx;
hy2 = hy * hy;
hz2 = hz * hz;
d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;
if (ndiag_loc >= 5) {
d_l[(l * ndivp) + j] += 2.0 / hy2;
if (ndiag_loc >= 7) {
d_l[(l * ndivp) + j] += 2.0 / hz2;
}
}
l++;
if (ndiag_loc >= 2) {
if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;
l++;
}
if (ndiag_loc >= 4) {

```
```

            if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
            l++;
        }
        if (ndiag_loc >= 6) {
        if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
    }
    label_100: ;
}
}
return;
}
/* =====================================
* SOLUTE ERROR
* | Z1 - Z2 |
===================================== */
double errnrm(dcomplex *z1, dcomplex *z2, int len) {
double rtc, s;
dcomplex ss;
int i;
s = 0.0;
for (i = 0; i < len; i++) {
ss = comp_sub(z1[i], z2[i]);
s += ss.re * ss.re + ss.im * ss.im;
}
rtc = sqrt(s);
return(rtc);
}
dcomplex comp_sub(dcomplex so1, dcomplex so2) {
dcomplex obj;
obj.re = so1.re - so2.re;
obj.im = so1.im - so2.im;
return obj;
}

```

\section*{5. Method}

Consult the entry for DM_VSCS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2], [13] , [17] , [19] , [22] , [23] , [46] , [53] , [59] , [64] and [65].

\section*{c_dm_vsevph}
```

Eigenvalues and eigenvectors of real symmetric matrices
(tridiagonalization, multisection method, and inverse iteration)
ierr = c_dm_vsepvh(a, k, n, nf, nl, ivec,
\&etol, \&ctol, nev, e, maxne, m,
ev, \&icon);

```

\section*{1. Function}

This routine calculates specified eigenvalues and, optionally, eigenvectors of \(n\)-dimensional real symmetric matrix A.
\[
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
\]
where, \(\mathbf{A}\) is an \(n \times n\) real symmetric matrix.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsevph((double*)a, k, n, nf, nl, ivec, \&etol, \&ctol, nev, e,
maxne, (int*)m, (double*)ev, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[n][k] & Input & The upper triangular part \(\left\{a_{i j} \mid i \leq j\right\}\) of real symmetric matrix \(\mathbf{A}\) is stored in the upper triangular part \(\{\mathrm{a}[\mathrm{i}-1][\mathrm{j}-1], i \leq j\}\) of a . The value of a is not assured after operation. \\
\hline k & int & Input & C fix dimension of matrix A. \((k \geq n)\) \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline nf & int & Input & Number assigned to the first eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline nl & int & Input & Number assigned to the last eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.) \\
\hline ivec & int & Input & \begin{tabular}{l}
Control information. \\
ivec \(=1\) if both the eigenvalues and eigenvectors are sought. \\
ivec \(\neq 1\) if only the eigenvalues are sought.
\end{tabular} \\
\hline etol & double & Input & Criterion value for checking whether the eigenvalues are numerically different from each other or are multiple. \\
\hline & & Output & When etol is less than \(3.0 \times 10^{-16}\) this value is used as the standard value. See Comments on use. \\
\hline ctol & double & Input & Criterion value for checking whether the adjacent eigenvalues can be considered to be approximately equal to each other. This value is used to assure the linear independence of the eigenvector corresponding to the eigenvalue belonging to approximately multiple eigenvalues (clusters). \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30000 & One of the following has occurred: & Bypassed. \\
& \(\bullet \quad \mathrm{n}<1\) \\
& \(\bullet \mathrm{k}<\mathrm{n}\) \\
& \(\bullet \mathrm{nf}<1\) \\
& - \(\mathrm{nl}>\mathrm{n}\) \\
& - \(\mathrm{nl}<\mathrm{nf}\) \\
& - maxne \(<\mathrm{nl}-\mathrm{nf}+1\) & \\
& & \\
\hline
\end{tabular}

\section*{3. Comments on use}

\section*{etol and ctol}

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).
When \(\varepsilon=\) etol, the following condition is satisfied for consecutive eigenvalues \(\lambda_{j}(j=s-1, s, \ldots, s+k,(k \geq 0))\) :
\[
\begin{equation*}
\frac{\left|\lambda_{i}-\lambda_{i-1}\right|}{1+\max \left(\left|\lambda_{i-1}\right|,\left|\lambda_{i}\right|\right)} \leq \varepsilon \tag{2}
\end{equation*}
\]

If formula (2) is satisfied for \(i\) when \(i=s, s+1, \ldots, s+k\) but not satisfied when \(i=s-1\) and \(i=s+k+1\), it is assumed that the eigenvalues \(\lambda_{j}(j=s-1, s, \ldots, s+k)\) are numerically multiple.

The standard value of etol is \(3.0 \times 10^{-16}\) (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (2) is not satisfied when \(\varepsilon=\) etol, it can be considered that \(\lambda_{i-1}\) and \(\lambda_{i}\) are distinct eigenvalues.

When \(\varepsilon=\) etol, assume that consecutive eigenvalues \(\lambda_{m}(m=t-1, t, \ldots, t+k(k \geq 0))\) are different eigenvalues. Also, when \(\varepsilon=\) ctol, assume that formula (2) is satisfied for \(i\) when \(i=t, t+1, \ldots, t+k\) but not satisfied when \(i=t-1\) and \(i=t\) \(+k+1\). In this case, it is assumed that the distinct eigenvalues \(\lambda_{m}(m=t-1, t, \ldots, t+k)\) are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to \(\lambda_{m}(m=t-1, t, \ldots, t+k)\) are reorthogonalized.

\section*{maxne}

The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne. In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon \(=20000\) is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in \(\mathrm{e}[\mathrm{i}-1], i=1, \ldots\), nev[0]. The multiplicity of the corresponding eigenvalues is stored in \(m[0][i-1], i=1, \ldots, n e v[0]\).

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be \(n t(n t=n \mathrm{n}-\mathrm{nf}+1\) is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is \(m\), the maxne value must be at least \(n t+2 \times m\).

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev[2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

\section*{4. Example program}

This program obtains eigenvalues and prints the results.
```

\#include <stdio.h>
\#include <stdlib.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL II header file */
\#define N 500
\#define K
\#define NF 1
\#define NL 100
\#define MAXNE NL-NF+1
MAIN__()
{
double a[N][K], ab[N][K]
double e[MAXNE], ev[MAXNE][K];
double vV[N][K];
double etol, ctol, pi;
int nev[5], m[2][MAXNE];
int ierr, icon;
int i, j, k, n, nf, nl, maxne, ivec;
n = N;
k = K;
nf = NF;
nl = NL;
ivec = 1;
maxne = MAXNE;
etol = 3.0e-16;
ctol = 5.0e-12;
/* Generate real symmetric matrix with known eigenvalues */
/* Initialization
pi = 4.0 * atan(1.0);
for(i=0; i<n; i++) {
for(j=0; j<n; j++) {
vv[i][j] = sqrt(2.0/(double)(n+1))*sin((double)(i+1)*pi*
(double)(j+1)/(double)(n+1));
a[i][j] = 0.0;
}
}
for(i=0; i<n; i++) {
a[i][i] = (double)(-n/2+(i+1));
}
printf(" Input matrix size is %d\n", n);
printf(" Matrix calculations use k = %d\n", k);
printf(" Desired eigenvalues are nf to nl %d %d\n", nf, nl);
printf(" That is, request %d eigenvalues.\n", maxne) ;
printf(" True eigenvalues are as follows\n");
for(i=nf-1; i<nl; i++) {
printf("a(%d,%d) = %12.4e\n", i, i, a[i][i]);
}
ierr = c_dm_vmggm ((double*)a, k, (double*)vv, k, (double*)ab, k, n, n, n, \&icon);
ierr = c_dm_vmggm ((double*)vv, k, (double*)ab, k, (double*)a, k, n, n, n, \&icon);
/* Calculate the eigendecomposition of A */
ierr = c_dm_vsevph ((double*)a, k, n, nf, nl, ivec, \&etol, \&ctol, nev, e, maxne,
(int*)m, (double*)ev, \&icon);
if (icon > 0) {
printf("ERROR: c_dvsevp failed with icon = %d\n", icon);
exit(1);
}
printf("icon = %i\n", icon);
/* print eigenvalues */

```
```

    printf(" Number of eigenvalues %d\n", nev[2])
    printf(" Number of distinct eigenvalues %d\n", nev[0]);
    printf(" Solution to eigenvalues\n");
    for(i=0; i<nev[2]; i++) {
        printf(" e[%d] = %12.4e\n", i, e[i]);
    }
    return(0)
    }

```

\section*{5. Method}

Consult the entry for DM_VSEVPH in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [57].

\section*{c_dm_vsldl}

LDL \(^{\mathrm{T}}\) decomposition of symmetric positive definite matrices (blocked modified Cholesky decomposition method).
ierr = c_dm_vsldl(a, k, n, epsz, \&icon);

\section*{1. Function}

This function executes LDL \(^{\mathrm{T}}\) decomposition for an \(n \times n\) positive definite matrix \(\mathbf{A}\) using the blocked modified Cholesky decomposition method of outer product type, so that
\[
\mathbf{A}=\mathbf{L} \mathbf{D L}^{\mathrm{T}}
\]
where, \(\mathbf{L}\) is a unit lower triangular matrix and \(\mathbf{D}\) is a diagonal matrix.

\section*{2. Arguments}

The routine is called as follows:
ierr = c_dm_vsldl((double*)a, k, n, epsz, \&icon);
where:

The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
A pivot was negative. Matrix \(\mathbf{A}\) is not positive \\
definite.
\end{tabular} & Continued. \\
\hline 20000 & \begin{tabular}{l}
A pivot is relatively zero. It is probable that \\
matrix \(\mathbf{A}\) is singular.
\end{tabular} & Discontinued. \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
\(\bullet \quad \mathrm{n}<1\) \\
\(\bullet \quad \mathrm{k}<\mathrm{n}\) \\
\(\bullet\) \\
epsz \(<0\)
\end{tabular} & Bypassed. \\
\hline
\end{tabular}

Figure c_dm_vlsx-1. Storing the data for the Cholesky decomposition method

The diagonal elements and upper triangular part \(\left(a_{i j}\right)\) of the \(\mathrm{LDL}^{\mathrm{T}}\)-decomposed positive definite matrix are stored in array \(a[i-1][j-1], i=1, \ldots, n, j=i, \ldots, n\).
After \(\mathrm{LDL}^{\mathrm{T}}\) decomposition, matrix \(\mathbf{D}^{-1}\) is stored in diagonal elements and \(\mathbf{L}\) (excluding the diagonal elements) are stored in the upper triangular part respectively.

\section*{3. Comments on use}

\section*{epsz}

The standard value of epsz is \(16 \mu\), where \(\mu\) is the unit round-off. If, during the decomposition process, a pivot value fails the relative zero test, it is considered to be zero and decomposition is discontinued with icon \(=20000\). Decomposition can be continued by assigning a smaller value to epsz, however, the result obtained may not be of the required accuracy.

\section*{icon}

If a pivot is negative during decomposition, the matrix \(\mathbf{A}\) is not positive definite and icon \(=10000\) is set. Processing is continued, however no further pivoting is performed and the resulting calculation error may be significant.

\section*{Calculation of determinant}

The determinant of matrix \(\mathbf{A}\) is the same as the determinant of matrix \(\mathbf{D}\), and can be calculated by forming the product of the elements of output array a corresponding to the diagonal elements of \(\mathbf{D}^{-1}\), and then taking the reciprocal of the result.

\section*{4. Example program}

LDL \(^{\mathrm{T}}\) decomposition is executed for a \(1000 \times 1000\) matrix.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define min(a,b) ((a) < (b) ? (a) : (b))
\#define NMAX (1000)
\#define LDA (NMAX+1)
MAIN__()
{
int n, i, j, icon, ierr;

```
```

    double a[NMAX][LDA], b[NMAX];
    double epsz, s, det;
    n = NMAX;
    epsz = 0.0;
    \#pragma omp parallel for shared(a,n) private(i,j)
for(i=0; i<n; i++)
for(j=0; j<n; j++) a[i][j] = min(i,j)+1;
\#pragma omp parallel for shared(b,n) private(i)
for(i=0; i<n; i++) b[i] = (i+1)* (i+2)/2+(i+1)*(n-i-1);
ierr = c_dm_vsldl((double*)a, LDA, n, epsz, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_vsldl failed with icon = %d\n", icon);
exit(1)
}
ierr = c_dm_vldlx(b, (double*)a, LDA, n, \&icon);
if (icon != 0) {
printf("ERROR: c_dm_vldlx failed with icon = %d\n", icon);
exit(1);
}
s = 1.0;
\#pragma omp parallel for shared(a,n) private(i) reduction(*:s)
for(i=0; i<n; i++) s *= a[i][i];
printf("solution vector:\n");
for(i=0; i<10; i++) printf(" b[%d] = %e\n", i, b[i]);
det = 1.0/s;
printf("\ndeterminant of the matrix = %e\n", det);
return(0);
}

```

\section*{5. Method}

Consult the entry for DM_VSLDL in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30] and [52].

\section*{c_dm_vsrlu}
```

LU decomposition of an unsymmetric real sparse matrix.
ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n,
ipledsm, mz, isclitermax,
\&iordering, nperm, isw,
nrowsym, nfcnzsym,
nassign, \&nsupnum,
nfcnzfactorl, panelfactorl,
\&nsizefactorl, nfcnzindexl,
npanelindexl,
\&nsizeindexl, ndim,
nfcnzfactoru, panelfactoru,
\&nsizefactoru,
nfcnzindexu, npanelindexu,
\&nsizeindexu, nposto,
sclrow, sclcol,
\&epsz, \&thepsz, ipivot, istatic,
\&spepsz, nfcnzpivot,
npivotp, npivotq, w, iw1, iw2,
\&icon);

```

\section*{1. Function}

The large entries of an \(n \times n\) unsymmetric real sparse matrix \(\mathbf{A}\) are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.
The unsymmetric real sparse matrix is transformed as below.
\[
\mathbf{A}_{1}=\mathbf{D}_{\mathrm{r}} \mathbf{A} \mathbf{P}_{\mathrm{c}} \mathbf{D}_{\mathbf{c}}
\]
where \(\mathbf{P}_{\mathbf{c}}\) is an orthogonal matrix for column permutation, \(\mathbf{D}_{\mathbf{r}}\) is a diagonal matrix for scaling rows and \(\mathbf{D}_{\mathbf{c}}\) is also a diagonal matrix for scaling columns.
\[
\mathbf{A}_{\mathbf{2}}=\mathbf{Q P A} \mathbf{A}_{1} \mathbf{P}^{\mathbf{T}} \mathbf{Q}^{\mathbf{T}}
\]
\(\mathbf{A}_{2}\) is decomposed into \(\mathbf{L U}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of nonzero elements for \(\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{1}}^{\mathbf{T}}\) and \(\mathbf{Q}\) is a permutation matrix of postorder for \(\mathbf{S Y M} . \mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,
\&iordering, nperm, isw, nrowsym, nfcnzsym, nassign, \&nsupnum,
nfcnzfactorl, panelfactorl, \&nsizefactorl, nfcnzindexl,
npanelindexl, \&nsizeindexl, (int *)ndim, nfcnzfactoru,
panelfactoru, \&nsizefactoru, nfcnzindexu, npanelindexu,
\&nsizeindexu, nposto, sclrow, sclcol, \&epsz, \&thepsz, ipivot,
istatic, spepsz, nfcnzpivot, npivotp, npivotq, w, iw1, iw2,
\&icon);

```
where:
\begin{tabular}{lll}
& double \(a[n z]\) & Input \\
nz & int & Input \\
nrow & int nrow[nz] & Input \\
nfcnz & int nfcnz[n+1] & Input
\end{tabular}
\begin{tabular}{lll}
n & int & Input \\
ipledsm & int & Input
\end{tabular}
mz
isclitermax int

Control information whether to permute the large entries to the diagonal of a matrix \(\mathbf{A}\).
When ipledsm = 1 is specified, a matrix \(\mathbf{A}\) is transformed internally permuting large entries to the diagonal.

Otherwise no permutation is performed.
Output When ipledsm \(=1\) is specified, it indicates a permutation of columns. \(m z[i-1]=j\) indicates that the \(j\)-th column which the element of \(\boldsymbol{a}_{i j}\) belongs to is permutated to \(i\)-th column. The element of \(\boldsymbol{a}_{i j}\) is the large entry to be permuted to the diagonal.
The upper limit for the number of iteration to seek scaling matrices of \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) to equilibrate both rows and columns of matrix \(\mathbf{A}\).
When isclitermax \(\leq 0\) is specified no scaling is done. In this case \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) are assumed as unit matrices. When isclitermax \(\geq 10\) is specified, the upper limit

\begin{tabular}{|c|c|c|c|}
\hline nrowsym & int nrowsym[nz+n] & Output & When it is called with iordering \(=10\), the row indices of nonzero pattern of the lower triangular part of \(\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}\) in the compressed column storage method are generated. \\
\hline nfenzsym & int nfenzsym[n+1] & Output & \begin{tabular}{l}
When it is called with iordering \(=10\), the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column. \\
\(\mathrm{nfcnzsym}[\mathrm{n}]=\mathrm{nsymz}+1\) where nsymz is the total nonzero elements in the lower triangular part.
\end{tabular} \\
\hline \multirow[t]{2}{*}{nassign} & int nassign[n\(]\) & Output & \(\mathbf{L}\) and \(\mathbf{U}\) belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactorl and panelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the \(i\)-th supernode is stored into the \(j\)-th block of a subarray, where \(j=\) nassign[i-1]. \\
\hline & & Input & \begin{tabular}{l}
When isw \(\neq 1\), the values stored in the first call are reused. Regarding \\
the storage methods of decomposed matrices, refer to Figure c_dm_vsrlu-1.
\end{tabular} \\
\hline \multirow[t]{2}{*}{nsupnum} & int & Output & The total number of supernodes. \\
\hline & & Input & The values in the first call are reused when isw \(\neq 1\) specified. (\(\leq \mathrm{n}\)) \\
\hline nfenzfactorl & \begin{tabular}{l}
long \\
nfenzfactorl[n+1]
\end{tabular} & Output & The decomposed matrices \(\mathbf{L}\) and \(\mathbf{U}\) of an unsymmetric real sparse matrix are computed for each supernode respectively. The columns of \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel \\
\hline
\end{tabular}
```

panelfactorl double
panelfactorl
[nsizefactorl]

```
\begin{tabular}{ll}
nsizefactorl & long \\
nfcnzindexl & \begin{tabular}{l}
long \\
nfcnzindexl[n+1]
\end{tabular}
\end{tabular}
\begin{tabular}{lll}
nsizeindexl & long & Input \\
ndim & int ndim[n][3] & Output \\
Output
\end{tabular}
\begin{tabular}{ll}
nfenzfactoru & \begin{tabular}{l}
long \\
\\
\\
\(n f c n z f a c t o r u[n+1]\)
\end{tabular}
\end{tabular}
indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfenzindexl[j-1]. This row indices are the row numbers of the matrix into which SYM is permuted in its post order.
Regarding the storage method of the decomposed results, refer to Figure c dm vsrlu-1. See Comments on use. The size of the array npanelindexl.
The necessary size is returned. See Comments on use. ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix \(\mathbf{L}\) respectively, which is allocated in the \(i\)-th location.
ndim[i-1] [2] indicates the total amount of the size of the first dimension of the panel where a matrix \(\mathbf{U}\) is transposed and stored and the size of its block diagonal portion.

Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1.
Input When isw \(\neq 1\), the values set by the first call are reused.
Output Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of an unsymmetric real sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1.
Input When isw \(\neq 1\), the values set by the first call are reused. Output The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfenzfactoru[j-1]. The size of the panel in the
\begin{tabular}{|c|c|c|c|}
\hline nsizefactoru & long & \begin{tabular}{l}
Input \\
Output
\end{tabular} & The size of the array panelfactoru. The necessary size for the array panelfactoru is returned. See Comments on use. \\
\hline nfcnzindexu & long nfenzindexu[n+1] & Output & \begin{tabular}{l}
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1.
\end{tabular} \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline npanelindexu & int npanelindexu [nsizeindexu] & Output & \begin{tabular}{l}
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix into which SYM is permuted in its post order. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlu-1. See Comments on use.
\end{tabular} \\
\hline nsizeindexu & long & Input & The size of the array npanelindexu. \\
\hline & & Output & The necessary size is returned. See Comments on use. \\
\hline nposto & int nposto[n\(]\) & Output & The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. \\
\hline & & Input & When isW \(\neq 1\), the values set by the first call are reused. See Comments on use. \\
\hline sclrow & double sclrow[n] & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for scaling rows are stored in one dimensional array. \\
\hline & & Input & When \(i s w \neq 1\), the values set by the first call are reused. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{sclcol} & \multirow[t]{2}{*}{double sclcol[n]} & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. \\
\hline & & Input & The values set by the first call are reused when isw \(\neq 1\) specified. \\
\hline \multirow[t]{2}{*}{epsz} & \multirow[t]{2}{*}{double} & Input & Judgment of relative zero of the pivot (\(\geq 0.0\)). \\
\hline & & Output & When epsz \(\leq 0.0\), it is set to the standard value. See Comments on use. \\
\hline \multirow[t]{2}{*}{thepsz} & \multirow[t]{2}{*}{double} & Input & Threshold used in judgement for a pivot. Immediately after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, \(10^{-2}\). \\
\hline & & Output & \begin{tabular}{l}
When thepsz \(\leq 0.0,10^{-2}\) is set. \\
When epsz \(\geq\) thepsz \(>0.0\), it is set to the value of epsz.
\end{tabular} \\
\hline \multirow[t]{7}{*}{ipivot} & \multirow[t]{7}{*}{int} & \multirow[t]{7}{*}{Input} & Control information on pivoting which indicates whether a pivot is searched and what kind of pivoting is chosen if any. \\
\hline & & & For example, 40 for complete pivoting. ipivot \(<10\) or ipivot \(\geq 50\), no pivoting. \(10 \leq\) ipivot \(<20\), partial pivoting \(20 \leq\) ipivot \(<30\), diagonal pivoting \\
\hline & & & 21 : When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. \\
\hline & & & 22 : When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. If Rook pivoting fails, it is changed to complete pivoting. \\
\hline & & & \(30 \leq\) ipivot \(<40\), Rook pivoting \\
\hline & & & 32 : When within a supernode Rook pivoting fails, it is changed to complete pivoting. \\
\hline & & & \(40 \leq\) ipivot \(<50\), complete pivoting \\
\hline \multirow[t]{5}{*}{istatic} & \multirow[t]{5}{*}{int} & \multirow[t]{5}{*}{Input} & Control information indicating whether Static pivoting is taken. \\
\hline & & & \begin{tabular}{l}
1) When istatic \(=1\) is specified. \\
When the pivot searched within a supernode is not greater than spepsz, it is replaced with its approximate value of copysign(spepsz, pivot). If its value is 0.0 , spepsz is used as an approximation value.
\end{tabular} \\
\hline & & & \begin{tabular}{l}
The following conditions must be satisfied. \\
a) epsz must be less than or equal to the standard value of epsz. \\
b) Scaling must be performed with isclitermax \(=10\). \\
c) thepsz \(\geq\) spepsz must hold.
\end{tabular} \\
\hline & & & 2) When istatic \(\neq 1\) is specified. \\
\hline & & & No static pivot is performed. \\
\hline spepsz & double & Input & The approximate value used in Static pivoting when \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & \begin{tabular}{l}
When istatic \(=1\) is specified, Static pivot \\
which replaces the pivot candidate with too small \\
value with spepsz is made.
\end{tabular} & Continued. \\
\hline 20000 & \begin{tabular}{l}
The pivot became relatively zero. The coefficient \\
matrix A may be singular.
\end{tabular} & Processing is discontinued. \\
\hline 20100 & \begin{tabular}{l}
When ipledsm is specified, maximum \\
matching with the length n is sought in order to \\
permute large entries to the diagonal but can not \\
be found. The coefficient matrix A may be \\
singular.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 20200 & When seeking diagonal matrices for equilibrating both rows and columns, there is a zero vector in either rows or columns of the matrix \(\mathbf{A}\). The coefficient matrix A may be singular. & \multirow[t]{6}{*}{Processing is discontinued.} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(\mathrm{nz}<0\) \\
- \(n f c n z[n] \neq n z+1\) \\
- nsizefactorl<1 \\
- nsizefactoru<1 \\
- nsizeindexl<1 \\
- nsizeindexu<1 \\
- isw<1 \\
- isw>2
\end{tabular} & \\
\hline 30100 & The permutation matrix specified in nperm is not correct. & \\
\hline 30200 & The row index \(k\) stored in nrow [j-1] is \(k<1\) or \(k>n\). & \\
\hline 30300 & The number of row indices belong to \(i\)-th column is nfenz[i]-nfenz[i-1] \(>n\). & \\
\hline 30500 & \begin{tabular}{l}
When istatic \(=1\) is specified, the required conditions are not satisfied. \\
epsz is greater than \(16 u\) of the standard value or isclitermax \(<10\) \\
or spepsz > thepsz
\end{tabular} & \\
\hline 31000 & The value of nsizefactorl is not enough as the size of panelfactorl, or the value of nsizeindexl is not enough as the size of npanelindexl, or the value of nsizefactoru is not enough as the size of panelfactoru, or the value of nsizeindexu is not enough as the size of npanelindexu. & Reallocate the panelfactorl or npanelindexl or panelfactoru or npanelindexu with the necessary size which are returned in the nsizefactorl or nsizeindexl or nsizefactoru or nsizeindexu respectively and call this routine again with \(i s w=2\) specified. \\
\hline
\end{tabular}

Figure c_dm_vsrlu-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th section.

[j-1][1] from the \(p\)-th element of panelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim [j-1][0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1][0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s \geq t, s=1, \ldots, \operatorname{ndim}[j-1][0]
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][2]ndim [j-1][1]) \(\times\) ndim [j-1][1] from the \(u\)-th element of panelfactoru.
\(v=n f c n z i n d e x u[j-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][2] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathbf{T}}\) except its block diagonal portion of decomposed results is stored in
\[
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][2]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1] .
\]

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=j\).
The inverse of the matrix can be obtained as follows:
for (i = 1; \(i<=n\); i++) \{
```

j = nperm[i-1];
nperminv[j-1] = i;
}

```

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [41], [42] in Appendix, "References." in detail.

\section*{b)}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of \(L U\) decomposition. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is \(16 \times u\). When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz.

\section*{c)}

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.
For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw \(=1\). This routine ends with icon \(=31000\), and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw \(=2\) after reallocating the arrays with the necessary sizes.
d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(\mathrm{j}=\) nposto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note a) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```

\section*{e)}

A system of equations \(\mathbf{A x}=\mathbf{b}\) can be solved by calling c_dm_vsrlux subsequently in use of the results of LU decomposition obtained by this routine.
The following arguments used in this routine are specified.
a, nz, nrow, nfenz, n,
ipledsm, mz, iordering, nperm,
nassign, nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindexl, ndim,
nfcnzfactoru, panelfactoru, nsizefactoru,
```

nfcnzindexu, npanelindexu, nsizeindexu, nposto,
sclrow,sclcol,
nfcnzpivot,
npivotp, npivotq,iw2

```

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix \(\mathbf{A}\) built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NORD 40
\#define KX NORD
\#define KY NORD
\#define KZ NORD
\#define N (KX * KY * KZ)
\#define NBORDER (N + 1)
\#define NOFFDIAG 6
\#define K (N + 1)
\#define NDIAG 7
\#define NALL (NDIAG*N)
\#define WL (4 * NALL + 6 * N)
\#define IW1L (2 * NALL + 2 * (N + 1) + 16 * N)
\#define IW2L (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
double, double, double, int, int, int);
double errnrm(double*, double*, int);

```
```

int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];
double a[K * NDIAG], wc[K * NDIAG];
int nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
iwc[K * NDIAG][2];
int nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],
iw2[IW2L];
double w[WL];
double *panelfactorl, *panelfactoru;
int *npanelindexl, *npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,
nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
double b[N], solex[N];
double thepsz, epsz, spepsz, sclrow[N], sclcol[N];
int ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,
itermax, iter, ipledsm;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
isclitermax, isw, nsupnum;
double va1, va2, va3, vc, xl, yl, zl, err, epsr;
printf(" LU DECOMPOSITION METHOD\n");
printf(" FOR SPARSE UNSYMMETRIC REAL MATRICES\n")
printf(" IN COMPRESSED COLUMN STORAGE\n \n");
for (i = 0; i < N; i++) {
solex[i] = 1.0;
}
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", solex[0], solex[N-1]);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,
xl, yl, zl, NDIAG, N, K);

```
```

for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][j] = diag[i][nbase + j];
}
} else {
nbase = nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][nbase + j] = diag[i][j];
}
}
}
numnz = 1;
for (j = 0; j < N; j++) {
ntopcfg = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (ntopcfg == 1) {
nfcnz[j] = numnz;
ntopcfg = 0;
}
if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
continue;
} else {
if (diag2[i][j] != 0.0) {
ncol = (j + 1) - nofst[i];
a[numnz - 1] = diag2[i][j];
nrow[numnz - 1] = ncol;
numnz++;
}
}
}

```
```

}
nfcnz[N] = numnz;
nz = numnz - 1;
c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, \&icon);
/* INITIAL CALL WITH IORDER=1 */
iordering = 0;
ipledsm = 1;
isclitermax = 10;
isw = 1;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindexl = 1;
nsizeindexu = 1;
epsz = 1.0e-16;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40;
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;

```
c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, \&iordering,
nperm, isw, nrowsym, nfcnzsym, nassign, \&nsupnum, nfenzfactorl,
\&dummyfl, \&nsizefactorl, nfcnzindexl, \&ndummyil, \&nsizeindexl,
(int *)ndim, nfcnzfactoru, \&dummyfu, \&nsizefactoru, nfenzindexu,
\&ndummyiu, \&nsizeindexu, nposto, sclrow, sclcol, \&epsz, \&thepsz,
ipivot, istatic, \&spepsz, nfcnzpivot, npivotp, npivotq, w, iw1,
iw2, \&icon);
printf(" ICON= \%d NSIZEFACTORL= \%d NSIZEFACTORU= \%d NSIZEINDEXL= \%d",
 icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU= \%d NSUPNUM= \%d\n", nsizeindexu, nsupnum);
panelfactorl \(=(\) double *) malloc(nsizefactorl * sizeof(double));
panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, \&iordering, nperm,
```

                    isw, nrowsym, nfcnzsym, nassign, &nsupnum,nfcnzfactorl,
                    panelfactorl, &nsizefactorl, nfcnzindexl, npanelindexl,
                    &nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
                    &nsizefactoru, nfcnzindexu, npanelindexu, &nsizeindexu, nposto,
                    sclrow, sclcol, &epsz, &thepsz, ipivot, istatic, &spepsz,
                    nfcnzpivot, npivotp, npivotq, w, iw1, iw2, &icon);
    c_dm_vsrlux(N, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,
                panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
                    nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
                    nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,
                    ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,
                        irefine, epsr, itermax, &iter, a, nz, nrow, nfcnz, iw2, &icon);
    err = errnrm(solex, b, N);
    printf(" COMPUTED VALUES\n");
    printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", b[0], b[N-1]);
    printf(" ICON = %d\n \n", icon);
    printf(" N = %6d\n \n", N);
    printf(" ERROR = %18.15lf\n", err);
    printf(" ITER= %d\n \n \n", iter);
    if (err < 1.0e-8 && icon == 0) {
        printf(" ********** OK **********\n");
    } else {
        printf(" ********** NG ***********\n");
    }
    free(panelfactorl);
    free(panelfactoru);
    free(npanelindexl);
    free(npanelindexu);
    return(0);
    }
/* ===========================================
INITIALIZE COEFFICIENT MATRIX
======================================== */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,
int *offset, int nx, int ny, int nz, double xl, double yl,
double zl, int ndiag, int len, int ndivp) {

```
```

    if (ndiag < 1) {
    ```
 if (ndiag < 1) {
 printf("FUNCTION INIT_MAT_DIAG:\n");
```

    printf("FUNCTION INIT_MAT_DIAG:\n");
    ```
```

        printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
        return;
    }
    ```
\#pragma omp parallel default(shared)
\{
 int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
 double hx, hy, hz, hx2, hy2, hz2;
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 \(h x=x l /(n x+1) ;\)
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
\#pragma omp for
 for (i = 0; i < ndivp; i++) \{
 for (\(j=0 ; j<n d i a g ; ~ j++) ~\{\)
 d_1[(j * ndivp) + i] = 0.0;
 \}
 \}
 \(n x y=n x\) * ny;
/* OFFSET SETTING */
\#pragma omp single
 \{
 \(1=0 ;\)
 if (ndiag_loc >= 7) \{
 offset[l] = -nxy;
 l++;
 \}
 if (ndiag_loc >= 5) \{
 offset[l] = -nx;
 l++;
 \}
 if (ndiag_loc >= 3) \{
 offset[l] = -1;
 l++;
 \}
 offset[l] = 0;
 l++;
 if (ndiag_loc >= 2) \{
 offset[l] = 1;
```

            l++;
        }
        if (ndiag_loc >= 4) {
            offset[l] = nx;
            l++;
        }
        if (ndiag_loc >= 6) {
        offset[l] = nxy;
    }
    }
    /* MAIN LOOP */
\#pragma omp for
for (j = 0; j < len; j++) {
js = j + 1;
k0 = (js - 1) / nxy + 1;
if (k0 > nz) {
printf("ERROR; K0.GH.NZ \n");
goto label_100;
}
j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
l = 0;
if (ndiag_loc >= 7) {
if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
l++;
}
if (ndiag_loc >= 5) {
if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
l++;
}
if (ndiag_loc >= 3) {
if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;
l++;
}
hx2 = hx * hx;
hy2 = hy * hy;
hz2 = hz * hz;
d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;
if (ndiag_loc >= 5) {
d_l[(l * ndivp) + j] += 2.0 / hy2;
if (ndiag_loc >= 7) {
d_l[(l * ndivp) + j] += 2.0 / hz2;
}

```
```

    }
    l++;
    if (ndiag_loc >= 2) {
        if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;
        l++;
    }
    if (ndiag_loc >= 4) {
        if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
        l++;
    }
    if (ndiag_loc >= 6) {
        if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
    }
    label_100: ;
}
}
return;
}
/* ==========================================
* SOLUTE ERROR
* | X1 - X2 |
========================================= */
double errnrm(double *x1, double *x2, int len) {
double rtc, s, ss;
int i;
s = 0.0;
for (i = 0; i < len; i++) {
ss = x1[i] - x2[i];
s = s + ss * ss;
}
rtc = sqrt(s);
return(rtc);
}

```

\section*{5. Method}

Consult the entry for DM_VSRLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [13] , [17], [19], [22], [23] , [46] , [53], [59] , [64] and [65].

\section*{c_dm_vsrlux}
```

A system of linear equations with LU-decomposed unsymmetric real
sparse matrices
ierr = c_dm_vsrlux(n, iordering, nperm
b, nassign, nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl,
npanelindexl,
nsizeindexl, ndim,
nfcnzfactoru, panelfactoru,
nsizefactoru,
nfcnzindexu, npanelindexu,
nsizeindexu, nposto,
ipledsm, mz,
sclrow, sclcol, nfcnzpivot,
npivotp, npivotq, irefine, epsr,
itermax, \&iter,
a, nz, nrow, nfcnz,
iw2, \&icon);

```

\section*{1. Function}

An \(n \times n\) unsymmetric real sparse matrix \(\mathbf{A}\) of which LU decomposition is made as below is given. In this decomposition the large entries of an \(n \times n\) unsymmetric real sparse matrix \(\mathbf{A}\) are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following form. This routine solves the following linear equation in use of these results of LU decomposition.
\[
\mathbf{A x}=\mathbf{b}
\]

A matrix \(\mathbf{A}\) is decomposed into as below.
\[
\mathbf{P}_{r s} \mathbf{Q P D}_{\mathrm{r}} \mathbf{A P}_{c} \mathbf{D}_{\mathrm{c}} \mathbf{P}^{\mathbf{T}} \mathbf{Q}^{\mathbf{T}} \mathbf{P}_{\mathrm{cs}}=\mathbf{L} \mathbf{U}
\]

The unsymmetric real sparse matrix \(\mathbf{A}\) is transformed as below.
\[
\mathbf{A}_{\mathbf{1}}=\mathbf{D}_{\mathrm{r}} \mathbf{A} \mathbf{P}_{\mathrm{c}} \mathbf{D}_{\mathbf{c}}
\]
where \(\mathbf{P}_{\mathbf{c}}\) is an orthogonal matrix for column permutation, \(\mathbf{D}_{\mathbf{r}}\) is a diagonal matrix for scaling rows and \(\mathbf{D}_{\mathbf{c}}\) is also a diagonal matrix for scaling columns.
\[
\mathbf{A}_{\mathbf{2}}=\mathbf{Q P A} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathbf{T}}
\]
\(\mathbf{A}_{\mathbf{2}}\) is decomposed into \(\mathbf{L \mathbf { U }}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
\(\mathbf{P r s}_{\text {rs }}\) and \(\mathbf{P}_{\text {cs }}\) represent row and column exchanges in orthogonal matrices respectively.

The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of nonzero elements for \(\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\) \(\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}\) and \(\mathbf{Q}\) is a permutation matrix of postorder for \(\mathbf{S Y M} . \mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix.
It can be specified to improve the precision of the solution by iterative refinement.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,
panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,
ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,
irefine, \&epsr, itermax, \&iter, a, nz, nrow, nfcnz, iw2, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline n & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { int } \\
& \text { int }
\end{aligned}
\]} & Input & Order n of matrix \(\mathbf{A}\). \\
\hline iordering & & Input & When iordering 11 is specified, it is indicated that LU decomposition is performed with an ordering specified in nperm. \\
\hline & & & The matrix \(\mathbf{P A}_{1} \mathbf{P}^{\mathrm{T}}\) is decomposed into LU decomposition. Otherwise. No ordering is specified. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{2}{*}{nperm} & int nperm[n] & Input & When iordering = 11 is specified, a vector presenting the permutation matrix \(\mathbf{P}\) used is stored. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{double \(\mathrm{b}[\mathrm{n}]\)} & Input & The right-hand side constant vector \(\mathbf{b}\) of a system of linear equations \(\mathbf{A x}=\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline nassign & int nassign[n\(]\) & Input & \begin{tabular}{l}
\(\mathbf{L}\) and \(\mathbf{U}\) belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactorl and panelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. \\
Data of the \(i\)-th supernode is stored into the \(j\)-th block of a subarray, where \(j=\) nassign[i-1]. \\
Regarding the storage methods of decomposed matrices, refer to Figure c_dm_vsrlux-1.
\end{tabular} \\
\hline nsupnum & int & Input & The total number of supernodes. \((\leq n)\) \\
\hline nfenzfactorl & \begin{tabular}{l}
long \\
nfenzfactorl[n+1]
\end{tabular} & Input & The decomposed matrices \(\mathbf{L}\) and \(\mathbf{U}\) of an unsymmetric real sparse matrix are computed for each supernode respectively. The columns of \(\mathbf{L}\) belonging to each supernode are compressed to have the common row \\
\hline
\end{tabular}
```

panelfactorl double
[nsizefactorl]

```
\begin{tabular}{ll}
nsizefactorl & long \\
nfcnzindexl & long \\
& nfcnzindexl[n+1]
\end{tabular}
indices vector and stored into a two dimensional panel with the corresponding parts of \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactorl consecutively or the location of panel [0] [0] is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign [i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfenzfactorl[j-1].
The size of the panel in the \(i\)-th block can be considered to be two dimensional array of ndim [j-1] [0] \(\times\) ndim[j-1][1]. The corresponding parts of the lower triangular matrix \(\mathbf{L}\) are store in this panel
\([t-1][s-1], s \geq t, s=1, \ldots, \operatorname{ndim}[i-1][0], t=1\), ..., ndim[i-1][1]. The corresponding block diagonal portion of the unit upper triangular matrix \(\mathbf{U}\) except its diagonals is stored in the panel[t-1][s-1], \(s<t\), \(\mathrm{t}=1, \ldots\), ndim[i-1][1].
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
The size of the array panelfactorl.
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th row indices vector is mapped into npanelindexl consecutively is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The
\begin{tabular}{lll}
nsizeindexl & long & Input \\
ndim & int ndim[n][3] & Input
\end{tabular}
nfenzfactoru long Input
\begin{tabular}{ll}
panelfactoru & double \\
& panelfactoru
\end{tabular}
block number of the section where the row indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfenzindexl[j-1]. This row indices are the row numbers of the matrix into which SYM is permuted in its post order.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
The size of the array npanelindexl.
ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix \(\mathbf{L}\) respectively, which is allocated in the \(i\)-th location. ndim[i-1] [2] indicates the total amount of the size of the first dimension of the panel where a matrix \(\mathbf{U}\) is transposed and stored and the size of its block diagonal portion.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of an unsymmetric real sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1.
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(\mathrm{j}=\) nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfenzfactoru[j-1]. The size of the panel in the \(i\)-th block can be considered to be two dimensional array of \(\{\) ndim [i-1] [2] - ndim[i-1][1]\} \(\times\) ndim [i-1] [1]. The rows of the unit upper triangular matrix \(\mathbf{U}\) except the block diagonal portion are compressed, transposed and stored in this panel[t-1] [s-1], \(s=\) \(1, \ldots\), ndim[i-1][2] - ndim[i-1][1], \(t=1\), ..., ndim[i-1][1].
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{nsizefactoru} & \multirow{3}{*}{long} & \multirow{3}{*}{Input} & Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1. \\
\hline & & & The size of the array panelfactoru. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{8}{*}{nfcnzindexu} & \multirow[t]{8}{*}{long nfcnzindexu[n+1]} & \multirow[t]{8}{*}{Input} & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each \\
\hline & & & supernode are compressed to have the common column \\
\hline & & & indices vector, transposed and stored in a two dimensional \\
\hline & & & number of the top array element of the one dimensional \\
\hline & & & subarray where the \(i\)-th column indices vector including \\
\hline & & & indices of the block diagonal portion is mapped into \\
\hline & & & npanelindexu consecutively is stored. \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1. \\
\hline \multirow[t]{12}{*}{npanelindexu} & \multirow[t]{12}{*}{int npanelindexu [nsizeindexu]} & \multirow[t]{12}{*}{Input} & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed, transposed and stored in a two \\
\hline & & & dimensional panel without its block diagonal portion. \\
\hline & & & The column indices vector including indices of the block \\
\hline & & & diagonal portion is mapped into npanelindexu \\
\hline & & & consecutively. The block number of the section where the \\
\hline & & & column indices vector corresponding to the \(i\)-th supernode \\
\hline & & & is assigned is known from \(j=\) nassign[i-1]. The \\
\hline & & & location of its top of subarray is stored in \\
\hline & & & nfenzindexu[j-1]. These column indices are the \\
\hline & & & column numbers of the matrix into which SYM is \\
\hline & & & permuted in its post order. \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrlux-1. \\
\hline nsizeindexu & long & Input & The size of the array npanelindexu. \\
\hline \multirow[t]{2}{*}{nposto} & \multirow[t]{2}{*}{int nposto[n]} & \multirow[t]{2}{*}{Input} & The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{4}{*}{ipledsm} & \multirow[t]{4}{*}{int} & \multirow[t]{4}{*}{Input} & Information indicating whether for LU decomposition it \\
\hline & & & is specified to permute the large entries to the diagonal of a matrix \(\mathbf{A}\). \\
\hline & & & When ipledsm = 1 is specified, a matrix \(\mathbf{A}\) is transformed internally permuting large entries to the diagonal. \\
\hline & & & Otherwise no permutation is performed. \\
\hline \multirow[t]{5}{*}{mz} & \multirow[t]{5}{*}{int mz[n]} & \multirow[t]{5}{*}{Input} & When ipledsm = 1 is specified, it indicates a \\
\hline & & & permutation of columns. \(\mathrm{mz}[\mathrm{i}-1]=j\) indicates that the \\
\hline & & & \(j\)-th column which the element of \(\boldsymbol{a}_{i j}\) belongs to is \\
\hline & & & permutated to \(i\)-th column. The element of \(\boldsymbol{a}_{i j}\) is the large \\
\hline & & & entry to be permuted to the diagonal. \\
\hline \multirow[t]{2}{*}{sclrow} & \multirow[t]{2}{*}{double sclrow[n]} & \multirow[t]{2}{*}{Input} & The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for \\
\hline & & & scaling rows are stored in one dimensional array. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline sclcol & double sclcol[n] & Input & The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. \\
\hline nfenzpivot & int nfenzpivot [nsupnum+1] & Input & \begin{tabular}{l}
The location for the storage where the history of relative row and column exchanges for pivoting within each supernode is stored. \\
The block number of the section where the information on the \(i\)-th supernode is assigned is known by \(j=\) nassign[i-1]. The position of the first element of that section is stored in nfenzpivot [j-1]. The information of exchange rows and columns within the \(i\)-th supernode is stored in the elements of is \(=\) nfcnzpivot[j-1],..., ie = nfcnzpivot[j-1] + ndim[j-1][2]-1 in npivotp and npivotq respectively
\end{tabular} \\
\hline npivotp & int npivotp[n] & Input & The information on exchanges of rows within each supernode is stored. \\
\hline npivotq & int npivotq[n] & Input & The information on exchanges of columns within each supernode is stored. \\
\hline irefine & int & Input & \begin{tabular}{l}
Control information indicating whether iterative refinement is performed when the solution is computed in use of results of LU decomposition. A residual vector is computed in quadruple precision. \\
When irefine \(=1\) is specified. \\
The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones. \\
When irefine \(\neq 1\) is specified. \\
No iterative refinement is performed.
\end{tabular} \\
\hline epsr & double & Input & \begin{tabular}{l}
Criterion value to judge if the absolute value of the residual vector \\
\(\mathbf{b - A x}\) is sufficiently smaller compared with the absolute value of \(\boldsymbol{b}\). \\
When epsr \(\leq 0.0\), it is set to \(10^{-6}\).
\end{tabular} \\
\hline itermax & int & Input & Upper limit of iterative count for refinement (\(\geq 1\)). \\
\hline iter & int & Output & Actual iterative count for refinement. \\
\hline & double a[nz] & Input & \begin{tabular}{l}
The nonzero elements of an unsymmetric real sparse matrix \(\mathbf{A}\) are stored in a [0] to [nz-1] \\
For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector).
\end{tabular} \\
\hline nz & int & Input & The total number of the nonzero elements belong to an unsymmetric real sparse matrix \(\mathbf{A}\). \\
\hline nrow & int nrow[nz] & Input & The row indices used in the compressed column storage \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20400 & \begin{tabular}{l}
There is a zero element in diagonal of resultant \\
matrices of LU decomposition.
\end{tabular} & Processing is discontinued. \\
\hline 20500 & \begin{tabular}{l}
The norm of residual vector for the solution \\
vector is greater than that of \(\mathbf{b}\) multiplied by \\
epsr, which is the right term constant vector in \\
Ax \(=\mathbf{b}\). The coefficient matrix A may be close to \\
a singular matrix.
\end{tabular} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- n \(<1\) \\
- nz \(<0\) \\
- nfcnz[n] \(\neq \mathrm{nz}+1\) \\
- nsizefactorl \(<1\) \\
- nsizefactoru \(<1\) \\
- nsizeindexl \(<1\) \\
- nsizeindexu \(<1\) \\
- itermax \(<1\) when irefine \(=1\).
\end{tabular} & \\
\hline 30100 & \begin{tabular}{l}
The permutation matrix specified in nperm is not \\
correct.
\end{tabular} \\
\hline 30200 & \begin{tabular}{l}
The row index \(k\) stored in nrow[j-1] is \(k<1\) \\
or \(k>n\).
\end{tabular} \\
\hline 30300 & \begin{tabular}{l}
The number of row indices belong to \(i\)-th column \\
is nfcnz [i] \(-\mathrm{nfcnz}[\mathrm{i}-1]>n\).
\end{tabular} \\
\hline
\end{tabular}

Figure c_dm_vsrlux-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th section.

[j-1][1] from the \(p\)-th element of panelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim [j-1] [0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\operatorname{panel}[\mathrm{t}-1][\mathrm{s}-1], \quad \mathrm{s} \geq \mathrm{t}, \mathrm{~s}=1, \ldots, \operatorname{ndim}[j-1][0],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][2] ndim [j-1][1]) \(\times \operatorname{ndim}[j-1][1]\) from the \(u\)-th element of panelfactoru.
\(v=n f c n z i n d e x u[j-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][2] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathrm{T}}\) except its block diagonal portion of decomposed results is stored in
\[
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][2]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1]
\]

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

The results of LU decomposition obtained by c_dm_vsrlu is used.
See note c), "Comments on use." of c_dm_vsrlu and Example program of c_dm_vsrlux.

\section*{b)}

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=j\).
The inverse of the matrix can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nperm[i-1];
nperminv[j-1] = i;
}
c)

```

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.
This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(j=n\) posto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note \(\mathbf{a}\)) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix \(\mathbf{A}\) built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"

\#define NORD 40
\#define KX NORD
\#define KY NORD
\#define KZ NORD
```

\#define N (KX * KY * KZ)
\#define NBORDER (N + 1)
\#define NOFFDIAG 6
\#define K (N + 1)
\#define NDIAG 7
\#define NALL (NDIAG*N)
\#define WL (4 * NALL + 6 * N)
\#define IW1L (2 * NALL + 2 * (N + 1) + 16 * N)
\#define IW2L (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
double, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];
double a[K * NDIAG], wc[K * NDIAG];
int nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG + N], nfcnzsym[N + 1],
iwc[K * NDIAG][2];
int nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],
iw2[IW2L];
double w[WL];
double *panelfactorl, *panelfactoru;
int *npanelindexl, *npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,
nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
double b[N], solex[N];
double thepsz, epsz, spepsz, sclrow[N], sclcol[N];
int ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,
itermax, iter, ipledsm;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
isclitermax, isw, nsupnum;
double va1, va2, va3, vc, xl, yl, zl, err, epsr;
printf(" LU DECOMPOSITION METHOD\n");
printf(" FOR SPARSE UNSYMMETRIC REAL MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n \n");
for (i = 0; i < N; i++) {
solex[i] = 1.0;
}

```
```

printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", solex[0], solex[N-1]);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,
xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][j] = diag[i][nbase + j];
}
} else {
nbase = nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][nbase + j] = diag[i][j];
}
}
}
numnz = 1;
for (j = 0; j < N; j++) {
ntopcfg = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (ntopcfg == 1) {
nfcnz[j] = numnz;
ntopcfg = 0;

```
```

        }
        if (j + 1 < NBORDER && i + 1 > NOFFDIAG) {
            continue;
        } else {
            if (diag2[i][j] != 0.0) {
                ncol = (j + 1) - nofst[i];
                a[numnz - 1] = diag2[i][j];
                nrow[numnz - 1] = ncol;
                numnz++;
            }
        }
    }
    }
nfcnz[N] = numnz;
nz = numnz - 1;
c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, \&icon);
/* INITIAL CALL WITH IORDER=1 */
iordering = 0;
ipledsm = 1;
isclitermax = 10;
iSW = 1;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindexl = 1;
nsizeindexu = 1;
epsz = 1.0e-16;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40;
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;
c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, \&iordering,
nperm, isw, nrowsym, nfcnzsym, nassign, \&nsupnum, nfcnzfactorl,
\&dummyfl, \&nsizefactorl, nfcnzindexl, \&ndummyil, \&nsizeindexl,
(int *)ndim, nfcnzfactoru, \&dummyfu, \&nsizefactoru, nfcnzindexu,
\&ndummyiu, \&nsizeindexu, nposto, sclrow, sclcol, \&epsz, \&thepsz,
ipivot, istatic, \&spepsz, nfcnzpivot, npivotp, npivotq, w, iw1,

```
```

    iw2, &icon);
    printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",
icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);
panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));
panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsrlu(a, nz, nrow, nfcnz, N, ipledsm, mz,isclitermax, \&iordering, nperm,
isw, nrowsym, nfcnzsym, nassign, \&nsupnum,nfcnzfactorl,
panelfactorl, \&nsizefactorl, nfcnzindexl, npanelindexl,
\&nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
\&nsizefactoru, nfcnzindexu, npanelindexu, \&nsizeindexu, nposto,
sclrow, sclcol, \&epsz, \&thepsz, ipivot, istatic, \&spepsz,
nfcnzpivot, npivotp, npivotq, w, iw1, iw2, \&icon);
c_dm_vsrlux(N, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,
panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
nsizefactoru, nfcnzindexu, npanelindexu, nsizeindexu, nposto,
ipledsm, mz, sclrow, sclcol, nfcnzpivot, npivotp, npivotq,
irefine, epsr, itermax, \&iter, a, nz, nrow, nfcnz, iw2, \&icon);
err = errnrm(solex, b, N);
printf(" COMPUTED VALUES\n");
printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", b[0], b[N-1]);
printf(" ICON = %d\n \n", icon);
printf(" N = %6d\n \n", N)
printf(" ERROR = %18.15lf\n", err);
printf(" ITER= %d\n \n \n", iter);
if (err < 1.0e-8 \&\& icon == 0) {
printf(" ********** OK ***********\n");
} else {
printf(" ********** NG ***********\n");
}
free(panelfactorl);
free(panelfactoru);
free(npanelindexl);

```
```

    free(npanelindexu);
    return(0);
    }
/* =========================================
INITIALIZE COEFFICIENT MATRIX
=========================================*/
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,
int *offset, int nx, int ny, int nz, double xl, double yl,
double zl, int ndiag, int len, int ndivp) {
if (ndiag < 1) {
printf("FUNCTION INIT_MAT_DIAG:\n");
printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
return;
}
\#pragma omp parallel default(shared)
{
int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
double hx, hy, hz, hx2, hy2, hz2;
ndiag_loc = ndiag;
if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
\#pragma omp for
for (i = 0; i < ndivp; i++) {
for (j = 0; j < ndiag; j++) {
d_l[(j * ndivp) + i] = 0.0;
}
}
nxy = nx * ny;
/* OFFSET SETTING */
\#pragma omp single
{
l = 0;
if (ndiag_loc >= 7) {
offset[l] = -nxy;

```
```

        l++;
        }
        if (ndiag_loc >= 5) {
            offset[l] = -nx;
            l++;
        }
        if (ndiag_loc >= 3) {
            offset[l] = -1;
            l++;
        }
        offset[l] = 0;
        l++;
        if (ndiag_loc >= 2) {
            offset[l] = 1;
            l++;
        }
        if (ndiag_loc >= 4) {
            offset[l] = nx;
        l++;
        }
        if (ndiag_loc >= 6) {
        offset[l] = nxy;
    }
    }
/* MAIN LOOP */
\#pragma omp for
for (j = 0; j < len; j++) {
js = j + 1;
k0 = (js - 1) / nxy + 1;
if (k0 > nz) {
printf("ERROR; K0.GH.NZ \n");
goto label_100;
}
j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
l = 0;
if (ndiag_loc >= 7) {
if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
l++;
}
if (ndiag_loc >= 5) {
if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
l++;

```
```

    }
    if (ndiag_loc >= 3) {
        if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;
        l++;
    }
    hx2 = hx * hx;
    hy2 = hy * hy;
    hz2 = hz * hz;
    d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;
    if (ndiag_loc >= 5) {
        d_l[(l * ndivp) + j] += 2.0 / hy2;
        if (ndiag_loc >= 7) {
            d_l[(l * ndivp) + j] += 2.0 / hz2;
        }
    }
    l++;
    if (ndiag_loc >= 2) {
        if (i0 < nx) d_l[(l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;
        l++;
    }
    if (ndiag_loc >= 4) {
        if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
        l++;
    }
    if (ndiag_loc >= 6) {
        if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
    }
    label_100: ;
}
}
return;
}
/* ==========================================
* SOLUTE ERROR
* | X1 - X2 |
========================================= */
double errnrm(double *x1, double *x2, int len) {
double rtc, s, ss;
int i;
s = 0.0;
for (i = 0; i < len; i++) {

```
```

    ss = x1[i] - x2[i];
    s = s + ss * ss;
    }
    rtc = sqrt(s);
    return(rtc);
    }

```

\section*{c_dm_vsrs}
```

A system of linear equations with unsymmetric real sparse matrices (LU
decomposition method)
ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n,
ipledsm, mz, isclitermax,
\&iordering, nperm, isw,
nrowsym, nfcnzsym, b,
nassign, \&nsupnum,
nfcnzfactorl, panelfactorl,
\&nsizefactorl, nfcnzindexl,
npanelindexl,
\&nsizeindexl, ndim,
nfcnzfactoru, panelfactoru,
\&nsizefactoru,
nfcnzindexu, npanelindexu,
\&nsizeindexu, nposto,
sclrow, sclcol,
\&epsz, \&thepsz, ipivot, istatic,
\&spepsz, nfcnzpivot,
npivotp, npivotq, irefine, epsr,
itermax, \&iter,
w, iw1, iw2, \&icon);

```

\section*{1. Function}

The large entries of an \(n \times n\) unsymmetric real sparse matrix \(\mathbf{A}\) are permutated to the diagonal and then it is scaled in order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations \(\mathbf{A x}=\mathbf{b}\) in use of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.
\[
\mathbf{A x}=\mathbf{b}
\]

The unsymmetric real sparse matrix is transformed as below.
\[
\mathbf{A}_{\mathbf{1}}=\mathbf{D}_{\mathrm{r}} \mathbf{A} \mathbf{P}_{\mathbf{c}} \mathbf{D}_{\mathbf{c}}
\]
where \(\boldsymbol{P}_{\boldsymbol{c}}\) is an orthogonal matrix for column permutation, \(\boldsymbol{D}_{\boldsymbol{r}}\) is a diagonal matrix for scaling rows and \(\boldsymbol{D}_{\boldsymbol{c}}\) is also a diagonal matrix for scaling columns.

\section*{\(\mathbf{A}_{\mathbf{2}}=\mathbf{\mathbf { Q P A } _ { 1 }} \mathbf{P}^{\mathbf{T}} \mathbf{Q}^{\mathbf{T}}\)}
\(\mathbf{A}_{\mathbf{2}}\) is decomposed into \(\mathbf{L} \mathbf{U}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of nonzero elements for \(\mathbf{S Y M}=\mathbf{A}_{\mathbf{1}}+\) \(\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}\) and \(\mathbf{Q}\) is a permutation matrix of postorder for \(\mathbf{S Y M} . \mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold
specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.
The solution is computed using LU decomposition.
It can be specified to improve the precision of the solution by iterative refinement.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n, ipledsm, mz, isclitermax,
\&iordering, nperm, isw, nrowsym, nfcnzsym, b, nassign, \&nsupnum,
nfcnzfactorl, panelfactorl, \&nsizefactorl, nfcnzindexl,
npanelindexl, \&nsizeindexl, (int *)ndim, nfcnzfactoru,
panelfactoru, \&nsizefactoru, nfcnzindexu, npanelindexu,
\&nsizeindexu, nposto, sclrow, sclcol, \&epsz, \&thepsz, ipivot,
istatic, \&spepsz, nfcnzpivot, npivotp, npivotq, irefine, epsr,
itermax, iter, w, iw1, iw2, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[nz] & Input & \begin{tabular}{l}
The nonzero elements of an unsymmetric real sparse matrix \(\mathbf{A}\) are stored. \\
For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector).
\end{tabular} \\
\hline nz & int & Input & The total number of the nonzero elements belong to an unsymmetric real sparse matrix \(\mathbf{A}\). \\
\hline nrow & int nrow[nz] & Input & The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array A. \\
\hline \(n f\) nnz & int \(\mathrm{nfcnz}[\mathrm{n}+1]\) & Input & The position of the first nonzero element of each column stored in an array A in the compressed column storage method which stores the nonzero elements column by column. \(\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline ipledsm & int & Input & \begin{tabular}{l}
Control information whether to permute the large entries to the diagonal of a matrix \(\mathbf{A}\). When ipledsm = 1 is specified, a matrix \(\mathbf{A}\) is transformed internally permuting large entries to the diagonal. \\
Otherwise no permutation is performed.
\end{tabular} \\
\hline mz & int mz[n] & Output & When ipledsm = 1 is specified, it indicates a permutation of columns. \(m z[i-1]=j\) indicates that the \(j\)-th column which the element of \(\boldsymbol{a}_{i j}\) belongs to is \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{3}{*}{isclitermax} & \multirow{3}{*}{int} & \multirow{3}{*}{Input} & permutated to \(i\)-th column. The element of \(\boldsymbol{a}_{\boldsymbol{i}}\) is the large entry to be permuted to the diagonal. \\
\hline & & & The upper limit for the number of iteration to seek scaling matrices of \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) to equilibrate both rows and columns of matrix \(\mathbf{A}\). \\
\hline & & & When isclitermax \(\leq 0\) is specified no scaling is done. In this case \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) are assumed as unit matrices. When isclitermax \(\geq 10\) is specified, the upper limit for the number of iteration is considered as 10 . \\
\hline \multirow[t]{6}{*}{iordering} & \multirow[t]{6}{*}{int} & \multirow[t]{5}{*}{Input} & Control information whether to decompose the reordered matrix \(\mathbf{P A}_{\mathbf{1}} \mathbf{P}^{\mathrm{T}}\) permuted by the matrix \(\mathbf{P}\) of ordering or to decompose the matrix \(\mathbf{A}\). \\
\hline & & & When iordering \(=10\) is specified, calling this routine with \(i s w=1\) produces the informations which is needed to generate an ordering regarding \(\mathbf{A}_{\mathbf{1}}\) and they are set in nrowsym and nfenzsym. \\
\hline & & & When iordering 11 is specified, it is indicated that after an ordering is set in nperm, the computation is resumed. \\
\hline & & & Using the informations obtained in nrowsym and nfenzsym after calling this routines with isw \(=1\) and iordering \(=10\), an ordering is determined. After specifying this ordering in nperm, this routine is called again with isw = 1and iordering = 11 and the computation is resumed. \\
\hline & & & LU decomposition of the matrix \(\mathbf{P} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}}\) is continued. Otherwise. Without any ordering, the matrix \(\mathbf{A}_{1}\) is decomposed into LU. \\
\hline & & Output & iordering is set to 11 after this routine is called with iordering \(=10\) and isw \(=1\). Therefore after an ordering is set in nperm the computation is resumed in the subsequent call without iordering \(=11\) being specified explicitly. See Comments on use. \\
\hline nperm & int nperm[n] & Input & The permutation matrix \(\mathbf{P}\) is stored as a vector. See Comments on use. \\
\hline \multirow[t]{3}{*}{isw} & \multirow[t]{3}{*}{int} & \multirow[t]{3}{*}{Input} & Control information. \\
\hline & & & \begin{tabular}{l}
1) When isw \(=1\) is specified. \\
After symmetrization of a matrix and symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed.
\end{tabular} \\
\hline & & & Call with iordering \(=10\) produces the informations needed for seeking an ordering in nrowsym and nfenzsym. Using these informations an ordering for SYM is determined. After an ordering is set in nperm, calling this \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline nrowsym & int nrowsym[nz+n] & Output & When it is called with iordering = 10 , the row indices of nonzero pattern of the lower triangular part of SYM = \(\mathbf{A}_{\mathbf{1}}+\mathbf{A}_{\mathbf{1}}{ }^{\mathbf{T}}\) in the compressed column storage method are generated. \\
\hline nfenzsym & int nfenzsym[n+1] & Output & \begin{tabular}{l}
When it is called with iordering \(=10\), the position of the first row index of each column stored in array nrowsym in the compressed column storage method which stores the nonzero pattern of the lower part of a matrix SYM column by column. \\
\(\mathrm{nfcnzsym}[\mathrm{n}\)] = nsymz +1 where nsymz is the total nonzero elements in the lower triangular part.
\end{tabular} \\
\hline b & double b[n] & Input & The right-hand side constant vector \(\mathbf{b}\) of a system of linear equations \(\mathbf{A x}=\mathbf{b}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline \multirow[t]{2}{*}{nassign} & int nassign[n] & Output & \(\mathbf{L}\) and \(\mathbf{U}\) belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactorl and panelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the \(i\)-th supernode is stored into the \(j\)-th block of a subarray, where \(j=\) nassign [i-1]. \\
\hline & & Input & \begin{tabular}{l}
When isw \(\neq 1\), the values stored in the first call are reused. Regarding \\
the storage methods of decomposed matrices, refer to Figure c_dm_vsrs-1.
\end{tabular} \\
\hline \multirow[t]{2}{*}{nsupnum} & int & Output & \\
\hline & & Input & The values in the first call are reused when isw \(\neq 1\) specified. (\(\leq \mathrm{n}\)) \\
\hline \multirow[t]{2}{*}{nfenzfactorl} & \begin{tabular}{l}
long \\
nfcnzfactorl[n+1]
\end{tabular} & Output & \begin{tabular}{l}
The decomposed matrices \(\mathbf{L}\) and \(\mathbf{U}\) of an unsymmetric real sparse matrix are computed for each supernode respectively. The columns of \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactorl consecutively or the location of panel[0][0] is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1.
\end{tabular} \\
\hline & & Input & The values set by the first call are reused when isw \(\neq 1\) specified. \\
\hline panelfactorl & ```
double
panelfactorl
[nsizefactorl]
``` & Output & \begin{tabular}{l}
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfenzfactorl[j-1]. \\
The size of the panel in the \(i\)-th block can be considered to be two dimensional array of ndim [i-1] [0] \(\times\) ndim[i-1][1]. The corresponding parts of the lower triangular matrix \(\mathbf{L}\) are store in this panel \([t-1][s-1], s \geq t, s=1, \ldots, \operatorname{ndim}[i-1][0]\),
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline nfcnzfactoru & & \begin{tabular}{l}
Input \\
Output
\end{tabular} & When isw \(\neq 1\), the values set by the first call are reused. Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of \\
\hline nfenzfactoru & nfcnzfactoru[n+1] & & an unsymmetric real sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. \\
\hline & & & The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored. \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. \\
\hline \multirow{12}{*}{panelfactoru} & \multirow{12}{*}{double panelfactoru [nsizefactoru]} & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline & & \multirow[t]{11}{*}{Output} & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional \\
\hline & & & panel without its block diagonal portion. The block number of the section where the panel corresponding to \\
\hline & & & the \(i\)-th supernode is assigned is known from \(\mathbf{j}=\) \\
\hline & & & nassign [i-1]. The location of its top of subarray \\
\hline & & & including the portion of decomposed matrices is stored in \\
\hline & & & nfcnzfactoru[j-1]. The size of the panel in the \\
\hline & & & \(i\)-th block can be considered to be two dimensional array of \{ndim[i-1][2] - ndim[i-1][1]\} \(\times\) ndim \\
\hline & & & [ \(\mathrm{i}-1][1]\). The rows of the unit upper triangular matrix \\
\hline & & & U except the block diagonal portion are compressed, transposed and stored in this panel \([\mathrm{t}-1][\mathrm{s}-1], \mathrm{s}=\) \\
\hline & & & \[
\begin{aligned}
& \text { 1,..., ndim[i-1][2]-ndim[i-1][1], t=1, } \\
& \text {.., ndim[i-1][1]. }
\end{aligned}
\] \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. See Comments on use. \\
\hline \multirow[t]{2}{*}{nsizefactoru} & \multirow[t]{2}{*}{long} & Input & The size of the array panelfactoru. \\
\hline & & Output & The necessary size for the array panelfactoru is returned. See Comments on use. \\
\hline \multirow[t]{7}{*}{nfenzindexu} & \multirow[t]{7}{*}{long nfcnzindexu[n+1]} & \multirow[t]{6}{*}{Output} & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each \\
\hline & & & indices vector, transposed and stored in a two dimensional \\
\hline & & & panel without its block diagonal portion. The index \\
\hline & & & number of the top array element of the one dimensional subarray where the \(i\)-th column indices vector including \\
\hline & & & indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. \\
\hline & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline npanelindexu & int npanelindexu & Output & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each \\
\hline
\end{tabular}
[nsizeindexu]
\begin{tabular}{lll} 
nsizeindexu & long & \begin{tabular}{l} 
Input \\
Output
\end{tabular} \\
nposto & int nposto[n] & Output \\
sclrow & double sclrow[n] & Output \\
sclcol & double sclcol[n] & \begin{tabular}{l} 
Output \\
Input
\end{tabular} \\
& & Input \\
epsz & double & Input \\
thepsz & double & Input
\end{tabular}
ipivot int
supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix into which SYM is permuted in its post order.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vsrs-1. See Comments on use.
The size of the array npanelindexu.
The necessary size is returned. See Comments on use. The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. When isw \(\neq 1\), the values set by the first call are reused. See Comments on use.

The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for scaling rows are stored in one dimensional array. When isW \(\neq 1\), the values set by the first call are reused. The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. The values set by the first call are reused when isw \(\neq 1\) specified.
Judgment of relative zero of the pivot \((\geq 0.0)\).
When epsz \(\leq 0.0\), it is set to the standard value.
See Comments on use.
Threshold used in judgement for a pivot. Immediately after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, \(10^{-2}\).
Output When theps \(z \leq 0.0,10^{-2}\) is set.
When eps \(z \geq\) thepsz \(>0.0\), it is set to the value of epsz.
Control information on pivoting which indicates whether a pivot is searched and what kind of pivoting is chosen if any.
For example, 40 for complete pivoting. ipivot \(<10\) or ipivot \(\geq 50\), no pivoting.
\(10 \leq\) ipivot \(<20\), partial pivoting
\(20 \leq\) ipivot \(<30\), diagonal pivoting
21 : When within a supernode diagonal pivoting fails, it is changed to Rook pivoting.



The complete list of condition codes is:
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & \begin{tabular}{l} 
The pivot became relatively zero. The coefficient \\
matrix A may be singular.
\end{tabular} & Processing is discontinued. \\
\hline 20100 & \begin{tabular}{l} 
When ipledsm is specified, maximum \\
matching with the length n is sought in order to \\
permute large entries to the diagonal but can not \\
be found. The coefficient matrix A may be \\
singular.
\end{tabular} \\
\hline 20200 & \begin{tabular}{l} 
When seeking diagonal matrices for equilibrating \\
both rows and columns, there is a zero vector in \\
either rows or columns of the matrix \(\mathbf{A . ~ T h e ~}\)
\end{tabular} & \\
\hline 20400 & \begin{tabular}{l} 
coefficient matrix A may be singular.
\end{tabular} & \\
\hline & \begin{tabular}{l} 
There is a zero element in diagonal of resultant \\
matrices of LU decomposition.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 20500 & The norm of residual vector for the solution vector is greater than that of \(\mathbf{b}\) multiplied by epsr, which is the right term constant vector in \(\mathbf{A x}=\mathbf{b}\). The coefficient matrix \(\mathbf{A}\) may be close to a singular matrix. & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(n z<0\) \\
- \(n f c n z[n] \neq n z+1\) \\
- nsizefactorl<1 \\
- nsizefactoru<1 \\
- nsizeindexl<1 \\
- nsizeindexu<1 \\
- isw<1 \\
- isw>3 \\
- itermax \(<1\) when irefine \(=1\).
\end{tabular} & \multirow[t]{5}{*}{Processing is discontinued.} \\
\hline 30100 & The permutation matrix specified in nperm is not correct. & \\
\hline 30200 & The row index \(k\) stored in nrow [j-1] is \(k<1\) or \(k>n\). & \\
\hline 30300 & The number of row indices belong to \(i\)-th column is \(n f e n z[i]-n f e n z[i-1]>n\). & \\
\hline 30500 & \begin{tabular}{l}
When istatic \(=1\) is specified, the required conditions are not satisfied. \\
epsz is greater than \(16 u\) of the standard value or isclitermax \(<10\) \\
or irefine \(\neq 1\) \\
or spepsz>thepsz \\
or spepsz \(>10^{-10}\)
\end{tabular} & \\
\hline 31000 & The value of nsizefactorl is not enough as the size of panelfactorl, or the value of nsizeindexl is not enough as the size of npanelindexl, or the value of nsizefactoru is not enough as the size of panelfactoru, or the value of nsizeindexu is not enough as the size of npanelindexu. & Reallocate the panelfactorl or npanelindexl or panelfactoru or npanelindexu with the necessary size which are returned in the nsizefactorl or nsizeindexl or nsizefactoru or nsizeindexu respectively and call this routine again with \(i s w=2\) specified. \\
\hline
\end{tabular}


Figure c_dm_vsrs-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\quad \rightarrow \quad\) The \(i\)-th supernode is stored at the \(j\)-th section.
\(\mathrm{p}=\mathrm{nfcnzfactorl[j-1]} \rightarrow\) The \(j\)-th panel occupies the area with a length ndim[j-1][0]×
ndim[j-1][1] from the \(p\)-th element of panelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\operatorname{panel}[\mathrm{t}-1][\mathrm{s}-1], \quad \mathrm{s} \geq \mathrm{t}, \mathrm{~s}=1, \ldots, \operatorname{ndim}[j-1][0],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][2] ndim [j-1][1]) \(\times \operatorname{ndim}[j-1][1]\) from the \(u\)-th element of panelfactoru.
\(v=n f c n z i n d e x u[j-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][2] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][2]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathbf{T}}\) except its block diagonal portion of decomposed results is stored in
\[
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][2]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1]
\]

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=j\).
The inverse of the matrix can be obtained as follows:
for (i = 1; i <= n; i++) \{
```

j = nperm[i-1];
nperminv[j-1] = i;
}

```

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [41], [42] in Appendix, "References." in detail.

\section*{b)}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of \(L U\) decomposition. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is \(16 \times u\). When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

\section*{c)}

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.
For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu with isw=1. This routine ends with icon \(=31000\), and the necessary sizes for nsizefactorl, nsizeindexl, nsizefactoru and nsizeindexu are returned. Then the suspended process can be resumed by calling it with isw \(=2\) after reallocating the arrays with the necessary sizes.
d)

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(\mathrm{j}=\) nposto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note a) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```
e)

Instead of this routine, a system of equations \(\mathbf{A x}=\mathbf{b}\) can be solved by calling both c_dm_vsrlu to perform LU
 decomposed results.

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and the portion in only its six lower diagonals are converted in compressed column storage format. The linear system of equations with an unsymmetric real sparse matrix \(\mathbf{A}\) built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NORD 40
\#define KX NORD
\#define KY NORD
\#define KZ NORD
\#define N (KX * KY * KZ)
\#define NBORDER (N + 1)
\#define NOFFDIAG 6
\#define K (N + 1)
\#define NDIAG 7
\#define NALL (NDIAG * N)
\#define WL (4 * NALL + 6 * N)
\#define IW1L (2 * NALL + 2 * (N + 1) + 16 * N)
\#define IW2L (47 * N + 47 + 4 * (N + 1) + NALL + 2 * (NALL + N))
void init_mat_diag(double, double, double, double, double*, int*, int, int, int,
double, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];
double a[K * NDIAG], wc[K * NDIAG];
int nrow[K * NDIAG], nfcnz[N + 1], nrowsym[K * NDIAG+N], nfcnzsym[N + 1],
iwc[K * NDIAG][2];
int nperm[N], nposto[N], ndim[N][3], nassign[N], mz[N], iw1[IW1L],
iw2[IW2L];
double w[WL];
double *panelfactorl, *panelfactoru;

```
```

int *npanelindexl, *npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindexl, nsizeindexu, nsizefactoru,
nfcnzfactorl[N + 1], nfcnzfactoru[N + 1], nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
double b[N], solex[N];
double epsz, thepsz, spepsz, sclrow[N], sclcol[N];
int ipivot, istatic, nfcnzpivot[N + 1], npivotp[N], npivotq[N], irefine,
itermax, iter, ipledsm;
int i, j, nbase, length, numnz, ntopcfg, ncol, nz, icon, iordering,
isclitermax, isw, nsupnum;
double va1, va2, va3, vc, xl, yl, zl, err, epsr;
printf(" LU DECOMPOSITION METHOD\n");
printf(" FOR SPARSE UNSYMMETRIC REAL MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n \n");
for (i = 0; i < N; i++) {
solex[i] = 1.0;
}
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", solex[0], solex[N - 1]);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst, KX, KY, KZ,
xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][j] = diag[i][nbase + j];

```
```

 }
 } else {
 nbase = nofst[i];
 length = N - nbase;
 for (j = 0; j < length; j++) {
 diag2[i][nbase + j] = diag[i][j];
 }
 }
 }
numnz = 1;
for (j = 0; j < N; j++) {
ntopcfg = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (ntopcfg == 1) {
nfcnz[j] = numnz;
ntopcfg = 0;
}
if (j + 1 < NBORDER \&\& i + 1 > NOFFDIAG) {
continue;
} else {
if (diag2[i][j] != 0.0) {
ncol = (j + 1) - nofst[i];
a[numnz - 1] = diag2[i][j];
nrow[numnz - 1] = ncol;
numnz++;
}
}
}
}
nfcnz[N] = numnz;
nz = numnz - 1;
c_dm_vmvscc(a, nz, nrow, nfcnz, N, solex, b, wc, (int *)iwc, \&icon);
/* INITIAL CALL WITH IORDER=1 */
iordering = 0;
ipledsm = 1;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;

```
```

nsizeindexl = 1;
nsizeindexu = 1;
thepsz = 1.0e-2;
spepsz = 0.0;
ipivot = 40
istatic = 0;
irefine = 1;
epsr = 0.0;
itermax = 10;
c_dm_vsrs(a, nz, nrow, nfcnz, N, ipledsm, mz, isclitermax, \&iordering,
nperm, isw, nrowsym, nfcnzsym, b, nassign, \&nsupnum, nfcnzfactorl,
\&dummyfl, \&nsizefactorl, nfcnzindexl, \&ndummyil, \&nsizeindexl,
(int *)ndim, nfcnzfactoru, \&dummyfu, \&nsizefactoru, nfcnzindexu,
\&ndummyiu, \&nsizeindexu, nposto, sclrow, sclcol, \&epsz, \&thepsz,
ipivot, istatic, \&spepsz, nfcnzpivot, npivotp, npivotq, irefine,
epsr, itermax, \&iter, w, iw1, iw2, \&icon);
printf(" ICON= %d NSIZEFACTORL= %d NSIZEFACTORU= %d NSIZEINDEXL= %d",
icon, nsizefactorl, nsizefactoru, nsizeindexl);
printf(" NSIZEINDEXU= %d NSUPNUM= %d\n", nsizeindexu, nsupnum);
panelfactorl = (double *)malloc(nsizefactorl * sizeof(double));
panelfactoru = (double *)malloc(nsizefactoru * sizeof(double));
npanelindexl = (int *)malloc(nsizeindexl * sizeof(int));
npanelindexu = (int *)malloc(nsizeindexu * sizeof(int));
isw = 2;
c_dm_vsrs(a, nz,nrow, nfcnz, N,ipledsm, mz, isclitermax, \&iordering,
nperm, isw, nrowsym, nfcnzsym, b, nassign, \&nsupnum, nfcnzfactorl,
panelfactorl, \&nsizefactorl, nfcnzindexl, npanelindexl,
\&nsizeindexl, (int *)ndim, nfcnzfactoru, panelfactoru,
\&nsizefactoru, nfcnzindexu, npanelindexu, \&nsizeindexu, nposto,
sclrow, sclcol, \&epsz, \&thepsz, ipivot, istatic, \&spepsz,
nfcnzpivot, npivotp, npivotq, irefine, epsr, itermax, \&iter, w,
iw1, iw2, \&icon);
err = errnrm(solex, b, N);
printf(" COMPUTED VALUES\n");
printf(" X(1) = %18.15lf X(N) = %18.15lf\n \n", b[0], b[N - 1]);
printf(" ICON = %d\n \n", icon);
printf(" N = %6d\n \n", N);
printf(" ERROR = %18.15lf\n", err);
printf(" ITER= %d\n \n \n", iter);

```
```

 if (err < 1.0e-8 && icon == 0) {
 printf(" ********** OK **********\n");
 } else {
 printf(" *********** NG ***********\n");
 }
 free(panelfactorl);
 free(panelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
 }
|* ===

```
            INITIALIZE COEFFICIENT MATRIX
    ========================================*/
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,
                                    int *offset, int \(n x\), int ny, int nz, double xl, double yl,
                                    double zl, int ndiag, int len, int ndivp) \{
    if (ndiag < 1) \{
        printf("FUNCTION INIT_MAT_DIAG:\n");
        printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO \(1 \backslash n ")\);
        return;
    \}
\#pragma omp parallel default(shared)
\{
    int i, j, l, ndiag_loc, nxy, js, k0, j0, i0;
    double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
    ndiag_loc = ndiag;
    if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
    \(h x=x l /(n x+1) ;\)
    hy = yl / (ny + 1);
    hz = zl / (nz + 1);
\#pragma omp for
    for (i = 0; i < ndivp; i++) \{
        for (j = 0; \(j<n d i a g ; ~ j++) ~\{\)
            d_l[(j * ndivp) + i] = 0.0;
```

 }
 }
 nxy = nx * ny;
 /* OFFSET SETTING */
\#pragma omp single
{
l = 0;
if (ndiag_loc >= 7) {
offset[l] = -nxy;
l++;
}
if (ndiag_loc >= 5) {
offset[l] = -nx;
l++;
}
if (ndiag_loc >= 3) {
offset[l] = -1;
l++;
}
offset[l] = 0;
l++;
if (ndiag_loc >= 2) {
offset[l] = 1;
l++;
}
if (ndiag_loc >= 4) {
offset[l] = nx;
l++;
}
if (ndiag_loc >= 6) {
offset[l] = nxy;
}
}

```
/* MAIN LOOP */
\#pragma omp for
    for (j = 0; j < len; j++) \{
        \(j s=j+1 ;\)
        \(k 0=(j s-1) / n x y+1\);
        if (k0 > nz) \{
        printf("ERROR; K0.GH.NZ \n");
        goto label_100;
    \}
```

 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
 l = 0;
 if (ndiag_loc >= 7) {
 if (k0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hz + 0.5 * va3) / hz;
 l++;
 }
 if (ndiag_loc >= 5) {
 if (j0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hy + 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 3) {
 if (i0 > 1) d_l[(l * ndivp) + j] = -(1.0 / hx + 0.5 * va1) / hx;
 l++;
 }
 hx2 = hx * hx;
 hy2 = hy * hy;
 hz2 = hz * hz;
 d_l[(l * ndivp) + j] = 2.0 / hx2 + vc;
 if (ndiag_loc >= 5) {
 d_l[(l * ndivp) + j] += 2.0 / hy2;
 if (ndiag_loc >= 7) {
 d_l[(l * ndivp) + j] += 2.0 / hz2;
 }
 }
 l++;
 if (ndiag_loc >= 2) {
 if (i0 < nx) d_l[((l * ndivp) + j] = -(1.0 / hx - 0.5 * va1) / hx;
 l++;
 }
 if (ndiag_loc >= 4) {
 if (j0 < ny) d_l[(l * ndivp) + j] = -(1.0 / hy - 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 6) {
 if (k0 < nz) d_l[(l * ndivp) + j] = -(1.0 / hz - 0.5 * va3) / hz;
 }
 label_100: ;
}
}
return;
}

```
```

/* ==
* SOLUTE ERROR
* | X1 - X2 |
======================================= */
double errnrm(double *x1, double *x2, int len) {
double rtc, s, ss;
int i;
s = 0.0;
for (i = 0; i < len; i++) {
ss = x1[i] - x2[i];
s = s + ss * ss;
}
rtc = sqrt(s);
return(rtc);
}

```

\section*{5. Method}

Consult the entry for DM_VSRS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [13] , [17] , [19], [22], [23], [46] , [53], [59] , [64] and [65].

\section*{c_dm_vssps}
```

A system of linear equations with symmetric positive definite sparse
matrices (Left-looking LDL }\mp@subsup{}{}{\textrm{T}}\mathrm{ decomposition method)
ierr = c_dm_vssps(a, nz, nrow, nfcnz, n,
iordering, nperm, isw, \&epsz,
b,nassign, \&nsupnum, nfcnzfactor,
panelfactor, \&nsizefactor,
nfcnzindex,npanelindex,
\&nsizeindex, ndim, nposto, w, iw1,
iw2, iw3, \&icon);

```

\section*{1. Function}

This routine solves a system of equations \(\mathbf{A x}=\mathbf{b}\) using modified Cholesky \(L D L^{T}\) decomposition, where \(\mathbf{A}\) is a symmetric positive definite sparse matrix \((n \times n)\).

The positive definite sparse matrix is decomposed as
\[
\mathbf{Q P A P}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}}=\mathbf{L} \mathbf{D} \mathbf{L}^{\mathrm{T}},
\]
where \(\mathbf{P}\) is a permutation matrix of ordering and \(\mathbf{Q}\) is a permutation matrix of post ordering. \(\mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices, \(\mathbf{L}\) is a unit lower triangular matrix, and \(\mathbf{D}\) is a diagonal matrix.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vssps(a, nz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz, b,
nassign, \&nsupnum, nfcnzfactor, panelfactor, \&nsizefactor,
nfcnzindex, npanelindex, \&nsizeindex, (int *)ndim, nposto, w, iw1,
iw2, iw3, \&icon);

```
where:
a double \(\mathrm{a}[\mathrm{nz}]\) Input The non-zero elements of the lower triangular part \(\left\{a_{i j} \mid i \geq j\right\}\) of a symmetric sparse matrix \(\mathbf{A}\) are stored in \(\mathrm{a}[i], i=0, \ldots, \mathrm{nz}-1\).

For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvsce routine (multiplication of a real sparse matrix and a real vector).

The total number of the nonzero elements belong to the lower triangular part of a symmetric sparse matrix \(\mathbf{A}\).
nrow int nrow[nz] Input
nfenz int Input
The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array a.

The position of the first nonzero element of each column stored in an array a in the compressed
\begin{tabular}{|c|c|c|c|}
\hline & & & column storage method which stores the nonzero elements column by column.
\[
\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1
\] \\
\hline n & int & Input & Order n of matrix \(\mathbf{A}\). \\
\hline \multirow[t]{3}{*}{iordering} & \multirow[t]{3}{*}{int} & \multirow[t]{3}{*}{Input} & Control information whether to decompose the reordered matrix \(\mathbf{P A P}{ }^{\mathrm{T}}\) permuted by the matrix \(\mathbf{P}\) of ordering or to decompose the matrix \(\mathbf{A}\). \\
\hline & & & Specify iordering=1 for the decomposition of the matrix \(\mathbf{P A P}^{\mathrm{T}}\). \\
\hline & & & Specify the other value for the decomposition of the matrix \(\mathbf{A}\) as it is. \\
\hline nperm & int nperm[n] & Input & The permutation matrix \(\mathbf{P}\) is stored as a vector. See Comments on use \\
\hline \multirow[t]{6}{*}{isw} & \multirow[t]{6}{*}{int} & \multirow[t]{6}{*}{Input} & Control information. \\
\hline & & & Initial calling. \\
\hline & & & Subsequent call if the previous call has failed with icon \(=31000\), that means the size of panelfactor or npanelindex were not enough. In this case, the panelfactor or npanelindex must be reallocated with the necessary sizes which are returned in the nsizefactor or nsizeindex at the precedent call. \\
\hline & & & Besides, the values of a, nz, nrow, nfcnz, n, iordering, nperm, nassign, nsupnum, nfenzfactor, nfcnzindex, npanelindex, nposto, ndim, w, iw1, iw2, and iw3 must be unchanged after the first call. \\
\hline & & & Second and subsequent calls when solving another system of equations which have the same non-zero pattern of the matrix \(\mathbf{A}\) but the values of its elements are different. In this case, the information obtained in symbolic decomposition and the array panelfactor and npanelindex of the same size required in previous call can be reused. Then numerical \(\mathrm{LDL}^{\mathrm{T}}\) decomposition will proceed with that information and the new linear equations can be solved efficiently. Store the values of the matrix elements in the array a, or store in another array \(C\) and let it be as the parameter \(a\). The value of nrow must be unchanged in both cases. \\
\hline & & & Besides, the values of \(n z\), nrow, nfcnz, n, iordering, nperm, nassign, nsupnum, nfenzfactor, nsizefactor, nfenzindex, npanelindex, nsizeindex, \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{epsz} & \multirow[t]{3}{*}{double} & \multirow[t]{3}{*}{\begin{tabular}{l}
Input \\
Output
\end{tabular}} & Judgment of relative zero of the pivot ( \(\geq 0.0\) ). \\
\hline & & & When epsz is 0.0 , the standard value is assumed. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{2}{*}{b} & \multirow[t]{2}{*}{double \(\mathrm{b}[\mathrm{n}]\)} & Input & The right-hand side constant vector \(\mathbf{b}\) of a system of linear equations \(\mathbf{A x}=\mathbf{b}\). \\
\hline & & Output & Solution vector \(\mathbf{x}\). \\
\hline \multirow[t]{4}{*}{nassign} & \multirow[t]{4}{*}{int nassign[n]} & Output & Each supernode consists of multiple column vectors, and the supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position, where this panel is allocated as a part of the onedimensional array panelfactor. When \(j=\) nassign[i-1], the \(i\)-th supernode is allocated at \(j\)-th position. \\
\hline & & \multirow[t]{3}{*}{Input} & The values in the first call are reused when isw \(\neq 1\) specified. \\
\hline & & & For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{2}{*}{nsupnum} & \multirow[t]{2}{*}{int} & Output & The total number of supernodes. \\
\hline & & Input & The values in the first call are reused when isw \(\neq 1\) specified. ( \(\leq \mathrm{n}\) ) \\
\hline \multirow[t]{2}{*}{nfenzfactor} & \multirow[t]{2}{*}{long long int nfenzfactor [ \(n+1\) ]} & \multirow[t]{2}{*}{Output} & Each supernode consists of multiple column vectors, and the factorized matrix of supernodes are stored in two-dimensional panel by compressing rows containing nonzero elements with a common row indices vector. The elements of this array indicate the position of the first element panel [0] [0] of the \(i\)-th panel, where this panel is allocated as a part of the one-dimensional array panelfactor. \\
\hline & & & For the storage method of the decomposed results, refer to Figure c_dm_vssps-1. \\
\hline
\end{tabular}



The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & The coefficient matrix is not positive definite. & Processing is continued. \\
\hline 20000 & The pivot became relatively zero. The coefficient matrix A may be singular. & \multirow[t]{6}{*}{Processing is discontinued.} \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(n<1\) \\
- \(\mathrm{nz}<0\) \\
- \(n f c n z[n] \neq n z+1\) \\
- nsizefactor < 1 \\
- nsizeindex < 1 \\
- epsz < 0 \\
- isw < 0 \\
- isw > 4
\end{tabular} & \\
\hline 30100 & The permutation matrix specified in nprem is not correct. & \\
\hline 30200 & The row pointer k stored in \(\operatorname{nrow}[\mathrm{j}-1]\) is \(\mathrm{k}<\) i or \(k>n\). & \\
\hline 30300 & The number of row indices belong to \(i\)-th column is nfenz[i]-nfenz[i-1] > n - \(\mathrm{i}+1\). & \\
\hline 30400 & There is a column without a diagonal element. & \\
\hline 31000 & The value of nsizefactor is not enough as the size of panelfactor, or the value of nsizeindex is not enough as the size of npanelindex. & Reallocate the panelfactor or npanelindex with the necessary size which are returned in the nsizefactor or nsizeindex, and call this routine again. \\
\hline
\end{tabular}


Figure c_dm_vssps-1 concept of storing the data for decomposed result
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th position.
\(\mathrm{p}=\mathrm{nfcnzfactor}[j-1] \rightarrow\) The \(j\)-th panel occupies the area with a length
ndim[j-1][1] \(\times \operatorname{ndim}[j-1][0]\) from the \(p\)-th element of panelfactor.
\(q=n f c n z i n d e x[j-1] \rightarrow\) The row pointer vector of the \(j\)-th panel occupies the area with a length ndim [j-1][0] from the \(q\)-th element of panelindex.

A panel is regarded as an array of the size \(\operatorname{ndim}[j-1][1] \times \operatorname{ndim}[j-1][0]\).

The lower triangular unit matrix \(\mathbf{L}\) except the diagonal part is transposed and is stored in
\[
\begin{array}{r}
\text { panel }[t-1][s-1], \quad s>t, s=1, \ldots, \operatorname{ndim}[j-1][0], \\
t=1, \ldots, \operatorname{ndim}[j-1][1] .
\end{array}
\]

The corresponding part of the diagonal matrix \(\mathbf{D}\) is stored in panel[t-1][t-1].
The row pointers indicate the column indices of the matrix \(\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}\) to which the node of the matrix \(\mathbf{A}\) is permuted by post ordering.

\section*{3. Comments on use}

\section*{nperm}

When the element \(\mathrm{p}_{\mathrm{ij}}=1\) of the permutation matrix \(\mathbf{P}\), set nperm \([\mathrm{i}-1]=\mathrm{j}\).
The inverse of the matrix can be obtained as follows:
```

for (i=1; i<=n; i++)\{
j=nperm[i-1];
perminv[j-1]=i;
\}

```
epsz
If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of \(\operatorname{LDL}^{\mathrm{T}}\) decomposition. In this case, processing is discontinued with \(i c o n=20000\). When unit round off is \(u\), the standard value of epsz is \(16 \times u\). When the computation is to be continued even if the pivot is small, assign the minimum value to epsz. In this case, however, the result is not assured.

When the pivot becomes negative during the decomposition, the coefficient matrix is not a positive definite. In this case, processing is continued as icon \(=10000\), but the numerical error may be large because of no pivoting.

\section*{nsizefactor and nsizeindex}

The necessary sizes for the array panelfactor and npanelindex that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.

For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactor and nsizeindex. This routine ends with icon=31000, and the necessary sizes for nsizefactor and nsizeindex are returned. Then the suspended process can be resumed by calling it with \(\mathrm{i} \mathrm{SW}=2\) after reallocating the arrays with the necessary size.

\section*{nposto}

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(j=\) nposto[i-1].

This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note nperm above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A Q}^{\mathrm{T}}\).

The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for(i=1; i<=n; i++)\{
j=nposto[i-1];
npostoinv[j-1]=i;
\}

```

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where \(\mathbf{A}\) results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\) where \(a_{1}, a_{2}, a_{3}\) and \(c\) are zero constants, that means the operator is Laplacian. The matrix \(\mathbf{A}\) in Diagonal format is generated by the routine init_mat_diag, and transferred into compressed column storage format.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include "cssl.h" /* standard C-SSL header file */
\#define NORD (39)
\#define NX (NORD)
\#define NY
\#define NZ
\#define N
\#define K (N+1)
(NORD)
(NORD)
(NX*NY*NZ)
\#define NDIAG (7)

```
```

\#define NDIAGH (4)
MAIN__()
{
int ierr, icon, iguss, iter, itmax;
int nord, n, l, i, j, k;
int nx, ny, nz, nnz, nnzc;
int length, nbase, ndiag, ntopcfgc;
int numnz, numnzc, nsupnum, ntopcfg, ncol;
int iordering, isw;
int *npanelindex;
int ndummyi;
int nofst[NDIAG];
int nrow[NDIAG*K];
int nrowc[NDIAG*K];
int nfcnz[N+1];
int nfcnzc[N+1]
int nperm[N];
int nassign[N];
int nposto[N];
int ndim[N][2];
int iw1[N*NDIAGH+N+1];
int iw2[N*NDIAGH+N+1];
int iw3[N*35+35];
int iwc[NDIAG*K][2];
double err, epsz;
double t0, t1, t2;
double va1, va2, va3, vc;
double xl, yl, zl;
double dummyf;
double *panelfactor;
double diag[NDIAG][K];
double diag2[NDIAG][K];
double a[N*NDIAGH];
double b[N];
double c[NDIAG*K];
double w[N*NDIAGH];
double WC[NDIAG*K];
double x[N];
double solex[N];
long long int nsizefactor;
long long int nsizeindex;
long long int nfenzfactor[N+1];
long long int nfcnzindex[N+1];
void init_mat_diag(double va1, double va2, double va3, double vc,
double d_l[], int offset[], int nx, int ny, int nz,
double xl, double yl,double zl, int ndiag, int len, int ndivp);
double errnrm(double *x1, double *x2, int len);
nord=NORD, nx=NX, ny=NY, nz=NZ, n=N, k=K, ndiag=NDIAG;
printf(" LEFT-LOOKING MODIFIED CHOLESKY METHOD\n");
printf(" FOR SPARSE POSITIVE DEFINITE MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n");
printf("\n");
for (i=1; i<=n; i++){
solex[i-1]=1.0;
}
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %.15lf X(N) = %.15lf\n", solex[0], solex[n-1]);
printf("\n");
va1 = 0.0;
va2 = 0.0;
va3 = 0.0;
vc = 0.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double*)diag, (int*)nofst,
nx, ny, nz, xl, yl, zl, ndiag, n, k);
for (i=1; i<=ndiag; i++){
if (nofst[i-1] < 0){
nbase=-nofst[i-1];
length=n-nbase;

```
```

 for (j=1; j<=length; j++){
 diag2[i-1][j-1]=diag[i-1][nbase+j-1];
 }
 }
 else{
 nbase=nofst[i-1];
 length=n-nbase;
 for (j=nbase+1; j<=n; j++){
 diag2[i-1][j-1]=diag[i-1][j-nbase-1];
 }
 }
 }
numnzc=1;
numnz=1;
for (j=1; j<=n; j++){
ntopcfgc = 1;
ntopcfg = 1;
for (i=ndiag; i>=1; i--){
if (diag2[i-1][j-1]!=0.0){
ncol=j-nofst[i-1];
c[numnzc-1]=diag2[i-1][j-1];
nrowc[numnzc-1]=ncol;
if (ncol>=j){
a[numnz-1]=diag2[i-1][j-1];
nrow[numnz-1]=ncol;
}
if (ntopcfgc==1){
nfcnzc[j-1]=numnzc;
ntopcfgc=0;
}
if (ntopcfg==1){
nfcnz[j-1]=numnz;
ntopcfg=0;
}
if (ncol>=j){
numnz=numnz+1;
}
numnzc=numnzc+1;
}
}
}

```
nfcnzc[n]=numnzc;
nnzc=numnzc-1;
nfcnz[n]=numnz;
nnz=numnz-1;
ierr=c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, n, solex, b, wc, (int*)iwc, \&icon);
for (i=1; i<=n; i++)\{
    x[i-1]=b[i-1];
\}
iordering=0;
isw=1;
epsz=0;
nsizefactor=1;
nsizeindex=1;
ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz, x, nassign,
\&nsupnum, nfcnzzactor, \&dummyf, \&nsizefactor, nfcnzindex, \&ndummyi, \&nsizeindex,
(int*)ndim, nposto, w, iw1, iw2, iw3, \&icon);
    printf("\n");
    printf(" ICON = \%d NSIZEFACTOR = \%lld NSIZEINDEX = \%lld\n", icon,
nsizefactor, nsizeindex);
printf("\n");
panelfactor = (double *)malloc(sizeof(double)*nsizefactor);
npanelindex = (int *)malloc(sizeof(int)*nsizeindex);
isw=2;
ierr=c_dm_vssps(a, nnz, nrow, nfcnz, n, iordering, nperm, isw, \&epsz, x, nassign, \&nsupnum, nfcnzfactor, panelfactor, \&nsizefactor, nfcnzindex, npanelindex, \&nsizeindex, (int*)ndim, nposto, w, iw1, iw2, iw3, \&icon);
```

err = errnrm(solex,x,n);

```
printf(" COMPUTED VALUES\n");
printf(" \(\quad X(1)=\%\). \(\left.15 l f \quad X(N)^{\prime}=\% .15 f \backslash n ", x[0], x[n-1]\right)\);
```

printf("\n");
printf(" ICON = %d\n", icon);
printf("\n");
printf(" N = %d :: NX = %d NY = %d NZ = %d\n",n,nx,ny,nz);
printf("\n");
printf(" 'ERROR = %.15e\n",err);
printf("\n");
printf("\n");
if (err<(1.0e-8) \&\& icon==0){
printf(" ********** OK **********\n");
}
else{
printf(" ********** NG **********\n");
}
free(panelfactor);
free(npanelindex);
return 0;
}
void init_mat_diag(double va1, double va2, double va3, double vc,
double d_l[], int offset[], int nx, int ny, int nz,
double x\overline{l}, double yl, double zl, int ndiag, int len, int ndivp)
{
int i, l, j
int length, numnz, js;
int i0, j0, k0;
int ndiag_loc;
int nxy;
double hx, hy, hz;
double x1, x2;
double base;
double ret, remark;
if (ndiag<1){
printf("FUNCTION INIT_MAT_DIAG:\n");
printf("NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
return;
}
ndiag_loc = ndiag;
if (ndiag>7){
ndiag_loc=7;
}
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
for (i=1; i<=ndivp; i++){
for (j=1; j<=ndiag; j++){
d_l[i-1+(j-1)*ndivp]= 0.;
}
}
nxy = nx * ny;
l = 1;
if (ndiag_loc >= 7) {
offset[l-1] = -nxy;
++1;
}
if (ndiag_loc >= 5) {
offset[l-1] = -nx;
++l;
}
if (ndiag_loc >= 3) {
offset[l-1] = -1;
++l;
}
offset[l-1] = 0;
++l;
if (ndiag_loc >= 2) {
offset[l-1] = 1;
++l;
}
if (ndiag_loc >= 4) {
offset[l-1] = nx;
++l;
}
if (ndiag_loc >= 6) {
offset[l-1] = nxy;
}

```
```

 for (j = 1; j <= len; ++j) {
 js=j;
 k0 = (js - 1) / nxy + 1;
 if (k0 > nz) {
 printf("ERROR; K0.GH.NZ\n");
 return;
 }
 j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
 i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
 l = 1;
 if (ndiag_loc >= 7) {
 if (k0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hz+va3*0.5)/hz;
 }
 }
 if (ndiag_loc >= 5) {
 if (j0> 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hy+va2*0.5)/hy;
 }
 ++l;
 }
 if (ndiag_loc >= 3) {
 if (i0 > 1) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx+va1*0.5)/hx;
 }
 }
 d_l[j-1+(l-1)*ndivp] = 2.0/(hx*hx)+vc;
 if (ndiag_loc >= 5) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hy*hy);
 if (ndiag_loc >= 7) {
 d_l[j-1+(l-1)*ndivp] += 2.0/(hz*hz);
 }
 }
 ++l;
 if (ndiag_loc >= 2) {
 if (i0 < nx) {
 d_l[j-1+(l-1)*ndivp] = -(1.0/hx-va1*0.5)/hx;
 }
 ++l;
 }
 if (ndiag_loc >= 4) {
 if (j0 < ny) {
 d_l[j-1+(1-1)*ndivp] = -(1.0/hy-va2*0.5)/hy;
 }
 ++l;
 }
 if (ndiag_loc >= 6) {
 if (k0 < nz) {
 d_l[j-1+(1-1)*ndivp] = -(1.0/hz-va3*0.5)/hz;
 }
 }
 }
 return;
 }
double errnrm(double *x1, double *x2, int len)
{
double ret_val;
int i;
double s, ss;
s = 0.;
for (i = 1; i <= len; ++i) {
ss = x1[i-1] - x2[i-1];
s += ss * ss;
}
ret_val = sqrt(s);
return ret_val;
}

```

\section*{5. Method}

Consult the entry for DM_VSSPS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [19]

\section*{c_dm_vssslu}
```

LU decomposition of a structurally symmetric real sparse matrix
ierr = c_dm_vssslu(a, nz, nrow, nfcnz, n,
isclitermax,
iordering, nperm, isw,
nassign, \&nsupnum,
nfcnzfactorl, panelfactorl,
\&nsizefactorl, nfcnzindexl,
npanelindexl,
\&nsizeindex, ndim,
nfcnzfactoru, panelfactoru,
\&nsizefactoru,
nfcnzindexu, npanelindexu,
nposto,
sclrow, sclcol,
\&epsz, \&thepsz, ipivot, istatic,
\&spepsz, w, iw, \&icon);

```

\section*{1. Function}

An \(n \times n\) structurally symmetric real sparse matrix \(\mathbf{A}\) is scaled in order to equilibrate both rows and columns norms. And LU decomposition is performed, in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.
(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero elements in its symmetric position. But the values of elements in a symmetric position are not necessarily same.)

The structurally symmetric real sparse matrix is transformed as below.
\[
\mathbf{A}_{1}=\mathbf{D}_{\mathrm{r}} \mathbf{A D} \mathbf{D}_{\mathbf{c}}
\]
where \(\mathbf{D}_{\mathbf{r}}\) is a diagonal matrix for scaling rows and \(\mathbf{D}_{\mathbf{c}}\) is also a diagonal matrix for scaling columns.
\[
\mathbf{A}_{\mathbf{2}}=\mathbf{Q P A} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathbf{T}}
\]
\(\mathbf{A}_{\mathbf{2}}\) is decomposed into \(\mathbf{L \mathbf { U }}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of elements for \(\mathbf{A}\) and \(\mathbf{Q}\) is a permutation matrix of postorder. \(\mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices.

Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices \(\boldsymbol{L}\) and \(\boldsymbol{U}\) respectively is also symmetric to each other. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepsz can not be found, the element with the largest absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsrlu(a, nz, nrow, nfcnz, n, isclitermax, iordering,
nperm, isw, nassign, \&nsupnum, nfcnzfactorl,
panelfactorl, \&nsizefactorl, nfcnzindexl, npanelindexl,
\&nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,
\&nsizefactoru, nfcnzindexu, npanelindexu, nposto,
sclrow, sclcol, \&epsz, \&thepsz, ipivot, istatic, spepsz,
w, iw, \&icon);

```
where:
a

\section*{double \(a[n z]\) Input}
int
nz
nrow int nrow[nz] Input
nfenz int \(n f e n z[n+1] \quad\) Input
n int
isclitermax int Input
iorderin
int
nperm
isw
int nperm[n]
int
Input

Input

The nonzero elements of a structurally symmetric real sparse matrix \(\mathbf{A}\) are stored.
For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector).
The total number of the nonzero elements belong to a structurally symmetric real sparse matrix \(\mathbf{A}\).
The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array A.
The position of the first nonzero element of each column stored in an array A in the compressed column storage method which stores the nonzero elements column by column.
\(\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1\).
Order \(n\) of matrix \(\mathbf{A}\).
The upper limit for the number of iteration to seek scaling matrices of \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) to equilibrate both rows and columns of matrix \(\mathbf{A}\).
When isclitermax \(\leq 0\) is specified no scaling is done. In this case \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) are assumed as unit matrices. When isclitermax \(\geq 10\) is specified, the upper limit for the number of iteration is considered as 10 .
Control information whether to decompose the reordered matrix \(\mathbf{P} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}}\) permuted by the matrix \(\mathbf{P}\) of ordering or to decompose the matrix \(\mathbf{A}\).
When iordering \(=1\) is specified, the matrix \(\mathbf{P A}_{1} \mathbf{P}^{T}\) is decomposed into LU.
Otherwise. Without any ordering, the matrix \(\mathbf{A}_{\mathbf{1}}\) is decomposed into LU. See Comments on use.
The permutation matrix \(\mathbf{P}\) is stored as a vector. See Comments on use.
Control information.
1) When \(i \mathrm{SW}=1\) is specified.
\begin{tabular}{|c|c|c|c|}
\hline & & & \begin{tabular}{l}
A first call. After symbolic decomposition, checking whether the sufficient amount of memory for storing data are allocated the computation is performed. \\
2) When isw \(=2\) specified. \\
After the previous call ends with icon \(=31000\), that means that the sizes of panelfactorl or panelfactoru or npanelindexl or npanelindexu were not enough, the suspended computation is resumed. \\
Before calling again with isw \(=2\), the panelfactorl or panelfactoru or npanelindexl or npanelindexu must be reallocated with the necessary sizes which are returned in the nsizefactorl nsizefactoru or nsizeindex at the precedent call and specified in corresponding arguments. \\
Besides, except these arguments and isw as control information, the values in the other augments must not be changed between the previous and following calls.
\end{tabular} \\
\hline \multirow[t]{2}{*}{nassign} & int nassign[ n ] & Output & \(\mathbf{L}\) and \(\mathbf{U}\) belonging to each supernode are compressed and stored in two dimensional panels respectively. These panels are stored in panelfactorl and panelfactoru as one dimensional subarray consecutively and its block number is stored. The corresponding indices vectors are similarly stored npanelindexl and npanelindexu respectively. Data of the \(i\)-th supernode is stored into the \(j\)-th block of a subarray, where \(j=\) nassign[i-1]. \\
\hline & & Input & When isw \(\neq 1\), the values stored in the first call are reused. Regarding the storage methods of decomposed matrices, refer to Figure c_dm_vssslu-1. \\
\hline nsupnum & int & \begin{tabular}{l}
Output \\
Input
\end{tabular} & \begin{tabular}{l}
The total number of supernodes. \\
The values in the first call are reused when isw \(\neq 1\) specified. ( \(\leq \mathrm{n}\) )
\end{tabular} \\
\hline nfcnzfactorl & \begin{tabular}{l}
long \\
nfenzfactorl[n+1]
\end{tabular} & Output & The decomposed matrices \(\mathbf{L}\) and \(\mathbf{U}\) of a structurally symmetric real sparse matrix are computed for each supernode respectively. The columns of \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactorl consecutively or the location of panel[0][0] is stored. \\
\hline
\end{tabular}
\begin{tabular}{ll} 
panelfactorl & double \\
& panelfactorl \\
& [nsizefactorl]
\end{tabular}
\begin{tabular}{ll} 
nsizefactorl long \\
nfcnzindexl & \begin{tabular}{l} 
long \\
\(n f c n z i n d e x l[n+1] ~\)
\end{tabular}
\end{tabular}

Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1.
Input The values set by the first call are reused when isw \(\neq 1\) specified.
Output
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign [i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactorl[j-1].
The size of the panel in the \(i\)-th block can be considered to be two dimensional array of ndim [i-1] [0] \(\times\) ndim[i-1][1] The corresponding parts of the lower triangular matrix \(\mathbf{L}\) are store in this panel
\([t-1][s-1], s \geq t, s=1, \ldots\), ndim[i-1][0], \(t=1\) ,..., ndim[i-1][1]. The corresponding block diagonal portion of the unit upper triangular matrix \(\mathbf{U}\) except its diagonals is stored in the panel[t-1] [s-1], \(s<t, t\) \(=1, \ldots\), ndim[i-1][1].
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1. See Comments on use.
Input The size of the array panelfactorl.
Output The necessary size for the array panelfactorl is returned. See Comments on use.
Output The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th row indices vector is mapped into npanelindexl consecutively is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1.
When isw \(\neq 1\), the values set by the first call are reused. The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector
\begin{tabular}{lll} 
nsizeindex & long & Input \\
ndim & Output
\end{tabular}\(\quad\)\begin{tabular}{r} 
Output
\end{tabular}
corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfenzindexl[j-1]. This row indices are the row numbers of the matrix permuted in its post order.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1. See Comments on use.
The size of the arrays npanelindexl and npanelindexu.
The necessary size is returned. See Comments on use. ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix \(\mathbf{L}\) respectively, which is allocated in the \(i\)-th location. ndim[i-1][0] - ndim[i-1][1] and ndim[i1] [1] indicates the total amount of the size of the first dimension and second dimension of the panel where a matrix \(\mathbf{U}\) is transposed and stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1.
When isw \(\neq 1\), the values set by the first call are reused. Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of a structurally symmetric real sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1.
When isw \(\neq 1\), the values set by the first call are reused. The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactoru[j-1]. The size of the panel in the \(i\)-th block can be considered to be two dimensional array of \(\{\operatorname{ndim}[i-1][0]-\operatorname{ndim}[i-1][1]\} \times\) ndim [i-1] [1]. The rows of the unit upper triangular matrix \(\mathbf{U}\) except the block diagonal portion are compressed,
\begin{tabular}{|c|c|c|c|}
\hline & & & transposed and stored in this panel[t-1][s-1], s= \(1, \ldots\), ndim[i-1][0] - ndim[i-1][1], \(\mathrm{t}=1\) ,..., ndim[i-1][1]. \\
\hline nsizefact & & & Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1. See Comments on use. \\
\hline nsizefactoru & 10n & Output & The necessary size for the array panelfactoru is returned. See Comments on use. \\
\hline nfcnzindexu & \begin{tabular}{l}
long \\
nfcnzindexu[n+1]
\end{tabular} & Output & \begin{tabular}{l}
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslu-1.
\end{tabular} \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline npanelindexu & int npanelindexu [nsizeindex] & Output & \begin{tabular}{l}
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. \\
The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfcnzindexu[j-1]. These column indices are the column numbers of the matrix permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c dm vssslu-1. See Comments on use.
\end{tabular} \\
\hline nposto & int nposto[n] & Output & The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. \\
\hline & & Input & When isW \(\neq 1\), the values set by the first call are reused. See Comments on use. \\
\hline sclrow & double sclrow[n] & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for scaling rows are stored in one dimensional array. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline sclcol & double sclcol[n] & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. \\
\hline & & Input & The values set by the first call are reused when isw \(\neq 1\) specified. \\
\hline epsz & double & Input & Judgment of relative zero of the pivot ( \(\geq 0.0\) ). \\
\hline & & & When epsz \(\leq 0.0\), it is set to the standard value. \\
\hline & & & \\
\hline
\end{tabular}

\begin{tabular}{llll} 
iw & int \\
iw \(\left[36^{*} n+36+2^{*} n z+\right.\) \\
\(\left.3^{*}(n+1)\right]\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Work \\
area
\end{tabular}\(\quad\)\begin{tabular}{l} 
When this routine is called repeatedly with isw \(=1,2\) \\
int
\end{tabular}\(\quad\)\begin{tabular}{l} 
this work area is used for preserving information among \\
calls. The contents must not be changed.
\end{tabular}

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 10000 & When istatic \(=1\) is specified, Static pivot which replaces the pivot candidate with too small value with spepsz is made. & Continued. \\
\hline 20000 & The pivot became relatively zero. The coefficient matrix A may be singular. & \multirow[t]{8}{*}{Processing is discontinued.} \\
\hline 20200 & When seeking diagonal matrices for equilibrating both rows and columns, there is a zero vector in either rows or columns of the matrix \(\mathbf{A}\). The coefficient matrix A may be singular. & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(\mathrm{nz}<0\) \\
- \(n f c n z[n] \neq n z+1\) \\
- nsizefactorl<1 \\
- nsizefactoru<1 \\
- nsizeindex<1 \\
- isw<1 \\
- isw>2
\end{tabular} & \\
\hline 30100 & The permutation matrix specified in nperm is not correct. & \\
\hline 30200 & The row index \(k\) stored in nrow [j-1] is \(k<1\) or \(k>n\). & \\
\hline 30300 & The number of row indices belong to \(i\)-th column is \(n f c n z[i]-n f c n z[i-1]>n\). & \\
\hline 30500 & \begin{tabular}{l}
When istatic \(=1\) is specified, the required conditions are not satisfied. \\
epsz is greater than \(16 \boldsymbol{u}\) of the standard value or isclitermax < 10 \\
or spepsz > thepsz
\end{tabular} & \\
\hline 30700 & The matrix A is not structurally symmetric. & \\
\hline 31000 & The value of nsizefactorl is not enough as the size of panelfactorl, or the value of nsizeindex is not enough as the size of npanelindexl and npanelindexu, or the value of nsizefactoru is not enough as the size of panelfactoru. & Reallocate the panelfactorl or npanelindexl and npanelindexu or panelfactoru or with the necessary size which are returned in the nsizefactorl or nsizeindex or nsizefactoru respectively and call this routine again with \(i s w=2\) specified. \\
\hline
\end{tabular}


Figure c_dm_vssslu-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th section.

[j-1][1] from the \(p\)-th element of panelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl}[\mathrm{j}-1] \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim [j-1] [0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\operatorname{panel}[\mathrm{t}-1][\mathrm{s}-1], \quad \mathrm{s} \geq \mathrm{t}, \mathrm{~s}=1, \ldots, \operatorname{ndim}[j-1][0],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][0] ndim [j-1][1]) \(\times \operatorname{ndim}[j-1][1]\) from the \(u\)-th element of panelfactoru.
\(v=n f c n z i n d e x u[j-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][0] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][0]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathbf{T}}\) except its block diagonal portion of decomposed results is stored in
\[
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][0]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1] .
\]

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=j\).
The inverse of the matrix can be obtained as follows:
for (i = 1; i <= n; i++) \{
```

j = nperm[i-1];
nperminv[j-1] = i;
}

```

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [41], [42] in Appendix, "References." in detail.

\section*{b)}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of \(L U\) decomposition. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is \(16 \times u\). When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz.

\section*{c)}

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call.
For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactorl, nsizeindex and nsizefactoru with isw \(=1\). This routine ends with \(i c o n=31000\), and the necessary sizes for nsizefactorl, nsizeindex and nsizefactoru are returned. Then the suspended process can be resumed by calling it with \(i s w=2\) after reallocating the arrays with the necessary sizes.

\section*{d)}

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.
This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(\mathrm{j}=\) nposto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note \(\mathbf{a}\) ) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```

\section*{e)}

A system of equations \(\mathbf{A x}=\mathbf{b}\) can be solved by calling c_dm_vssslux subsequently in use of the results of LU decomposition obtained by this routine.
The following arguments used in this routine are specified.
a, nz, nrow, nfenz, n,
iordering, nperm,
nassign, nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindex, ndim,
nfcnzfactoru, panelfactoru, nsizefactoru,
nfcnzindexu, npanelindexu, nposto,
sclrow,sclcol,
iw

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed column storage format. The linear system of equations with a structurally symmetric real sparse matrix \(\mathbf{A}\) built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NORD 39
\#define NX NORD
\#define NY NORD
\#define NZ NORD
\#define N (NX * NY * NZ)
\#define NXY (NX * NY)
\#define K (N + 1)
\#define NDIAG 7
\#define NALL (NDIAG * N)
\#define IWL (36 * N + 36 + 2 * NALL + 3 * (N + 1))
\#define IPRINT 0
void init_mat_diag(double, double, double, double, double*, int*, int, int,
int, double, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];

```
```

double c[K * NDIAG], wc[K * NDIAG];
int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];
double W[NDIAG * N + N];
int nperm[N],
nposto[N], ndim[N][2],
nassign[N],
iw[IWL];
double *panelfactorl, *panelfactoru;
int *npanelindexl,
*npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindex,
nsizefactoru,
nfcnzfactorl[N + 1],
nfcnzfactoru[N + 1],
nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
double x[N], b[N], solex[N];
int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;
double va1, va2, va3, vc, xl, yl, zl;
double thepsz,
epsr,
sepsz,
sclrow[N], sclcol[N];
double epsz, err;
int ipivot, istatic,
isclitermax,
irefine, itermax, iter, icon;
int iordering, isw, nsupnum;

```
```

printf(" DIRECT METHOD\n");

```
printf(" DIRECT METHOD\n");
printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) {
for (i = 0; i < N; i++) {
    solex[i] = 1.0;
    solex[i] = 1.0;
}
}
printf(" EXPECTED SOLUTIONS\n");
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);
printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);
va1 = 1.0;
```

va1 = 1.0;

```
```

va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = - nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][j] = diag[i][nbase + j];
}
} else {
nbase = nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][nbase + j] = diag[i][j];
}
}
}
numnzc = 0;
for (j = 0; j < N; j++) {
ntopcfgc = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (diag2[i][j] != 0.0) {
ncol = (j + 1) - nofst[i];
c[numnzc] = diag2[i][j];
nrowc[numnzc] = ncol;

```
```

 if (ntopcfgc == 1) {
 nfcnzc[j] = numnzc + 1;
 ntopcfgc = 0;
 }
 numnzc++;
 }
 }
 }
nfcnzc[N] = numnzc + 1;
nnzc = numnzc;
c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,
b, wc, (int *)iwc, \&icon);
for (i = 0; i < N; i++) {
x[i] = b[i];
}
iordering = 0;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindex = 1;
thepsz = 1.0e-2;
epsr = 1.0e-8;
sepsz = 1.0e-10;
ipivot = 40;
istatic = 1;
irefine = 1;
itermax = 10;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
isclitermax, iordering,
nperm, isw,
nassign,
\&nsupnum,
nfcnzfactorl, \&dummyfl,
\&nsizefactorl, nfcnzindexl,
\&ndummyil, \&nsizeindex, (int *)ndim,
nfcnzfactoru, \&dummyfu,
\&nsizefactoru,

```
```

 nfcnzindexu, &ndummyiu,
 nposto,
 sclrow, sclcol,
 &epsz,
 &thepsz,
 ipivot, istatic, &sepsz,
 w, iw, &icon);
 printf(" ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n",
icon, nsizefactorl, nsizefactoru, nsizeindex);
printf(" NSUPNUM=%d\n\n", nsupnum);
panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);
panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);
npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);
npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);
isw = 2;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
isclitermax, iordering,
nperm, isw,
nassign,
\&nsupnum,
nfcnzfactorl, panelfactorl,
\&nsizefactorl, nfcnzindexl,
npanelindexl, \&nsizeindex, (int *)ndim,
nfcnzfactoru, panelfactoru,
\&nsizefactoru,
nfcnzindexu, npanelindexu,
nposto,
sclrow, sclcol,
\&epsz,
\&thepsz,
ipivot, istatic, \&sepsz,
w, iw, \&icon);
c_dm_vssslux(N,
iordering,
nperm,
x,
nassign,
nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl,
npanelindexl, nsizeindex, (int *)ndim,
nfcnzfactoru, panelfactoru,
nsizefactoru,

```
```

nfcnzindexu, npanelindexu,
nposto,
sclrow, sclcol,
irefine, epsr, itermax, \&iter,
c, nnzc, nrowc, nfcnzc,
iw,
\&icon);

```
```

 err = errnrm(solex, x, N);
 printf(" COMPUTED VALUES\n");
 printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]);
 printf(" ICON = %6d\n\n", icon);
 printf(" N = %d :: NX = %d NY = %d NZ = %d\n\n", N, NX, NY, NZ);
 printf(" ERROR = %10.3le\n", err);
 printf(" ITER=%d\n\n\n", iter);
 if (err < 1.0e-8 && icon == 0) {
 printf(" ********** OK **********\n");
 } else {
 printf(" *********** NG ***********\n");
 }
free(panelfactorl);
free(panelfactoru);
free(npanelindexl);
free(npanelindexu);
return(0);
}
/* ==
INITIALIZE COEFFICIENT MATRIX
=== */

```
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, int *offset, int \(n x\), int ny, int nz, double xl, double yl, double zl, int ndiag, int len, int ndivp) \{
```

 if (ndiag < 1) {
 printf("SUB FUNCTION INIT_MAT_DIAG:\n");
 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
 return;
 }
    ```
\#pragma omp parallel default(shared)
```

{
int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;
double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
ndiag_loc = ndiag;
if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
\#pragma omp for
for (i = 0; i < ndivp * ndiag; i++) {
d_l[i] = 0.0;
}
nxy = nx * ny;
/* OFFSET SETTING */
\#pragma omp single
{
l = 0;
if (ndiag_loc >= 7) {
offset[l] = -nxy;
l++;
}
if (ndiag_loc >= 5) {
offset[l] = -nx;
l++;
}
if (ndiag_loc >= 3) {
offset[l] = -1;
l++;
}
offset[l] = 0;
l++;
if (ndiag_loc >= 2) {
offset[l] = 1;
l++;
}
if (ndiag_loc >= 4) {
offset[l] = nx;
l++;
}

```
```

 if (ndiag_loc >= 6) {
 offset[l] = nxy;
 }
 }

```
/* MAIN LOOP */
\#pragma omp for
    for (j = 0; j < len; j++) \{
        js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
    k0 = (js - 1) / nxy + 1;
    if (k0 > nz) \{
        printf("ERROR; K0.GH.NZ \n");
        continue;
    \}
    \(\mathrm{j} 0=(\mathrm{js}-1-\mathrm{nxy} *(\mathrm{kO}-1)) / n x+1\);
    i0 = js - nxy * (kO - 1) - nx * (j0-1);
    l = 0;
    if (ndiag_loc >= 7) \{
        if (k0 > 1) d_l[l * ndi vp + j] =-(10 / hz + 0.5 * va3) / hz;
        l++;
    \}
    if (ndiag_loc >= 5) \{
        if (j0 > 1) d_ı[। * ndi vp +j] =-(1.0 / hy + 0.5 * va2) / hy;
        l++;
    \}
    if ( ndi ag_loc >= 3) \{
        if ( \(\mathrm{i} 0>1\) ) d_l[। * ndivp +j] =-(1.0/hx + 0.5 * va1) /hx;
        l++;
    \}
    \(h x 2=h x\) * hx;
    hy2 = hy * hy;
    hz2 = hz * hz;
    d_l[l * ndivp + j] = 2.0 / hx2 + vc;
    if (ndi ag_| oc >=5) \{
        d_l[। * ndivp + j] += 2.0 / hy2;
        if (ndiag_loc >= 7) \{
            d_l[l * ndivp + j] += 2.0 / hz2;
        \}
    \}
    l++;
    if (ndiag_loc >= 2) \{
        if ( \(\mathrm{i} 0<\mathrm{nx}\) ) d_l[। * ndi vp + j] =-(1.0/hx - 0.5 * va1) / hx;
        l++;
```

 }
 if (ndiag_loc >= 4) {
 if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 6) {
 if (k0 < nz) d_l[l * ndivp + j] = -(10 / hz - 0.5 * va3) / hz;
 }
 }
 }
return;
}
/* =======================\
* SOLUTE ERROR
* | X1 - X2 |
========================= \ < </
double errnrm(double *x1, double *x2, int I en) {
double s, ss, rtc;
int i;
s = 0.0;
for (i = 0; i <len; i+\#) {

 ss = x{[i] - x\[i];
 s += ss * ss;
 }
 rtc = sqrt(s);
 return(rtc);
 }

```

\section*{5. Method}

Consult the entry for DM_VSSSLU in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [19] , [22] , [46] , [59], [64] and [65].

\section*{c_dm_vssslux}
```

A system of linear equations with LU-decomposed structurally
symmetric real sparse matrices
ierr = c_dm_vssslux(n, iordering, nperm
b, nassign, nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl,
npanelindexl,
nsizeindex, ndim,
nfcnzfactoru, panelfactoru,
nsizefactoru,
nfcnzindexu, npanelindexu,
nposto,
sclrow, sclcol, irefine, epsr,
itermax, \&iter,
a, nz, nrow, nfcnz,
iw, \&icon);

```

\section*{1. Function}

An \(n \times n\) structurally symmetric real sparse matrix \(\mathbf{A}\) of which LU decomposition is made as below is given. In this decomposition an \(n \times n\) structurally symmetric real sparse matrix \(\mathbf{A}\) is scaled in order to equilibrate both rows and columns norms. Subsequently LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode is performed and results in the following form. This routine solves the following linear equation in use of these results of LU decomposition.
\[
\mathbf{A x}=\mathbf{b}
\]

A matrix \(\mathbf{A}\) is decomposed into as below.
\[
\mathbf{P}_{\mathrm{rs}} \mathbf{Q} \mathbf{P D}_{\mathrm{r}} \mathbf{A D}_{\mathbf{c}} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}} \mathbf{P}_{\mathrm{cs}}=\mathbf{L U}
\]

The structurally symmetric real sparse matrix \(\mathbf{A}\) is transformed as below.
\[
\mathbf{A}_{\mathbf{1}}=\mathbf{D}_{\mathrm{r}} \mathbf{A} \mathbf{D}_{\mathbf{c}}
\]

Where \(\mathbf{D}_{\mathbf{r}}\) is a diagonal matrix for scaling rows and \(\mathbf{D}_{\mathbf{c}}\) is also a diagonal matrix for scaling columns.
\[
\mathbf{A}_{\mathbf{2}}=\mathbf{Q P A} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathbf{T}}
\]
\(\mathbf{A}_{\mathbf{2}}\) is decomposed into \(\mathbf{L \mathbf { U }}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
\(\mathbf{P r s}_{\text {rs }}\) and \(\mathbf{P}_{\text {cs }}\) represent row and column exchanges in orthogonal matrices respectively.
The actual exchanges are restricted to the reduced part of the matrix belonging to each supernode.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of nonzero elements for \(\mathbf{A}\) and \(\mathbf{Q}\) is a permutation matrix of postorder. \(\mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper
triangular matrix.
It can be specified to improve the precision of the solution by iterative refinement.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsrlux(n, iordering, nperm, b, nassign, nsupnum, nfcnzfactorl,
panelfactorl, nsizefactorl, nfcnzindexl, npanelindexl,
nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,
nsizefactoru, nfcnzindexu, npanelindexu, nposto,
sclrow, sclcol, irefine, \&epsr, itermax,
\&iter, a, nz, nrow, nfcnz, iw2, \&icon);

```
where:

```

panelfactorl double
panelfactorl
[nsizefactorl]

```
\begin{tabular}{ll} 
nsizefactorl & long \\
nfcnzindexl & long \\
& nfcnzindexl[n+1]
\end{tabular}
one dimensional subarray where the \(i\)-th panel is mapped into panelfactorl consecutively or the location of panel [0] [0] is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.

The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th row indices vector is mapped into npanelindexl consecutively is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of
\begin{tabular}{lll} 
nsizeindex & long & Input \\
ndim & int ndim[n][2] & Input
\end{tabular}
nfenzfactoru long Input
panelfactoru double panelfactoru [nsizefactoru]
subarray is stored in nfcnzindexl[j-1]. This row indices are the row numbers of the matrix permuted in its post order.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
The size of the arrays npanelindexl and npanelindexu.
ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix \(\mathbf{L}\) respectively, which is allocated in the \(i\)-th location.
ndim[i-1][0] - ndim[i-1][1] and ndim[i1] [1] indicates the total amount of the size of the first dimension and second dimension of the panel where a matrix \(\mathbf{U}\) is transposed and stored.

Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of a structurally symmetric real sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored.

Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(\mathrm{j}=\) nassign[i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactoru[j-1]. The size of the panel in the \(i\)-th block can be considered to be two dimensional array of \(\{\) ndim [i-1] [0] - ndim[i-1][1]\} \(\times\) ndim [i-1] [1]. The rows of the unit upper triangular matrix \(\mathbf{U}\) except the block diagonal portion are compressed, transposed and stored in this panel[t-1][s-1], s= \(1, \ldots\), ndim[i-1][0] - ndim[i-1][1], \(t=1\), ..., ndim[i-1][1].
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
\begin{tabular}{|c|c|c|c|}
\hline nsizefactoru & long & Input & The size of the array panelfactoru. See Comments on use. \\
\hline nfenzindexu & long nfcnzindexu[n+1] & Input & \begin{tabular}{l}
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1.
\end{tabular} \\
\hline npanelindexu & int npanelindexu [nsizeindex] & Input & The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the column indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfenzindexu[j-1]. These column indices are the column numbers of the matrix permuted in its post order. Regarding the storage method of the decomposed results, refer to Figure c_dm_vssslux-1. \\
\hline nposto & int nposto[ n\(]\) & Input & \begin{tabular}{l}
The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. \\
See Comments on use.
\end{tabular} \\
\hline sclrow & double sclrow[n] & Input & The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for scaling rows are stored in one dimensional array. \\
\hline sclcol & double sclcol[n] & Input & The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. \\
\hline irefine & int & Input & \begin{tabular}{l}
Control information indicating whether iterative refinement is performed when the solution is computed in use of results of LU decomposition. A residual vector is computed in quadruple precision. \\
When irefine \(=1\) is specified. \\
The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones. \\
When irefine \(\neq 1\) is specified. \\
No iterative refinement is performed.
\end{tabular} \\
\hline epsr & double & Input & Criterion value to judge if the absolute value of the residual vector \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline itermax & int & Input & Upper limit of iterative count for refinement ( \(\geq 1\) ). \\
\hline iter & int & Output & Actual iterative count for refinement. \\
\hline \multirow[t]{3}{*}{a} & \multirow[t]{3}{*}{double a[nz]} & \multirow[t]{3}{*}{Input} & The nonzero elements of a structurally symmetric real sparse matrix \(\mathbf{A}\) are stored in \(\mathrm{a}[0]\) to \([\mathrm{nz}-1]\) \\
\hline & & & For the compressed column storage method, refer to \\
\hline & & & Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector). \\
\hline \(n z\) & int & Input & The total number of the nonzero elements to belong to a structurally symmetric real sparse matrix \(\mathbf{A}\). \\
\hline nrow & int nrow[nz] & Input & The row indices used in the compressed column storage method, which indicate the row number of each nonzero element to stored in an array \(a\). \\
\hline nfenz & int \(\mathrm{nfcnz}[\mathrm{n}+1]\) & Input & The position of the first nonzero element of each column stored in an array a in the compressed column storage method which stores the nonzero elements column by column. \(\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1\). \\
\hline iw & \[
\begin{aligned}
& \text { int } \\
& \text { iw }\left[36^{*} n+36+2 * n z+\right. \\
& \left.3^{*}(n+1)\right]
\end{aligned}
\] & Work area & The data derived from calling c_dm_vssslu of LU decomposition of a structurally symmetric real sparse matrix is transferred in this work area. The contents must not be changed among calls. \\
\hline icon & int & Output & Condition code. See below. \\
\hline The comple & condition codes is: & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20400 & \begin{tabular}{l} 
There is a zero element in diagonal of resultant \\
matrices of LU decomposition.
\end{tabular} & Processing is discontinued. \\
\hline 20500 & \begin{tabular}{l} 
The norm of residual vector for the solution \\
vector is greater than that of \(\mathbf{b}\) multiplied by \\
epsr, which is the right term constant vector in \\
Ax \(=\mathbf{b}\). The coefficient matrix A may be close to \\
a singular matrix.
\end{tabular} & \\
\hline 30000 & \begin{tabular}{l} 
One of the following has occurred: \\
• n \(<1\) \\
• nz \(<0\) \\
• nfcnz \([\mathrm{n}] \neq \mathrm{nz}+1\) \\
• nsizefactorl \(<1\) \\
• nsizefactoru \(<1\) \\
• nsizeindex \(<1\) \\
• itermax \(<1\) when irefine \(=1\).
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 30100 & \begin{tabular}{l} 
The permutation matrix specified in nperm is not \\
correct.
\end{tabular} \\
\hline 30200 & \begin{tabular}{l} 
The row index \(k\) stored in nrow[j-1] is \(k<1\) \\
or \(k>n\).
\end{tabular} \\
\hline 30300 & \begin{tabular}{l} 
The number of row indices belong to \(i\)-th column \\
is nfcnz [i] - nfcnz [i-1] \(>n\).
\end{tabular} & \\
\hline
\end{tabular}


Figure c_dm_vssslux-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th section.

[j-1][1] from the \(p\)-th element of panelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim [j-1][0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s \geq t, s=1, \ldots, \operatorname{ndim}[j-1][0],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
panel[t-1][s-1], \(\quad s<t, \quad s=1, \ldots, \operatorname{ndim}[j-1][1]\),
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[\mathrm{j}-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][0]ndim [j-1][1]) \(\times \operatorname{ndim}[j-1][1]\) from the \(u\)-th element of panelfactoru.
\(\mathrm{v}=\mathrm{nfcnzindexu}[\mathrm{j}-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][0] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][0]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathbf{T}}\) except its block diagonal portion of decomposed results is stored in panel[y-1][x-1], \(x=1, \ldots, \operatorname{ndim}[j-1][0]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1]\).

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

The results of LU decomposition obtained by c_dm_vssslu is used.
See note c), "Comments on use." of c_dm_vssslu and Example program of c_dm_vssslux.
b)

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=\mathbf{j}\).
The inverse of the matrix can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nperm[i-1];
nperminv[j-1] = i;
}

```

\section*{c)}

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto.
This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(\mathrm{j}=\) nposto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note a) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed column storage format. The linear system of equations with a structurally symmetric real sparse matrix \(\mathbf{A}\) built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>

```
```

\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NORD 39
\#define NX NORD
\#define NY NORD
\#define NZ NORD
\#define N (NX * NY * NZ)
\#define NXY (NX * NY)
\#define K (N + 1)
\#define NDIAG 7
\#define NALL (NDIAG * N)
\#define IWL (36 * N + 36 + 2 * NALL + 3 * (N + 1))
\#define IPRINT 0
void init_mat_diag(double, double, double, double, double*, int*, int, int,
int, double, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];
double c[K * NDIAG], wc[K * NDIAG];
int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];
double w[NDIAG * N + N];
int nperm[N],
nposto[N], ndim[N][2],
nassign[N],
iw[IWL];
double *panelfactorl, *panelfactoru;
int *npanelindexl,
*npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindex,
nsizefactoru,
nfcnzfactorl[N + 1],
nfcnzfactoru[N + 1],
nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
double x[N], b[N], solex[N];
int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;
double va1, va2, va3, vc, xl, yl, zl;

```
```

double thepsz,
epsr,
sepsz,
sclrow[N], sclcol[N];
double epsz, err;
int ipivot, istatic,
isclitermax,
irefine, itermax, iter, icon;
int iordering, isw, nsupnum;

```
```

printf(" DIRECT METHOD\n");
printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) {
solex[i] = 1.0;
}
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);
va1 = 1.0;
va2 = 2.0;
va3 = 3.0;
vc = 4.0;
xl = 1.0;
yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = - nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {

```
```

 diag2[i][j] = diag[i][nbase + j];
 }
 } else {
 nbase = nofst[i];
 length = N - nbase;
 for (j = 0; j < length; j++) {
 diag2[i][nbase + j] = diag[i][j];
 }
 }
 }
numnzc = 0;
for (j = 0; j < N; j++) {
ntopcfgc = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (diag2[i][j] != 0.0) {
ncol = (j + 1) - nofst[i];
c[numnzc] = diag2[i][j];
nrowc[numnzc] = ncol;
if (ntopcfgc == 1) {
nfcnzc[j] = numnzc + 1;
ntopcfgc = 0;
}
numnzc++;
}
}
}
nfcnzc[N] = numnzc + 1;
nnzc = numnzc;
c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,
b, wc, (int *)iwc, \&icon);
for (i = 0; i < N; i++) {
x[i] = b[i];
}

```
```

iordering = 0;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindex = 1;
thepsz = 1.0e-2;
epsr = 1.0e-8;
sepsz = 1.0e-10;
ipivot = 40;
istatic = 1;
irefine = 1;
itermax = 10;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
isclitermax, iordering,
nperm, isw,
nassign,
\&nsupnum,
nfcnzfactorl, \&dummyfl,
\&nsizefactorl, nfcnzindexl,
\&ndummyil, \&nsizeindex, (int *)ndim,
nfcnzfactoru, \&dummyfu,
\&nsizefactoru,
nfcnzindexu, \&ndummyiu,
nposto,
sclrow, sclcol,
\&epsz,
\&thepsz,
ipivot, istatic, \&sepsz,
w, iw, \&icon);
printf(" ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n",
icon, nsizefactorl, nsizefactoru, nsizeindex);
printf(" NSUPNUM=%d\n\n", nsupnum);
panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);
panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);
npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);
npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);
isw = 2;
c_dm_vssslu(c, nnzc, nrowc, nfcnzc, N,
isclitermax, iordering,
nperm, isw,
nassign,

```
```

 &nsupnum,
 nfcnzfactorl, panelfactorl,
 &nsizefactorl, nfcnzindexl,
 npanelindexl, &nsizeindex, (int *)ndim,
 nfcnzfactoru, panelfactoru,
 &nsizefactoru,
 nfcnzindexu, npanelindexu,
 nposto,
 sclrow, sclcol,
 &epsz,
 &thepsz,
 ipivot, istatic, &sepsz,
 w, iw, &icon);
 c_dm_vssslux(N,
iordering,
nperm,
x,
nassign,
nsupnum,
nfcnzfactorl, panelfactorl,
nsizefactorl, nfcnzindexl,
npanelindexl, nsizeindex, (int *)ndim,
nfcnzfactoru, panelfactoru,
nsizefactoru,
nfcnzindexu, npanelindexu,
nposto,
sclrow, sclcol,
irefine, epsr, itermax, \&iter,
c, nnzc, nrowc, nfcnzc,
iw,
\&icon);
err = errnrm(solex, x, N);
printf(" COMPUTED VALUES\n");
printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]);
printf(" ICON = %6d\n\n", icon);
printf(" N = %d :: NX = %d NY = %d NZ = %d\n\n", N, NX, NY, NZ);
printf(" ERROR = %10.3le\n", err);
printf(" ITER=%d\n\n\n", iter);
if (err < 1.0e-8 \&\& icon == 0) {
printf(" ********** OK **********\n");
} else {

```
```

 printf(" *********** NG ***********\n");
 }
 free(panelfactorl);
 free(panelfactoru);
 free(npanelindexl);
 free(npanelindexu);
 return(0);
 }
/* ===
INITIALIZE COEFFICIENT MATRIX
== */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l,
int *offset, int nx, int ny, int nz, double xl, double yl,
double zl, int ndiag, int len, int ndivp) {
if (ndiag < 1) {
printf("SUB FUNCTION INIT_MAT_DIAG:\n");
printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
return;
}
\#pragma omp parallel default(shared)
{
int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;
double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
ndiag_loc = ndiag;
if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
hx = xl / (nx + 1);
hy = yl / (ny + 1);
hz = zl / (nz + 1);
\#pragma omp for
for (i = 0; i < ndivp * ndiag; i++) {
d_l[i] = 0.0;
}
nxy = nx * ny;
/* OFFSET SETTING */

```
```

\#pragma omp single
{
l = 0;
if (ndiag_loc >= 7) {
offset[l] = -nxy;
l++;
}
if (ndiag_loc >= 5) {
offset[l] = -nx;
l++;
}
if (ndiag_loc >= 3) {
offset[l] = -1;
l++;
}
offset[l] = 0;
l++;
if (ndiag_loc >= 2) {
offset[l] = 1;
l++;
}
if (ndiag_loc >= 4) {
offset[l] = nx;
l++;
}
if (ndiag_loc >= 6) {
offset[l] = nxy;
}
}
/* MAIN LOOP */
\#pragma omp for
for (j = 0; j < len; j++) {
js = j + 1;
/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
k0 = (js - 1) / nxy + 1;
if (k0 > nz) {
printf("ERROR; K0.GH.NZ \n");
continue;
}
j0 = (js - 1 - nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);
l = 0;
if (ndiag_loc >= 7) {

```
```

 if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;
 l++;
 }
 if (ndiag_loc >= 5) {
 if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 3) {
 if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx;
 l++;
 }
 hx2 = hx * hx;
 hy2 = hy * hy;
 hz2 = hz * hz;
 d_l[l * ndivp + j] = 2.0 / hx2 + vc;
 if (ndiag_loc >= 5) {
 d_l[l * ndivp + j] += 2.0 / hy2;
 if (ndiag_loc >= 7) {
 d_l[l * ndivp + j] += 2.0 / hz2;
 }
 }
 l++;
 if (ndiag_loc >= 2) {
 if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx;
 l++;
 }
 if (ndiag_loc >= 4) {
 if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 6) {
 if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;
 }
 }
 }
return;
}
/* ===
* SOLUTE ERROR
* | X1 - X2 |
== */
double errnrm(double *x1, double *x2, int len) {

```
```

double s, ss, rtc;
int i;
s = 0.0;
for (i = 0; i < len; i++) {
ss = x1[i] - x2[i];
s += ss * ss;
}
rtc = sqrt(s);
return(rtc);
}

```

\section*{c_dm_vssss}
```

A system of linear equations with structurally symmetric real sparse
matrices (LU decomposition method)
ierr = c_dm_vssss(a, nz, nrow, nfcnz, n,
isclitermax,
iordering, nperm, isw, b,
nassign, \&nsupnum,
nfcnzfactorl, panelfactorl,
\&nsizefactorl, nfcnzindexl,
npanelindexl,
\&nsizeindex, ndim,
nfcnzfactoru, panelfactoru,
\&nsizefactoru, nfcnzindexu,
npanelindexu, nposto,
sclrow, sclcol,
\&epsz, \&thepsz, ipivot, istatic,
\&spepsz, irefine, epsr,
itermax, \&iter,
w, iw, \&icon);

```

\section*{1. Function}

An \(n \times n\) structurally symmetric real sparse matrix \(\mathbf{A}\) is scaled in order to equilibrate both rows and columns norms. Subsequently this routine solves a system of equations \(\mathbf{A x}=\mathbf{b}\) in use of LU decomposition in which the pivot is taken as specified within the block diagonal portion belonging to each supernode.
(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero element in its symmetric position. But the values of elements in a symmetric position are not necessarily same.)
\[
\mathbf{A x}=\mathbf{b}
\]

The structurally symmetric real sparse matrix is transformed as below.
\[
\mathbf{A}_{\mathbf{1}}=\mathbf{D}_{\mathrm{r}} \mathbf{A D} \mathbf{D}_{\mathbf{c}}
\]
where \(\boldsymbol{D}_{\mathbf{r}}\) is a diagonal matrix for scaling rows and \(\boldsymbol{D}_{\boldsymbol{c}}\) is also a diagonal matrix for scaling columns.
\[
\mathbf{A}_{\mathbf{2}}=\mathbf{Q P A}_{1} \mathbf{P}^{\mathrm{T}} \mathbf{Q}^{\mathbf{T}}
\]
\(\mathbf{A}_{2}\) is decomposed into \(\mathbf{L} \mathbf{U}\) decomposition permuting rows and columns within the block diagonal portion of each supernode according to specified pivoting.
In the right term \(\mathbf{P}\) is a permutation matrix of ordering which is sought for a pattern of elements for \(\mathbf{A}\) and \(\mathbf{Q}\) is a permutation matrix of postorder. \(\mathbf{P}\) and \(\mathbf{Q}\) are orthogonal matrices.
Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices \(\boldsymbol{L}\) and \(\boldsymbol{U}\) respectively is also symmetric to each other. \(\mathbf{L}\) is a lower triangular matrix and \(\mathbf{U}\) is a unit upper triangular matrix. When in pivoting process a candidate matrix element whose absolute value is larger than or equal to the threshold specified in thepszcan not be found, the element with the largest absolute value which in the block diagonal portion of a
supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately decomposed into LU specifying an appropriate small value as a static pivot in place of the candidate sought.
The solution is computed using LU decomposition.
It can be specified to improve the precision of the solution by iterative refinement.

\section*{2. Arguments}

The routine is called as follows:
```

ierr = c_dm_vsrs(a, nz, nrow, nfcnz, n, isclitermax, iordering,
nperm, isw, b, nassign, \&nsupnum, nfcnzfactorl,
panelfactorl, \&nsizefactorl, nfcnzindexl, npanelindexl,
\&nsizeindex, (int *)ndim, nfcnzfactoru, panelfactoru,
\&nsizefactoru, nfcnzindexu, npanelindexu, nposto,
sclrow, sclcol, \&epsz, \&thepsz, ipivot, istatic, \&spepsz,
irefine, epsr, itermax, \&iter, w, iw, \&icon);

```
where:
\begin{tabular}{|c|c|c|c|}
\hline a & double a[nz] & Input & \begin{tabular}{l}
The nonzero elements of a structurally symmetric real sparse matrix \(\mathbf{A}\) are stored. \\
For the compressed column storage method, refer to Figure c_dm_vmvscc-1 in the description for c_dm_vmvscc routine (multiplication of a real sparse matrix and a real vector).
\end{tabular} \\
\hline \(n z\) & int & Input & The total number of the nonzero elements belong to a structurally symmetric real sparse matrix \(\mathbf{A}\). \\
\hline nrow & int nrow[nz] & Input & The row indices used in the compressed column storage method, which indicate the row number of each nonzero element stored in an array A. \\
\hline nfenz & int \(\mathrm{nfcnz}[\mathrm{n}+1]\) & Input & The position of the first nonzero element of each column stored in an array A in the compressed column storage method which stores the nonzero elements column by column. \(\mathrm{nfcnz}[\mathrm{n}]=\mathrm{nz}+1\). \\
\hline n & int & Input & Order \(n\) of matrix \(\mathbf{A}\). \\
\hline isclitermax & int & Input & \begin{tabular}{l}
The upper limit for the number of iteration to seek scaling matrices of \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) to equilibrate both rows and columns of matrix \(\mathbf{A}\). \\
When isclitermax \(\leq 0\) is specified no scaling is done. In this case \(\mathbf{D}_{\mathbf{r}}\) and \(\mathbf{D}_{\mathbf{c}}\) are assumed as unit matrices. When isclitermax \(\geq 10\) is specified, the upper limit for the number of iteration is considered as 10 .
\end{tabular} \\
\hline iordering & int & Input & \begin{tabular}{l}
Control information whether to decompose the reordered matrix \(\mathbf{P} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}}\) permuted by the matrix \(\mathbf{P}\) of ordering or to decompose the matrix \(\mathbf{A}\). \\
When iordering \(=1\) is specified, the matrix \(\mathbf{P A} \mathbf{A}_{1} \mathbf{P}^{\mathrm{T}}\) is
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline nsupnum & int & \begin{tabular}{l}
Output \\
Input
\end{tabular} & \begin{tabular}{l}
The total number of supernodes. \\
The values in the first call are reused when isw \(\neq 1\) specified. ( \(\leq \mathrm{n}\) )
\end{tabular} \\
\hline nfenzfactorl & long nfenzfactorl[n+1] & Output & \begin{tabular}{l}
The decomposed matrices \(\mathbf{L}\) and \(\mathbf{U}\) of a structurally symmetric real sparse matrix are computed for each supernode respectively. The columns of \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactorl consecutively or the location of panel [0] [0] is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1.
\end{tabular} \\
\hline & & Input & The values set by the first call are reused when isw \(\neq 1\) specified. \\
\hline panelfactorl & ```
double
panelfactorl
[nsizefactorl]
``` & Output & \begin{tabular}{l}
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i- \\
1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfenzfactorl[j-1]. \\
The size of the panel in the \(i\)-th block can be considered to be two dimensional array of ndim [i-1] [0] \(\times\) ndim[i-1][1]. The corresponding parts of the lower triangular matrix \(\mathbf{L}\) are store in this panel \([t-1][s-1], s \geq t, s=1, \ldots\), ndim[i-1][0], \(\mathrm{t}=1, \ldots\), ndim[i-1][1]. The corresponding block diagonal portion of the unit upper triangular matrix \(\mathbf{U}\) except its diagonals is stored in the panel
\[
[t-1][s-1], s<t, t=1, \ldots, \operatorname{ndim}[i-1][1]
\] \\
Regarding the storage method of the decomposed results, refer to Figure c dm vssss-1. See Comments on use.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline nsizefactorl & long & \begin{tabular}{l}
Input \\
Output
\end{tabular} & \begin{tabular}{l}
The size of the array panelfactorl. \\
The necessary size for the array panelfactorl is returned. See Comments on use.
\end{tabular} \\
\hline nfcnzindexl & long nfcnzindexl[n+1] & Output & \begin{tabular}{l}
The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored in a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th row indices vector is mapped into npanelindexl consecutively is stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1.
\end{tabular} \\
\hline & & & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline npanelindexl & int npanelindexl [nsizeindex] & Output & The columns of the decomposed matrix \(\mathbf{L}\) belonging to each supernode are compressed to have the common row indices vector and stored into a two dimensional panel with the corresponding parts of the decomposed matrix \(\mathbf{U}\) in its block diagonal portion. This column indices vector is mapped into npanelindexl consecutively. The block number of the section where the row indices vector corresponding to the \(i\)-th supernode is assigned is known from \(j=\) nassign[i-1]. The location of its top of subarray is stored in nfenzindexl[j-1]. This row indices are the row numbers of the matrix permuted in its post order. \\
\hline nsizeindex & long & Input & Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1. See Comments on use. The size of the arrays npanelindexl and npanelindexu. \\
\hline & & Output & The necessary size is returned. See Comments on use. \\
\hline ndim & int ndim[n][2] & Output & \begin{tabular}{l}
ndim[i-1][0] and ndim[i-1][1] indicate the sizes of the first dimension and second dimension of the panel to store a matrix \(\mathbf{L}\) respectively, which is allocated in the \(i\)-th location. ndim[i-1][0] - ndim[i-1][1] and ndim[i1] [1] indicates the total amount of the size of the first dimension and second dimension of the panel where a matrix \(\mathbf{U}\) is transposed and stored. \\
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1.
\end{tabular} \\
\hline & & Input & When iSW \(\neq 1\), the values set by the first call are reused. \\
\hline nfcnzfactoru & \[
\begin{aligned}
& \text { long } \\
& \text { nfcnzfactoru[n+1] }
\end{aligned}
\] & Output & Regarding a matrix \(\mathbf{U}\) derived from LU decomposition of a structurally symmetric real sparse matrix, the rows of \(\mathbf{U}\) except the of block diagonal portion belonging to each supernode are compressed to have the common column \\
\hline
\end{tabular}
\begin{tabular}{ll}
panelfactoru & double \\
& panelfactoru \\
& [nsizefactoru]
\end{tabular}
\begin{tabular}{ll}
nsizefactoru & long \\
nfcnzindexu & \begin{tabular}{l}
long \\
nfcnzindexu[n+1]
\end{tabular}
\end{tabular}
npanelindexu int npanelindexu [nsizeindex]
indices vector and stored into a two dimensional panel. The index number of the top array element of the one dimensional subarray where the \(i\)-th panel is mapped into panelfactoru consecutively or the location of panel[0][0] is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1.
Input When isw \(\neq 1\), the values set by the first call are reused. Output The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The block number of the section where the panel corresponding to the \(i\)-th supernode is assigned is known from \(\mathbf{j}=\) nassign [i-1]. The location of its top of subarray including the portion of decomposed matrices is stored in nfcnzfactoru[j-1]. The size of the panel in the \(i\)-th block can be considered to be two dimensional array of \(\{n d i m[i-1][0]-n d i m[i-1][1]\} \times n d i m\) [i-1] [1]. The rows of the unit upper triangular matrix U except the block diagonal portion are compressed, transposed and stored in this panel[t-1][s-1], s= 1,...,ndim[i-1][0]-ndim[i-1][1], t=1, ..., ndim[i-1][1].
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1. See Comments on use. The size of the array panelfactoru.
Input
Output

Output

Output The necessary size for the array panelfactoru is returned. See Comments on use.
The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed to have the common column indices vector, transposed and stored in a two dimensional panel without its block diagonal portion. The index number of the top array element of the one dimensional subarray where the \(i\)-th column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively is stored.
Regarding the storage method of the decomposed results, refer to Figure c_dm_vssss-1.
When isw \(\neq 1\), the values set by the first call are reused. The rows of the decomposed matrix \(\mathbf{U}\) belonging to each supernode are compressed, transposed and stored in a two dimensional panel without its block diagonal portion. The column indices vector including indices of the block diagonal portion is mapped into npanelindexu consecutively. The block number of the section where the
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{nposto} & \multirow[t]{2}{*}{int nposto[n]} & Output & The information about what column number of \(\mathbf{A}\) the \(i\)-th node in post order corresponds to is stored. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. See Comments on use. \\
\hline sclrow & double sclrow[n] & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{r}}\) or a diagonal matrix for scaling rows are stored in one dimensional array. \\
\hline & & Input & When isw \(\neq 1\), the values set by the first call are reused. \\
\hline \multirow[t]{2}{*}{sclcol} & \multirow[t]{2}{*}{double sclcol[n]} & Output & The diagonal elements of \(\mathbf{D}_{\mathbf{c}}\) or a diagonal matrix for scaling columns are stored in one dimensional array. \\
\hline & & Input & The values set by the first call are reused when isw \(\neq 1\) specified. \\
\hline \multirow[t]{3}{*}{epsz} & \multirow[t]{3}{*}{double} & Input & Judgment of relative zero of the pivot (\(\geq 0.0\)). \\
\hline & & Output & When epsz \(\leq 0.0\), it is set to the standard value. \\
\hline & & & See Comments on use. \\
\hline \multirow[t]{3}{*}{thepsz} & \multirow[t]{3}{*}{double} & Input & Threshold used in judgement for a pivot. Immediately after a candidate in pivot search is considered to have the value greater than or equal to the threshold specified, it is accepted as a pivot and the search of a pivot is broken off. For example, \(10^{-2}\). \\
\hline & & \multirow[t]{2}{*}{Output} & When thepsz \(\leq 0.0,10^{-2}\) is set. \\
\hline & & & When eps \(z \geq\) thepsz \(>0.0\), it is set to the value of epsz. \\
\hline \multirow[t]{10}{*}{ipivot} & \multirow[t]{10}{*}{int} & \multirow[t]{10}{*}{Input} & Control information on pivoting which indicates whether a pivot is searched and what kind of pivoting is chosen if any. \\
\hline & & & For example, 40 for complete pivoting. \\
\hline & & & ipivot \(<10\) or ipivot \(\geq 50\), no pivoting. \\
\hline & & & \(10 \leq\) ipivot < 20, partial pivoting \\
\hline & & & \(20 \leq\) ipivot < 30, diagonal pivoting \\
\hline & & & 21 : When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. \\
\hline & & & 22 : When within a supernode diagonal pivoting fails, it is changed to Rook pivoting. If Rook pivoting fails, it is changed to complete pivoting. \\
\hline & & & \(30 \leq\) ipivot \(<40\), Rook pivoting \\
\hline & & & 32 : When within a supernode Rook pivoting fails, it is changed to complete pivoting. \\
\hline & & & \(40 \leq\) ipivot \(<50\), complete pivoting \\
\hline istatic & int & Input & Control information indicating whether Static pivoting is \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline spepsz & double & Input & \begin{tabular}{l}
The approximate value used in Static pivoting when istatic \(=1\) is specified. \\
The following conditions must hold.
\[
10^{-10} \geq \text { spepsz } \geq \text { epsz }
\]
\end{tabular} \\
\hline & & Output & When spepsz <epsz, it is set to \(10^{-10}\). \\
\hline \multirow[t]{5}{*}{irefine} & \multirow[t]{5}{*}{int} & \multirow[t]{5}{*}{Input} & Control information indicating whether iterative refinement is performed when the solution is computed in use of results of LU decomposition. A residual vector is computed in quadruple precision. When irefine \(=1\) is specified. \\
\hline & & & The iterative refinement is performed. It is iterated until in the sequences of the solutions obtained in refinement the difference of the absolute values of their corresponding residual vectors become larger than a fourth of that of immediately previous ones. \\
\hline & & & When irefine \(\neq 1\) is specified. \\
\hline & & & No iterative refinement is performed. \\
\hline & & & When istatic \(=1\) is specified, irefine \(=1\) must be specified. \\
\hline epsr & double & Input & Criterion value to judge if the absolute value of the residual vector \\
\hline & & & \(\mathbf{b}\) - Ax is sufficiently smaller compared with the absolute value of \(\mathbf{b}\). \\
\hline & & & When epsr \(\leq 0.0\), it is set to \(10^{-6}\). \\
\hline itermax & int & Input & Upper limit of iterative count for refinement (\(\geq 1)\). \\
\hline iter & int & Output & Actual iterative count for refinement. \\
\hline W & double w[nz+n] & Work area & When this routine is called repeatedly with isw \(=1,2\) this work area is used for preserving information among calls. The contents must not be changed. \\
\hline iw & \begin{tabular}{l}
int \\
iw[36*n+36+2*nz+
\end{tabular} & Work area & When this routine is called repeatedly with \(i s w=1,2,3\) this work area is used for preserving information among \\
\hline
\end{tabular}

3* \((n+1)] \quad\) calls. The contents must not be changed. icon int

Output Condition code. See below.

The complete list of condition codes is:
\begin{tabular}{|c|c|c|}
\hline Code & Meaning & Processing \\
\hline 0 & No error. & Completed. \\
\hline 20000 & The pivot became relatively zero. The coefficient matrix A may be singular. & \multirow[t]{4}{*}{Processing is discontinued.} \\
\hline 20200 & When seeking diagonal matrices for equilibrating both rows and columns, there is a zero vector in either rows or columns of the matrix \(\mathbf{A}\). The coefficient matrix A may be singular. & \\
\hline 20400 & There is a zero element in diagonal of resultant matrices of LU decomposition. & \\
\hline 20500 & The norm of residual vector for the solution vector is greater than that of \(\mathbf{b}\) multiplied by epsr, which is the right term constant vector in \(\mathbf{A x}=\mathbf{b}\). The coefficient matrix \(\mathbf{A}\) may be close to a singular matrix. & \\
\hline 30000 & \begin{tabular}{l}
One of the following has occurred: \\
- \(\mathrm{n}<1\) \\
- \(\mathrm{nz}<0\) \\
- \(n f c n z[n] \neq n z+1\) \\
- nsizefactorl<1 \\
- nsizefactoru<1 \\
- nsizeindex<1 \\
- isw<1 \\
- isw>3 \\
- itermax \(<1\) when irefine \(=1\).
\end{tabular} & \multirow[t]{6}{*}{Processing is discontinued.} \\
\hline 30100 & The permutation matrix specified in nperm is not correct. & \\
\hline 30200 & The row index \(k\) stored in nrow [j-1] is \(k<1\) or \(k>n\). & \\
\hline 30300 & The number of row indices belong to \(i\)-th column is \(n f e n z[i]-n f c n z[i-1]>n\). & \\
\hline 30500 & \begin{tabular}{l}
When istatic \(=1\) is specified, the required conditions are not satisfied. \\
epsz is greater than \(16 \boldsymbol{u}\) of the standard value or isclitermax \(<10\) \\
or irefine \(\neq 1\) \\
or spepsz > thepsz \\
or spepsz \(>10^{-10}\)
\end{tabular} & \\
\hline 30700 & The matrix A is not structurally symmetric. & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Code & Meaning & Processing \\
\hline 31000 & \begin{tabular}{l}
The value of nsizefactorl is not enough as \\
the size of panelfactorl, \\
or the value of nsizeindex is not enough as \\
the size of npanelindexl and \\
npanelindexu, \\
or the value of nsizefactoru is not enough as \\
the size of panelfactoru.
\end{tabular} & \begin{tabular}{l}
Reallocate the panelfactorl or \\
npanelindexl and npanelindexu or \\
panelfactoru or npanelindexu \\
with the necessary size which are returned in the \\
nsizefactorl or nsizeindex or \\
nsizefactoru respectively \\
and call this routine again with isw \(=2\) specified.
\end{tabular} \\
\hline
\end{tabular}

Figure c_dm_vssss-1. Conceptual scheme for storing decomposed results
\(j=\) nassign[i-1] \(\rightarrow\) The \(i\)-th supernode is stored at the \(j\)-th section.
\(\mathrm{p}=\mathrm{nfcnzfactorl[j-1]} \rightarrow\) The \(j\)-th panel occupies the area with a length ndim[j-1][0]× ndim[j-1][1] from the \(p\)-th element of panelfactorl.
\(\mathrm{q}=\mathrm{nfcnzindexl[j-1]} \rightarrow \quad\) The row indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][0] from the \(q\)-th element of npanelindexl.
A panel is regarded as an array of the size ndim[j-1] [0] \(\times \operatorname{ndim}[j-1][1]\).
The lower triangular matrix \(\mathbf{L}\) of decomposed results is stored in
\[
\operatorname{panel}[t-1][s-1], \quad s \geq t, s=1, \ldots, \operatorname{ndim}[j-1][0],
\]
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]

The block diagonal portion except diagonals of the unit upper triangular matrix \(\mathbf{U}\) of decomposed results is stored in
```

    panel[t-1][s-1], s<t, s=1,\ldots, ndim[j-1][1],
    ```
\[
\mathrm{t}=1, \ldots, \operatorname{ndim}[j-1][1]
\]
\(u=n f c n z f a c t o r u[j-1] \rightarrow \quad\) The \(j\)-th panel occupies the area with a length (ndim[j-1][0] ndim [j-1][1]) \(\times \operatorname{ndim}[j-1][1]\) from the \(u\)-th element of panelfactoru.
\(\mathrm{v}=\mathrm{nfcnzindexu}[\mathrm{j}-1] \rightarrow\) The column indices vector of the \(j\)-th panel occupies the area with a length ndim[j-1][0] from the \(v\)-th element of npanelindexu.

A panel is regarded as an array of the size (ndim[j-1][0]-ndim[j-1][1]) \(\times \operatorname{ndim}[j-1][1]\).
The transposed unit upper triangular matrix \(\mathbf{U}^{\mathrm{T}}\) except its block diagonal portion of decomposed results is stored in
\[
\operatorname{panel}[y-1][x-1], x=1, \ldots, \operatorname{ndim}[j-1][0]-\operatorname{ndim}[j-1][1], y=1, \ldots, \operatorname{ndim}[j-1][1] .
\]

The indices indicate the column numbers of the matrix \(\mathbf{Q A} \mathbf{Q}^{T}\) to which the nodes of the matrix \(\mathbf{A}\) is permuted in post ordering.

\section*{3. Comments on use}

\section*{a)}

When the element \(p_{i j}=1\) of the permutation matrix \(\mathbf{P}\), set nperm[i-1] \(=j\).
The inverse of the matrix can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nperm[i-1];
nperminv[j-1] = i;
}

```

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [41], [42] in Appendix, "References." in detail.

\section*{b)}

If epsz is set, the pivot is assumed to be relatively zero when it is less than epsz in the process of LU decomposition. In this case, processing is discontinued with icon \(=20000\). When unit round off is \(u\), the standard value of epsz is \(16 \times u\). When the computation is to be continued even if the absolute value of diagonal element is small, assign the minimum value to epsz. In this case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller than spepsz, LU decomposition is approximately continued replacing it with spepsz. It is required to specify to do iterative refinement.

\section*{c)}

The necessary sizes for the array panelfactorl, npanelindexl, panelfactoru and npanelindexu that store the decomposed results can not be determined beforehand. It is suggested to reallocate them by using the result of the symbolic decomposition analysis after the first call of this routine, or allocate large enough arrays at first call. For instance, allocate the small one-dimensional arrays of size one at first. And call this routine with the small values such as one in the size specifying in nsizefactorl, nsizeindex, and nsizefactoru with isw \(=1\). This routine ends with icon \(=31000\), and the necessary sizes for nsizefactorl, nsizeindex and nsizefactoru are returned. Then the suspended process can be resumed by calling it with isw \(=2\) after reallocating the arrays with the necessary sizes.

\section*{d)}

Nodes corresponding to column number is considered. The node number permuted in post order is stored in nposto. This array indicates what node number in original node number the \(i\)-th node in post order is corresponding. It means \(j\)-th position when \(j=\) nposto[i-1].
This array represents a permutation matrix \(\mathbf{Q}\) which is an orthogonal matrix also as well as note \(\mathbf{a}\)) above, and corresponds to permute the matrix \(\mathbf{A}\) into \(\mathbf{Q A} \mathbf{Q}^{\mathrm{T}}\).
The inverse matrix \(\mathbf{Q}^{\mathrm{T}}\) can be obtained as follows:
```

for (i = 1; i <= n; i++) {
j = nposto[i-1];
npostoinv[j-1] = i;
}

```

\section*{e)}

Instead of this routine, a system of equations \(\mathbf{A x}=\mathbf{b}\) can be solved by calling both c_dm_vssslu to perform LU decomposition of a structurally symmetric real sparse matrix \(\mathbf{A}\) and \(c_{-} d m \quad\) vssslux to solve the linear equation in use of decomposed results.

\section*{4. Example program}

The linear system of equations \(\mathbf{A x}=\mathbf{f}\) is solved, where a matrix is built using results from the finite difference method applied to the elliptic equation
\[
-\Delta u+a \nabla u+c u=f
\]
with zero boundary conditions on a cube and the coefficient \(a=\left(a_{1}, a_{2}, a_{3}\right)\).
The matrix in diagonal storage format is generated by the routine init_mat_diag and then it is converted in compressed column storage format. The linear system of equations with a structurally symmetric real sparse matrix \(\mathbf{A}\) built in this way is solved.

The number of the threads can be specified with an environment variable (OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this program is to be executed in parallel with 4 threads on the system of 4 processors.
```

/* **EXAMPLE** */
\#include <stdlib.h>
\#include <stdio.h>
\#include <math.h>
\#include <malloc.h>
\#include <omp.h>
\#include "cssl.h"
\#define NORD 39
\#define NX NORD
\#define NY NORD
\#define NZ NORD
\#define N NX * NY * NZ
\#define NXY NX * NY
\#define K (N + 1)
\#define NDIAG 7
\#define NALL NDIAG * N
\#define IWL 36 * N + 36 + 2 * NALL + 3 * (N + 1)
\#define IPRINT 0
void init_mat_diag(double, double, double, double, double*, int*, int, int,
int, double, double, double, int, int, int);
double errnrm(double*, double*, int);
int MAIN__() {
int nofst[NDIAG];
double diag[NDIAG][K], diag2[NDIAG][K];
double c[K * NDIAG], wc[K * NDIAG];
int nrowc[K * NDIAG], nfcnzc[N + 1], iwc[K * NDIAG][2];
double W[NDIAG * N + N];
int nperm[N],

```
```

    nposto[N], ndim[N][2],
    nassign[N],
    iw[IWL];
    double *panelfactorl, *panelfactoru;
int *npanelindexl,
*npanelindexu;
double dummyfl, dummyfu;
int ndummyil, ndummyiu;
long nsizefactorl, nsizeindex,
nsizefactoru,
nfcnzfactorl[N + 1],
nfcnzfactoru[N + 1],
nfcnzindexl[N + 1],
nfcnzindexu[N + 1];
double x[N], b[N], solex[N];
int i, j, nbase, length, numnzc, ntopcfgc, ncol, nnzc;
double va1, va2, va3, vc, xl, yl, zl;
double thepsz
epsr,
sepsz,
sclrow[N], sclcol[N];
double epsz, err;
int ipivot, istatic
isclitermax,
irefine, itermax, iter, icon
int iordering, isw, nsupnum;

```
```

printf(" DIRECT METHOD\n");

```
printf(" DIRECT METHOD\n");
printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
printf(" FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
printf(" IN COMPRESSED COLUMN STORAGE\n\n");
for (i = 0; i < N; i++) {
for (i = 0; i < N; i++) {
 solex[i] = 1.0;
 solex[i] = 1.0;
}
}
printf(" EXPECTED SOLUTIONS\n");
printf(" EXPECTED SOLUTIONS\n");
printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);
printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", solex[0], solex[N - 1]);
va1 = 1.0;
va1 = 1.0;
va2 = 2.0;
va2 = 2.0;
va3 = 3.0;
va3 = 3.0;
vc = 4.0
vc = 4.0
xl = 1.0;
```

xl = 1.0;

```
```

yl = 1.0;
zl = 1.0;
init_mat_diag(va1, va2, va3, vc, (double *)diag, nofst,
NX, NY, NZ, xl, yl, zl, NDIAG, N, K);
for (i = 0; i < NDIAG; i++) {
for (j = 0; j < K; j++) {
diag2[i][j] = 0;
}
}
for (i = 0; i < NDIAG; i++) {
if (nofst[i] < 0) {
nbase = -nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][j] = diag[i][nbase + j];
}
} else {
nbase = nofst[i];
length = N - nbase;
for (j = 0; j < length; j++) {
diag2[i][nbase + j] = diag[i][j];
}
}
}
numnzc = 0;
for (j = 0; j < N; j++) {
ntopcfgc = 1;
for (i = NDIAG - 1; i >= 0; i--) {
if (diag2[i][j] != 0.0) {
ncol = (j + 1) - nofst[i];
c[numnzc] = diag2[i][j];
nrowc[numnzc] = ncol;
if (ntopcfgc == 1) {
nfcnzc[j] = numnzc + 1;
ntopcfgc = 0;
}

```
```

            numnzc++;
        }
    }
    }
nfcnzc[N] = numnzc + 1;
nnzc = numnzc;
c_dm_vmvscc(c, nnzc, nrowc, nfcnzc, N, solex,
b, wc, (int *)iwc, \&icon);
for (i = 0; i < N; i++) {
x[i] = b[i];
}
iordering = 0;
isclitermax = 10;
isw = 1;
epsz = 1.0e-16;
nsizefactorl = 1;
nsizefactoru = 1;
nsizeindex = 1;
thepsz = 1.0e-2;
epsr = 1.0e-8;
sepsz = 1.0e-10;
ipivot = 40;
istatic = 1;
irefine = 1;
itermax = 10;
c_dm_vssss(c, nnzc, nrowc, nfcnzc, N,
isclitermax, iordering,
nperm, isw,
x,
nassign,
\&nsupnum,
nfcnzfactorl, \&dummyfl,
\&nsizefactorl, nfcnzindexl,
\&ndummyil, \&nsizeindex, (int *)ndim,
nfcnzfactoru, \&dummyfu,
\&nsizefactoru,
nfcnzindexu, \&ndummyiu,
nposto,
sclrow, sclcol,

```
```

    &epsz,
    &thepsz,
    ipivot, istatic, &sepsz,
    irefine, epsr, itermax, &iter,
    w, iw, &icon);
    printf(" ICON=%6d NSIZEFACTORL=%9ld NSIZEFACTORU=%9ld NSIZEINDEX=%9ld\n",
icon, nsizefactorl, nsizefactoru, nsizeindex);
printf(" NSUPNUM=%d\n\n", nsupnum);
panelfactorl = (double *)malloc(sizeof(double) * nsizefactorl);
panelfactoru = (double *)malloc(sizeof(double) * nsizefactoru);
npanelindexl = (int *)malloc(sizeof(int) * nsizeindex);
npanelindexu = (int *)malloc(sizeof(int) * nsizeindex);
isw = 2;
c_dm_vssss(c, nnzc, nrowc, nfcnzc, N,
isclitermax, iordering,
nperm, isw,
x,
nassign,
\&nsupnum,
nfcnzfactorl, panelfactorl,
\&nsizefactorl, nfcnzindexl,
npanelindexl, \&nsizeindex, (int *)ndim,
nfcnzfactoru, panelfactoru,
\&nsizefactoru,
nfcnzindexu, npanelindexu,
nposto,
sclrow, sclcol,
\&epsz,
\&thepsz,
ipivot, istatic, \&sepsz,
irefine, epsr, itermax, \&iter,
w, iw, \&icon);
err = errnrm(solex, x, N);
printf(" COMPUTED VALUES\n");
printf(" X(1) = %19.16lf X(N) = %19.16lf\n\n", x[0], x[N - 1]);
printf(" ICON = %6d\n\n", icon);
printf(" N = %d :: NX = %d NY = %d NZ = %d\n\n", N, NX, NY, NZ);
printf(" ERROR = %19.16lf\n", err);
printf(" ITER=%d\n\n\n", iter);

```
```

    if (err < 1.0e-8 && icon == 0) {
    printf(" *********** OK ***********\n");
    } else {
    printf(" *********** NG **********\\n");
    }
    free(panelfactorl);
    free(panelfactoru);
    free(npanelindexl);
    free(npanelindexu);
    return(0);
    }
/* ===========================================
INITIALIZE COEFFICIENT MATRIX
======================================== */
void init_mat_diag(double va1, double va2, double va3, double vc, double *d_l, int *offset, int $n x$, int ny, int nz, double xl, double yl, double zl, int ndiag, int len, int ndivp) \{

```
```

    if (ndiag < 1) {
    ```
 if (ndiag < 1) {
 printf("SUB FUNCTION INIT_MAT_DIAG:\n");
 printf(" NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1\n");
 return;
 }
#pragma omp parallel default(shared)
{
 int ndiag_loc, i, j, l, nxy, i0, j0, k0, js;
 double hx, hy, hz, hx2, hy2, hz2;
/* NDIAG CANNOT BE GREATER THAN 7 */
 ndiag_loc = ndiag;
 if (ndiag > 7) ndiag_loc = 7;
/* INITIAL SETTING */
 hx = xl / (nx + 1);
 hy = yl / (ny + 1);
 hz = zl / (nz + 1);
#pragma omp for
 for (i = 0; i < ndivp * ndiag; i++) {
 d_l[i] = 0.0;
 }
```

```
 nxy = nx * ny;
/* OFFSET SETTING */
#pragma omp single
 {
 l = 0;
 if (ndiag_loc >= 7) {
 offset[l] = -nxy;
 l++;
 }
 if (ndiag_loc >= 5) {
 offset[l] = -nx;
 l++;
 }
 if (ndiag_loc >= 3) {
 offset[l] = -1;
 l++;
 }
 offset[l] = 0;
 l++;
 if (ndiag_loc >= 2) {
 offset[l] = 1;
 l++;
 }
 if (ndiag_loc >= 4) {
 offset[l] = nx;
 l++;
 }
 if (ndiag_loc >= 6) {
 offset[l] = nxy;
 }
 }
/* MAIN LOOP */
#pragma omp for
 for (j = 0; j < len; j++) {
 js = j + 1;
```

/* DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 */
k0 = (js - 1) / nxy + 1;
if (k0 > nz) \{
printf("ERROR; K0.GH.NZ \n");
goto label_100;
\}
j0 = (js - 1-nxy * (k0 - 1)) / nx + 1;
i0 = js - nxy * (k0 - 1) - nx * (j0 - 1);

```
 l = 0;
 if (ndiag_loc >= 7) {
 if (k0 > 1) d_l[l * ndivp + j] = -(1.0 / hz + 0.5 * va3) / hz;
 l++;
 }
 if (ndiag_loc >= 5) {
 if (j0 > 1) d_l[l * ndivp + j] = -(1.0 / hy + 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 3) {
 if (i0 > 1) d_l[l * ndivp + j] = -(1.0 / hx + 0.5 * va1) / hx;
 l++;
 }
 hx2 = hx * hx;
 hy2 = hy * hy;
 hz2 = hz * hz;
 d_l[l * ndivp + j] = 2.0 / hx2 + vc;
 if (ndiag_loc >= 5) {
 d_l[l * ndivp + j] += 2.0 / hy2;
 if (ndiag_loc >= 7) {
 d_l[l * ndivp + j] += 2.0 / hz2;
 }
 }
 l++;
 if (ndiag_loc >= 2) {
 if (i0 < nx) d_l[l * ndivp + j] = -(1.0 / hx - 0.5 * va1) / hx;
 l++;
 }
 if (ndiag_loc >= 4) {
 if (j0 < ny) d_l[l * ndivp + j] = -(1.0 / hy - 0.5 * va2) / hy;
 l++;
 }
 if (ndiag_loc >= 6) {
 if (k0 < nz) d_l[l * ndivp + j] = -(1.0 / hz - 0.5 * va3) / hz;
 }
label_100: ;
 }
}
 return;
}
/* ===
 * SOLUTE ERROR
```

* | x1 - x2 |

```
double errnrm(double *x1, double *x2, int len) {
 double s, ss, rtc;
 int i;
 s = 0.0;
 for (i = 0; i < len; i++) {
 ss = x1[i] - x2[i];
 s += ss * ss;
 }
 rtc = sqrt(s);
 return(rtc);
}
```


## 5. Method

Consult the entry for DM_VSSSS in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [2] , [19] , [22] , [46] , [59], [64] and [65].

## c_dm_vtdevc

```
Eigenvalues and eigenvectors of real tridiagonal matrices
ierr = c_dm_vtdevc(d, sl, su, n, nf, nl, ivec,
 &etol, &ctol, nev, e, maxne, ev,
 k, m, &icon);
```


## 1. Function

This routine calculates specified eigenvalues and, optionally, eigenvectors of a real tridiagonal matrix.

$$
\mathbf{T} \mathbf{x}=\lambda \mathbf{x}
$$

where, $\mathbf{T}$ is an $n$-dimensional real tridiagonal matrix. Tridiagonal matrix $\mathbf{T}$ must satisfy the following condition:

$$
l_{i} u_{i-1}>0, \text { where, } i=2, \ldots, n
$$

When the element of tridiagonal matrix $\mathbf{T}$ is $t_{i j}, d_{i}$ indicates a tridiagonal element, and $l_{i}=t_{i, i-1}$ and $u_{i}=t_{i, i+1}$ indicate subdiagonal elements, where, $l_{1}=u_{n}=0$.

$$
(\mathbf{T v})_{i}=l_{i} v_{i-1}+d_{i} v_{i}+u_{i} v_{i+1}, \quad i=1,2, \ldots, n
$$

## 2. Arguments

The routine is called as follows:

```
ierr = c_dm_vtdevc(d, sl, su, n, nf, nl, ivec, &etol, &ctol, nev, e, maxne,
 (double*)ev, k, (int*)m, &icon);
```

where:

d	double d[n]	Input	Diagonal of matrix $\mathbf{T}$.
sl	double sl[n]	Input	Lower diagonal of matrix $\mathbf{T}$, with $\operatorname{sl}[\mathbf{i}-1]=l_{i}, \mathbf{i}=1, \ldots, n$.
su	double su[n]	Input	Upper diagonal of matrix $\mathbf{T}$, with su[i-1] $=u_{i}$.
n	int	Input	Order $n$ of matrix $\mathbf{T}$.
nf	int	Input	Number assigned to the first eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.)
nl	int	Input	Number assigned to the last eigenvalue to be acquired by numbering eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one number is assigned to one eigenvalue.)
ivec	int	Input	Control information.   ivec $=1$ if both the eigenvalues and eigenvectors are sought.   ivec $\neq 1$ if only the eigenvalues are sought.
etol	double	Input	Criterion value for checking whether the eigenvalues are numerically different from each other or are multiple.
		Output	When etol is less than $3.0 \times 10^{-16}$ this value is used as the standard value. See Comments on use.
ctol	double	Input	Criterion value for checking whether the adjacent eigenvalues can be considered to be approximately equal to each other. This value is used to assure the linear independence of the eigenvector corresponding to



Code	Meaning	Processing
0	No error.	Completed.
20000	During calculation of clustered eigenvalues, the   total number of eigenvalues exceeded the value of   maxne.	Discontinued. The eigenvectors cannot be   calculated, but the different eigenvalues   themselves are already calculated.   A suitable value for maxne to allow calculation   to proceed is returned in nev [2].   See Comments on use.


Code	Meaning	Processing
30000	One of the following has occurred:   - $\mathrm{n}<1$   - $k<1$   - $k<n$   - $n f<1$   - $n l>n$   - $\mathrm{nl}<\mathrm{nf}$   - maxne $<\mathrm{nl}-\mathrm{nf}+1$	Bypassed.
30100	$\text { sl[i] } \times \operatorname{su}[i-1] \leq 0$   The matrix could not be converted into a symmetrical form.	Bypassed.

## 3. Comments on use

## Problems that can be solved using this function

This routine requires only that $l_{i} u_{i-1}>0, i=2, \ldots, n$. Thus it will also solve the generalized eigenvalue problem.

$$
\mathbf{T} \mathbf{x}=\lambda \mathbf{D} \mathbf{x}
$$

where $\mathbf{D}>0$ (every diagonal element is positive) is diagonal by setting
$\mathbf{T} \leftarrow \mathbf{D}^{-1} \mathbf{T}$. Also, the eigenvalue problem for T can be reduced to a symmetric generalized problem

$$
\mathbf{D T v}=\lambda \mathbf{D v}
$$

where $d_{1}=1, d_{i}=u_{i-1} d_{i-1} / l_{i}, i=2, \ldots, n$. If $d_{i}$ can cause scaling problems then it is preferable to consider the symmetric problem.

$$
\mathbf{D}^{1 / 2} \mathbf{T D}^{-1 / 2} \mathbf{w}=\lambda \mathbf{w}
$$

where $\mathbf{w}=\mathbf{D}^{1 / 2} \mathbf{v}$.

## etol and ctol

This routine calculates eigenvalues independently from each other by dividing them into nonoverlapping, sequenced sets (parallel processing).

When $\varepsilon=$ etol, the following condition is satisfied for consecutive eigenvalues $\lambda_{\boldsymbol{j}}(j=s-1, s, \ldots, s+k,(k \geq 0))$ :

$$
\begin{equation*}
\frac{\left|\lambda_{i}-\lambda_{i-1}\right|}{1+\max \left(\left|\lambda_{i-1}\right|,\left|\lambda_{i}\right|\right)} \leq \varepsilon, \tag{1}
\end{equation*}
$$

If formula (1) is satisfied for $i$ when $i=s, s+1, \ldots, s+k$ but not satisfied when $i=s-1$ and $i=s+k+1$, it is assumed that the eigenvalues $\lambda_{j}(j=s-1, s, \ldots, s+k)$ are numerically multiple.

The standard value of etol is $3.0 \times 10^{-16}$ (about the unit round off). In this case, the eigenvalues are refined up to the maximum machine precision.

If formula (1) is not satisfied when $\varepsilon=$ etol, it can be considered that $\lambda_{i-1}$ and $\lambda_{i}$ are distinct eigenvalues.

When $\varepsilon=$ etol, assume that consecutive eigenvalues $\lambda_{m}(m=t-1, t, \ldots, t+k(k \geq 0))$ are different eigenvalues. Also, when $\varepsilon=$ ctol, assume that formula (2) is satisfied for $i$ when $i=t, t+1, \ldots, t+k$ but not satisfied when $i=t-1$ and $i=t$
$+k+1$. In this case, it is assumed that the distinct eigenvalues $\lambda_{m}(m=t-1, t, \ldots, t+k)$ are approximately multiple (i.e., form a cluster). In this case, independent starting vectors are generated for inverse iteration, and eigenvectors corresponding to $\lambda_{m}(m=t-1, t, \ldots, t+k)$ are reorthogonalized.

## maxne

The maximum number of eigenvalues that can be calculated is specified in maxne. When the value of ctol is increased, the cluster size also increases. Therefore, the total number of eigenvalues calculated might exceed the value of maxne. In this case, decrease the value of ctol or increase the value of maxne.

If the total number of eigenvalues calculated exceeds the value of maxne, icon = 20000 is returned. In this case, the eigenvectors cannot be calculated even if eigenvector calculation is specified. Eigenvalues are calculated, but are not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in $\mathrm{e}[\mathrm{i}-1], \mathrm{i}=1, \ldots$, nev[0]. The multiplicity of the corresponding eigenvalues is stored in $m[0][i-1], i=1, \ldots, n e v[0]$.

When all the eigenvalues are different from each other and there are no approximately multiple eigenvalues, the maxne value can be $n t(n t=\mathrm{nl}-\mathrm{nf}+1$ is the total number of eigenvalues calculated). However, when there are multiple eigenvalues and the multiplicity is $m$, the maxne value must be at least $n t+2 \times m$.

If the total number of eigenvalues to be calculated exceeds the maxne value, the value required to continue the calculation is returned to nev [2]. The calculation can be continued by allocating the area by using this returned value and by calling the routine again.

## 4. Example program

This program obtains eigenvalues and prints the results.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define P1 (70)
#define Q1 (100)
#define N (P1*Q1)
#define K (N+1)
#define N0 (6001)
#define N1 (7000)
#define NE (N1-N0+1)
#define MAX_CLUS (2*Q1)
#define MAXNE (NE+MAX_CLUS)
#define NW (2*N+2)
MAIN__()
{
 double d[N], sl[N], su[N], e[MAXNE], ev[MAXNE][K], w[NW];
 double tmp, error, etol, ctol;
 int m[2][MAXNE], nev[5], nf, nl, ivec, icon;
 int i, j, l, ii;
 etol=3e-16;
 ctol=5e-12;
 j = (P1+1)/2;
 d[j-1] = 0.0;
 for (i=1; i<=j-1; i++) {
 sl[i+1-1] = 1.0;
 su[i-1] = 1.0;
 sl[j+i-1] = 1.0;
 su[j+i-2] = 1.0;
```

```
 d[i-1] = (double)(j-i);
 d[j*2-i-1] = d[i-1];
}
sl[0] = 0.0;
su[P1-1] = 0.0;
 for (l=2; l<=Q1; l++) {
 ii = (1-1)*P1;
 for (i=1; i<=P1; i++) {
 sl[ii+i-1] = sl[i-1];
 su[ii+i-1] = su[i-1];
 d[ii+i-1] = d[i-1];
 }
 }
 sl[0] = 0.0;
 su[N-1] = 0.0;
 nf = N0;
 nl = N1;
 ivec = 1;
 c_dm_vtdevc(d, sl, su, N, nf, nl, ivec, &etol, &ctol, nev, e, MAXNE, (double*)ev, K,
 (int*)m, &icon);
 printf("icon = %d\n", icon);
 printf("nev[0] = %d\n", nev[0]);
 printf("nev[1] = %d\n", nev[1]);
 printf("nev[2] = %d\n", nev[2]);
 printf("nev[3] = %d\n", nev[3]);
 printf("nev[4] = %d\n", nev[4]);
 error = tmp = 0.0;
 for (i=0; i<nev[2]; i++) {
 for (j=0; j<N; j++) {
 w[j+1] = ev[i][j];
 }
 w[0] = 0.0;
 w[N+1] = 0.0;
 for (j=0; j<N; j++) {
 tmp = sl[j]*w[j]+d[j]*w[j+1]+su[j]*w[j+2]-e[i]*w[j+1];
 error = max(fabs(tmp/(fabs(e[i])+1)), error);
 }
 }
 printf("maximum element error in ||T*x-eig*x|| = %e\n", tmp);
 return(0);
}
```


## 5. Method

Consult the entry for DM_VTDEVC in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [20], [57], [66] and [76].

## c_dm_vtfqd

```
System of linear equations with unsymmetric or indefinite sparse
matrices (TFQMR method, diagonal format storage method)
ierr = c_dm_vtfqd(a, k, ndiag, n, nofst, b,
 itmax, eps, iguss, x, &iter,
 &icon);
```


## 1. Function

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$
\mathbf{A x}=\mathbf{b}
$$

The $n \times n$ coefficient matrix is stored using the diagonal format storage method. Vectors $\mathbf{b}$ and $\mathbf{x}$ are $n$-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

## 2. Arguments

The routine is called as follows:

```
ierr = c_dm_vtfqd((double*)a, k, ndiag, n, nofst, b, itmax, eps, iguss, x,
 &iter, &icon);
```

where:

a	double   a[ndiag][k]	Input	The nonzero elements of a coefficient matrix are stored in a.
k	int	Input	C fixed dimension of array $\mathrm{a}(\geq \mathrm{n})$.
ndiag	int	Input	The number of diagonal vectors in the coefficient matrix $\mathbf{A}$ having nonzero elements.
n	int	Input	Order $n$ of matrix $\mathbf{A}$.
nofst	int nofst[ndiag]	Input	Distance from the main diagonal vector corresponding to diagonal vectors in array a. Super-diagonal vector rows have positive values. Sub-diagonal vector rows have negative values. See Comments on use.
b	double b[n]	Input	Constant vector $\mathbf{b}$.
itmax	int	Input	Upper limit of iterative count for TFQMR method. The value of itmax should usually be set to about 2000.
eps	double	Input	Tolerance for convergence test.
			When eps is zero or less, eps is set to $10^{-6}$. See Comments on use.


iguss	int	Input	Control information about whether to start the iterative computation from the approximate value of the solution vector specified in array $x$. iguss $=0$ : Approximate value of the solution vector is not specified. iguss $\neq 0$ : The iterative computation starts from the approximate value of the solution vector specified in array $x$.
X	double $\times$ [ n ]	Input	The starting values for the computation. This is optional and relates to argument iguss.
		Output	Solution vector $\mathbf{x}$.
iter	int	Output	Actual iterative count for TFQMR method.
icon	int	Output	Condition code. See below.
The complete list of condition codes is given below.			


Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred.	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped.   The approximate solution obtained up to this   stage is returned, but its precision is not   guaranteed.
30000	One of the following has occurred:   $\bullet$   - ndiag $<1$   itmax $\leq 0$	Bypassed.
32001	nofst $[\mathrm{i}] \mid>\mathrm{n}-1$	

## 3. Comments on use

## eps

When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the value of eps, it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution is roughly equal to the product of the matrix $\mathbf{A}$ condition number and the value of eps.

## Notes on using the diagonal format

A diagonal vector element outside coefficient matrix A must be set to zero.

There is no restriction in the order in which diagonal vectors are stored in array a .

The advantage of this method lies in the fact that the matrix vector multiplication can be calculated without the use of indirect indices. The disadvantage is that matrices without the diagonal structure cannot be stored efficiently with this method.

## 4. Example program

This program solves a system of linear equations and checks the result.

```
#include <stdlib.h>
```

```
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX 1000
#define UBANDW }
#define LBANDW 1
MAIN__()
{
 double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX];
 double one=1.0, bcoef=10.0, eps=1.e-6;
 int ierr, icon, ndiag, nub, nlb, n, i, j, k;
 int itmax, iguss, iter;
 int nofst[UBANDW + LBANDW + 1];
 /* initialize nonsymmetric matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 ndiag = nub + nlb + 1;
 n = NMAX
 k = NMAX
 for (i=1; i<=nub; i++) {
 for (j=0 ; j<n-i; j++) a[i][j] = -1.0;
 for (j=n-i; j<n ; j++) a[i][j] = 0.0;
 nofst[i] = i;
 }
 for (i=1; i<=nlb; i++) {
 for (j=0 ; j<i+1; j++) a[nub + i][j] = 0.0;
 for (j=i+1; j<n ; j++) a[nub + i][j] = -2.0;
 nofst[nub + i] = - (i + 1);
 }
 nofst[0] = 0;
 for (j=0; j<n; j++) {
 a[0][j] = bcoef;
 for (i=1; i<ndiag; i++) a[0][j] -= a[i][j];
 b[j] = bcoef;
 }
 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ierr = c_dm_vtfqd ((double*)a, k, ndiag, n, nofst, b, itmax, eps,
 iguss, x, &iter, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvtfqd failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0;i<n;i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}
```


## 5. Method

Consult the entry for DM_VTFQD in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_vtfqe

```
System of linear equations with unsymmetric or indefinite sparse
matrices (TFQMR method, ELLPACK format storage method)
ierr = c_dm_vtfqe(a, k, iwidt, n, icol, b,
 itmax, eps, iguss, x, &iter,
 &icon);
```


## 1. Function

This function solves, using the transpose-free quasi minimal residual [TFQMR] method, a system of linear equations with unsymmetric or indefinite sparse matrices as coefficient matrices.

$$
\mathbf{A x}=\mathbf{b}
$$

The $n \times n$ coefficient matrix is stored using the ELLPACK format storage method. Vectors $\mathbf{b}$ and $\mathbf{x}$ are $n$-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see Chapter 4 Iterative linear equation solvers and Convergence, in Part I, Outline, in the SSL II Extended Capability User's Guide II.

## 2. Arguments

The routine is called as follows:

```
ierr = c_dm_vtfqe((double*)a, k, iwidt, n, (int*)icol, b, itmax, eps, iguss,
 x, &iter, &icon);
```

where:

a	double   a[iwidt][k]	Input	Sparse matrix A stored in ELLPACK storage format.
k	int	Input	$C$ fixed dimension of array a and icol ( $\geq \mathrm{n}$ ).
iwidt	int	Input	The maximum number of non-zero elements in any row vectors of $\mathbf{A}$ $(\geq 0)$.
n	int	Input	Order $n$ of matrix $\mathbf{A}$.
icol	$\begin{aligned} & \text { int } \\ & \text { icol[iwidt][k] } \end{aligned}$	Input	Column indices used in the ELLPACK format, showing to which column the elements corresponding to a belong.
b	double b[n]	Input	Constant vector $\mathbf{b}$.
itmax	int	Input	Upper limit of iterative count for TFQMR method. The value of itmax should usually be set to about 2000.
eps	double	Input	Tolerance for convergence test.   When eps is zero or less, eps is set to $10^{-6}$. See Comments on use.
iguss	int	Input	Control information about whether to start the iterative computation from the approximate value of the solution vector specified in array $x$. iguss $=0$ : Approximate value of the solution vector is not set. iguss $\neq 0$ : The iterative computation starts from the approximate value of the solution vector specified in array $x$.
X	double $\mathrm{x}[\mathrm{n}]$	Input	The starting values for the computation. This is optional and relates to


		argument iguss.	
iter	int	Output	Solution vector $\mathbf{x}$.
icon	int	Output	Iterative count for TFQMR method.
intput	Condition code. See below.		

The complete list of condition codes is given below.

Code	Meaning	Processing
0	No error.	Completed.
20000	Break-down occurred	Processing stopped.
20001	Reached the set maximum number of iterations.	Processing stopped.   The approximate solution obtained up to this   stage is returned, but its precision is not   guaranteed.
30000	One of the following has occurred:   $\bullet$   iwidt $<1$   itmax $\leq 0$	Bypassed.
30001	The band width is zero.	

## 3. Comments on use

## eps

When the residual Euclidean norm is equal to or smaller than the product of the first residual Euclidean norm and the eps, it is assumed that the solution converged. The error between the correct solution and the calculated approximate solution is roughly equal to the product of the matrix $\mathbf{A}$ condition number and the eps.

## 4. Example program

This program solves a system of linear equations and checks the result.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define NMAX 1000
#define UBANDW 2
#define LBANDW 1
MAIN__()
{
 double a[UBANDW+LBANDW+1][NMAX], b[NMAX], x[NMAX];
 double lcf=-2.0, ucf=-1.0, bcoef=10.0, one=1.0, eps=1.e-6;
 int ierr, icon, nlb, nub, iwidt, n, k, itmax, iguss, iter, i, j, ix;
 int icol[UBANDW + LBANDW + 1][NMAX];
 /* initialize matrix and vector */
 nub = UBANDW;
 nlb = LBANDW;
 iwidt = UBANDW + LBANDW + 1;
 n = NMAX;
 k = NMAX;
 for (i=0; i<n; i++) b[i] = bcoef;
 for (i=0; i<iwidt; i++)
 for (j=0; j<n; j++) {
```

```
 a[i][j] = 0.0;
 icol[i][j] = j+1;
 }
 for (j=0; j<nlb; j++) {
 for (i=0; i<j; i++) a[i][j] = lcf;
 a[j][j] = bcoef - (double) j * lcf - (double) nub * ucf;
 for (i=j+1; i<j+1+nub; i++) a[i][j] = ucf;
 for (i=0; i<=nub+j; i++) icol[i][j] = i+1;
 }
 for (j=nlb; j<n-nub; j++) {
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) nub * ucf;
 for (i=nlb+1; i<iwidt; i++) a[i][j] = ucf;
 for (i=0; i<iwidt; i++) icol[i][j] = i+1+j-nlb;
 }
 for (j=n-nub; j<n; j++){
 for (i=0; i<nlb; i++) a[i][j] = lcf;
 a[nlb][j] = bcoef - (double) nlb * lcf - (double) (n-j-1) * ucf;
 for (i=1; i<nub-2+n-j; i++) a[i+nlb][j] = ucf;
 ix = n - (j+nub-nlb-1);
 for (i=n; i>=j+nub-nlb-1; i--) icol[ix--][j] = i;
 }
 /* solve the system of linear equations */
 itmax = n;
 iguss = 0;
 ierr = c_dm_vtfqe ((double*)a, k, iwidt, n, (int*)icol, b, itmax,
 eps, iguss, x, &iter, &icon);
 if (icon != 0) {
 printf("ERROR: c_dvtfqe failed with icon = %d\n", icon);
 exit(1);
 }
 /* check vector */
 for (i=0; i<n; i++)
 if (fabs(x[i]-one) > eps) {
 printf("WARNING: result inaccurate\n");
 exit(1);
 }
 printf("Result OK\n");
 return(0);
}
```


## 5. Method

Consult the entry for DM_VTFQE in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_vtrid

Tridiagonalization of real symmetric matrices.
ierr $=c \_d m \_v t r i d \quad(a, k, n, d, \quad$ sl, \&icon $) ;$

## 1. Function

This routine reduces the real symmetric matrix $\mathbf{A}$ to tridiagonal form using the Housholder reductions.

$$
\mathbf{T}=\mathbf{Q}^{\mathrm{T}} \mathbf{A} \mathbf{Q}
$$

where $\mathbf{A}$ is an $n \times n$ real symmetric matrix, $\mathbf{Q}$ is an $n \times n$ orthogonal matrix and $\mathbf{T}$ is a real tridiagonal matrix.

## 2. Arguments

The routine is called as follows:
ierr = c_dm_vtrid((double*)a, k, n, d, sl, \&icon);
where:

a	double $\mathrm{a}[\mathrm{n}][\mathrm{k}]$	Input	The upper triangular part $\left\{a_{i j} \mid i \leq j\right\}$ of real symmetric matrix $\mathbf{A}$ is stored   in the upper triangular part $\{\mathrm{a}[i-1][j-1], i \leq j\}$ of a.
	Output	The information on Householder transforms used for tridiagonalization   is stored in the upper triangular part $\{\mathrm{a}[i-1][j-1], i \leq j\}$ of a. The   values in the lower triangular part of a is not assured after operation.	
		See Comments on $u s e$.	


Code	Meaning	Processing
0	No error.	Completed.
30000	$\mathrm{n}<2, \mathrm{k}<\mathrm{n}$.	Processing is discontinued.

## 3. Comments on use

## a

Tridiagonalization is performed by the repeated transforms varying $k=1, \ldots, n-2$.

$$
\mathbf{A}^{k}=\mathbf{Q}_{k}^{\mathrm{T}} \mathbf{A}^{k-1} \mathbf{Q}_{k}, \quad \mathbf{A}^{0}=\mathbf{A}
$$

Put $\mathbf{b}^{\mathbf{T}}=\left(0, \ldots, 0, \mathbf{A}^{k-1}(k+1, k), \ldots, \mathbf{A}^{k-1}(n, k)\right) .\left(\mathbf{A}^{k-1}(i, j)\right.$ means $i, j$ element of $\left.\mathbf{A}^{k-1}\right)$
$\mathbf{b}^{\mathrm{T}}=\left(0, \ldots, 0, b_{k+1}, \ldots, b_{n}\right)$
$\mathbf{b}^{\mathrm{T}} \cdot \mathbf{b}=\mathrm{S}^{2}$ and put $\mathbf{w}^{\mathrm{T}}=\left(0, \ldots, 0, b_{k+1}+\mathrm{S}, b_{k+2}, \ldots, b_{n}\right)$.

The sign of $S$ is chosen same as that of $\mathbf{b}_{k+1}$.

Then the transform matrix is represented as follow.
$\mathbf{Q}_{k}=\mathrm{I}-\alpha \mathbf{w} \cdot \mathbf{w}^{\mathrm{T}}, \alpha=\frac{1}{\mathrm{~S}^{2}+\left|b_{k+i} \mathrm{~S}\right|}$
$\mathbf{w}(i-1)(i=k+1, \ldots, n)$ and $\alpha$ are stored in a[k-1][i-1] and a[k-1][k-1]respectively.

## 4. Example program

This example calculates the tridiagonalization of a real symmetric matrix whose eigenvalues are known.

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL II header file */
#define N 2000
#define K N
#define NE N
#define MAX_NEV NE
MAIN__()
{
 double a[N][K], b[N][K], c[N][K], d[N][K], ac[N][K];
 double dd[N], sld[N], sud[N];
 double eval[MAX_NEV], evec[MAX_NEV][K];
 double pai, coef, eval_tol, clus_tol;
 int nev[5], mult[2][MAX_NEV];
 int i, j, nf, nl, ivec, icon;
 pai = 4.0 * atan(1.0);
 coef = sqrt(2.0/(N+1));
 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 d[j][i] = coef*sin(pai/(N+1)*(i+1)*(j+1));
 }
 }
 for (j=0; j<N; j++) {
 for (i=0; i<N; i++) {
 if (i == j) { { c[j][i]=i+1; }
 }
 }
 c_dm_vmggm ((double*)d, K, (double*)c, K, (double*)b, K, N, N, N, &icon);
 c_dm_vmggm ((double*)b, K, (double*)d, K, (double*)a, K, N, N, N, &icon);
 for (i=0; i<N; i++) {
 for (j=i; j<N; j++) {
 ac[i][j] = a[i][j];
 }
 }
 c_dm_vtrid ((double*)ac, K, N, dd, sld, &icon);
 if (icon != 0) {
 printf(" icon of c_dm_vtrid =%d\n", icon);
 exit(0);
 }
 for (i=1; i<N; i++) {
 sud[i-1]=sld[i];
 }
 sud[N-1]=0.0;
 nf = 1;
```

```
 nl = N;
 ivec = 0;
 eval_tol = 1.0e-15;
 clus_tol = 1.0e-10;
 c_dm_vtdevc(dd, sld, sud, N, nf, nl, ivec, &eval_tol, &clus_tol, nev, eval,
 MAX_NEV, (double*)evec, K, (int*)mult, &icon);
 for (i=0; i<NE; i=i+N/20) {
 printf("eigen value in eval(%d) = %f\n",i+1,eval[i]);
 }
 return(0);
}
```


## 5. Method

Consult the entry for DM_VTRID in the Fortran SSL II Thread-Parallel Capabilities User's Guide as well as [30].

## c_dm_v1deft

```
One-dimensional discrete complex Fourier transforms (mixed radix of 2,
3, 5 and 7)
ierr = c_dm_v1dcft(x, kx, y, ky, n1, n2, isn,
 \&icon);
```


## 1. Function

The function c_dm_v1dcft performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed $n\left(=n_{1} \times n_{2}\right)$ is a product of the powers of 2, 3, 5 and 7 .

## The one-dimensional Fourier transform

When $\left\{x_{j}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n \alpha_{k}\right\}$

$$
\begin{align*}
n \alpha_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k} & , k=0,1, \ldots, n-1  \tag{1}\\
, \omega_{n} & =\exp (2 \pi i / n)
\end{align*}
$$

## The one-dimensional Fourier inverse transform

When $\left\{\alpha_{k}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j}\right\}$.

$$
\begin{align*}
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k} & , j=0,1, \ldots, n-1  \tag{2}\\
, & \omega_{n}=\exp (2 \pi i / n)
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v1dcft((dcomplex*)x, kx, (dcomplex*)y, ky, n1, n2, isn, \&icon); where:

x	$\begin{aligned} & \text { dcomplex } \\ & x[n 2][k x] \end{aligned}$	Input	The complex data.   See Comments on use.
kx	int	Input	$C$ fixed dimension of array $x$.
y	$\begin{aligned} & \text { dcomplex } \\ & \text { y[n1][ky] } \end{aligned}$	Output	The complex transformed data. See Comments on use.
ky	int	Input	$C$ fixed dimension of array $y$.
n1	int	Input	Assuming that the length of the data transformed ( $n=\mathrm{n} 1 \times \mathrm{n} 2$ ) is twodimensional data, the size of first dimension n 1 must be a product of the powers of $2,3,5$ and 7 .
n2	int	Input	Assuming that the length of the data transformed ( $n=\mathrm{n} 1 \times \mathrm{n} 2$ ) is twodimensional data, the size of the second dimension, n 2 must be a product of the powers of $2,3,5$ and 7 .
isn	int	Input	Either the transform or the inverse transform is indicated.

isn $=1$ for the transform.
isn $=-1$ for the inverse transform.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The C fixed dimensions are less than the actual   dimensions.	
30008	The order of transform is not radix $2 / 3 / 5 / 7$.	
30016	The invalid value for the parameter isn.	

## 3. Comments on use

## $x$ and $y$

If the one-dimensional data of $n=n_{1} \times n_{2}$ is numbered $\mathrm{k}=0, \ldots, n-1$,

$$
\begin{array}{ll}
k=k_{1}+k_{2} \times n_{1} & , k_{1}=0, \ldots, n_{1}-1 \\
& , k_{2}=0, \ldots, n_{2}-1 \\
i=i_{1}+i_{2} \times n_{2} & , i_{1}=0, \ldots, n_{2}-1 \\
& , i_{2}=0, \ldots, n_{1}-1
\end{array}
$$

The input and output data are regarded as two-dimensional arrays with subscripts of $\left[k_{2}\right]\left[k_{1}\right]$ and $\left[i_{2}\right]\left[i_{1}\right]$, respectively. See Figure c_dm_v1dcft-1.


Figure c_dm_vldcft-1. The input/Output data storage method

## General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k}=\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k}, k=0,1, \ldots, n-1  \tag{3}\\
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k}, j=0,1, \ldots, n-1 \tag{4}
\end{gather*}
$$

where, $\omega_{n}=\exp (2 \pi i / n)$.

This function calculates $\left\{n \alpha_{k}\right\}$ or $\left\{x_{j}\right\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

A one-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 4000
#define N2 3000
#define KX (N1+1)
#define KY (N2+1)
MAIN__()
{
 int isn, i, j, icon, ierr;
 double error;
 dcomplex x[N2][KX], y[N1][KY];
 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 x[i][j].re = N1*i+j+1;
 x[i][j].im = 0.0;
 }
 }
 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v1dcft((dcomplex*)x, KX, (dcomplex*)y, KY, N1, N2, isn, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_v1dcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v1dcft((dcomplex*)y, KY, (dcomplex*)x, KX, N2, N1, isn, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_v1dcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Find the error after the forward and inverse transform. */
 error = 0.0;
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 error = max(fabs(x[i][j].re)/N2/N1-(N1*i+j+1), error);
 error = max(fabs(x[i][j].im)/N2/N1, error);
 }
 }
```

```
 printf("error = %e\n", error);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V1DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v1dcft2

One-dimensional discrete complex Fourier transforms (mixed radices of
$2,3,5$ and 7)
ierr $=c \_d m \_v 1 d c f t 2(x, n, y$, isn, \&icon);

## 1. Function

This routine performs a one-dimensional complex Fourier transform or its inverse transform using a mixed radix FFT.

The length of data transformed $n$ is a product of the powers of $2,3,5$ and 7 .

## The one-dimensional Fourier transform

When $\left\{x_{j}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n \alpha_{k}\right\}$

$$
\begin{align*}
n \alpha_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k} & , k=0,1, \ldots, n-1  \tag{1}\\
& , \omega_{n}=\exp (2 \pi i / n)
\end{align*}
$$

## The one-dimensional Fourier inverse transform

When $\left\{\alpha_{k}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j}\right\}$.

$$
\begin{align*}
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k} & , j=0,1, \ldots, n-1  \tag{2}\\
, & \omega_{n}=\exp (2 \pi i / n)
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v1dcft2(x, n, y, isn, \&icon);
where:


Code	Meaning	Processing
0	No error.	Completed.
30008	The order of transform is not radix 2/3/5/7.	Bypassed.
30016	The invalid notation parameter isn.	

## 3. Comments on use

## General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k}=\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k}, k=0,1, \ldots, n-1  \tag{3}\\
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k}, j=0,1, \ldots, n-1 \tag{4}
\end{gather*}
$$

where, $\omega_{n}=\exp (2 \pi i / n)$.

This function calculates $\left\{n \alpha_{k}\right\}$ or $\left\{x_{j}\right\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

A one-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define N (N1*N2)
MAIN__()
{
 dcomplex x[N], y[N], xx[N];
 double tmp;
 int isn, icon, i;
 for (i=0; i<N; i++) {
 xx[i].re = x[i].re = (double)(i);
 xx[i].im = x[i].im = 0.0;
 }
 isn = 1;
 c_dm_v1dcft2(x, N, y, isn, &icon);
 printf("icon = %d\n", icon);
 isn = -1;
 c_dm_v1dcft2(y, N, x, isn, &icon);
 printf("icon = %d\n", icon);
 tmp = 0.0;
 for (i=0; i<N; i++) {
 tmp = max((fabs(x[i].re/(double)N-xx[i].re))
 +(fabs(x[i].im/(double)N-xx[i].im)),tmp);
 }
 printf("error = %e\n", tmp);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V1DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v1dmcft

One-dimensional multiple discrete complex Fourier transforms (mixed
radix of 2, 3, 5 and 7).
ierr $=c \_d m \_v 1 d m c f t(x, k x, n, m, i s n, \& i c o n) ;$

## 1. Function

The function c_dm_vldmcft performs multiple one-dimensional complex Fourier transforms or its inverse transforms using a mixed radix FFT.

The length of data transformed $n$ is a product of the powers of $2,3,5$ and 7 .

## The one-dimensional Fourier transform

When $\left\{x_{j}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n \alpha_{k}\right\}$

$$
\begin{align*}
n \alpha_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k} & , k=0,1, \ldots, n-1  \tag{1}\\
& , \omega_{n}=\exp (2 \pi i / n)
\end{align*}
$$

## The one-dimensional Fourier inverse transform

When $\left\{\alpha_{k}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j}\right\}$.

$$
\begin{align*}
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k} & , j=0,1, \ldots, n-1  \tag{2}\\
& , \omega_{n}=\exp (2 \pi i / n)
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v1dmcft((dcomplex*)x, kx, n, m, isn, \&icon);
where:

X	dcomplex $x[m][k x]$	Input	The complex data. Store the data in $\times[i][j], i=0, \ldots, m-1, j=$ $0, \ldots, n-1$.
		Output	The complex transformed data. The data is stored $x[i][j], i=0, \ldots$, $m-1, j=0, \ldots, n-1$.
kx	int	Input	$C$ fixed dimension of array $x$.
n	int	Input	The length of the data transformed must be a product of the powers of 2, 3, 5 and 7 .
m	int	Input	The multiplicity of the data transformed.
isn	int	Input	Either the transform or the inverse transform is indicated. isn $=1$ for the transform.   isn $=-1$ for the inverse transform.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The leading dimensions are less than the actual   dimensions.	
30008	The order of transform is not radix $2 / 3 / 5 / 7$.	
30016	The invalid value for the parameter isn.	

## 3. Comments on use

## General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k}=\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k}, k=0,1, \ldots, n-1  \tag{3}\\
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k}, j=0,1, \ldots, n-1 \tag{4}
\end{gather*}
$$

where, $\omega_{n}=\exp (2 \pi i / n)$.

This function calculates $\left\{n \alpha_{k}\right\}$ or $\left\{x_{j}\right\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

Multiple one-dimensional FFTs are computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N 2048
#define M 256
#define KX (N+1)
MAIN__()
{
 int isn, i, j, icon, ierr;
 double error;
 dcomplex x[N][KX];
 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(i=0; i<M; i++) {
 for(j=0; j<N; j++) {
 x[i][j].re = N*i+j+1;
 x[i][j].im = 0.0;
 }}
 }
 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v1dmcft((dcomplex*)x, KX, N, M, isn, &icon);
 if (icon != 0) {
```

```
 printf("ERROR: c_dm_v1dmcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v1dmcft((dcomplex*)x, KX, N, M, isn, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_v1dmcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Find the error after the forward and inverse transform. */
 error = 0.0;
 for(i=0; i<M; i++) {
 for(j=0; j<N; j++) {
 error = max(fabs(x[i][j].re)/N-(N*i+j+1), error);
 error = max(fabs(x[i][j].im)/N, error);
 }
 }
 printf("error = %e\n", error);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V1DMCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v1drcf

$$
\begin{aligned}
& \text { One-dimensional discrete real Fourier transform (mixed radix of } 2,3,5 \\
& \text { and 7) } \\
& \hline \text { ierr }=c \_d m \_v 1 d r c f(x, k x, y, k y, n 1, n 2, \text { isin, } \\
& \text { isn, \&icon); }
\end{aligned}
$$

## 1. Function

The routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT.

The data count $n\left(=n_{1} \times n_{2}\right)$ is a product of the powers of $2,3,5$ and 7 .

## One-dimensional Fourier transform

When $\left\{x_{j}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n \alpha_{k}\right\}$.

$$
\begin{align*}
n \alpha_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k r} & , k=0,1, \ldots, n-1 \\
& , \omega_{n}=\exp (2 \pi i / n)  \tag{1}\\
& , r=1 \text { or } r=-1
\end{align*}
$$

## One-dimensional Fourier inverse transform

When $\left\{\alpha_{k}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j}\right\}$.

$$
\begin{align*}
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k r} & , j=0,1, \ldots, n-1 \\
& , \omega_{n}=\exp (2 \pi i / n)  \tag{2}\\
& , r=1 \text { or } r=-1
\end{align*}
$$

## 2. Arguments

The routine is called as follows:

```
ierr = c_dm_v1drcf((double*)x, kx, (dcomplex*)y, ky, n1, n2, isin, isn,
 &icon);
```

where:

X	double $x[n 2][k x]$	Input	Real data.   Store the dara in $\times[i][j], i=0, \ldots, n 2-1, j=0, \ldots, n 1-1$.   For the real to complex transform (isn $=1$ ), data is input; for the complex to real transform (isn $=-1$ ), data is output. For isn $=1$, the input data is not saved.
kx	int	Input	$C$ fixed dimension of array $x$.
y	$\begin{aligned} & \text { dcomplex } \\ & \text { y[n1][ky] } \end{aligned}$	Input	Transformed complex data.   The data is stored in $y[i][j], i=0, \ldots, n 1-1, j=0, \ldots, n 2 / 2$.   For the real to complex transform (isn = 1), data is output; for the complex to real transform (isn $=-1$ ), data is input.   The input data is not guaranteed when isn $=-1$.

The complex data obtained from real data by Fourier transformation has the conjugate complex relation. About half data is stored.

ky	int	Input	C fixed dimension of array y . ( $\mathrm{k} y \geq \mathrm{n} 2 / 2+1$ )
n1	int	Input	The size of the first dimension assuming that the real data to be transformed ( $n=n 1 \times n 2$ ) is two-dimensional data.   n 1 must be a product of the powers of $2,3,5$ and 7 .   $\mathrm{n} 1 \times \mathrm{n} 2$ must be the length of the data sequence to be transformed.
n2	int	Input	The size of the second dimension assuming that the real data to be transformed ( $n=n 1 \times n 2$ ) is two-dimensional data.   n 2 must be a product of the powers of $2,3,5$ and 7 .   $\mathrm{n} 1 \times \mathrm{n} 2$ must be the length of the data sequence to be transformed.
isin	int	Input	The direction of transformation. isin $=1$ for $r=1$.   isin $=-1$ for $r=-1$.
isn	int	Input	Either the transform or the inverse transform is indicated. isn $=1$ for the transform.   isn $=-1$ for the inverse transform.
icon	int	Output	Condition code. See below.


Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:   - $k x<n 1$   - $\mathrm{ky}<\mathrm{n} 2 / 2+1$   - $\mathrm{n} 1<1$   - $\mathrm{n} 2<1$   - isin $\neq 1,-1$   - isn $=1,-1$	Bypassed.
30008	The order of transform is not radix $2 / 3 / 5 / 7$.	

## 3. Comments on use

## Input/Output array

If one-dimensional data of $n=n_{1} \times n_{2}$ is numbered $k=0, \ldots, n-1$,

$$
\begin{array}{cl}
k=k_{1}+k_{2} \times n_{1} & , k_{1}=0, \ldots, n_{1}-1 \\
& , k_{2}=0, \ldots, n_{2}-1 \\
i=i_{1}+i_{2} \times n_{2} & , i_{1}=0, \ldots, n_{2}-1 \\
& , i_{2}=0, \ldots, n_{1}-1
\end{array}
$$

Real data and complex data are regarded as two-dimensional data with subscripts of $\left[k_{2}\right]\left[k_{1}\right]$ and $\left[i_{2}\right]\left[i_{1}\right]$, respectively. However, $i_{1}=0, \ldots, n_{2} / 2$ are stored in y. (See Figure c_dm_v1drcf-1.)


Figure c_dm_vldrcf-1. Input/Output data storage method

## General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$
\begin{align*}
\alpha_{k} & =\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k}, k=0,1, \ldots, n-1  \tag{3}\\
x_{j} & =\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k}, j=0,1, \ldots, n-1 \tag{4}
\end{align*}
$$

where, $\omega_{n}=\exp (2 \pi i / n)$.

This routine calculates $\left\{n \alpha_{k}\right\}$ or $\left\{x_{j}\right\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

## complex conjugate relation

The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by ${ }^{-}$).
$\alpha_{k}=\overline{\alpha_{n-k}}, k=1, \ldots, n-1$
$n=n_{1} \times n_{2}$
$i_{1}=0,1, \ldots, n_{2}-1$
$i_{2}=0,1, \ldots, n_{1}-1$
If $k=i_{1}+i_{2} \times n_{2}$ is assumed,
$n-k=n_{2}-i_{1}+\left(n_{1}-1-i_{2}\right) \times n_{2}$
The rest of data can be obtained from data numbered $i_{1}=1, \ldots, n_{2} / 2$ (the first part excluding zeros).

## performance

The performance of this routine will be the best when the $n$ can be factorized into adequately large $n_{1}$ and $n_{2}$ which are about the same size.

## 4. Example program

A one-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define KX (N1+1)
#define KY (N2/2+2)
MAIN__()
{
 dcomplex y[N1][KY];
 double x[N2][KX], xx[N2][KX], tmp;
 int isw, isin, icon, i, j;
 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 xx[i][j] = x[i][j] = N1*i+j+1;
 }
 }
 isin = 1;
 isw = 1;
 c_dm_v1drcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon);
 printf("icon = %d\n", icon);
 iSW = -1;
 c_dm_v1drcf((double*)x, KX, (dcomplex*)y, KY, N1, N2, isin, isw, &icon);
 printf("icon = %d\n", icon);
 tmp = 0.0;
 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp);
 }
 }
 printf("error = %e\n", tmp);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V1DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v1drcf2

$$
\begin{aligned}
& \text { One-dimensional discrete real Fourier transform (mixed radix of } 2,3,5 \\
& \text { and 7) } \\
& \hline \text { ierr }=c \_d m \_v 1 d r c f 2(x, n, y, \text { isin, isn, } \\
& \text { \&icon }) ;
\end{aligned}
$$

## 1. Function

This routine performs a one-dimensional real Fourier transform or its inverse transform using a mixed radix FFT.

The data count $n$ is a product of the powers of $2,3,5$ and 7 .

## One-dimensional Fourier transform

When $\left\{x_{j}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n \alpha_{k}\right\}$.

$$
\begin{align*}
n \alpha_{k}=\sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k r} & , k=0,1, \ldots, n-1 \\
& , \omega_{n}=\exp (2 \pi i / n)  \tag{1}\\
& , r=1 \text { or } r=-1
\end{align*}
$$

## One-dimensional Fourier inverse transform

When $\left\{\alpha_{k}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j}\right\}$.

$$
\begin{align*}
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k r} & , j=0,1, \ldots, n-1 \\
& , \omega_{n}=\exp (2 \pi i / n)  \tag{2}\\
& , r=1 \text { or } r=-1
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v1drcf2(x, n, y, isin, isn, \&icon);
where:

x	double $\mathrm{x}[\mathrm{n}]$	Input	Real data. Store the dara in $\times$ [ i$]$, $\mathrm{i}=0, \ldots, \mathrm{n}-1$.
		/Output	For the real to complex transform (isn=1), data is input; for the complex to real transform ( $\mathrm{isn}=-1$ ), data is output.
n	int	Input	The size of the data to be transformed.   n must be an even number and a product of the powers of $2,3,5$ and 7 .
y	$\begin{aligned} & \text { dcomplex } \\ & y[n / 2+1] \end{aligned}$	Output /Input	Transformed complex data. About a half of the complex is stored in $y[i], i=0, \ldots, n 2 / 2$.
			For the real to complex transform (isn=1), data is output; for the complex to real transform (isn $=-1$ ), data is input.
isin	int	Input	The direction of transformation.
			isin $=1$ for $r=1$.
			isin $=-1$ for $r=-1$.

isn int Input Either the transform or the inverse transform is indicated.

$$
\text { isn = } 1 \text { for the transform. }
$$ isn $=-1$ for the inverse transform.

icon int Output Condition code. See below.
The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:   - n is not a multiple of 2   - n is not a product of the powers of $2,3,5$ and 7.   - isin $\neq 1,-1$   - isn $\neq 1,-1$	Bypassed.

## 3. Comments on use

## complex conjugate relation

The result of the one-dimensional real Fourier transform has the following complex conjugate relation (indicated by ${ }^{-}$).
$\alpha_{k}=\overline{\alpha_{n-k}}, k=1, \ldots, n-1 \quad($ excluding 0$)$

## General definition of Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse transform is defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k}=\frac{1}{n} \sum_{j=0}^{n-1} x_{j} \omega_{n}^{-j k}, k=0,1, \ldots, n-1  \tag{3}\\
x_{j}=\sum_{k=0}^{n-1} \alpha_{k} \omega_{n}^{j k}, j=0,1, \ldots, n-1 \tag{4}
\end{gather*}
$$

where, $\omega_{n}=\exp (2 \pi i / n)$.

This routine calculates $\left\{n \alpha_{k}\right\}$ or $\left\{x_{j}\right\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

A one-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (1024)
#define N2 (N1)
#define N (N1*N2)
MAIN__()
{
 dcomplex y[N/2+1];
 double x[N], xx[N], tmp;
```

```
 int isin, isn, icon, i;
 for (i=0; i<N; i++) {
 xx[i] = x[i] = (double)(i+1);
 }
 isin = 1
 isn = 1;
 c_dm_v1drcf2(x, N, y, isin, isn, &icon);
 printf("icon = %d\n", icon);
 isn = -1;
 c_dm_v1drcf2(x, N, y, isin, isn, &icon);
 printf("icon = %d\n", icon);
 tmp = 0.0;
 for (i=0; i<N; i++) {
 tmp = max(fabs(x[i]/(double)N-xx[i]),tmp);
}
printf("error = %e\n", tmp);
return(0);
}
```


## 5. Method

Consult the entry for DM_V1DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v2deft

Two-dimensional discrete complex Fourier transforms (mixed radices of
$2,3,5$ and 7).
ierr $=c \_d m \_v 2 d c f t(x, k x, \mathrm{n} 1, \mathrm{n} 2$, isn, \&icon) ;

## 1. Function

The function c_dm_v2cdft performs a two-dimensional complex Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of two-dimensional data $\left(n_{1}, n_{2}\right)$ is a product of the powers of $2,3,5$ and 7 .

## The two-dimensional Fourier transform

When $\left\{x_{j 1 / 2}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n_{1} n_{2} \alpha_{k 1 / 2}\right\}$.

$$
\begin{align*}
n_{1} n_{2} \alpha_{k 1 k 2}= & \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1 j 2} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \\
& , k_{1}=0,1, \ldots, n_{1}-1  \tag{1}\\
& , k_{2}=0,1, \ldots, n_{2}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right)
\end{align*}
$$

## The two-dimensional Fourier inverse transform

When $\left\{\alpha_{k 1 k 2}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j 122}\right\}$.

$$
\begin{align*}
x_{j 1 j 2}= & \sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \alpha_{k 1 k 2} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \\
& , j_{1}=0,1, \ldots, n_{1}-1  \tag{2}\\
& , j_{2}=0,1, \ldots, n_{2}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right)
\end{align*}
$$

## 2. Arguments

The routine is called as follows:

```
ierr = c_dm_v2dcft((dcomplex*)x, kx, n1, n2, isn, &icon);
```

where:
$x[n 2][k x]$
kx int
n1 int
$x$ dcomplex Input The complex data. The data is stored in $x[i][j], i=0, \ldots, n 2-1$, $\mathrm{j}=0, \ldots, \mathrm{n} 1-1$.
Output The complex transformed data. The results are stored in $x[i][j]$, $i$ $=0, \ldots, n 2-1, j=0, \ldots, n 1-1$.
Input $\quad C$ fixed dimension of array $x$.
Input The size n 1 of data in the first dimension of the two-dimensional array to be transformed.
n 1 must be a value that can be a product of the powers of $2,3,5$ and 7 .

n2	int	Input	The size n 2 of data in the second dimension of the two-dimensional array to be transformed.
isn	int	Input	n2 must be a value that can be a product of the powers of 2, 3, 5 and 7 .   Either the transform or the inverse transform is indicated.
			$\begin{aligned} & \text { isn }=1 \text { for the transform. } \\ & \text { isn }=-1 \text { for the inverse transform. } \end{aligned}$
icon	int	Output	Condition code. See below.
The complete list of condition codes is:			


Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The leading dimensions are less than the actual   dimensions.	
30008	The order of transform is not radix $2 / 3 / 5 / 7$.	
30016	The invalid value for the parameter isn.	

## 3. Comments on use

## General definition of Fourier transform

The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k 1 k 2}=\frac{1}{n_{1} n_{2}} \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1 j 2} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \\
, k_{1}=0,1, \ldots, n_{1}-1  \tag{3}\\
, k_{2}=0,1, \ldots, n_{2}-1 \\
x_{j 1 j 2}=\sum_{k 1=0}^{n 1-1} \sum^{n 2-1} \alpha_{k 1 k 2} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \\
, j_{1}=0,1, \ldots, n_{1}-1  \tag{4}\\
\quad, j_{2}=0,1, \ldots, n_{2}-1
\end{gather*}
$$

where, $\omega_{n 1}=\exp \left(2 \pi i / n_{1}\right), \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right)$.

This function calculates $\left\{n_{1} n_{2} \alpha_{k 1 / 2}\right\}$ or $\left\{x_{j 12}\right\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

A two-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 4000
#define N2 3000
#define KX (N1+400)
```

```
MAIN__()
{
 int isn, i, j, icon, ierr;
 double error;
 dcomplex x[N2][KX];
 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 x[i][j].re = N1*i+j+1;
 x[i][j].im = 0.0;
 }
 }
 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v2dcft((dcomplex*)x, KX, N1, N2, isn, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_v2dcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Find the error after the forward and inverse transform. */
 error = 0.0;
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 error' = max(fabs(x[i][j].re)/(N2*N1)-(N1*i+j+1), error);
 error = max(fabs(x[i][j].im)/(N2*N1), error);
 }
 }
 printf("error = %e\n", error);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V2DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v2drcf

$$
\begin{aligned}
& \text { Two-dimensional discrete real Fourier transform (mixed radix of 2, 3, } 5 \\
& \text { and 7) } \\
& \hline \text { ierr }=c \_d m \_v 2 d r c f(x, k, n 1, \mathrm{n} 2, \text { isin, isn, } \\
& \text { \&icon }) ;
\end{aligned}
$$

## 1. Function

The routine performs a two-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the two-dimensional data $\left(n_{1}, n_{2}\right)$ can be a product of the powers of $2,3,5$ and 7 .

## The two-dimensional Fourier transform

When $\left\{x_{j 1 / 2}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n_{1} n_{2} \alpha_{k 1 k 2}\right\}$.

$$
\begin{align*}
n_{1} n_{2} \alpha_{k 1 k 2} & =\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1 j 2} \omega_{n 1}^{-j 1 k 1 r} \omega_{n 2}^{-j 2 k 2 r} \\
& , k_{1}=0,1, \ldots, n_{1}-1 \\
& , k_{2}=0,1, \ldots, n_{2}-1  \tag{1}\\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , r=1 \text { or } r=-1
\end{align*}
$$

## The two-dimensional Fourier inverse transform

When $\left\{\alpha_{k 1 k 2}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j 1 / 2}\right\}$.

$$
\begin{align*}
x_{j 1 j 2}= & \sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \alpha_{k 1 k 2} \omega_{n 1}^{j 1 k 1 r} \omega_{n 2}^{j 2 k 2 r} \\
& , j_{1}=0,1, \ldots, n_{1}-1 \\
& , j_{2}=0,1, \ldots, n_{2}-1  \tag{2}\\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , r=1 \text { or } r=-1
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v2drcf((double*)x, k, n1, n2, isin, isn, \&icon);
where:

X	$\begin{aligned} & \text { double } \\ & x[n 2][k] \end{aligned}$	Input   /Output	Two-dimensional real data is stored in $\times[i][j], i=0, \ldots, n 2-1$, $j=0, \ldots, n 1-1$.   For the real to complex transform (isn =1), data is input; for the complex to real transform (isn $=-1$ ), data is output.
		Output   /Input	The real and imaginary parts of the transformed complex data are stored as follows:


			The real and imaginary parts are stored in $\times[i][j][0], i=0, \ldots$, $n 2-1, j=0, \ldots, n 1 / 2$ and $x[i][j][1], i=0, \ldots, n 2-1, j=0, \ldots$, $n 1 / 2$ respectively assuming that the array $x$ was a three-dimensional array $x[n 2][k / 2][2]$.   For the real to complex transform (isn = 1), data is output; for the complex to real transform (isn = $=-1$ ), data is input.   The complex data transformed Fourier has the complex conjugate relation. And about half data is stored.
k	int	Input	C fixed dimension of array $x$. $(\geq 2 \times(n 1 / 2+1))$ $k$ must be an even number.
n1	int	Input	The length $n_{1}$ of data in the first dimension of the two- dimensional array to be transformed.   $n_{1}$ must be a value that can be a product of powers of $2,3,5$ and 7 .
n2	int	Input	The length $n_{2}$ of data in the second dimension of the two- dimensional array to be transformed.   $n_{2}$ must be a value that can be a product of the powers of $2,3,5$ and 7 .
isin	int	Input	The direction of transformation. isin $=1$ for $r=1$.   isin $=-1$ for $r=-1$.
isn	int	Input	Either the transform or the inverse transform is indicated. isn $=1$ for the transform.   isn $=-1$ for the inverse transform.
icon	int	Output	Condition code. See below.
The complete list of condition codes is:			


Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:   - $k<2 \times(n 1 / 2+1)$   - k is not an even number.   - $\mathrm{n} 1<1$   - $\mathrm{n} 2<1$   - isin $\neq 1,-1$   - isn $\neq 1,-1$	Bypassed.
30008	The order of transform is not radix 2/3/5/7.	

## 3. Comments on use

## General definition of Fourier transform

The two-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k 1 k 2}=\frac{1}{n_{1} n_{2}} \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} x_{j 1 j 2} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2}  \tag{3}\\
, k_{1}=0,1, \ldots, n_{1}-1 \\
, k_{2}=0,1, \ldots, n_{2}-1 \\
x_{j 1 j 2}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \alpha_{k 1 k 2} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2}  \tag{4}\\
, j_{1}=0,1, \ldots, n_{1}-1 \\
, j_{2}=0,1, \ldots, n_{2}-1
\end{gather*}
$$

where, $\omega_{n 1}=\exp \left(2 \pi i / n_{1}\right), \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right)$.

This routine calculates $\left\{n_{1} n_{2} \alpha_{k 1 k 2}\right\}$ or $\left\{x_{j \mid 2}\right\}$ corresponding to the left term of (3) or (4), respectively. Normalization of the results is required, if necessary.

## complex conjugate relation

The results of the two-dimensional real Fourier transform that has the following complex conjugate relation (indicated by ${ }^{-}$).
$\alpha_{k 1 k 2}=\overline{\alpha_{n 1-k 1 n 2-k 2}}$
The remainder of the data is obtained from the data in $k_{1}=0, \ldots, n_{1} / 2$ and $k_{2}=0, \ldots, n_{2-1}$.

## 4. Example program

A two-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (2048)
#define N2 (N1)
#define K ((N1/2+1)*2)
MAIN__()
{
 double x[N2][K], xx[N2][K], tmp;
 int isin, isn, icon, i, j;
 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 xx[i][j] = x[i][j] = (double)(N2*i+j+1);
 }
 }
 isin = 1;
 isn = 1;
 c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon);
 printf("icon = %d\n", icon);
 isn = -1;
 c_dm_v2drcf((double*)x, K, N1, N2, isin, isn, &icon);
 printf("icon = %d\n", icon);
 tmp = 0.0;
 for (i=0; i<N2; i++) {
 for (j=0; j<N1; j++) {
 tmp = max(fabs(x[i][j]/(double)N1/(double)N2-xx[i][j]),tmp);
 }
 }
```

```
 printf("error = %e\n", tmp);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V2DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v3dcft

$$
\begin{aligned}
& \text { Three-dimensional discrete complex Fourier transforms (mixed radices } \\
& \text { of } 2,3,5 \text { and } 7 \text { ). } \\
& \hline \text { ier }=\quad c \_d m \_v 3 d c f t(x, k x, n 1, n 2, n 3, \text { isn, } \\
& \text { \&icon }) ;
\end{aligned}
$$

## 1. Function

The function c_dm_v3dcft performs a three-dimensional complex Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of three-dimensional arrays $\left(n_{1}, n_{2}, n_{3}\right)$ can be a product of the powers of $2,3,5$ and 7 .

## The three-dimensional Fourier transform

When $\left\{x_{j \mid 2 / j}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n_{1} n_{2} n_{3} \alpha_{k 1 k_{2} / 3}\right\}$.

$$
\begin{align*}
n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3} & =\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
& , k_{1}=0,1, \ldots, n_{1}-1 \\
& , k_{2}=0,1, \ldots, n_{2}-1  \tag{1}\\
& , k_{3}=0,1, \ldots, n_{3}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)
\end{align*}
$$

## The three-dimensional Fourier inverse transform

When $\left\{\alpha_{k 112 k 3}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j 1 / 2 j 3}\right\}$.

$$
\begin{align*}
x_{j 1} x_{j 2} x_{j 3}= & \sum_{k 1=0}^{n 1-1} \sum_{k 2=0 k 3-1}^{n 2-1} \sum^{n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
& , j_{1}=0,1, \ldots, n_{1}-1 \\
& , j_{2}=0,1, \ldots, n_{2}-1  \tag{2}\\
& , j_{3}=0,1, \ldots, n_{3}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v3dcft((dcomplex*)x, kx, n1, n2, n3, isn, \&icon);
where:

| $x$ | dcomplex | Input |
| :--- | :--- | :--- |$\quad$| The complex data. Data is stored in $x[i][j][k], i=0, \ldots, n 3-1$, |
| :--- |
| $x[n 3][n 2][k x]$ |$\quad$| $j=0, \ldots, n 2-1, k=0, \ldots, n 1-1$. |
| :--- | :--- |


			$i=0, \ldots, n 3-1, j=0, \ldots, n 2-1, k=0, \ldots, n 1-1$.
kx	int	Input	$C$ fixed dimension of array $x$.
n1	int	Input	The length n 1 of data in the first dimension of the three- dimensional array to be transformed.
n2	int	Input	n 1 must be a value that can be a product of the powers of $2,3,5$ and 7 . The length n 2 of data in the second dimension of the threedimensional array to be transformed.
n3	int	Input	n 2 must be a value that can be a product of the powers of $2,3,5$ and 7 . The length n 3 of data in the third dimension of the three- dimensional array to be transformed.
isn	int	Input	n3 must be a value that can be a product of the powers of 2, 3, 5 and 7 .   Either the transform or the inverse transform is indicated.   isn $=1$ for the transform.   isn $=-1$ for the inverse transform.
icon	int	Output	Condition code. See below.
The co	list		


Code	Meaning	Processing
0	No error.	Completed.
30001	The dimensions of arrays less than or equal to 0.	Bypassed.
30002	The leading dimensions are less than the actual   dimensions.	
30008	The order of transform is not radix 2/3/5/7.	
30016	The invalid value for the parameter isn.	

## 3. Comments on use

## General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$
\begin{align*}
& \alpha_{k 1 k 2 k 3}= \frac{1}{n_{1} n_{2} n_{3}} \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
&, k_{1}=0,1, \ldots, n_{1}-1  \tag{3}\\
&, k_{2}=0,1, \ldots, n_{2}-1 \\
&, k_{3}=0,1, \ldots, n_{3}-1 \\
& x_{j 1 j 2 j 3}=\sum_{k 1=0}^{n 1-1} \sum_{n 2=0}^{n 2-1} \sum_{k 3=0}^{n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
&, j_{1}=0,1, \ldots, n_{1}-1  \tag{4}\\
&, j_{2}=0,1, \ldots, n_{2}-1 \\
&, j_{3}=0,1, \ldots, n_{3}-1
\end{align*}
$$

where, $\omega_{n 1}=\exp \left(2 \pi i / n_{1}\right), \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right), \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)$.

This function calculates $\left\{n_{1} n_{2} n_{3} \alpha_{k 12 k 3}\right\}$ or $\left\{x_{j 1 / 2 j 3}\right\}$ corresponding to the left-hand-side term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

A three-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 400
#define N2 100
#define N3 200
#define KX (N1+40)
MAIN__()
{
 int isn, i, j, k, icon, ierr;
 double error;
 dcomplex x[N3][N2][KX];
 /* Set up the input data arrays */
#pragma omp parallel for shared(x) private(i,j)
 for(k=0; k<N3; k++) {
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 x[k][i][j].re = N1*i+j+1;
 x[k][i][j].im = 0.0;
 }
 }
 }
 /* Do the forward transform */
 isn = 1;
 ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Do the reverse transform */
 isn = -1;
 ierr = c_dm_v3dcft((dcomplex*)x, KX, N1, N2, N3, isn, &icon);
 if (icon != 0) {
 printf("ERROR: c_dm_v3dcft failed with icon = %d\n", icon);
 exit(1);
 }
 /* Find the error after the forward and inverse transform. */
 error = 0.0;
 for(k=0; k<N3; k++) {
 for(i=0; i<N2; i++) {
 for(j=0; j<N1; j++) {
 error = max(fabs(x[k][i][j].re)/(N3*N2*N1)-(N1*i+j+1), error);
 error = max(fabs(x[k][i][j].im)/(N3*N2*N1), error);
 }
 }
 }
 printf("error = %e\n", error);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V3DCFT in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v3dcft2

$$
\begin{array}{|l}
\hline \begin{array}{l}
\text { Three-dimensional discrete complex Fourier transforms (mixed radices } \\
\text { of 2, 3, } 5 \text { and 7). }
\end{array} \\
\hline \text { ierr }=c \_d m \_v 3 d c f t 2(x, k 1, k 2, \mathrm{n} 1, \mathrm{n} 2, \mathrm{n} 3, \\
\text { isn, \&icon); }
\end{array}
$$

## 1. Function

The function c_dm_v3dcft2 performs a three-dimensional complex Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of three-dimensional arrays $\left(n_{1}, n_{2}, n_{3}\right)$ can be a product of the powers of $2,3,5$ and 7 .

## The three-dimensional Fourier transform

When $\left\{x_{i 12 / 2 j}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n_{1} n_{2} n_{3} \alpha_{k 122 k 3}\right\}$.

$$
\begin{align*}
n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3} & =\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
& , k_{1}=0,1, \ldots, n_{1}-1 \\
& , k_{2}=0,1, \ldots, n_{2}-1  \tag{1}\\
& , k_{3}=0,1, \ldots, n_{3}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)
\end{align*}
$$

## The three-dimensional Fourier inverse transform

When $\left\{\alpha_{k 112 k 3}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j 1 / 2 j \beta}\right\}$.

$$
\begin{align*}
x_{j 1} x_{j 2} x_{j 3}= & \sum_{k 1=0}^{n 1-1} \sum_{k 2=0 k 3-1}^{n 2-1} \sum^{n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
& , j_{1}=0,1, \ldots, n_{1}-1 \\
& , j_{2}=0,1, \ldots, n_{2}-1  \tag{2}\\
& , j_{3}=0,1, \ldots, n_{3}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v3dcft2((dcomplex*)x, k1, k2, n1, n2, n3, isn, \&icon); where:

x	$\begin{aligned} & \text { dcomplex } \\ & x[\mathrm{n} 3][\mathrm{k} 2][\mathrm{k} 1] \end{aligned}$	Input	The complex data. Data is stored in $\times[i][j][k], i=0, \ldots, n 3-1$, $j=0, \ldots, n 2-1, k=0, \ldots, n 1-1$.
		Output	The complex transformed data. The results are stored in X [i][j]


			$\mathrm{i}=0, \ldots, \mathrm{n} 3-1, \mathrm{j}=0, \ldots, \mathrm{n} 2-1, \mathrm{k}=0, \ldots, \mathrm{n} 1-1$.
k1	int	Input	The size of the third dimension of input data arrays $x$. ( $\geq \mathrm{n} 1$ )
k2	int	Input	The size of the second dimension of input data arrays $x$. ( $\geq n 2$ )
n1	int	Input	The length $n 1$ of data in the first dimension of the three- dimensional array to be transformed.
n2	int	Input	n 1 must be a value that can be a product of the powers of $2,3,5$ and 7 . The length n 2 of data in the second dimension of the threedimensional array to be transformed.
n3	int	Input	n 2 must be a value that can be a product of the powers of $2,3,5$ and 7 . The length n 3 of data in the third dimension of the three- dimensional array to be transformed.
isn	int	Input	n 3 must be a value that can be a product of the powers of $2,3,5$ and 7 .   Either the transform or the inverse transform is indicated.   isn $=1$ for the transform.   isn $=-1$ for the inverse transform.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:   - $\quad n_{1}, n_{2}$ or $n_{3}$ less than or equal to 0 .   - $\mathrm{k} 1<\mathrm{n} 1$   - $\mathrm{k} 2<\mathrm{n} 2$   - invalid value for the parameter isn.	Bypassed.
30008	The order of transform is not radix 2/3/5/7.	

## 3. Comments on use

## General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$
\begin{align*}
& \alpha_{k 1 k 2 k 3}= \frac{1}{n_{1} n_{2} n_{3}} \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
&, k_{1}=0,1, \ldots, n_{1}-1  \tag{3}\\
&, k_{2}=0,1, \ldots, n_{2}-1 \\
&, k_{3}=0,1, \ldots, n_{3}-1 \\
& x_{j 1 j 2 j 3}=\sum_{k 1=0}^{n 1-1} \sum_{22=0 k 3=0}^{n 2-13-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
&, j_{1}=0,1, \ldots, n_{1}-1  \tag{4}\\
&, j_{2}=0,1, \ldots, n_{2}-1 \\
&, j_{3}=0,1, \ldots, n_{3}-1
\end{align*}
$$

where, $\omega_{n 1}=\exp \left(2 \pi i / n_{1}\right), \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right), \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)$.

This function calculates $\left\{n_{1} n_{2} n_{3} \alpha_{k l 22 k 3}\right\}$ or $\left\{x_{j l / 2 j 3}\right\}$ corresponding to the left-hand-side term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

A three-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 128
#define N2 128
#define N3 128
#define K1 (N1+1)
#define K2 N2
int MAIN__()
{
 dcomplex x[N3][K2][K1];
 double error;
 int i, j, k, isn, icon;
#pragma omp parallel for shared(x) private(i,j)
 for (k=0; k<N3; k++) {
 for (j=0; j<N2; j++) {
 for (i=0; i<N1; i++) {
 x[k][j][i].re = N1*j+i+1;
 x[k][j][i].im = 0.0;
 }
 }
 }
 isn = 1;
 c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);
 isn = -1;
 c_dm_v3dcft2((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);
 /* find the error after the forward and inverse transform. */
 error = 0.0;
 for(k=0; k<N3; k++) {
 for(j=0; j<N2; j++) {
 for(i=0; i<N1; i++) {
 error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), error);
 error = max(fabs(x[k][j][i].im)/(N3*N2*N1), error);
 }
 }
 }
 printf("error = %e\n", error);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V3DCFT2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v3dcpf

```
Three-dimensional prime factor discrete complex Fourier transforms.
ierr = c_dm_v3dcpf(x, k1, k2, n1, n2, n3, isn,
 &icon);
```


## 1. Function

The function c_dm_v3dcpf performs a three-dimensional complex Fourier transform or its inverse Fourier transform.

The size of each dimension of three-dimensional data $\left(n_{1}, n_{2}, n_{3}\right)$ must satisfy the following condition.

- The size must be expressed by a product of a mutual prime factor $p$, selected from the following numbers:
factor $p(p \in\{2,3,4,5,7,8,9,16,25\})$


## The three-dimensional Fourier transform

When $\left\{x_{\left.j_{1 / 2 j}\right\}}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3}\right\}$.

$$
\begin{align*}
n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3} & =\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
& , k_{1}=0,1, \ldots, n_{1}-1 \\
& , k_{2}=0,1, \ldots, n_{2}-1  \tag{1}\\
& , k_{3}=0,1, \ldots, n_{3}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)
\end{align*}
$$

## The three-dimensional Fourier inverse transform

When $\left\{\alpha_{k 112 k 3}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j 1 \mid 2 j 3}\right\}$.

$$
\begin{align*}
x_{j 1} x_{j 2} x_{j 3}= & \sum_{k 1=0}^{n 1-1} \sum_{k 2=0 k 3=0}^{n 2-1} \sum_{k 3-1}^{n} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
& , j_{1}=0,1, \ldots, n_{1}-1 \\
& , j_{2}=0,1, \ldots, n_{2}-1  \tag{2}\\
& , j_{3}=0,1, \ldots, n_{3}-1 \\
& , \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
& , \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
& , \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v3dcpf((dcomplex*)x, k1, k2, n1, n2, n3, isn, \&icon); where:

x	$\begin{aligned} & \text { dcomplex } \\ & x[n 3][k 2][k 1] \end{aligned}$	Input	The complex data. Data is stored in $x[i][j][k], i=0, \ldots, n 3-1$, $j=0, \ldots, n 2-1, k=0, \ldots, n 1-1$.
		Output	The complex transformed data. The results are stored in $x[i][j][k]$ $\mathrm{i}=0, \ldots, \mathrm{n} 3-1, \mathrm{j}=0, \ldots, \mathrm{n} 2-1, \mathrm{k}=0, \ldots, \mathrm{n} 1-1$.
k1	int	Input	The size of the third dimension of input data arrays $x$. ( $\geq \mathrm{n} 1$ )
k2	int	Input	The size of the second dimension of input data arrays x . ( $\geq \mathrm{n} 2$ )
n1	int	Input	The length n 1 of data in the first dimension of the three- dimensional array to be transformed.
n2	int	Input	The length n 2 of data in the second dimension of the threedimensional array to be transformed.
n3	int	Input	The length $n 3$ of data in the third dimension of the three- dimensional array to be transformed.
isn	int	Input	Either the transform or the inverse transform is indicated. isn $=1$ for the transform.   isn $=-1$ for the inverse transform.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
20000	$n_{1}, n_{2}$ or $n_{3}$ can not be factored into the product of the factors in $2,3,4,5,7,8,9,16$ and 25.	Bypassed.
30000	One of the following has occurred:   - $\quad n_{1}, n_{2}$ or $n_{3}$ less than or equal to 0 .   - $\mathrm{k} 1<\mathrm{n} 1$   - $\mathrm{k} 2<\mathrm{n} 2$   - invalid value for the parameter isn.	

## 3. Comments on use

## General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$
\begin{align*}
& \alpha_{k 1 k 2 k 3}= \frac{1}{n_{1} n_{2} n_{3}} \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 33=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
&, k_{1}=0,1, \ldots, n_{1}-1  \tag{3}\\
&, k_{2}=0,1, \ldots, n_{2}-1 \\
&, k_{3}=0,1, \ldots, n_{3}-1 \\
& x_{j 1 j 2 j 3}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \sum_{k 3=0}^{n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
&, j_{1}=0,1, \ldots, n_{1}-1  \tag{4}\\
&, j_{2}=0,1, \ldots, n_{2}-1 \\
&, j_{3}=0,1, \ldots, n_{3}-1
\end{align*}
$$

where, $\omega_{n 1}=\exp \left(2 \pi i / n_{1}\right), \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right), \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)$.

This function calculates $\left\{n_{1} n_{2} n_{3} \alpha_{k 122 k 3}\right\}$ or $\left\{x_{j l 2 / 2 j}\right\}$ corresponding to the left-hand-side term of (3) or (4), respectively. Normalization of the results may be required.

## 4. Example program

A three-dimensional FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 40
#define N2 240
#define N3 90
#define K1 N1
#define K2 N2
int MAIN__()
{
 dcomplex x[N3][K2][K1];
 double error;
 int i, j, k, isn, icon;
#pragma omp parallel for shared(x) private(i,j)
 for (k=0; k<N3; k++) {
 for (j=0; j<N2; j++) {
 for (i=0; i<N1; i++) {
 x[k][j][i].re = N1*j+i+1;
 x[k][j][i].im = 0.0;
 }
 }
 }
 isn = 1;
 c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);
 isn = -1;
 c_dm_v3dcpf((dcomplex *)x, K1, K2, N1, N2, N3, isn, &icon);
 if (icon != 0) printf("error occurred : %d \n",icon);
 /* find the error after the forward and inverse transform. */
 error = 0.0;
 for(k=0; k<N3; k++) {
 for(j=0; j<N2; j++) {
 for(i=0; i<N1; i++) {
 error = max(fabs(x[k][j][i].re)/(N3*N2*N1)-(N1*j+i+1), error);
 error = max(fabs(x[k][j][i].im)/(N3*N2*N1), error);
 }
 }
 }
 printf("error = %e\n", error);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V3DCPF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v3drcf

> | Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 |
| :--- |
| and 7) |
| ierr $=c \_d m \_v 3 d r c f(x, k, n 1, n 2, n 3$, isin, |
| isn, \&icon); |

## 1. Function

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the three-dimensional array $\left(n_{1}, n_{2}, n_{3}\right)$ can be a product of the powers of $2,3,5$ and 7 .

## The three-dimensional Fourier transform

When $\left\{x_{j \mid j 2 j 3}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3}\right\}$.

$$
\begin{align*}
& n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3}=\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1 r} \omega_{n 2}^{-j 2 k 2 r} \omega_{n 3}^{-j 3 k 3 r} \\
&, k_{1}=0,1, \ldots, n_{1}-1 \\
&, k_{2}=0,1, \ldots, n_{2}-1 \\
&, k_{3}=0,1, \ldots, n_{3}-1  \tag{1}\\
&, \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
&, \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
&, \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right) \\
&, r=1 \text { or } r=-1
\end{align*}
$$

## The three-dimensional Fourier inverse transform

When $\left\{\alpha_{k 1 k 2 k 3}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j 112 \beta}\right\}$.

$$
\begin{align*}
& x_{j 1 j 2 j 3}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \sum_{k 3=0}^{n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1 r} \omega_{n 2}^{j 2 k 2 r} \omega_{n 3}^{j 3 k 3 r} \\
&, j_{1}=0,1, \ldots, n_{1}-1 \\
&, j_{2}=0,1, \ldots, n_{2}-1 \\
&, j_{3}=0,1, \ldots, n_{3}-1  \tag{2}\\
&, \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
&, \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
&, \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right) \\
&, r=1 \text { or } r=-1
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v3drcf((double*)x, k, n1, n2, n3, isin, isn, \&icon);
where:

$x$	double	Input	Three-dimensional real data is stored in $x[i][j][k], i=0, \ldots, n 3-$
$x[n 3][n 2][k]$	/Output	$1, j=0, \ldots, n 2-1, k=0, \ldots, n 1-1$.	

For the real to complex transform (isn = 1), data is input; for the complex to real transform (isn = $=1$ ), data is output.
Output The real and imaginary parts of the transformed complex data are stored /Input as follows:
The real and imaginary parts are stored in $x[i][j][k][0], i=0, \ldots$, $n 3-1, j=0, \ldots, n 2-1, k=0, \ldots, n 1 / 2$ and $x[i][j][k][1]$, $i=0, \ldots, n 3-1, j=0, \ldots, n 2-1, k=0, \ldots, n 1 / 2$ respectively assuming that the array $x$ was a four-dimensional array $x[n 3][n 2][k / 2][2]$.
For the real to complex transform (isn = 1), data is output; for the complex to real transform (isn $=-1$ ), data is input.
The complex data obtained from real data by Fourier transformation has the complex conjugate relation. And about half data is stored.

k	int	Input	C fixed dimension of array $\mathrm{X} .(\geq 2 \times(\mathrm{n} 1 / 2+1))$
			k must be an even number.
n1	int	Input	The length $n_{1}$ of real data in the first dimension to be transformed. $n_{1}$ must be a value that can be a product of the powers of $2,3,5$ and 7 .
n 2	int	Input	The length $n_{2}$ of real data in the second dimension to be transformed. $n_{2}$ must be a value that can be a product of the powers of $2,3,5$ and 7 .
n3	int	Input	The length $n_{3}$ of real data in the third dimension to be transformed. $n_{3}$ must be a value that can be a product of the powers of $2,3,5$ and 7 .
isin	int	Input	The direction of transformation. $\begin{aligned} & \text { isin }=1 \text { for } r=1 . \\ & \text { isin }=-1 \text { for } r=-1 . \end{aligned}$
isn	int	Input	Either the transform or the inverse transform is indicated. isn $=1$ for the transform.   isn $=-1$ for the inverse transform.
icon	int	Output	Condition code. See below.

The complete list of condition codes is:

Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:   - $k<2 \times(n 1 / 2+1)$   - k is not an even number.   - $\mathrm{n} 1<1$   - $\mathrm{n} 2<1$   - $\mathrm{n} 3<1$   - isin $\neq 1,-1$   - isn $=1,-1$	Bypassed.
30008	The order of transform is not radix $2 / 3 / 5 / 7$.	

## 3. Comments on use

## General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k 1 k 2 k 3}=\frac{1}{n_{1} n_{2} n_{3}} \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1 n 3-1} \sum_{j 3=0} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
, k_{1}=0,1, \ldots, n_{1}-1  \tag{3}\\
, k_{2}=0,1, \ldots, n_{2}-1 \\
, k_{3}=0,1, \ldots, n_{3}-1 \\
x_{j 1 j 2 j 3}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \sum_{k 3=0}^{n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
, j_{1}=0,1, \ldots, n_{1}-1  \tag{4}\\
, j_{2}=0,1, \ldots, n_{2}-1 \\
, j_{3}=0,1, \ldots, n_{3}-1
\end{gather*}
$$

where, $\omega_{n 1}=\exp \left(2 \pi i / n_{1}\right), \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right), \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)$.

This routine calculates $\left\{n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3}\right\}$ or $\left\{x_{j 12 j 3}\right\}$ corresponding to the left term of (3) or (4), respectively. The normalization of the results may be required.

## complex conjugate relation

The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by ${ }^{-}$).

$$
\alpha_{k 1 k 2 k 3}=\overline{\alpha_{n 1-k 1 n 2-k 2 n 3-k 3}}
$$

The remainder of the data is obtained from data in $k_{1}=0, \ldots, n_{1} / 2, k_{1}=0, \ldots, n_{2}-1$, and $k_{3}=0, \ldots, n_{3}-1$.

## 4. Example program

A three-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (128)
#define N2 (N1)
#define N3 (N1)
#define K ((N1/2+1)*2)
MAIN__()
{
 double x[N3][N2][K], xx[N3][N2][K], tmp;
 int isin, isn, icon, i, j, k;
 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++) {
 xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1);
 }
 }
 }
 isin = 1;
 isn = 1;
 c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);
 isn = -1;
 c_dm_v3drcf((double*)x, K, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);
 tmp = 0.0;
```

```
 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++){ {
 }
 }}
printf("error = %e\n", tmp);
return(0);
}
```


## 5. Method

Consult the entry for DM_V3DRCF in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## c_dm_v3drcf2

$$
\begin{aligned}
& \text { Three-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 } \\
& \text { and 7) } \\
& \hline \text { ierr = c_dm_v3drcf2 }(x, \text { k1, k2, n1, n2, n3, } \\
& \text { isin, isn, \&icon); }
\end{aligned}
$$

## 1. Function

The routine performs a three-dimensional real Fourier transform or its inverse Fourier transform using a mixed radix FFT.

The size of each dimension of the three-dimensional array $\left(n_{1}, n_{2}, n_{3}\right)$ can be a product of the powers of 2, 3, 5 and 7 .

## The three-dimensional Fourier transform

When $\left\{x_{j \mid 2 / j / 3}\right\}$ is input, the transform defined by (1) below is calculated to obtain $\left\{n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3}\right\}$.

$$
\begin{align*}
& n_{1} n_{2} n_{3} \alpha_{k 1 k 2 k 3}=\sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 3=0}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1 r} \omega_{n 2}^{-j 2 k 2 r} \omega_{n 3}^{-j 3 k 3 r} \\
&, k_{1}=0,1, \ldots, n_{1}-1 \\
&, k_{2}=0,1, \ldots, n_{2}-1 \\
&, k_{3}=0,1, \ldots, n_{3}-1  \tag{1}\\
&, \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
&, \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
&, \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right) \\
&, r=1 \text { or } r=-1
\end{align*}
$$

## The three-dimensional Fourier inverse transform

When $\left\{\alpha_{k 1 k 2 k 3}\right\}$ is input, the transform defined by (2) below is calculated to obtain $\left\{x_{j 112 \beta}\right\}$.

$$
\begin{align*}
& x_{j 1 j 2 j 3}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0}^{n 2-1} \sum_{k 3=0}^{n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1 r} \omega_{n 2}^{j 2 k 2 r} \omega_{n 3}^{j 3 k 3 r} \\
&, j_{1}=0,1, \ldots, n_{1}-1 \\
&, j_{2}=0,1, \ldots, n_{2}-1 \\
&, j_{3}=0,1, \ldots, n_{3}-1  \tag{2}\\
&, \omega_{n 1}=\exp \left(2 \pi i / n_{1}\right) \\
&, \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right) \\
&, \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right) \\
&, r=1 \text { or } r=-1
\end{align*}
$$

## 2. Arguments

The routine is called as follows:
ierr = c_dm_v3drcf2((double*)x, k1, k2, n1, n2, n3, isin, isn, \&icon);
where:

$x$	double	Input	Three-dimensional real data is stored in $x[i][j][k], i=0, \ldots, n 3-$
$x[n 3][k 2][k 1]$	/Output	$1, j=0, \ldots, n 2-1, k=0, \ldots, n 1-1$.	

For the real to complex transform (isn=1), data is input; for the complex to real transform (isn = -1 ), data is output.
Output The real and imaginary parts of the transformed complex data are stored as follows:
The real and imaginary parts are stored in $x[i][j][k][0], i=0, \ldots$, $n 3-1, j=0, \ldots, n 2-1, k=0, \ldots, n 1 / 2$ and $x[i][j][k][1]$, $i=0, \ldots, n 3-1, j=0, \ldots, n 2-1, k=0, \ldots, n 1 / 2$ respectively assuming that the array $x$ was a four-dimensional array $x[n 3][k 2][k 1 / 2][2]$.
For the real to complex transform (isn = 1), data is output; for the complex to real transform ( $\mathrm{isn}=-1$ ), data is input.
The complex data obtained from real data by Fourier transformation has the complex conjugate relation. And about half data is stored.


Code	Meaning	Processing
0	No error.	Completed.
30000	One of the following has occurred:   - $k 1<2 \times(n 1 / 2+1)$   - $k 1$ is not an even number.   - $k 2<n 2$   - $\mathrm{n} 1<1$   - $\mathrm{n} 2<1$   - $\mathrm{n} 3<1$   - isin $\neq 1,-1$   - isn $\neq 1,-1$	Bypassed.
30008	The order of transform is not radix $2 / 3 / 5 / 7$.	

## 3. Comments on use

## General definition of Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse transform can generally be defined as in (3) and (4).

$$
\begin{gather*}
\alpha_{k 1 k 2 k 3}=\frac{1}{n_{1} n_{2} n_{3}} \sum_{j 1=0}^{n 1-1} \sum_{j 2=0}^{n 2-1} \sum_{j 33-1}^{n 3-1} x_{j 1 j 2 j 3} \omega_{n 1}^{-j 1 k 1} \omega_{n 2}^{-j 2 k 2} \omega_{n 3}^{-j 3 k 3} \\
, k_{1}=0,1, \ldots, n_{1}-1  \tag{3}\\
, k_{2}=0,1, \ldots, n_{2}-1 \\
, k_{3}=0,1, \ldots, n_{3}-1 \\
x_{j 1 j 2 j 3}=\sum_{k 1=0}^{n 1-1} \sum_{k 2=0 k 3=0}^{n 2-1 n 3-1} \alpha_{k 1 k 2 k 3} \omega_{n 1}^{j 1 k 1} \omega_{n 2}^{j 2 k 2} \omega_{n 3}^{j 3 k 3} \\
, j_{1}=0,1, \ldots, n_{1}-1  \tag{4}\\
, j_{2}=0,1, \ldots, n_{2}-1 \\
\quad, j_{3}=0,1, \ldots, n_{3}-1
\end{gather*}
$$

where, $\omega_{n 1}=\exp \left(2 \pi i / n_{1}\right), \omega_{n 2}=\exp \left(2 \pi i / n_{2}\right), \omega_{n 3}=\exp \left(2 \pi i / n_{3}\right)$.

This routine calculates $\left\{n_{1} n_{2} n_{3} \alpha_{k 122 k 3}\right\}$ or $\left\{x_{j \mid 2 j / j}\right\}$ corresponding to the left term of (3) or (4), respectively. The normalization of the results may be required.

## complex conjugate relation

The results of the three-dimensional real Fourier transform has the following complex conjugate relation (indicated by ${ }^{-}$).
$\alpha_{k 122 k 3}=\overline{\alpha_{n 1-k 1 n 2-k 2 n 3-k 3}}$
The remainder of the data is obtained from data in $k_{1}=0, \ldots, n_{1} / 2, k_{1}=0, \ldots, n_{2}-1$, and $k_{3}=0, \ldots, n_{3}-1$.

## 4. Example program

A three-dimensional real FFT is computed.

```
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "cssl.h" /* standard C-SSL header file */
#define max(a,b) ((a) > (b) ? (a) : (b))
#define N1 (128)
#define N2 (N1)
#define N3 (N1)
#define K1 ((N1/2+1)*2)
#define K2 (N2+1)
MAIN__()
{
 double x[N3][K2][K1], xx[N3][K2][K1], tmp;
 int isin, isn, icon, i, j, k;
 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++) {
 xx[i][j][k] = x[i][j][k] = (double)(N1*N2*i+N1*j+k+1);
 }
 }
 }
```

```
 isin = 1;
 isn = 1;
 c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);
 isn = -1;
 c_dm_v3drcf2((double*)x, K1, K2, N1, N2, N3, isin, isn, &icon);
 printf("icon = %d\n", icon);
 tmp = 0.0;
 for (i=0; i<N3; i++) {
 for (j=0; j<N2; j++) {
 for (k=0; k<N1; k++) {
 tmp = max(fabs(x[i][j][k]/(double)N1/(double)N2/(double)N3-xx[i][j][k]),tmp);
 }
 }
 printf("error = %e\n", tmp);
 return(0);
}
```


## 5. Method

Consult the entry for DM_V3DRCF2 in the Fortran SSL II Thread-Parallel Capabilities User's Guide.

## Bibliography

[1] P.AMESTOY, M.DAYDE and I.DUFF
Use of computational kernels in the solution of full and sparse linear equations, M.COSNARD, Y.ROBERT,
Q.QUINTON and M.RAYNAL, PARALLEL \& DISTRIBUTED ALGORITHMS, North-Holland, 1989, pp.13-19.
[2] P.R.AMESTOY and C.PUGLISH
AN UNSYMMETRIZED MULTIFRONTAL LU FACTORIZATION, SIAM J. MATRIX ANAL. APPL. Vol. 24, No. 2, pp. 553-569, 2002
[3] A.A.Anda and H.Park
Fast Plane Rotations with Dynamic Scaling, to appear in SIAM J. Matrix Analysis and Applications, 1994.
[4] S.L.Anderson
Random number generators on vector supercomputers and other advanced architectures, SIAM Rev. 32 (1990), 221251.
[5] C.Ashcraft
The distributed solution of linear systems using the torus wrap data mapping, Tech. Report ECA-TR-147, Boeing Computer Services, October 1990.
[6] O.Axelsson and M.Neytcheva
Algebraic multilevel iteration method for Stieltjes matrices. Num. Lin. Alg. Appl., 1:213-236, 1994.
[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.
[8] Ǎ.Björck
Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7:1-21,1967.
[9] R.P.Brent
Uniform random number generators for supercomputers, Proc. Fifth Australian Supercomputer Conference, Melbourne, Dec. 1992, 95-104.
[10] R.P.Brent
Uniform random number generators for vector and parallel computers, Report TR-CS-92-02, Computer Sciences Laboratory, Australian National University, Canberra, March 1992
[11] R.P.Brent
Fast normal random number generators on vector processors, Technical Report TR-CS-93-04, Computer Sciences Laboratory, Australian National University, Canberra, March 1993.
[12] R.P.Brent
A Fast Vectorised Implementation of Wallace's Normal Random Number Generator, Technical Report, Computer Sciences Laboratory, Australian National University, to appear.
[13] R.Burkard, M.Dell'Amico and S.Martello
Assignment Problems, SIAM Philadelphia, 2009
[14] J.Choi, J.Dongarra, R.Pozo, and D.Walker
ScaLAPACK : A scalable linear algebra library for distributed memory concurrent computers., Technical Report 53, LAPACK Working Note, 1993.
[15] A.Cleary
A comparison of algorithms for Cholesky factorization on a massively parallel MIMD computer, Parallel Processing for Scientific Computing, 1991.
[16] A.Cleary
A Scalable Algorithm for Triangular System Solution Using the Torus Wrap Mapping, ANU-CMA Tech Report, series 1994.
[17] T.H.CORMEN, C.E.LEISERSON, R.L.RIVEST and C.STEIN
INTRODUCTION TO ALGORITHMS, SECOND EDITION, The MIT Press, 2001
[18] J.K.Cullum and R.A.Willoughby
"Lanczos algorithm for large symmetric eigenvalue computations", Birkhauser, 1985.
[19] T.Davis
Direct Methods for Sparse Linear Systems, SIAM 2006.
[20] J.Demmel and W.Kahan
Accurate singular values of bidiagonal matrices, SISSC 11, 873-912, 1990.
[21] J.J.Dongarra and R.A.Van de Geijn
Reduction to condensed form for the eigenvalue problem on distributed memory architectures, Parallel Computing, 18, pp.973-982, 1992.
[22] I.S.DUFF, A.M.ERISMAN and J.K.REID
Direct Methods for Sparse Matrices, OXFORD SCIENCE PUBLICATIONS, 1986
[23] I.S.DUFF and J.KOSTER
ON ALGORITHMS FOR PERMUTING LARGE ENTRIES TO THE DIAGONAL OF A SPARSE MATRIX,
SIAM J. MATRIX ANAL. APPL. Vol. 22, No. 4, pp. 973-996, 2001
[24] A.M.Ferrenberg, D.P.Landau and Y.J.Wong
Monte Carlo simulations: Hidden errors from "good" random number generators, Phys. Rev. Lett. 69 (1992), 33823384.
[25] G.Fox
Square matrix decomposition - Symmetric, local, scattered, CalTech Publication Hm-97, California Institute of Technology, Pasadena, CA, 1985.
[26] R.Freund
"A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems", SIAM J.Sci.Comput. 14, 1993, pp.470-482.
[27] R.Freund and N.Nachtigal
"QMR: a quasi minimal resudual method for non-Hermitian linear systems", Numer. Math. 60, 1991, pp.315-339.
[28] K.A.Gallivan, R.J.Plemmons, and A.H.Sameh
Parallel Algorithms for Dense Linear Algebra Computations, SIAM Review, 1990.
[29] Martin B. van Gijzen and Peter Sonneveld
"An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties",
Delft university of technology, Report 08-21, 2008.
[30] G.H.Golub, C.F.van Loan
Matrix Computations Second Edition, The Johns Hopkins University Press, 1989.
[31] Marcus J. Grote and Thomas Huckle
"Parallel preconditioning with sparse approximate inverse",
SIAM J. Sci. Comput., Vol.18, No.3, pp838-853, May 1997.
[32] M.H.Gutknecht
Variants of BiCGStab for matrices with complex spectrum,IPS Research report No. 91-14, 1991.
[33] E. Hairer, S.P.Norsett, and G. Wanner
"Solving Ordinary Differential Equations I: Nonstiff Problems." Second Revised Edition, Springer, 2000.
[34] E. Hairer, and G. Wanner
"Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems." Second Revised Edition, Springer, 2002
[35] Markus Hegland
An implementation of multiple and multi-variate Fourier transforms on vector processors, submitted to SIAM J.Sci.
Comput., 1992.
[36] Markus Hegland
Block Algorithms for FFTs on Vector and Parallel Computers. PARCO 93, Grenoble, 1993.
[37] Markus Hegland
On the parallel solution of tridiagonal systems by wrap-around partitioning and incomplete LU factorization, Numer. Math. 59, 453-472, 1991.
[38] B.Hendrickson and D.Womble
The torus-wrap mapping for dense matrix calculations on massively parallel computers, SAND Report SAND 920792, Sandia National Laboratories, Albuquerque, NM, 1992.
[39] J.R.Heringa, H.W.J.Blöte and A.Compagner
New primitive trinomials of Mersenne-exponent degrees for random-number generation, International J. of Modern Physics C 3 (1992), 561-564.
[40] F. J ames
A review of pseudorandom number generators, Computer Physics Communications 60 (1990), 329-344.
[41] G.KARYPIS AND V.KUMAR
A fast and high quality multilevel scheme for partitioning irregurar graphs, SIAM J. Sci. Comput., 20 pp.359-392, 1998
[42] G.KARYPIS AND V.KUMAR
METIS
A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices
Version 4.0
University of Minnesota, Department of Computer Science / Army HPC Research Center
Minneapolis, MN 55455
Septenmber 20, 1998
[43] D.Kincaid, T.Oppe
ITPACK on supercomputers, Numerical methods, Lecture Notes in Mathematics 1005 (1982).
[44] D.E.Knuth
The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second edition). Addison-Wesley, Menlo Park, 1981, Sec. 3.4.1, Algorithm P.
[45] Z.Leyk
Modified generalized conjugate residuals for nonsymmetric systems of linear equations, in Proceedings of the 6th Biennial Conference on Computational Techniques and Applications: CTAC93, D.Stewart, H.Gardner and D.Singleton, eds., World Scientific, 1994, pp.338-344. Also published as CMA Research Report CMA-MR33-93, Australian National University, 1993.
[46] X.S.Li AND J.W.DEMMEL
A scalable sparse direct solver using static pivoting, in Proceedings of the Ninth SIAM Conference on Parallel
Processing for Scientific Computing, San Antonio, Texas, 1999, CD-ROM, SIAM, Philadelphia, PA, 1999
[47] Charles Van Loan
Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.
[48] F.T.Luk
Computing the Singular-Value Decomposition on the ILIAC IV, ACM Trans. Math. Softw., 6, 1980, pp.259-273.
[49] F.T.Luk and H.Park
On Parallel Jacobi Orderings, SIAM J.Sci. Comput., 10, 1989, pp.18-26.
[50] N.K.Madsen, G.h.Rodrigue, and J.I.Karush
"Matrix multiplication by diagonals on a vector/parallel processor", Information Processing Letters, vol.5, 1976, pp.41-45.
[51] G.Marsaglia
A current view of random number genetators, Computer Science and Statistics: The Interface (edited by L.Billard), Elsevier Science Publishers B.V. (North-Holland), 1985, 3-10.
[52] M.Nakanishi, H.Ina, K.Miura
A high performance linear equation solver on the VPP500 parallel supercomputer, Proceedings of Supercomputing' 94, Washington D.C., Nov. 1994.
[53] M.OLSCHOWKA and A.NEUMAIER
A new pivoting strategy for Gaussian elimination, Linear Algebra Appl., 240(1996), pp.131-151
[54] T.Oppe, W.Joubert and D.Kincaid
An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package, Computer Physics communications 53 p283 (1989).
[55] T.C.Oppe and D.R.Kincaid
"Are there iterative BLAS?", Int. J. Sci. Comput. Modeling (to appear or has appeared).
[56] M.R.Osborne
Solving least squares problems on parallel vector processors, Area 4 working notes no. 17, 1994.
[57] M.R.Osborne
Computing the eigenvalues of tridiagonal matrices on parallel vector processors, Mathematics Research Report No. MRR 044-94, Australian National University, 1994.
[58] J.R.Rice and R.F.Boisvert
Solving Elliptic Problems Using Ellpack, Springer-Verlang, New York, 1985.
[59] D. Ruiz
A scaling algorithm to equilibrate both rows and columns norms in matrices, Tech. rep. RAL-TR-2001-034, Rutherford Appleton Laboratory, Chilton, U.K., 2001
[60] Y.Saad
ILUT: A dual threshold incomplete LU factorization.Research Report UMSI 92/38, University of Minnesota,
Supercomputer Institute, 1200 Washington Avenue South, Minneapolis, Minnesota 55415, USA, 1992.
[61] Y.Saad
ILUM: A multi-elimination ILU preconditioner for general sparse 591 matrices. SIAM J. Sci. Comput., 17:830-847, 1996.
[62] Y.Saad
"Iterative methods for sparse linear systems, second edition",
Univ.Minnesota,SIAM, 2003
[63] Y.Saad and M.H.Schultz
"GMRES : a generalized minimal residual algorithm for solving nonsymmetric linear systems", SIAM J. Sci. Stat.
Comput. 7, 1986, p.856-869.
[64] O.Schenk , K. Gärtner
Solving unsymmetric sparse systems of linear equations with PARDISO, Future Generation Computer Systems 20(2004)475-487
[65] J.A.SCOTT
Scaling and Pivoting in an Out-of-Core Sparse Direct Solver
ACM Transactions on Mathematical Software, Vol. 37, No. 2, Article 19, April 2010
[66] H.D.Simon
Bisection is not optimal on vector processors, SISSC 10, 205-209, 1989.
[67] G. Sleijpen, D. Fokkema
BCG for linear equations involving unsymmetric matrices with complex spectrum, Electronic Transactions on
Numerical Analysis, 1 p11 1993
[68] Gerard L.G. Sleijpen and Martin B. van Gijzen
"Exploiting BICGSTAB(1) Strategies to Induce Dimension Reduction", Delft university of technology, Report 09-02, 2009.
[69] Gerard L.G. Sleijpen and Martin B. van Gijzen
"Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems." Second Revised Edition, Springer, 2002
[70] Tomohiro Sogabe,Shao-Liang Zhang
"A COCR method for solving complex symmetric linear systems", Journal of Computational and SIAM Applied Mathematics,199(2007)297-303.
[71] J.C. Strikwerda
Finite Difference Schemes and Partial Differential Equations. Wadsworth and Brooks/Cole, Pacific Grove, 1989.
[72] Paul N.Swarztrauber
Multiprocessor FFTs. Parallel Comput. 5, 197-210, 1987.
[73] H.A.Van Der Vorst
"BCG: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems", SIAM J. Sci. Statist. Comput., 13 p631 1992
[74] C.S.Wallace
"Fast Pseudo-Random Generators for Normal and Exponential Variates", ACM Trans. on Mathematical Software 22 (1996), 119-127.
[75] R.Weiss
Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie Verlag, Berlin, 1996.
[76] J.H.Wilkinson
The Algebraic Eigenvalue Problem, O.U.P., 1965.
[77] B.B.Zhou and R.P.Brent
A Parallel Ordering Algorithm for Efficient One-Sided Jacobi SVD Computations, to appear in Proc. Sixty
IASTED-ISMM International Conference on Parallel and Distributed Computing Systems, 1994.
[78] K. Miura
Full Polynomial Multiple Recursive Generator(MRG) Revisited, MCQMC 2006, Ulm, Germany
[79] Kenta Hongo, Ryo Maezono, and Kenichi Miura
Random Number Generators Tested on Quantum Monte Carlo Simulations, Journal of Computational Chemistry, 31, 2186-2194, 2010
[80] P. L'Ecuyer and R. Simard
TestU01: A C Library for Empirical Testing of Random Number Generators, ACM Transactions on Mathematical Software, Vol. 33, article 22, 2007.

