

FUJITSU Software

FUJITSU
SSL II Thread-Parallel Capabilities
User's Guide
(Scientific Subroutine Library)

J2UL-2486-02ENZ0(00)
March 2020

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) ii

Preface

This manual describes the functions and usage of the Scientific Subroutine Library II Thread-Parallel
Capabilities.

SSL II Thread-Parallel Capabilities provide the computational functionality to efficiently compute or
solve large-scale problems on a shared-memory parallel computer with scalar processors. New
algorithms for parallel processing have been adopted.

The interfaces of subroutines are generally different from those used in the SSL II, SSLII/VP, SSL
II/VPP or SSL II/HPF. This manual describes the usage of these subroutines.

Additionally, the SSL II Thread-Parallel Capabilities include some thread-parallelized routines
derived from existing sequential SSL II double precision routines. The initial characters of these
thread-parallelized routine names start with “DM_” to be distinguished from the sequential double
precision routine names starting with “D”. These routines can be used with the identical arguments
with the sequential version. For the list of the thread-parallelized routines, refer to the section 2,
“Thread-Parallelized routines from sequential SSL II functions” in “SSL II Thread-Parallel
Capabilities Subroutines list” in this manual. And for each usage of them, refer to SSL II manuals of
the sequential version.

This manual consists of two parts.

Part I General Description

General rules which should be kept in mind when using SSL II Thread-Parallel Capabilities are
outlined.

Part II Usage of Subroutines

The functions and usage of each subroutine are described in alphabetical order of their subroutine
names.

Readers of this manual are assumed to be familiar with the OpenMP Fortran. For details of the
OpenMP Fortran specification, refer to “OpenMP Application Program Interface Version 2.5 May
2005.”

For details of Fujitsu OpenMP Fortran compiler, refer to the Fortran User’s Guide.

For how to store a sparse matrix and convergence of iterative methods, refer to the FUJITSU SSL II
Extended Capabilities User’s Guide II.

SSL II Thread-Parallel Capabilities include some functions using codes and algorithms, with
appropriate modifications, which have been developed for SSL II/VPP. SSL II/VPP is the library
developed in collaboration with the Australian National University (ANU). Development at the
ANU has been led by professors Mike Osborne and Richard Brent and coordinated by Dr. Bob
Gingold, Head, ANU Supercomputer Facility. The following is a complete list of those ANU experts
involved in the design and implementation of SSL II/VPP. Fujitsu acknowledges their cooperation.

Professor Richard Peirce Brent
Dr Andrew James Cleary
Dr Murray Leslie Dow
Mr Christopher Robert Dun
Dr Lutz Grosz

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) iii

Dr David Lawrence Harrar II
Dr Markus Hegland
Ms Judith Helen Jenkinson
Dr Margaret Helen Kahn
Dr Zbigniew Leyk
Mr David John Miron
Professor Michael Robert Osborne
Dr Peter Frederick Price
Dr Stephen Gwyn Roberts
Dr David Barry Singleton
Dr David Edward Stewart
Dr Bing Bing Zhou

Note

The asterisks in the table of contents and the subroutine list of this manual indicate items added or
changed from the previous edition.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the
regulations of your resident country and/or US export control laws.

Date of Publication and Version

Version Manual code
March 2020, 19th Version J2UL-2486-02ENZ0(00)
January 2020, 18th Version J2UL-2486-01ENZ0(00)
June 2016, 17th Version J2UL-2070-02ENZ0(00)
September 2015, 16th Version J2UL-2070-01ENZ0(00)
October 2014, 15th Version J2UL-1906-01ENZ0(00)
March 2014, 14th Version J2UL-1793-02ENZ0(00)
June 2013, 13th Version ―
February 2012, 12th Version ―
December 2011, 11th Version ―
February 2009, 10th Version ―
February 2008, 9th Version ―
April 2007 8th Version ―
March 2006 7th Version ―
June 2005, 6th Version ―
September 2004, 5th Version ―
December 2003, 4th Version ―
December 2002, 3rd Version ―
March 2002, 2nd Version ―
December 2000, 1st Version ―

Copyright

Copyright FUJITSU LIMITED 2000-2020

iv FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Update History

Changes Location Version
Option name “-KOMP” is corrected to “-Kopenmp” 2.4 How to Use SSL II

Thread Parallel
Capabilities

13th Version

A note related to the Neumann preconditioner is
appended.

dm_vcgd, dm_vcge

The following routine was added.
• DM_VSRLU
• DM_VSRLUX
• DM_VSRS

SSL II Thread-Parallel
Capabilities
Subroutine List,
Usage of Subroutines

14th Version

Rework format Cover, Preface 15th Version
The following routine was added.
• DM_VMVSCCC
• DM_VRANU5
• DM_VSCLU
• DM_VSCLUX
• DM_VSCS

SSL II Thread-Parallel
Capabilities
Subroutine List,
Usage of Subroutines

16th Version

Correction lack of description DM_VSCHOL,
DM_VSSPS

Correction of a slip of the pen DM_VSRS, DM_VSRLU,
DM_VSRLUX

The following routine was added.
• DM_VSSSLU
• DM_VSSSLUX
• DM_VSSSS

SSL II Thread-Parallel
Capabilities
Subroutine List,
Usage of Subroutines

17th Version

Correction of a wrong word DM_VRANU5,
DM_VSCLUX,
DM_VSRLUX

Correction of wrong sentences SSL II Thread-Parallel
Capabilities
Subroutine List,
DM_VAMLID,
DM_VHTRID,
DM_VLCSPSXCR1,
DM_VLSPAXCR2,
DM_VMLBIFE,
DM_VRADAU5,
DM_VRANU4,
DM_VRANU5,
DM_VSCLU,
DM_VSCS,
DM_VSRLU,
DM_VSRS,
DM_VSSSLU,
DM_VSSSLUX,
DM_VSSSS,
References

18th Version

The explanation for the size of stack area for each
thread is updated.

2.4 How to Use SSL II
Thread Parallel
Capabilities

Changed the look according to product upgrades. - 19th Version

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) vii

SSL II Thread-Parallel Capabilities
Subroutine List

1. Thread-Parallel routines adopting parallel algorithms for SMP
This manual describes the usage of the following thread-parallel routines adopting parallel
algorithms suited for SMP machines.

Matrix operations

Subroutine name Item Page

DM_VMGGM Matrix multiplication (real matrix) II-149

DM_VMVSCC Multiplication of a real sparse matrix and a real vector
(compressed column storage method)

II-167

DM_VMVSCCC Multiplication of a complex sparse matrix and a complex
vector (compressed column storage method)

II-171

DM_VMVSD Multiplication of a real sparse matrix and a real vector
(diagonal format storage method)

II-174

DM_VMVSE Multiplication of a real sparse matrix and a real vector
(ELLPACK format storage method)

II-177

Linear equations (Direct method)

Subroutine name Item Page

DM_VLAX A system of linear equations with real matrices (blocked
LU decomposition method)

II-104

DM_VALU LU decomposition of real matrices (blocked LU
decomposition method)

II-1

DM_VLUX A system of linear equations with LU-decomposed real
matrices

II-146

DM_VLSX A system of linear equations with symmetric positive
definite matrices (blocked modified Cholesky
decomposition method)

II-142

DM_VSLDL LDLT decomposition of symmetric positive definite
matrices (blocked modified Cholesky decomposition
method)

II-318

DM_VLDLX A system of linear equations with LDLT-decomposed
symmetric positive definite matrices

II-125

DM_VLCX A system of linear equations with complex matrices
(blocked LU decomposition method)

II-122

DM_VCLU LU decomposition of complex matrices (blocked LU
decomposition method)

II-61

Contents

viii FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Subroutine name Item Page

DM_VCLUX A system of linear equations with LU-decomposed
complex matrices

II-65

DM_VLBX A system of linear equations with banded real matrices
(Gaussian elimination)

II-107

DM_VBLU LU decomposition of banded real matrices (Gaussian
elimination)

II-37

DM_VBLUX A system of linear equations with LU-decomposed
banded real matrices

II-43

DM_VSSPS A system of linear equations with symmetric positive
definite sparse matrices (Left-looking LDLT
decomposition method)

II-372

DM_VSCHOL LDLT decomposition of a symmetric positive definite
sparse matrices (Left-looking Cholesky decomposition
method)

II-238

DM_VSCHOLX A system of linear equations with LDLT-decomposed
symmetric positive definite sparse matrices

II-251

DM_VSRS A system of linear equations with unsymmetric real
sparse matrices (LU decomposition method)

II-354

DM_VSRLU LU decomposition of an unsymmetric real sparse matrix II-322

DM_VSRLUX A system of linear equations with LU-decomposed
unsymmetric real sparse matrices

II-340

DM_VSCS A system of linear equations with unsymmetric complex
sparse matrices (LU decomposition method)

II-294

DM_VSCLU LU decomposition of an unsymmetric complex sparse
matrix

II-261

DM_VSCLUX A system of linear equations with LU-decomposed
unsymmetric complex sparse matrices

II-279

DM_VSSSS * A system of linear equations with structurally symmetric
real sparse matrices (LU decomposition method)

II-414

DM_VSSSLU * LU decomposition of a structurally symmetric real
sparse matrix

II-385

DM_VSSSLUX * A system of linear equations with LU-decomposed
structurally symmetric real sparse matrices

II-401

Linear equations (Iterative method)

Subroutine name Item Page

DM_VCGD A system of linear equations with symmetric positive
definite sparse matrices (preconditioned CG method,
diagonal format storage method)

II-47

DM_VCGE A system of linear equations with symmetric positive
definite sparse matrices (preconditioned CG method,
ELLPACK format storage method)

II-54

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) ix

Subroutine name Item Page

DM_VBCSCC A system of linear equations with unsymmetric positive
definite sparse matrices (BICGSTAB(l) method,
compressed column storage method)

II-15

DM_VBCSD A system of linear equations with unsymmetric or
indefinite sparse matrices (BICGSTAB(l) method,
diagonal format storage method)

II-23

DM_VBCSE A system of linear equations with unsymmetric or
indefinite sparse matrices (BICGSTAB(l) method,
ELLPACK format storage method)

II-30

DM_VTFQD A system of linear equations with unsymmetric or
indefinite sparse matrices (TFQMR method, diagonal
format storage method)

II-437

DM_VTFQE A system of linear equations with unsymmetric or
indefinite sparse matrices (TFQMR method, ELLPACK
format storage method)

II-444

DM_VAMLID System of linear equations with sparse matrices of M-
matrix (Algebraic multilevel iteration method [AMLI
Method], diagonal format storage method)

II-5

DM_VMLBIFE System of linear equations with sparse matrices
(Multilevel iteration method based on incomplete block
factorization, ELLPACK format storage method)

II-154

DM_VLCSPSXCR1 System of linear equations with non-Hermitian
symmetric complex sparse matrices
 (Conjugate A-Orthogonal Conjugate Residual method
with preconditioning by incomplete LDLT

decomposition, symmetric compressed row storage
method)

II-113

DM_VLSPAXCR2 System of linear equations with unsymmetric real sparse
matrices
(Induced Dimension Reduction method with
preconditioning by sparse approximate inverse,
compressed row storage method)

II-129

Differential equations

Subroutine name Item Page

DM_VRADAU5 System of stiff ordinary differential equations or
differential-algebraic equations (Implicit Runge-Kutta
method)

II-193

Discretization of partial differential equation

Subroutine name Item Page

DM_VPDE2D Generation of System of linear equations with sparse
matrices by the finite difference discretization of a two
dimensional boundary value problem for second order
partial differential equation

II-180

Contents

x FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Subroutine name Item Page

DM_VPDE3D Generation of System of linear equations with sparse
matrices by the finite difference discretization of a three
dimensional boundary value problem for second order
partial differential equation

II-186

Inverse matrices

Subroutine name Item Page

DM_VMINV Inverse of real matrices (blocked Gauss-Jordan method) II-152

DM_VCMINV Inverse of complex matrices (blocked Gauss-Jordan
method)

II-68

Eigenvalue problem

Subroutine name Item Page

DM_VSEVPH Eigenvalues and eigenvectors of a real symmetric matrix
(tridiagonalization, multisection method, inverse
iteration)

II-313

DM_VHEVP Eigenvalues and eigenvectors of Hermite matrices II-76

DM_VTDEVC Eigenvalues and eigenvectors of real tridiagonal matrices II-431

DM_VGEVPH Generalized eigenvalue problem for real symmetric
matrices (eigenvalues and eigenvectors)
(tridiagonalization, multisection method, inverse
iteration)

II-70

DM_VTRID Tridiagonalization of real symmetric matrices. II-450

DM_VHTRID Tridiagonalization of Hermite matrices. II-81

DM_VJDHECR Eigenvalues and eigenvectors of an Hermitian sparse
matrix (Jacobi-Davidson method, compressed row
storage method)

II-84

DM_VJDNHCR Eigenvalues and eigenvectors of a complex sparse matrix
(Jacobi-Davidson method, compressed row storage
method)

II-94

Fourier transforms

Subroutine name Item Page

DM_V1DCFT One-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7)

II-453

DM_V1DCFT2 One-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7)

II-457

DM_V1DMCFT One-dimensional multiple discrete complex Fourier
transforms (mixed radix of 2, 3, 5 and 7)

II-460

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) xi

Subroutine name Item Page

DM_V2DCFT Two-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7)

II-463

DM_V3DCFT Three-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7)

II-467

DM_V3DCFT2 Three-dimensional discrete complex Fourier transforms
(mixed radix of 2, 3, 5 and 7)

II-471

DM_V1DRCF One-dimensional discrete real Fourier transforms (mixed
radix of 2, 3, 5 and 7)

II-475

DM_V1DRCF2 One-dimensional discrete real Fourier transforms (mixed
radix of 2, 3, 5 and 7)

II-480

DM_V2DRCF Two-dimensional discrete real Fourier transforms (mixed
radix of 2, 3, 5 and 7)

II-483

DM_V3DRCF Three-dimensional discrete real Fourier transforms
(mixed radix of 2, 3, 5 and 7)

II-487

DM_V3DRCF2 Three-dimensional discrete real Fourier transforms
(mixed radix of 2, 3, 5 and 7)

II-491

DM_V3DCPF Three-dimensional prime factor discrete complex Fourier
transforms.

II-495

Random numbers

Subroutine name Item Page

DM_VRANU4 Generation of uniform random numbers [0,1) II-226

DM_VRANU5 Generation of uniform random numbers [0,1) (MRG8) II-232

DM_VRANN3 Generation of normal random numbers II-218

DM_VRANN4 Generation of normal random numbers (Wallace’s
method)

II-222

Contents

xii FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

2. Thread-Parallelized routines from sequential SSL II functions
This section lists thread-parallelized routines derived from sequential SSL II. The names of these
routines begin with "DM_" instead of the initial letter "D" of the sequential SSL II double-
precision routine names. These routines can be used with the identical arguments with the
sequential version.

2.1 from Standard capabilities

Refer to the FUJITSU SSL II User’s Guide when using the following routines.

Matrix manipulation

Subroutine name Item

DM_VMAV Multiplication of a real matrix by a real vector

DM_VMCV Multiplication of a complex matrix by a complex vector

Least squares solution

Subroutine name Item

DM_VLAXL Least squares solution with a real matrix (Householder
transformation)

DM_VLAXLM Least squares minimal norm solution with a real matrix (Singular
value decomposition method)

DM_GINV Generalized Inverse of a real matrix (Singular value decomposition
method)

DM_ASVD1 Singular value decomposition of a real matrix (Householder and QR
methods)

Eigenvalues and eigenvectors

Subroutine name Item

DM_EIG1 Eigenvalues and corresponding eigenvectors of a real matrix
(double QR method)

DM_HSQR Eigenvalues of a real Hessenberg matrix (double QR method)

DM_HVEC Eigenvectors of a real Hessenberg matrix (Inverse iteration method)

DM_CHVEC Eigenvectors of a complex Hessenberg matrix (Inverse iteration
method)

DM_BLNC Balancing of a real matrix

DM_CBLNC Balancing of a complex matrix

DM_HES1 Reduction of a real matrix to a real Hessenberg matrix (Householder
method)

DM_CHES2 Reduction of a complex matrix to a complex Hessenberg matrix
(Stabilized elementary transformation)

DM_HBK1 Back transformation and normalization of the eigenvectors of a real
Hessenberg matrix to the eigenvectors of the original matrix

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) xiii

Subroutine name Item

DM_CHBK2 Back transformation of the eigenvectors of a complex Hessenberg
matrix to the eigenvectors of the original matrix

DM_NRML Normalization of eigenvectors

DM_CNRML Normalization of eigenvectors of a complex matrix

2.2 from Extended capabilities

Refer to the FUJITSU SSL II Extended Capabilities User’s Guide II when using the following
routines

Eigenvalues and eigenvectors

Subroutine name Item

DM_VLAND Eigenvalues and eigenvectors of a real symmetric sparse matrix
(Lanczos method, diagonal storage format)

Transforms

Subroutine name Item

DM_VMCST Discrete cosine transform

DM_VMSNT Discrete sine transform

DM_VCCVF Discrete convolution or correlation of complex data

DM_VRCVF Discrete convolution or correlation of real data

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) xiv

Contents

Preface ii

SSL II Thread-Parallel Capabilities Subroutine List vii

Contents xiv

Part I General Descriptions

Chapter 1 Outline I-1

Chapter 2 General rules I-3

2.1 Precision of Subroutines ... I-3

2.2 Subroutine Names ... I-3

2.3 Parameters ... I-3

2.4 How to Use SSL II Thread Parallel Capabilities .. I-3

2.5 Condition Codes .. I-7

Part II Usage of Subroutines

DM_VALU .. II-1

DM_VAMLID .. II-5

DM_VBCSCC ... II-15

DM_VBCSD .. II-23

DM_VBCSE .. II-30

DM_VBLU .. II-37

DM_VBLUX ... II-43

DM_VCGD ... II-47

DM_VCGE .. II-54

DM_VCLU .. II-61

DM_VCLUX ... II-65

DM_VCMINV .. II-68

DM_VGEVPH .. II-70

DM_VHEVP ... II-76

DM_VHTRID ... II-81

DM_VJDHECR .. II-84

DM_VJDNHCR .. II-94

DM_VLAX .. II-104

DM_VLBX .. II-107

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) xv

DM_VLCSPSXCR1 ... II-113

DM_VLCX .. II-122

DM_VLDLX ... II-125

DM_VLSPAXCR2 ... II-129

DM_VLSX .. II-142

DM_VLUX .. II-146

DM_VMGGM .. II-149

DM_VMINV ... II-152

DM_VMLBIFE .. II-154

DM_VMVSCC .. II-167

DM_VMVSCCC ... II-171

DM_VMVSD .. II-174

DM_VMVSE ... II-177

DM_VPDE2D ... II-180

DM_VPDE3D ... II-186

DM_VRADAU5 .. II-193

DM_VRANN3 ... II-218

DM_VRANN4 ... II-222

DM_VRANU4 ... II-226

DM_VRANU5 ... II-232

DM_VSCHOL .. II-238

DM_VSCHOLX ... II-251

DM_VSCLU .. II-261

DM_VSCLUX ... II-279

DM_VSCS ... II-294

DM_VSEVPH ... II-313

DM_VSLDL .. II-318

DM_VSRLU .. II-322

DM_VSRLUX ... II-340

DM_VSRS ... II-354

DM_VSSPS ... II-372

DM_VSSSLU .. II-385 *

DM_VSSSLUX ... II-401 *

DM_VSSSS ... II-414 *

DM_VTDEVC .. II-431

DM_VTFQD ... II-437

DM_VTFQE ... II-444

DM_VTRID .. II-450

DM_V1DCFT ... II-453

DM_V1DCFT2 ... II-457

Contents

xvi FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_V1DMCFT .. II-460

DM_V2DCFT ... II-463

DM_V3DCFT ... II-467

DM_V3DCFT2 ... II-471

DM_V1DRCF ... II-475

DM_V1DRCF2 ... II-480

DM_V2DRCF ... II-483

DM_V3DRCF ... II-487

DM_V3DRCF2 ... II-491

DM_V3DCPF .. II-495

Appendixes

Appendix A References A-1

Appendix B Contributors and Their Work B-1

Part I
General Descriptions

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) I-1

Chapter 1
Outline

SSLII Thread-Parallel Capabilities is a parallel mathematical subroutine library to execute on
a shared-memory parallel computer with scalar processors. The library provides subroutines
to efficiently compute such large-scale problems by parallel processing that are intractable on
a single processor.

 Each subroutine in the library is supplied as a subroutine written in OpenMP Fortran and can
be called by a CALL statement in OpenMP Fortran environment.

 The mechanism of "Thread-Parallel" means that multiple execution flows, each of which is
called a thread, share the calculation where each thread is responsible for undertaking pieces
of calculation using one CPU in the shared memory system. If the number of created threads
is less or equal to the number of CPU available, the process can be executed by threads in
parallel with all threads carried out by separated CPU. This Thread-Parallel mechanism
enables a calculation to be divided into multiple parallel executions (as far as the algorithm
could be parallelized).

 Each subroutine of SSL II Thread-Parallel Capabilities creates multiple threads internally
and solves the problem with a parallel algorithm with these threads. Where, the creation and
extinction of the threads, work-sharing constructs and synchronization are directed with
OpenMP Fortran specifications. Therefore SSL II Thread-Parallel Capabilities need the run-
time execution environment of the OpenMP Fortran.

 The number of the threads used by a subroutine of SSL II Thread-Parallel Capabilities can be
assigned by the user with OpenMP environment variables or run-time library routines. With
these, the subroutine can be executed by as any number of threads as specified.

 The scope of functionality, subroutine names, and calling interface of SSL II Thread-Parallel
Capabilities are different from those used in the mathematical library SSL II, SSLII/VP, SSL
II/VPP or SSL II/HPF.

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) I-3

Chapter 2
General rules

2.1 Precision of Subroutines
SSL II Thread-Parallel Capabilities provides subroutines of double precision only.

2.2 Subroutine Names
 The subroutine names that are callable by the user begin with DM_V, and the names of
slave subroutines which are called internally begin with DM_U or DL_. And there is an
auxiliary subroutine DMACH.

 This manual describes the usage of the subroutines which are callable by the user.

2.3 Parameters
(1) Order of parameter sequence

 In general, the order of parameter sequence is the same as that in standard SSL II:

 (input and output parameter list, input parameter list, output parameter list, ICON)

(2) Parameter types

 Parameters beginning with I, J, K, L, M, or N are of 4-byte integer type. Parameters
beginning with other characters are of double precision type or double precision complex
type.

2.4 How to Use SSL II Thread Parallel Capabilities
(1) Positions of the CALL statements

 SSL II Thread-Parallel Capabilities consist of OpenMP subroutines which can be called
from both inside and outside of the OpenMP parallel regions in user programs. And these
subroutines also can be called from serial programs without OpenMP directives, and also
they can be called from programs that are auto-parallelized by the Fortran compiler.

 In cases where the subroutine is called from inside of the parallel region, it is necessary
that every actual argument as input and output, out put and work areas which is dealt with
by each thread must be mapped to different memory area respectively.

 In every calling case above, the frt command option "-Kopenmp" must be specified at
the time the compiled user program is to be linked with SSL II Thread-Parallel
Capabilities. The load module can be OpenMP executable with this option. Refer to
"Fortran User's Guide" for details.

(2) How to specify the number of threads

 A subroutine of SSL II Thread-Parallel Capabilities is executed by multiple threads in
parallel within parallel region which is created internal of the subroutine. The number of
threads used by the subroutine can be assigned by the user with an OpenMP environment
variable "OMP_NUM_THREADS" or a run-time library routine

General rules

I-4 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

"OMP_SET_NUM_THREADS()". Usually, specify the number of threads in the former
way.

 The run-time library routine can be used in situations where the user wants to assign a
specific number of threads for the parallel region. Specifying the number of threads with
this run-time routine just before the SSL II Thread-Parallel subroutine makes it possible
to execute the subroutine with a specific number of threads.

 Refer to "Fortran User's Guide" and " OpenMP Application Program Interface Version
2.5 May 2005." for details about OpenMP environment variables and run-time library
routines.

(3) Size of stack area for each thread

 Some subroutines of SSL II Thread-Parallel Capabilities takes work area internally as
auto allocatable array on "stack" area for each thread. Suppose that the number of threads
to be generated is NT and the total available memory size is M, it is recommended to set
the environmental variable OMP_STACKSIZE to about M/(5  NT) as the stack size for
each thread before the execution. When compiler option -Nfjomplib is specified, the
environmental variable THREAD_STACK_SIZE can be set as the stack size. Refer to
"Fortran User's Guide" for details about setting the stack size for OpenMP executables.

(4) Example programs

a. To call a subroutine from outside of the parallel region

 The example program below solves a system of linear equations with input of a real
coefficient matrix of 4000  4000. If the environment variable
OMP_NUM_THREADS is set to be 4 on the system of 4 processors, execution will
be with 4 threads in parallel.

 implicit real*8 (a-h,o-z)
 parameter(nord=4000,ld=nord+1)
c
 real*8 a(ld,nord),b(nord)
 integer ip(nord),is
c
 c=sqrt(2.0d0/dble(1+nord))
 t=datan(1.0d0)*4./(1+nord)
c
 do j=1,nord
 do i=1,nord
 a(i,j)=c*sin(t*i*j)
 enddo
 enddo
c
 do i=1,nord
 s=0.
 do j=1,nord
 s=s+sin(t*i*j)
 b(i)=s*c
 enddo
 enddo
c
 k=ld
 n=nord
 epsz=0.0d0

 General rules

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) I-5

 isw=1
 call dm_vlax(a,k,n,b,epsz,isw,is,ip,icon)
 print*,'icon=',icon
 print*,'n=',n,', b(1)=',b(1),', b(n)=',b(n)
 stop
 end

b. To call subroutines from inside of the parallel region

 The example program below solves two independent systems of linear equations.
One input of a real coefficient matrix is 4000  4000, and the other is 4200  4200.
If the environment variable OMP_NUM_THREADS is set to be 2 and
OMP_NESTED is set to be TRUE on the system of 4 processors, each system of
linear equation is solved with 2 threads respectively. The execution will be
parallelized with 4 threads total.

 implicit real*8 (a-h,o-z)
 parameter(nord1=4000,ld1=nord1+1)
 parameter(nord2=4200,ld2=nord2+1)
c
 real*8 a1(ld1,nord1),b1(nord1),
 & a2(ld2,nord2),b2(nord2),epsz1,epsz2
 integer ip1(nord1),ip2(nord2),is1,is2,
 & icon1,icon2,n1,n2,k1,k2,num,
 & omp_get_thread_num
c
 c=sqrt(2.0d0/dble(1+nord1))
 t=datan(1.0d0)*4./(1+nord1)
c
 do j=1,nord1
 do i=1,nord1
 a1(i,j)=c*sin(t*i*j)
 enddo
 enddo
c
 do i=1,nord1
 s=0.
 do j=1,nord1
 s=s+sin(t*i*j)
 b1(i)=s*c
 enddo
 enddo
c
 c=sqrt(2.0d0/dble(1+nord2))
 t=datan(1.0d0)*4./(1+nord2)
c
 do j=1,nord2
 do i=1,nord2
 a2(i,j)=c*sin(t*i*j)
 enddo
 enddo
c

General rules

I-6 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 do i=1,nord2
 s=0.
 do j=1,nord2
 s=s+sin(t*i*j)
 b2(i)=s*c
 enddo
 enddo
c
!$OMP PARALLEL default(shared)
!$OMP+ private(num)
 num=omp_get_thread_num()
 if(num.eq.0)then
 k1=ld1
 n1=nord1
 epsz1=0.0d0
 isw1=1
 call dm_vlax(a1,k1,n1,b1,epsz1,isw1,is1,ip1,icon1)
 print*,'icon1=',icon1
 else
 k2=ld2
 n2=nord2
 epsz2=0.0d0
 isw2=1
 call dm_vlax(a2,k2,n2,b2,epsz2,isw2,is2,ip2,icon2)
 print*,'icon2=',icon2
 endif
!$OMP END PARALLEL
 print*,'n1=',n1,', b1(1)=',b1(1),', b1(n1)=',b1(n1)
 print*,'n2=',n2,', b2(1)=',b2(1),', b2(n2)=',b2(n2)
 stop
 end

 General rules

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) I-7

2.5 Condition Codes
The parameter ICON is prepared to indicate the status after the execution of SSLII Thread-
Parallel Capabilities.

A value between 0 and 39999 is set as the condition code. The values are classified as shown
below depending on whether the result is guaranteed.

Table 2.1 Condition codes

Code Meaning Integrity of the result Classification

0 Processing has ended
normally.

The results are correct. Normal

1 to 9999 Processing has ended
normally, but auxiliary
information was included.

10000 to 19999 Processing has ended with
the placing of internal
restrictions during execution.

The results are correct
on the restrictions.

Warning

20000 to 29999 Processing was discontinued
due to abnormal conditions
which had occurred during
execution.

The results are not
correct.

Abnormal

30000 to 39999 Processing was discontinued
due to invalid input
parameter.

Part II
Usage of Subroutines

 DM_VALU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-1

DM_VALU

LU decomposition of real matrices (blocked LU decomposition method)

CALL DM_VALU(A,K,N,EPSZ,IP,IS,ICON)

(1) Function

 An n  n non-singular real matrix A is decomposed by blocked outer product type
Gaussian elimination.

 PA = LU

 where, P is the permutation matrix which exchanges the rows of A by partial pivoting, L
is the lower triangular matrix, and U is the unit upper triangular matrix (n  1).

(2) Parameters

A Input. Store matrix A in A(1:N,1:N).

Output. Matrices L and U are stored in A(1:N,1:N).

See Figure DM_VALU-1.

This is a two-dimensional double precision real array A(K,N).

K Input. Size of the first dimension of the storage array A.

N Input. Order n of matrix A.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, a standard value is assumed. (See note 1) in (3),
"Comments on use".)

IP Output. The transposition vector indicating the history of the exchange of rows
by partial pivoting. One-dimensional array of size n. (See note 2) in (3),
"Comments on use.")

IS Output. Information to calculate the determinant of matrix A.

The determinant is obtained by multiplying the product of the n diagonal
elements of array A by the value of IS after the calculation.

ICON Output. Condition code.

See Table DM_VALU-1.

DM_VALU

II-2 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Unit upper triangular matrix U
1

1
0

un-1 n

1

1

u12 u1n

u2nu23

u13

Lower triangular matrix L

0

l11

l21

l31

l22

l32

ln1 ln2 lnnlnn-1

ln-1 n-1

K

N

Array A
u1n

u2n

u13l11

l21

l31

l22

u12

l32

u23

ln1 ln2 lnn

un-1 n

lnn-1

ln-1 n-1

Figure DM_VALU-1 Storing L and U in array A after the calculation

 After LU decomposition, matrix L and the upper triangular part (except the diagonal
elements) of matrix U are stored in array A(1:N,1:N).

Table DM_VALU-1 Condition codes

Code Meaning Processing

0 No error 

20000 All elements in some row of array A were zero,
or the pivot became relatively zero. Matrix A
may be singular.

Processing is discontinued.

30000 K < N, N < 1, or EPSZ < 0.0

(3) Comments on use

a. Notes

1) If a value is set for EPSZ, the value has the following meaning: if the absolute
value of the selected pivot is less than EPSZ, the pivot is assumed to be zero and
processing is discontinued with ICON = 20000. When unit round off is u, the
standard value of EPSZ is 16u.

 When computation is to be continued even if the pivot becomes small, assign the
minimum value to EPSZ. In this case, however, the result is not assured.

2) The transposition vector corresponds to the permutation matrix P in LU
decomposition PA = LU with partial pivoting.

 In this subroutine, the contents of array A are actually exchanged by partial
pivoting. That is, when the I-th row (I  J) is selected as the pivot row in the J-th

 DM_VALU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-3

stage (J = 1, ..., n) of decomposition, the contents of the I-th row and J-th row of
array A are exchanged. To indicate this exchange, I is stored in IP (J).

3) The linear equation can be solved by calling subroutine DM_VLUX following
this subroutine. Normally, the linear equation can be solved in one step by
calling subroutine DM_VLAX.

b. Example

 LU decomposition is executed by inputting a real 4000  4000 matrix.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(4001,4000)
 DIMENSION IP(4000)
C
C
 N=4000
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,N)
 DO J=1,N
 DO I=1,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO
C
 K=4001
 CALL DM_VALU(A,K,N,0.0D0,IP,IS,ICON)
 WRITE(6,610)ICON
 IF(ICON.GE.20000)STOP

 S=1.0D0
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,N)
!$OMP+ REDUCTION(*:S)
 DO 20 I=1,N
 S=S*A(I,I)
 20 CONTINUE
!$OMP END PARALLEL DO

C
 DET=IS*S

 40 CONTINUE
 WRITE(6,620)DET
 610 FORMAT(1H0,10X,16HCONDITION CODE =,I5)
 620 FORMAT(1H0,10X,
 *27HDETERMINANT OF THE MATRIX =,D23.16)
 END

DM_VALU

II-4 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(4) Method

 For details of the outer product type blocked LU decomposition method, see [1], [30],
[54], [55], [56], and [70] in Appendix A, "References."

 DM_VAMLID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-5

DM_VAMLID

System of linear equations with sparse matrices of M-matrix (Algebraic multilevel iteration
method[AMLI Method], diagonal format storage method)

CALL DM_VAMLID (A, K, NDIAG, N, NOFST, B, ISW, IGUSS, INFO,
 EPSOT, EPSIN, X, W, NW, IW, NIW, ICON)

(1) Function

 This subroutine solves, using the iterative method, a system of linear equations with
sparse matrices of M-matrix as coefficient matrices. (See 1) in a, “Notes,” in (3),
“Comments on use.”)

 Ax = b

 The n  n coefficient matrix is stored using the diagonal format storage method. Vectors
b and x are n-dimensional vectors.

 The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-
symmetric. The iteration (called outer iteration) is preconditioned by the algebraic
multilevel iteration method (called AMLI) which requires the solution of small linear
system that is also solved iteratively (called inner iteration) , and stable. (In the
preconditioner of the algebraic multilevel iteration method, the generated linear system
becomes smaller as the level is deeper.)

 (2) Parameters

A Input. The nonzero elements of a coefficient matrix A are stored in A.

The coefficient matrix is stored in A(1:N,1:NDIAG).

Two-dimensional array A(K,N).

For an explanation of the diagonal format storage method, see b, “Diagonal
format storage method of general sparse matrices,” in Section 3.2.1.1, “Storing
the general sparse matrices,” in Part I, “Outline,” in the SSL II Extended
Capability User’s Guide II.

K Input. Size of first-dimension of array A(K  N).

NDIAG Input. Number of columns in array A and size of array NOFST. Must be equal
to the number of nonzero diagonals in matrix A.

N Input. Order n of matrix A.

NOFST Input. Offsets of diagonals of A stored in array A. Main diagonal has offset 0,
subdiagonals have negative offsets, and superdiagonals have positive offsets.

One-dimensional array NOFST(NDIAG).

B Input. The right-side constant vectors of a system of linear equations are stored
in B(1:N).

One-dimensional array B(N) .

ISW Input. Control information.

ISW=1 Initial calling.

ISW=2 Second or subsequent calling.

DM_VAMLID

II-6 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

The values of A, IW and W must not be changed if the routine is called again
with ISW=2.

(See 2) in a, “Notes,” in (3), “Comments on use.”)

IGUSS Input. Control information specifying whether iterative computation is to be
performed using the approximate values of the solution vectors specified in
array X.

When the value of IGUSS is 0, the approximate values of the solution vectors
are not specified and set to zero by DM_VAMLID.

When the value of IGUSS is not 0, the iterative computation is performed using
the approximate values of the solution vectors specified in array X.

INFO Input. The control information of the iteration.

One dimensional array of INFO(14).

For example, for symmetric coefficient matrix A, INFO is set as follows;

INFO(1)=-1

INFO(2)=NTHRD100

INFO(3)=0

INFO(5)=1

INFO(6)=2000

INFO(10)=1

INFO(11)=1000

For example, for unsymmetric coefficient matrix A, INFO is set as follows;

INFO(1)=-1

INFO(2)=NTHRD100

INFO(3)=0

INFO(5)=2

INFO(6)=2000

INFO(7)=5

INFO(8)=20

INFO(10)=2

INFO(11)=1000

INFO(12)=10

INFO(13)=0

Where NTHRD is the number of threads which are executed in parallel.

INFO(1)=MAXLVL

Input. Maximal number of levels in the algebraic multilevel iteration method.

MAXLVL<0 The optimal level evaluated internally is used.

MAXLVL=0 The multi-level method is not used.

MAXLVL>0 The coarser level than the specified depth is not used.

 DM_VAMLID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-7

(See 6),7) in a, “Notes,” in (3), “Comments on use.”)

INFO(2)=MINUK

Input. Minimal number of unknowns for the smallest linear system in the
deepest level in the inner iteration. It is recommendable to set MINUK very
larger than the number of threads NTHRD and very smaller than N. For
example, 100NTHRD.

INFO(3)=NORM

Input. The type of normalization.

NORM<1 The matrix is normalized from the right and the left by the inverse of
the square root of the main diagonal of A. This effects that the main diagonal of
the normalized matrix A is equal to one and the matrix is symmetric if A is
symmetric.

It is recommendable to use symmetrical normalization. However, in some cases
the non-symmetrical normalization can produce faster convergence. Criterion
value for judgment of convergency.

 (See 4) in a, “Notes,” in (3), “Comments on use.”)

NORM1 The matrix is normalized from the left by the inverse of the main
diagonal of A. This effects that the main diagonal is equal to one but the
normalized matrix will be non-symmetric even if the matrix A is symmetric.

 (See 5) in a, “Notes,” in (3), “Comments on use.”)

INFO(4)

Output. Number of levels.

INFO(5)=METHOT

Input. The iterative method used in the outer iteration.

METHOT=1 Preconditioned ORTHOMIN is used. It should be used if the
matrix A is symmetric and a symmetrical normalization is used.

METHOT1 Restarted and truncated GMRES is used. It should be used if the
matrix A is non-symmetric or a non-symmetrical normalization is used.

INFO(6)=ITMXOT

Input. The maximal number of iteration steps in the outer iteration, for example
2000. If the maximum iteration number of outer iteration is reached the
processing is terminated and the returned solution does not fulfill the stopping
criterion.

INFO(7)=NRESOT

Input. The number of residuals in the orthogonalization procedure of the outer
iteration, i.e. truncation after NRESOT residuals. For example, 5. Only used if
GMRES is applied.

(See 5) in a, “Notes,” in (3), “Comments on use.”)

INFO(8)=NRSTOT

Input. Input. After NRSTOT iteration steps the outer iteration is restarted. For
example , 20. If it is NRSTOT<1 there is no restart. Only used if GMRES is
applied.

(See 5) in a, “Notes,” in (3), “Comments on use.”)

DM_VAMLID

II-8 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

INFO(9)=ITEROT

Output. The number of iteration steps in the outer iteration procedure.

INFO(10)=METHIN

Input. The iterative method used in the inner iteration.

METHIN=1 Preconditioned ORTHOMIN is used. It should be used if the
matrix A is symmetric and a symmetrical normalization is used.

METHIN1 Restarted and truncated GMRES is used. It should be used if the
matrix A is non-symmetric or a non-symmetrical normalization is used.

INFO(11)=ITMXIN

Input. The maximal number of iteration steps in the inner iteration, for example
1000.

If ITMXIN is reached the processing is continued on the outer iteration.

INFO(12)=NRESIN

Input. The number of residuals in the orthogonalization procedure of the inner
iteration, ie. truncation after NRESIN residuals. For example, 10. Only used if
GMRES is applied.

(See 5) in a, “Notes,” in (3), “Comments on use.”)

INFO(13)=NRSTIN

Input. After NRSTIN iteration steps the inner iteration is restarted.

Only used if GMRES is applied. If it is NRSTIN<1 there is no restart.

(See 5) in a, “Notes,” in (3), “Comments on use.”)

INFO(14)

Output. The average number of the inner iteration.

EPSOT Input. The desired accuracy for the solution. The outer iteration is stopped in

the k-th iteration step if the normalized kkk bxAr ˆˆˆ  residual of the current

approximation xk satisfies the condition

brk
ˆEPSOTˆ 

where yyy T2  denotes the Euclidean norm Â and b̂ are the coefficient

matrix and the right hand side of the normalized linear system.

EPSIN Input. The tolerance for the inner iteration. Normally 10-3 is optimal.

X Input. The approximate values of solution vectors can be specified in X(1:N).

Output. Solution vectors are stored in X.

One-dimensional array X(N).

W Work area. One-dimensional array W(NW) .

NW Input. Size of the work array W.

NW  NT(3NAMAX+5) +3(NLVL+1)NBANDMAXT
 +max(NAMAX NT, 7NT+LR0(NT)),

where, NT=N+MAXT, and MAXT is the maximum number of threads which
are created in this routine. NBAND is the maximum of the lower and upper

 DM_VAMLID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-9

bandwidth of the matrix, NLVL is the number of levels in the algebraic
multilevel iteration method. When INFO(1)<0, NLVL is 10.
NAMAXNDIAG

(See 3) in a, “Notes,” in (3), “Comments on use.”)

LR0(NT)=4NT if ORTHOMIN is used and

LR0(NT)=(2NRES+1)NT if GMRES with truncation after NRES residuals is
used (See section 'Comment on use').

It is sufficient to set NRES=MAX(NRESOT,NRESIN).

IW Work area. One-dimensional array IW(NIW).

NIW Input. Size of the work array IW.

NIW  MAXT((6MAXT+12NAMAX)(NLVL+1)+8NBAND+3000)
 +4(N+MAXT),

where, MAXT is the maximum number of threads which are created in this
routine. NBAND is the maximum of the lower and upper bandwidth of the
matrix, NLVL is the number of levels in the algebraic multilevel iteration
method. When INFO(1)<0, NLVL is 10. NAMAXNDIAG

(See 3) in a, “Notes,” in (3), “Comments on use.”)

ICON Output. Condition code.

See Table DM_VAMILD-1.

Table DM_VAMILD-1 Condition codes

Code Meaning Processing

0 No error 

10700 Vector vpos could not be found. Processing is used with
vpos=1.

10800 Curable break down in GMRES. Processing is continued.

20001 Stopping criterion could not be reached within
the given number of iteration steps.

Processing is discontinued.
The approximate value
obtained is output in array X,
but the precision is not
assured.

20003 Non-curable break down in GMRES. Processing is discontinued.

 20005 Non-curable break down in ORTHOMIN by
pTAp=0 with p0.

20006 Non-curable break down in ORTHOMIN by
pTr=0.

30000 N<1,N>KA,NDIAG<1, ISW<1, ISW>2.

30104 Incorrect diagonal offset NOFST.

30105 Main diagonal is missed.

30200 Matrix is not an M-matrix.

DM_VAMLID

II-10 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VAMILD-1 Condition codes

Code Meaning Processing

30210 Matrix condensation fails by non-positive
value.

Processing is discontinued.

30212 There is a zero entry on the main diagonal.

30310 Too small integer work array.

30320 Too small real work array.

(3) Comments on use

a. Notes

1) A coefficient matrix arising from order two finite difference discretization or, in
some cases, from order one finite element discretization of an elliptical boundary
value problem is an M-matrix. It can be produced using the routines for
discretization of a boundary value problem for second order partial differential
equation (DM_VPDE2D, DM_VPDE3D).

To be an M-matrix means that

 All main diagonal entries are positive ai,i>0 for all i=1,...,N and all other
entries are non-positive ai,j 0 for all i,j=1,...,N with ij.

 There is a positive vector vpos so Avpos is positive.

If the first condition is not fulfilled, processing is not continued with ICON =
30200. This routine can not find the vector vpos (ICON = 10700) it is set vpos
=(1,...,1) the matrix A is assumed and processing is continued with the risk of a
breakdown in AMLI with ICON = 30212, 30210 or slow convergence or
breakdowns in the outer or inner iteration.

To define the coarse levels the rectangular grid used to assemble the coefficient
matrix is recovered. If the recovering is not successful there can be a breakdown
in AMLI with ICON=30212, 30210, a disproportionately increase of the number
of diagonals in the coarser levels or slow convergence or breakdowns in the
outer or inner iteration.

2) When multiple linear equations with the same coefficient matrix but different
right hand side vectors are solved set ISW=1 in the first call and ISW=2 in the
second and all subsequent calls. Then the coarse level matrices assembled in the
first call are reused.

3) Normally it is sufficient to set NAMAX=NDIAG in the formulas for the length
for the work arrays. It can happen that the number of diagonals in the coarse
level matrices is larger than the number of diagonals in the given matrix. In this
case NAMAX has to be increased.

4) It is always recommendable to use ORTHOMIN if possible. This requires that
the matrix is symmetric. As this routine removes easily computable unknowns
from the matrix before the iteration starts it can happen that the actual iteration
matrix is symmetric even if the given matrix is not. Therefore it is
recommendable to try ORTHOMIN with symmetrical normalization first if there
is a chance that the iteration matrix is symmetric.

 DM_VAMLID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-11

5) If the matrix is non-symmetric it is recommendable to use the non-symmetric
normalization together with GMRES. Normally it is sufficient to truncate after
NRESOT=5 residuals and to restart after 20 steps in the outer iteration. In the
inner iteration it can be necessary to select a higher value for the truncation
NRESIN and to restart after a larger number of iteration steps or even to forbid a
restart. If NRESIN is increased it can happen that more real work space is
required. Then it is necessary to increase NRES in the formula for the length
workspace NW but, NRES can be set to a smaller value than NRESOT. In
general the convergence of GMRES method becomes better as NRESIN and
NRESOT are set to larger. But it requires longer computation time and larger
amount of memory.

6) This routine tries to find the optimal number of levels. In some rare applications
the computing time can be reduced by setting the number of levels by hand but
normally the improvements are not significant.

7) The preconditioner bases on a nested incomplete block factorizations using the
Schur complement. The matrix An, n=1,...,MAXLVL1 of each level can be
blocked as follows choosing the sets of eliminated unknown from the
coordination in a virtual grid:

An = 








2221

1211

AA

AA
.

 And define a matrix S = A22  A21 A11
-1 A12, which is called Schur complement.

An can be factorized as follows:

An =


















 

S

AAI

IA

A

0

0 12
1

11

21

11 .

 The matrix An+1of next level n+1 can be regarded as a Schur complement matrix
with approximating the A11

-1 to a diagonal matrix. These incomplete
factorization are used for preconditioning in this routine.

b. Example

 The partial differential equation

 1)(
2

2

2

1
2

2









 cu
x

u

x

u

 is solved on the domain [0,1]2. Dirichlet boundary conditions are set to

 u=0.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT NONE
 INTEGER MAXT,N1,N2,KA,NA,NLVL,L1,L2,NW,NIW

 PARAMETER(MAXT=4,N1=1281,N2=1537,NLVL=10,
 & L1=N1,L2=N2,
 & KA=N1*N2,NA=5,

DM_VAMLID

II-12 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 & NW=(3*NA+5)*(KA+MAXT)+3*(NLVL+1)*N1*MAXT
 & +11*(KA+MAXT),
 & NIW=((6*MAXT+12*NA)*(NLVL+1)
 & +8*N1+2000)*MAXT+4*(KA+MAXT))

 INTEGER NOFST(NA),INFO(100),IW(NIW)
 DOUBLE PRECISION X1(L1),X2(L2),
 & A1(L1,L2),A2(L1,L2),B1(L1,L2),B2(L1,L2),
 & C(L1,L2),F(L1,L2),
 & W(NW),EPSIN,EPSOT

 DOUBLE PRECISION A(KA,NA),B(KA),U(KA),SOL(3*N1*N2),
 & RHS(N1*N2),RHSC(N1*N2),TMP

 INTEGER Z1,Z2,NDIAG,N,ICON,ISW,IGUSS,I,Z,NBAND
C
C---
C
C***** CREATE NODE COORDINATES
C
 DO 11 Z1=1,N1
 X1(Z1)=DBLE(Z1-1)/DBLE(N1-1)
11 CONTINUE
 DO 12 Z2=1,N2
 X2(Z2)=DBLE(Z2-1)/DBLE(N2-1)
12 CONTINUE
C
C***** COEFFICIENTS IN THE PARTIAL DIFFERENTIAL EQUATION :
C
 DO 2000 Z2=1,N2

 DO 20 Z1=1,N1
 A1(Z1,Z2)=1
 A2(Z1,Z2)=1
 B1(Z1,Z2)=0
 B2(Z1,Z2)=0
 C (Z1,Z2)=1
 F (Z1,Z2)=1
20 CONTINUE
C
C***** DIRICHLET BOUNDARY CONDITIONS:
C
 C(1,Z2)=1
 F(1,Z2)=0
 C(N1,Z2)=1
 F(N1,Z2)=0
 IF (Z2.EQ.1) THEN
 DO 25 Z1=1,N1
 C(Z1,1)=1
 F(Z1,1)=0
 25 CONTINUE
 END IF
 IF (Z2.EQ.N2) THEN

 DM_VAMLID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-13

 DO 26 Z1=1,N1
 C(Z1,N2)=1
 F(Z1,N2)=0
 26 CONTINUE
 END IF
2000 CONTINUE

 N=N1*N2
 CALL DM_VPDE2D(A1,L1,N1,N2,A2,X1,X2,B1,B2,C,F,A,KA,NA,N,
 & NDIAG,NOFST,B,ICON)
 PRINT*,'ICON OF DM_VPDE2D =',ICON
 IF (ICON.GT.29999) GOTO 9999
C
 DO Z=1,N
 RHS(Z)=B(Z)
 ENDDO
 NBAND=0
 DO I=1,NDIAG
 NBAND=MAX(NBAND,ABS(NOFST(I)))
 ENDDO
C
C---
C
C**** CALL DAMLI:
C
 ISW=1
 IGUSS=0
C
 INFO(1)=-1
 INFO(2)=MAXT*100
 INFO(3)=0
 INFO(5)=1
 INFO(6)=2000
 INFO(10)=1
 INFO(11)=1000
C
 EPSOT=1.D-6
 EPSIN=1.D-3

 CALL DM_VAMLID(A,KA,NDIAG,N,NOFST,B,ISW,IGUSS,
 & INFO,EPSOT,EPSIN,U,W,NW,IW,NIW,ICON)
 PRINT*,'ICON OF DM_VAMLID = ',ICON
 IF (ICON.GT.29999) GOTO 9999
C
9999 CONTINUE
C
 DO I=1,NBAND
 SOL(I)=0.0D0
 SOL(NBAND+N+I)=0.0D0
 ENDDO
 DO Z=1,N
 SOL(NBAND+Z)=U(Z)
 ENDDO

DM_VAMLID

II-14 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 CALL DM_VMVSD(A,KA,NDIAG,N,NOFST,NBAND,SOL,RHSC,ICON)
 TMP=0
 DO Z=1,N
 TMP=MAX(TMP,ABS((RHS(Z)-RHSC(Z))/(RHS(Z)+1.0)))
 ENDDO
C
 PRINT*,' ERROR = ',TMP
C
 END

(4) Method

 Before the calculation starts the linear system is normalized to achieve that the main
diagonal contains only the entries one. Moreover rows containing only zero entries
outside the main diagonal (typically arising from Dirichlet boundary conditions) are
removed from the matrix. The normalized system is solved by preconditioned
ORTHOMIN or GMRES method see [79] in Appendix A, “References.” The AMLI
preconditioner bases on a nested block incomplete factorizations using approximative
Schur complements, see [6] in Appendix A, “References.” The set of simultaneously
eliminated unknowns are defined by alternating direction technique after a virtual grid has
been recovered from the diagonals of the matrix. The linear system on the coarsest level
is normalized and is iteratively solved by ORTHOMIN or GMRES.

 DM_VBCSCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-15

DM_VBCSCC

System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate
Gradient Stabilized (l) [BICGSTAB(l)] method, compressed column storage method)

CALL DM_VBCSCC (A, NZ, NROW, NFCNZ, N, B, ITMAX, EPS, IGUSS, L, X, ITER,
 W, IW, ICON)

(1) Function

 This subroutine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient
Stabilized(l) method, a system of linear equations with unsymmetric or indefinite sparse
matrices as coefficient matrices.

 Ax = b

 The n  n coefficient matrix is stored using the compressed column storage method.
Vectors b and x are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the
SSL II Extended Capability User's Guide II.

(2) Parameters

A Input. The nonzero elements of a coefficient matrix are stored in A.

The coefficient matrix is stored in A(1:NZ).

One-dimensional array A(NZ)

For an explanation of the compressed column storage method, see Figure
DM_VMVSCC-1 in the description of a DM_VMVSCC routine,
"Multiplication of a real sparse matrix and a real vector (compressed column
storage method)".

NZ Input. The total number of the nonzero elements belong to a coefficient matrix
A.

NROW Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ Input. The position of the first nonzero element stored in an array A by the
compressed column storage method which stores the nonzero elements column
by column. NFCNZ(N+1) = NZ + 1.

One-dimensional array NFCNZ(N+1).

N Input. Order n of matrix A

B Input. The right-side constant vectors of a system of linear equations are stored
in B(1:N).

One-dimensional array B(N).

ITMAX Input. Upper limit of iterative count for BICGSTAB(l) method. The value of
ITMAX should usually be set to about 2000.

EPS Input. Criterion value for judgment of convergence.

DM_VBCSCC

II-16 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

When the value of EPS is 0.0 or smaller, EPS is set to 10-6.

(See 1) in a, "Notes," in (2), "Comments on use.")

IGUSS Input. Control information specifying whether iterative computation is to be
performed using the approximate values of the solution vectors specified in
array X.

When the value of IGUSS is 0, the approximate values of the solution vectors
are not specified and set to zero by DM_VBCSCC.

When the value of IGUSS is not 0, the iterative computation is performed using
the approximate values of the solution vectors specified in array X.

L Input. The order of stabilizer in BICGSTAB(l) method. 1  L  8. The value of
L should usually be set to 1 or 2.

(See 3) in a, "Notes," in (3), "Comments on use.")

X Input. The approximate values of solution vectors can be specified in X(1:N).

Output. Solution vectors are stored in X.

One-dimensional array X(N).

ITER Output. Actual iterative count for BICGSTAB(l) method.

W Work area. One-dimensional array W(NZ).

IW Work area. Two-dimensional array IW(2, NZ).

ICON Output. Condition code.

See Table DM_VBCSCC-1.

Table DM_VBCSCC-1 Condition codes

Code Meaning Processing

0 No error 

20000 A breakdown state occurred. Processing is discontinued.

20001 The iteration count reached the maximum limit. Processing is discontinued.
The already calculated
approximate value is output
to array X, but its precision
is not assured.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
ITMAX  0, L < 1, or L > 8.

Processing is discontinued.

(3) Comments on use

a. Notes

1) When the residual Euclidean norm is equal to or smaller than the product of the
first residual Euclidean norm and the value of EPS, it is assumed that the
solution converged. The error between the correct solution and the calculated
approximate solution is roughly equal to the product of the matrix A condition
number and the value of EPS.

2) When L is set to one, the algorithm is same as that of BICGSTAB method. As
the value of L is lager, the cost of one iteration becomes larger however the total

 DM_VBCSCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-17

number of iteration is reduced. Consequently in some cases it becomes faster
with larger L.

b. Example

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

fuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2
and a3 are some constants. The matrix A in Diagonal format is generated by the
subroutine init_mat_diag. Then it is converted into the storage scheme in
compressed column storage.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 PARAMETER (L = 4)

 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1),
 $ W(K*NDIAG),IW(2,K*NDIAG)
 DIMENSION X(N),B(N),SOLEX(N),Y(N)

 PRINT *,' BICGSTAB(L) METHOD'
 PRINT *,' COMPRESSED COLUMN STORAGE'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)

 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN

DM_VBCSCC

II-18 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
 DO J=1,N
 NTOPCFG=1
 DO I=NDIAG,1,-1
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOL
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 NUMNZ=NUMNZ+1
 ENDIF
C
 ENDDO
 ENDDO
 NFCNZ(N+1)=NUMNZ
 NNZ=NUMNZ-1

 CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,SOLEX,
 $ B,W,IW,ICON)
 ERR1 = ERRNRM(SOLEX,X,N)
C
 X(1:N)=0.0D0
 CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X,
 $ Y,W,IW,ICON)
 ERR2 = ERRNRM(Y,B,N)

 IGUSS = 0
 ITMAX = 2000
 EPS=1.0D-8

 CALL DM_VBCSCC(A,NNZ,NROW,NFCNZ,N,B,ITMAX
 & ,EPS,IGUSS,L,X,ITER,W,IW,ICON)

 ERR3 = ERRNRM(SOLEX,X,N)
 CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X,

 DM_VBCSCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-19

 $ Y,W,IW,ICON)
 ERR4 = ERRNRM(Y,B,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' DM_VBCSCC ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *,' ITER MAX = ',ITMAX
 PRINT *,' ITER = ',ITER
 PRINT *
 PRINT *,' EPS = ',EPS
 PRINT *
 PRINT *,' INITIAL ERROR = ',ERR1
 PRINT *,' INITIAL RESIDUAL ERROR = ',ERR2
 PRINT *,' CRITERIA RESIDUAL ERROR = ',ERR2*EPS
 PRINT *
 PRINT *,' ERROR = ',ERR3
 PRINT *,' RESIDUAL ERROR = ',ERR4
 PRINT *
 PRINT *

 IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG

DM_VBCSCC

II-20 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1

 DM_VBCSCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-21

 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* ABSOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)

DM_VBCSCC

II-22 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

 (4) Method

 The BICG algorithm is described in [72] in Appendix A, "References." The
BICGSTAB(l) algorithm is a modification of the BICGSTAB method, see [77] and[32]
in Appendix A, "References."

 DM_VBCSD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-23

DM_VBCSD

System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate
Gradient Stabilized (l) [BICGSTAB(l)] method, diagonal format storage method)

CALL DM_VBCSD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS,
 L, X, ITER, ICON)

(1) Function

 This subroutine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient
Stabilized(l) method, a system of linear equations with unsymmetric or indefinite sparse
matrices as coefficient matrices.

 Ax = b

 The n  n coefficient matrix is stored using the diagonal format storage method. Vectors
b and x are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the
SSL II Extended Capability User's Guide II.

 (2) Parameters

A Input. The nonzero elements of a coefficient matrix are stored in A.

The coefficient matrix is stored in A(1:N,1:NDIAG).

Two-dimensional array A(K,NDIAG)

For an explanation of the diagonal format storage method, see b, "Diagonal
format storage method of general sparse matrices," in Section 3.2.1.1, "Storing
the general sparse matrices," in Part I, "Outline," in the SSL II Extended
Capability User's Guide II.

K Input. Size of first-dimension of array A ( N).

NDIAG Input. Number of columns in array A and size of array NOFST. Must be
greater than or equal to the number of nonzero diagonals in matrix A. Size of
second-dimension of array A.

N Input. Order n of matrix A

NOFST Input. Offsets of diagonals of A stored A. Main diagonal has offset 0,
subdiagonals have negative offsets, and superdiagonals have positive offsets.

One-dimensional array NOFST(NDIAG)

B Input. The right-side constant vectors of a system of linear equations are stored
in B(1:N).

One-dimensional array B(N).

ITMAX Input. Upper limit of iterative count for BICGSTAB(l) method. The value of
ITMAX should usually be set to about 2000.

EPS Input. Criterion value for judgment of convergence.

When the value of EPS is 0.0 or smaller, EPS is set to 10-6.

(See 1) in a, "Notes," in (3), "Comments on use.")

DM_VBCSD

II-24 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

IGUSS Input. Control information specifying whether iterative computation is to be
performed using the approximate values of the solution vectors specified in
array X.

When the value of IGUSS is 0, the approximate values of the solution vectors
are not specified and set to zero by DM_VBCSD.

When the value of IGUSS is not 0, the iterative computation is performed using
the approximate values of the solution vectors specified in array X.

L Input. The order of stabilizer in BICGSTAB(l) method. 1  L  8. The value of
L should usually be set to 1 or 2.

(See 3) in a, "Notes," in (3), "Comments on use.")

X Input. The approximate values of solution vectors can be specified in X(1:N).

Output. Solution vectors are stored in X.

One-dimensional array X(N).

ITER Output. Actual iterative count for BICGSTAB(l) method.

ICON Output. Condition code.

See Table DM_VBCSD-1.

Table DM_VBCSD-1 Condition codes

Code Meaning Processing

0 No error 

20000 A breakdown state occurred. Processing is discontinued.

20001 The iteration count reached the maximum limit. Processing is discontinued.
The already calculated
approximate value is output
to array X, but its precision
is not assured.

30000 N < 1, N > K, NDIAG < 1, ITMAX  0, L < 1,
or L > 8.

Processing is discontinued.

32001 |NOFST(I)| > N – 1

(3) Comments on use

a. Notes

1) When the residual Euclidean norm is equal to or smaller than the product of the
first residual Euclidean norm and the value of EPS, it is assumed that the
solution converged. The error between the correct solution and the calculated
approximate solution is roughly equal to the product of the matrix A condition
number and the value of EPS.

2) Conditions for using the diagonal format

 The external diagonal vector element of coefficient matrix A must be set to 0.
The order in which diagonal vectors (refer to Section 3.2.1.1, "Storage method
for general sparse matrices" in the SSL II Extended Capabilities User's Guide II)
are stored into array A is not restricted.

 DM_VBCSD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-25

 The merit of this method is that a matrix vectors can be calculated without using
an indirect index. The demerit of this method is that a matrix without a diagonal
structure cannot be stored efficiently.

3) When L is set to one, the algorithm is same as that of BICGSTAB method. As
the value of L is lager, the cost of one iteration becomes larger however the total
number of iteration is reduced. Consequently in some cases it becomes faster
with larger L.

b. Example

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

fuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2
and a3 are some constants. The matrix A in Diagonal format is generated by the
subroutine init_mat_diag.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (EPS = 1D-8)
 PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 PARAMETER (L = 4)
 PARAMETER(NVW=3*K)

 DIMENSION NOFST(NDIAG)
 DIMENSION A(K,NDIAG)
 DIMENSION X(N),B(N),SOLEX(N),Y(N)
 DIMENSION VW(NVW)

 PRINT *,' BICGSTAB(L) METHOD'
 PRINT *,' DIAGONAL FORMAT'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0

DM_VBCSD

II-26 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 NBANDL=0
 NBANDR=0
 DO I=1,NDIAG
 IF(NOFST(I).LT.0)THEN
 NBANDL=MAX(NBANDL,-NOFST(I))
 ELSE
 NBANDR=MAX(NBANDR,NOFST(I))
 ENDIF
 ENDDO

 VW(1+NBANDL:N+NBANDL) = SOLEX(1:N)
 CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON2)

 X(1:N)=0.0D0
 ERR1 = ERRNRM(SOLEX,X,N)
 VW(1+NBANDL:N+NBANDL) = X(1:N)
 CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2)
 ERR2 = ERRNRM(Y,B,N)

 IGUSS = 0
 ITMAX = 2000

 CALL DM_VBCSD(A,K,NDIAG,N,NOFST,B,ITMAX
 & ,EPS,IGUSS,L,X,ITER,ICON)

 ERR3 = ERRNRM(SOLEX,X,N)
 VW(1+NBANDL:N+NBANDL) = X(1:N)
 CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2)
 ERR4 = ERRNRM(Y,B,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' DM_VBCSD ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *,' NBANDL = ',NBANDL,', NBANDR = ',NBANDR
 PRINT *,' ITER MAX = ',ITMAX
 PRINT *,' ITER = ',ITER
 PRINT *
 PRINT *,' EPS = ',EPS
 PRINT *
 PRINT *,' INITIAL ERROR = ',ERR1
 PRINT *,' INITIAL RESIDUAL ERROR = ',ERR2
 PRINT *,' CRITERIA RESIDUAL ERROR = ',ERR2*EPS
 PRINT *
 PRINT *,' ERROR = ',ERR3
 PRINT *,' RESIDUAL ERROR = ',ERR4
 PRINT *
 PRINT *

 DM_VBCSD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-27

 IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1

DM_VBCSD

II-28 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN

 DM_VBCSD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-29

 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* ABSOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

 (4) Method

 The BICG algorithm is described in [72] in Appendix A, "References." The
BICGSTAB(l) algorithm is a modification of the BICGSTAB method, see [77] and[32]
in Appendix A, "References."

DM_VBCSE

II-30 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VBCSE

System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate
Gradient Stabilized (l) [BICGSTAB(l)] method, ELLPACK format storage method)

CALL DM_VBCSE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS,
 L, X, ITER, ICON)

(1) Function

 This subroutine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient
Stabilized (l) method, a system of linear equations with unsymmetric or indefinite sparse
matrices as coefficient matrices.

 Ax = b

 The n  n coefficient matrix is stored using the ELLPACK format storage method.
Vectors b and x are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the
SSL II Extended Capability User's Guide II.

(2) Parameters

A Input. The nonzero elements of a coefficient matrix are stored in
A(1:N,1:IWIDT).

Two-dimensional array A(K,IWIDT)

For an explanation of the ELLPACK format storage method, see Section 3.2.1.1,
"Storing the general sparse matrices," in Part I, "Outline," in the SSL II
Extended Capability User's Guide II.

K Input. Size of first-dimension of A and ICOL. (K  n).

IWIDT Input. Maximum number of row-vector-direction nonzero elements of
coefficient matrix A. Size of second-dimension of A and ICOL.

N Input. Order n of matrix A.

ICOL Input. Column index used in ELLPACK format. Used to indicate to which
column vector the corresponding element of A belongs.

Two-dimensional array ICOL(K,IWIDT)

B Input. The right-side constant vectors of a system of linear equations are stored
in B(1:N).

One-dimensional array B(N)

ITMAX Input. Upper limit of iterative count for BICGSTAB(l) method. The value of
ITMAX should usually be set to about 2000.

EPS Input. Criterion value for judgment of convergence.

When the value of EPS is 0.0 or smaller, EPS is set to 10-6.

(See 1) in a, "Notes," in (3), "Comments on use.")

 DM_VBCSE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-31

IGUSS Input. Control information specifying whether iterative computation is to be
performed using the approximate values of the solution vectors specified in
array X.

When the value of IGUSS is 0, the approximate values of the solution vectors
are not specified and set to zero by DM_VBCSE.

When the value of IGUSS is not 0, the iterative computation is performed using
the approximate values of the solution vectors specified in array X.

L Input. The order of stabilizer in BICGSTAB(l) method. 1  L  8. The value of
L should usually be set to 1 or 2.

(See 2) in a, "Notes," in (3), "Comments on use.")

X Input. The approximate values of solution vectors can be specified in X(1:N).

Output. Solution vectors are stored in X(1:N).

One-dimensional array X(N)

ITER Output. Iterative count for BICGSTAB(l) method.

ICON Output. Condition code.

See Table DM_VBCSE-1.

Table DM_VBCSE-1 Condition codes

Code Meaning Processing

0 No error 

20000 A breakdown state occurred. Processing is discontinued.

20001 The iteration count reached the maximum limit. Processing is discontinued.
The already calculated
approximate value is output
to array X, but its precision
is not assured.

30000 K < 1, IWIDT < 1, N < 1, ITMAX  0, N > K,
L < 1, or L > 8.

Processing is discontinued.

30001 The band width is zero.

(3) Comments on use

a. Notes

1) When the residual Euclidean norm is equal to or smaller than the product of the
first residual Euclidean norm and the EPS, it is assumed that the solution
converged. The error between the correct solution and the calculated
approximate solution is roughly equal to the product of the matrix A condition
number and the EPS.

2) When L is set to one, the algorithm is same as that of BICGSTAB method. As
the value of L is lager, the cost of one iteration becomes larger however the total
number of iteration is reduced. Consequently in some cases it becomes faster
with larger L.

b. Example

DM_VBCSE

II-32 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

 fuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2

and a3 are some constants. The matrix A in Ellpack format is generated by the
subroutine init_mat_ell.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (EPS = 1D-8)
 PARAMETER (NORD=60,NX =NORD ,NY = NORD,NZ = NORD,
 & N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (IWIDT = 7)
 PARAMETER (L = 4)
 DIMENSION ICOL(K,IWIDT)
 DIMENSION A(K,IWIDT)
 DIMENSION X(N),B(N),SOLEX(N),Y(N)

 PRINT *,' BICGSTAB(L) METHOD'
 PRINT *,' ELLPACK FORMAT'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL
 & ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K)

 CALL DM_VMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON2)

 X(1:N)=0.0D0
 ERR1 = ERRNRM(SOLEX,X,N)
 CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2)
 ERR2 = ERRNRM(Y,B,N)

 IGUSS = 0
 ITMAX = 2000

 CALL DM_VBCSE(A,K,IWIDT,N,ICOL,B,ITMAX

 DM_VBCSE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-33

 & ,EPS,IGUSS,L,X,ITER,ICON)

 ERR3 = ERRNRM(SOLEX,X,N)
 CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2)
 ERR4 = ERRNRM(Y,B,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' DM_VBCSE ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *,' ITER MAX = ',ITMAX
 PRINT *,' ITER = ',ITER
 PRINT *
 PRINT *,' EPS = ',EPS
 PRINT *
 PRINT *,' INITIAL ERROR = ',ERR1
 PRINT *,' INITIAL RESIDUAL ERROR = ',ERR2
 PRINT *,' CRITERIA RESIDUAL ERROR =',ERR2*EPS
 PRINT *
 PRINT *,' ERROR = ',ERR3
 PRINT *,' RESIDUAL ERROR = ',ERR4
 PRINT *
 PRINT *

 IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF

 STOP
 END

C ==
C INITILIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_ELL(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ
 & ,XL,YL,ZL,IWIDTH,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION A_L(NDIVP,IWIDTH)
 DIMENSION ICOL_L(NDIVP,IWIDTH)
C
 IF (IWIDTH .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_ELL:'
 WRITE (*,*) ' IWIDTH SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF
!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ
!$OMP+ ,XL,YL,ZL,IWIDTH,LEN,NDIVP)

DM_VBCSE

II-34 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C IWIDTH CANNOT BE GREATER THAN 7
 IWIDTH_LOC = IWIDTH
 IF (IWIDTH .GT. 7) IWIDTH_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO J = 1,IWIDTH
 DO I = 1,NDIVP
 A_L(I,J) = 0.0
 ICOL_L(I,J) = I
 ENDDO
 ENDDO
!$OMP ENDDO

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J
 L = 1

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NX/NY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,' ERROR; K0.GT.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NX*NY*(K0-1))/NX+1
 I0 = JS - NX*NY*(K0-1) - NX*(J0-1)
 IF (IWIDTH_LOC .GE. 7) THEN
 IF (K0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 ICOL_L(J,L) = JS-NX*NY
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 5) THEN
 IF (J0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 ICOL_L(J,L) = JS-NX
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 3) THEN
 IF (I0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 ICOL_L(J,L) = JS-1
 L = L+1
 ENDIF
 ENDIF

 DM_VBCSE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-35

 A_L(J,L) = 2.0/HX**2+VC
 IF (IWIDTH_LOC .GE. 5) THEN
 A_L(J,L) = A_L(J,L) + 2.0/HY**2
 IF (IWIDTH_LOC .GE. 7) THEN
 A_L(J,L) = A_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 ICOL_L(J,L) = JS
 L = L+1
 IF (IWIDTH_LOC .GE. 2) THEN
 IF (I0 .LT. NX) THEN
 A_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 ICOL_L(J,L) = JS+1
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 4) THEN
 IF (J0 .LT. NY) THEN
 A_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 ICOL_L(J,L) = JS+NX
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) THEN
 A_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ICOL_L(J,L) = JS+NX*NY
 ENDIF
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
C ABSOLUTE ERROR
C | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN

DM_VBCSE

II-36 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 END

 (4) Method

 The BICG algorithm is described in [72] in Appendix A, "References." The
BICGSTAB(l) algorithm is a modification of the BICGSTAB method, see [77] and[32]
in Appendix A, "References."

 DM_VBLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-37

DM_VBLU

LU decomposition of banded real matrices (Gaussian elimination)

CALL DM_VBLU(A,K,N,NH1,NH2,EPSZ,IS,IP,ICON)

(1) Function

 This subroutine executes LU decomposition for banded matrix A of n  n, lower
bandwidth h1, and upper bandwidth h2 using Gaussian elimination.

 PA = LU

 where, P is the permutation matrix of the row vector, L is the unit lower banded matrix,
and U is the upper banded matrix.

 n > h1  0, n > h2  0

(2) Parameters

A Input. Store banded coefficient matrix A.

Matrix A is stored in A(NH1 + 1:2  NH1 + NH2 +1,1:N). For A(1:NH1, 1:N),
set zero for the elements of matrix A outside the band.

See Figure DM_VBLU-1.

Output. LU-decomposed matrices L and U are stored.

See Figure DM_VBLU-2.

This is a double precision real two-dimensional array A(K,N).

The value of A(2NH1+NH2+2:K, 1:N) is not assured after operation.

K Input. The size of first dimension of array A( 2NH1+NH2+1).

N Input. Order n of matrix A.

NH1 Input. Lower bandwidth size h1.

NH2 Input. Upper bandwidth size h2.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is set.

(See note 1) in (3), “Comments on use.”)

IS Output. Indicates row vector exchange count.

When IS is 1, exchange count is even.

When IS is -1, exchange count is odd.

(See 4) in (3), “Comments on use.”)

IP Output. One-dimensional array of size n. The transposition vector to contain
row exchange information is stored.

(See note 2) in (3), “Comments on use.”)

ICON Output. Condition code.

See Table DM_VBLU-1.

DM_VBLU

II-38 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

*

*

*

*

*

…

…

…

…

…

…

…

… …

…

…

: :

*

*

*

a12 a23

a13

… …

…

…

…

… …

…

an-nh2 n

an-2 n

an-1 n

a11 a22 a33 … an-1 n-1 ann

a21

a31

:

anh1+1 1 anh1+2 2 … … … an n-nh1

…

…

…

an n-1 *

*

*

* …

:

*

…

… a42

a32

1

nh2

nh1

nh1

N

0

0

0

0

0

a1 nh2+1

Figure DM_VBLU-1 Storing matrix A in array A

 The column vector of matrix A is continuously stored in columns of array A in the same
manner as diagonal elements of banded matrix A aii, i = 1, ..., n, are stored in A(nh1 + nh2
+ 1,1:n).

 Upper banded matrix part

 aj-i,j, i = 1, ..., nh1, j = 1, ..., n, j - i  1 is stored in A (nh1 + 1:nh1 + nh2, + 1,1:n).

 Lower banded matrix part

 aj+i,j, i = 1, ... , nh1, j = 1, ... , n, j + i  n is stored in A(nh1 + nh2 + 2:2  nh1 + nh2 + 1,
1:n). For A(1:nh1,1:n), set zero for the elements of matrix A outside the band.

 * indicates undefined values.

 DM_VBLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-39

*

*

*

*

*

u1 nh1+nh2+1 … un-nh1-nh2 n

…

…

…

…

…

…

… …

…

…

: :

:

*

*

*

u12 u23

u13

… …

…

…

…

… …

…

un-nh2 n

un-2 n

un-1 n

l11 l22 l33 … ln-1 n-1 lnn

l21

l31

:

lnh1+1 1 lnh1+2 2 … … … ln n-nh1

…

…

…

ln n-1 *

*

*

* …

:

*

…

… l42

l32

1

nh2

nh1

nh1

N

Figure DM_VBLU-2 Storing LU-decomposed matrix L and U in array A

 LU-decomposed unit upper banded matrix except diagonal elements

 uj-i+1,j, i = 1, ... , h1 + h2, j = 1, ... , n, j - i + 1  1 is stored in A(1:h1 + h2,1:n).

 Lower banded matrix part

 1j+i, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in A(h1 + h2 + 1:2  h1 + h2 + 1,1:n).

 * indicates undefined values.

DM_VBLU

II-40 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VBLU-1 Condition codes

Code Meaning Processing

0 No error

20000 All elements in some row of array A were zero,
or the pivot became relatively zero. Matrix A
may be singular.

Processing is discontinued.

30000 N < 1, NH1  N, NH1 < 0, NH2  N, NH2 < 0,
K < 2NH1+NH2+1, EPSZ < 0.

(3) Comments on use

a. Notes

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LU decomposition. In this case, processing is
discontinued with ICON = 20000. When unit round off is u, the standard value
of EPSZ is 16  u.

 When the computation is to be continued even if the pivot is small, assign the
minimum value to EPSZ. In this case, however, the result is not assured.

2) In this subroutine, the row vector is exchanged using partial pivoting. That is,
when the I-th row (I  J) is selected as the pivot row in the J-th stage (J = 1, ...,
n) of decomposition, the contents of the I-th row and J-th row are exchanged. To
indicate this exchange, I is stored in IP (J).

3) The linear equation can be solved by calling subroutine DM_VBLUX following
this subroutine. Normally, the linear equation can be solved in one step by
calling subroutine DM_VLBX.

4) The determinant can be obtained by multiplying IS and A(h1 + h2 + 1,i), where i
= 1, ... , n.

b. Example

 The system of linear equations with banded matrices is solved with the input of a
banded real matrix of n = 10000, nh1 = 2000, nh2 = 3000.

 implicit real*8(a-h,o-z)
 parameter(nh1=2000,nh2=3000,n=10000)
 parameter(ka=2*nh1+nh2+1,n2=n)
 real*8 a(ka,n2),b(n),dwork(4500)
 integer ip(n)

c
 ix=123
 nwork=4500
 nn=nh1+nh2+1
 do i=1,n
 call dvrau4(ix,a(nh1+1,i),nn,dwork,nwork,icon)
 do j=1,nh1+nh2+1
 enddo
 enddo
c
c zero clear
c
 print*,'nh1=',nh1,',nh2=',nh2,',n=',n

 DM_VBLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-41

c
c a(1:nh1,n)=0.0d0
c
 do j=1,n
 do i=1,nh1
 a(i,j)=0.0d0
 enddo
 enddo
c
c left upper triangular part
c
 do j=1,nh2
 do i=1,nh2+1-j
 a(i+nh1,j)=0.0d0
 enddo
 enddo
c
c right rower triangular part
c
 nbase=2*nh1+nh2+1
 do j=1,nh1
 do i=1,j
 a(nbase-i+1,n-nh1+j)=0.0d0
 enddo
 enddo
c
c set right hand constant vector
c
 do i=1,n
 b(i)=0.0d0
 enddo
c
 do i=1,n
 nptr=i-1
 do j=max(nptr+1-nh2,1),min(n,nptr+nh1+1)
 b(j)=b(j)+a(j-i+nh1+nh2+1,i)
 enddo
 enddo

c
 epsz=0.0d0
 call gettod(tt1)
 call dm_vblu(a,ka,n,nh1,nh2,epsz,is,ip,icon)
 call gettod(tt2)
 print*,'factor time (wall clock)=',(tt2-tt1)*1.0d-6
c
 call gettod(tt1)
 call dm_vblux(b,a,ka,n,nh1,nh2,ip,icon)
 call gettod(tt2)
 print*,'solve time (wall clock)=',(tt2-tt1)*1.0d-6

c
 tmp=0.0d0
 do i=1,n
 tmp=max(tmp,dabs(b(i)-1))
 enddo
c
 print*,'maximum error =',tmp
c
 stop
 end

DM_VBLU

II-42 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(4) Method

 LU-decomposition is executed using outer product type Gaussian elimination.

 DM_VBLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-43

DM_VBLUX

A system of linear equations with LU-decomposed banded real matrices

CALL DM_VBLUX(B,FA,K,N,NH1,NH2,IP,ICON)

(1) Function

 This subroutine solves a linear equation having an LU-decomposed banded matrix as
coefficient.

 LUx = b

 where, L is a unit lower banded matrix of lower bandwidth h1, U is an upper banded
matrix of upper bandwidth h (= min (h1 + h2, n-1)), and b is an n-dimensional real
constant vector. The order of matrix A before LU decomposition, lower bandwidth, and
upper bandwidth is n, h1, and h2.

 n > h1  0, n > h2  0

(2) Parameters

B Input. Constant vector b.

Output. Solution vector x.

Double precision real one-dimensional array B(N).

FA Input. LU-decomposed matrices L and U are stored.

See Figure DM_VBLUX-1.

This is a Double precision real two-dimensional array FA(K,N).

The value of FA(2NH1+NH2+2:K, 1:N) is not assured after operation.

K Input. The size of first dimension of array FA( 2NH1+NH2+1).

N Input. Order n of matrix A.

NH1 Input. Lower bandwidth h1 of banded matrix A.

NH2 Input. Upper bandwidth h2 of banded matrix A.

IP Input. One-dimensional array of size n. Transposition vector which indicates
the history of row vector exchange.

ICON Output. Condition code.

See Table DM_VBLUX-1.

DM_VBLUX

II-44 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

*

*

*

*

*

u1 nh1+nh2+1 … un-nh1-nh2 n

…

…

…

…

…

…

… …

…

…

: :

:

*

*

*

u12 u23

u13

… …

…

…

…

… …

…

un-nh2 n

un-2 n

un-1 n

l11 l22 l33 … ln-1 n-1 lnn

l21

l31

:

lnh1+1 1 lnh1+2 2 … … … ln n-nh1

…

…

…

ln n-1 *

*

*

* …

:

*

…

… l42

l32

1

nh2

nh1

nh1

N

Figure DM_VBLUX-1 Storing LU-decomposed matrices L and U into array FA

 LU-decomposed unit upper banded matrix except diagonal elements

 uj-i+1,j, i = 1, ... , h1 + h2, j = 1, ... , n, j - i + 1  1 is stored in FA(1:h1 + h2,1:n).

 Lower banded matrix part

 1j+i, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in FA(h1 + h2 + 1:2  h1 + h2 + 1,1:n).

 * indicates undefined values.

 DM_VBLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-45

Table DM_VBLUX-1 Condition codes

Code Meaning Processing

0 No error

30000 N < 1, NH1  N, NH1 < 0, NH2  N, NH2 < 0,
K < 2NH1+NH2+1.
Diagonal element of lower banded matrix was
zero.
Contents of IP are invalid.

Processing is discontinued.

(3) Comments on use

a. Notes

1) A system of linear equations with banded matrices can be solved by calling this
subroutine following the subroutine DM_VBLU. In this case, specify the output
parameters of the subroutine DM_VBLU without modification of the input
parameters (except the constant vector) of this subroutine. Normally, a solution
can be obtained in one step by calling the subroutine DM_VLBX.

b. Example

 The system of linear equations with banded matrices is solved with the input of a
banded real matrix of n = 10000, h1 = 2000, h2 = 3000.

 implicit real*8(a-h,o-z)
 parameter(nh1=2000,nh2=3000,n=10000)
 parameter(ka=2*nh1+nh2+1,n2=n)
 real*8 a(ka,n2),b(n),dwork(4500)
 integer ip(n)

c
 ix=123
 nwork=4500
 nn=nh1+nh2+1
 do i=1,n
 call dvrau4(ix,a(nh1+1,i),nn,dwork,nwork,icon)
 do j=1,nh1+nh2+1
 enddo
 enddo
c
c zero clear
c
 print*,'nh1=',nh1,',nh2=',nh2,',n=',n
c
c a(1:nh1,n)=0.0d0
c
 do j=1,n
 do i=1,nh1
 a(i,j)=0.0d0
 enddo
 enddo
c
c left upper triangular part
c
 do j=1,nh2
 do i=1,nh2+1-j
 a(i+nh1,j)=0.0d0
 enddo
 enddo

DM_VBLUX

II-46 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

c
c right rower triangular part
c
 nbase=2*nh1+nh2+1
 do j=1,nh1
 do i=1,j
 a(nbase-i+1,n-nh1+j)=0.0d0
 enddo
 enddo
c
c set right hand constant vector
c
 do i=1,n
 b(i)=0.0d0
 enddo
c
 do i=1,n
 nptr=i-1
 do j=max(nptr+1-nh2,1),min(n,nptr+nh1+1)
 b(j)=b(j)+a(j-i+nh1+nh2+1,i)
 enddo
 enddo

c
 epsz=0.0d0
 call gettod(tt1)
 call dm_vblu(a,ka,n,nh1,nh2,epsz,is,ip,icon)
 call gettod(tt2)
 print*,'factor time (wall clock)=',(tt2-tt1)*1.0d-6
c
 call gettod(tt1)
 call dm_vblux(b,a,ka,n,nh1,nh2,ip,icon)
 call gettod(tt2)
 print*,'solve time (wall clock)=',(tt2-tt1)*1.0d-6

c
 tmp=0.0d0
 do i=1,n
 tmp=max(tmp,dabs(b(i)-1))
 enddo
c
 print*,'maximum error =',tmp
c
 stop
 end

(4) Method

 The linear equation with LU-decomposed matrices as coefficient is solved by forward and
back-substitution.

 DM_VCGD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-47

DM_VCGD

A system of linear equations with symmetric positive definite sparse matrices (preconditional
CG method, diagonal format storage method)

CALL DM_VCGD(A,K, NW, N,NDLT,B,IPC,ITMAX,ISW,OMEGA,EPS,
 IGUSS,X,ITER,RZ,W,IW,ICON)

(1) Function

 This subroutine solves a linear equation having an n  n normalized symmetric positive
definite sparse matrix as coefficient matrix using the preconditioned CG method.

 Ax = b

 The n  n matrix coefficient is normalized so that its diagonal elements are 1, and non-
zero elements except the diagonal elements are stored using the diagonal format spares
matrix storage method.

 For the normalization of a linear equation with a symmetric positive definite sparse
matrix as its coefficient matrix and the diagonal format storage method, refer to the SSL
II Extended Capability User’s Guide II, Part I, “Overview,” Section 3.2.1.2, “Storage
method for symmetric positive definite sparse matrix.” For the diagonal format storage
method, it is assumed that non-zero elements of the coefficient matrix A exist only in
vectors on some diagonal lines parallel to the main diagonal vector.

 When the linear equation is obtained by discretizing a partial differential equation on the
lattices parallel to the boundary of the specifically defined domain, it has the structure
described above.

 In this case, information indicating the position (column vector of coefficient matrix) of
each element is not necessary. Only the distance from the main diagonal vector is
required. This enables efficient execution.

(2) Parameters

A Input. The normalized sparse matrix is stored in A(1:N,1:NW).

The value of A(N + 1:K,*) is not assured after operation.

Two-dimensional array A(K,NW).

Non-zero elements of the coefficient matrix of normalized symmetric positive
definite sparse matrix are stored in diagonal format.

For the diagonal format storage method for normalized symmetric positive
definite sparse matrices, refer to the SSL II Extended Capability User’s Guide II,
Part I, “Overview,” Section 3.2.1.2, “Storage method for symmetric positive
definite sparse matrix,” b., “Diagonal format storage method for symmetric
positive definite sparse matrix.”

K Input. The size of the first dimension of array A ( n).

NW Input. Number of vectors in the diagonal direction where the coefficient matrix
A is stored using the diagonal format storage method. Even number. The size
of the second dimension of array A.

N Input. Order n of matrix A.

DM_VCGD

II-48 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

NDLT Input. One-dimensional array NDLT (NW) indicating the distance from the
main diagonal vector.

For the diagonal format storage method for normalized symmetric positive
definite sparse matrices, refer to the SSL II Extended Capability User’s Guide II,
Part I, “Overview,” Section 3.2.1.2, “Storage method for symmetric positive
definite sparse matrix,” b., “Diagonal format storage method for symmetric
positive definite sparse matrix.”

B Input. The constant vector of right-hand-side terms of linear equation is stored
in B(1:N).

One-dimensional array B(N).

IPC Input. Preconditioner control information.

When 1: No preconditioner.

When 2: Neumann preconditioner.

When 3: Preconditioner using block incomplete Cholesky decomposition.
In this case, OMEGA needs to be specified.

(See note 3) in (3), “Comments on use.”)

ITMAX Input. Upper limit of the iteration count ( 0).

ISW Input. Control information.

1: Initial calling.

2: Second or subsequent calling.

The values of A, NDLT, W, and IW must not be changed because the values set
at the initial calling are used for these parameters.

(See note 1) in (3), “Comments on use.”)

OMEGA ... Input. Modification for incomplete Cholesky decomposition. 0  OMEGA  1

This is used when IPC = 3.

(See note 3) in (3), “Comments on use.”)

EPS Input. Value used for convergency judgment.

When 0 is set,  |b| is set as EPS. For , 10-6 is set.

(See note 2) in (3), “Comments on use.”)

IGUSS Input. Sets the information indicating whether the iteration is started from an
approximate value of the solution vector specified in array X.

When 0 is set, the approximate value of the solution vector is not specified.

When non-zero is set, the iterative computation is started from an approximate
value of the solution vector specified in array X.

X Input. An approximate value of the solution vector of the linear equation can be
specified in X(1:N).

Output. The solution vector linear equation is stored in X(1:N).

This is a one-dimensional array X(N).

ITER.......... Output. The actual iteration count.

RZ Output. The square root of the residual rz after the convergency judgment.

 DM_VCGD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-49

(See note 2) in (3), “Comments on use.”)

W Work area.

When IPC=3, two-dimensional array of size W(N+MAXT, NW+8).

When IPC3, two-dimensional array of size W(N+MAXT, 7),

where MAXT is the maximum number of threads executed in parallel.

IW Work area.

When IPC=3, two-dimensional array of size IW(N+2MAXT,4).

When IPC3, two-dimensional array of size IW(MAXT,2),

where MAXT is the maximum number of threads executed in parallel.

ICON Output. Condition code. See Table DM_VCGD-1.

Table DM_VCGD-1 Condition codes

Code Meaning Processing

0 No error 

10000 Diagonal vectors in A were reordered as U/L in
ascending distance order.

Processing is continued.

20001 The upper iteration count limit was reached. Processing is discontinued.
The approximate value
obtained is output in array
X, but the precision is not
assured.

20003 Breakdown occurred.

30003 ITMAX  0 Processing is discontinued.

30005 K < N

30006 Incomplete LLT decomposition could not be
performed.

30007 The pivot became minus.

30089 NW is not an even number.

30091 NBAND = 0

30092 NW  0

30093 K  0, n  0

30096 OMEGA < 0, OMEGA > 1

30097 IPC < 1, IPC > 3

30102 The upper triangular part is not correctly
stored.

30103 The lower triangular part is not correctly
stored.

DM_VCGD

II-50 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VCGD-1 Condition codes

Code Meaning Processing

30104 The number of diagonal vectors in the upper
triangular does not equal that in the lower
triangular.

Processing is discontinued.

30105 ISW  1, 2

30200 |NDLT(i) | > n1 or NDLT(i) = 0

(3) Comments on use

a. Notes

1) When multiple sets of the linear equations having the same coefficient matrix
and different constant vectors are solved with IPC = 3:

- First, they are solved with ISW = 1.

- Second, they are solved with ISW = 2.

In the second and subsequent operations, the linear equations are solved by
reusing the result of incomplete Cholesky decomposition obtained in the first
calling.

2) Convergency judgment

A judgment on whether the n-th iteration solution converged is made when

RZ rz EPS = < () is satisfied.

Where, rz = rTM1r, and r is the residual vector r = b  Axn , M is the
preconditioner matrix.

3) Preconditioner

Two types of preconditioners and a function without a preconditioner are
provided.

To solve an elliptic partial differential equation by use a discretization, use a
preconditioner derived by the incomplete Cholesky method.

When A = I  N, the preconditioner M of linear equation (I  N) x = b is as
follows:

IPC=1 No preconditioner M = I

IPC=2 Neumann M1= (I + N)

IPC=3 Block incomplete Cholesky method M = LLT, where M is the
preconditioner matrix which is constituted from incomplete Cholesky
decomposed matrices of the each blocked matrix of A that is partitioned by the
number of threads executed in parallel.

When IPC=2, the preconditioner also must be a positive definite matrix. For
example, diagonal dominance of the matrix (I + N) is a sufficient condition for
the positive definiteness. Additionally, note that using a preconditioner may not
improve the convergence when the preconditioner does not approximate the
inverse matrix of A in some situations such that the maximum absolute value of
the eigenvalues of the matrix N is larger than one.
When IPC=3, the user must specify a value for OMEGA(0 ≤ OMEGA ≤ 1).

 DM_VCGD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-51

When OMEGA = 0, the incomplete Cholesky method is used. When OMEGA =
1, a modified incomplete Cholesky decomposition method is used.

For linear equations obtained from the discretization of a partial differential
equation, it has been proved that the optimal value of OMEGA is between 0.92
and 1.00.

When IPC = 3, the equation is rearranged in order of wavefront, to increase the
efficiency of the preconditioner.

b. Example

 This example solves a system of linear equations with symmetric positive
definition matrices in which n = 51200.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 INTEGER ND,N,KA,WMAX,NDIAG
 PARAMETER (ND=80,MAXT=4,N=ND**3,KA=N)
 PARAMETER (WMAX=8)
 REAL*8 A(KA,WMAX),B(KA),X(KA),OMEGA,EPS
 REAL*8 IW(MAXT,2),W(N+MAXT,7)
 INTEGER DELTA(WMAX),IPREC,ITER,ITMAX
C
 CALL LAP3D(A,DELTA,KA,N,ND,WMAX,NDIAG)
C
 CALL RHS(A,N,KA,NDIAG,W,DELTA,B)
C
 EPS=1D-6
 ITMAX=2000
 ISW=1
 IGUSS=0
 IPREC=2
C
 CALL DM_VCGD(A,KA,NDIAG,N,DELTA,B,IPREC,ITMAX,ISW,OMEGA,
 & EPS,IGUSS,X,ITER,RZ,W,IW,ICON)
 PRINT*,'ICON=',ICON
 PRINT*,'X(1)=',X(1)
 PRINT*,'X(N)=',X(N)
 STOP
 END
C
 SUBROUTINE LAP3D(A,DELTA,KA,N,ND,NDMAX,NDIAG)
 INTEGER NDMAX,NDIAG,N,I,J,L
 INTEGER DELTA(NDMAX),ND,NX,NY
 REAL*8 A(KA,NDMAX)

 DO J=1,NDMAX
 DO I=1,KA
 A(I,J)=0D0
 ENDDO

DM_VCGD

II-52 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDDO

 DO J=1,NDMAX
 DELTA(J)=0
 ENDDO

C 3D PROBLEM
 NDIAG=6
 NX=ND
 NY=ND
 DO I=1,N
 L=I
 IF((L/NX)*NX.NE.L.AND.L.LE.N-1) THEN
 A(I,1)=-1.D0/6.D0
 ENDIF
 ENDDO
 DO I=1,N
 L=I
 IZ=(L-1)/(NX*NY)
 IY=(L-1-IZ*NX*NY)/NX
 IF(L.LE.N-NX.AND.IY.NE.NY-1) THEN
 A(I,2)=-1.D0/6.D0
 ENDIF
 ENDDO
 DO I=1,N
 L=I
 IF(L.LE.N-NX*NY) THEN
 A(I,3)=-1.D0/6.D0
 ENDIF
 ENDDO
 DO I=1,N
 L=I
 IF(((L-1)/NX)*NX.NE.L-1.AND.L.GE.2.AND.L.LE.N) THEN
 A(I,4)=-1.D0/6.D0
 ENDIF
 ENDDO
 DO I=1,N
 L=I
 IZ=(L-1)/(NX*NY)
 IY=(L-1-IZ*NX*NY)/NX
 IF(L.GE.NX+1.AND.L.LE.N.AND.IY.NE.0) THEN
 A(I,5)=-1.D0/6.D0
 ENDIF
 ENDDO
 DO I=1,N
 L=I
 IF(L.GE.NX*NY+1.AND.L.LE.N) THEN
 A(I,6)=-1.D0/6.D0
 ENDIF
 ENDDO
 DELTA(1)=1
 DELTA(2)=NX
 DELTA(3)=NX*NY

 DM_VCGD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-53

 DELTA(4)=-1
 DELTA(5)=-NX
 DELTA(6)=-NX*NY
 RETURN
 END
C
 SUBROUTINE RHS(A,N,KA,NDIAG,DP,DELTA,B)
 IMPLICIT NONE
 INTEGER N,KA,NDIAG,I,J,DSHIFT
 REAL*8 DP(*),A(KA,*),B(KA)
 INTEGER DELTA(*),ICON
C
 DSHIFT=0
 DO J=1,NDIAG
 DSHIFT=MAX(DSHIFT,ABS(DELTA(J)))
 ENDDO
 DO I=1,3*N
 DP(I)=0
 ENDDO
 DO I=1,N
 DP(I+DSHIFT)=1.D0
 ENDDO
 CALL DM_VMVSD(A,KA,NDIAG,N,DELTA,DSHIFT,DP,B,ICON)
 DO I=1,N
 B(I)=B(I)+DP(DSHIFT+I)
 ENDDO
 RETURN
 END

(4) Method

 The standard conjugate gradient method algorithm is used. (See [30] in Appendix A,
“References.”) For the incomplete Cholesky method preconditioner, see [58] in
Appendix A, “References.” For vectorization by wavefront ordering, see [45] in
Appendix A, “References.” For the diagonal format storage method for sparse matrices,
see [59], [52] in Appendix A, “References.”

(5) Acknowledgement

 Fujitsu is grateful to the authors of ITPACK and NSPCG who permitted the use of the
routines of modified incomplete Cholesky decomposition and wavefront ordering.

DM_VCGE

II-54 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VCGE

A system of linear equations with symmetric positive definite sparse matrices (preconditional
CG method, ELLPACK format storage method)

CALL DM_VCGE(A,K, NW, N,ICOL,B,IPC,ITMAX,ISW,OMEGA,EPS,
 IGUSS,X,ITER,RZ,W,IW,ICON)

(1) Function

 This subroutine solves a linear equation having an n  n normalized symmetric positive
definite sparse matrix as a coefficient matrix using the preconditioned CG method.

 Ax = b

 The n  n coefficient matrix is normalized so that the diagonal elements are 1, and the
non-zero elements except the diagonal elements are stored by the ELLPACK format
storage method.

 For the normalization of linear equations with symmetric positive definite sparse
matrices as coefficient matrices, refer to the SSL II Extended Capability User’s Guide II,
Part I, “Overview,” Section 3.2.1.2, “Storage method for symmetric positive definite
sparse matrices.”

(2) Parameters

A Input. The normalized sparse matrix is stored in A(1:N,1:NW).

This is a two-dimensional array A(K, NW).

For the ELLPACK format storage method for normalized symmetric positive
definite sparse matrices, refer to the SSL II Extended Capability User’s Guide II,
Part I, “Overview,” Section 3.2.1.2·a, “ELLPACK format storage method for
symmetric positive definite sparse matrix.”

(See note 1) in (3), “Comments on use.”)

K Input. Size of the first dimension of arrays A and ICOL ( N). Multiple of
NTHRD.

NW Input.

When the maximum numbers of non-zero elements of row vectors of upper and
lower triangular matrices are NSU and NSL, respectively, 2  max (NSU, NSL).

For details, refer to the SSL II Extended Capability User’s Guide II, Part I,
“Overview,” Section 3.2.1.2·a, “ELLPACK format storage method for
symmetric positive definite sparse matrix.”

N Input. Order n of matrix A.

IOCL Input. The information on the column vector to which non-zero elements
belong is stored in ICOL(1:N,1:NW).

This is a two-dimensional array ICOL(K, NW).

B Input. The constant vector of right-hand-side terms of the linear equation is
stored in B(1:N). This is a one-dimensional array B(N).

IPC Input. Preconditioner control information.

When 1: No preconditioner.

 DM_VCGE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-55

When 2: Neumann preconditioner.

When 3: Preconditioner using block incomplete Cholesky decomposition.
 In this case, OMEGA needs to be specified.

(See note 4) in (3), “Comments on use.”)

ITMAX Input. Upper limit of the iteration count. Positive integer.

ISW Input. Control information. (> 0)

1: Initial calling.

2: Second or subsequent calling. The values of A, ICOL, W, and IW must not
be changed because the values set at the initial calling are used in second or
subsequent calls.

(See note 2) in (3), “Comments on use.”)

OMEGA ... Input. Modification for incomplete Cholesky decomposition. 0  OMEGA  1

EPS Input. Value used for convergency judgment.

When RZ < EPS, it is assumed that convergency occurred.

When EPS = 0,  |b| is set as EPS. For , 10-6 is set.

(See note 3) in (3), “Comments on use.”)

IGUSS Input. Sets the information indicating whether an iteration is started from an
approximate value of the solution vector specified in array X.

When 0 is set, no approximate value of the solution vector is specified.

When non-zero is set, an iterative computation is started from an approximate
value of the solution vector specified in array X.

X Input. An approximate value of the solution vector of the linear equation can be
specified in X(1:N).

After operation, output. The solution vector of the linear equation is stored in
X(1:N).

This is a one-dimensional array X(N).

ITER Output. The actual iteration count.

RZ Output. The square root of residual rz after the convergency judgment.
(See note 2) in (3), “Comments on use.”)

W Work area.

When IPC=3, two-dimensional array of size W(N+MAXT, NW+8).

When IPC3, two-dimensional array of size W(N+MAXT, 7),

where MAXT is the maximum number of threads executed in parallel.

IW Work area.

When IPC=3, two-dimensional array of size IW(N+2MAXT, NW+5).

When IPC3, two-dimensional array of size W(MAXT, 2),

where MAXT is the maximum number of threads executed in parallel.

ICON Output. condition code.

See Table DM_VCGE-1.

DM_VCGE

II-56 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VCGE-1 Condition codes

Code Meaning Processing

0 No error 

10000 Elements of A and ICOL are rearranged as
U/L.

Processing is continued.

20001 The iteration count reaches the upper limit. Processing is discontinued.
The approximate values
that have been obtained are
output in array X, but
precision is not assured.

20003 Breakdown occurred.

30003 ITMAX  0 Processing is discontinued.

30005 K < N

30006 Incomplete LLT decomposition could not be
executed.

30007 Pivot became minus.

30092 NW  0

30093 K  0, N  0

30096 OMEGA < 0, OMEGA > 1

30097 IPC < 1, IPC > 3

30098 ISW  1, 2

30100 NW  2  max(NSU, NSL)

30104 The upper triangular part or the lower
triangular part is not correctly stored.

Negative
number

The non-diagonal element is present in the
icon row.

(3) Comments on use

a. Notes

1) The sparse matrix is stored using the ELLPACK format storage method. (See
Appendix A, “References,” [45], [62].)

The upper triangular part is stored in A(*,1:NW/2), and the lower triangular part
is stored in A(*,NW/2 + 1:NW), where NW = 2  max(NSU,NSL).

When IPC is other than 3 (when a preconditioner other than that using the
incomplete Cholesky decomposition is specified), a less constrained storage
method than those described in the following is accepted: SSL II Extended
Capability User’s Guide II, Part I, “Overview,” Section 3.2.1.2·a, “ELLPACK
format storage method for symmetric positive definite sparse matrix.” That is,
the following sparse matrix is also accepted as input: A normalized symmetric
positive definite sparse matrix excluding diagonal elements stored using the

 DM_VCGE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-57

ELLPACK format storage method for general sparse matrix. In this case, the
value of NW need not be 2  max(NSU,NSL).

2) When multiple sets of linear equations having the same coefficient matrix and
different constant vectors are solved with IPC = 3:

- The primary is solved using ISW = 1.

- The secondary, is solved using ISW = 2.

In the second and subsequent operations, the linear equations are solved by
reusing the result of the incomplete Cholesky decomposition obtained in the first
calling.

3) Convergency judgment

A judgement on whether the n-th iteration solution has converged is made when

RZ =)(rz < EPS is satisfied.

Where, rz = rTM 1r , and r is a residual vector r = b  Axn , and M is a
preconditioner matrix.

4) Preconditioner

Two types of preconditioners and a function without a preconditioner are
provided.

When A = I  N, the preconditioner M of the linear equation (I  N) x = b is as
follows:

IPC=1 No preconditioner M = I

IPC=2 Neumann M 1 = (I + N)

IPC=3 Block incomplete Cholesky method M = LLT, where M is the
preconditioner matrix which is constituted from incomplete Cholesky
decomposed matrices of the each blocked matrix of A that is partitioned by the
number of threads executed in parallel.

When IPC=2, the preconditioner also must be a positive definite matrix. For
example, diagonal dominance of the matrix (I + N) is a sufficient condition for
the positive definiteness. Additionally, note that using a preconditioner may not
improve the convergence when the preconditioner does not approximate the
inverse matrix of A in some situations such that the maximum absolute value of
the eigenvalues of the matrix N is larger than one.
When IPC=3, the user must specify a value for OMEGA(0 ≤ OMEGA ≤ 1).

When OMEGA = 0, the incomplete Cholesky method is used. When OMEGA =
1, a modified incomplete Cholesky decomposition method is used.

For a linear equation obtained from the discretization of the partial differential
equation, it is proved that the optimal value of OMEGA is 0.92 to 1.00.

When IPC = 3, the equation is rearranged in order of wavefront, to increase the
efficiency of the preconditioner.

b. Example

 This example solves the system of linear equations with symmetric positive
definition matrix with n = 51200.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4

DM_VCGE

II-58 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 INTEGER NMAX,N,WMAX,W
 PARAMETER (MAXT=4,NORD=80,WMAX=6)
 PARAMETER (NMAX=NORD**3,N=NMAX)

 REAL*8 RS(NMAX),X(NMAX),EPS,OMEGA,AP(NMAX),RZ
 REAL*8 A(NMAX,WMAX),XW(NMAX+MAXT,7)
 INTEGER ICOL(NMAX,WMAX),XIW1(MAXT,2),IPREC,I,ITMAX,ITER
C
 CALL SET(A,ICOL,NMAX,N,NORD,WMAX)
 DO I=1,N
 AP(I)=1.0D0
 ENDDO
 W=6
 CALL DM_VMVSE(A,NMAX,W,N,ICOL,AP,RS,ICON)
 DO I=1,N
 RS(I)=RS(I)+1.0D0
 ENDDO
 ITMAX=2000
 EPS=1D-6
 ISW=1
 IPREC=2
 IGUSS=0
 CALL DM_VCGE(A,NMAX,W,N,ICOL,RS,IPREC,ITMAX,ISW,OMEGA,EPS,
 & IGUSS,X,ITER,RZ,XW,XIW1,ICON)
 PRINT*,'ICON = ',ICON
C
 PRINT*,'X(1)=',X(1)
 PRINT*,'X(N)=',X(N)
C
 STOP
 END
C
 SUBROUTINE SET(A,ICOL,NMAX,N,NORD,WMAX)
 INTEGER WMAX,N,I,J
 INTEGER ICOL(NMAX,WMAX),NORD
 REAL*8 A(NMAX,WMAX)
 N=N
 DO J=1,WMAX
 DO I=1,N
 A(I,J)=0D0
 ICOL(I,J)=I
 ENDDO
 ENDDO
C 3D PROBLEM
 NX=NORD
 NY=NORD
C
 DO I=1,N

 DM_VCGE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-59

 IF((I/NX)*NX.NE.I.AND.I.LE.N-1) THEN
 A(I,1)=-1.0D0/6.0D0
 ICOL(I,1)=I+1
 ENDIF
 ENDDO
C
 DO I=1,N
 IZ=(I-1)/(NX*NY)
 IY=(I-1-IZ*NX*NY)/NX
 IF(I.LE.N-NX.AND.IY.NE.NY-1) THEN
 A(I,2)=-1.0D0/6.0D0
 ICOL(I,2)=I+NX
 ENDIF
 ENDDO
C
 DO I=1,N
 IF(I.LE.N-NX*NY) THEN
 A(I,3)=-1.0D0/6.0D0
 ICOL(I,3)=I+NX*NY
 ENDIF
 ENDDO
C
 DO I=1,N
 IF(((I-1)/NX)*NX.NE.I-1.AND.I.GE.2.AND.I.LE.N) THEN
 A(I,4)=-1.0D0/6.0D0
 ICOL(I,4)=I-1
 ENDIF
 ENDDO
C
 DO I=1,N
 IZ=(I-1)/(NX*NY)
 IY=(I-1-IZ*NX*NY)/NX
 IF(I.GE.NX+1.AND.I.LE.N.AND.IY.NE.0) THEN
 A(I,5)=-1.0D0/6.0D0
 ICOL(I,5)=I-NX
 ENDIF
 ENDDO
C
 DO I=1,N
 IF(I.GE.NX*NY+1.AND.I.LE.N) THEN
 A(I,6)=-1.0D0/6.0D0
 ICOL(I,6)=I-NX*NY
 ENDIF
 ENDDO
 RETURN
 END

(4) Method

 The algorithm of the standard conjugate gradient method is used. (See [30] in Appendix
A, “References.”) To precondition using the incomplete Cholesky method, see [58] in
Appendix A, “References.” For vectorization by wavefront ordering, see [45] in
Appendix A, “References.”

DM_VCGE

II-60 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(5) Acknowledgement

 Fujitsu is grateful to the authors of ITPACK and NSPCG who permitted the use of the
modified incomplete Cholesky decomposition and wavefront ordering routines.

 DM_VCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-61

DM_VCLU

LU decomposition of complex matrices (blocked LU decomposition method)

CALL DM_VCLU(ZA,K,N,EPSZ,IP,IS,ICON)

(1) Function

 This subroutine executes LU decomposition for non-singular complex n  n matrices
using blocked outer product type Gaussian elimination.

 PA = LU

 where, P is the permutation matrix which exchanges rows by partial pivoting, L is the
lower triangular matrix, and U is unit upper triangular matrix (n  1).

(2) Parameters

ZA Input. Store matrix A in ZA(1:N,1:N).

Output. Matrices L and U are stored in ZA(1:N,1:N).

See Figure DM_VCLU-1.

This is a double precision complex two-dimensional array ZA(K,N).

K............... Input. The size of the first array dimension for storage ZA ( N).

N Input. Order n of matrix A.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is assumed. (See note 1) in (3),
“Comments on use.”)

IP Output. The transposition vector indicating the history of row exchange by
partial pivoting. One-dimensional array of size n. (See note 2) in (3),
“Comments on use.”)

IS Output. Information to obtain the determinant of matrix A. The determinant is
obtained by multiplying the n diagonal elements of array ZA by the value of IS
after the operation.

ICON Output. Condition code.

See Table DM_VCLU-1.

DM_VCLU

II-62 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Unit upper triangular matrix U
1

1
0

un-1 n

1

1

u12 u1n

u2nu23

u13

Lower triangular matrix L

0

l11

l21

l31

l22

l32

ln1 ln2 lnnlnn-1

ln-1 n-1

K

N

Array ZA
u1n

u2n

u13l11

l21

l31

l22

u12

l32

u23

ln1 ln2 lnn

un-1 n

lnn-1

ln-1 n-1

Figure DM_VCLU-1 Storing L and U in array ZA after the operation

 After LU decomposition of matrices L and U, the upper triangular part (except
diagonal elements) of matrix U and L are stored in array ZA(I:N,I:N).

Table DM_VCLU-1 Condition codes

Code Meaning Processing

0 No error 

20000 All elements in some row of array A were zero,
or the pivot became relatively zero. Matrix A
may be singular.

Processing is discontinued.

30000 K < N, N < 1, or EPSZ < 0.0.

(3) Comments on use

a. Notes

1) If a value is set for EPSZ, the value has the following meaning: if the absolute
value of the selected pivot is less than EPSZ, the pivot is assumed to be zero and
processing is discontinued when ICON = 20000. When unit round off is u, the
standard value of EPSZ is 16u. When the computation is to be continued even if
the pivot becomes small, assign the minimum value to EPSZ. In this case,
however, the result is not assured.

2) The transposition vector corresponds to the permutation matrix P in LU
decomposition PA = LU with partial pivoting.

In this subroutine, the contents of array ZA are exchanged using partial pivoting.
That is, when the I-th row (I  J) is selected as the pivot row in the J-th stage (J =

 DM_VCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-63

I, ..., n) of decomposition, the contents of the I-th row and J-th row of array ZA
are exchanged. To indicate this exchange, I is stored in IP (J).

3) The linear equation can be solved by calling subroutine DM_VCLUX following
this subroutine. Normally, the linear equation can be solved in one step by
calling subroutine DM_VLCX.

b. Example

 A system of linear equations with a complex coefficient matrix is LU-
decomposed and solved.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N=2000,K=N+1)
C
 COMPLEX*16 A(K,N),B(N)
 REAL*8 C
 INTEGER IP(N),IS
C
 C=SQRT(1.0D0/DBLE(1+N))
 T=DATAN(1.0D0)*8./(1+N)
C
 DO 100 J=1,N
 DO 100 I=1,N
 A(I,J)=DCMPLX(C*COS(T*I*J),C*SIN(T*I*J))
 100 CONTINUE
C
 DO 200 I=1,N
 S=(0.,0.)
 DO 200 J=1,N
 S=S+DCMPLX(COS(T*I*J),SIN(T*I*J))
 B(I)=S*C
 200 CONTINUE
C
 EPSZ=0.0D0
 CALL DM_VCLU(A,K,N,EPSZ,IP,IS,ICON)
C
 CALL DM_VCLUX(B,A,K,N,IP,ICON)
 PRINT*,'ICON=',ICON

 ERROR=0.0D0
 DO I=1,N
 ERROR=MAX(ERROR,ABS(1.0D0-B(I)))
 ENDDO
 PRINT*,'ERROR =',ERROR

 PRINT*,'ORDER=',N,' B(1)=',B(1),'B(N)=',B(N)
 STOP
 END

DM_VCLU

II-64 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(4) Method

 For details of the blocked LU decomposition method for outer product type, see [1], [30],
[54], [55], [56], and [70] in Appendix A, “References.”

 DM_VCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-65

DM_VCLUX

A system of linear equations with LU-decomposed complex matrix

CALL DM_VCLUX(ZB,ZFA,KFA,N,IP,ICON)

(1) Function

 This subroutine solves a linear equation with an LU-decomposed complex coefficient
matrices.

 LUx = Pb

 where, L is a lower triangular matrix of n  n, U is a unit upper triangular matrix of n  n,
and P is a permutation matrix. (Rows are exchanged by partial pivoting when the
coefficient matrix is LU-decomposed.) b is an n-dimensional complex constant vector,
and x is an n-dimensional solution vector (n  1).

(2) Parameters

ZB Input. Constant vector b.

Output. Solution vector x.

A double precision complex one-dimensional array of size n.

ZFA Input. Matrices L and U are stored in ZFA(1:N,1:N).

See Figure DM_VCLUX-1.

This is a double precision complex two-dimensional array ZFA(KFA,N).

KFA Input. The size of the first dimension of storage array ZFA ( N).

N Input. Order n of matrices L and U.

IP Input. The transposition vector which indicates the history of row exchange by
partial pivoting. A one-dimensional array of size n.

(See note 2) in (3), “Comments on use,” for subroutine DM_VCLU.)

ICON Output. Condition code.

See Table DM_VCLUX-1.

DM_VCLUX

II-66 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Unit upper triangular matrix U
1

1
0

un-1 n

1

1

u12 u1n

u2nu23

u13

Lower triangular matrix L

0

l11

l21

l31

l22

l32

ln1 ln2 lnnlnn-1

ln-1 n-1

KFA

N

Array ZFA
u1n

u2n

u13l11

l21

l31

l22

u12

l32

u23

ln1 ln2 lnn

un-1 n

lnn-1

ln-1 n-1

Figure DM_VCLUX-1 Storing L and U in array ZFA

 For LU-decomposed matrices L and U, L and the upper triangular part (except
diagonal elements) of U are stored in array ZFA(1:N,1:N).

Table DM_VCLUX-1 Condition codes

Code Meaning Processing

0 No error 

20000 The coefficient matrix was singular. Processing is discontinued.

30000 KFA <N, N < 1, or IP was invalid.

(3) Comments on use

a. Notes

1) The linear equations can be solved by calling subroutine DM_VCLU, LU-
decomposing the coefficient matrix, then calling this subroutine. Normally, the
solution can be obtained in one step by calling subroutine DM_VLCX.

b. Example

 A system of linear equations with a complex coefficient matrix is LU-
decomposed and solved.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**

 DM_VCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-67

 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N=2000,K=N+1)
C
 COMPLEX*16 A(K,N),B(N)
 REAL*8 C
 INTEGER IP(N),IS
C
 C=SQRT(1.0D0/DBLE(1+N))
 T=DATAN(1.0D0)*8./(1+N)
C
 DO 100 J=1,N
 DO 100 I=1,N
 A(I,J)=DCMPLX(C*COS(T*I*J),C*SIN(T*I*J))
 100 CONTINUE
C
 DO 200 I=1,N
 S=(0.,0.)
 DO 200 J=1,N
 S=S+DCMPLX(COS(T*I*J),SIN(T*I*J))
 B(I)=S*C
 200 CONTINUE
C
 EPSZ=0.0D0
 CALL DM_VCLU(A,K,N,EPSZ,IP,IS,ICON)
C
 CALL DM_VCLUX(B,A,K,N,IP,ICON)
 PRINT*,'ICON=',ICON

 ERROR=0.0D0
 DO I=1,N
 ERROR=MAX(ERROR,ABS(1.0D0-B(I)))
 ENDDO
 PRINT*,'ERROR =',ERROR

 PRINT*,'ORDER=',N,' B(1)=',B(1),'B(N)=',B(N)
 STOP
 END

(4) Method

 The linear equation with LU-decomposed complex matrix as its coefficient is solved by
forward and back-substitution. (See [54] in Appendix A, “References.”)

DM_VCMINV

II-68 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VCMINV

Inverse of complex matrix (blocked Gauss-Jordan method)

CALL DM_VCMINV(ZA,K,N,EPSZ,ICON)

(1) Function

 This subroutine obtains the inverse A1 of the n  n non-singular complex matrix A
using the Gauss-Jordan method.

(2) Parameters

ZA Input. Matrix A is stored in ZA(1:N,1:N).

Output. Matrix A1 is stored in ZA(1:N,1:N).

The double precision complex two-dimensional array ZA(K,N).

K Input. The size of the first dimension of the array ZA. ( N)

N Input. Order n of matrix A.

EPSZ Input. Judgment of relative zero of the pivot. ( 0.0)

When EPSZ is 0.0, the standard value is assumed.

(See note 1) in (3), “Comments on use.”)

ICON Output. Condition code.

See Table DM_VCMINV-1.

Table DM_VCMINV-1 Condition codes

Code Meaning Processing

0 No error 

20000 All row elements in matrix A are zero or the
pivot becomes a relatively zero. Matrix A may
be singular.

Processing is discontinued.

30000 N < 1, K < N, or EPSZ < 0.0.

(3) Comments on use

a. Notes

1) When the pivot element selected by partial pivoting is 0.0 or the absolute value
is less than EPSZ, it is assumed to be relatively zero. In this case, processing is
discontinued with ICON=20000. When unit round off is u, the standard value of
EPSZ is 16u. If the minimum value is assigned to EPSZ, processing is
continued, but the result is not assured.

b. Example

The inverse of a matrix is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4

 DM_VCMINV

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-69

when this program is to be executed in parallel with 4 threads on the system of 4
processors.

cc **example**
 implicit complex*16 (a-h,o-z)
 parameter(n=2000,k=n+1)
c
 complex*16 a(k,n)
 complex*16 as(k,n),tmpz
 real*8 c,t,tmp2,tmp
c
 c=sqrt(1.0d0/dble(n))
 t=datan(1.0d0)*8.d0/(n)
c
 do 100 j=1,n
 do 100 i=1,n
 a(i,j)=dcmplx(c*cos(t*(i-1)*(j-1)),
 $ c*sin(t*(i-1)*(j-1)))
 as(i,j)=dcmplx(c*cos(t*(i-1)*(j-1)),
 $ -c*sin(t*(i-1)*(j-1)))
 100 continue
c
 epsz=0.0d0
 call dm_vcminv(a,k,n,epsz,icon)
cc
 tmp=0.0d0
 do j=1,n
 do i=1,n
 tmpz=(a(i,j)-as(i,j))
 tmp2=dabs(dble(tmpz))+dabs(dimag(tmpz))
 if(tmp2.gt.tmp)tmp=tmp2
 enddo
 enddo
 print*,'order=',n,' , error = ',tmp
 99 continue
 stop
 end

(4) Method

 This subroutine solves an inverse of matrix using the blocked Gauss-Jordan method (see
[30] in Appendix A, “References.”).

DM_VGEVPH

II-70 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VGEVPH

Generalized eigenvalue problem for real symmetric matrices (eigenvalues and eigenvectors)
(Tridiagonalization, multisection method, and inverse iteration)

CALL DM_VGEVPH (A, K, N, B, EPSZ, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE,
 M, EV, ICON)

(1) Function

 This subroutine obtains all the eigenvalues and eigenvectors to solve a generalized
eigenvalue problem.

Ax = Bx

where, A is an n  n real symmetric matrix and B is an n  n positive definite matrix.

(2) Parameters

A Input. The lower triangular part {aij | i  j} of real symmetric matrix A is stored
in the lower triangular part {A(i,j) | i  j}of A(1:N,1:N).

After calculation, the value of A is not assured.

Two-dimensional double-precision real array A(K,N).

K Input. Size of first-dimension of array A (K  N).

N Input. Order n of real symmetric matrix A.

B Input. The lower triangular part {bij | i  j} of the positive definite symmetric
matrix B is stored in the lower triangular part {B(i,j) | i  j}of B(1:N,1:N).

Output. The LLT-decomposed matrix is stored.
The lower triangular matrix L { lij | i  j} is stored in the lower triangular part
{ B(i,j) | i  j } of B(1:N, 1:N).

This is a two-dimensional double-precision real array of B(K,N).

EPSZ Input. The zero judgment value of the pivot when B is LLT-decomposed. (
0.0)

When EPSZ is 0.0, the standard value is assumed.

(See 1) in a, “Notes,” in (3), “Comments on use. ”)

NF Input. Number assigned to the first eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

NL Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC Input. Control information.

When the value of IVEC is 1, the eigenvalues and corresponding eigenvectors
are calculated.

When the value of IVEC is not 1, only the eigenvalues are calculated.

 DM_VGEVPH

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-71

ETOL Input. Criterion value for checking whether the eigenvalues are numerically
different from each other or are multiple. When ETOL is less than 3.0D-16,
this value is used as the standard value.

CTOL Input. Criterion value for checking whether the adjacent eigenvalues can be
considered to be approximately equal to each other. This check uses formula
(3.1). This value is used to assure the linear independence of the eigenvector
corresponding to the eigenvalue belonging to approximately multiple
eigenvalues (clusters).

The value of CTOL should be generally 5.0D-12. For a very large cluster, a
large CTOL value is required.

1.0D-6  CTOL  ETOL

When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6.

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the
standard value.

(See 2) in a, “Notes,” in (3), “Comments on use.”)

NEV Output. Number of eigenvalues calculated.

One-dimensional array NEV(5).

The detail information is as follows:

NEV(1) indicates the number of different eigenvalues calculated.

NEV(2) indicates the number of approximately multiple, different eigenvalues
(clusters) calculated.

NEV(3) indicates the total number of eigenvalues (including multiple
eigenvalues) calculated.

NEV(4) indicates the number representing the first of the eigenvalues calculated.

NEV(5) indicates the number representing the last of the eigenvalues calculated.

E Output. Eigenvalues are stored in E.

The eigenvalues calculated are stored in E(1:NEV(3)).

One-dimensional array E(MAXNE).

MAXNE Input. Maximum number of eigenvalues that can be calculated.

When it can be considered that there are two or more eigenvalues with
multiplicity m, MAXNE must be set to a larger value than NL  NF + 1 + 2  m
that is bounded by n. Size of the dimension of array E.

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be
calculated.

(See 3) in a, “Notes,” in (3), “Comments on use.”)

M Output. Information about the multiplicity of eigenvalues calculated.

M(i,l) indicates the multiplicity of the i-th eigenvalue i. M(i,2) indicates the
multiplicity of the i-th cluster when the adjacent eigenvalues are regarded as
clusters.

(See 2) in a, “Notes,” in (3), “Comments on use.”)

Two-dimensional array M(MAXNE,2).

DM_VGEVPH

II-72 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

EV Output. When IVEC = 1, the eigenvectors corresponding to the eigenvalues are
stored in EV.

The eigenvectors are stored in EV(1:N,1:NEV(3)).

Two-dimensional array EV(K,MAXNE).

ICON Output. Condition code.

See Table DM_VGEVPH-1.

Table DM_VGEVPH-1 Condition codes

Code Meaning Processing

0 No error 

20000 The pivot becomes negative at LLT
decomposition of matrix B. Matrix B is not
positive.

Processing is discontinued.

20100 The pivot becomes relatively zero at LLT
decomposition of matrix B. Matrix B may be
singular.

20200 During calculation of clustered eigenvalues, the
total number of eigenvalues exceeded the value
of MAXNE.

Processing is discontinued.
The eigenvectors cannot be
calculated, but the different
eigenvalues themselves are
already calculated.
A suitable value for
MAXNE to allow
calculation to proceed is
returned in NEV(3).
(See 2) in a, “Notes,” in (3),
“Comments on use.”)

30000 NF < 1, NL > N, NL < NF, N < 1, K < N,
MAXNE < NL - NF + 1, or EPSZ < 0.

Processing is discontinued.

(3) Comments on use

a. Notes

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LLT decomposition. In this case, processing is
discontinued with ICON=20100. When unit round off is u, the standard value
of EPSZ is 16  u. When the computation is to be continued even if the pivot is
small, assign, the minimum value to EPSZ. In this case, however, the result is
not assured.

2) This routine calculates eigenvalues independently from each other by dividing
them into nonoverlapping, sequenced sets (parallel processing).

When  = ETOL, the following condition is satisfied for consecutive eigenvalues
 j (j = s - 1, s, ... , s + k, (k  0)):















),max(1 1

1

ii

ii (3.1)

 DM_VGEVPH

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-73

If formula (3.1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when
i = s-1 and i = s + k + 1, it is assumed that the eigenvalues  j (j = s - 1, s, ..., s +
k) are numerically multiple.

The standard value of ETOL is 3.0D-16 (about the unit round off). With this
value, the eigenvalues are refined up to the maximum machine precision.

If formula (3.1) is not satisfied when  =ETOL, it can be considered that  i-1 and
i are distinct eigenvalues.

When  =ETOL, assume that consecutive eigenvalues m (m = t -1, t, ..., t + k (k
 0)) are different eigenvalues. Also, when  = CTOL, assume that formula (3.1)
is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t -1 and i = t
+ k + 1. In this case, it is assumed that their different eigenvalues m (m = t - 1,
t, ..., t + k) are approximately multiple (i.e., form a cluster). In this case,
independent starting vectors are generated for inverse iteration, and eigenvectors
corresponding to m (m = t - 1, t, …, t + k) are reorthogonalized.

3) The maximum number of eigenvalues that can be calculated is specified in
MAXNE. When the value of CTOL is increased, the cluster size also increases.
Therefore, the total number of eigenvalues calculated might exceed the value of
MAXNE. In this case, decrease the value of CTOL or increase the value of
MAXNE.

If the total number of eigenvalues calculated exceeds the value of MAXNE,
ICON = 20200 is returned. In this case, the eigenvectors cannot be calculated
even if eigenvector calculation is specified. Eigenvalues are calculated, but are
not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in E(1:NEV(1)). The information
about the multiplicity of the corresponding eigenvalues is stored in
M(1:NEV(1),1).

When all the eigenvalues are different from each other and there are no
approximately multiple eigenvalues, MAXNE can be set to NT (NT=NL-NF+1).
However, when there are multiple eigenvalues and the multiplicity can be
assumed to be m, then MAXNE must be set to at least NT + 2  m.

If the total number of eigenvalues to be calculated exceeds the value of MAXNE,
the value required to continue the calculation is returned to NEV(3). The
calculation can be continued by allocating the area by using this returned value
and by calling the routine again.

b. Example

 This example calculates the specified eigenvalues and eigenvectors of a
generalized eigenvalue problem whose eigenvalues and eigenvectors are known.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

cc **example**
 implicit real*8(a-h,o-z)
 parameter(n=2000 ,k=n+1)
 parameter(nf=1,nl=n,max_nev=nl-nf+1,tau=1.0d0)
 dimension a(k,n),b(k,n),b2(k,n),c(k,n),d(k,n)
 dimension nev(5),mult(max_nev,2)

DM_VGEVPH

II-74 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 dimension eval(max_nev),evec(k,max_nev)
cc
 pai=4.0d0*datan(1.0d0)
 coef=dsqrt(2.0d0/(n+1))
 do j=1,n
 do i=1,n
 d(i,j)=coef*dsin(pai/(n+1)*i*j)
 enddo
 enddo
cc
 do j=1,n
 do i=1,n
 if(i.eq.j)then
 c(J,J)=DBLE(J)
 else
 c(i,j)=0.0d0
 endif
 enddo
 enddo
cc
cc d x c -> b
cc
 call dm_vmggm(d,k,c,k,b,k,n,n,n,icon)
cc
cc b x d -> a
cc
 call dm_vmggm(b,k,d,k,a,k,n,n,n,icon)
cc
cc B = LL^t , A <- LALt
cc
 do i=1,n
 do j=1,n
 b(j,i)=1.0d0/dsqrt(tau)
 b2(j,i)=min(i,j)/tau
 enddo
 enddo
 call dtrmm('Left','Lower','Not transpose','Not-unit',
 $ n,n,1.0d0,b,k,a,k)
 call dtrmm('Right','Upper','Not transpose','Not-unit',
 $ n,n,1.0d0,b,k,a,k)
cc
 n0x=nf
 n1x=nl
 ivec=1
 etol=1.0d-15
 ctol=1.0d-10
 max_nevx=max_nev
 epsz=0.0d0
 call dm_vgevph(a,k,n,b2,epsz,n0x,n1x,ivec,
 & etol,ctol,nev,
 & eval,max_nevx,mult,evec,icon)
 do i=1,nev(3),nev(3)/10
 print*,'eigen value in eval(',i,') = ',eval(i)

 DM_VGEVPH

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-75

 enddo
 stop
 end

(4) Method

 The generalized eigenvalue problem (4.1) is solved. Here, B is a positive definite matrix
so that Cholesky decomposition can be executed.

Ax = Bx (4.1)

LLT = B (4.2)

Multiply (4.1) by L-1 from left-side.

L-1Ax = LTx (4.3)

y = LTx (4.4)

Then

x = L-Ty (4.5)

Substitute (4.5) into (4.3).

L-1AL-Ty = y (4.6)

C = L-1AL-T (4.7)

Substituting C we get

C y = y (4.8)

(4.8) can be regarded as an eigenvalue problem for a real symmetric matrix. The
eigenvalue problem of the real symmetric matrix is solved using DM_VSEVPH. (See the
description on (4) Method of DM_VSEVPH.)

DM_VHEVP

II-76 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VHEVP

Eigenvalues and eigenvectors of Hermite matrices

CALL DM_VHEVP (ZA, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, EH,
 MAXNE, M, ZEV, ICON)

(1) Function

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of an n-
dimensional Hermite matrix.

Ax = x (1.1)

(2) Parameters

ZA Input. The lower triangular part {aij | i  j } of Hermite matrix A whose
eigenvalues and eigenvectors are to be calculated is stored in the lower
triangular part {ZA(i,j) | i  j }of ZA(1:N,1:N). The value of ZA is not assured
after operation.

Two-dimensional double-precision real array ZA(K,N).

K Input. Size of first-dimension of array ZA (K  N).

N Input. Order n of Hermite matrix A

NF Input. Number assigned to the first eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

NL Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC Input. Control information.

When IVEC is 1, the eigenvalues and the corresponding eigenvectors are
calculated.

When IVEC is not 1, only the eigenvalues are calculated.

ETOL Input. Criterion value for checking whether the eigenvalues are different from
each other or equal to each other. This check uses formula (3.1). When ETOL
is less than 3.0D-16, this value is used as the standard value.

(See 1) in a, “Notes,” in (3), “Comments on use.”)

CTOL Input. Criterion value for checking whether the adjacent eigenvalues are
approximately equal to each other. This check uses formula (3.1). CTOL is
used to assure the linear independence of the eigenvector corresponding to the
eigenvalue belonging to approximately multiple eigenvalues (clusters).

The CTOL value should generally be 5.0D-12. For a very large cluster, a large
CTOL value is required.

1.0D-6  CTOL  ETOL

When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6.

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the
standard value.

 DM_VHEVP

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-77

(See 1) in a, “Notes,” in (3), “Comments on use.”)

NEV Output. Number of eigenvalues calculated.

One-dimensional array NEV(5).

Details are given below.

NEV(1) indicates the number of different eigenvalues calculated.

NEV(2) indicates the number of approximately multiple different eigenvalues
(different clusters) calculated.

NEV(3) indicates the total number of eigenvalues (including multiple
eigenvalues) calculated.

NEV(4) indicates the number representing the first of the eigenvalues calculated.

NEV(5) indicates the number representing the last of the eigenvalues calculated.

EH Output. Eigenvalues are stored in EH.

The eigenvalues calculated are stored in EH(1:NEV(3)).

One-dimensional double-precision array EH(MAXNE).

MAXNE Input. Maximum number of eigenvalues that can be calculated. Size of the
first-dimension of array EH.

When it can be assumed that there are two or more eigenvalues with
multiplicity m, MAXNE must be a larger value than NL  NF + 1 + 2  m that
is bounded by n.

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be
calculated. (See 2) in a, “Notes,” in (3), “Comments on use.”)

M Output. Information about the multiplicity of eigenvalues calculated.

M(i,l) indicates the multiplicity of the i-th eigenvalue i calculated. M(i,2)
indicates the multiplicity of the i-th cluster calculated when the adjacent
eigenvalues are regarded as approximately multiple eigenvalues (clusters).

(See 3) in a, “Notes,” in (2), “Comments on use.”)

Two-dimensional array M(MAXNE,2).

ZEV Output. When IVEC = 1, the eigenvectors corresponding to the eigenvalues are
stored in ZEV.

The eigenvectors are stored in ZEV(1:N,1:NEV(3)).

Two-dimensional double-precision array ZEV(K,MAXNE).

ICON Output. Condition code.

See Table DM_VHEVP-1.

DM_VHEVP

II-78 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VHEVP-1 Condition codes

Code Meaning Processing

0 No error 

20000 During calculation of clustered eigenvalues, the
total number of eigenvalues exceeded
MAXNE.

Processing is discontinued.
The eigenvectors cannot be
calculated, but the different
eigenvalues themselves are
already calculated.
A suitable value for
MAXNE to allow
calculation to proceed is
returned in NEV(3).

(See 2) in a, “Notes,” in (3),
“Comments on use.”)

30000 NF < 1, NL > N, NL < NF, K < N, N < 1, or
MAXNE < NL - NF + 1.

Processing is discontinued.

(3) Comments on use

a. Notes

1) This routine calculates eigenvalues independently from each other by dividing
them into nonoverlapping, sequenced sets (parallel processing).

When  = ETOL, the following condition is satisfied for consecutive eigenvalues
 j (j = s - 1, s, ..., s + k, (k  0)):















),max(1 1

1

ii

ii (3.1)

If formula (3.1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when
i = s - 1 and i = s + k + 1, it is assumed that the eigenvalues  j (j = s - 1, s, ..., s +
k) are numerically multiple.

The standard value of ETOL is 3.0D-16 (about the unit round off). In this case,
the eigenvalues are refined up to the maximum machine precision.

If formula (3.1) is not satisfied when  = ETOL, it can be considered that  i-1
and i are distinct eigenvalues.

When  = ETOL, assume that consecutive eigenvalues m (m = t - 1, t, ..., t + k
(k  0)) are different eigenvalues. Also, when  = CTOL, assume that formula
(3.1) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and
i = t + k + 1. In this case, it is assumed that the distinct eigenvalues m (m = t - 1,
t, ..., t + k) are approximately multiple (i.e., form a cluster). In this case,
independent starting vectors are generated for inverse iteration, and eigenvectors
corresponding to m (m = t - 1, t, …, t + k) are reorthogonalized.

2) The maximum number of eigenvalues calculated can be specified in MAXNE.
When the CTOL value is increased, the cluster size also increases. Therefore,
the total number of eigenvalues calculated might exceed the MAXNE value. In
this case, decrease the CTOL value or increase the MAXNE value.

 DM_VHEVP

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-79

If the total number of eigenvalues calculated exceeds the MAXNE value, ICON
= 20000 is returned. In this case, the eigenvectors cannot be calculated even if
eigenvector calculation is specified. Eigenvalues are calculated, but are not
stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in EH(1:NEV(1)). The
multiplicity of the corresponding eigenvalues is stored in M(1:NEV(1),1).

When all the eigenvalues are different from each other and there are no
approximately multiple eigenvalues, the MAXNE value can be NT (NT=NL-
NF+1 is the total number of eigenvalues calculated). However, when there are
multiple eigenvalues and the multiplicity is m, the MAXNE value must be at
least NT + 2  m.

If the total number of eigenvalues to be calculated exceeds the MAXNE value,
the value required to continue the calculation is returned to NEV(3). The
calculation can be continued by allocating the area by using this returned value
and by calling the routine again.

b. Example

 This example calculates the specified eigenvalues and eigenvectors of a Hermite
matrix.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N=2000,K=N,NE=N,MAX_NEV=NE)
 COMPLEX*16 A(K,N),B(K,N),C(K,N),D(K,N),DH(K,N),ALPHA,BETA,
 & EVECH(K,MAX_NEV)
 DIMENSION NEV(5),MULT(MAX_NEV,2)
 DIMENSION EVAL(MAX_NEV)
CC
 PAI2=8.0D0*DATAN(1.0D0)
 COEF=DSQRT(1.0D0/(N))
 DO J=1,N
 DO I=1,N
 PART1 =COEF*DCOS(PAI2/N*(I-1)*(J-1))
 PART2 =COEF*DSIN(PAI2/N*(I-1)*(J-1))
 D(I,J)=DCMPLX(PART1,PART2)
 DH(I,J)=DCMPLX(PART1,-PART2)
 ENDDO
 ENDDO
CC
 DO J=1,N
 DO I=1,N
 IF(I.EQ.J)THEN
 C(I,J)=DCMPLX(DBLE(I),0.0D0)
 ELSE
 C(I,J)=(0.0D0,0.0D0)
 ENDIF
 ENDDO
 ENDDO

DM_VHEVP

II-80 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

CC
CC D X C -> B
CC

 ALPHA=(1.0D0,0.0D0)
 BETA=(0.0D0,0.0D0)
 CALL ZGEMM('NO TRANSPOSE','NO TRANSPOSE',N,N,N,ALPHA,
 $ D,K,C,K,BETA,B,K)
CC
CC B X D^H -> A
CC
 CALL ZGEMM('NO TRANSPOSE','NO TRANSPOSE',N,N, N,ALPHA,
 & B,K,DH,K,BETA,A,K)
CC
 IVEC=1
 NF=1
 NL=NE
 EVAL_TOL=1.0D-15
 CLUS_TOL=1.0D-10
 CALL DM_VHEVP(A,K,N,NF,NL,IVEC,EVAL_TOL,CLUS_TOL,NEV,
 & EVAL,MAX_NEV,MULT,EVECH,ICON)
 DO I=1,NE,100
 PRINT*,'EIGEN VALUE IN EVEC(',I,') = ',EVAL(I)
 ENDDO
 STOP
 END

(4) Method

 The n  n Hermite matrix A = AR + iAI must satisfy AR = ART and AI = -AIT

 The blocking Householder method is used to reduce the Hermite matrix to a Hermite
tridiagonal matrix. Then, the diagonal unitary transformation is applied to further reduce
the matrix to a real tridiagonal matrix.

 The eigenvalues and eigenvectors of the tridiagonal matrix are calculated using
techniques of multisectioning and inverse iteration (see “DM_VTDEVC” and [61] in
Appendix A, “References”).

 In the final step, the eigenvectors of the Hermite matrix are constructed from the
eigenvectors of the tridiagonal matrix.

 DM_VHTRID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-81

DM_VHTRID

Tridiagonalization of Hermite matrices

CALL DM_VHTRID (ZA, K, N, D, SL, ZS, ICON)

(1) Function

 This subroutine reduces an Hermite matrix into an Hermite tridiagonal matrix and this
matrix is transformed into a real tridiagonal matrix using diagonal unitary transform.

H = P*AP

T = V*HV

A is an n  n Hermite matrix, P is an n  n unitary matrix. V is an n  n diagonal unitary
matrix and T is a real tridiagonal matrix..

(2) Parameters

ZA Input. The lower triangular part {aij | i  j } of Hermite matrix A is stored in the
lower triangular part {ZA(i,j) | i  j }of ZA(1:N,1:N).

Two-dimensional double-precision complex array ZA(K,N).

Output. The information on Householder transforms used for Hermite
tridiagonalization is stored in the lower triangular part {ZA(i,j) | i  j }of
ZA(1:N,1:N). The values in the upper triangular part of ZA is not assured after
operation.

(See 1) in a, “Notes,” in (3), “Comments on use.”)

K Input. Size of first-dimension of array ZA (K  N).

N Input. Order n of Hermite matrix A

D Input. The diagonal elements of the reduced tridiagonal matrix are stored in
real double-precision one-dimensional array D(N).

SL Input. The subdiagonal elements of reduced tridiagonal matrix are stored in
SL(2:N) of real double-precision one-dimensional array SL(N). SL(1) = 0.

ZS Output. Diagonal elements of the diagonal unitary matrix are stored in ZS(1:N).

One-dimensional double-precision complex array ZS(N).

ICON Output. Condition code.

See Table DM_VHTRID-1.

Table DM_VHTRID-1 Condition codes

Code Meaning Processing

0 No error 

30000 K < N, N < 2. Processing is discontinued.

DM_VHTRID

II-82 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(3) Comments on use

a. Notes

1) Hermite tridiagonalization is performed by the repeated transforms varying k =
1, ... , n-2.

AAPAPA   01* ,k
k

k
k

Put bT = (0, ... , 0, A k(k+1:n, k)T).

b*∙b = S2 and put wT = (0, ... , 0, 














1
1 1

k
k b

S
b , bk+2, ... , bn).

Then the transform matrix is represented as follows.

SbS k
k

1
2

* 1
,I


  wwP .

w(k+1:n) and  are stored in A(k+1:n, k) and A(k, k) respectively.

b. Example

 This example calculates the tridiagonalization of a Hermite matrix with the
known eigenvalues.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

c **example**
 implicit real*8(a-h,o-z)
 parameter(n=2000,k=n,ne=n,max_nev=ne)
 complex*16 a(k,n),b(k,n),c(k,n),d(k,n),
 & dh(k,n),alpha,beta,
 & tr(n)
 dimension nev(5),mult(max_nev,2)
 dimension eval(max_nev),evec(k,max_nev),dd(n),sld(n),sud(n)
cc
 pai2=8.0d0*datan(1.0d0)
 coef=dsqrt(1.0d0/(n))
 do j=1,n
 do i=1,n
 part1 =coef*dcos(pai2/n*(i-1)*(j-1))
 part2 =coef*dsin(pai2/n*(i-1)*(j-1))
 d(i,j)=dcmplx(part1,part2)
 dh(i,j)=dcmplx(part1,-part2)
 enddo
 enddo
cc
 do j=1,n
 do i=1,n
 if(i.eq.j)then
 c(i,j)=dcmplx(dble(i),0.0d0)
 else
 c(i,j)=(0.0d0,0.0d0)

 DM_VHTRID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-83

 endif
 enddo
 enddo
cc
cc d x c -> b
cc

 alpha=(1.0d0,0.0d0)
 beta=(0.0d0,0.0d0)
 call zgemm('No transpose','No transpose',n,n,
 $ n,alpha,d,k,c,k,beta,b,k)
cc
cc b x d^h -> a
cc
 call zgemm('No transpose','No transpose',n,n,
 $ n,alpha,b,k,dh,k,beta,a,k)
cc
 call dm_vhtrid(a,k,n,dd,sld,tr,icon)
 if(icon.ne.0)then
 print*,' icon of dm_vhtrid =',icon
 stop
 endif
c
 do i=2,n
 sud(i-1)=sld(i)
 enddo
 sud(n)=0.0d0
c
 nf=1
 nl=n
 ivec=0
 eval_tol=1.0d-15
 clus_tol=1.0d-10
 call dm_vtdevc(dd,sld,sud,n,nf,nl,ivec,
 & eval_tol,clus_tol,nev,
 & eval,max_nev,evec,k,mult,icon)
 do i=1,ne,n/20
 print*,'eigen value in eval(',i,') = ',eval(i)
 enddo

 stop
 end

(4) Method

 The n  n Hermite matrix A = AR + iAI must satisfy AR = ART and AI = -AIT

 The blocking Householder method is used to reduce the Hermite matrix to a Hermite
tridiagonal matrix. Then, the diagonal unitary transformation is applied to further reduce
the matrix to a real tridiagonal matrix.

DM_VJDHECR

II-84 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VJDHECR

Eigenvalues and eigenvectors of an Hermitian sparse matrix (Jacobi-Davidson method,
compressed row storage method)

CALL DM_VJDHECR(ZH, NZ, NCOL, NFRNZ, N, ITRGT, DTRGT, NSEL, NEV,
 ITMAX, ITER, IFLAG, DPRM, DEVAL, ZEVEC, KV, DHIS, KH, ICON)

(1) Function

 This subroutine computes a few of selected eigenvalues and corresponding eigenvectors
of an Hermitian sparse eigenvalue problem

Ax =  x

 using the Jacobi-Davidson method, where A is an nn Hermitian sparse matrix, the lower
triangular part of which is stored using the compressed row storage method, and x is an n-
dimensional vector.

 (2) Parameters

ZH Input. The non-zero elements of the lower triangular part of the sparse matrix A
are stored.

One-dimensional complex array ZH(NZ).

For the compressed row storage method, refer to Figure DM_VJDHECR-1.

NZ............... Input. The total number of the nonzero elements which belong to the lower
triangular part of the matrix A.

NCOL.......... Input. The column indices used in the compressed row storage method, which
indicate the column number of each nonzero element stored in the array ZH.

One-dimensional array NCOL(NZ).

NFRNZ........ Input. The position of the first nonzero element of each row stored in the array
ZH in the compressed row storage method which stores the lower part of the
nonzero elements row by row. Specify NFRNZ(N+1)=NZ+1.

One-dimensional array NFRNZ(N+1).

N.................. Input. Order n of matrix A.

ITRGT......... Input. Select a way of specifying the eigenvalues to be sought (0ITRGT4).

Specify ITRGT=0 to compute eigenvalues closest to a target value DTRGT.

Specify ITRGT=1 to compute eigenvalues with largest magnitude.

Specify ITRGT=2 to compute eigenvalues with smallest magnitude.

Specify ITRGT=3 to compute eigenvalues with largest real part.

Specify ITRGT=4 to compute eigenvalues with smallest real part.

(See note 1) and 2) in (3), "Comments on use.")

DTRGT........ Input. The target value  is specified when ITRGT=0. In the following cases,
the convergence might be improved by specifying a value near the seeking
eigenvalue even when ITRGT0.

 DM_VJDHECR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-85

1) The value  is used as a shift of the test subspace <W>=<(A I)V> when
DPRM(3)=1 which indicates that the harmonic algorithm is to be used. (See
note 2) in (3), "Comments on use.")

2) When DPRM(9)1, the value  is used as an approximated eigenvalue in the
Jacobi-Davidson correction equation while the initial phase of the iteration is
proceeding. (See note 5) in (3), "Comments on use.")

3) When DPRM(15) 1, the value  is used as a shift value of the
preconditioner for the Jacobi-Davidson correction equation. (See note 7) in (3),
"Comments on use.")

In other cases, DTRGT is not referred in this subroutine.

NSEL............ Input. The number of eigenvalues to be computed (1NSELN). (See note 1)
in (3), "Comments on use.")

NEV.............. Output. The number of eigenvalues converged.

ITMAX......... Input. Upper limit of iterative count for the Jacobi-Davidson method (0).

ITER............. Output. Actual iterative count for the Jacobi-Davidson method.

IFLAG.......... Input. Control information array specifying whether the auxiliary parameter is
specified explicitly in DPRM array.

When IFLAG(i)0, the parameter specified in DPRM(i) is to be used.

When IFLAG(i)=0, a default parameter is used and DPRM(i) is not referred.

Set IFLAG(16:32) to be all zero since these area are preserved for future
enhanced functionality.

One-dimensional array IFLAG(32).

DPRM.......... Input. Auxiliary parameters are specified as for the IFLAG(i) denotes that the
user specified value is to be used.

For definition of each parameter in the algorithm, see (4), "Method."

If all of IFLAG(1:32) are set to be zero, DPRM(1:32) are not referred and
default parameters are used. Changing the parameter is recommended when the
iteration did not converge with default parameters.

One-dimensional array DPRM(32).

DPRM(1): The dimension mmin of shrunk subspace when restarting (1 mmin
N). The default value is mmin=50.

DPRM(2): Upper limit of the dimension mmax of subspace (mmin  mmax N).
The default value is mmax= mmin +30.
(See note 8) in (3), "Comments on use.")

DPRM(3): The type of the algorithm, which is associated with setting of a test
subspace.
When DPRM(3)=0, the standard algorithm is adopted. The algorithm
is appropriate for seeking the extreme eigenvalues in the spectrum.
When DPRM(3)=1, the harmonic algorithm is adopted. The
algorithm is appropriate for seeking the internal eigenvalues in the
spectrum.
The default value is the harmonic algorithm for ITRGT=0 or 2, or the
standard algorithm in other cases.

DM_VJDHECR

II-86 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DPRM(4): The criterion value for judgment of acceptable convergence. The
default value is 10-6. (See note 4) in (3), "Comments on use.")

DPRM(5): The way how to calculate the residual norm with respect to the
approximated eigenvalue  and eigenvector u.
When DPRM(5)=0, the residual norm relative to the absolute value
of approximated eigenvalue |Auu|/|| is adopted.
When DPRM(5)=1, the residual norm relative to the 1-norm of the
matrix |Auu|/|A|1 is adopted.
When DPRM(5)=2, the residual norm relative to the Frobenius norm
of the matrix |Auu|/|A|F is adopted.
When DPRM(5)=3, the residual norm relative to the infinity-norm of
the matrix |Auu|/|A| is adopted.
When DPRM(5)=4, the absolute residual norm |Auu| is adopted.
The default is DPRM(5)=0. (See note 3) in (3), "Comments on use.")

DPRM(6): A criterion value for a delay-deflation scheme (1.0).
The default value is DPRM(6)=0.9. (See note 4) in (3), "Comments
on use.")

DPRM(7): Control information indicating whether the iteration is started from a
vector specified in the array ZEVEC(1:N,1).
When DPRM(7)=0, the iteration is started from a random vector
generated in this subroutine internally.
When DPRM(7)=1, set an initial vector in the array ZEVEC(1:N,1).
The default setting is using a random vector.

DPRM(8): A seed to generate a random vector (1.0). The default value is 1.

DPRM(9): While the iteration count is less or equal to DPRM(9), the process is
regarded as an initial phase of the iteration. Then the fixed value of 
is used as an approximated eigenvalue instead of the value of  in the
Jacobi-Davidson correction equation.
When DPRM(3)=0, the default value is DPRM(9)=0.
When DPRM(3)=1, the default value is DPRM(9)= mmax.
(See note 5) in (3), "Comments on use.")

DPRM(10): The method to solve the Jacobi-Davidson correction equation.
When DPRM(10)=0, t=r is set without using the correction equation.
When DPRM(10)=1, the GMRES method is adopted.
When DPRM(10)=2, the BiCGstab(L) method is adopted.
When DPRM(10)=11, the MINRES method is adopted.
The default is using the MINRES method. (See 7) and 8) in (3),
"Comments on use.")

DPRM(11): A parameter for the solver of the correction equation.
When the BiCGstab(L) is used, specify the value of L (10). The
default value is 4.

DPRM(12): Upper limit of the iteration count of the solver for the Jacobi-
Davidson correction equation (1). The default value is 30.

DPRM(13): A parameter to determine the stopping criterion for the iterative
solver of the correction equation (>0.0).
The default value is 0.7. (See 6) in (3), "Comments on use.")

DPRM(14): A parameter to determine the stopping criterion for the iterative
solver of the correction equation (0.0<DPRM(14)1.0). The stopping
criterion is set to DPRM(13)DPRM(14)l, where l is an iteration

 DM_VJDHECR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-87

counter of the outer loop which is reset in each deflation.
The default value is 0.7. (See 6) in (3), "Comments on use.")

DPRM(15): The type of preconditioning of the correction equation (1).
When DPRM(15)=0, no preconditioning is used.
When DPRM(15)=1, the diagonal left preconditioning is exploited.
(See 7) in (3), "Comments on use.")
The default is DPRM(15)=0.

DPRM(16:32): Preserved area for future enhanced functionality.

DEVAL......... Output. Detected eigenvalues are stored in DEVAL(1:NEV).

One-dimensional array DEVAL(NSEL).

ZEVEC......... Output. Detected eigenvectors are stored in ZEVEC(1:N,1:NEV).

Two-dimensional complex array ZEVEC(KV,NSEL).

Input. Set the initial vector in ZEVEC(1:N,1) when IFLAG(7)0 and
DPRM(7)=1.0.

KV................ Input. Size of the first dimension of array ZEVEC (N).

DHIS............ Output. The convergence history of the residuals of the eigenproblem are
stored in DHIS(1:min(KH,ITER),1). The final relative residual norm of the each
correction equation are stored in DHIS(1:min(KH,ITER),2).

Two-dimensional array DHIS(KH,2).

KH................ Input. Size of the first dimension of array DHIS (0). Setting KH=ITMAX is
enough. If KH=0 is set, the outputs to the array DHIS are suppressed.

ICON............ Output. Condition code.

(See Table DM_VJDHECR-1.)

Table DM_VJDHECR-1 Condition codes

Code Meaning Processing

0 No error 

1000 Breakdown occurred in the iterative linear
equations solver.

Processing is continued with
the approximated solution
until the point.

2000 A null vector is detected in a sort of process of
the orthogonalization.

Processing is continued with
the subspace expanded by a
random vector.

3000 A recovery procedure is activated in a sort of
restorative process of the delay deflation.

Processing is continued

10000 The iteration count reached the maximum limit
before NSEL-th eigenvalue is obtained.

The calculated eigenpairs up
to NEV are correct.

20000 The projected dense eigenproblem can not be
solved.

Processing is discontinued.

The calculated eigenpairs up
to NEV are correct if
NEV>0.

DM_VJDHECR

II-88 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Code Meaning Processing

21000 The iteration count reached the maximum limit
without a single convergence.

Processing is discontinued.

The approximate values
obtained up to this point are
output in array DEVAL(1)
and ZEVEC(1:N,1), but their
precision cannot be
guaranteed.

29000 An internal error occurred. Processing is discontinued.

30000 N<1, ITRGT<0, ITRGT>4, NSEL<1,
NSEL>N, ITMAX<0, KV<N or KH<0.

30001 to

30032

The value of IFLAG or DPRM is not correct.

31000 The value of NZ, NCOL or NFRNZ is not
correct.










A

1 2+4i 0 0

2-4i 5 7-3i 6+9i

0 7+3i 8 0

0 6-9i 0 10



































































































4

2

3

2

2

1

1

,

10

96

8

37

5

42

1

,

8

6

4

2

1

NCOLZHNFRNZ

i

i

i

Figure DM_VJDHECR-1 Storing a matrix A in compressed row storage method

(3) Comments on use

a. Notes

1) Robustness of the Jacobi-Davidson algorithm
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as
robust as the method for dense matrices based on the reduction of matrix elements.
The results obtained using the Jacobi-Davidson method depends on choice of the
initial vector, and the order of obtained eigenvalues are not guaranteed to be the

 DM_VJDHECR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-89

order of precedence user specified. This method is applicable when the seeking
eigenvalues are only a few of the entire spectrum.

 The convergence behavior of this routine is affected by various auxiliary
parameters. For description of these parameters, refer to "Comments on use."

2) ITRGT and DTRGT parameter
The default value of DPRM(3), which specifies a type of algorithm, is switched
automatically according to the setting of ITRGT, which specifies a way of
selecting eigenvalues. However, an explicit specification of the value in
DPRM(3) by setting IFLAG(3)0 is prior to the default value of course. Which
means that the standard algorithm can be used with ITRGT=0 or 2, and that the
harmonic algorithm can be used with ITRGT=1,3,4,5 or 6, as long as user knows
its adaptivity.

Note that the DTRGT parameter is referred as a shift of the test subspace for the
default harmonic algorithm when just setting ITRGT=2, which specifies to
compute eigenvalues with smallest magnitude. Define the DTRGT to be 0.0D0 if
other appropriate value is not known.

3) Calculating the residual norm
In the default setting, convergence of the eigenproblem is judged based on the
residual norm relative to absolute value of the approximated eigenvalue. When
the absolute value of the seeking eigenvalue is far smaller than the norm of the
matrix, however, it is difficult to satisfy the convergence condition
|Auu|/||<DPRM(4). In that case, adjust the convergence criterion DPRM(4),
or change the way of calculating the residual norm which can be specified by
DPRM(5) parameter.

4) Delay deflation procedure
This subroutine adopts an ingenious scheme to improve the precision of the
results. After the residual becomes below the convergence criterion, this
subroutine still continues some more iteration without deflation while the
decrease ratio of the residual remains valid. This procedure is called delay-
deflation here. The decrease ratio is regarded valid if the ratio of the residual
norm relative to the preceding residual is less than the parameter DPRM(6). If the
residual deteriorates while this extra iteration, the better previous variables are
restored and the deflation with the vector takes place. With setting DPRM(6)=0.0,
this delay-deflation does not act and then the parameter DPRM(4) is regarded as
an ordinary convergence criterion.

5) Approximated eigenvalue in the correction equation
In the initial few steps of the process, the values of  are usually poor
approximations of the wanted eigenvalue. This subroutine takes the target value 
specified in the DTRGT as an approximated eigenvalue instead of  in the initial
phase, since the validity of the expansion vector t is affected by the closeness to
the approximated eigenvalue in the Jacobi-Davidson correction equation. The
process is regarded as the initial phase of the iteration while the iteration count is
less than or equal to DPRM(9). However, the default value of this parameter is
DPRM(9)=0 when DPRM(3)=0 is adopted, because it is difficult to determine a
value of  in advance when the standard algorithm is specified.

6) Stopping criterion for inner iteration
The Jacobi-Davidson correction equation is solved by some iterative method in
this subroutine, thus the whole algorithm consists of two nested iterations. In the
outer iteration the approximation for the eigenproblem is constructed , and in the
inner iteration the correction equation is approximately solved. If the residual of
the eigenproblem still not be small in the outer iteration, solving accurately the

DM_VJDHECR

II-90 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

correction equation in the inner iteration might be unnecessary. Therefore, the
stopping criterion for the inner iteration can be varied according to a counter
associated with the outer iteration. The criterion is set to be
DPRM(13)DPRM(14)l, where l is the outer iteration counter which is reset to
zero at each deflation. Incidentally, the upper limit count for the inner iteration is
specified by DPRM(12).

7) Precondition for the correction equation
It is known that a good preconditioner improves the convergence of the iterative
method for linear equations. The preconditioner to be applied is controlled by the
parameter DPRM(15) in this subroutine. Note that the value of DTRGT is used
for constructing a matrix M  (A I), which approximates a part of the
coefficient matrix in some way. The preconditioner is derived from the inverse
procedure of the matrix M and projections on both sides. If the preconditioner
does not approximate the coefficient matrix of the correction equation properly or
the parameter DTRGT is far from the seeking eigenvalue, the convergence may
deteriorate. Additionally, DPRM(10) must specify a kind of the iterative method
that is applicable to nonsymmetric linear systems, because the coefficient matrix
becomes nonsymmetric with a left preconditioner adopted in this routine.

8) Memory usage
This subroutine exploits work area internally as auto allocatable arrays. Therefore
an abnormal termination could occur when the available area of the memory runs
out. The necessary size for the outer iteration is at least n(2mmax2NSEL)
16 bytes for the standard algorithm and n(3mmax2NSEL) 16 bytes for the
harmonic algorithm. And when the GMRES method is used as the solver of the
correction equation, the additional necessary area is nDPRM(12)16 bytes for
the inner iteration.

b. Example

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an
eigenproblem Ax= x are sought, where A is a 1000010000 example Hermitian
matrix of the random sparsity pattern with about 20 nonzero entries in each row.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on a system of 4 processors.

C **EXAMPLE**
 IMPLICIT NONE
 INTEGER NNZMAX,NMAX,LDK,NZC
 PARAMETER (NMAX=10000,NZC=20)
 PARAMETER (NNZMAX=NMAX*NZC)
 PARAMETER (LDK=10)
 COMPLEX*16 ZH(NNZMAX),ZEVEC(NMAX,LDK)
 COMPLEX*16 RVEC(NMAX),ZW(NMAX)
 REAL*8 DTRGT,DEVAL(LDK),DERR,DPRM(32),DHIS(NMAX,2)
 INTEGER NZ,NCOL(NNZMAX),NFRNZ(NMAX+1),N,ITRGT
 INTEGER IFLAG(32),NSEL,NEV,ITMAX,ITER,LDX,LDH,ICON
 INTEGER I,J,K,NCOLJ

 N=NMAX
 CALL MKSPMAT(N,NZC,ZH,NCOL,NFRNZ)
 NZ=NFRNZ(N+1)-1

 DM_VJDHECR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-91

 ITMAX = 500
 NSEL = 10
 DO I = 1,32
 IFLAG(I)=0
 ENDDO
 LDX = NMAX
 LDH = NMAX
 DTRGT = 0.0D0
 ITRGT = 1

 CALL DM_VJDHECR(ZH,NZ,NCOL,NFRNZ,N,ITRGT,DTRGT,NSEL,
 & NEV,ITMAX,ITER,IFLAG,DPRM,
 & DEVAL,ZEVEC,LDX,DHIS,LDH,ICON)

 PRINT *,'DM_VJDHECR ICON=',ICON
 PRINT *,'ITER=',ITER
 DO K = 1,NEV
!$OMP PARALLEL PRIVATE(I,J,ZW,NCOLJ)
 ZW(1:N) = (0.0D0,0.0D0)
!$OMP DO
 DO I=1,N
 RVEC(I)=(0.0D0,0.0D0)
 DO J=NFRNZ(I),NFRNZ(I+1)-1
 NCOLJ=NCOL(J)
 RVEC(I)=RVEC(I)+ZH(J)*ZEVEC(NCOLJ,K)
 IF(I.NE.NCOLJ)THEN
 ZW(NCOLJ)=ZW(NCOLJ)+DCONJG(ZH(J))*ZEVEC(I,K)
 ENDIF
 ENDDO
 ENDDO
!$OMP CRITICAL
 DO I=1,N
 RVEC(I)=RVEC(I)+ZW(I)
 ENDDO
!$OMP END CRITICAL
!$OMP END PARALLEL
 DERR=0.0D0
 DO I=1,N
 RVEC(I)=RVEC(I)-DEVAL(K)*ZEVEC(I,K)
 DERR=DERR +DREAL(RVEC(I))**2 +DIMAG(RVEC(I))**2
 ENDDO
 DERR=DSQRT(DERR)
 PRINT*,'EIGEN VALUE',K,'=',DEVAL(K)
 PRINT*,'ERROR=',DERR/DABS(DEVAL(K))
 ENDDO
 END

 SUBROUTINE MKSPMAT(N,NZC,ZH,NCOL,NFRNZ)
 IMPLICIT NONE
 INTEGER N,NZC,NCOL(*),NFRNZ(*)
 COMPLEX*16 ZH(*)
 INTEGER I,IC,ICT,J,K,ISEED,LDW,ICON,NNZ

DM_VJDHECR

II-92 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 PARAMETER(LDW=1350)
 REAL*8 DWORK(NZC),RNDWORK(LDW)
 ISEED=1
 NNZ=0
 DO I=1,N
 NFRNZ(I)=NNZ+1
 10 CALL DVRAU4(ISEED,DWORK,NZC,RNDWORK,LDW,ICON)
 IC=0
 DO J=1,NZC
 ICT=N*DABS(DWORK(J))+1
 IF(ICT.LE.I)THEN
 DO K=1,IC
 IF(ICT.EQ.NCOL(NNZ-K+1))THEN
 NNZ=NNZ-IC
 GO TO 10
 ENDIF
 ENDDO
 NNZ=NNZ+1
 IC=IC+1
 NCOL(NNZ)=ICT
 ENDIF
 ENDDO
 ENDDO
 NFRNZ(N+1)=NNZ+1
 ISEED = 1
 CALL DVRAN4(0.0D0,1.0D0,ISEED,ZH,2*NNZ,RNDWORK,LDW,
 & ICON)
 DO I=1,N
 DO J=NFRNZ(I),NFRNZ(I+1)-1
 IF(I.EQ.NCOL(J))ZH(J)=DREAL(ZH(J))+DIMAG(ZH(J))
 ENDDO
 ENDDO
 RETURN
 END

(4) Method

 This subroutine solves large sparse eigenproblems using the Jacobi-Davidson method.
In the Jacobi–Davidson approach a small m-dimensional search subspace is updated in
each iteration, from which an approximated eigenvector of the given n-dimensional
eigenproblem is sought. In each iteration there are two important phases of procedure,
one is expansion in which the subspace is enlarged by adding a new appropriate basis
vector to it, and one is extraction in which a sensible approximate eigenpair is sought
from the search subspace. For the subspace expansion phase, a correction vector against
an approximated eigenvector is calculated as a solution vector of the Jacobi-Davidson
correction equation. For the extraction phase, an approximated eigenpair is calculated as
a solution of a small projected eigenproblem. Even when the seeking eigenvalues are in
the interior of the spectrum, this method extracts them ingeniously using distinct search
and test subspaces.

 The following shows the overall procedure of the algorithm and describes some auxiliary
parameters used in this subroutine.

 DM_VJDHECR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-93

1. Prepare an expansion vector t.

2. Expand the search subspace <V> and the test subspace <W> according to the
vector t, where V and W are nm matrices, and <V> represents a linear subspace
spanned by the column vectors of the matrix V. The type of the algorithm
whether standard or harmonic can be distinguished by the setting of the test
subspace, W=V for standard and <W>=<(A I)V> for harmonic. The setting is
specified by DPRM(3).

3. Solve a projected m-dimensional eigenvalue problem with a standard technique
for dense matrices. The results are called Ritz values or harmonic-Ritz values.

4. Select an eigenvalue from the results of the projected eigenproblem according to
the way ITRGT or DTRGT specifies.

5. Extract an approximating eigenvector u of the given large eigenproblem from
the search space by expanding the eigenvector corresponds to the selected
eigenvalue of the projected eigenproblem, and let  be its Rayleigh quotient.

6. Set a residual vector r =Au u.

7. Calculate the residual norm according to the way DPRM(5) specifies.

8. Deflate the eigenproblem by the vector u, if the residual norm satisfies
convergence conditions which are indicated by the convergence criterion
DPRM(4) and by the criterion ratio DPRM(6) of the delay-deflation.

9. Reduce the dimensions of the subspaces m to mmin with restarting, when the m is
greater than mmax. The values of mmax and mmin are specified by DPRM(1) and
DPRM(2) respectively.

10. Obtain the next expansion vector t for the subsequent loop, which is the solution
of the Jacobi-Davidson correction equation (Iuu*)(A I)(Iuu*)t = r using
some iterative method. In this inner iteration, the parameters from DPRM(9) to
DPRM(15) are used.

 Note that some projection procedures needed after deflation are omitted to explain for
simplicity.

For details of the Jacobi-Davidson method, see [7] in Appendix A, "References."

DM_VJDNHCR

II-94 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VJDNHCR

Eigenvalues and eigenvectors of a complex sparse matrix (Jacobi-Davidson method,
compressed row storage method)

CALL DM_VJDNHCR(ZA, NZ, NCOL, NFRNZ, N, ITRGT, ZTRGT, NSEL, NEV,
 ITMAX, ITER, IFLAG, DPRM, ZEVAL, ZEVEC, KV, DHIS, KH, ICON)

(1) Function

 This subroutine computes a few of selected eigenvalues and corresponding eigenvectors
of a complex sparse eigenvalue problem

Ax =  x

 using the Jacobi-Davidson method, where A is an nn complex sparse matrix stored
using the compressed row storage method and x is an n-dimensional vector.

 (2) Parameters

ZA Input. The non-zero elements of the sparse matrix A are stored.

One-dimensional complex array ZA(NZ).

For the compressed row storage method, refer to Figure DM_VJDNHCR-1.

NZ............... Input. The total number of the nonzero elements of the matrix A.

NCOL......... Input. The column indices used in the compressed row storage method, which
indicate the column number of each nonzero element stored in the array ZA.

One-dimensional array NCOL(NZ).

NFRNZ........ Input. The position of the first nonzero element of each row stored in the array
ZA in the compressed row storage method which stores the nonzero elements
row by row. Specify NFRNZ(N+1)=NZ+1.

One-dimensional array NFRNZ(N+1).

N.................. Input. Order n of matrix A.

ITRGT......... Input. Select a way of specifying the eigenvalues to be sought (0ITRGT6).

Specify ITRGT=0 to compute eigenvalues closest to a target value ZTRGT.

Specify ITRGT=1 to compute eigenvalues with largest magnitude.

Specify ITRGT=2 to compute eigenvalues with smallest magnitude.

Specify ITRGT=3 to compute eigenvalues with largest real part.

Specify ITRGT=4 to compute eigenvalues with smallest real part.

Specify ITRGT=5 to compute eigenvalues with largest imaginary part.

Specify ITRGT=6 to compute eigenvalues with smallest imaginary part.

(See note 1) and 2) in (3), "Comments on use.")

ZTRGT........ Input. The target value  is specified as a complex variable when ITRGT=0. In
the following cases, the convergence might be improved by specifying a value
near the seeking eigenvalue even when ITRGT0.

 DM_VJDNHCR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-95

1) The value  is used as a shift of the test subspace <W>=<(A I)V> when
DPRM(3)=1 which indicates that the harmonic algorithm is to be used. (See
note 2) in (3), "Comments on use.")

2) When DPRM(9)1, the value  is used as an approximated eigenvalue in the
Jacobi-Davidson correction equation while the initial phase of the iteration is
proceeding. (See note 5) in (3), "Comments on use.")

3) When DPRM(15) 1, the value  is used as a shift value of the
preconditioner for the Jacobi-Davidson correction equation. (See note 7) in (3),
"Comments on use.")

In other cases, ZTRGT is not referred in this subroutine.

NSEL............ Input. The number of eigenvalues to be computed (1NSELN). (See note 1)
in (3), "Comments on use.")

NEV.............. Output. The number of eigenvalues converged.

ITMAX......... Input. Upper limit of iterative count for the Jacobi-Davidson method (0).

ITER............. Output. Actual iterative count for the Jacobi-Davidson method.

IFLAG.......... Input. Control information array specifying whether the auxiliary parameter is
specified explicitly in DPRM array.

When IFLAG(i)0, the parameter specified in DPRM(i) is to be used.

When IFLAG(i)=0, a default parameter is used and DPRM(i) is not referred.

Set IFLAG(16:32) to be all zero since these area are preserved for future
enhanced functionality.

One-dimensional array IFLAG(32).

DPRM.......... Input. Auxiliary parameters are specified as for the IFLAG(i) denotes that the
user specified value is to be used.

For definition of each parameter in the algorithm, see (4), "Method."

If all of IFLAG(1:32) are set to be zero, DPRM(1:32) are not referred and
default parameters are used. Changing the parameter is recommended when the
iteration did not converge with default parameters.

One-dimensional array DPRM(32).

DPRM(1): The dimension mmin of shrunk subspace when restarting (1 mmin
N). The default value is mmin=50.

DPRM(2): Upper limit of the dimension mmax of subspace (mmin  mmax N).
The default value is mmax= mmin +30.
(See note 8) in (3), "Comments on use.")

DPRM(3): The type of the algorithm, which is associated with setting of a test
subspace.
When DPRM(3)=0, the standard algorithm is adopted. The algorithm
is appropriate for seeking the extreme eigenvalues in the spectrum.
When DPRM(3)=1, the harmonic algorithm is adopted. The
algorithm is appropriate for seeking the internal eigenvalues in the
spectrum.
The default value is the harmonic algorithm for ITRGT=0 or 2, or the
standard algorithm in other cases.

DM_VJDNHCR

II-96 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DPRM(4): The criterion value for judgment of acceptable convergence. The
default value is 10-6. (See note 4) in (3), "Comments on use.")

DPRM(5): The way how to calculate the residual norm with respect to the
approximated eigenvalue  and eigenvector u.
When DPRM(5)=0, the residual norm relative to the absolute value
of approximated eigenvalue |Auu|/|| is adopted.
When DPRM(5)=1, the residual norm relative to the 1-norm of the
matrix |Auu|/|A|1 is adopted.
When DPRM(5)=2, the residual norm relative to the Frobenius norm
of the matrix |Auu|/|A|F is adopted.
When DPRM(5)=3, the residual norm relative to the infinity-norm of
the matrix |Auu|/|A| is adopted.
When DPRM(5)=4, the absolute residual norm |Auu| is adopted.
The default is DPRM(5)=0. (See note 3) in (3), "Comments on use.")

DPRM(6): A criterion value for a delay-deflation scheme (1.0).
The default value is DPRM(6)=0.9. (See note 4) in (3), "Comments
on use.")

DPRM(7): Control information indicating whether the iteration is started from a
vector specified in the array ZEVEC(1:N,1).
When DPRM(7)=0, the iteration is started from a random vector
generated in this subroutine internally.
When DPRM(7)=1, set an initial vector in the array ZEVEC(1:N,1).
The default setting is using a random vector.

DPRM(8): A seed to generate a random vector (1.0). The default value is 1.

DPRM(9): While the iteration count is less or equal to DPRM(9), the process is
regarded as an initial phase of the iteration. Then the fixed value of 
is used as an approximated eigenvalue instead of the value of  in the
Jacobi-Davidson correction equation.
When DPRM(3)=0, the default value is DPRM(9)=0.
When DPRM(3)=1, the default value is DPRM(9)= mmax.
(See note 5) in (3), "Comments on use.")

DPRM(10): The method to solve the Jacobi-Davidson correction equation.
When DPRM(10)=0, t=r is set without using the correction equation.
When DPRM(10)=1, the GMRES method is adopted.
When DPRM(10)=2, the BiCGstab(L) method is adopted.
The default is using the GMRES method. (See 8) in (3), "Comments
on use.")

DPRM(11): A parameter for the solver of the correction equation.
When the BiCGstab(L) is used, specify the value of L (10). The
default value is 4.

DPRM(12): Upper limit of the iteration count of the solver for the Jacobi-
Davidson correction equation (1). The default value is 30.

DPRM(13): A parameter to determine the stopping criterion for the iterative
solver of the correction equation (>0.0).
The default value is 0.7. (See 6) in (3), "Comments on use.")

DPRM(14): A parameter to determine the stopping criterion for the iterative
solver of the correction equation (0.0<DPRM(14)1.0). The stopping
criterion is set to DPRM(13)DPRM(14)l, where l is an iteration

 DM_VJDNHCR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-97

counter of the outer loop which is reset in each deflation.
The default value is 0.7. (See 6) in (3), "Comments on use.")

DPRM(15): The type of preconditioning of the correction equation (1).
When DPRM(15)=0, no preconditioning is used.
When DPRM(15)=1, the diagonal left preconditioning is exploited.
(See 7) in (3), "Comments on use.")
The default is DPRM(15)=0.

DPRM(16:32): Preserved area for future enhanced functionality.

ZEVAL......... Output. Detected eigenvalues are stored in ZEVAL(1:NEV).

One-dimensional complex array ZEVAL(NSEL).

ZEVEC......... Output. Detected eigenvectors are stored in ZEVEC(1:N,1:NEV).

Two-dimensional complex array ZEVEC(KV,NSEL).

Input. Set the initial vector in ZEVEC(1:N,1) when IFLAG(7)0 and
DPRM(7)=1.0.

KV................ Input. Size of the first dimension of array ZEVEC (N).

DHIS............ Output. The convergence history of the residuals of the eigenproblem are
stored in DHIS(1:min(KH,ITER),1). The final relative residual norm of the each
correction equation are stored in DHIS(1:min(KH,ITER),2).

Two-dimensional array DHIS(KH,2).

KH................ Input. Size of the first dimension of array DHIS (0). Setting KH=ITMAX is
enough. If KH=0 is set, the outputs to the array DHIS are suppressed.

ICON............ Output. Condition code.

(See Table DM_VJDNHCR-1.)

Table DM_VJDNHCR-1 Condition codes

Code Meaning Processing

0 No error 

1000 Breakdown occurred in the iterative linear
equations solver.

Processing is continued with
the approximated solution
until the point.

2000 A null vector is detected in a sort of process of
the orthogonalization.

Processing is continued with
the subspace expanded by a
random vector.

3000 A recovery procedure is activated in a sort of
restorative process of the delay deflation.

Processing is continued

10000 The iteration count reached the maximum limit
before NSEL-th eigenvalue is obtained.

The calculated eigenpairs up
to NEV are correct.

20000 The projected dense eigenproblem can not be
solved.

Processing is discontinued.

The calculated eigenpairs up
to NEV are correct if
NEV>0.

DM_VJDNHCR

II-98 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Code Meaning Processing

21000 The iteration count reached the maximum limit
without a single convergence.

Processing is discontinued.

The approximate values
obtained up to this point are
output in array ZEVAL(1)
and ZEVEC(1:N,1), but their
precision cannot be
guaranteed.

29000 An internal error occurred. Processing is discontinued.

30000 N<1, ITRGT<0, ITRGT>6, NSEL<1,
NSEL>N, ITMAX<0, KV<N or KH<0.

30001 to

30032

The value of IFLAG or DPRM is not correct.

31000 The value of NZ, NCOL or NFRNZ is not
correct.























111000

9870

6054

0321

A

















































































































4

3

4

3

2

4

2

1

3

2

1

,

11

10

9

8

7

6

5

4

3

2

1

,

12

10

7

4

1

NCOLZANFRNZ

Figure DM_VJDNHCR-1 Storing a matrix A in compressed row storage method

(3) Comments on use

a. Notes

 DM_VJDNHCR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-99

1) Robustness of the Jacobi-Davidson algorithm
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as
robust as the method for dense matrices based on the reduction of matrix elements.
The results obtained using the Jacobi-Davidson method depends on choice of the
initial vector, and the order of obtained eigenvalues are not guaranteed to be the
order of precedence user specified. This method is applicable when the seeking
eigenvalues are only a few of the entire spectrum.

The convergence behavior of this routine is affected by various auxiliary
parameters. For description of these parameters, refer to "Comments on use."

2) ITRGT and ZTRGT parameter
The default value of DPRM(3), which specifies a type of algorithm, is switched
automatically according to the setting of ITRGT, which specifies a way of
selecting eigenvalues. However, an explicit specification of the value in
DPRM(3) by setting IFLAG(3)0 is prior to the default value of course. Which
means that the standard algorithm can be used with ITRGT=0 or 2, and that the
harmonic algorithm can be used with ITRGT=1,3,4,5 or 6, as long as user knows
its adaptivity.

Note that the ZTRGT parameter is referred as a shift of the test subspace for the
default harmonic algorithm when just setting ITRGT=2, which specifies to
compute eigenvalues with smallest magnitude. Define the ZTRGT to be (0.0,0.0)
if other appropriate value is not known.

3) Calculating the residual norm
In the default setting, convergence of the eigenproblem is judged based on the
residual norm relative to the absolute value of the approximated eigenvalue.
When the absolute value of the seeking eigenvalue is far smaller than the norm of
the matrix, however, it is difficult to satisfy the convergence condition
|Auu|/||<DPRM(4). In that case, adjust the convergence criterion DPRM(4),
or change the way of calculating the residual norm which can be specified by
DPRM(5) parameter.

4) Delay deflation procedure
This subroutine adopts an ingenious scheme to improve the precision of the
results. After the residual becomes below the convergence criterion, this
subroutine still continues some more iteration without deflation while the
decrease ratio of the residual remains valid. This procedure is called delay-
deflation here. The decrease ratio is regarded valid if the ratio of the residual
norm relative to the preceding residual is less than the parameter DPRM(6). If the
residual deteriorates while this extra iteration, the better previous variables are
restored and the deflation with the vector takes place. With setting DPRM(6)=0.0,
this delay-deflation does not act and then the parameter DPRM(4) is regarded as
an ordinary convergence criterion.

5) Approximated eigenvalue in the correction equation
In the initial few steps of the process, the values of  are usually poor
approximations of the wanted eigenvalue. This subroutine takes the target value 
specified in the ZTRGT as an approximated eigenvalue instead of  in the initial
phase, since the validity of the expansion vector t is affected by the closeness to
the approximated eigenvalue in the Jacobi-Davidson correction equation. The
process is regarded as the initial phase of the iteration while the iteration count is
less than or equal to DPRM(9). However, the default value of this parameter is
DPRM(9)=0 when DPRM(3)=0 is adopted, because it is difficult to determine a
value of  in advance when the standard algorithm is specified.

DM_VJDNHCR

II-100 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

6) Stopping criterion for inner iteration
The Jacobi-Davidson correction equation is solved by some iterative method in
this subroutine, thus the whole algorithm consists of two nested iterations. In the
outer iteration the approximation for the eigenproblem is constructed , and in the
inner iteration the correction equation is approximately solved. If the residual of
the eigenproblem still not be small in the outer iteration, solving accurately the
correction equation in the inner iteration might be unnecessary. Therefore, the
stopping criterion for the inner iteration can be varied according to a counter
associated with the outer iteration. The criterion is set to be
DPRM(13)DPRM(14)l, where l is the outer iteration counter which is reset to
zero at each deflation. Incidentally, the upper limit count for the inner iteration is
specified by DPRM(12).

7) Precondition for the correction equation
It is known that a good preconditioner improves the convergence of the iterative
method for linear equations. The preconditioner to be applied is controlled by the
parameter DPRM(15) in this subroutine. Note that the value of ZTRGT is used
for constructing a matrix M  (A I), which approximates a part of the
coefficient matrix in some way. The preconditioner is derived from the inverse
procedure of the matrix M and projections on both sides. If the preconditioner
does not approximate the coefficient matrix of the correction equation properly or
the parameter ZTRGT is far from the seeking eigenvalue, the convergence may
deteriorate.

8) Memory usage
This subroutine exploits work area internally as auto allocatable arrays. Therefore
an abnormal termination could occur when the available area of the memory runs
out. The necessary size for the outer iteration is at least n(3mmax2NSEL)
16 bytes for the standard algorithm and n(4mmax2NSEL) 16 bytes for the
harmonic algorithm. And when the GMRES method is used as the solver of the
correction equation, the additional necessary area is nDPRM(12)16 bytes for
the inner iteration.

b. Example

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an
eigenproblem Ax= x are sought, where A is a 1000010000 example matrix of the
random sparsity pattern with 20 nonzero entries in each row.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on a system of 4 processors.

C **EXAMPLE**
 IMPLICIT NONE
 INTEGER NNZMAX,NMAX,LDK,NZC
 PARAMETER (NMAX=10000,NZC=20)
 PARAMETER (NNZMAX=NMAX*NZC)
 PARAMETER (LDK=10)
 COMPLEX*16 ZA(NNZMAX),ZTRGT,ZEVAL(LDK),ZEVEC(NMAX,LDK)
 COMPLEX*16 RVEC(NMAX)
 REAL*8 DERR,DPRM(32),DHIS(NMAX,2)
 INTEGER NZ,NCOL(NNZMAX),NFRNZ(NMAX+1),N,ITRGT,IFLAG(32)
 INTEGER NSEL,NEV,ITMAX,ITER,I,J,K,ICON,LDX,LDH

 DM_VJDNHCR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-101

 N=NMAX
 CALL MKSPMAT(N,NZC,ZA,NCOL,NFRNZ)
 NZ=NFRNZ(N+1)-1

 ITMAX = 500
 NSEL = 10
 DO I = 1,32
 IFLAG(I)=0
 ENDDO
 LDX = NMAX
 LDH = NMAX
 ZTRGT = (0.0D0,0.0D0)
 ITRGT = 1

 CALL DM_VJDNHCR(ZA,NZ,NCOL,NFRNZ,N,ITRGT,ZTRGT,NSEL,NEV,
 & ITMAX,ITER,IFLAG,DPRM,ZEVAL,ZEVEC,LDX,DHIS,LDH,ICON)

 PRINT *,'DM_VJDNHCR ICON=',ICON
 PRINT *,'ITER=',ITER
 DO K = 1,NEV
 RVEC(1:N)=(0.0D0,0.0D0)
!$OMP PARALLEL DO PRIVATE(J)
 DO I=1,N
 DO J=NFRNZ(I),NFRNZ(I+1)-1
 RVEC(I)=RVEC(I)+ZA(J)*ZEVEC(NCOL(J),K)
 ENDDO
 RVEC(I)=RVEC(I)-ZEVAL(K)*ZEVEC(I,K)
 ENDDO
 DERR=0.0D0
 DO I=1,N
 DERR=DERR +DREAL(RVEC(I))**2 +DIMAG(RVEC(I))**2
 ENDDO
 DERR=DSQRT(DERR)
 PRINT*,'EIGEN VALUE',K,'=',ZEVAL(K)
 PRINT*,'ERROR=',DERR/CDABS(ZEVAL(K))
 ENDDO
 STOP
 END

 SUBROUTINE MKSPMAT(N,NZC,ZA,NCOL,NFRNZ)
 IMPLICIT NONE
 INTEGER N,NZC,NCOL(*),NFRNZ(*)
 COMPLEX*16 ZA(*)
 INTEGER I,IC,ICT,J,K,ISEED,LDW,ICON
 PARAMETER(LDW=1350)
 REAL*8 DWORK(NZC),RNDWORK(LDW)
 ISEED=1
 CALL DVRAN4(0.0D0,1.0D0,ISEED,ZA,2*N*NZC,RNDWORK,LDW,ICON)
 ISEED=1
 DO I=1,N
 NFRNZ(I)=(I-1)*NZC+1
 10 CALL DVRAU4(ISEED,DWORK,NZC,RNDWORK,LDW,ICON)
 IC=(I-1)*NZC

DM_VJDNHCR

II-102 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 DO J=1,NZC
 ICT=N*DABS(DWORK(J))+1
 DO K=1,J-1
 IF(ICT.EQ.NCOL(IC-K+1))GO TO 10
 ENDDO
 IC=IC+1
 NCOL(IC)=ICT
 ENDDO
 ENDDO
 NFRNZ(N+1)=IC+1
 RETURN
 END

(4) Method

 This subroutine solves large sparse eigenproblems using the Jacobi-Davidson method.
In the Jacobi–Davidson approach a small m-dimensional search subspace is updated in
each iteration, from which an approximated eigenvector of the given n-dimensional
eigenproblem is sought. In each iteration there are two important phases of procedure,
one is expansion in which the subspace is enlarged by adding a new appropriate basis
vector to it, and one is extraction in which a sensible approximate eigenpair is sought
from the search subspace. For the subspace expansion phase, a correction vector against
an approximated eigenvector is calculated as a solution vector of the Jacobi-Davidson
correction equation. For the extraction phase, an approximated eigenpair is calculated as
a solution of a small projected eigenproblem. Even when the seeking eigenvalues are in
the interior of the spectrum, this method extracts them ingeniously using distinct search
and test subspaces.

 The following shows the overall procedure of the algorithm and describes some auxiliary
parameters used in this subroutine.

1. Prepare an expansion vector t.

2. Expand the search subspace <V> and the test subspace <W> according to the
vector t, where V and W are nm matrices, and <V> represents a linear subspace
spanned by the column vectors of the matrix V. The type of the algorithm
whether standard or harmonic can be distinguished by the setting of the test
subspace, W=V for standard and <W>=<(A I)V> for harmonic. The setting is
specified by DPRM(3).

3. Solve a projected m-dimensional eigenvalue problem with a standard technique
for dense matrices. The results are called Ritz values or harmonic-Ritz values.

4. Select an eigenvalue from the results of the projected eigenproblem according to
the way ITRGT or ZTRGT specifies.

5. Extract an approximating eigenvector u of the given large eigenproblem from
the search space by expanding the eigenvector corresponds to the selected
eigenvalue of the projected eigenproblem, and let  be its Rayleigh quotient.

6. Set a residual vector r =Au u.

7. Calculate the residual norm according to the way DPRM(5) specifies.

 DM_VJDNHCR

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-103

8. Deflate the eigenproblem by the vector u, if the residual norm satisfies
convergence conditions which are indicated by the convergence criterion
DPRM(4) and by the criterion ratio DPRM(6) of the delay-deflation.

9. Reduce the dimensions of the subspaces m to mmin with restarting, when the m is
greater than mmax. The values of mmax and mmin are specified by DPRM(1) and
DPRM(2) respectively.

10. Obtain the next expansion vector t for the subsequent loop, which is the solution
of the Jacobi-Davidson correction equation (Iuu*)(A I)(Iuu*)t = r using
some iterative method. In this inner iteration, the parameters from DPRM(9) to
DPRM(15) are used.

 Note that some projection procedures needed after deflation are omitted to explain for
simplicity.

For details of the Jacobi-Davidson method, see [7] in Appendix A, "References."

DM_VLAX

II-104 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VLAX

A system of linear equations with a real matrix (blocked LU decomposition method)

CALL DM_VLAX(A,K,N,B,EPSZ,ISW,IS,IP,ICON)

(1) Function

 This subroutine solves a system of real coefficient linear equations using the blocked
LU-decomposition method of outer product type.

 Ax = b

 where, A is a non-singular real matrix of n  n, b is an n-dimensional real constant
vector, and x is an n-dimensional solution vector. (n  1)

(2) Parameters

A Input. Matrix A is stored in A(1:N,1:N).

Output. Matrices L and U are stored in A(1:N,1:N).

This is a double precision real two-dimensional array A(K,N).

The value of A other than A(1:N,1:N) is not assured after operation.

K Input. The size of first dimension of array for storage A ( N).

N Input. Order n of the matrix A.

B Input. Constant vector b.

Output. Solution vector x.

A double precision one-dimensional array of size N.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is assumed. (See note 1) in (3),
"Comments on use.")

ISW Input. Control information.

When solving k ( 1) sets of equations having the same coefficient matrix,
specify as follows.

Specify ISW = 1 for the first set of equations.

Specify ISW = 2 for the second and subsequent sets. When specifying ISW = 2,
change only the value of B into a new constant vector b and do not change other
parameters.

(See note 2) in (3), "Comments on use.")

IS Output. Information to obtain the determinant of matrix A. The determinant is
obtained by multiplying the product of the n diagonal elements of array A by
the value of IS after decomposition.

(See note 2) in (3), "Comments on use.")

IP Output. The transposition vector which indicates the history of row exchange
by partial pivoting. A one-dimensional array of size n.

 DM_VLAX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-105

ICON Output. Condition code.

See Table DM_VLAX-1.

Table DM_VLAX-1 Condition codes

Code Meaning Processing

0 No error 

20000 All the elements in some row of matrix A are
zero, or the pivot becomes relatively zero.
Matrix A may be singular.

Processing is discontinued.

30000 K < N, N < 1 or EPSZ < 0.0 Processing is discontinued

(3) Comments on use

a. Notes

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ. In this case, processing is discontinued with ICON = 20000. When unit
round off is u, the standard value of EPSZ is 16  u. When the computation is to
be continued even if the pivot is small, assign the minimum value to EPSZ. In
this case, however, the result is not assured.

2) When several sets of linear equations that have an identical coefficient matrix
are successively solved, the value of ISW should be 2 from the second time on.
This reduces the execution time because LU decomposition of coefficient matrix
A is bypassed. The value of IS does not change from the time ISW = 1.

3) This subroutine calls DM_VALU and DM_VLUX internally. Therefore,
instead of calling this function in a parallel region with specifying the number of
threads by run-time library OMP_SET_NUM_THREADS(), call DM_VALU
and DM_VLUX directly with specifying the number of threads with
OMP_SET_NUM_THREADS() just before the each of them.

b. Example

 A system of linear equations having on 4000  4000 coefficient matrix is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION A(4001,4000)
 DIMENSION IP(4000),B(4000)
C
 N=4000
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B,N)

!$OMP DO
 DO J=1,N
 DO I=1,N
 A(I,J)=MIN(I,J)
 ENDDO

DM_VLAX

II-106 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDDO
!$OMP END DO

!$OMP DO
 DO I=1,N
 B(I)=I*(I+1)/2+I*(N-I)
 ENDDO
!$OMP END DO

!$OMP END PARALLEL
C
 K=4001
 CALL DM_VLAX(A,K,N,B,0.0D0,1,IS,IP,ICON)
 WRITE(6,610)ICON
 IF(ICON.GE.20000)STOP

 S=1.0D0
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,N)
!$OMP+ REDUCTION(*:S)
 DO I=1,N
 S=S*A(I,I)
 ENDDO
!$OMP END PARALLEL DO

 DET=IS*S

C
 WRITE(6,620)(I,B(I),I=1,10)
 WRITE(6,630)DET
 610 FORMAT(1H0,10X,16HCONDITION CODE =,I5)
 620 FORMAT(1H0,10X,15HSOLUTION VECTOR
 */(10X,3(1H(,I3,1H),D23.16)))
 630 FORMAT(1H0,10X,
 *27HDETERMINANT OF THE MATRIX =,D23.16)
 END

 DM_VLBX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-107

DM_VLBX

A system of linear equations with banded real matrices (Gaussian elimination)

CALL DM_VLBX(A,K,N,NH1,NH2,B,EPSZ,ISW,IS,IP,ICON)

(1) Function

 This subroutine solves a system of linear equations with the banded real matrix using
Gaussian elimination.

 Ax = b

 where, A is an n  n banded matrix, with the lower bandwidth h1, and upper bandwidth h2,
b is an n-dimensional real constant vector, and x is an n-dimensional solution vector.

 n > h1  0, n > h2  0

(2) Parameters

A Input. Store a banded coefficient matrix A.

Matrix A is stored in A(NH1 + 1:2  NH1 + NH2 +1,1:N). For A(1:NH1, 1:N),
set zero for the elements of matrix A outside the band.

See Figure DM_VLBX-1.

Output. The LU-decomposed matrices L and U are stored.

See Figure DM_VLBX-2.

This is a double precision real two-dimensional array A(K,N).

The value of A(2NH1+NH2+2:K, 1:N) is not assured after operation.

K Input. The size of first dimension of array A( 2NH1+NH2+1).

N Input. Order n of matrix A.

NH1 Input. Lower bandwidth size h1.

NH2 Input. Upper bandwidth size h2.

B Input. Constant vector b.

Output. Solution vector x.

A one-dimensional array of size n.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is set. (See note 1) in (3), “Comments on
use.”)

ISW Input. Control information.

When solving k (k  1) sets of equations having the same coefficient matrix,
specify as follows.

Specify ISW = 1 for the first set of equations.

Specify ISW = 2 for the second and subsequent sets of equations. When
specifying ISW = 2, change only the value of B into a new constant vector b
and do not change any other parameters.

DM_VLBX

II-108 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

IS Output. Indicates the row vector exchange count.

When IS is 1, the exchange count is even.

When IS is -1, the exchange count is odd.

(See note 3) in (3), “Comments on use.”)

IP Output. A one-dimensional array of size n. The transposition vector to contain
row exchange information is stored.

(See note 2) in (3), “Comments on use.”)

ICON Output. The condition code.

See Table DM_VLBX-1.

*

*

*

*

*

…

…

…

…

…

…

…

… …

…

…

: :

*

*

*

a12 a23

a13

… …

…

…

…

… …

…

an-nh2 n

an-2 n

an-1 n

a11 a22 a33 … an-1 n-1 ann

a21

a31

:

anh1+1 1 anh1+2 2 … … … an n-nh1

…

…

…

an n-1 *

*

*

* …

:

*

…

… a42

a32

1

nh2

nh1

nh1

N

0

0

0

0

0

a1 nh2+1

Figure DM_VLBX-1 Storing matrix A in array A

 The column vector of matrix A is continuously stored in columns of array A in the same
manner as diagonal elements of banded matrix A aii, i = 1, ..., n, are stored in A(nh1 + nh2
+ 1,1:n).

 Upper banded matrix part

 aj-i,j, i = 1, ..., nh1, j = 1, ..., n, j - i  1 is stored in A (nh1 + 1:nh1 + nh2, + 1,1:n).

 Lower banded matrix part

 aj+i,j, i = 1, ... , nh1, j = 1, ... , n, j + i  n is stored in A(nh1 + nh2 + 2:2  nh1 + nh2 + 1,
1:n). For A(1:nh1,1:n), set zero for the elements of matrix A outside the band.

 * indicates undefined values.

 DM_VLBX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-109

*

*

*

*

*

u1 nh1+nh2+1 … un-nh1-nh2 n

…

…

…

…

…

…

… …

…

…

: :

:

*

*

*

u12 u23

u13

… …

…

…

…

… …

…

un-nh2 n

un-2 n

un-1 n

l11 l22 l33 … ln-1 n-1 lnn

l21

l31

:

lnh1+1 1 lnh1+2 2 … … … ln n-nh1

…

…

…

ln n-1 *

*

*

* …

:

*

…

… l42

l32

1

nh2

nh1

nh1

N

Figure DM_VLBX-2 Storing LU-decomposed matrix L and U in array A

 LU-decomposed unit upper banded matrix except diagonal elements

 uj-i+1,j, i = 1, ... , h1 + h2, j = 1, ... , n, j - i + 1  1 is stored in A(1:h1 + h2,1:n).

 Lower banded matrix part

 1j+i, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in A(h1 + h2 + 1:2  h1 + h2 + 1,1:n).

 * indicates undefined values.

DM_VLBX

II-110 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VLBX-1 Condition codes

Code Meaning Processing

0 No error

20000 All elements in some row of array A were zero,
or the pivot became relatively zero. Matrix A
may be singular.

Processing is discontinued.

30000 N<1, NH1  N, NH1 < 0, NH2  N, NH2 < 0,
K < 2NH1+NH2+1, EPSZ < 0.

(3) Comments on use

a. Notes

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LU decomposition. In this case, processing is
discontinued with ICON = 20000. When unit round off is u, the standard value
of EPSZ is 16  u. When the computation is to be continued even if the pivot is
small, assign the minimum value to EPSZ. In this case, however, the result is
not assured.

2) In this subroutine, row vector is exchanged using partial pivoting. That is, when
the I-th row (I  J) is selected as the pivot row in the J-th stage (J = 1, ... , n) of
decomposition, the contents of the I-th row and J-th row are exchanged. To
indicate this exchange, I is stored in IP(J).

3) The determinant can be obtained by multiplying IS and A(h1 + h2 + 1, i), i =1, ...,
n.

 DM_VLBX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-111

b. Example

 The system of linear equations with banded matrices is solved with the input of a
banded real n = 10000 matrix, h1 = 2000, h2 = 3000.

 implicit real*8(a-h,o-z)
 parameter(nh1=2000,nh2=3000,n=10000)
 parameter(ka=2*nh1+nh2+1,n2=n)
 real*8 a(ka,n2),b(n),dwork(4500)
 integer ip(n)

c
 ix=123
 nwork=4500
 nn=nh1+nh2+1
 do i=1,n
 call dvrau4(ix,a(nh1+1,i),nn,dwork,nwork,icon)
 do j=1,nh1+nh2+1
 enddo
 enddo
c
c zero clear
c
 print*,'nh1=',nh1,',nh2=',nh2,',n=',n
c
c a(1:nh1,n)=0.0d0
c
 do j=1,n
 do i=1,nh1
 a(i,j)=0.0d0
 enddo
 enddo
c
c left upper triangular part
c
 do j=1,nh2
 do i=1,nh2+1-j
 a(i+nh1,j)=0.0d0
 enddo
 enddo
c
c right rower triangular part
c
 nbase=2*nh1+nh2+1
 do j=1,nh1
 do i=1,j
 a(nbase-i+1,n-nh1+j)=0.0d0
 enddo
 enddo
c
c set right hand constant vector
c
 do i=1,n
 b(i)=0.0d0
 enddo
c
 do i=1,n
 nptr=i-1
 do j=max(nptr+1-nh2,1),min(n,nptr+nh1+1)
 b(j)=b(j)+a(j-i+nh1+nh2+1,i)
 enddo
 enddo

DM_VLBX

II-112 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

c
 epsz=0.0d0
 isw=1
 call gettod(tt1)
 call dm_vlbx(a,ka,n,nh1,nh2,b,epsz,isw,is,ip,icon)
 call gettod(tt2)
 print*,'time (wall clock)=',(tt2-tt1)*1.0d-6
c
 tmp=0.0d0
 do i=1,n
 tmp=max(tmp,dabs(b(i)-1))
 enddo
c
 print*,'maximum error =',tmp
c
 stop
 end

 DM_VLCSPSXCR1

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-113

DM_VLCSPSXCR1

System of linear equations with non-Hermitian symmetric complex sparse matrices
 (Conjugate A-Orthogonal Conjugate Residual method with preconditioning
 by incomplete LDLT decomposition, symmetric compressed row storage method)

CALL DM_VLCSPSXCR1(ZSA,NZ,NCOL,NFRNZ,N,ZB, ISW, ZX,IPAR,RPAR,

ZVW,ICON)

(1) Function

This subroutine solves, using Conjugate A-Orthogonal Conjugate Residual method,
COCR method, a system of linear equations with non-Hermitian symmetric complex
sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix A is stored using the symmetric compressed row storage
method. Vectors b and x are n-dimensional vectors.

(2) Parameters

ZSA Input. The nonzero elements of the coefficient matrix are stored in ZSA(1:NZ).
One-dimensional complex array ZSA(NZ). Regarding the symmetric
compressed row storage method, see Fig. DM_VCLSPSXCR1-1.

NZ Input. Total number of the nonzero elements belong to the coefficient matrix A
( 1).

NCOL Input. The column indices used in the compressed row storage method, which
indicate the column number of each nonzero element stored in the array ZSA.
One-dimensional array NCOL(NZ).

NFRNZ Input. The position of the first nonzero element stored in array ZSA by the
symmetric compressed row storage methods which stores the nonzero elements
row by row of upper triangular portion of matrix A. NFRNZ(N+1)=NZ+1. One-
dimensional array NFRNZ(N+1).

N Input. Order n of the matrix A ( 1).

ZB Input. The right-side constant vector of the system of linear equations is stored
in ZB(1:N). One-dimensional complex array ZB(N).

ISW Input. Control information.
When solving multiple sets of equations having the same coefficient matrix,
specify as follows;
Specify ISW = 1 for the first set of equations.
Specify ISW = 3 for the second and subsequent sets with the same coefficient
matrix and different constant vector b.
When specifying ISW = 3, change only the value of ZB and ZX into a new
constant vector b and initial vector x and do not change other parameters.

ZX Input. The initial value of solution can be specified in ZX(1:N).
Output. The solution vector is stored in ZX(1:N).
One-dimensional complex array ZX(N).

IPAR ……… Control parameters having integer values. Some parameters may be modified
on output. When specify 0 for any parameter, it will be assumed to specify

DM_VLCSPSXCR1

II-114 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

default value on it. If no convergence is met by using default parameters, it is
recommended to try again by making parameters change. One-dimensional
array IPAR(20).
IPAR(1:5): Reserved for future extensions. Specify 0 for each, just in case.

IPAR(6): Input. Specify the upper limit of iteration counts for the COCR
 method ( 0). Default value is 2000.

IPAR(7): Output. Actual iteration counts.

IPAR(8): Output. Actual evaluation counts of matrix-vector multiplications Av
 where A is the coefficient matrix and v is iterative vector in the
 COCR method.

IPAR(9:10): Reserved for future extensions. Specify 0 for each, just in case.

IPAR(11): Input. Specify control parameter how to make compensation for
 dropped new nonzero elements which are filled in during incomplete
 LDLT decomposition. If specify as IPAR(11)=0, no compensation
 will be made. If specify as IPAR(11)=1, compensation will be
 made by reflecting dropped entries into diagonal elements. Default
 value is 0.
 For more detail, see note 1) in (3), "Comments on use".

IPAR(12): Output. Actual number of dropped new nonzero elements.

 IPAR(13:20): Reserved for future extensions. Specify 0 for each, just in case.

RPAR Control parameters having real values. Some parameters may be modified on
output. When specify 0.0 for any parameter, it will be assumed to specify
default value on it. If no convergence is met by using default parameters, it is
recommended to try again by making parameters change.
One-dimensional array RPAR(20).

RPAR(1): Reserved for future extensions. Specify 0.0 for each, just in case.

 RPAR(2): Input. Specify convergence criteria epst for iterative solution of
 given a system of linear equations by COCR method ( 0.0).
 Default value is 10-8.

 RPAR(3): Output. Relative residual norm for residual vector of the solution.

 RPAR(4): Output. Real part of the accumulated sum of dropped new nonzero
 elements which are filled in during incomplete LDLT decomposition.
 For more detail, see note 1) in (3), "Comments on use".

 RPAR(5): Output. Imaginary part of the accumulated sum of dropped new
 nonzero elements which are filled in during incomplete LDLT
 decomposition.
 For more detail, see note 1) in (3), "Comments on use".

RPAR(6:20) : Reserved for future extensions. Specify 0.0 for each, just in case.

ZVW Work area. Input/Output. One-dimensional array ZVW(NZ).

ICON Output. Condition code.
See Table DM_VLCSPSXCR1-1.

Table DM_VLCSPSXCR1 Condition codes

Code Meaning Processing

0 No error. 

 DM_VLCSPSXCR1

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-115























11960

9803

6052

0321

A

Code Meaning Processing

20000 The iteration counts reached the upper limit. Processing is discontinued.
The already calculated
approximate value is output
to array ZX along with
relative residual error.

29000 Matrix A is singular. Processing is discontinued.

30000 Parameter error(s).
N<1, NZ<1, NZ≠NFRNZ(N+1)-1,
ISW<1, ISW=2, ISW>3,
IPAR(6)<0, IPAR(11)<0, IPAR(11)>1,
RPAR(2)<0.0.

 Figure DM_VLCSPSXCR1_1 Storing matrix A in symmetric compressed row storage method

(3) Comments on use

a. Notes

1) About drop of the new nonzero and its compensation
In this subroutine, the new nonzero elements which are filled in during
incomplete LDLT decomposition will be dropped in general. In order to ease up
effect of such dropping, this subroutine attempts to compensate such dropping
according to IPAR(11). If specify as IPAR(11)=1, it makes compensation for each
diagonal elements by adding certain value which is accumulated sum of dropped
new nonzero elements which are filled in on the row. By this compensation, it
may affect to improve characteristic of the preconditioning matrix.

























































































4

4

3

4

2

3

2

1

NCOL,

11

9

8

6

5

3

2

1

ZSA,

9

8

6

4

1

NFRNZ

DM_VLCSPSXCR1

II-116 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Further, this subroutine outputs the accumulated sum zdrp as an index regardless
of IPAR(11) specification. The real part and imaginary part of zdrp are stored in
RPAR(4) and RPAR(5) respectively.

b. Example

Read a symmetric complex matrix, then solve a linear system of equations Ax=b
by this subroutine.
The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C==
C TEST PROGRAM FOR KRYLOV ITERATION METHODS
C FOR SPARSE LINEAR EQUATIONS
C WITH NON-HERMIT COMPLEX SYMMETRIC MATRIX.
C==
 PARAMETER (NZMAX=500 000, NMAX=10 000)
 IMPLICIT REAL*8 (A-H,O-Y)
 IMPLICIT COMPLEX*16 (Z)
 REAL*8 CNORM2
 DIMENSION ZSA(NZMAX),NFRNZ(NMAX+1),
 1 NCOL(NZMAX),ZX(NMAX),ZB(NMAX),
 2 ZSAT(NZMAX),NFRNZT(NMAX+1),
 3 NCOLT(NZMAX),ZXT(NMAX),ZBT(NMAX),
 4 ZVW(NZMAX)
 5 ,IPAR(20),RPAR(20)
 CHARACTER TITLE*72
C--
C INPUT MATRIX FROM UF SPARSE MATRIX COLLECTION
C--
 CALL CREADMAT(TITLE,ZSAT,N,NFRNZT,NCOLT,ZSA)
 CALL CVECGEN(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT)
 CALL CMATCOPY(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT,
 + ZSA,NFRNZ,NCOL,ZX,ZB)
C
 WRITE(6,600) TITLE
 600 FORMAT(
 */'---'
 */'TEST MATRIX : '/A36/A36)
C--
 ISW=1
 DO II=1,20
 IPAR(II)=0
 RPAR(II)=0.0D0
 END DO
 NZ=NFRNZ(N+1)-1
 CALL DM_VLCSPSXCR1(ZSA,NZ,NCOL,NFRNZ,N,ZB,
 * ISW,ZX,IPAR,RPAR,ZVW,ICON)
C
 IC =IPAR(7)
 ICMAV =IPAR(8)
 MDRP =IPAR(11)

 DM_VLCSPSXCR1

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-117

 NZDRP =IPAR(12)
 EPST =RPAR(2)
 RELRES=RPAR(3)
 DRPR =RPAR(4)
 DRPI =RPAR(5)
 REL =CNORM(ZB,N)
 CALL CMSVCR1(ZSA,N,NFRNZ,NCOL,ZX,ZB,0)
 RELERR=CNORM(ZB,N)/REL
C
 WRITE(6,601)
 601 FORMAT(
 */'---'
 */' SOLUTION RESULTS BY "DM_VLCSPSXCR1"')
 WRITE(6,605) N,NFRNZ(N+1)-1,MDRP
 WRITE(6,606) ICON,IC,ICMAV,NZDRP,DRPR,
 * DRPI,EPST,RELRES,RELERR
 605 FORMAT(/' N =',I12
 * /' NZ =',I12
 * /' MDRP =',I12)
 606 FORMAT(/' ICON =',I12
 * /' IC =',I12
 * /' ICMAV =',I12
 * /' NZDRP =',I12
 * /' DRPR =',D12.2
 * /' DRPI =',D12.2
 * /' EPST =',D12.2
 * /' RELRES =',D12.2
 * /' RELERR =',D12.2
 */'--')
 IF(RELERR.LE.EPST*1.1D0.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF
 STOP
 END
C===
C READ TEST MATRIX FOR COMPLEX SYMMETRIC MATRIX.
C===
 SUBROUTINE CREADMAT(TITLE,A,NCOL,IS,JS,W)
C
C THIS ROUTINE READS MATRIX DATA OF RB SPARSE FORM.
C THE FOLLOWING SAMPLE CODE IS ORIGINATED FROM MATRIX
C MARKET;
C
 IMPLICIT NONE
 CHARACTER TITLE*72,KEY*8,MXTYPE*3,RHSTYP*3,
 1 PTRFMT*16,INDFMT*16,VALFMT*20,RHSFMT*20
 INTEGER TOTCRD,PTRCRD,INDCRD,VALCRD,RHSCRD,
 1 NROW,NCOL,NNZERO,NELTVL,
 2 NRHS,NRHSIX
 INTEGER IS(*),JS(*),I
 REAL*8 A(*),W(*)

DM_VLCSPSXCR1

II-118 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 INTEGER IX
C ------------------------
C READ IN HEADER BLOCK
C ------------------------
 READ(5,1000) TITLE,KEY,TOTCRD,PTRCRD,INDCRD,
 +VALCRD,RHSCRD,MXTYPE,NROW,NCOL,NNZERO,NELTVL,
 +PTRFMT,INDFMT,VALFMT,RHSFMT
 1000 FORMAT(A72,A8/5I14/A3,11X,4I14/2A16,2A20)
C
 IF(RHSCRD.GT.0) READ(5,1001) RHSTYP,NRHS,NRHSIX
 1001 FORMAT(A3,11X,2I14)
C -------------------------
C READ MATRIX STRUCTURE
C -------------------------
 READ(5,PTRFMT) (IS(I),I=1,NCOL+1)
 READ(5,INDFMT) (JS(I),I=1,NNZERO)
C
 IF(VALCRD.GT.0) THEN
C ----------------------
C READ MATRIX VALUES
C ----------------------
 IF(MXTYPE(1:1).EQ.'R') THEN
 READ(5,VALFMT) (A(I),I=1,NNZERO)
 ELSE
 READ(5,VALFMT) (A(I),I=1,2*NNZERO)
 END IF
 END IF
 RETURN
 END
C===
C COPY COMPLEX MATRIX AND VECTORS.
C===
 SUBROUTINE CMATCOPY(ZSAT,N,NFRNZT,NCOLT,
 + ZXT,ZBT,ZSA,NFRNZ,NCOL,ZX,ZB)
 IMPLICIT REAL*8 (A-H,O-Y)
 IMPLICIT COMPLEX*16 (Z)
 DIMENSION ZSAT(*),NFRNZT(*),NCOLT(*),
 + ZXT(*),ZBT(*),ZSA(*),NFRNZ(*),
 + NCOL(*),ZX(*),ZB(*)
C
 NZ=NFRNZT(N+1)-1
 DO I=1,N+1
 NFRNZ(I)=NFRNZT(I)
 END DO
 DO I=1,NZ
 ZSA(I)=ZSAT(I)
 NCOL(I)=NCOLT(I)
 END DO
C
 DO I=1,N
 ZX(I)=ZXT(I)
 ZB(I)=ZBT(I)
 END DO

 DM_VLCSPSXCR1

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-119

 RETURN
 END
C===
C GENERATE COMPLEX B AND X VECTORS.
C===
 SUBROUTINE CVECGEN(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT)
 IMPLICIT REAL*8 (A-H,O-Y)
 IMPLICIT COMPLEX*16 (Z)
 DIMENSION ZSAT(*),NFRNZT(*),NCOLT(*),
 + ZXT(*),ZBT(*)
C
C COMPUTE RIGHT HAND SIDE VECTOR B.
 DO II=1,N
 ZXT(II)=1.0D0+DFLOAT(II)/DFLOAT(N)
 END DO
 CALL CMSVCR1(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT,1)
C
C SET INITIAL VALUE
 DO II=1,N
 ZXT(II)=0.0D0
 END DO
 RETURN
 END
C===
C MATRIX VECTOR MULTIPLICATION.
C COMPLEX SYMMETRIC MATRIX STORED IN CSR FORM.
C===
 SUBROUTINE CMSVCR1(ZSA,N,NFRNZ,NCOL,ZX,ZB,ISW)
 IMPLICIT REAL*8 (A-H,O-Y)
 IMPLICIT COMPLEX*16 (Z)
 DIMENSION ZSA(*),ZB(*),ZX(*),NFRNZ(*),NCOL(*)
C
 IF(ISW.EQ.1) THEN !*** MULTIPLICATION (AX=>B)
C
 DO I=1,N
 ZB(I)=0.0D0
 END DO
 DO I=1,N
 K1=NFRNZ(I)
 K2=NFRNZ(I+1)-1
 IF(ZX(I).NE.0.0D0) THEN
 DO J=K1,K2
 ZB(NCOL(J))=ZSA(J)*ZX(I)+ZB(NCOL(J))
 IF(NCOL(J).NE.I)
 + ZB(I)=ZSA(J)*ZX(NCOL(J))+ZB(I)
 END DO
 ELSE
 DO J=K1,K2
 ZB(I)=ZSA(J)*ZX(NCOL(J))+ZB(I)
 END DO
 END IF
 END DO
C

DM_VLCSPSXCR1

II-120 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ELSE !*** RESIDUAL VECTOR (B-AX=>B)
C
 DO I=1,N
 K1=NFRNZ(I)
 K2=NFRNZ(I+1)-1
 IF(ZX(I).NE.0.0D0) THEN
 DO J=K1,K2
 ZB(NCOL(J))=-ZSA(J)*ZX(I)+ZB(NCOL(J))
 IF(NCOL(J).NE.I)
 + ZB(I)=-ZSA(J)*ZX(NCOL(J))+ZB(I)
 END DO
 ELSE
 DO J=K1,K2
 ZB(I)=-ZSA(J)*ZX(NCOL(J))+ZB(I)
 END DO
 END IF
 END DO
 END IF
 RETURN
 END
C===
C L2 NORM OF A COMPLEX VECTOR.
C===
 FUNCTION CNORM(ZX,N)
 IMPLICIT REAL*8 (A-H,O-Y)
 IMPLICIT COMPLEX*16 (Z)
 DIMENSION ZX(N)
 CNORM=0.0D0
 DO I=1,N
 CNORM=ZX(I)*DCONJG(ZX(I))+CNORM
 END DO
 IF(CNORM.NE.0.0D0) CNORM=DSQRT(CNORM)
 RETURN
 END

(4) Method

This subroutine solves a system of linear equations with non-Hermitian symmetric complex
sparse matrices as coefficient matrices using Conjugate A-Orthogonal Conjugate Residual
method, COCR method, with preconditioning by incomplete LDLT decomposition.

a. Incomplete LDLT decomposition

Preconditioning method makes the system to more tractable form and reduces total
iteration counts. On such point of view, incomplete decomposition method is well known.

This subroutine employs a preconditioning method based on incomplete LDLT

decomposition with dropping new nonzero elements.

b. Conjugate A-Orthogonal Conjugate Residual, COCR method

In general, there are popular methods for solving linear systems with non-Hermitian
symmetric complex sparse matrix such as BiCG and CGS method based on Lanczos
process, BiCGSTAB method based on product type process and GMRES method based on
Arnoldi process. However, since these methods do not take advantage of symmetric
property of the matrix, number of matrix-vector multiplications come to 2 times per
iteration in the kernel loop.

 DM_VLCSPSXCR1

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-121

This subroutine employs Conjugate A-Orthogonal Conjugate Residual, COCR method,
which takes advantage of symmetric property, holds a minimal residual property and
takes stable convergence property.

c. Algorithm of COCR method with preconditioning

end

dountilkfor

kkkkkkk

kkkkkkkk

kkkkk

kkkk

kkkk

k

),/(),(,

,,

),,/(),(

,

,

;,...1,0

,0,,

111
1

1

11

1

11

11

22

10
1

000

AzzAzzrMz

Aprrpxx

AppAMAzz

ApAzAp

pzp

br

rMzAxbr








































Where the inner product (x,y) is defined by below.

i

n

i
i yx

1
),(yx

d. Convergence test

The iterate xk is accepted as a solution of the system if the residual satisfies

22
bAxb epstk  .

Where epst is a convergence criteria specified in RPAR(2). Default value of epst is 10-8.
The final relative residual norm

22
/ bAxb k

is stored in RPAR(3), even if in the case that the residual does not satisfy convergence
test. The residual vector b - Axk is computed by using recurrence in the iteration formula.

For details of the algorithms, see [66] and [74] in Appendix A, "References."

DM_VLCX

II-122 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VLCX

A system of linear equations with complex matrices (blocked LU decomposition method)

CALL DM_VLCX(ZA,K,N,ZB,EPSZ,ISW, IS,IP, ICON)

(1) Function

 This subroutine solves a system of complex coefficient linear equations using blocked
LU-decomposition method of an outer product type.

 Ax = b

 where, A is a non-singular n  n complex matrix, b is an n-dimensional complex
constant vector, and x is an n-dimensional solution vector (n  1).

(2) Parameters

ZA............. Input. Matrix A is stored in ZA(1:N,1:N).

Output. Matrices L and U are stored in ZA(1:N,1:N).

This is a two-dimensional double precision complex type array ZA(K,N).

K............... Input. The size of the first dimension of the array ZA. ( N).

N Input. Order n of matrix A.

ZB Input. Constant vector b.

Output. Solution vector x.

A double precision complex type array ZB(N).

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, a standard value is assumed. (See note 1) in (3), Comments
on use.)

ISW Input. Control information.

When solving k ( 1) sets of equations having identical coefficient matrices,
specify as follows.

Specify ISW = 1 for the first set of equations.

Specify ISW = 2 for the second and the subsequent sets of equations. When
specifying ISW = 2, change only the value of ZB into a new constant vector.
Do not change any other parameters.

(See note 2) in (3), “Comments on use.”)

IS Output. Information to obtain the determinant of matrix A.

The determinant is obtained by multiplying n diagonal elements of array ZA by
the value of IS after the operation.

(See note 2) in (3), “Comments on use.”)

IP Output. The transposition vector which indicates the history of the row
exchange by partial pivoting. A one-dimensional array of size n.

ICON Output. Condition code.

See Table DM_VLCX-1.

 DM_VLCX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-123

Table DM_VLCX-1 Condition codes

Code Meaning Processing

0 No error 

20000 All the elements in some row of matrix A are
zero, or the pivot becomes relatively zero.
Matrix A may be singular.

Processing is discontinued.

30000 K < N, N < 1, EPSZ < 0.0.

(3) Comments on use

a. Notes

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ. In this case, processing is discontinued with ICON = 20000. When unit
round off is u, the standard value of EPSZ is 16u. When the computation is to be
continued even if the pivot is small, assign the minimum value to EPSZ. In this
case, however, the result is not assured.

2) When several sets of linear equations with an identical coefficient matrix are
successively solved, the value of ISW should be 2 from the second time on. This
reduces the execution time because LU decomposition of coefficient matrix A is
bypassed. The value of IS does not change from the time ISW = 1.

b. Example

 A system of linear equations having an n  n complex coefficient matrix is
solved.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N=2000,K=N+1)
C
 COMPLEX*16 A(K,N),B(N)
 REAL*8 C
 INTEGER IP(N),IS
C
 C=SQRT(1.0D0/DBLE(1+N))
 T=DATAN(1.0D0)*8./(1+N)
C
 DO 100 J=1,N
 DO 100 I=1,N
 A(I,J)=DCMPLX(C*COS(T*I*J),C*SIN(T*I*J))
 100 CONTINUE
C
 DO 200 I=1,N
 S=(0.,0.)
 DO 200 J=1,N
 S=S+DCMPLX(COS(T*I*J),SIN(T*I*J))

DM_VLCX

II-124 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 B(I)=S*C
 200 CONTINUE
C
 ISW=1
 EPSZ=0.0D0
 CALL DM_VLCX(A,K,N,B,EPSZ,ISW,IS,IP,ICON)
 PRINT*,'ICON=',ICON

 ERROR=0.0D0
 DO I=1,N
 ERROR=MAX(ERROR,ABS(1.0D0-B(I)))
 ENDDO
 PRINT*,'ERROR =',ERROR

 PRINT*,'ORDER=',N,' B(1)=',B(1),'B(N)=',B(N)
 STOP
 END

 DM_VLDLX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-125

DM_VLDLX

A system of linear equations with LDLT-decomposed positive definite matrices

CALL DM_VLDLX(B,FA,KFA,N,ICON)

(1) Function

 This subroutine solves a system of linear equations with LDLT- decomposed symmetric
positive definite coefficient matrix.

 LDLT x = b (1.1)

 where, L and D are a unit lower triangular matrix and an n  n diagonal matrix
respectively, b is an n-dimensional real constant vector, x is an n-dimensional solution
vector, and n  1.

 This subroutine receives the LDLT-decomposed matrix from subroutine DM_VSLDL
and calculates the solution of a system of linear equations.

(2) Parameters

B Input. Constant vector b.

Output. Solution vector x.

A double precision real one-dimensional array of size n.

FA Input. The LDLT-decomposed matrices L, D-1, and LT are stored.

The LDLT-decomposed matrices are stored in FA(1:N,1:N). That is, FA(i,j)
contains

lij (when i > j)

reciprocals of dii (when i = j).

See Figure DM_VLDLX-1.

This is a double precision real two-dimensional array FA(KFA,N).

KFA Input. The size of the first dimension of array FA ( N).

N Input. Order n of matrices L and D.

ICON Output. Condition code.

See Table DM_VLDLX.

DM_VLDLX

II-126 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

ln1

l21 d22

-1

d11

-1

dnn

-1

Altered

N

N

KFA

Array FA

Figure DM_VLDLX-1 Storing matrices L, D-1 into array FA

 After LDLT decomposition, matrix D-1 is stored in diagonal elements and L (excluding
the diagonal elements) are stored in the lower triangular part respectively.

Table DM_VLDLX-1 Condition codes

Code Meaning Processing

0 No error 

10000 The coefficient matrix is not positive definite. Processing is continued.

30000 N < 1, KFA < N. Processing is discontinued.

 (3) Comments on use

a. Notes

1) A system of linear equations with a positive definite coefficient matrix can be
solved by calling this subroutine after calling subroutine DM_VSLDL. However,
subroutine DM_VLSX should be usually used to solve a system of linear
equations in one step.

b. Example

 A 4000  4000 coefficient matrix is decomposed into LDLT-decomposed matrix,
then the system of linear equations is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N=4000,KFA=N+1)
 REAL*8 A(KFA,N)

 DM_VLDLX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-127

 REAL*8 B(N)
C
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B)
!$OMP DO
 DO J=1,N
 DO I=J,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO
!$OMP END DO

!$OMP DO
 DO I=1,N
 B(I)=I*(I+1)/2+I*(N-I)
 ENDDO
!$OMP END DO

!$OMP END PARALLEL
C
 CALL DM_VSLDL(A,KFA,N,1.D-13,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 10

 CALL DM_VLDLX(B,A,KFA,N,ICON)
 WRITE(6,630) (B(I),I=1,10)

 S=1.0D0
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)
!$OMP+ REDUCTION(*:S)
 DO I=1,N
 S=S*A(I,I)
 ENDDO
!$OMP END PARALLEL DO

 DET=S
 DET=1.D0/DET
 WRITE(6,620) DET
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(3D22.15)
 600 FORMAT(1H,I5/(10X,3D23.16))
 610 FORMAT(/10X,5HICON=,I5)
 620 FORMAT(/10X
 *,34HDETERMINANT OF COEFFICIENT MATRIX=
 *,D23.16)
 630 FORMAT(/10X,15HSOLUTION VECTOR
 *//(10X,3D23.16))
 640 FORMAT(/10X,12HINPUT MATRIX)
 10 STOP
 END

DM_VLDLX

II-128 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(4) Method

 The system of linear equations with LDLT-decomposed coefficient matrices is solved by
forward and back-substitution. (See [54] in Appendix A, "References.")

 DM_VLSPAXCR2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-129

DM_VLSPAXCR2

System of linear equations with unsymmetric real sparse matrices (Induced Dimension
Reduction method with preconditioning by sparse approximate inverse, compressed row
storage method)

CALL DM_VLSPAXCR2(A,NZ,NCOL,NFRNZ,N,B,ISW,X,AM,NZM,NCOLM,
NFRNZM,NWM,IPAR,RPAR,VW1,IVW1,VW2,IVW2,LMMAX,LNMAX,NUMT,ICON)

(1) Function

 This subroutine solves, using IDR method with stabilization, IDRstab(s,l) method, a
system of linear equations with unsymmetric real sparse matrices as coefficient matrices.

 Ax = b

 The n  n coefficient matrix A is stored using the compressed row storage method.
Vectors b and x are n-dimensional vectors. The parameter s is the order of shadow
residual and l is the order of acceleration polynomial.

(2) Parameters

A Input. The nonzero elements of the coefficient matrix are stored in A(1:NZ).
The compressed row storage method is to store transposed matrix of the
coefficient matrix A in the compressed column storage method.
Regarding the compressed column storage method, see Fig. DM_VMVSCC-1.

NZ Input. Total number of the nonzero elements belong to the coefficient matrix
( 1).

NCOL......... Input. The column indices used in the compressed row storage method, which
indicate the column number of each nonzero element stored in the array A.
One-dimensional array NCOL(NZ).

NFRNZ....... Input. The position of the first nonzero element stored in array A by the
compressed row storage methods which stores the nonzero elements row by
row. NFRNZ(N+1)=NZ+1. One-dimensional array NFRNZ(N+1).

N Input. Order n of the matrix A ( 1).

B Input. The right-side constant vector of the system of linear equations is stored
in B(1:N). One-dimensional array B(N).

ISW............ Input. Control information.
When solving multiple sets of equations having the same sparse structure and
/or the same coefficient matrix, specify as follows;
Specify ISW = 1 for the first set of equations.
Specify ISW = 2 for the second and subsequent sets with the same sparse
 structure and different coefficient matrix A and constant vector b.
Specify ISW = 3 for the second and subsequent sets with different constant
 vector b.
When specifying ISW = 2 or 3, change only the parameters necessary to be
changed such as A, B and/or X and do not change other parameters.

X Input. The initial value of solution can be specified in X(1:N).
Output. The solution vector is stored in X(1:N).
One-dimensional array X(N).

DM_VLSPAXCR2

II-130 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

AM.............. Input. If any, the nonzero elements of the initial approximate inverse matrix M0
are stored in AM(1:NZM) using the compressed row storage method. One-
dimensional array AM(NWM).
The compressed row storage method is the same with matrix A.
Output. The approximate inverse matrix M.

NZM........... Input. If any, total number of the nonzero elements belong to the initial
approximate inverse matrix M0 ( 1).
If not, specify as NZM=0. In this case, this subroutine employs the unit matrix
as the initial approximate inverse internally.
Output. Total number of the nonzero elements of approximate inverse matrix M.

NCOLM...... Input. If any, the column indices used in the compressed row storage method,
which indicate the column number of each nonzero element stored in the array
AM. One-dimensional array NCOLM(NWM).
Output. The column indices of approximate inverse matrix M.

NFRNZM.... Input. If any,the position of the first nonzero element stored in array AM by the
compressed row storage method which stores the nonzero elements row by row.
NFRNZM(N+1)=NZM+1. One-dimensional array NFRNZM(N+1).
Output. The position of the first nonzero element of each row of approximate
inverse matrix M.

NWM.......... Input. Specify the maximum size of areas used for computation of approximate
inverse matrix M ( 1).
Total number of the nonzero elements of approximate inverse matrix M is
calculated by the formula below where nzk is number of nonzero elements in the
k-th column of matrix A.





n

k
k IPARnznzm

1
)100/)2(,1max(

Then NWM is specified as follows;
),max(nznzmNWM  .

For more detail, see note 1) in (3), "Comments on use".

IPAR Control parameters having integer values. Some parameters may be modified
on output. When specify 0 for any parameter, it will be assumed to specify
default value on it. If no convergence is met by using default parameters, it is
recommended to try again by making parameters change.
One-dimensional array IPAR(20).
IPAR(1): Reserved for future extensions. Specify 0 for each, just in case.

IPAR(2): Input. Specify percentage(%) which is the ratio of nonzero elements
 of approximate inverse against that of the coefficient matrix A ( 0).
 It is used as upper limit control for nonzero elements generations.
 For instance, if specify as IPAR(2)=50, approximate inverse matrix
 will be generated having total nonzero number which is about 50% of
 that of coefficient matrix as an upper limit. Default value is 100.
 For more detail, see note 3) in (3), "Comments on use".

IPAR(3): Input. Specify incremental number which is number of adding new
 indices during computation of column vector of approximate inverse
 matrix (n  IPAR(3)  0). For instance, if specify as IPAR(3)=2, the
 number of indices within each column of approximate inverse will be
 incremented by 2 indices which are the most effective indices in term
 of the norm minimization. Default value is 1.
 For more detail, see note 4) in (3), "Comments on use".

 DM_VLSPAXCR2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-131

IPAR(4): Input. Specify the order of shadow residual s of Induced Dimension
 Reduction method IDRstab(s,l) (n  s  0). Default value is 4.

IPAR(5): Input. Specify the order of acceleration polynomial l of Induced
 Dimension Reduction method IDRstab(s,l) (n  l  0).
 Default value is 1.

IPAR(6): Input. Specify the upper limit of iteration counts for IDRstab(s,l)
 method ( 0). Default value is 2000.

IPAR(7): Output. Actual iteration counts.

IPAR(8): Output. Actual evaluation counts of matrix-vector multiplications Av
 where A is the coefficient matrix and v is iterative vector in
 IDRstab(s,l) method.

IPAR(9): Output. Estimated size NWM for AM, NCOLM etc.
 For more detail, see note 1) in (3), "Comments on use".

IPAR(10:12): Reserved for future extensions. Specify 0 for each, just in case.

IPAR(13): Output. Actual size LMMAX used for VW2 and IVW2.

IPAR(14): Output. Actual size LNMAX used for VW2.

IPAR(15:20): Reserved for future extensions. Specify 0 for each, just in case.

RPAR Control parameters having real values. Some parameters may be modified on
output. When specify 0.0 for any parameter, it will be assumed to specify
default value on it. If no convergence is met by using default parameters, it is
recommended to try again by making parameters change.
One-dimensional array RPAR(20).

 RPAR(1):Input. Specify convergence criteria eps with iterative computation for
 each column of approximate inverse matrix ( 0.0).
 Default value is 0.3. For more detail, see note a. "Approximate
 Inverse Matrix" in (4), "Method".

 RPAR(2):Input. Specify convergence criteria epst for iterative solution of given
 a system of linear equations by IDRstab(s,l) method ( 0.0).
 Default value is 10-8. For more detail, see note c. "Convergence
 Check" in (4), "Method".

 RPAR(3): Output. Relative residual norm for residual vector of the solution.

RPAR(4:20): Reserved for future extensions. Specify 0.0 for each, just in case.

VW1........... Work area. One-dimensional array VW1(NWM).

IVW1 Work area. One-dimensional array IVW1(NWM).

VW2........... Work area. Three-dimensional array VW2(LMMAX,LNMAX+3,NUMT).

IVW2 Work area. Three-dimensional array IVW2(LMMAX,LNMAX+3,NUMT).

LMMAX.... Input. The first dimension of working array ( 1).
LMMAX is a certain value related to the number of nonzero elements of matrix
A. Lets see certain column of matrix A, we defines the total number of nonzero
elements in the column and another columns which are relatives of the nonzero
elements of the column. Specify the maximum number of the total number
between columns. In general, it is adequate to specify as LMMAX=1000. If no
solution is met, it is recommended to try again by making parameters change.
For more detail, see note 5) in (3), "Comments on use".

DM_VLSPAXCR2

II-132 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

LNMAX.…. Input. The second dimension of working array ( 1).
LNMAX is a certain value proportional to the maximum number of nonzero
elements between columns of matrix A. In general, specify the maximum
number of nonzero elements for regular use with IPAR(2)=100. If no solution is
met, it is recommended to try again by making parameters change.
For more detail, see note 5) in (3), "Comments on use".

NUMT......... Input. The third dimension of working array ( 1).
Specify maximum number of threads for parallel processing.

ICON Output. Condition code.
See Table DM_VLSPAXCR2-1.

Table DM_VLSPAXCR2 Condition codes

Code Meaning Processing

0 No error. 

11000 Matrix A may be near singular. Processing is continued.

19000 Non diagonal element(s) is detected in matrix
A.

20000 The iteration counts reached the upper limit. Processing is discontinued.
The already calculated
approximate value is output
to array X along with
relative residual error.

25000 Array AM and NCOLM overflow due to too
small value NWM.

Processing is discontinued.
Estimated minimum size is
output to IPAR(9).

26000 Work area VW2, IVW2 overflow due to too
small value LMMAX.

Processing is discontinued.

27000 Work area VW2 overflow due to too small
value LNMAX.

29000 Matrix A is singular.

30000 Parameter error(s).
N<1, NZ<1, NZ≠NFRFZ(N+1)-1,
ISW<1, ISW>3, NWM<1N, NZM<0,
IPAR(1)<0, IPAR(2)<0, IPAR(3)<0,
IPAR(3)<0, IPAR(4)<0, n<IPAR(4),
IPAR(5)<0, n<IPAR(5), IPAR(6)<0,
LMMAX<1, LNMAX<1, NUMT<1,
RPAR(1)<0.0, RPAR(2)<0.0.

30011 Parameter error(s) related to matrix A.
Some parameter value show following relation.
NFRNZ(k)>NFRNZ(k+1), k=1,...,n

30012 Parameter error(s) related to matrix A.
Some parameter value show following relation.
NCOL(l)>NCOL(l+1),
l=NFRNZ(k),...,NFRNZ(k+1), k=1,...,n

 DM_VLSPAXCR2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-133

Code Meaning Processing

30021 Parameter error(s) related to matrix M0.
Some parameter value show following relation.
NFRNZM(k)>NFRNZM(k+1), k=1,…,n.

Processing is discontinued.

30022 Parameter error(s) related to matrix M0.
Some parameter value show following relation.
NCOLM(l)>NCOLM(l+1),
l=NFRNZM(k),...,NFRNZM(k+1), k=1,...,n.

(3) Comments on use

a. Notes

1) About the size of arrays for approximate inverse matrix
The size nzm of approximate inverse matrix M is calculated by the formula below
where nzk is number of nonzero elements in the k-th column of matrix A.

 


n

k
k IPARnznzm

1
)100/)2(,1max(

Then the size of array NWM is specified as follows;
),max(nznzmNWM  .

In general, if you use default value for IPAR(2), that is IPAR(2)=0, which
specifies upper limit of percentage of nonzero elements generations, it is adequate
to specify as NWM=NZ. When it is difficult to calculate NWM by above formula,
it is recommended to specify enough big size such as NWM=2×NZ. As a result of
operation of this subroutine, the suggested size is output on IPAR(9). This
resultant value gives good suggestion for subsequent call to solve a system with a
similar sparse matrix. If you solve another system having the same sparse
structure and the equivalent nonzero percentage of approximate inverse, you can
take IPAR(9) as a suggestion. On the other hand, if you solve another system
having much more nonzero elements than previous, or increasing percentage of
nonzero elements in approximate inverse, you can take IPAR(9) multiplied by
each increasing ratio as a suggestion.

2) About the initial approximate inverse matrix
If you have a good approximate inverse matrix M0, you can specify it as an initial
value on relevant parameters. You can specify total nonzero number of the matrix
M0 on NZM, and specify the initial approximate inverse matrix on AM,NCOLM
and NFRNZM respectively.
Such usage is recommended for user who would process following type of
problems in efficient manner.
#1 to solve multiple set of equations with the same sparse structure and different
 coefficient matrix A and constant vector b.
#2 to solve multiple set of equations with similar sparse structure.
Process is controlled along with parameter ISW. In these cases, change only the
value of A and/or related parameters and B, X, and do not change other
parameters such as AM and work areas in which previous results are stored.
In this case, it is possible to increase the upper limit by making parameter
IPAR(2) change.

3) About total nonzero number of approximate inverse matrix M
This subroutine solves a system of linear equations with preconditioning based on
approximate inverse matrix,
 AMy = b, x = My.
Approximate inverse matrix M is computed so as to be satisfied AM≒ I . The

DM_VLSPAXCR2

II-134 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

total number of nonzero elements of M affects not only accuracy of inverse but
also performance of matrix vector multiplication which is appeared frequently
during iterations. In this subroutine, it is able to control the total number of
nonzero elements of matrix M via parameter IPAR(2). In general, it is
recommended the nonzero number take the same order with that of matrix A.
That is, IPAR (2)=100 is recommended.
This subroutine computes inverse matrix M column by column, mk , k=1,…,n.
The iterate mk of inverse matrix M is accepted as a minimum solution if

epskk 
2eAm

is satisfied even if nonzero number in mk does not reach upper limit
nzk×IPAR (2)/100.
Where nzk is number of nonzero elements in k-th column of matrix A.

4) About incremental number during computation of column vector of inverse

This subroutine computes column vector mk of matrix M by solving least squares
problems as follows;

,...,n,k
m

kk
k

1min
2

 eAm .

Where ek is unit vector. Residual vector based on the solution above may lead
candidates of new nonzeros in next step mk. This subroutine selects new indices
automatically from candidates in terms of the most profitable one which
minimizes coming residual vector. Key point of this algorithm lies in determining
a good sparsity structure of the column of approximate inverse. In order to
increase nonzero elements gradually, it is recommended to specify as IPAR(3)=1
which is number of adding new indices during computation of column vector.

5) About work area VW2,IVW2
Work area VW2 and IVW2 are three dimensional array respectively. These areas
are used for solving least squares problems in order to compute column vector mk
of approximate inverse matrix M. In general, column vector mk is sparse vector
and its density of nonzero elements is varied during computation. The least
squares problems are defined corresponding to the formula of previous section 4).
The residual vector Amk - ek can be formulated only by nonzero elements of mk
and certain columns of A related with nonzero elements of mk . From such point
of view, rectangular system which is constructed by nonzero elements is derived.
You can specify LMMAX and LNMAX as maximum number of rectangular
matrix and allocate array VW2 and IVW2. Actual number of rectangular matrix
desired in this subroutine depend on characteristics of matrix A and value of
parameters such as IPAR(2). Therefore you can try to call this subroutine by
using suggested manner below. If no solution is met, it is recommended to try
again by making parameters change.
LMMAX is a certain value related to the number of nonzero elements of matrix A.
Lets see k-th column of matrix A, we defines the total number of nonzero
elements in k-th column and another columns which are relatives of the nonzero
elements of k-th column. You can specify the maximum number of the total
number between columns. In general, it is adequate to specify as LMMAX=1000.
In case that density of nonzero elements is rather high or relation between
elements tend to be strong or certain columns have more nonzero elements than
others, it is recommended to increase LMMAX.
LNMAX is a certain value proportional to the maximum number of nonzero
elements between columns of matrix A. The maximum number of nonzero is
calculated by the formula below where nzk is number of nonzero elements in the
k-th column of matrix A.

 100)2(,1max(max IPARnz k
k

　

You can specify LNMAX as this maximum number multiplied by 1.2.

 DM_VLSPAXCR2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-135

After computation, this subroutine output the actual size in IPAR(13) and
IPAR(14) corresponding to LMMAX and LNMAX respectively.

b. Example

The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation
-  u+a u+u= f
with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 and
a3 are some constants. The matrix A in Diagonal format is generated by the subroutine
INIT_MAT_DIAG. Then it is converted into the storage scheme in compressed storage.
The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=60)
 PARAMETER (NX=NORD,NY=NORD,NZ=NORD)
 PARAMETER (N=NX*NY*NZ)
 PARAMETER (K=N+1,NDIAG=7,L=4)
 PARAMETER (LMMAX=1000,LNMAX=200,NUMT=4)
 DIMENSION NOFST(NDIAG),DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1),
 + W(K*NDIAG),IW(2,K*NDIAG)
 DIMENSION X(N),B(N),SOLEX(N),Y(N),IVW(N)
 DIMENSION VW2(LMMAX,LNMAX+3,NUMT),IVW2(LMMAX,3,NUMT)
 DIMENSION IPAR(20),RPAR(20)
 DIMENSION NFRNZ(N+1),NFRNZM(N+1)
C
 REAL*8,ALLOCATABLE :: AA(:),AM(:),VW1(:)
 INTEGER,ALLOCATABLE :: NCOL(:),JVWB(:),
 + NCOLM(:),IVW1(:)
C
 PRINT *,' *** SPARSE LINEAR EQUATIONS BY IDR METHOD',
 + ' WITH PRECONDITIONING'
 PRINT *,' *** COMPRESSED ROW STORAGE.'
 PRINT *
 SOLEX(1:N)=1.0D0
 PRINT *,' *** EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *
 VA1 = 3.0D0
 VA2 = 1.0D0/3D0
 VA3 = 5.0D0
 VC = 1.0D0
 XL = 1.0D0
 YL = 1.0D0
 ZL = 1.0D0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 DO I=1,NDIAG
C

DM_VLSPAXCR2

II-136 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
 DO J=1,N
 NTOPCFG=1
 DO I=NDIAG,1,-1
 IF(DIAG2(J,I).NE.0.0D0)THEN
 NCOLL=J-NOFST(I)
 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOLL
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
 NUMNZ=NUMNZ+1
 ENDIF
 ENDDO
 ENDDO
 NFCNZ(N+1)=NUMNZ
 NNZ=NUMNZ-1
 CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,SOLEX,B,W,IW,ICON)
 ERR1 = ERRNRM(SOLEX,X,N)
C
 X(1:N)=0.0D0
 CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X,Y,W,IW,ICON)
 ERR2 = ERRNRM(Y,B,N)
C
 ALLOCATE (AA(NNZ),NCOL(NNZ),AM(NNZ),NCOLM(NNZ)
 + ,VW1(NNZ),IVW1(NNZ))
 ISW=1
 DO I=1,20
 IPAR(I)=0
 RPAR(I)=0.0D0
 END DO
 NWM=NNZ
 NZM=0
C
 CALL CONVGCR(A,N,NFCNZ,NROW,AA,NFRNZ,NCOL,IVW)
 CALL DM_VLSPAXCR2(AA,NNZ,NCOL,NFRNZ,N,B,ISW,X
 + ,AM,NZM,NCOLM,NFRNZM,NWM,IPAR,RPAR
 + ,VW1,IVW1,VW2,IVW2,LMMAX,LNMAX,NUMT,ICON)
C
 EPS=RPAR(2)

 DM_VLSPAXCR2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-137

 ITMAX=2000
 ERR3 = ERRNRM(SOLEX,X,N)
 CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X,Y,W,IW,ICONT)
 ERR4 = ERRNRM(Y,B,N)
 PRINT *,' *** COMPUTED SOLUTIONS'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' DM_VLSPAXCR2 ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N
 PRINT *,' NX = ',NX
 PRINT *,' NY = ',NY
 PRINT *,' NZ = ',NZ
 PRINT *,' ITER MAX = ',ITMAX
 PRINT *,' ITER = ',IPAR(7)
 PRINT *,' ICMAV = ',IPAR(8)
 PRINT *
 PRINT *,' EPS = ',RPAR(2)
 PRINT *
 PRINT *,' INITIAL ERROR = ',ERR1
 PRINT *,' INITIAL RESIDUAL ERROR = ',ERR2
 PRINT *,' CRITERIA RESIDUAL ERROR = ',ERR2*EPS
 PRINT *
 PRINT *,' ERROR = ',ERR3
 PRINT *,' RESIDUAL ERROR = ',ERR4
 PRINT *
 PRINT *
 IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF
 STOP
 END
C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF
!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG

DM_VLSPAXCR2

II-138 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 IF (NDIAG .GT. 7) NDIAG_LOC = 7
C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)
!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO
 NXY = NX*NY
C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE
C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1

 DM_VLSPAXCR2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-139

 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO
!$OMP END PARALLEL
 RETURN
 END
C ==
C ABSOLUTE ERROR : | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
 ERRNRM = SQRT(S)
 RETURN
 END
C===

DM_VLSPAXCR2

II-140 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C MODE CONV UNSYM MATRIX FROM COMPRESSED COLUMN TO ROW.
C===
 SUBROUTINE CONVGCR(AC,N,IC,JC,AR,IR,JR,IW)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION AC(*),IC(N+1),JC(*),AR(*),IR(N+1),JR(*),IW(N)
 NZ=IC(N+1)-1
 DO I=1,N+1
 IR(I)=0
 END DO
 DO J=1,NZ
 IR(JC(J)+1)=IR(JC(J)+1)+1
 END DO
 IR(1)=1
 DO I=2,N+1
 IR(I)=IR(I)+IR(I-1)
 END DO
 DO I=1,N
 IW(I)=IR(I)
 END DO
 ICOL=1
 DO J=1,NZ
 IF(J.EQ.IC(ICOL+1)) ICOL=ICOL+1
 JR(IW(JC(J)))=ICOL
 AR(IW(JC(J)))=AC(J)
 IW(JC(J))=IW(JC(J))+1
 END DO
 RETURN
 END

(4) Method

This subroutine solves a system of linear equations with unsymmetric real sparse matrices as
coefficient matrices using Induced Dimension Reduction method with stabilization,
IDRstab(s,l) , with preconditioning by sparse approximate inverse.

a. Approximate inverse matrix

In general, the convergence of iteration method is not guaranteed or may be extremely
slow. Preconditioning method makes the system to more tractable form and reduces total
iteration counts. On such point of view, incomplete decomposition method, e.g. ILU
method, is well known. The ILU method is very simple algorithm and having very
effective performance for well conditioned matrices. However, it tends to be poor for
parallel processing because of its recurrence nature in triangular solvers which arise
frequently during iterations.

This subroutine employs a preconditioning on approximate inverse matrix method which
has more suitable characteristics for parallel processing rather than incomplete
decomposition method. This subroutine applies matrix M to the right preconditioned
system as follows;
 AMy = b, x = My.
Where M is an approximate inverse matrix. In order to compute matrix M, this subroutine
applies the Frobenius norm to minimize || AM – I || . This choice leads to inherent
parallelism, that is, the columns mk of M can be computed independently of one another.

 DM_VLSPAXCR2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-141

Since

 


n

k
kF 1

2

2

2
)(eIAMIAM ,

n set of independent least squares problems can be derived as follows;
,...,n,k

m
kk

k

1min
2

 eAm .

The unit vector is employed for initial value of mk as a default. This subroutine solves the
least squares minimization problem by using QR method.
Residual vector based on the minimum solution above may lead candidates of new
nonzeros in next step mk. This subroutine selects new indices automatically from
candidates in terms of the most profitable one which minimizes coming residual vector.
The iterate mk of inverse matrix M is accepted as a minimum solution if it satisfies
convergence criteria by RPAR(1), that is

epskk 
2eAm ,

or if number of nonzero elements in the column reaches upper limit based on IPAR(2).

b. Induced Dimension Reduction method IDRstab(s,l)

Induced Dimension Reduction method is the one of the Krylov subspace method. This
subroutine employs IDRstab(s,l) method which is revised by exploiting BICGstab(l)
strategies to original IDR(s) method. Where the parameter s is the order of shadow
residual and l is the order of acceleration polynomial. One of the key feature of
IDRstab(s,l) method is that you are able to specify higher order of acceleration
polynomial compared with original IDR(s) method.
You can select arbitrary parameters s and l. When l=1, this subroutine select another
method, BIDR(s) method, which is stabilized further more by taking bi-orthogonalization
technique when s is large case.

c. Convergence test

The iterate xk is accepted as a solution of the system if the residual satisfies

22
bAxb epstk  .

Where epst is a convergence criteria specified in RPAR(2). Default value of epst is 10-8.
The final relative residual norm

22
/ bAxb k

is stored in RPAR(3), even if in the case that the residual does not satisfy convergence
test. The residual vector b - Axk is computed by using recurrence in the iteration formula.

For details of the algorithms, see [29], [31] and [73] in Appendix A, "References".

DM_VLSX

II-142 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VLSX

A system of linear equations with symmetric positive definite matrices (blocked modified
Cholesky decomposition method)

CALL DM_VLSX(A, K,N, B,EPSZ,ISW,ICON)

(1) Function

 This subroutine decomposes the coefficient matrix A of a system of a real coefficient
linear equation (1. 1) as shown in (1. 2) using the blocked modified Cholesky
decomposition of outer products. It then solves the system of equations, where A is a
symmetric positive definite matrix (n  n), b is an n-dimensional real constant vector, x is
an n-dimensional solution vector, L is a unit lower triangular matrix, and D is a diagonal
matrix. It is assumed that n  1.

 Ax = b (1.1)

 A = LDLT (1.2)

(2) Parameter

A Input. Coefficient matrix A.

The lower triangular part {aij | i  j} of A is stored in the lower triangular part
{A(i,j) | i  j} of A(1:N,1:N) for input.

Output. Decomposed matrix.

After the first set of equations has been solved, the lower triangular part of
A(i,j) contains lij (i > j) and reciprocals of dii (i = j). The upper triangular part
{A(i,j) | i < j} is altered.

 (See Figure DM_VLSX-1.)

This is a double precision real two-dimensional array A(K,N).

K Input. The size of the first dimension of array A.

N Input. Order n of coefficient matrix A.

B Input. Constant vector b

Output. Solution vector x.

A double precision real one-dimensional array of size n.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is assumed.

(See note 1) in (3), "Comments on use.")

ISW Input. Control information.

When solving several sets of equations that have an identical coefficient matrix,
specify as follows.

Specify ISW = 1 for the first set of equations.

Specify ISW = 2 for the second and subsequent sets of equations.

When specifying ISW = 2, change only the value of array B into a new constant
vector b. Do not change any other parameters.

 DM_VLSX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-143

(See note 2) in (3), "Comments on use.")

ICON Output. Condition code.

(See Table DM_VLSX-1.)

an1

a21

Unnecessary

N

N

K

Input Array A

ln1

l21 d22

-1

d11

-1

dnn

-1

Altered

N

N

K

Output Array A

ann

a11

a22

Figure DM_VLSX-1 Storing the data for the Cholesky decomposition method

 The diagonal elements and lower triangular part (aij) of the LDLT-decomposed positive
definite matrix are stored in array A(i,j), i = j, n, j = 1, ..., n.

 After LDLT decomposition, the matrix D-1 is stored in the diagonal part and L (except for
the diagonal elements) are stored in the lower triangular part respectively.

Table DM_VLSX-1 Condition codes

Code Meaning Processing

0 No error 

10000 The pivot becomes negative. The coefficient
matrix is not positive definite.

Processing is continued

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

Processing is discontinued.

30000 N < 1, EPSZ < 0, K < N, or ISW  1, 2.

(3) Comments on use

a. Notes

1) If a value is set for the judgment of relative zero, it has the following meaning:
if the absolute value of the selected pivot is less than EPSZ during LDLT
decomposition by the modified Cholesky decomposition, the pivot is assumed to
be relatively zero and decomposition is discontinued with ICON = 20000. When
unit round off is u, the standard value of EPSZ is 16  u.
 When the computation is to be continued even if the pivot becomes small,
assign the minimum value to EPSZ. In this case, however the result is not
assured.

DM_VLSX

II-144 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

2) When several sets of linear equations having an identical coefficient matrix are
solved, the value of ISW should be 2 from the second time on. This reduces the
execution time because LDLT decomposition for coefficient matrix A is
bypassed.

3) If the pivotal value becomes negative during decomposition, the coefficient
matrix is no longer positive definite. Processing is continued with ICON =
10000. However, the accuracy of the result may not be maintained because no
pivoting is performed.

4) After the calculation has been completed, the determinant of the coefficient
matrix is computed by multiplying all the n diagonal elements of the array A and
taking the reciprocal of the result.

5) This subroutine calls DM_VSLDL and DM_VLDLX internally. Therefore,
instead of calling this function in a parallel region with specifying the number of
threads by run-time library OMP_SET_NUM_THREADS(), call DM_VSLDL
and DM_VLDLX directly with specifying the number of threads with
OMP_SET_NUM_THREADS() just before the each of them.

b. Example

 A system of linear equations with a 4000  4000 coefficient matrix is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (K=4001,N=4000)
 REAL*8 A(K,N),B(N)
C
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B)
!$OMP DO
 DO J=1,N
 DO I=J,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO
!$OMP END DO

!$OMP DO
 DO I=1,N
 B(I)=I*(I+1)/2+I*(N-I)
 ENDDO
!$OMP END DO

!$OMP END PARALLEL

 ISW=1
 CALL DM_VLSX(A,K,N,B,1.D-13,ISW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 100
 WRITE(6,620) (B(I),I=1,10)
C
 S=1.0D0

 DM_VLSX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-145

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)
!$OMP+ REDUCTION(*:S)
 DO I=1,N
 S=S*A(I,I)
 ENDDO
!$OMP END PARALLEL DO

 DET=1.0D0
 DET=1.D0/DET
 WRITE(6,630) DET
 100 STOP
 600 FORMAT(1H1/10X,6HORDER=,I5)
 610 FORMAT(1H0,10X,5HICON=,I5)
 620 FORMAT(11X,15HSOLUTION VECTOR
 */(10X,3D23.16))
 630 FORMAT(1H0,10X
 *,34HDETERMINANT OF COEFFICIENT MATRIX=
 *,D23.16)
 END

(4) Method

 See [30], [54], and [70] in Appendix A, "References," for details of the blocked modified
Cholesky decomposition method of outer product type.

DM_VLUX

II-146 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VLUX

A system of linear equations with LU-decomposed real matrices

CALL DM_VLUX(B,FA,KFA,N,IP,ICON)

(1) Function

 This subroutine solves a system of linear equations having LU-decomposed real
coefficient matrices.

 LUx = Pb

 where, L and U are respectively a unit lower triangular matrix and a unit upper triangular
n  n matrix, P is a permutation matrix (interchanging rows of the coefficient matrix for
partial pivoting in LU-decomposition), b is an n-dimensional real constant vector, and x
is an n-dimensional solution vector (n  1).

(2) Parameters

B Input. Constant vector b.

Output. Solution vector x.

A double precision one-dimensional array of size n.

FA Input. Matrices L and U are stored into FA(1:N,1:N).

See Figure DM_VLUX-1.

This is a double precision real two-dimensional array FA(KFA,N).

KFA Input. The size of the first dimension of the array for storage FA ( N).

N Input. Order n of matrices L and U.

IP Input. The transposition vector recording the process of row interchange in
partial pivoting.

A one-dimensional array of size n.

(See note 2) in (3), "Comments on use" for subroutine DM_VALU.)

ICON Output. Condition code.

See Table DM_VLUX-1.

 DM_VLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-147

Unit upper triangular matrix U
1

1
0

un-1 n

1

1

u12 u1n

u2nu23

u13

Lower triangular matrix L

0

l11

l21

l31

l22

l32

ln1 ln2 lnnlnn-1

ln-1 n-1

KFA

N

Array A
u1n

u2n

u13l11

l21

l31

l22

u12

l32

u23

ln1 ln2 lnn

un-1 n

lnn-1

ln-1 n-1

Figure DM_VLUX-1 Storing L and U in array FA

 After LU decomposition is executed, the upper triangular part of U (except for the
diagonal elements) and the lower part of L are stored in array FA(1:N,1:N).

Table DM_VLUX-1 Condition codes

Code Meaning Processing

0 No error 

20000 The coefficient matrix is singular. Processing is discontinued.

30000 KFA < N, N < 1. The contents of IP are
incorrect, ISW  1, 2.

 (3) Comments on use

a. Notes

1) Although a system of linear equations with a coefficient matrix can be solved by
calling this subroutine after calling subroutine DM_VALU, the subroutine
DM_VLAX should be usually used to solve a system of linear equations in one
step.

b. Example

 A system of linear equations is solved by LU-decomposing the coefficient 4000 
4000 matrix.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

DM_VLUX

II-148 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (IPN=4)
 DIMENSION A(4001,4000)
 DIMENSION B(4000),IP(4000)
C
 N=4000

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B,N)
!$OMP DO
 DO J=1,N
 DO I=1,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO
!$OMP END DO

!$OMP DO
 DO I=1,N
 B(I)=I*(I+1)/2+I*(N-I)
 ENDDO
!$OMP END DO
!$OMP END PARALLEL
C
 KFA=4001
 CALL DM_VALU(A,KFA,N,0.0D0,IP,IS,ICON)
 WRITE(6,610)ICON
 IF(ICON.GE.20000)STOP
 CALL DM_VLUX(B,A,KFA,N,IP,ICON)
 WRITE(6,620)ICON
 WRITE(6,630)(I,B(I),I=1,10)

 610 FORMAT(1H0,10X,26HCONDITION CODE (DM_VALU) =,I5)
 620 FORMAT(1H0,10X,26HCONDITION CODE (DM_VLUX) =,I5)
 630 FORMAT(1H0,10X,17HSOLUTION VECTOR =,
 */(10X,5(1H(,I3,1H),D23.16)))
 END

 DM_VMGGM

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-149

DM_VMGGM

Matrix multiplication (real matrix)

CALL DM_VMGGM(A,KA,B,KB,C,KC,M,N,L,ICON)

(1) Function

 This subroutine obtains product C by multiplying a real matrix A (m  n) by a real matrix
B (n  l).

 C = AB

 where C is a real matrix (m  l), where m, n, l  1.

(2) Parameters

A Input. Matrix A.

Data must be stored in A(1:M,1:N).

A double precision real two-dimensional array A(KA,N).

KA Input. The size of the first dimension of the arrays A ( M).

B Input. Matrix B.

The data must be stored in B(1:N,1:L).

The double precision real two-dimensional array B(KB,L).

KB Input. The size of the first dimension of array B ( N).

C Output. Matrix C.

The data is stored in C(1:M,1:L).

The double precision real two-dimensional array C(KC,L).

KC Input. The size of the fist dimension of array C, ( M).

M Input. The number of rows m in matrices A and C.

N Input. The number of columns n in matrix A and number of rows n in matrix B.

L Input. The number of columns l in matrices B and C.

ICON Output. Condition code.

See Table DM_VMGGM-1.

Table DM_VMGGM-1 Condition codes

Code Meaning Processing

0 No error 

30000 M < 1, N < 1, L < 1, KA < M, KB < N, KC <
M.

Processing is discontinued.

DM_VMGGM

II-150 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 (3) Comments on use

a. Example

 A product is obtained for real matrices A and B.

 Subroutine PGM in this example is for printing a real matrix.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C ** EXAMPLE **
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (KK=4001,M=4000,N=M,L=M)
 PARAMETER (KA=KK,KB=KK,KC=KK)
 REAL*8 A(KA,N),B(KB,L),C(KC,L)

C
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B)
!$OMP DO
 DO J=1,M
 DO I=1,N
 IF(J.GT.I)THEN
 A(I,J)=0.0d0
 ELSE
 A(I,J)=1.0d0
 ENDIF
 ENDDO
 ENDDO
!$OMP END DO

!$OMP DO
 DO J=1,M
 DO I=1,N
 IF(J.GE.I)THEN
 B(I,J)=1.0d0
 ELSE
 B(I,J)=0.0d0
 ENDIF
 ENDDO
 ENDDO
!$OMP END DO
!$OMP END PARALLEL

 CALL DM_VMGGM(A,KA,B,KB,C,KC,M,N,L,ICON)
 IF(ICON.NE.0) GOTO 10
 CALL PGM(A,KA,N)
 CALL PGM(B,KB,L)
 CALL PGM(C,KC,L)
 GOTO 10

 150 FORMAT(1H1///10X,27H** MATRIX MULTIPLICATION **)
 10 STOP
 END

 DM_VMGGM

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-151

C ** MATRIX PRINT(REAL NON-SYMMETRIC) **
 SUBROUTINE PGM(A,KA,N)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION A(KA,N)
 DO 10 I=1,5
 WRITE(6,610) I,(J,A(I,J),J=1,5)
 10 CONTINUE
 RETURN
 610 FORMAT(/5X,I3,3(4X,I3,D23.16),(/8X,3(4X,I3,D23.16)))
 END

 (4) Method

 This subroutine uses the method of blocked matrix multiplication. For details, see [30] in
Appendix A, "References."

DM_VMINV

II-152 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VMINV

Inverse of real matrix (blocked Gauss-Jordan method)

CALL DM_VMINV(A,K,N,EPSZ,ICON)

(1) Function

 This subroutine obtains the inverse A1 of the n  n non-singular real matrix A using the
Gauss-Jordan method.

(2) Parameters

A Input. Matrix A is stored in A(1:N,1:N).

Output. Matrix A1 is stored in A(1:N,1:N).

The double precision real two-dimensional array A(K,N).

K Input. The size of the first dimension of the array A. ( N)

N Input. Order n of matrix A.

EPSZ Input. Judgment of relative zero of the pivot. ( 0.0)

When EPSZ is 0.0, the standard value is assumed.

(See note 1) in (3), “Comments on use.”)

ICON Output. Condition code.

See Table DM_VMINV-1.

Table DM_VMINV-1 Condition codes

Code Meaning Processing

0 No error 

20000 All row elements in matrix A are zero or the
pivot becomes a relatively zero. Matrix A may
be singular.

Processing is discontinued.

30000 N < 1, K < N, or EPSZ < 0.0.

(3) Comments on use

a. Notes

1) When the pivot element selected by partial pivoting is 0.0 or the absolute value
is less than EPSZ, it is assumed to be relatively zero. In this case, processing is
discontinued with ICON=20000. When unit round off is u, the standard value of
EPSZ is 16u. If the minimum value is assigned to EPSZ, processing is
continued, but the result is not assured.

b. Example

The inverse of a matrix is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4

 DM_VMINV

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-153

when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N=2000,K=N+1)
C
 REAL*8 A(K,N),AS(K,N)
C

 C=SQRT(2.0D0/DBLE(1+N))
 T=DATAN(1.0D0)*4.0D0/(1+N)
C
 DO 100 J=1,N
 DO 100 I=1,N
 A(I,J)=C*SIN(T*I*J)
 AS(I,J)=A(I,J)
 100 CONTINUE
C
 EPSZ=0.0D0
 CALL DM_VMINV(A,K,N,EPSZ,ICON)
 PRINT*,'ICON=',ICON
C
 TMP=0.0D0
 DO I=1,N
 DO J=1,N
 TMP2=DABS(A(I,J)-AS(I,J))
 IF(TMP2.GT.TMP)TMP=TMP2
 ENDDO
 ENDDO
 PRINT*,'ORDER=',N,' ; ERROR = ',TMP
C
 STOP
 END

(4) Method

 This subroutine solves an inverse of matrix using the blocked Gauss-Jordan method (see
[30] in Appendix A, “References.”).

DM_VMLBIFE

II-154 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VMLBIFE

System of linear equations with sparse matrices (Multilevel iteration method based on
incomplete block factorization, ELLPACK format storage method)

CALL DM_VMLBIFE (A, K, IWIDT, N, ICOL, B, ISW, IGUSS, INFO, INFOEP,
 EPSOT, EPSIN, EPSEP, X, W, NW, IW, NIW, ICON)

(1) Function

 This subroutine solves, using the iterative method, a system of linear equations with
sparse matrices as coefficient matrices.

 Ax = b

The n  n coefficient matrix is stored using the ELLPACK format storage method.
Vectors b and x are n-dimensional vectors.

 The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-
symmetric. The iteration (called outer iteration) is preconditioned by the multilevel
incomplete block factorizations and stable. The iteration procedure is preconditioned by
repeated elimination of certain sets of unknowns. The elimination procedure uses
approximative inverses of the sub-matrices produced by the sets of eliminated unknowns.
The elimination procedure is repeated until on the so-called coarsest level a smaller linear
system is produced. For every step of the outer iteration this linear system is solved
iteratively (called inner iteration).

 (2) Parameters

A Input. The nonzero elements of a coefficient matrix are stored in
A(1:N,1:IWIDT).

Two-dimensional array A(K,IWIDT)

For an explanation of the ELLPACK format storage method, see Section 3.2.1.1,
"Storing the general sparse matrices," in Part I, "Outline," in the SSL II
Extended Capability User's Guide II.

K Input. Size of first-dimension of A and ICOL. (K  n).

IWIDT Input. Maximum number of row-vector-direction nonzero elements of
coefficient matrix A. Size of second-dimension of A and ICOL.

N Input. Order n of matrix A.

ICOL Input. Column index used in ELLPACK format. Used to indicate to which
column vector the corresponding element of A belongs.

Two-dimensional array ICOL(K,IWIDT)

B Input. The right-side constant vectors of a system of linear equations are stored
in B(1:N).

One-dimensional array B(N) .

ISW Input. Control information.

ISW=1 Initial calling.

ISW=2 Second or subsequent calling.

 DM_VMLBIFE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-155

The values of A, IW and W must not be changed if the routine is called again
with ISW=2.

(See 1) in a, “Notes,” in (3), “Comments on use.”)

IGUSS Input. Control information specifying whether iterative computation is to be
performed using the approximate values of the solution vectors specified in
array X.

When the value of IGUSS is 0, the approximate values of the solution vectors
are not specified and set to zero.

When the value of IGUSS is not 0, the iterative computation is performed using
the approximate values of the solution vectors specified in array X.

INFO Input. The control information of the iteration.

One dimensional array of INFO(14).

For example, for symmetric coefficient matrix A, INFO is set as follows;

INFO(1)=10

INFO(2)=NTHRD100

INFO(3)=0

INFO(5)=1

INFO(6)=2000

INFO(10)=1

INFO(11)=1000

For example, for unsymmetric coefficient matrix A, INFO is set as follows;

INFO(1)=10

INFO(2)=NTHRD100

INFO(3)=0

INFO(5)=2

INFO(6)=2000

INFO(7)=5

INFO(8)=20

INFO(10)=2

INFO(11)=1000

INFO(12)=10

INFO(13)=0

Where NTHRD is the number of threads which are executed in parallel.

INFO(1)=MAXLVL

Input. Maximal number of levels in the algebraic multilevel iteration method.

MAXLVL<1 No preconditioner is applied.

MAXLVL>0 The coarser level than the specified depth is not used.

(See 5),8) in a, “Notes,” in (3), “Comments on use.”)

DM_VMLBIFE

II-156 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

INFO(2)=MINUK

Input. Minimal number of unknowns for the smallest linear system in the
deepest level in the inner iteration. It is recommendable to set MINUK very
larger than the number of threads NTHRD and very smaller than N. For
example, 100NTHRD.

INFO(3)=NORM

Input. The type of normalization.

NORM<1 The matrix is normalized from the right and the left by the inverse of
the square root of the main diagonal of A. This effects that the main diagonal of
the normalized matrix A is equal to one and the matrix is symmetric if A is
symmetric.

It is recommendable to use symmetrical normalization. However, in some cases
the non-symmetrical normalization can produce faster convergence. Criterion
value for judgment of convergency.

 (See 3) in a, “Notes,” in (3), “Comments on use.”)

NORM1 The matrix is normalized from the left by the inverse of the absolute
row sums of A multiplied with the sign of the main diagonal element. In general
the normalized matrix will be non-symmetric even if the matrix A is symmetric.

 (See 4) in a, “Notes,” in (3), “Comments on use.”)

INFO(4)

Output. Number of levels.

INFO(5)=METHOT

Input. The iterative method used in the outer iteration.

METHOT=1 Preconditioned ORTHOMIN is used. It should be used if the
matrix A is symmetric and a symmetrical normalization is used.

METHOT1 Restarted and truncated GMRES is used. It should be used if the
matrix A is non-symmetric or a non-symmetrical normalization is used.

INFO(6)=ITMXOT

Input. The maximal number of iteration steps in the outer iteration, for example
2000. If the maximum iteration number of outer iteration is reached the
processing is terminated and the returned solution does not fulfill the stopping
criterion.

INFO(7)=NRESOT

Input. The number of residuals in the orthogonalization procedure of the outer
iteration, i.e. truncation after NRESOT residuals. For example , 5. Only used if
GMRES is applied.

(See 4) in a, “Notes,” in (3), “Comments on use.”)

INFO(8)=NRSTOT

Input. Input. After NRSTOT iteration steps the outer iteration is restarted. For
example , 20. NRSTOT  NRESOT = INFO(7). If it is NRSTOT<1 there is no
restart. Only used if GMRES is applied.

(See 4) in a, “Notes,” in (3), “Comments on use.”)

INFO(9)=ITEROT

 DM_VMLBIFE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-157

Output. The number of iteration steps in the outer iteration procedure.

INFO(10)=METHIN

Input. The iterative method used in the inner iteration.

METHIN=1 Preconditioned ORTHOMIN is used. It should be used if the
matrix A is symmetric and a symmetrical normalization is used.

METHIN1 Restarted and truncated GMRES is used. It should be used if the
matrix A is non-symmetric or a non-symmetrical normalization is used.

INFO(11)=ITMXIN

Input. The maximal number of iteration steps in the inner iteration, for example
1000.

If ITMXIN is reached the processing is continued on the outer iteration.

INFO(12)=NRESIN

Input. The number of residuals in the orthogonalization procedure of the inner
iteration, ie. truncation after NRESIN residuals. For example , 10. Only used if
GMRES is applied.

(See 5) in a, “Notes,” in (3), “Comments on use.”)

INFO(13)=NRSTIN

Input. After NRSTIN iteration steps the inner iteration is restarted. NRSTIN 
NRESIN = INFO(12).

Only used if GMRES is applied. If it is NRSTIN<1 there is no restart.

(See 5) in a, “Notes,” in (3), “Comments on use.”)

INFO(14)

Output. The average number of the inner iteration.

INFOEP...... Input. The control information for the block matrix of the removed unknowns
and the reduced matrix. One dimensional array of INFOEP(3).

For example, INFOEP is set as follows to specify the method for
approximating the inverse matrix of a matrix block, which is used for
calculating the Schur complement in each level:

(See 7) in a, “Notes,” in (3), “Comments on use.”)

1) in case of approximating the inverse matrix with a diagonal matrix

INFOEP(1)=1

INFOEP(2)=5

INFOEP(3)=2NROW

where, NROW indicates the representative number of nonzero entries per
row in the coefficient matrix A.

2) in case of seeking an approximative inverse matrix with an iterative method

INFOEP(1)=NROW

INFOEP(2)=5

INFOEP(3)=2NROW

INFOEP(1)=MAXNCV

DM_VMLBIFE

II-158 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Input. Maximal number of nonzero entries per row in the approximative
inverse of the eliminated matrix block. Typically it is set MAXNCV=1 or
MAXNCV=MAXNC. Notice that MAXNCV=1 effects that the matrix block is
approximated by its main diagonal.

INFOEP(2)=MAXITV

Input. Maximal number of approximative inverse steps. MAXITV specifies
the maximal number of iteration steps which are allowed to calculate the
approximative inverse matrix with accuracy TAUV. If the number of iteration
steps reaches MAXITV the procedure is terminated. Notice that in any case the

approximation procedure will need less than
(LAMBDA)log

)TAUVlog(
 steps. If

MAXITV1 the matrix block is approximated by its main diagonal.

INFOEP(3)=MAXNC

Input. MAXNC limits the entries remaining in the reduced matrix as Schur
complement in block decomposition. If MAXNC<2 small entries of the
reduces system less than TAU are dropped. If MAXNC > 1 the number of non-
zero entries per row is limited by MAXNC. In this case only the MAXNC
largest entries in every row are kept. Other entries are dropped even if they are
greater than TAU.

(See 8) in a, “Notes,” in (3), “Comments on use.”)

EPSOT Input. The desired accuracy for the solution. The outer iteration is stopped in

the k-th iteration step if the normalized kkk bxAr ˆˆˆ  residual of the current

approximation xk satisfies the condition

brk
ˆEPSOTˆ 

where yyy T2  denotes the Euclidean norm Â and b̂ and are the coefficient

matrix and the right hand side of the normalized linear system.

EPSIN Input. The tolerance for the inner iteration. Normally 10-3 is optimal.

EPSEP......... Input. The control information for the approximation of the reduced system and
the inverse of the eliminated matrix block. One dimensional array of EPSEP(4).

For example, set as follows:

 EPSEP(1)=1.0D-2

 EPSEP(2)=1.0D-2

 EPSEP(3)=0.2

 EPSEP(4)=1.0D-3

EPSEP(1)=TAU

Input. The dropping tolerance. In the reduced systems as Schur complement in
block decomposition, entries less than TAU are dropped to keep the sparsity.
As larger TAU as faster is the iterative solver on the lowest level. But on the
other hand there is a larger loss of information, which deteriorates the quality of
the preconditioner. It has to be 0  TAU < 1.

EPSEP(2)=TAUV

 DM_VMLBIFE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-159

Input. The tolerance of the approximative inverse. A small value for TAUV
will increase the time for the elimination procedure but improve the quality of
the preconditioner. Normally EPSIN=TAUV is optimal.

EPSEP(3)=LAMBDA

Input. Diagonal threshold for the block matrix. The entries in the block matrix
of the removed unknowns are selected such that the absolute sum per row is less
than LAMBDA times the main diagonal entry. A larger value for LAMBDA
will produce a smaller set of removed unknowns but will increase the costs for
the calculation of the approximative inverse of the block. Recommendation:
LAMBDA=0.2. It should be TAUV  LAMBDA < 1 or LAMDA=0.

EPSEP(4)=RHO

Input. Unknowns with small entries in their main diagonal are not considered
in the elimination procedure. A main diagonal entry is small if it is smaller than
RHO times the absolute sum of the row entries.
Recommendation: RHO=1.0D-3. It has to be 0<RHO<1.

X Input. The approximate values of solution vectors can be specified in X(1:N).

Output. Solution vectors are stored in X.

One-dimensional array X(N).

W Work area. One-dimensional array W(NW) .

NW Input. Size of the work array W. A rough upper bound is given by

NW  max(2MAXLVL+2,10)NBANDMAXT+(4NC+6)(N+MAXT)
 +max(2NC(N+MAXT),LR0(N)
 +max(LR0(Nf)+N+MAXT,6(N+MAXT))).

In this formula MAXLVL denotes the number of levels of the incomplete block
factorization, and NBAND denotes the bandwidth of the matrix, NC an upper
bound for the number of non-zero entries per row (typically NC=MAXNC),
and Nf the number of unknowns in the final level
(typically Nf=2-MAXLVL(N+MAXT)) and MAXT is the maximum number of
threads which are created in this routine.
Moreover it is

LR0(N) =







method GMRES :)12(

method ORTHOMIN :4

NNRES

N
,

where NRES denotes the number of residuals used in GMRES. Normally the
term LR0(Nf) can be neglected.

IW Work area. One-dimensional array IW(NIW).

NIW Input. Size of the work array IW. A rough upper bound is given by

NIW  ((4MAXLVL+10)MAXT+12NBAND)+3400)MAXT
 + (6NC+11)(N+MAXT)
In this formula MAXLVL denotes the number of levels of the incomplete block
factorization, and NBAND denotes the bandwidth of the matrix, NC an upper
bound for the number of non-zero entries per row (typically NC=MAXNC), and
MAXT is the maximum number of threads which are created in this routine.

ICON Output. Condition code.

See Table DM_VMLBIFE-1.

DM_VMLBIFE

II-160 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VMLBIFE-1 Condition codes

Code Meaning Processing

0 No error 

10100 Inverse matrix could not be calculated with
sufficient accuracy.

Processing is continued.

10800 Curable break down in GMRES.

20001 Stopping criterion could not be reached within
the given number of iteration steps.

Processing is discontinued.
The approximate value
obtained is output in array X,
but the precision is not
assured.

20003 Non-curable break down in GMRES. Processing is discontinued.

20005 Non-curable break down in ORTHOMIN by
pTAp=0 with p0.

20006 Non-curable break down in ORTHOMIN by
pTr=0.

30000 N<1,N>K,IWIDT<1, ISW<1, ISW>2.

30103 Incorrect entry in column list ICOL.

30105 Main diagonal is missed.

30210 Matrix condensation fails by non-positive
value.

30213 There is a row with only non-zero entries.

30310 Too small integer work array.

30320 Too small real work array.

(3) Comments on use

a. Notes

1) When multiple linear equations with the same coefficient matrix but different
right hand side vectors are solved set ISW=1 in the first call and ISW=2 in the
second and all subsequent calls. Then the coarse level matrices assembled in the
first call are reused.

2) Normally it is sufficient to set NC=IWIDT1.5 in the formulas for the length for
the work arrays. In general, if the work arrays are too small it is recommendable
to increase NC. If the given matrix has a very large bandwidth it is
recommendable to increase NBAND first.

3) It is always recommendable to use ORTHOMIN if possible. This requires that
the matrix is symmetric. As this routine removes easily computable unknowns
from the matrix before the iteration starts it can happen that the actual iteration
matrix is symmetric even if the given matrix is not. Therefore it is
recommendable to try ORTHOMIN with symmetrical normalization first if there
is a chance that the iteration matrix is symmetric.

 DM_VMLBIFE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-161

4) If the matrix is non-symmetric it is recommendable to use the non-symmetric
normalization together with GMRES. Normally it is sufficient to truncate after
NRESOT=5 residuals and to restart after 20 steps in the outer iteration. In the
inner iteration it can be necessary to select a higher value for the truncation
NRESIN and to restart after a larger number of iteration steps or even to forbid a
restart. If NRESIN is increased it can happen that more real work space is
required. Then it is necessary to increase NRES in the formula for the length
workspace NW but, NRES can be set to a smaller value than NRESOT. In
general the convergence of GMRES method becomes better as NRESIN and
NRESOT are set to larger. But it requires longer computation time and larger
amount of memory.

5) The elimination of unknowns is stopped if one of the following conditions is
fulfilled:

 the number of level is greater or equal MAXLVL

 the coefficient matrix of the final level is a diagonal matrix

 the number of eliminated unknowns is less than 10% of the number of
unknowns in the final level.

6) When setting LAMBDA=0, RHO=0.99, TAU=0, MAXNC=IWIDT the routine
is (similar to) the classical ILUM preconditioner with wavefront ordering. (See
[65] in Appendix A, “References.”) For LAMBDA=0, RHO<1, TAU>0 and
MAXNC>>IWIDT the routine is the ILUM preconditioner with threshold. (See
[64] in Appendix A, “References.”)

7) It is emphasized that not every setting of the parameters produces necessarily an
efficient preconditioner. So it can be necessary to test some values for the
parameters till an optimal selection has been found.

8) The preconditioner bases on nested incomplete block factorizations using the
Schur complement. The matrix An, n=1,...,MAXLVL1 in each level can be
blocked as follows choosing the appropriate sets of eliminated unknowns:

An = 








2221

1211

AA

AA
.

 And define a matrix S = A22  A21 A11
-1 A12, which is called Schur complement.

An can be factorized as follows:

An =


















 

S

AAI

IA

A

0

0 12
1

11

21

11 .

 The matrix An+1of next level n+1 can be regarded as a Schur complement matrix
with approximating the A11

1. These incomplete factorization are used for
preconditioning in this routine.

b. Example

 The partial differential equation

 f
x

u
xx

x

u
xx

x

u
xxt

x

u

x

u

x

u














































3
21

2
13

1
32

3
2

2

2
2

2

1
2

2

)()()(

 is solved on the domain [0,1]2. Dirichlet boundary condition u=0 is imposed and
the value of t is set to 1.0.

DM_VMLBIFE

II-162 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT NONE
 INTEGER MAXT,N1,N2,N3,KA,NA,L1,L2,L3,LGRW,LGIW,
 & NLBMAX,MAXNC

 PARAMETER(MAXT=2,N1=39,N2=N1,N3=N1,
 & L1=N1,L2=N2,L3=N3,
 & KA=N1*N2*N3,NA=7,NLBMAX=N1*N2,
 & MAXNC=11,
 & LGRW=(KA+MAXT)*(6*MAXNC+11)+(85*NLBMAX+100)*MAXT,
 & LGIW=(KA+MAXT)*(6*MAXNC+11)+(13*NLBMAX+200
 & +61*51+13)*MAXT)

 INTEGER NDLT(NA),IW(LGIW),
 & ICOL(KA,NA)
 DOUBLE PRECISION X1(L1),X2(L2),X3(L3),
 & A1(L1,L2,L3),A2(L1,L2,L3),A3(L1,L2,L3),
 & B1(L1,L2,L3),B2(L1,L2,L3),B3(L1,L2,L3),
 & C(L1,L2,L3),F(L1,L2,L3),
 & RW(LGRW)
 REAL*8 EPSIN,EPSOT,EPSEP(10)
 INTEGER INFO(40),INFOEP(10),ISW,IGUSS,IS,NBAND

 DOUBLE PRECISION MAT(KA,NA),RHS(KA),V(KA),
 & SOL(3*KA),RHSX(KA),RHSC(KA),TMP

 INTEGER Z1,Z2,Z3,NDIAG,N,ICON,I,Z,NC
 DOUBLE PRECISION ONE,T,HR1,HR2,HR3,HR4,HR6,HR7,HR13
 PARAMETER (ONE=1.D0)
C
C---
C
C**** THESE ARE PARAMETERS OF THE TEST PDES. CHANGES OF THE
C VALUES CAN PRODUCE DIVERGENCE IN THE ITERATIVE SOLVER.
C
 T=1
C
C****** CREATE NODE COORDINATES
C
 DO 11 Z1=1,N1
 X1(Z1)=DBLE(Z1-1)/DBLE(N1-1)
11 CONTINUE
 DO 12 Z2=1,N2
 X2(Z2)=DBLE(Z2-1)/DBLE(N2-1)
12 CONTINUE
 DO 13 Z3=1,N3
 X3(Z3)=DBLE(Z3-1)/DBLE(N3-1)
13 CONTINUE

 DM_VMLBIFE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-163

C
C -UX1X1-UX2X2-UX3X3+T*((X2-X3)*UX1+(X3-X1)*UX2+(X1-X2)*UX3)=F
C
C REMARK: IF T IS TO LARGE THE PDE IS SINGULAR.
C
 DO 203 Z3=1,N3
 DO 203 Z2=1,N2
 DO 203 Z1=1,N1
 A1(Z1,Z2,Z3)=1
 A2(Z1,Z2,Z3)=1
 A3(Z1,Z2,Z3)=1
 B1(Z1,Z2,Z3)=T*(X2(Z2)-X3(Z3))
 B2(Z1,Z2,Z3)=T*(X3(Z3)-X1(Z1))
 B3(Z1,Z2,Z3)=T*(X1(Z1)-X2(Z2))
 C (Z1,Z2,Z3)=0
 HR1 = ONE-X2(Z2)
 HR2 = X2(Z2)*HR1
 HR3 = ONE-X3(Z3)
 HR4 = X3(Z3)*HR3
 HR6 = ONE-X1(Z1)
 HR7 = X1(Z1)*HR6
 HR13 = HR1*X3(Z3)*HR3
 F(Z1,Z2,Z3) = 2*HR2*HR4+2*HR7*HR4+2*HR7*HR2+
 & T*((X2(Z2)-X3(Z3))*
 & (HR6*X2(Z2)*HR13-X1(Z1)*X2(Z2)*HR13)+
 & (X3(Z3)-X1(Z1))*
 & (HR7*HR13-HR7*X2(Z2)*X3(Z3)*HR3)+
 & (X1(Z1)-X2(Z2))*
 & (HR7*HR2*HR3-HR7*HR2*X3(Z3)))
203 CONTINUE
C
C***** DIRICHLET CONDITIONS:
C
 DO 300 Z3=1,N3
 DO 300 Z2=1,N2
 C(1,Z2,Z3)=1
 B1(1,Z2,Z3)=0
 B2(1,Z2,Z3)=0
 B3(1,Z2,Z3)=0
 F(1,Z2,Z3)=0
 C(N1,Z2,Z3)=1
 B1(N1,Z2,Z3)=0
 B2(N1,Z2,Z3)=0
 B3(N1,Z2,Z3)=0
 F(N1,Z2,Z3)=0
 IF (Z2.EQ.1) THEN
 DO 325 Z1=1,N1
 C(Z1,1,Z3)=1
 B1(Z1,1,Z3)=0
 B2(Z1,1,Z3)=0
 B3(Z1,1,Z3)=0
 F(Z1,1,Z3)=0
325 CONTINUE

DM_VMLBIFE

II-164 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ELSEIF (Z2.EQ.N2) THEN
 DO 326 Z1=1,N1
 C(Z1,N2,Z3)=1
 B1(Z1,N2,Z3)=0
 B2(Z1,N2,Z3)=0
 B3(Z1,N2,Z3)=0
 F(Z1,N2,Z3)=0
326 CONTINUE
 ENDIF
 IF (Z3.EQ.1) THEN
 DO 335 Z1=1,N1
 C(Z1,Z2,1)=1
 B1(Z1,Z2,1)=0
 B2(Z1,Z2,1)=0
 B3(Z1,Z2,1)=0
 F(Z1,Z2,1)=0
335 CONTINUE
 ELSEIF (Z3.EQ.N3) THEN
 DO 336 Z1=1,N1
 C(Z1,Z2,N3)=1
 B1(Z1,Z2,N3)=0
 B2(Z1,Z2,N3)=0
 B3(Z1,Z2,N3)=0
 F(Z1,Z2,N3)=0
336 CONTINUE
 ENDIF
300 CONTINUE
C
 N=N1*N2*N3
 CALL DM_VPDE3D(A1,L1,L2,N1,N2,N3,
 $ A2,A3,X1,X2,X3,B1,B2,
 $ B3,C,F,MAT,KA,NA,N,
 $ NDIAG,NDLT,RHS,ICON)
 PRINT*,'ICON OF DM_VPDE3D = ',ICON
 IF (ICON.GT.29999) STOP
C
C
 DO Z=1,N
 RHSX(Z)=RHS(Z)
 ENDDO
 NBAND=0
 DO I=1,NDIAG
 NBAND=MAX(NBAND,ABS(NDLT(I)))
 ENDDO
C
C
C**** CHANGE TO ELLPACK FORMAT:
C
 NC=NDIAG
 DO I=1,NC
 DO Z=1,KA
 IS=Z+NDLT(I)
 ICOL(Z,I)=IS

 DM_VMLBIFE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-165

 ENDDO
 ENDDO
C
C****** CALL THE ITERATIVE SOLVER:
C
 ISW=1
 IGUSS=0
 EPSOT=1.D-6
 EPSIN=1.D-3
 INFO(1)=10
 INFO(2)=MAXT*100
 INFO(3)=1
 INFO(5)=2
 INFO(6)=5000
 INFO(7)=5
 INFO(8)=20
 INFO(11)=5000
 INFO(10)=2
 INFO(12)=20
 INFO(13)=0
 INFOEP(1)=1
 INFOEP(2)=5
 INFOEP(3)=14
 EPSEP(1)=1.D-2
 EPSEP(2)=EPSEP(1)
 EPSEP(3)=0.2
 EPSEP(4)=1.D-3
 CALL DM_VMLBIFE(MAT,KA,NC,N,ICOL,
 & RHS,ISW,IGUSS,INFO,INFOEP,EPSOT,EPSIN,
 & EPSEP,V,RW,LGRW,IW,LGIW,ICON)
 PRINT*,'ICON OF DM_VEBIFE = ',ICON
 IF (ICON.GT.29999) STOP
C
 DO I=1,NBAND
 SOL(I)=0.0D0
 SOL(NBAND+N+I)=0.0D0
 ENDDO
 DO Z=1,N
 SOL(NBAND+Z)=V(Z)
 ENDDO
 CALL DM_VMVSD(MAT,KA,NDIAG,N,NDLT,NBAND,SOL,RHSC,ICON)
 TMP=0
 DO Z=1,N
 TMP=MAX(TMP,ABS((RHSX(Z)-RHSC(Z))/(RHSX(Z)+1.0)))
 ENDDO
C
 PRINT*,' ERROR = ',TMP
C
 STOP
 END

DM_VMLBIFE

II-166 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(4) Method

 The calculation stars by removing rows containing only zero entries outside the main
diagonal (typically arising from Dirichlet conditions). This can effect that the matrix
becomes symmetric. The linear system is normalized to achieve that the row sums are in
the order of one and the main diagonal contains only non-negative entries. The
normalized system is solved by the ORTHOMIN or GMRES method. The preconditioner
bases on a nested incomplete block factorizations using (approximative) Schur
complements. The set of simultaneously eliminated unknowns are defined by searching a
maximal independent set in the undirected graph created by the large entries in the matrix.
In the Schur complement the small entries are dropped to keep the sparsity of the matrices.
The linear system on the final level is normalized and iteratively solved by ORTHOMIN
or GMRES.

 DM_VMVSCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-167

DM_VMVSCC

Multiplication of a real sparse matrix and a real vector (compressed column storage method)

CALL DM_VMVSCC(A, NZ, NROW, NFCNZ, N, X, Y, W, IW, ICON)

(1) Function

 This subroutine obtains a product by multiplying an n  n sparse matrix by a vector.

 y = Ax

 The sparse matrix A is stored by the compressed column storage method.

 Vectors x and y are n-dimensional vectors.

(2) Parameters

A Input. The non-zero elements of a coefficient matrix are stored.

The non-zero elements of a sparse matrix are stored in A(1:NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1.

One-dimensional array A(NZ).

NZ Input. The total number of the nonzero elements belong to a coefficient matrix
A.

NROW Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ Input. The position of the first nonzero element stored in an array A by the
compressed column storage method which stores the nonzero elements column
by column. NFCNZ(N+1) = NZ + 1.

One-dimensional array NFCNZ(N+1).

N Input. Order n of matrix A.

X Input. Vector x is stored in X(1:N).

One-dimensional array X(N).

Y Output. The product of a matrix and vector is stored in Y(1:N).

A one-dimensional array Y(N).

W Work area. One-dimensional array W(NZ).

IW Work area. Two-dimensional array IW(2, NZ).

ICON Output. Condition code

See Table DM_VMVSCC-1.

DM_VMVSCC

II-168 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VMVSCC-1 Condition codes

Code Meaning Processing

0 No error 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ + 1. Processing is discontinued.























111000

9870

6054

0321

A

















































































































4

3

2

4

3

1

3

2

1

2

1

NROW,

11

9

6

10

8

3

7

5

2

4

1

CC,

12

9

6

3

1

NFCNZ

Figure DM_VMVSCC-1 Storing a coefficient matrix A in compressed column storage method

 The way how to store a coefficient matrix A in compressed column storage method is
explained.

The nonzero elements of each column vector of a matrix A are stored in compressed
mode into a one-dimensional array CC column by column. The position in the array CC
where the first nonzero element in the i-th column vector is stored is set into NFCNZ(i).

The value of NFCNZ(N+1) is set to NZ+1, where N is an order of the matrix A and NZ is
the total number of the nonzero elements in this matrix.

The row number of the nonzero element of the matrix A stored in the i-th array element
CC(i) is set into NROW(i).

(3) Comments on use

a. Example

 A product is obtained by multiplying the sparse matrix by a vector.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

 DM_VMVSCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-169

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)

 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG)
 DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1),
 $ W(K*NDIAG),IW(2,K*NDIAG)
 DIMENSION X(N),B(N),Y(N)

 X(1:N)=1.0D0

 NOFST(1)=-NX*NY
 NOFST(2)=-NX
 NOFST(3)=-1
 NOFST(4)=0
 NOFST(5)=1
 NOFST(6)=NX
 NOFST(7)=NX*NY

 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG(1:LENGTH,I)=DBLE(I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG(NBASE+1:N,I)=DBLE(I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
 DO J=1,N
 NTOPCFG=1
 DO I=NDIAG,1,-1
C
 IF(DIAG(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 A(NUMNZ)=DIAG(J,I)
 NROW(NUMNZ)=NCOL
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C

DM_VMVSCC

II-170 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 NUMNZ=NUMNZ+1
 ENDIF
C
 ENDDO
 ENDDO
 NFCNZ(N+1)=NUMNZ
 NNZ=NUMNZ-1

 CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X,
 $ Y,W,IW,ICON)
C
 B(1:N)=0.0D0
 DO I=1,N
 NS=NFCNZ(I)
 NE=NFCNZ(I+1)-1
 DO J=NS,NE
 II=NROW(J)
 B(II)=B(II)+A(J)*X(I)
 ENDDO
 ENDDO
C
 S=0.0D0
 DO I=1,N
 S=MAX(S,ABS(Y(I)-B(I)))
 ENDDO
C
 PRINT*,'ERROR=',S

 STOP
 END

 DM_VMVSCCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-171

DM_VMVSCCC

Multiplication of a complex sparse matrix and a complex vector (compressed column storage
method)

CALL DM_VMVSCCC(ZA, NZ, NROW, NFCNZ, N, ZX, ZY, ZW, IW, ICON)

(1) Function

 This subroutine obtains a product by multiplying an n  n complex sparse matrix by a
complex vector.

 y = Ax

 The sparse matrix A is stored by the compressed column storage method.

 Vectors x and y are n-dimensional vectors.

(2) Parameters

ZA Input. The non-zero elements of a coefficient matrix are stored.

The non-zero elements of a sparse matrix are stored in ZA(1:NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1.
For a complex matrix , the real array CC in this Figure is replaced with complex
array.

A double precision complex one-dimensional array ZA(NZ).

NZ Input. The total number of the nonzero elements belong to a coefficient matrix
A.

NROW Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array ZA.

One-dimensional array NROW(NZ).

NFCNZ Input. The position of the first nonzero element stored in an array A by the
compressed column storage method which stores the nonzero elements column
by column. NFCNZ(N+1) = NZ + 1.

One-dimensional array NFCNZ(N+1).

N Input. Order n of matrix A.

ZX Input. Vector x is stored in ZX(1:N).

A double precision complex one-dimensional array ZX(N).

ZY Output. The product of a matrix and vector is stored in ZY(1:N).

A double precision complex one-dimensional array ZY(N).

ZW Work area. A double precision complex one-dimensional array ZW(NZ).

IW Work area. Two-dimensional array IW(2, NZ).

ICON Output. Condition code

See Table DM_VMVSCCC-1.

DM_VMVSCC

II-172 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VMVSCCC-1 Condition codes

Code Meaning Processing

0 No error 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ + 1. Processing is discontinued.

(3) Comments on use

a. Example

 A product is obtained by multiplying the complex sparse matrix by a complex
vector.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)

 DIMENSION NOFST(NDIAG)
 COMPLEX*16 ZDIAG(K,NDIAG),ZA(K*NDIAG),ZW(K*NDIAG)
 DIMENSION NROW(K*NDIAG),NFCNZ(N+1),
 $ IW(2,K*NDIAG)
 COMPLEX*16 ZX(N),ZB(N),ZY(N)

 ZX(1:N)=(1.0D0,0.0D0)

 NOFST(1)=-NX*NY
 NOFST(2)=-NX
 NOFST(3)=-1
 NOFST(4)=0
 NOFST(5)=1
 NOFST(6)=NX
 NOFST(7)=NX*NY

 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 ZDIAG(1:LENGTH,I)=DCMPLX(DBLE(I),0.0D0)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 ZDIAG(NBASE+1:N,I)=DCMPLX(DBLE(I),0.0D0)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
 DO J=1,N
 NTOPCFG=1
 DO I=NDIAG,1,-1

 DM_VMVSCCC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-173

C
 IF(ZDIAG(J,I).NE.(0.0D0,0.0D0))THEN
C
 NCOL=J-NOFST(I)
 ZA(NUMNZ)=ZDIAG(J,I)
 NROW(NUMNZ)=NCOL
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 NUMNZ=NUMNZ+1
 ENDIF
C
 ENDDO
 ENDDO
 NFCNZ(N+1)=NUMNZ
 NNZ=NUMNZ-1

 CALL DM_VMVSCCC(ZA,NNZ,NROW,NFCNZ,N,ZX,
 $ ZY,ZW,IW,ICON)
C
 ZB(1:N)=(0.0D0,0.0D0)
 DO I=1,N
 NS=NFCNZ(I)
 NE=NFCNZ(I+1)-1
 DO J=NS,NE
 II=NROW(J)
 ZB(II)=ZB(II)+ZA(J)*ZX(I)
 ENDDO
 ENDDO
C
 S=0.0D0
 DO I=1,N
 S=MAX(S,CDABS(ZY(I)-ZB(I)))
 ENDDO
C
 PRINT*,'ERROR=',S

 STOP
 END

DM_VMVSD

II-174 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VMVSD

Multiplication of a real sparse matrix and a real vector (diagonal format storage method)

CALL DM_VMVSD(A,K, NDIAG,N, NOFST,NLB,X,Y,ICON)

(1) Function

 This subroutine obtains a product by multiplying an n  n sparse matrix by a vector.

 y = Ax

 The sparse matrix A is stored by the diagonal format storage method.

 Vectors x and y are n-dimensional vectors.

(2) Parameters

A Input. The non-zero elements of a coefficient matrix are stored.

The non-zero elements of a sparse matrix are stored in A(1:N,1:NDIAG).

For the diagonal format storage method, refer to Item b of Section 3.2.1.1 of
Part I of the SSL II Extended Capabilities User's Guide.

Two-dimensional array A(K,NDIAG).

K Input. The size of the first dimension of array A( n).

NDIAG Input. The total number of diagonal vectors including non-zero elements of a
coefficient matrix to be stored in array A.

The size of the second dimension of array A.

N Input. Order n of matrix A.

NOFST Input. The distance from the main diagonal vector corresponding to the
diagonal vector to be stored in array A is stored. The upper diagonal vector
matrix is indicated by a positive value and the lower diagonal vector matrix is
indicated by a negative value.

One-dimensional array NOFST(NDIAG).

NLB Input. The lower bandwidth of matrix A.

X Input. Vector x is stored in X(NLB+1:NLB+N).

One-dimensional array X(n+nlb+nub), where nlb is the lower band width and
nub is the upper band width.

Y Output. The product of a matrix and vector is stored in Y(1:N).

A one-dimensional array Y(N).

ICON Output. Condition code

See Table DM_VMVSD-1.

 DM_VMVSD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-175

Table DM_VMVSD-1 Condition codes

Code Meaning Processing

0 No error 

30000 N < 1, NDIAG < 1, K < N,
NLB  Max(-NOFST(I)) or |NOFST(I) | > N-1.

Processing is discontinued.

(3) Comments on use

a. Notes

1) Notes an using the diagonal format

 Zeros need to be set for those elements of the diagonal vectors outside the
coefficient matrix A.
 There are no special restrictions on the storage order of diagonal vector columns
in array A.
 The merit of this method is that the computation is possible without using an
indirect index with matrix vector multiplication. But its demerit is that matrices
having no diagonal structure cannot be stored efficiently.

b. Example

 A product is obtained by multiplying the sparse matrix by a vector.

 The sparse matrix is generated by init_mat_diag. (Refer to the example program of
DM_VBCSD.)

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 PARAMETER(NVW=3*K)
 DIMENSION NOFST(NDIAG)
 DIMENSION A(K,NDIAG)
 DIMENSION Y(N),B(N)
 DIMENSION X(NVW)

 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)

DM_VMVSD

II-176 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,B)
 DO I=1,N
 B(I)=0.0D0
 DO J=1,NDIAG
 B(I)=B(I)+A(I,J)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

 NBANDL=0
 NBANDR=0
 DO I=1,NDIAG
 IF(NOFST(I).LT.0)THEN
 NBANDL=MAX(NBANDL,-NOFST(I))
 ELSE
 NBANDR=MAX(NBANDR,NOFST(I))
 ENDIF
 ENDDO

 X(1+NBANDL:N+NBANDL) = 1.0D0
 CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,X,Y,ICON)

 ERROR=0.0D0
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(Y,B)
!$OMP+ REDUCTION(MAX:ERROR)
 DO I=1,N
 ERROR=MAX(ERROR,DABS(Y(I)-B(I)))
 ENDDO
!$OMP END PARALLEL DO

 PRINT*,'ERROR = ',ERROR

 STOP
 END

 DM_VMVSE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-177

DM_VMVSE

Multiplication of a real sparse matrix and a real vector (ELLPACK format storage method)

CALL DM_VMVSE(A,K,NW,N,ICOL,X,Y,ICON)

(1) Function

 This subroutine obtains a product by multiplying an n  n sparse matrix by a vector.

 y = Ax

 The coefficient matrix (n  n) is stored by the ELLPACK format storage method using
two arrays.

 Vectors x and y are n-dimensional vectors.

(2) Parameters

A Input. Non-zero elements of a coefficient matrix are stored in A(1:N,1:NW).

For the ELLPACK format storage method, refer to Item b of Section 3.2.1.1 of
Part I of the SSLII Extended Capabilities User's Guide.

A two-dimensional array A(K,NW).

K Input. The size of the first dimension of an array A( n).

NW Input. The size of the second dimension of array A and ICOL. The maximum
number of non-zero elements in each row of matrix A to be stored in array A.

N Input. Order n of matrix A.

ICOL Input. The column index used in the ELLPACK format storage method that
indicates the column vector to which the element to be stored in A belongs.

The two-dimensional array, ICOL(K,NW).

X Input. The vector x is stored in X(1:N).

A one-dimensional array X(N).

Y Output. The product of a matrix and vector is stored in Y(1:N).

A one-dimensional array Y(N).

ICON Output. Condition code.

See Table DM_VMVSE-1.

Table DM_VMVSE-1 Condition codes

Code Meaning Processing

0 No error 

30000 N < 1, NW < 1, K < N. Processing is discontinued.

DM_VMVSE

II-178 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(3) Comments on use

a. Note

1) When using the ELLPACK storage format
 It is recommended that array A is initialized with zero and ICOL with a row
vector number.

b. Example

 A product is obtained by multiplying the sparse matrix by a vector.

The sparse matrix is generated by init_mat_ell. (Refer to the example program of
DM_VBCSE.)

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=60,NX =NORD ,NY = NORD,NZ = NORD,
 & N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (IWIDT = 7)
 DIMENSION ICOL(K,IWIDT)
 DIMENSION A(K,IWIDT)
 DIMENSION X(N),B(N),Y(N)

 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL
 & ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K)

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,B)
 DO I=1,N
 B(I)=0.0D0
 DO J=1,IWIDT
 B(I)=B(I)+A(I,J)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

 Y(1:N)=1.0D0
 CALL DM_VMVSE(A,K,IWIDT,N,ICOL,Y,X,ICON2)

 ERROR=0.0D0
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,B)
!$OMP+ REDUCTION(MAX:ERROR)
 DO I=1,N
 ERROR=MAX(ERROR,DABS(X(I)-B(I)))

 DM_VMVSE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-179

 ENDDO
!$OMP END PARALLEL DO

 PRINT*,'ERROR = ',ERROR

 STOP
 END

DM_VPDE2D

II-180 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VPDE2D

Generation of System of linear equations with sparse matrices by the finite difference
discretization of a two dimensional boundary value problem for second order partial
differential equation

CALL DM_VPDE2D (A1, L1, N1, N2, A2, X1, X2, B1, B2, C, F,
 A, K, NA, N, NDIAG, NOFST, R, ICON)

(1) Function

 This subroutine assembles the system of linear equations by the finite difference
discretization of the linear, two dimensional boundary value problem on the rectangular
domain B:

 The partial differential equation (1) on the domain B with the boundary conditions (2) on
the boundary of the domain B is satisfied.

fcu
x

u
b

x

u
b

x

u
a

xx

u
a

x































2

2
1

1
2

2
21

1
1

 (1)

 







u
x

u

x

u

2
2

1
1 (2)

 a1, a2, b1, b2, c and f are given functions on the domain and 1, 2,  and  are given
functions on the boundary of the domain.

 The N1  N2 grid is defined by X(i,j)=(X1(i),X2(j))

 i=1,...,N1, j=1,...,N2 with

 B:=[X1(1),X1(N1)]  [X2(1),X2(N2)] ;

 The functions involved in the partial differential equation and the boundary conditions
are defined by their values at the grid points.

 The returned coefficient matrix is stored by the diagonal format storage method, see
section 3.2.1.2 in the SSL II Extended Capabilities User’s Guide II.

(2) Parameters

A1 Input. The coefficients of a1(xij) are stored in A1(1:N1, 1:N2).

Two-dimensional array A1(L1,N2).

L1 Input. Size of first-dimension of array A1, A2, B1, B2, C and F (L1N1).

N1 Input. Number of grid points in the x1-direction (N1>2).

N2 Input. Number of grid points in the x2-direction (N2>2).

A2 Input. The coefficients of a2(xij) are stored in A2(1:N1, 1:N2).

Two-dimensional array A2(L1,N2).

X1 Input. The x1-coordinates of the grid points are stored in X1(1:N1). The

 coordinates of the grid points have to be increasing:

 X1(i)<X1(i+1) , i=1,...,N1-1

 One-dimensional array of X1(N1).

 DM_VPDE2D

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-181

X2 Input. The x2-coordinates of the grid points are stored in X2(1:N2). The

 coordinates of the grid points have to be increasing:

 X2(i)<X2(i+1) , i=1,...,N2-1

One-dimensional array X2(N2).

B1 Input. The coefficients of b1(xij) and the boundary condition 1 are stored in
B1(1:N1, 1:N2).





















else;)(

N2;)(

;1)(

N1;)(

;1)(

),(B1

,1

N2,1

1,1

,1N1

,11

ji

i

i

j

j

xb

jx

jx

ix

ix

ji






Two-dimensional array B1(L1,N2).

B2 Input. The coefficients of b2(xij) and the boundary condition 2 are stored in
B2(1:N1, 1:N2).





















else;)(

N2;)(

;1)(

N1;)(

;1)(

),(B2

,2

N2,2

1,2

,1N2

,12

ji

i

i

j

j

xb

jx

jx

ix

ix

ji






Two-dimensional array B2(L1,N2).

C Input. The coefficients of c(xij) and the boundary condition  are stored in
C(1:N1, 1:N2).





















else;)(

N2;)(

;1)(

N1;)(

;1)(

),(C

,

N2,

1,

,1N

,1

ji

i

i

j

j

xc

jx

jx

ix

ix

ji






Two-dimensional array C(L1,N2).

F Input. The coefficients of f(xij) and the boundary condition  are stored in
F(1:N1, 1:N2).





















else;)(

N2;)(

;1)(

N1;)(

;1)(

),(F

,

N2,

1,

,1N

,1

ji

i

i

j

j

xf

jx

jx

ix

ix

ji






Two-dimensional array F(L1,N2).

A Output. The nonzero elements of a coefficient matrix are stored in A.

The coefficient matrix is stored in A(1:N,1:NDIAG).

DM_VPDE2D

II-182 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Two-dimensional array A(K,NA).

For an explanation of the diagonal format storage method, see b, “Diagonal
format storage method of general sparse matrices,” in Section 3.2.1.1, “Storing
the general sparse matrices,” in Part I, “Outline,” in the SSL II Extended
Capability User’s Guide II.

K Input. Size of first-dimension of array A ( N=N1N2).

NA Input. Size of second-dimension of array A. ( NDIAG=5).

N Input. Order n of matrix A (=N1N2).

NDIAG Output. Number of columns in array A and size of array NOFST (=5).

NOFST Output. Offsets of diagonals of A stored A. Main diagonal has offset 0,
subdiagonals have negative offsets, and superdiagonals have positive offsets.

One-dimensional array NOFST(NDIAG)

R Output. The right-side constant vectors of a system of linear equations are
stored in R(1:N).

One-dimensional array R(K) .

ICON Output. Condition code.

See Table DM_VPDE2D-1.

Table DM_VPDE2D-1 Condition codes

Code Meaning Processing

0 No error 

30000 L1 < N1, N1 < 3 , N2 < 3 ,NA < 5 ,
or K < N1  N2.

Processing is discontinued.

30001 The coordinates of the grid points is not
increasing.

(3) Comments on use

a. Notes

1) The quality of the value of the solution at the grid points delivered by the solver
of the linear system or an eigenvalue problem solver depends strictly on the
number and the location of the grid points.

2) The changes of the distances of the grid points to their nearest neighbor should
be moderate. For instance in x1-direction the condition

1N1,...,2,2
)(X1)1(X1

)1(X1)(X1
5.0 




 i
ii

ii

should be met (for the x2-direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill--posed.
Keep in mind that the condition number of the coefficient matrix is not only
determined by the grid but also by the coefficient functions.

b. Example

 The domain is the box [1,1] 2. The partial differential equation is

 DM_VPDE2D

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-183

 0
2

2
1

1
2

2

2

1
2

2






























x

u
v

x

u
v

x

u

x

u

 modeling a diffusion of the quantity u through the cannel driven by the rotating

 velocity field






















2
2

2
1

1

2
2

2
1

2
021 ,),(

xx

x

xx

x
vvvv

 where v0 is real constant (e.g. v0=1). The boundary conditions are set as follows:

else
n

u
xu

xu

0

11

10

2

2








 where n denotes the outer normal field at the boundary of the box.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT NONE

 INTEGER N1,N2,KA,NA,L1,L2

 PARAMETER (N1=49,N2=49, L1=N1,L2=N2, KA=N1*N2,NA=5)

 INTEGER NOFST(NA)
 DOUBLE PRECISION V0,X1(L1),X2(L2),
 & A1(L1,L2),A2(L1,L2),B1(L1,L2),B2(L1,L2),
 & C(L1,L2),F(L1,L2),A(KA,NA),R(KA)

 INTEGER Z1,Z2,ICON,I,J,N,NDIAG

 V0=1.
C
C create grid nodes nodes:
C
 DO 11 Z1=1,N1
 X1(Z1)=(2*DBLE(Z1-1)/DBLE(N1-1)-1.)
11 CONTINUE
 DO 13 Z2=1,N2
 X2(Z2)=(2*DBLE(Z2-1)/DBLE(N2-1)-1.)
13 CONTINUE
C
C coefficient functions:
C
 DO 2000 Z2=1,N2

 DO 20 Z1=1,N1

DM_VPDE2D

II-184 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 A1(Z1,Z2)=1
 A2(Z1,Z2)=1
20 CONTINUE
 DO 21 Z1=2,N1-1
 B1(Z1,Z2)= V0*X2(Z2)/SQRT(X1(Z1)**2+X2(Z2)**2+1.D-10)
 B2(Z1,Z2)=-V0*X1(Z1)/SQRT(X1(Z1)**2+X2(Z2)**2+1.D-10)
 C (Z1,Z2)=0
 F (Z1,Z2)=0
21 CONTINUE
C
C boundary conditions at faces X1=-1 and X1=1:
C
 B1(1,Z2)=-1
 B2(1,Z2)=0
 C (1,Z2)=0
 F (1,Z2)=0

 B1(N1,Z2)=1
 B2(N1,Z2)=0
 C (N1,Z2)=0
 F (N1,Z2)=0
C
C boundary conditions at faces X2=-1 and X2=1:
C
 IF (Z2.EQ.1) THEN
 DO 103 Z1=1,N1
 B1(Z1,1)=0
 B2(Z1,1)=0
 C (Z1,1)=1
 F (Z1,1)=0
103 CONTINUE
 ELSE IF (Z2.EQ.N2) THEN
 DO 113 Z1=1,N1
 B1(Z1,N2)=0
 B2(Z1,N2)=0
 C (Z1,N2)=1
 F (Z1,N2)=1
113 CONTINUE
 END IF
2000 CONTINUE

C
C build the linear system:
C
 N=N1*N2
 CALL DM_VPDE2D(A1,L1,N1,N2,A2,X1,X2, B1,B2,C,F,A,KA,NA,N,
 & NDIAG,NOFST,R,ICON)
 PRINT*,'ICON of DM_VPDE2D =',ICON
 IF (ICON.GT.29999) GOTO 9999
C
C write the matrix to a file:
C
 WRITE (6,'(3D23.16)') ((A(I,J),I=1,N,100),J=1,NDIAG)

 DM_VPDE2D

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-185

 WRITE (6,'(3I10)') (NOFST(J),J=1,NDIAG)
 WRITE (6,'(3D23.16)') (R(I),I=1,N,100)
9999 CONTINUE
 END

(4) Method

 The diffusion term a is approximated by the product scheme of centered finite
difference schemes of order two for the x1- and x2- direction. The convective term b is
approximated by an upwind scheme of order one. More details are presented in [75] in
Appendix A, “References.”

DM_VPDE3D

II-186 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VPDE3D

Generation of System of linear equations with sparse matrices by the finite difference
discretization of a three dimensional boundary value problem for second order partial
differential equation

CALL DM_VPDE3D (A1, L1, L2, N1, N2, N3, A2, A3, X1, X2, X3, B1,
 B2, B3, C, F, A, KA, NA, N, NDIAG, NOFST, R, ICON)

(1) Function

 This subroutine assembles the system of linear equations by the finite difference
discretization of the linear, three dimensional boundary value problem on the rectangular
domain B:

 The partial differential equation (1) on the domain B with the boundary conditions (2) on
the boundary of the domain B is satisfied.

fcu
x

u
b

x

u
b

x

u
b

x

u
a

xx

u
a

xx

u
a

x













































3
3

2
2

1
1

3
3

32
2

21
1

1 (1)

 











u
x

u

x

u

x

u

3
3

2
2

1
1 (2)

 a1, a2, a3, b1, b2, b3, c and f are given functions on the domain and 1, 2, 3,  and  are
given functions on the boundary of the domain.

 The N1  N2  N3 grid is defined by X(i,j,k)=(X1(i),X2(j),X3(k))

 for i=1,...,N1, j=1,...,N2 and k=1,...,N3 with

 B:=[X1(1),X1(N1)]  [X2(1),X2(N2)]  [X3(1),X3(N3)];

 The functions involved in the partial differential equation and the boundary conditions
are defined by their values at the grid points.

 The returned coefficient matrix is stored by the diagonal format storage method, see
Section 3.2.1.2 in the SSL II Extended Capabilities User’s Guide II.

(2) Parameters

A1 Input. The coefficients of a1(xijk) are stored in A1(1:N1, 1:N2, 1:N3).

Three-dimensional array A1(L1,L2,N3).

L1 Input. Size of first-dimension of array A1, A2, A3, B1, B2, B3, C and F.

L2 Input. Size of second-dimension of array A1, A2, A3, B1, B2, B3, C and F.

N1 Input. Number of grid points in the x1-direction. (N1>2)

N2 Input. Number of grid points in the x2-direction. (N2>2)

N3 Input. Number of grid points in the x3-direction. (N3>2)

A2 Input. The coefficients of a2(xijk) are stored in A2(1:N1, 1:N2, 1:N3).

Three-dimensional array A2(L1,L2,N3).

 DM_VPDE3D

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-187

A3 Input. The coefficients of a3(xijk) are stored in A3(1:N1, 1:N2, 1:N3).

Three-dimensional array A3(L1,L2,N3).

X1 Input. The x1-coordinates of the grid points are stored in X1(1:N1). The

 coordinates of the grid points have to be increasing:

 X1(i)<X1(i+1) , i=1,...,N1-1

 One-dimensional array of X1(N1).

X2 Input. The x2-coordinates of the grid points are stored in X2(1:N3). The

 coordinates of the grid points have to be increasing:

 X2(i)<X2(i+1) , i=1,...,N2-1

 One-dimensional array of X2(N2).

X3 Input. The x3-coordinates of the grid points are stored in X3(1:N3). The

 coordinates of the grid points have to be increasing:

 X3(i)<X3(i+1) , i=1,...,N3-1

One-dimensional array X3(N3).

B1 Input. The coefficients of b1(xijk) and the boundary condition 1 are stored in
B1(1:N1, 1:N2, 1:N3) as follows.


























else;)(

;3N)(

;1)(

N2;)(

;1)(

N1;)(

;1)(

),,(B1

,,1

3N,,1

1,,1

N2,,1

,1,1

,,1N1

,,11

kji

ji

ji

ki

ki

kj

kj

xb

kx

kx

jx

jx

ix

ix

kji








Three-dimensional array B1(L1,L2,N3).

B2 Input. The coefficients of b2(xijk) and the boundary condition 2 are stored in
B2(1:N1, 1:N2, 1:N3) as follows.


























else;)(

;3N)(

;1)(

N2;)(

;1)(

N1;)(

;1)(

),,(B2

,,2

3N,,2

1,,2

,N2,2

,1,2

,,1N2

,,12

kji

ji

ji

ki

ki

kj

kj

xb

kx

kx

jx

jx

ix

ix

kji








Three-dimensional array B2(L1,L2,N3).

B3 Input. The coefficients of b3(xijk) and the boundary condition 3 are stored in
B3(1:N1, 1:N2, 1:N3) as follows.

DM_VPDE3D

II-188 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)


























else;)(

;3N)(

;1)(

N2;)(

;1)(

N1;)(

;1)(

),,(B3

,,3

3N,,3

1,,3

,N2,3

,1,3

,,1N3

,,13

kji

ji

ji

ki

ki

kj

kj

xb

kx

kx

jx

jx

ix

ix

kji








Three-dimensional array B3(L1,L2,N3).

C Input. The coefficients of c(xijk) and the boundary condition  are stored in
C(1:N1, 1:N2, 1:N3) as follows.


























else;)(

;3N)(

;1)(

N2;)(

;1)(

N1;)(

;1)(

),,(C

,,

3N,,

1,,

N2,,

,1,

,,1N

,,1

kji

ji

ji

ki

ki

kj

kj

xc

kx

kx

jx

jx

ix

ix

kji








Three-dimensional array C(L1,L2,N3).

F Input. The coefficients of f(xijk) and the boundary condition  are stored in
F(1:N1, 1:N2, 1:N3) as follows.


























else;)(

;3N)(

;1)(

N2;)(

;1)(

N1;)(

;1)(

),,(F

,,

3N,,

1,,

,N2,

,1,

,,1N

,,1

kji

ji

ji

ki

ki

kj

kj

xf

kx

kx

jx

jx

ix

ix

kji








Three-dimensional array F(L1,L2,N3).

A Output. The nonzero elements of a coefficient matrix are stored in
A(1:N,1:NDIAG).

Two-dimensional array A(KA,NA).

For an explanation of the diagonal format storage method, see b, “Diagonal
format storage method of general sparse matrices,” in Section 3.2.1.1, “Storing
the general sparse matrices,” in Part I, “Outline,” in the SSL II Extended
Capability User’s Guide II.

KA Input. Size of first-dimension of array A (KA  N1  N2 N3).

NA Input. Size of second-dimension of array A. (NA  NDIAG=7).

N Input. Order n of matrix A (N=N1  N2 N3).

NDIAG Output. Number of columns in array A and size of array NOFST. (=7)

 DM_VPDE3D

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-189

NOFST Output. Offsets of diagonals of A stored A. Main diagonal has offset 0,
subdiagonals have negative offsets, and superdiagonals have positive offsets.

One-dimensional array NOFST(NDIAG)

R Output. The right-side constant vectors of a system of linear equations are
stored in R(1:N).

One-dimensional array R(N).

ICON Output. Condition code.

See Table DM_VPDE3D-1.

Table DM_VPDE3D-1 Condition codes

Code Meaning Processing

0 No error 

30000 L1 < N1, L2 < N2 , N1 < 3 , N2 < 3 , N3 < 3 ,
NA < 7 , KA < N1  N2  N3.

Processing is discontinued.

30001 The coordinates of the grid points is not
increasing.

(3) Comments on use

a. Notes

1) The quality of the value of the solution at the grid points delivered by the solver
of the linear system or an eigenvalue problem solver depends strictly on the
number and the location of the grid points.

2) The changes of the distances of the grid points to their nearest neighbor should
be moderate. For instance in x1-direction the condition

1N1,...,2,2
)(X1)1(X1

)1(X1)(X1
5.0 




 i
ii

ii

should be met (for the x2-direction and x3-direction analogously).

If this condition is not fulfilled the coefficient matrix can become ill-posed. Keep
in mind that the condition number of the coefficient matrix is not only
determined by the grid but also by the coefficient functions.

b. Example

 The domain is the channel [-1,1]2  [0,5]. The partial differential

 equation is

 0
2

2
1

1
3

2

2

2
2

2

1
2

2



































x

u
v

x

u
v

x

u

x

u

x

u

 modeling a diffusion of the quantity u through the cannel driven by the rotating

 velocity field




















 0,,),,(

2
2

2
1

1

2
2

2
1

2
0321

xx

x

xx

x
vvvvv

DM_VPDE3D

II-190 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 where v0 is real constant (e.g. v0=1). The boundary conditions

 are set as follows:

else
n

u
xu

xu

0

51

00

3

3








 where n denotes the outer normal field at the boundary of the channel.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT NONE

 INTEGER N1,N2,N3,KA,NA,L1,L2,L3

 PARAMETER(N1=49,N2=49,N3=25,L1=N1,L2=N2,L3=N3,
 & KA=N1*N2*N3,NA=7)

 INTEGER NOFST(NA)
 DOUBLE PRECISION V0,X1(L1),X2(L2),X3(L3),
 & A1(L1,L2,L3),A2(L1,L2,L3),A3(L1,L2,L3),
 & B1(L1,L2,L3),B2(L1,L2,L3),B3(L1,L2,L3),
 & C(L1,L2,L3),F(L1,L2,L3),A(KA,NA),R(KA)

 INTEGER Z1,Z2,Z3,ICON,I,J,N,NDIAG

 V0=1.
C
C create grid nodes nodes:
C
 DO 11 Z1=1,N1
 X1(Z1)=(2*DBLE(Z1-1)/DBLE(N1-1)-1.)
11 CONTINUE
 DO 12 Z2=1,N2
 X2(Z2)=(2*DBLE(Z2-1)/DBLE(N2-1)-1.)
12 CONTINUE
 DO 13 Z3=1,N3
 X3(Z3)=DBLE(Z3-1)/DBLE(N3-1)
13 CONTINUE
C
C coefficient functions:
C
 DO 2000 Z3=1,N3

 DO 20 Z2=1,N2
 DO 20 Z1=1,N1
 A1(Z1,Z2,Z3)=1
 A2(Z1,Z2,Z3)=1

 DM_VPDE3D

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-191

 A3(Z1,Z2,Z3)=1
20 CONTINUE
 DO 21 Z2=2,N2-1
 DO 21 Z1=2,N1-1
 B1(Z1,Z2,Z3)= V0*X2(Z2)/SQRT(X1(Z1)**2+X2(Z2)**
 & 2+1.D-10)
 B2(Z1,Z2,Z3)=-V0*X1(Z1)/SQRT(X1(Z1)**2+X2(Z2)**
 & 2+1.D-10)
 B3(Z1,Z2,Z3)=0
 C (Z1,Z2,Z3)=0
 F (Z1,Z2,Z3)=0
21 CONTINUE
C
C boundary conditions at faces X1=-1 and X1=1:
C
 DO 101 Z2=1,N2
 B1(1,Z2,Z3)=-1
 B2(1,Z2,Z3)=0
 B3(1,Z2,Z3)=0
 C (1,Z2,Z3)=0
 F (1,Z2,Z3)=0

 B1(N1,Z2,Z3)=1
 B2(N1,Z2,Z3)=0
 B3(N1,Z2,Z3)=0
 C (N1,Z2,Z3)=0
 F (N1,Z2,Z3)=0
101 CONTINUE
C
C boundary conditions at faces X2=-1 and X2=1:
C
 DO 102 Z1=1,N1
 B1(Z1,1,Z3)=0
 B2(Z1,1,Z3)=-1
 B3(Z1,1,Z3)=0
 C (Z1,1,Z3)=0
 F (Z1,1,Z3)=0

 B1(Z1,N2,Z3)=0
 B2(Z1,N2,Z3)=1
 B3(Z1,N2,Z3)=0
 C (Z1,N2,Z3)=0
 F (Z1,N2,Z3)=0
102 CONTINUE
C
C boundary conditions at faces X3=0 and X3=5:
C
 IF (Z3.EQ.1) THEN
 DO 103 Z1=1,N1
 DO 103 Z2=1,N2
 B1(Z1,Z2,1)=0
 B2(Z1,Z2,1)=0
 B3(Z1,Z2,1)=0

DM_VPDE3D

II-192 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 C (Z1,Z2,1)=1
 F (Z1,Z2,1)=0
103 CONTINUE
 ELSE IF (Z3.EQ.N3) THEN
 DO 113 Z1=1,N1
 DO 113 Z2=1,N2
 B1(Z1,Z2,N3)=0
 B2(Z1,Z2,N3)=0
 B3(Z1,Z2,N3)=0
 C (Z1,Z2,N3)=1
 F (Z1,Z2,N3)=1
113 CONTINUE
 END IF

2000 CONTINUE
C
C build the linear system:
C
 N=N1*N2*N3
 CALL DM_VPDE3D (A1,L1,L2,N1,N2,N3,A2,A3,X1,X2,X3,B1,B2,B3,
 & C,F,A,KA,NA,N,NDIAG,NOFST,R,ICON)
 PRINT*,'DM_VPDE3D : ICON=',ICON
 IF (ICON.GT.29999) GOTO 9999
C
C write the matrix to a file:
C
 WRITE (6,'(3D23.16)') ((A(I,J),I=1,N,1000),J=1,NDIAG)
 WRITE (6,'(3I10)') (NOFST(J),J=1,NDIAG)
 WRITE (6,'(3D23.16)') (R(I),I=1,N,1000)
9999 CONTINUE
 STOP
 END

(4) Method

 The diffusion term a is approximated by the product scheme of centered finite
difference schemes of order two for the x1-, x2- and x3-direction. The convective term b
is approximated by an upwind scheme of order one. More details are presented in [75] in
Appendix A, “References.”

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-193

DM_VRADAU5

System of stiff ordinary differential equations or differential-algebraic equations (Implicit
Runge-Kutta method)

CALL DM_VRADAU5 (N,FCN,X,Y,XEND,H,RTOL,ATOL,ITOL,JAC,IJAC,MLJAC,
 MUJAC,MAS,IMAS,MLMAS,MUMAS,SOLOUT,IOUT,
 WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,ICON)

(1) Function

This subroutine solves a system of stiff ordinary differential equations or differential-
algebraic equations of the following form:

 00)()(yy y,fMy'  xx
 (1.1)

, where M is a constant n-by-n matrix (called mass-matrix) , y is the solution vector of
size n (with components nyyy ,...,, 21), f(x,y) is function vector of size n (with components

nfff ,...,, 21) and 0y is the initial value at 0xx  (with components nyyy 00201 ,...,,) .

When M is a non-singular matrix other than identity matrix, the system becomes an
implicit system of ordinary differential equations. When M is a singular matrix, the
system becomes a system of differential-algebraic equations.
This subroutine returns to the caller program when a numerical solution at)(0xxend  is

obtained. When integrating the system from 0x toward endx , a numerical solution after

each successful step can be provided to a user’s subroutine (its subroutine name is given
as parameter SOLOUT).

This subroutine is based on RADAU5, a free software developed by E. Haier and G.
Wanner (Universite de Geneve , as of March 2011) and provided under license
agreement which copy is listed in Appendix B.

(2) Parameters

N Input. Dimension of the system(N  1).

FCNInput. Name(EXTERNAL) of subroutine computing the value of f(x,y):

 SUBROUTINE FCN(N,X,Y,F,RPAR,IPAR)

REAL*8 X,Y(N),F(N)

F(1)=... etc.

RPAR, IPAR (see below)

X Input. Initial x-value x0.

Output. x-value for which the solution has been computed(after successful
return X=XEND).

Y Input. Initial values for y: Y(1)= 01y , Y(2)= 02y ,…,Y(N)= ny0 .

One-dimensional array of size n.
Output. Numerical solution at X (=XEND on successful return).

XENDInput. Final x-value endx (0xxend  may be positive or negative)

DM_VRADAU5

II-194 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

H Input. Initial step size guess;
For stiff equations with initial transient, H=1.0/(norm of  yf x,'), usually 1.D-
3 or 1.D-5, is good. This choice is not very important, the step size is quickly
adapted (if H=0.D0, the code puts H=1.D-6).
Output. Predicted step size of the last accepted step.

RTOL,ATOL.Input. Relative and absolute error tolerances. They can be both scalars (must be
variables) or else both vectors of length N. ATOL (or ATOL(I))>0 and RTOL
(or RTOL(I))> 10u, where u is the round off unit.

ITOL………. Input. Switch for RTOL and ATOL:
ITOL=0:Both RTOL and ATOL are scalars. The code keeps, roughly, the local
error of Y(I) below RTOL*ABS(Y(I))+ATOL.
ITOL  0: Both RTOL and ATOL are vectors. The code keeps, roughly, the
local error of Y(I) below RTOL(I)*ABS(Y(I))+ATOL(I).

JAC………... Input. Name(EXTERNAL) of the subroutine which computes the partial
derivatives of f(x,y) with respect to y (This subroutine is only called if
IJAC  0; Supply a dummy subroutine in the case IJAC=0).
For IJAC  0, this subroutine must have the form
 SUBROUTINE JAC(N,X,Y,DFY,LDFY,RPAR,IPAR)

 REAL*8 X,Y(N),DFY(LDFY,N)

 DFY(1,1)= ...

LDFY, the column-length of the array, is furnished by the calling program.
If MLJAC=N the Jacobian is supposed to be full and the partial derivatives are
stored in DFY as

 DFY(I,J) =
j

i

y

f




else, the Jacobian is taken as banded and the partial derivatives are stored
diagonal-wise as

 DFY(I-J+MUJAC+1, J) =
j

i

y

f




Fig. DM_VRADAU5-1 shows how a banded Jacobian is stored in DFY in the
case of N=6, MLJAC=3, and MUJAC=1, where jiij yfa  The elements

marked *are not used.



























66656463

5655545352

4544434241

34333231

232221

1211

aaaa

aaaaa

aaaaa

aaaa

aaa

aa

Fig. DM_VRADAU5-1

IJAC Input. Switch for the computation of the Jacobian:

IJAC=0: Jacobian is computed internally by finite differences , subroutine
"JAC" is never called.
IJAC  0: Jacobian is supplied by subroutine JAC.

MLJAC……. Input. Switch for the banded structure of the Jacobian:

*
12a 23a 34a 45a 56a

11a 22a 33a 44a 55a 66a

21a 32a 43a 54a 65a *

31a 42a 53a 64a * *

41a 52a 63a * * *

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-195

MLJAC=N: Jacobian is a full matrix. The linear algebra is done by full-matrix
Gauss-elimination.
0  MLJAC<N: MLJAC is the lower bandwidth of Jacobian matrix ( number
of non-zero diagonals below the main diagonal).

MUJAC…… Input. Upper bandwidth of Jacobian matrix ( number of non-zero diagonals
above the main diagonal). Need not be defined if MLJAC=N.

MAS………. Input. Name (EXTERNAL) of subroutine computing the mass-matrix M.

If IMAS=0, the matrix is assumed to be the identity matrix and needs not to be
defined; Supply a dummy subroutine in this case.
If IMAS  0, the subroutine MAS is of the form
 SUBROUTINE MAS(N,AM,LMAS,RPAR,IPAR)
 REAL*8 AM(LMAS,N)
 AM(1,1)=
If MLMAS=N the mass-matrix is stored as full matrix like
 AM(I,J) = ijM

else, the matrix is taken as banded and stored diagonal-wise as
 AM(I-J+MUMAS+1,J) = ijM .

IMAS……… Input. Information on the mass-matrix;

IMAS=0: M is supposed to be the identity matrix, MAS is never called.
IMAS  0: Mass-matrix is supplied.

MLMAS…… Input. Switch for the banded structure of the mass-matrix:

MLMAS=N: the full matrix case. The linear algebra is done by full-matrix
Gauss-elimination.
0  MLMAS<N: MLMAS is the lower bandwidth of the matrix ( number of
non-zero diagonals below the main diagonals). MLMAS  MLJAC.

MUMAS…... Input. Upper bandwidth of mass-matrix ( number of non-zero diagonals above
the main diagonal). Need not be defined if MLMAS=N.MUMAS  MUJAC.

SOLOUT….. Input. Name (EXTERNAL) of subroutine providing the numerical solution
during integration.

If IOUT  0, it is called after every successful step. Supply a dummy subroutine
if IOUT=0.
It must have the form

 SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,

 RPAR,IPAR,IRTRN,WORK2,IWORK2)

 REAL*8 X,Y(N),CONT(LRC)

SOLOUT furnishes the solution "Y" at the NR-th grid-point "X" (thereby the
initial value is the first grid-point with NR=1 and XEND is the final grid-point).
"XOLD" is the preceding grid-point. "IRTRN" serves to interrupt the
integration. If IRTRN is set <0, DM_VRADAU5 returns to the calling program.

----- CONTINUOUS OUTPUT: -----

During calls to "SOLOUT", a continuous solution for the interval [XOLD,X] is
available through the function of type REAL*8:

 >>> DM_VCONTR5(I,S,CONT,LRC,WORK2,IWORK2) <<<
which provides an approximation to the I-th component of the solution

DM_VRADAU5

II-196 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(1  I  N) at the point S. The value S should lie in the interval [XOLD,X]. Do
not change the entries of CONT(LRC),WORK2(*),and IWORK2(*).

IOUT……… Input. Switch for calling the subroutine SOLOUT:

IOUT=0: Subroutine is never called
IOUT  0: Subroutine is available for output.

WORK…….. Work area. One-dimensional array of size LWORK.

WORK(1), WORK(2),.., WORK(20) serve as parameters for the code. For
standard use of the code WORK(1),..,WORK(20) must be set to zero before
calling. See below for a more sophisticated use.
WORK(21),..,WORK(LWORK) serve as working space for all vectors and
matrices.
"LWORK" must be at least
 N*(LJAC+LMAS+3*LE+12)+20
where
 LJAC=N if MLJAC=N (full Jacobian)
 LJAC=MLJAC+MUJAC+1 if MLJAC<N (banded JAC.)
and
 LMAS=0 if IMAS=0
 LMAS=N if IMAS  0 and MLMAS=N (full)
 LMAS=MLMAS+MUMAS+1 if MLMAS<N (banded mass-M.)
and
 LE=N if MLJAC=N (full Jacobian)
 LE=2*MLJAC+MUJAC+1 if MLJAC<N (banded JAC.)

In the usual case where the Jacobian is full and the mass-matrix is the identity
(IMAS=0), the minimum storage requirement is
 LWORK = 4*N*N+12*N+20.
If IWORK(9)=M1>0 then "LWORK" must be at least
 N*(LJAC+12)+(N-M1)*(LMAS+3*LE)+20
where in the definitions of LJAC, LMAS and LE the number N can be replaced
by N-M1.

LWORK…… Input. Declared length of array “WORK”.

IWORK…… Work area. One-dimensional integer array of size LIWORK.

IWORK(1),IWORK(2),...,IWORK(20) serve as parameters for the code. For
standard use, set IWORK(1),.., IWORK(20) to zero before calling.
IWORK(21),...,IWORK(LIWORK) serve as working space.
"LIWORK" must be at least 3*N+20.

Output. IWORK(14) through IWORK(20) contain statistics at completion of
integration up to XEND.
IWORK(14) NFCN Number of function evaluations(those for numerical
 evaluation of the Jacobian are not counted)
IWORK(15) NJAC Number of Jacobian evaluations (either analytically or
 numerically)
IWORK(16) NSTEP Number of computed steps
IWORK(17) NACCPT Number of accepted steps
IWORK(18) NREJCT Number of rejected steps(due to error test) ,(step
 rejections in the first step are not counted)
IWORK(19) NDEC Number of LU-decompositions of both matrices
IWORK(20) NSOL Number of forward-backward substitutions, of both
 systems; The NSTEP forward-backward substitutions,

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-197

 needed for step size selection, are not counted

LIWORK….. Input. Declared length of array “IWORK”.

RPAR,IPAR.. Real and integer parameters (or parameter arrays) which can be used for
communication between your calling program and subroutines FCN, JAC,
MAS, and SOLOUT.

ICON……… Output. Condition code. See Table DM_VRADAU5-1 Condition codes.

Sophisticated Setting of Parameters:

Several parameters of the code are tuned to make it work well. They may be defined by
setting WORK(1),... as well as IWORK(1),... different from zero. For zero input, the code
chooses default values:

IWORK(1)… Input. If IWORK(1)  0, the code transforms the Jacobian matrix to Hessenberg
form. This is particularly advantageous for large systems with full Jacobian. It
does not work for banded Jacobian (MLJAC<N) and not for implicit systems
(IMAS  0).

IWORK(2)… Input. This is the maximal number of allowed steps. The default value (for
IWORK(2)=0) is 100000.

IWORK(3)… Input. The maximum number of Newton iterations for the solution of the
implicit system in each step. The default value (for IWORK(3)=0) is 7.

IWORK(4)… Input. If IWORK(4)=0 the extrapolated collocation solution is taken as starting
value for Newton’s method. If IWORK(4)  0 zero starting values are used.
The latter is recommended if Newton’s method has difficulties with
convergence (This is the case when NSTEP is larger than NACCPT + NREJCT;
See output parameters). Default is IWORK(4)=0.

The following 3 parameters are important for differential-algebraic systems of index > 1.
The function-subroutine should be written such that the index 1,2,3 variables appear in
this order. In estimating the error the index 2 variables are multiplied by H, the index 3
variables by H**2. (In the cases where M is the identity matrix or non-singular, the
system is just ordinary differential equations, so all variables are index 1 variables and it
is sufficient to set 3 parameters to zero.)
If the user sets any of these 3 parameters different from 0 ,the sum of 3 parameters must
be N.

IWORK(5)… Input. Dimension of the index 1 variables.

IWORK(6)… Input. Dimension of the index 2 variables. Default IWORK(6)=0.

IWORK(7)… Input. Dimension of the index 3 variables. Default IWORK(7)=0.

IWORK(8)… Input. Switch for step size strategy.
If IWORK(8) =1 modified predictive controller (Gustafsson)
If IWORK(8) >1 classical step size control
The default value (for IWORK(8)=0) is IWORK(8)=1. The choice
IWORK(8)=1 seems to produce safer results. For simple problems, the choice
IWORK(8)> 1 produces often slightly faster runs.

If the differential system has the special structure that
 Y(I)' = Y(I+M2) for I=1,...,M1,
with M1 a multiple of M2, a substantial gain in computer time can be achieved by setting
the parameters IWORK(9) and IWORK(10). For example, second order systems

DM_VRADAU5

II-198 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

)',,(ppgp" x can be rewritten as

),,(' vpgv

vp

x

'




, where p and v are vectors of dimension N/2. In this case one has to put M1=M2=N/2.
For M1>0 some of the input parameters have different meanings:

JAC……Input. Only the elements of the non-trivial part of the Jacobian have to be
stored. For example, with the above first order system reduced from the second
order system, subroutine JAC has to store only

 













v

g

p

g

, which is N/2  N non-trivial matrix.
Suppose Y and F are solution vector and right hand side function vector ,
respectively, of resulting first order system.
If MLJAC=N-M1 the Jacobian is supposed to be full;

 DFY(I, J) =
Y(J)

M1)F(I




 , I=1,…,N-M1, J=1,…,N

If 0  MLJAC<N-M1 the Jacobian is banded (M1 = M2 * MM);

DFY(I-J+MUJAC+1,J+KM2)=
M2)KY(J

M1)F(I




 I=1, ... ,N-M1, J=1, …, M2, K=0,..,MM
In the banded case, N=M1+ M2 has to be met.

MLJAC..Input.
MLJAC=N-M1 : if the non-trivial part of the Jacobian is full.
0  MLJAC<N-M1: if the (MM+1) submatrices (M1= M2 * MM),

M2)KY(J

M1)F(I




, I=1,…,N-M1 , J=1,…,M2, K=0,…,MM

are all banded , and MLJAC is the maximal lower bandwidth of these MM+1
submatrices.

MUJAC…Input.
Maximal upper bandwidth of these MM+1 submatrices. Need not be defined if
MLJAC=N-M1.

MAS……Input.
If IMAS=0 this matrix is assumed to be the identity and need not be defined.
Supply a dummy subroutine in this case.
If IMAS  0 it is assumed that only the elements of right lower block of
dimension N-M1 differ from that of the identity matrix and only the elements
of right lower block of dimension N-M1 must be given in subroutine MAS. For
example , consider the following system.
)',,(ppgMp" x
This can be rewritten as

),,(' vpgMv

vp'
x



and expressed in the following form.

 
























),,(vg

v
vM p

p

0

0I
'

'

x

In this case the coefficient matrix of the left hand side corresponds to M in (1.1).
Denoting by M the coefficient matrix of the left hand side, if MLMAS=N-M1

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-199

the right lower block is supposed to be full; the array AM in the subroutine
MAS should be set as
 AM(I,J)= M(I+M1, J+M1) , I=1,…,N-M1 , J=1,…, N-M1.
If MLMAS  N-M1 the right low block is supposed to be banded:
 AM(I-J+MUMAS+1, J)= M(I+M1, J+M1)

MLMAS…Input.
MLMAS=N-M1: If the non-trivial part of M is full.
0  MLMAS<N-M1: Lower bandwidth of the mass matrix. MLMAS  MLJAC
must be met.

MUMAS….Input.
Upper bandwidth of the mass matrix. MUMAS  MUJAC must be met. Need
not be defined if MLMAS=N-M1.

IWORK(9)… Input. The value of M1 ( 0). Default M1=0.

IWORK(10).. Input. The value of M2 ( 0). Default M2=M1.
If IWORK(9) >0 , IWORK(9)+IWORK(10)  N must be met.

WORK(1)…. Input. The round off unit u. DMACH()  WORK(1)<1.0D0 must be met.
Default u=DMACH().

WORK(2)…. Input. The safety factor in step size prediction.
0.001D0<WORK(2)<1.0D0 must be met. Default 0.9D0.

WORK(3)…. Input.
Decides whether the Jacobian should be recomputed; increase WORK(3), to 0.1
say, when Jacobian evaluations are costly. For small systems WORK(3) should
be smaller (0.001D0, say). Negative WORK(3) forces the code to compute the
Jacobian after every accepted step.
Default 0.001D0. WORK(3) < 1.0D0 must be met.

WORK(4)…. Input.
Stopping criterion for Newton’s method, usually chosen <1. Smaller values of
WORK(4) make the code slower , but safer.

DEFAULT MAX(10u/TOLST,MIN(0.03D0, TOLST)) , where u is the
round off unit, TOLST=0.1∙RTOL**(2/3) , and RTOL=RTOL(1) when RTOL
is vector. WORK(4) > u/TOLST must be met.

WORK(5),

WORK(6)…. Input.
If WORK(5) < HNEW/HOLD < WORK(6), then the step size is not changed.
This saves, together with a large WORK(3), LU-decompositions and computing
time for large systems. For smaller systems one may have WORK(5)=1.D0,
WORK(6)=1.2D0, for large full systems WORK(5)=0.99D0, WORK(6)=2.D0
might be good.
DEFAULTS WORK(5)=1.D0, WORK(6)=1.2D0 .
WORK(5)  1.0D0 and WORK(6)  1.0D0 must be met.

WORK(7)…. Input. Maximal step size. Default 0xxend  .

WORK(8),

WORK(9)…. Input. Parameters for step size selection.
The new step size is chosen subject to the restriction
 WORK(8)  HNEW/HOLD  WORK(9)

DM_VRADAU5

II-200 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Default values : WORK(8)=0.2D0,WORK(9)=8.D0.
WORK(8)  1.0D0 and WORK(9)  1.0D0 must be met.

Table DM_VRADAU5-1 Condition codes

Code Meaning Processing

0 No error 

100 In subroutine SOLOUT, parameter IRTRN was
set to be negative.

Processing is discontinued.
Solutions obtained so far
were correct.

10000 Number of steps exceeded the value specified
in IWORK(2).

Processing is discontinued.
Integration did not reach
XEND. The user can try a
larger value for IWORK(2).

21000 Step size became too small. Processing is discontinued.

22000 Matrix was repeatedly singular.

30000 There was an inconsistent input.

(3) Comments on use

a. Notes

1) Role of SOLOUT
During integration from 0x to endx this subroutine provides numerical solutions

after every accepted step to the subroutine SOLOUT when IOUT  0.
Namely, when endxx 0 , every accepted step results in a sequence of grid-point

such as
 endxxxx  210

and ix and solutions at ix are passed to SOLOUT (0x and endx included). ix is

determined under step size control to meet required accuracies.
If the user requires solutions at intended grid-points, the function subprogram
DM_VCONTR5 can be used for dense output. For instance, if solutions are
required at equally spaced grid-points one can refer to Example 1 below.
Note that repeated calls to DM_VRADAU5 by incrementing XEND is
inefficient way for that purpose.

2) Thread parallelization of user’s subroutines
In any of user’s subroutines FCN, JAC, MAS, and SOLOUT, the user can use
OpenMP parallelization when necessary.

3) Index and initial values for differential-algebraic equations
In the model),(yfMy' x if M is non-singular the system is just ordinary
differential equations, and “index” of variables in y is 1. In this case IWORK(5)
~IWORK(7) should be set to 0.
If M is singular, the system becomes a differential-algebraic equations, and
IWORK(5) ~IWORK(7) and initial values should be given carefully. Here is a
brief guideline.
For singular M, we can decompose the matrix (e.g., by Gaussian elimination
with total pivoting) as

 T
I

SM 









00

0

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-201

where S and T are n-by-n non-singular matrices , and I is the identity matrix of
smaller size. Inserting this into (1.1), multiplying by S-1, and using the
transformed variables

 









w

u
Ty

gives

 
































 

),(

),(
:),(11

wuh

wug

w

u
TfS

w

uI
'

'

,x

,x
x

00

0

or

),(

),(

wuh

wugu'

,x

,x




0

These are called Hessenberg form of the differential-algebraic equations, where
the system is split into a smaller ordinary differential equations and a smaller
algebraic equations. The Hessenberg forms are often encountered in practice,
and can be said as differential equations with algebraic constraints. Below, we
give some typical Hessenberg forms which illustrate index 1,2 and 3 variables.
We omit, from now on, the independent variable in equations to simplify
mathematical expressions.
a) System of index 1
Let us consider the following system
)(zyfy' , (3.1a)
)(zyg ,0 (3.1b)
, where y and z are unknown function vectors, and sum of each size is n.
The mass-matrix M here is

 









00

0I
M

Differentiating (3.1b) and using (3.1a) we get
 '

zy zzygzyfzyg),()()( ,,0 (3.1c)

, where)(zy,g y and)(zy,g z are yzy,g )(and zzy,g )(respectively. If

)(zy,g z , the coefficient of 'z , is non-singular in a neighborhood of the solution

we get
),(),()(1 zyfzygzy,gz yz

' 

In this case, y and z are index 1 variables. Initial values 0y and 0z should be

given to satisfy (3.1b).

b) System of index 2
Next, we consider the following
),(zyfy'  (3.2a)
)(0 yg (3.2b)
, where z is absent in the algebraic constraint and M is as follows.

 









00

0I
M

Differentiating (3.2b) gives
),()(0 zyfyg y (3.2c)

Differentiating (3.2c) gives the coefficient of 'z as
),()(zyfyg zy (3.2d)

If (3.2d) is non-singular in a neighborhood of the solution, y is index 1 variable
and z is index 2 variable. Initial values 0y and 0z should be given to satisfy not

DM_VRADAU5

II-202 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

only (3.2b) but (3.2c).

c) System of index 3
Finally, we consider the following system.
),(zyfy'  (3.3a)

),,(uzykz'  (3.3b)
)(0 yg (3.3c)
Here the sum of length of y , z , and u is n. M is written as


















000

00

00

I

I

M .

Differentiating (3.3c) and using (3.3a) we get
 fg y0 (3.3d)

Differentiating (3.3d) and using (3.3a,b) we get
 kfgffgf)(f,g zyyyyy 0 (3.3e)

, where the first term of the right hand side means matrix vector multiplication
with the matrix yg y obtained by differentiating matrix yg and the vector f .

Furthermore, differentiating (3.3e) brings about 'u . If its coefficient, written as

uzy kfg , is non-singular in a neighborhood of the solution, y is index 1 variable,

z is index 2 variable, and u is index 3 variable in the original system (3.3a,b,c).
Initial values 0y , 0z and 0u should be given to satisfy the three constraints (3.3

c,d,e).

b. Example

 ■ Example 1:Ordinary differential equations of the form),(yfy' x
Let us consider a simple system:

0)0(,2)0(

10,
))1((

21

612
2
1'

2

2
'
1












yy

yyy
y

yy




　　

Suppose we want to find solutions at 11,,2,1 x and print them out. In this
problem, the Jacobian matrix yf  is as follows.










































)1()12(

10
2
121

2

2

1

2

2

1

1

1

yyy
y

f

y

f
y

f

y

f

We provide subroutine JVPOL as real argument of JAC.

 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (ND=2,LWORK=4*ND*ND+12*ND+20,LIWORK=3*ND+20)
 DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK)
 DIMENSION RPAR(2)

 EXTERNAL FVPOL,JVPOL,SOLOUT
 RPAR(1)=1.0D-6
 RPAR(2)=0.2D0
 N=ND
 IJAC=1

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-203

 MLJAC=N
 IMAS=0
 IOUT=1
 X=0.0D0
 Y(1)=2.0D0
 Y(2)=-0.66D0
 XEND=11.0D0
 RTOL=1.0D-4
 ATOL=1.0D0*RTOL
 ITOL=0
 H=1.0D-6
 DO I=1,20
 IWORK(I)=0
 WORK(I)=0.D0
 END DO
 CALL DM_VRADAU5(N,FVPOL,X,Y,XEND,H,
 & RTOL,ATOL,ITOL,
 & JVPOL,IJAC,MLJAC,MUJAC,
 & FVPOL,IMAS,MLMAS,MUMAS,
 & SOLOUT,IOUT,
 & WORK,LWORK,IWORK,LIWORK,
 & RPAR,IPAR,ICON)
 WRITE(6,*) 'ICON=', ICON
 WRITE (6,99) X,Y(1),Y(2)
 99 FORMAT(1X,'X =',F5.2,' Y =',2E18.10)
 STOP
 END
C
C
 SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN,
 & WORK2,IWORK2)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N),CONT(LRC),RPAR(*)
 IF (NR.EQ.1) THEN
 WRITE (6,99) X,Y(1),Y(2),NR-1
 ELSE
 10 CONTINUE
 IF (X.GE.RPAR(2)) THEN
C --- CONTINUOUS OUTPUT FOR RADAU5
 WRITE (6,99) RPAR(2),DM_VCONTR5(1,RPAR(2),CONT,LRC,WORK2,
 & IWORK2),DM_VCONTR5(2,RPAR(2),CONT,LRC,WORK2,IWORK2),
 & NR-1
 RPAR(2)=RPAR(2)+0.2D0
 GOTO 10
 END IF
 END IF
 99 FORMAT(1X,'X =',F5.2,' Y =',2E18.10,' NSTEP =',I4)
 RETURN
 END
C
C
 SUBROUTINE FVPOL(N,X,Y,F,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)

DM_VRADAU5

II-204 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 DIMENSION Y(N),F(N),RPAR(*)
 F(1)=Y(2)
 F(2)=((1-Y(1)**2)*Y(2)-Y(1))/RPAR(1)
 RETURN
 END
C
C
 SUBROUTINE JVPOL(N,X,Y,DFY,LDFY,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N),DFY(LDFY,N),RPAR(*)
 DFY(1,1)=0.0D0
 DFY(1,2)=1.0D0
 DFY(2,1)=(-2.0D0*Y(1)*Y(2)-1.0D0)/RPAR(1)
 DFY(2,2)=(1.0D0-Y(1)**2)/RPAR(1)
 RETURN
 END

 ■ Example 2:),(yfy' x with banded Jacobian.

Consider the following partial differential equations. “t” means time and “x” is
scalar space variable.

2

2
2)1(

x

u
uBvuA

t

u






 

2

2
2

x

v
vuBu

t

v






 

501,3,1,10  BAx

Boundary conditions : 3),1(),0(,1),1(),0( tvtvtutu

Initial values : 3)0,(),2sin(
2

1
1)0,( xvxxu 

We replace the second spatial derivatives by finite differences on a grid of N
points,)1( Nixi (1  i  N),)1(1  Nx and then obtain a system of

ordinary differential equations with independent variable “t” and 2N unknowns
),(ii xtuu  and),(ii xtvv  .

)2()(41 11
22'

  iiiiiii uuuxuvuu 

)2()(3 11
22'

  iiiiiii vvvxvuuv 

3)()(,1)()(1010   tvtvtutu NN

Nivxu iii ,,2,1,3)0(),2sin(
2

1
1)0( 

When using this subroutine we define y as T),,,,,,(2211 NN vuvuvu y . Then

the Jacobian becomes a banded matrix with the upper and lower bandwidth 2. In
the following example, we set N=500, XEND=10, and IOUT=0 and print some
components of the solutions at XEND.

 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (ND=1000,NL=2,NU=2)
 PARAMETER (LWORK=(7*NL+4*NU+16)*ND+20,LIWORK=3*ND+20)
 DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK)
 DIMENSION RPAR(2)

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-205

 EXTERNAL FBRUS,JBRUS,SOLOUT
 PI=3.14159265358979324D0
 N=500
 N2=2*N
 USDELQ=(DBLE(N+1))**2
 GAMMA=0.02D0*USDELQ
 GAMMA2=2.D0*GAMMA
 RPAR(1)=GAMMA
 RPAR(2)=GAMMA2
 X=0.D0
 XEND=10.D0
 ANP1=N+1
 DO 1 I=1,N
 XI=I/ANP1
 Y(2*I)=3.D0
 1 Y(2*I-1)=1.D0+0.5D0*DSIN(2.D0*PI*XI)
 IJAC=1
C Jacobian is a banded matrix.
 MLJAC=NL
 MUJAC=NU
 IMAS=0
C Output Routine is not used.
 IOUT=0
 RTOL=1.0D-6
 ATOL=RTOL
 ITOL=0
 H=1.0D-6
 DO I=1,20
 WORK(I)=0.D0
 IWORK(I)=0
 END DO
 CALL DM_VRADAU5(N2,FBRUS,X,Y,XEND,H,
 & RTOL,ATOL,ITOL,
 & JBRUS,IJAC,MLJAC,MUJAC,
 & FBRUS,IMAS,MLMAS,MUMAS,
 & SOLOUT,IOUT,
 & WORK,LWORK,IWORK,LIWORK,
 & RPAR,IPAR,ICON)
 WRITE(6,*) 'ICON=',ICON
 WRITE(6,99) Y(1),Y(2),Y(N2-1),Y(N2)
 99 FORMAT(1X,4F18.10)
 STOP
 END
C
 SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN,
 & WORK2,IWORK2)
 RETURN
 END
C
 SUBROUTINE FBRUS(N2,X,Y,F,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N2),F(N2),RPAR(*)
 N=N2/2

DM_VRADAU5

II-206 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 GAMMA=RPAR(1)
 GAMMA2=RPAR(2)
 I=1
 IU=2*I-1
 IV=2*I
 UI=Y(IU)
 VI=Y(IV)
 UIM=1.D0
 VIM=3.D0
 UIP=Y(IU+2)
 VIP=Y(IV+2)
 PROD=UI*UI*VI
 F(IU)=1.D0+PROD-4.D0*UI+GAMMA*(UIM-2.D0*UI+UIP)
 F(IV)=3.D0*UI-PROD+GAMMA*(VIM-2.D0*VI+VIP)
 DO 5 I=2,N-1
 IU=2*I-1
 IV=2*I
 UI=Y(IU)
 VI=Y(IV)
 UIM=Y(IU-2)
 VIM=Y(IV-2)
 UIP=Y(IU+2)
 VIP=Y(IV+2)
 PROD=UI*UI*VI
 F(IU)=1.D0+PROD-4.D0*UI+GAMMA*(UIM-2.D0*UI+UIP)
 F(IV)=3.D0*UI-PROD+GAMMA*(VIM-2.D0*VI+VIP)
 5 CONTINUE
 I=N
 IU=2*I-1
 IV=2*I
 UI=Y(IU)
 VI=Y(IV)
 UIM=Y(IU-2)
 VIM=Y(IV-2)
 UIP=1.D0
 VIP=3.D0
 PROD=UI*UI*VI
 F(IU)=1.D0+PROD-4.D0*UI+GAMMA*(UIM-2.D0*UI+UIP)
 F(IV)=3.D0*UI-PROD+GAMMA*(VIM-2.D0*VI+VIP)
 RETURN
 END
C
 SUBROUTINE JBRUS(N2,X,Y,DFY,LDFY,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N2),DFY(LDFY,N2),RPAR(*)
 N=N2/2
 GAMMA=RPAR(1)
 GAMMA2=RPAR(2)
 DO 1 I=1,N
 IU=2*I-1
 IV=2*I
 UI=Y(IU)
 VI=Y(IV)

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-207

 UIVI=UI*VI
 UI2=UI*UI
 DFY(3,IU)=2.D0*UIVI-4.D0-GAMMA2
 DFY(2,IV)=UI2
 DFY(4,IU)=3.D0-2.D0*UIVI
 DFY(3,IV)=-UI2-GAMMA2
 DFY(2,IU)=0.D0
 DFY(4,IV)=0.D0
 1 CONTINUE
 DO 2 I=1,N2-2
 DFY(1,I+2)=GAMMA
 DFY(5,I)=GAMMA
 2 CONTINUE
 RETURN
 END

■ Example 3:Second order system),,(''' yyfy x

Next , we consider a partial differential equations defined in rectangular plate
}340,20);,{( yxyx :

　),,,(
2

2

tyxfu
t

u

t

u







  where

2

2

2

2

yx 








 Boundary conditions: 0|,0|   uu

 Initial conditions: 0)0,,(,0)0,,(



 yx
t

u
yxu

The plate  is discretized on a grid 8  5 interior points
5,,2,1,8,,2,1,,  jijhyihx ji , 92h .

We replace the special derivatives by finite differences, then setting '
jiji uv 

gives the following ordinary differential system.

),,()22

228820(

22221111

1111114

'

'

tyxfuuuuuu

uuuuu
h

vv

vu

jijijijijijiji

jijijijijijiji

jiji













With mapping k=i+8(j-1) from (i,j) , we set jik uy  and jik vy 40 .Then we

obtain system with T),,,,,,(80414021 yyyyy  as unknown vector. In the

following program we set IWORK(9)=40 and subroutine JPLATSB computes
only non-trivial part of the Jacobian.

100,1000  





 



0

(2000
),,(

2)5(52)2(5)ee xtxt

tyxf

 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER(MX=8,MY=5)
 PARAMETER (ND=2*MX*MY,LWORK=4*ND*ND+12*ND+20,LIWORK=3*ND+20)
 DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK)
 EXTERNAL FPLATE,JPLATSB,SOLOUT

if 2yy  or 4y

for all other y

DM_VRADAU5

II-208 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 DIMENSION RPAR(4),IPAR(7)

 NX=MX
 NY=MY
 NACHS1=2
 NACHS2=4
 NXM1=NX-1
 NYM1=NY-1
 NDEMI=NX*NY
 OMEGA=1000.D0
 STIFFN=100.D0
 WEIGHT=200.D0
 DENOM=NX+1
 DELX=2.D0/DENOM
 USH4=1.D0/(DELX**4)
 FAC=STIFFN*USH4
 N=ND
 IMAS=0
C --- OUTPUT ROUTINE IS USED DURING INTEGRATION
 IOUT=1
C --- INITIAL VALUES
 X=0.0D0
 DO I=1,N
 Y(I)=0.D0
 END DO
C --- REQUIRED TOLERANCE
 RTOL=1.0D-6
 ATOL=RTOL*1.0D-3
 ITOL=0
C --- INITIAL STEP SIZE
 H=1.0D-2
C --- SET DEFAULT VALUES
 DO I=1,20
 WORK(I)=0.D0
 IWORK(I)=0
 END DO
C --- SECOND ORDER OPTION AND BANDED
 IJAC=1
 IWORK(9)=N/2
 MLJAC=2*MX
 MUJAC=2*MX
C --- ENDPOINT OF INTEGRATION
 XEND=7.D0
C --- COMMUNICATION VALUES
 IPAR(1)=NX
 IPAR(2)=NXM1
 IPAR(3)=NY
 IPAR(4)=NYM1
 IPAR(5)=NDEMI
 IPAR(6)=NACHS1
 IPAR(7)=NACHS2
 RPAR(1)=OMEGA
 RPAR(2)=DELX

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-209

 RPAR(3)=FAC
 RPAR(4)=WEIGHT

C --- CALL OF THE SUBROUTINE RADAU5
 CALL DM_VRADAU5(N,FPLATE,X,Y,XEND,H,
 & RTOL,ATOL,ITOL,
 & JPLATSB,IJAC,MLJAC,MUJAC,
 & FPLATE,IMAS,MLMAS,MUMAS,
 & SOLOUT,IOUT,
 & WORK,LWORK,IWORK,LIWORK,
 & RPAR,IPAR,ICON)
 WRITE(6,*) 'ICON=',ICON
 DO K=1,N
 WRITE (6,*) Y(K)
 END DO
 STOP
 END
C
 SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN,
 & WORK2,IWORK2)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N),CONT(LRC)
 NHALF=N/2
 WRITE (6,991) X,NHALF,Y(1),Y(NHALF),NR-1
 991 FORMAT(1X,'X =',F9.5,' Y(1) and Y(',I3,')=',2F18.10,
 & ' NSTEP =',I4)
 RETURN
 END
C
 SUBROUTINE FPLATE (N, X, Y, F, RPAR, IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N), F(N)
 DIMENSION RPAR(*),IPAR(*)
 NX=IPAR(1)
 NXM1=IPAR(2)
 NY=IPAR(3)
 NYM1=IPAR(4)
 NDEMI=IPAR(5)
 NACHS1=IPAR(6)
 NACHS2=IPAR(7)
 OMEGA=RPAR(1)
 DELX=RPAR(2)
 FAC=RPAR(3)
 WEIGHT=RPAR(4)

 DO 1 I=1,NX
 DO 1 J=1,NY
 K=I+NX*(J-1)
C -------- SECOND DERIVATIVE ----
 F(K)=Y(K+NDEMI)
C ------ CENTRAL POINT---
 UC=16.D0*Y(K)
 IF(I.GT.1)THEN

DM_VRADAU5

II-210 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 UC=UC+Y(K)
 UC=UC-8.D0*Y(K-1)
 END IF
 IF(I.LT.NX)THEN
 UC=UC+Y(K)
 UC=UC-8.D0*Y(K+1)
 END IF
 IF(J.GT.1)THEN
 UC=UC+Y(K)
 UC=UC-8.D0*Y(K-NX)
 END IF
 IF(J.LT.NY)THEN
 UC=UC+Y(K)
 UC=UC-8.D0*Y(K+NX)
 END IF
 IF(I.GT.1 .AND.J.GT.1)UC=UC+2.D0*Y(K-NX-1)
 IF(I.LT.NX.AND.J.GT.1)UC=UC+2.D0*Y(K-NX+1)
 IF(I.GT.1 .AND.J.LT.NY)UC=UC+2.D0*Y(K+NX-1)
 IF(I.LT.NX.AND.J.LT.NY)UC=UC+2.D0*Y(K+NX+1)
 IF(I.GT.2)UC=UC+Y(K-2)
 IF(I.LT.NXM1)UC=UC+Y(K+2)
 IF(J.GT.2)UC=UC+Y(K-2*NX)
 IF(J.LT.NYM1)UC=UC+Y(K+2*NX)
 IF(J.EQ.NACHS1.OR.J.EQ.NACHS2)THEN
 XI=I*DELX
 FORCE=EXP(-5.D0*(X-XI-2.D0)**2)+EXP(-5.D0*(X-XI-5.D0)**2)
 ELSE
 FORCE=0.D0
 END IF
 F(K+NDEMI)=-OMEGA*Y(K+NDEMI)-FAC*UC+FORCE*WEIGHT
 1 CONTINUE
 RETURN
 END

 SUBROUTINE JPLATSB(N,X,Y,DFY,LDFY,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N),DFY(LDFY,N)
 DIMENSION RPAR(*),IPAR(*)
 NX=IPAR(1)
 NXM1=IPAR(2)
 NY=IPAR(3)
 NYM1=IPAR(4)
 NDEMI=IPAR(5)
 OMEGA=RPAR(1)
 FAC=RPAR(3)

 DO 1 I=1,LDFY
 DO 1 J=1,N
 1 DFY(I,J)=0.D0
 MU=2*NX+1
 FAC2=FAC*2.0D0
 FAC8=FAC*8.0D0
 FAC16=FAC*16.0D0

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-211

 DO 2 I=1,NX
 DO 2 J=1,NY
 K=I+NX*(J-1)
 DFY(MU,K)=-FAC16
 IF(I.GT.1)THEN
 DFY(MU,K)=DFY(MU,K)-FAC
 DFY(MU+1,K-1)=FAC8
 END IF
 IF(I.LT.NX)THEN
 DFY(MU,K)=DFY(MU,K)-FAC
 DFY(MU-1,K+1)=FAC8
 END IF
 IF(J.GT.1)THEN
 DFY(MU,K)=DFY(MU,K)-FAC
 DFY(MU+NX,K-NX)=FAC8
 END IF
 IF(J.LT.NY)THEN
 DFY(MU,K)=DFY(MU,K)-FAC
 DFY(MU-NX,K+NX)=FAC8
 END IF
 IF(I.GT.1 .AND.J.GT.1)DFY(MU+NX+1,K-NX-1)=-FAC2
 IF(I.LT.NX.AND.J.GT.1)DFY(MU+NX-1,K-NX+1)=-FAC2
 IF(I.GT.1 .AND.J.LT.NY)DFY(MU-NX+1,K+NX-1)=-FAC2
 IF(I.LT.NX.AND.J.LT.NY)DFY(MU-NX-1,K+NX+1)=-FAC2
 IF(I.GT.2)DFY(MU+2,K-2)=-FAC
 IF(I.LT.NXM1)DFY(MU-2,K+2)=-FAC
 IF(J.GT.2)DFY(MU+2*NX,K-2*NX)=-FAC
 IF(J.LT.NYM1)DFY(MU-2*NX,K+2*NX)=-FAC
 DFY(MU,K+NDEMI)= -OMEGA
 2 CONTINUE
 RETURN
 END

■ Example 4:Differential-algebraic system),(yfMy' x .
Finally, we consider the following system with independent variable t and 8
unknowns 821 ,,, yyy  .

008
'
8

'
71

672172
'
7

'
81

6736
'
62

67454
'
4

'
53

346546
'
4

'
53

3473
'
34

82834
'
1

'
25

91
'
1

'
25

)()(

)()1()11()(

)(

)()(

)()1()11()(

)(

)()(

)(

RtURyyyC

yyfRRyRUyyC

yyfRyyC

yyfRyRUyyC

yyfRRyRUyyC

yyfRyyC

RyRUyyfyyC

RyyyC

e

b

b

b

b

























 where

DM_VRADAU5

II-212 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

)200sin(1.0)(

6,10,99.0,026.0

)1()(

9,,2,1,9000,1000

5,,2,1,10

6

)

0

6

ttU

UU

yyf

kRR

kkC

e

bF

FUjy

ji

k

k




















i(y
e

With T),,,(821 yyy y the left hand side of the above 8 equations can be

written as My’, where M is a tridiagonal matrix.















































11

11

2

33

33

4

55

55

CC

CC

C

CC

CC

C

CC

CC

M

Obviously, M is singular and its rank is 5. Because of this, the system is a
differential-algebraic system. According to a detailed analysis this system is
index 1 problem.
We integrate from t=0 through t=0.2. Initial values y(0) must be chosen so that
the vector with 8 components from the right hand side of the above equations
lies in the range of the matrix M. Such initial values are as follows.

0)0(,)1()0()0(,)0(

)1()0()0(,)0()0(,0)0(

812765

564398121




yRRUyyUy

RRUyyRRyUyy

bb

bb

The Jacobian matrix in this model becomes a banded matrix with upper
bandwidth 2 and lower bandwidth 1. Additionally, all the unknown variables can
be proved to be index 1.

 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (ND=8,LJAC=4,LMAS=3,LE=5)
 PARAMETER (LWORK=ND*(LJAC+LMAS+3*LE+12)+20,LIWORK=3*ND+20)
 DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK),RPAR(16)
 EXTERNAL FAMPL,JBAMPL,BBAMPL,SOLOUT
 UE=0.1D0
 RPAR(1)=UE
 UB=6.0D0
 RPAR(2)=UB
 UF=0.026D0
 RPAR(3)=UF
 ALPHA=0.99D0
 RPAR(4)=ALPHA
 BETA=1.0D-6
 RPAR(5)=BETA
 R0=1000.0D0
 RPAR(6)=R0
 R1=9000.0D0
 RPAR(7)=R1
 R2=9000.0D0

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-213

 RPAR(8)=R2
 R3=9000.0D0
 RPAR(9)=R3
 R4=9000.0D0
 RPAR(10)=R4
 R5=9000.0D0
 RPAR(11)=R5
 R6=9000.0D0
 RPAR(12)=R6
 R7=9000.0D0
 RPAR(13)=R7
 R8=9000.0D0
 RPAR(14)=R8
 R9=9000.0D0
 RPAR(15)=R9
 RPAR(16)=0.0025D0
 N=8
 IJAC=1
 MLJAC=1
 MUJAC=2
 IMAS=1
 MLMAS=1
 MUMAS=1
 IOUT=1
 X=0.0D0
 Y(1)=0.D0
 Y(2)=UB-Y(1)*R8/R9
 Y(3)=UB/(R6/R5+1.D0)
 Y(4)=UB/(R6/R5+1.D0)
 Y(5)=UB
 Y(6)=UB/(R2/R1+1.D0)
 Y(7)=UB/(R2/R1+1.D0)
 Y(8)=0.D0
 XEND=0.2D0
 RTOL=1.0D-5
 ATOL=1.0D-6*RTOL
 ITOL=0
 H=1.0D-6
 DO 10 I=1,20
 IWORK(I)=0
 10 WORK(I)=0.D0
 CALL DM_VRADAU5(N,FAMPL,X,Y,XEND,H,
 & RTOL,ATOL,ITOL,
 & JBAMPL,IJAC,MLJAC,MUJAC,
 & BBAMPL,IMAS,MLMAS,MUMAS,
 & SOLOUT,IOUT,
 & WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,ICON)
 WRITE(6,*) 'ICON=',ICON
 WRITE (6,99) X,Y(1),Y(2)
 99 FORMAT(1X,'X =',F7.4,' Y =',2E18.10)
 STOP
 END
C

DM_VRADAU5

II-214 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C
 SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN,
 & WORK2,IWORK2)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION Y(N),CONT(LRC),RPAR(*)
 IF (NR.EQ.1) THEN
 WRITE (6,99) X,Y(1),Y(2),NR-1
 ELSE
 10 CONTINUE
 IF (X.GE.RPAR(16)) THEN
 WRITE (6,99) RPAR(16),
 & DM_VCONTR5(1,RPAR(16),CONT,LRC,WORK2,IWORK2),
 & DM_VCONTR5(2,RPAR(16),CONT,LRC,WORK2,IWORK2),NR-1
 RPAR(16)=RPAR(16)+0.0025D0
 GOTO 10
 END IF
 END IF
 99 FORMAT(1X,'X =',F7.4,' Y =',2E18.10,' NSTEP =',I4)
 RETURN
 END
C
C
 SUBROUTINE FAMPL(N,X,Y,F,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 Y(N),F(N),RPAR(*)
 UE=RPAR(1)
 UB=RPAR(2)
 UF=RPAR(3)
 ALPHA=RPAR(4)
 BETA=RPAR(5)
 R0=RPAR(6)
 R1=RPAR(7)
 R2=RPAR(8)
 R3=RPAR(9)
 R4=RPAR(10)
 R5=RPAR(11)
 R6=RPAR(12)
 R7=RPAR(13)
 R8=RPAR(14)
 R9=RPAR(15)
 W=2.D0*3.141592654D0*100.D0
 UET=UE*DSIN(W*X)
 FAC1=BETA*(DEXP((Y(4)-Y(3))/UF)-1.D0)
 FAC2=BETA*(DEXP((Y(7)-Y(6))/UF)-1.D0)
 F(1)=Y(1)/R9
 F(2)=(Y(2)-UB)/R8+ALPHA*FAC1
 F(3)=Y(3)/R7-FAC1
 F(4)=Y(4)/R5+(Y(4)-UB)/R6+(1.D0-ALPHA)*FAC1
 F(5)=(Y(5)-UB)/R4+ALPHA*FAC2
 F(6)=Y(6)/R3-FAC2
 F(7)=Y(7)/R1+(Y(7)-UB)/R2+(1.D0-ALPHA)*FAC2
 F(8)=(Y(8)-UET)/R0
 RETURN

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-215

 END
C
C
 SUBROUTINE JBAMPL(N,X,Y,DFY,LDFY,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 Y(N),DFY(LDFY,N),RPAR(*)
 UE=RPAR(1)
 UB=RPAR(2)
 UF=RPAR(3)
 ALPHA=RPAR(4)
 BETA=RPAR(5)
 R0=RPAR(6)
 R1=RPAR(7)
 R2=RPAR(8)
 R3=RPAR(9)
 R4=RPAR(10)
 R5=RPAR(11)
 R6=RPAR(12)
 R7=RPAR(13)
 R8=RPAR(14)
 R9=RPAR(15)
 FAC14=BETA*DEXP((Y(4)-Y(3))/UF)/UF
 FAC27=BETA*DEXP((Y(7)-Y(6))/UF)/UF
 DO J=1,8
 DFY(1,J)=0.D0
 DFY(2,J)=0.D0
 DFY(4,J)=0.D0
 END DO
 DFY(3,1)=1.D0/R9
 DFY(3,2)=1.D0/R8
 DFY(2,3)=-ALPHA*FAC14
 DFY(1,4)=ALPHA*FAC14
 DFY(3,3)=1.D0/R7+FAC14
 DFY(2,4)=-FAC14
 DFY(3,4)=1.D0/R5+1.D0/R6+(1.D0-ALPHA)*FAC14
 DFY(4,3)=-(1.D0-ALPHA)*FAC14
 DFY(3,5)=1.D0/R4
 DFY(2,6)=-ALPHA*FAC27
 DFY(1,7)=ALPHA*FAC27
 DFY(3,6)=1.D0/R3+FAC27
 DFY(2,7)=-FAC27
 DFY(3,7)=1.D0/R1+1.D0/R2+(1.D0-ALPHA)*FAC27
 DFY(4,6)=-(1.D0-ALPHA)*FAC27
 DFY(3,8)=1.D0/R0
 RETURN
 END
C
 SUBROUTINE BBAMPL(N,B,LB,RPAR,IPAR)
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 B(LB,N),RPAR(*)
 DO I=1,8
 B(1,I)=0.D0
 B(3,I)=0.D0

DM_VRADAU5

II-216 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 END DO
 C1=1.D-6
 C2=2.D-6
 C3=3.D-6
 C4=4.D-6
 C5=5.D-6
C
 B(2,1)=-C5
 B(1,2)=C5
 B(3,1)=C5
 B(2,2)=-C5
 B(2,3)=-C4
 B(2,4)=-C3
 B(1,5)=C3
 B(3,4)=C3
 B(2,5)=-C3
 B(2,6)=-C2
 B(2,7)=-C1
 B(1,8)=C1
 B(3,7)=C1
 B(2,8)=-C1
 RETURN
 END

(4) Method

This subroutine employs a 3-stage 5-th order implicit Runge-Kutta method (referred to as
Radau IIA of order 5 in [33] and [34]) which is stable and efficient for stiff differential
equations and differential-algebraic equations.
We first consider the case of M=I and think about the situation where the code advances
one step from 0x to 1x with step size h. Here 0x does not mean the initial value for x .

A 3-stage implicit Runge-Kutta method can be expressed as follows

　 


3

1
00),(

j
jjiji hcxah gfyg 3,2,1i (4.1a)

　 


3

1
001),(

j
jjj hcxbh gfyy (4.1b)

, where jij ca , and jb are coefficients of Runge-Kutta formula and usually represented

by the following table.

 321

3332313

2322212

1312111

bbb

aaac

aaac

aaac

The coefficients of 3-stage 5-th order Radau IIA formula, which this subroutine employs,
are as follows.

 DM_VRADAU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-217

9

1

36

616

36

616
9

1

36

616

36

616
1

225

632

360

6788

1800

6169296

10

64
225

632

1800

6169296

360

6788

10

64









In principle, the numerical solution 1y can be obtained by solving 3n dimensional non-

linear equations (4.1a) for 21, gg and 3g then substituting them into (4.1b). In real

implementation, however, we use variables 0ygz  ii for reducing computational errors,

solve the non-linear system for iz and use another form of (4.1b) to avoid evaluations of f.

The non-linear algebraic system is solved by Newton iteration. The Jacobin is evaluated
only once at 00 , yx when solving for iz and reused throughout iterations (Simplified

Newton Iterations).
The step size h is controlled and chosen as large as possible on the condition that required
accuracies are satisfied. For the step size control, error estimation of 1y is made and

based on the difference 1ŷ - 1y where 1ŷ is another approximation computed by an

embedded formula of order 4 (using the same 21, gg and 3g but different ib̂ , j=1,2,3).

When M  I in (1.1), we can formally replace all f in Radau IIA formula by M-1 f and
multiply the resulting formula by M, giving the method for (1.1).
For details, see [33] and [34] in Appendix A “References”. [33] presents a general
discussion on methods for solving ordinary differential equations including Runge-Kutta
methods and [34] treats stiff differential equations and differential-algebraic equations.
[35] and [36] are Japanese translation of [33] and [34] , respectively.

DM_VRANN3

II-218 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VRANN3

Generation of normal random numbers

CALL DM_VRANN3(DAM, DSD, IX, DA, K, N, DWORK, NWORK, ICON)

(1) Function

This subroutine generates normal random numbers from a normal-distribution density
function (1.1) with given mean m and standard deviation .

)
2

)(
exp(

2

1
)(

2

2


mx

xf


 (1.1)

 (2) Parameters

DAM Input. Mean m of normal distribution.

Double-precision real type.

DSD Input. Standard deviation  (> 0) of normal distribution.

Double-precision real type.

IX Input. Starting point.

On the first call, the value of IX must be positive. On the second and later calls,
return value 0 must be used. When a different starting point is specified for the
initial call, a different random number sequence is created.

(See 1) in b, “Notes,” in (3), “Comments on use.”)

Output. 0.

DA Output. N normal pseudorandom numbers generated by each thread.

Double precision two-dimensional array DA(K,NUMT), where, NUMT is the
number of threads.

N pseudo random numbers generated by thread number p (which is from 0 to
NUMT-1) are stored in DA(1:N,p+1).

K Input. The size of the first dimension of the array DA ( N).

N Input. Number of normally distributed pseudorandom numbers to be returned
by each thread in DA.

(See note 2) in (3), "Comments on use.")

DWORK ... Work area. A double precision two-dimensional array of
DWORK(NWORK,NUMT).

When this subroutine is called repeatedly, the contents and NUMT must not be
changed. DWORK contains all the current information required to restart this
subroutine from its current point.

(See note 3) and 6) in (3), "Comments on use.")

NWORK ... Input. The size of array DWORK. NWORK  1156.

ICON Output. Condition codes.

(See Table DM_VRANN3-1.)

 DM_VRANN3

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-219

Table DM_VRANN3-1 Condition codes

Code Meaning Processing

0 No error

30000 K < N or K < 1 Processing is discontinued.

30001 The value of NWORK is too small.

IX < 0, DSD  0

30002 An internal error occurred.

30003 to
30009

The value of DWORK was changed. Or, IX
was set to 0 at the first call.

40000 The value of IX is too large.

 (3) Comments on use

a. Notes

1) Starting point IX
 When a sequence of pseudo random numbers is to be generated by a
deterministic program, there must be some random input. Thus, the user must
give a starting point IX. This is often called a "seed". On the first call to this
subroutine the seed IX should be a positive integer. (For exception, See note 5)
in (3), "Comments on use.") On the subsequent call IX should be zero. This
indicates that more pseudo random numbers from the same sequence are to be
generated. To simplify programming, IX is returned as zero after the first call to
this subroutine.
 This subroutine appends the thread number +1, OMP_GET_THREAD_NUM()
+1, to the seed, as in seed = seed * OMP_GET_NUM_THREADS() +
OMP_GET_THREAD_NUM() +1. Thus the seeds used on different threads are
assured to be distinct, and hence subsequences of length less than 1018 will not
overlap. (See (4), "Method" below.)

2) Parameter N
 This subroutine returns the next N pseudo random numbers from the infinite
sequence defined by the initial seed IX. If N  0, no pseudo random numbers are
returned.
 For efficiency, N should be large (for example, N = 100,000). This reduces the
overhead of subroutine calls. N may be different on successive calls to this
routine, provided that K (the size of the first dimension of the array DA) is larger
than the maximum value of N.

3) Work area DWORK
When this subroutine is to be called two or more times, DWORK is used as the
work area for storing the information for the next call. While this subroutine is
called, the contents of DWORK must not be changed by the called program.

4) Parameter NWORK
DWORK(1,:), ... and, DWORK(NWORK,:) are used by this subroutine. The
value of NWORK must not be changed at any call of this subroutine. For
efficient processing, NWORK must be set to 1,156 or higher. When this
subroutine is to be used on a vector processor, the value of NWORK must be
100,000 or higher.

DM_VRANN3

II-220 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

5) Regeneration of the same random numbers
When DWORK(1,:), ... and, DWORK(NWORK,:) are saved, the same random
number sequence as that used during the saving can be regenerated by reusing
the DWORK and by calling this subroutine with condition IX=0.

6) The number of the threads or NUMT, used with this subroutine can be assigned
by user with an OpenMP environment variable "OMP_NUM_THREADS" or a
run-time library routine "OMP_SET_NUM_THREADS()". In case of
specifying the number of threads with run-time library
OMP_SET_NUM_THREADS(), assign the same number of threads as that of
first calling immediately before the second or later calling also with
OMP_SET_NUM_THREADS().

b. Example

 10,000,000  4 normal pseudorandom numbers are generated, and their mean and
standard deviation are calculated.

C ** EXAMPLE **
 PARAMETER (NUMT=4)
 PARAMETER (NRAN=10000000)
 PARAMETER (NSEED=12345)
 PARAMETER (NWMAX=100000)
 PARAMETER (NBUF=120000,K=NBUF)
 DOUBLE PRECISION DA(K,NUMT)
 DOUBLE PRECISION DWORK(NWMAX,NUMT)
 DOUBLE PRECISION DSUM,DSUM2,DSSUM,DSSUM2
 DOUBLE PRECISION DMEAN,DSIG
 DOUBLE PRECISION DAM,DSD
 INTEGER NTOT
C Initialize ix,n and nwork
 IX=NSEED
 WRITE (*,*)' Seed ',IX
 DAM=0.0D0
 DSD=1.0D0
 WRITE (*,*)' Mean ',DAM
 WRITE (*,*)' Standard deviation ',DSD
 N=NBUF
 NWORK=NWMAX
 DSUM=0.0D0
 DSSUM=0.0D0
C ngen counts down to 0
 NGEN=NRAN
 NTOT=NRAN*NUMT
C Generate ngen numbers
C with maximum NBUF at a time.
 KRPT=(NRAN+NBUF-1)/NBUF
 WRITE (*,*)' Generating ',NTOT,' numbers'
 WRITE (*,*)' with ',KRPT,
 $ ' calls to dm-vrann3 on ',NUMT,' threads'
 CALL OMP_SET_NUM_THREADS(NUMT)
 DO 20 IZ=1,KRPT
 N=MIN0(NBUF,NGEN)

 DM_VRANN3

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-221

 CALL DM_VRANN3(DAM,DSD,IX,DA,K,N,DWORK,NWORK,ICON)
 IF (ICON.NE.0) WRITE (*,*)' ICON ',ICON
C Accumulate sum of numbers
 DSUM2=0.0D0
 DO 30 J=1,NUMT
 DO 10 I=1,N
 DSUM2=DSUM2+DA(I,J)
 10 CONTINUE
 30 CONTINUE
C Accumulate sum of numbers globally.
 DSSUM2=0.0D0
 DO 40 J=1,NUMT
 DO 50 I=1,N
 DSSUM2=DSSUM2+DA(I,J)*DA(I,J)
 50 CONTINUE
 40 CONTINUE
 DSUM=DSUM+DSUM2
 DSSUM=DSSUM+DSSUM2
C Count down numbers still to generate
C on each processor
 NGEN=NGEN-N
 20 CONTINUE
C Compute overall mean.
 DMEAN=DSUM/DFLOAT(NTOT)
 WRITE (*,*) ' Sample mean ',DMEAN
C Compute overall sample standard deviation.
 DSIG=DSSUM/DFLOAT(NTOT)
 WRITE (*,*)' Sample standard deviation ',DSIG
 STOP
 END

 (4) Method

 This routine uses the Polar method with fast elementary function calculation to generate
normally distributed pseudorandom numbers. This method requires uniform
pseudorandom numbers generated using the same technique as that of DVRAU4 (see SSL
II Extended Capability User’s Guide II).

 For an explanation of the Polar method, see [46] in Appendix A, “References.” For
details of the actual processing and comparisons with other methods, see [11] in
Appendix A, “References.”

DM_VRANN4

II-222 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VRANN4

Generation of normal random numbers (Wallace’s method)

CALL DM_VRANN4 (DAM, DSD, IX, DA, K, N, DWORK, NWORK, ICON)

(1) Function

This subroutine generates normal random numbers from a normal-distribution density
function (1.1) with given mean m and standard deviation .

)
2

)(
exp(

2

1
)(

2

2


mx

xf


 (1.1)

 (2) Parameters

DAM Input. Mean m of normal distribution.

Double-precision real type.

DSD Input. Standard deviation  (> 0) of normal distribution.

Double-precision real type.

IX Input. Starting point.

On the first call, the value of IX must be positive. On the second and later calls,
return value 0 must be used. When a different starting point is specified for the
initial call, a different random number sequence is created.

(See 1) in b, “Notes,” in (3), “Comments on use.”)

Output. 0.

DA Output. N normal pseudorandom numbers generated by each thread.

Double precision two-dimensional array DA(K,NUMT), where, NUMT is the
number of threads.

N pseudo random numbers generated by thread number p (which is from 0 to
NUMT-1) are stored in DA(1:N,p+1).

K Input. The size of the first dimension of the array DA ( N).

N Input. Number of normally distributed pseudorandom numbers to be returned
by each thread in DA.

 (See note 2) in (3), "Comments on use.")

DWORK ... Work area. A double precision two-dimensional array of
DWORK(NWORK,NUMT).

When this subroutine is called repeatedly, the contents and NUMT must not be
changed. DWORK contains all the current information required to restart this
subroutine from its current point.

(See note 3) and 6) in (3), "Comments on use.")

NWORK Input. Size of array DWORK. NWORK  1350.

ICON Output. Condition codes.

(See Table DM_VRANN4-1.)

 DM_VRANN4

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-223

Table DM_VRANN4-1 Condition codes

Code Meaning Processing

0 No error

30000 K < N or K < 1 Processing is discontinued.

30001 The value of NWORK is too small.

IX < 0, DSD  0

30002 An internal error occurred.

30003 to
30008

The value of DWORK was changed.
Or, IX was set to 0 at the first call.

30009 The value of IX is too large.

40000 to
40002

The value of DWORK was changed.
Or, IX was set to 0 at the first call.

 (3) Comments on use

a. Notes

1) Starting point IX
 When a sequence of pseudo random numbers is to be generated by a
deterministic program, there must be some random input. Thus, the user must
give a starting point IX. This is often called a "seed". On the first call to this
subroutine the seed IX should be a positive integer. (For exception, See note 5)
in (3), "Comments on use.") On the subsequent call IX should be zero. This
indicates that more pseudo random numbers from the same sequence are to be
generated. To simplify programming, IX is returned as zero after the first call to
this subroutine.

2) Parameter N
 This subroutine returns the next N pseudo random numbers from the infinite
sequence defined by the initial seed IX. If N  0, no pseudo random numbers are
returned.
 For efficiency, N should be large (for example, N = 100,000). This reduces the
overhead of subroutine calls. N may be different on successive calls to this
routine, provided that K (the size of the first dimension of the array DA) is larger
than the maximum value of N.

3) Work area DWORK
When this subroutine is to be called two or more times, DWORK is used as the
work area for storing the information for the next call. While this subroutine is
called, the contents of DWORK must not be changed by the called program.

4) Parameter NWORK
DWORK(1,:), ... and, DWORK(NWORK,:) are used by this subroutine. The
value of NWORK must not be changed at any call of this subroutine. For
efficient processing, NWORK must be set to 1,350 or higher. When this
subroutine is to be used on a vector processor, the value of NWORK must be
500,000 or higher.

5) Regeneration of the same random numbers
When DWORK(1,:), ... and, DWORK(NWORK,:) are saved, the same random

DM_VRANN4

II-224 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

number sequence as that used during the saving can be regenerated by reusing
the DWORK and by calling this subroutine with condition IX=0.

6) The number of the threads or NUMT, used with this subroutine can be assigned
by user with an OpenMP environment variable "OMP_NUM_THREADS" or a
run-time library routine "OMP_SET_NUM_THREADS()". In case of
specifying the number of threads with run-time library
OMP_SET_NUM_THREADS(), assign the same number of threads as that of
first calling immediately before the second or later calling also with
OMP_SET_NUM_THREADS().

7) The implementation of Wallece’s method in this routine is about three times
faster than the implementation of the Polar method in DM_VRANN3.

b. Example

 10,000,000  4 normal pseudorandom numbers are generated, and their mean and
standard deviation are calculated.

C ** EXAMPLE **
 PARAMETER (NUMT=4)
 PARAMETER (NRAN=10000000)
 PARAMETER (NSEED=12345)
 PARAMETER (NWMAX=100000)
 PARAMETER (NBUF=120000,K=NBUF)
 DOUBLE PRECISION DA(K,NUMT)
 DOUBLE PRECISION DWORK(NWMAX,NUMT)
 DOUBLE PRECISION DSUM,DSUM2,DSSUM,DSSUM2
 DOUBLE PRECISION DMEAN,DSIG
 DOUBLE PRECISION DAM,DSD
 INTEGER NTOT
C Initialize ix,n and nwork
 IX=NSEED
 WRITE (*,*)' Seed ',IX
 DAM=0.0D0
 DSD=1.0D0
 WRITE (*,*)' Mean ',DAM
 WRITE (*,*)' Standard deviation ',DSD
 N=NBUF
 NWORK=NWMAX
 DSUM=0.0D0
 DSSUM=0.0D0
C ngen counts down to 0
 NGEN=NRAN
 NTOT=NRAN*NUMT
C Generate ngen numbers
C with maximum NBUF at a time.
 KRPT=(NRAN+NBUF-1)/NBUF
 WRITE (*,*)' Generating ',NTOT,' numbers'
 WRITE (*,*)' with ',KRPT,
 $ ' calls to dm-vrann3 on ',NUMT,
 $ ' threads'
 CALL OMP_SET_NUM_THREADS(NUMT)
 DO 20 IZ=1,KRPT

 DM_VRANN4

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-225

 N=MIN0(NBUF,NGEN)
 CALL DM_VRANN4(DAM,DSD,IX,DA,K,N,DWORK,NWORK,ICON)
 IF (ICON.NE.0) WRITE (*,*)' ICON ',ICON
C Accumulate sum of numbers
 DSUM2=0.0D0
 DO 30 J=1,NUMT
 DO 10 I=1,N
 DSUM2=DSUM2+DA(I,J)
 10 CONTINUE
 30 CONTINUE
C Accumulate sum of numbers globally.
 DSSUM2=0.0D0
 DO 40 J=1,NUMT
 DO 50 I=1,N
 DSSUM2=DSSUM2+DA(I,J)*DA(I,J)
 50 CONTINUE
 40 CONTINUE
 DSUM=DSUM+DSUM2
 DSSUM=DSSUM+DSSUM2
C Count down numbers still to generate
C on each processor
 NGEN=NGEN-N
 20 CONTINUE
C Compute overall mean.
 DMEAN=DSUM/DFLOAT(NTOT)
 WRITE (*,*) ' Sample mean ',DMEAN
C Compute overall sample standard deviation.
 DSIG=DSSUM/DFLOAT(NTOT)
 WRITE (*,*)' Sample standard deviation ',DSIG
 STOP
 END

 (4) Method

 This routine uses a variant of Wallece’s method to generate normally distributed pseudo-
random numbers. This method requires uniform pseudorandom numbers generated using
the same technique as that of DVRAU4 (see SSL II Extended Capability User’s Guide II).

 For Wallace’s method, see [78] in Appendix A, “References.”

 For implementation details and comparisons with other methods, see [11] and [12] in
Appendix A, “References.”

DM_VRANU4

II-226 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VRANU4

Generation of uniform random numbers [0,1)

CALL DM_VRANU4(IX,DA,K,N,DWORK,NWORK,ICON)

(1) Function

 This subroutine generates different sequences of pseudo random numbers from a uniform
distribution on [0,1) on each thread.

 (2) Parameters

IX Input. Starting point.

Output. Zero.

On the first call, IX should be positive. IX is returned as zero and should
remain zero for subsequent calls. IX < 8000000

(See note 1) in (3), "Comments on use.")

DA Output. N uniform pseudo random numbers on [0,1) generated by each thread.

Double precision two-dimensional array DA(K,NUMT), where, NUMT is the
number of threads.

N pseudo random numbers generated by thread number p (which is from 0 to
NUMT-1) are stored in DA(1:N,p+1).

(See note 6) in (3), "Comments on use.")

K Input. The size of the first dimension of the array DA ( N).

N Input. The number of uniformly distributed pseudo random numbers on each
processor to be returned in DA.

(See note 2) in (3), "Comments on use.")

DWORK ... Work area. A double precision two-dimensional array of
DWORK(NWORK,NUMT).

When this subroutine is called repeatedly, the contents and NUMT must not be
changed. DWORK contains all the current information required to restart this
subroutine from its current point.

(See note 3) and 6) in (3), "Comments on use.")

NWORK ... Input. The size of array DWORK. NWORK  388

Refer to (4), "Method" for the relation between the size of work area and the
period of the random number.

ICON Output. Condition codes.

(See Table DM_VRANU4-1.)

 DM_VRANU4

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-227

Table DM_VRANU4-1 Condition codes

Code Meaning Processing

0 No error 

30000 K < N or K < 1 Processing is discontinued.

30001 NWORK too small

30002 The internal check failed

30003 to
30008

DWORK overwritten or IX = 0 on first call

30009 IX too large

 (3) Comments on use

a. Notes

1) Starting value IX
 When a sequence of pseudo random numbers is to be generated by a
deterministic program, there must be some random input. Thus, the user must
give a starting point IX. This is often called a "seed". On the first call to this
subroutine the seed IX should be a positive integer. (For exception, See note 5)
in (3), "Comments on use.") On the subsequent call IX should be zero. This
indicates that more pseudo random numbers from the same sequence are to be
generated. To simplify programming, IX is returned as zero after the first call to
this subroutine.
 This subroutine appends the thread number +1, OMP_GET_THREAD_NUM()
+1, to the seed, as in seed = seed * OMP_GET_NUM_THREADS() +
OMP_GET_THREAD_NUM() +1. Thus the seeds used on different threads are
assured to be distinct, and hence subsequences of length less than 1018 will not
overlap. (See (4), "Method" below.)

2) Parameter N
 This subroutine returns the next N pseudo random numbers from the infinite
sequence defined by the initial seed IX. If N  0, no pseudo random numbers are
returned.
 For efficiency, N should be large (for example, N = 100,000). This reduces the
overhead of subroutine calls. N may be different on successive calls to this
routine, provided that K (the size of the first dimension of the array DA) is larger
than the maximum value of N.

3) Work area DWORK
 DWORK is used as a work area to store state information between calls to this
subroutine. The calling program must not change the contents of the array
DWORK between calls.

4) Parameter NWORK
 DWORK(1,:),, DWORK(NWORK,:) are used by this subroutine. NWORK
should be the same on each call to this subroutine. NWORK should be at least
388.

5) Checkpointing
 If DWORK(1,:), ..., DWORK(NWORK,:) are saved, the same sequence of
random numbers can be generated again (from the point where DWORK was
saved) by restoring DWORK(1), ..., DWORK(NWORK) and calling this
subroutine with argument IX = 0.

DM_VRANU4

II-228 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

6) The number of the threads or NUMT, used with this subroutine can be assigned
by user with an OpenMP environment variable "OMP_NUM_THREADS" or a
run-time library routine "OMP_SET_NUM_THREADS()". In case of
specifying the number of threads with run-time library
OMP_SET_NUM_THREADS(), assign the same number of threads as that of
first calling immediately before the second or later calling also with
OMP_SET_NUM_THREADS().

b. Example

 1,000,000  4 uniform pseudo random numbers are generated and their mean value is
calculated. The starting point is 123.

C **EXAMPLE**
 PARAMETER(NUMT=4)
 PARAMETER(NRAN=1000000)
 PARAMETER(NSEED=123)
 PARAMETER(NWMAX=5000)
 PARAMETER(NBUF=25000)
 DOUBLE PRECISION DA(NBUF,NUMT)
 DOUBLE PRECISION DWORK(NWMAX,NUMT)
 DOUBLE PRECISION DSUM,DSUM2
 DOUBLE PRECISION DMEAN,DSIG
 INTEGER TNO,NTOT

C Initialize ix, n and nwork
 IX=NSEED
 PRINT *,' Seed ',IX
 N=NBUF
 NWORK=NWMAX
 DSUM=0.0D0
C ngen counts down to 0
 NGEN=NRAN
 NTOT=NRAN*NUMT
C Generate ngen numbers on each thread
C with maximum NBUF at a time
 KRPT=(NRAN+NBUF-1)/NBUF
 PRINT *,' Generating ',NTOT,
 $ ' numbers'
 PRINT *,' with ',KRPT,
 $ ' calls to dm_vranu4 on ',NUMT,
 $ ' threads'
 DO 20 J=1,KRPT
 N=MIN0(NBUF,NGEN)
 DSUM2=0.0D0
 CALL OMP_SET_NUM_THREADS(NUMT)
 CALL DM_VRANU4(IX,DA,NBUF,N,DWORK,NWORK,ICON)
 IF(ICON.NE.0) PRINT *,
 $ ' Error return,',
 $ ' ICON ',ICON
 DO 30 TNO=1,NUMT
C Accumulate sum of numbers locally
 DO 10 I=1,N

 DM_VRANU4

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-229

 DSUM2=DSUM2+DA(I,TNO)
 10 CONTINUE
 30 CONTINUE
C Accumulate sum of numbers globally
 DSUM=DSUM+DSUM2
C Count down numbers still to generate
C on each processor
 NGEN=NGEN-N
 20 CONTINUE
C Compute overall mean
 DMEAN=DSUM/DFLOAT(NTOT)
 PRINT *,' Mean ',DMEAN
C Compute deviation from 0.5 normalized
C by expected value 1/sqrt(12*ntot).
c This should be (approximately) normally
C distributed with mean 0, variance 1.
 DSIG=(DMEAN-0.5D0)*DSQRT(12.0D0*NTOT)
 PRINT *,' Normalized deviation ',DSIG

 STOP
 END

 (4) Method

 This subroutine uses the generalized Fibonacci method. If the sequence of pseudo
random numbers is X(1), X(2), ..., then

 X(J)=  * X(J-r) +  * X(J-s) (modulo 1)

 where J > r > s. Here, r and s are fixed positive integers (called lags), and  and  are
small odd integers.

 On the first call (or any call with IX > 0) this subroutine selects a pair (r, s) defining a
primitive trinomial (mod 2) and a corresponding linear recurrence. There are 14 possible
pairs (r, s), and the one with largest r is chosen, subject to the constraint that N and
NWORK are large enough. Thus, the user can select a suitable generator as shown below.

- A good generator with a moderately long period, low initialization overhead and
small storage requirements (e.g., by setting NWORK = 1000).

- A very good generator with extremely long period, high initialization overhead
and high storage requirement (e.g., by setting NWORK = 133000).

- Some intermediate compromise, which does not require knowing the precise
details of how to choose pairs (r, s). The pairs (r, s) used by this subroutine are
given in Table DM_VRANU4-2. Tables of primitive trinomials may be found in
[41] in Appendix A, "References."

DM_VRANU4

II-230 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VRANU4-2 Pairs (r, s)

r s r s

127

258

521

607

1279

2281

3217

97

175

353

334

861

1252

2641

4423

9689

19937

23209

44497

110503

132049

2325

5502

10095

13470

23463

56784

79500

 This subroutine chooses the parameters (,) = (7, 9) if r  1000, and (,) = (1,15) if
 r > 1000. The rationale is that performance on statistical tests is likely to be improved if
 > 1, but this improvements is only significant for the smaller values of r. For the larger
values of r the performance on statistical tests is very good even if  = 1, and this value
increases the speed of random number generation.

 The period of the random number sequence is W(2r -1) where r is in the range 127 (for
small NWORK) to 132,049 (for N  264,098 and NWORK  132,056). The factor W
depends on the word length (W = 248 on the Fujitsu VPP series and PRIMEPOWER
series (SPARC architecture), and the period is at least 1052 or more).

 The initialization ensures that sequences of pseudo random numbers returned for
different initial seeds IX are separated by a distance of at least 260 > 1018 in the full
periodic sequence. Thus, for all practical purposes, different initial seeds IX ensure
different sequences of pseudo random numbers. This subroutine appends the thread
number+1 to the seed and thus assure different seeds are used on different threads.

 The method and implementation details are described in more detail in [9] and [10] in
Appendix A, "References." For further information and comparisons with other methods,
see [4], [24], [42], and [53] in Appendix A, "References."

(5) Tests for uniform random numbers

 Table DM_VRANU4-3 shows the results of testing of statistical hypotheses on the
pseudo random numbers generated by DM_VRANU4 with NWORK = 44504 (r = 44497,
s = 23463).

 In this table the number of degrees of freedom, f, for the chi-squared tests is very large -

in the millions. In this case the expression 122 2  f should be approximated

extremely well as a normal deviate with unit variance.

 DM_VRANU4

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-231

Table DM_VRANU4-3 Chi-squared tests (Uniform distribution in the n- dimensional unit hypercube)

dim(*1) Size(*2) resl
(*3) resv

(*4) dens(*5) thrd1(*6) thrd2(*6) thrd3(*6) thrd4(*6)

1

1

2

2

3

3

4

4

109

0.8  109

109

2  109

2  109

2  109

2  109

2  109

5  107

1.25  107

7071

3535

368

232

84

59

50000000

12500000

49999041

12496225

49836032

12487168

49787136

12117361

20.00

64.00

10.00

80.02

13.38

53.39

10.04

41.26

 1.21

-0.67

-0.10

-0.37

 1.40

-0.96

 0.76

-0.38

 1.37

 0.79

 0.42

-0.25

-0.21

-0.63

 1.51

 0.08

-0.24

 0.39

 0.30

 1.44

-1.92

 0.46

 1.10

 0.32

 0.90

-1.04

-0.65

-0.07

-0.47

-0.22

-1.45

 0.16

*1 Dimension of unit hypercube
*2 Number of pseudo randoms generated
*3 Number of equal subintervals partitioning [0,1) in each dimension
*4 Number of equal hypercubes partitioning the unit hypercube
*5 Average number of random points per small hypercube

*6 For each thread, the variable 122 2  f

DM_VRANU5

II-232 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VRANU5

Generation of uniform random numbers [0,1) (MRG8)

CALL DM_VRANU5(IX,DA,N,J,DWORK,ICON)

(1) Function

This subroutine generates sequence of pseudo random numbers from a uniform
distribution on [0,1) by Multiple Recursive Generator with 8th-order full primitive
polynomials (MRG8).

This subroutine generates same sequence of random number in any thread numbers.
When the reproducibility is needed, use this subroutine instead of DM_VRANU4 . The
interface of this subroutine is different from the interface of DM_VRANU4.

This subroutine supports jumping-ahead method, which jumps J steps in a sequence of
pseudo random numbers. This is useful to generate distinct sub sequence in parallel
execution.

The performance of DM_VRANU4 is better than this subroutine.

Both this subroutine and DM_VRANU4 passed the bigCrush test of TESTU01 which is
the statistical testing program of uniform random number generators.

 (2) Parameters

IX Input. Starting point.

Output. Zero.

On the first call, IX should be positive. IX is returned as zero and should
remain zero for subsequent calls.

(See note 1) in (3), "Comments on use.")

DA Output. N uniform pseudo random numbers on [0,1).

Double precision array DA(N).

N Input. The number of uniformly distributed pseudo random numbers to be
returned in DA.

J Input. Number of jumping steps in the sequence of pseudo random numbers.

8 byte integer.

0_8 (zero of 8-byte integer type) is to be set to generate pseudo random
numbers just after the sequence.

(See note 2) in (3), "Comments on use.")

DWORK ... Work area. A double precision array of DWORK(8).

When this subroutine is called repeatedly, the contents must not be changed.
DWORK contains all the current information required to restart this subroutine
from its current point.

(See note 3) in (3), "Comments on use.")

ICON Output. Condition codes.

 DM_VRANU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-233

(See Table DM_VRANU5-1.)

Table DM_VRANU5-1 Condition codes

Code Meaning Processing

0 No error 

30000 IX<0, N<1 or J<0 Processing is discontinued.

 (3) Comments on use

a. Notes

1) Starting value IX
 When a sequence of pseudo random numbers is to be generated by a
deterministic program, there must be some random input. Thus, the user must
give a starting point IX. This is often called a "seed". On the first call to this
subroutine the seed IX should be a positive integer. (For exception, See note 4)
in (3), "Comments on use.")
On the subsequent call IX should be zero. This indicates that more pseudo
random numbers from the same sequence are to be generated. To simplify
programming, IX is returned as zero after the first call to this subroutine.

2) Parameter J
 This subroutine supports jumping-ahead method, which jumps J steps in a
sequence of pseudo random numbers by setting J0.
This subroutine generates distinct sub sequence of pseudo random numbers in
each process by setting same IX and different J in parallel execution. (See
Example 2 and 3 in (3), "Comments on use")

3) Work area DWORK
 DWORK is used as a work area to store state information between calls to this
subroutine. The calling program must not change the contents of the array
DWORK between calls.

4) Checkpointing
If DWORK are saved, the same sequence of random numbers can be generated
again (from the point where DWORK was saved) by restoring DWORK and
calling this subroutine with argument IX = 0.

b. Example

Example 1.

 1,000,000 uniform pseudo random numbers are generated and their mean value is
calculated. The starting point is 123.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this
program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE 1**
 INTEGER NRAN,NSEED,NBUF
 PARAMETER(NRAN=10000000)
 PARAMETER(NSEED=123)
 PARAMETER(NBUF=25000)

DM_VRANU5

II-234 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 DOUBLE PRECISION DA(NBUF)
 DOUBLE PRECISION DWORK(8)
 DOUBLE PRECISION DSUM,DSUM2
 DOUBLE PRECISION DMEAN
 INTEGER IX,N,ICON
 INTEGER I,J
C
C Generate NRAN numbers with maximum NBUF at a time
 IX=NSEED
 PRINT *,' Seed ',IX
 PRINT *,' Generating ',NRAN,' numbers'
C
 DSUM=0.0D0
 DO J=1,NRAN,NBUF
 N=MIN0(NBUF,NRAN-J+1)
 CALL DM_VRANU5(IX,DA,N,0_8,DWORK,ICON)
 IF(ICON.NE.0) THEN
 PRINT *,' Error return ICON ',ICON
 END IF
 DSUM2=0.0D0
 DO I=1,N
 DSUM2=DSUM2+DA(I)
 END DO
 DSUM=DSUM+DSUM2
 END DO
C Compute mean
 DMEAN=DSUM/DFLOAT(NRAN)
 PRINT *,' Mean ',DMEAN

 STOP
 END

Example 2.

 Distinct 100,000 uniform pseudo random numbers are generated in each MPI processes
and their mean value is calculated. The starting point is 123.

In this program, J is set to 231-1. As far as the length of each sub sequences is smaller
than 231-1 they are not overlapping.

C **EXAMPLE 2**
 INTEGER,PARAMETER::N=10000
 INTEGER(8),PARAMETER::JUMP=2147483647_8 ! =2**31-1
 REAL(8)::X(N)
 REAL(8)::DNALL
 INTEGER::IRANK,NP,IERROR
 INTEGER::IX,ICON
 INTEGER::I
 INTEGER(8)::J
 REAL(8)::WORK(8)
 REAL(8)::DSUM,DSUMALL,DMEAN

 DM_VRANU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-235

 INCLUDE 'mpif.h'
C
 CALL MPI_INIT(IERROR)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, IRANK, IERROR)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NP, IERROR)
C
 IX=123
 J=IRANK*JUMP
 CALL DM_VRANU5(IX,X,N,J,WORK,ICON)
 IF(ICON.NE.0) THEN
 WRITE(6,*) 'DM_VRANU5 ERROR ICON= ',ICON
 END IF
C
 DSUM=0.0D0
 DO I=1,N
 DSUM=DSUM+X(I)
 END DO
 CALL MPI_REDUCE(DSUM,DSUMALL,1,MPI_REAL8,MPI_SUM,0,
 - MPI_COMM_WORLD,IERROR)
C Compute overall mean
 DNALL=DFLOAT(N)*DFLOAT(NP)
 IF(IRANK.EQ.0) THEN
 DMEAN=DSUMALL/DNALL
 WRITE(6,*) 'Mean ',DMEAN
 END IF
C
 CALL MPI_FINALIZE(IERROR)
 END

Example 3.

 Two uniform pseudo random number sequences X and Y are generated by four MPI
process and their mean values are calculated. The total number of each vector is
1,000,000 and the starting point is 123.

In this program, 1,000,000 pseudo random numbers are split into NP blocks, where NP
is the number of processes, and each of the sequences is generated by each of the
processes. Even if NP is changed, the whole sequence of pseudo random numbers is the
same.

C **EXAMPLE 3**
 INTEGER::NX,NY,NP
 PARAMETER(NX=100000)
 PARAMETER(NY=100000)
 PARAMETER(NP=4) ! NUMBER OF PROCESS
 REAL(8)::X((NX+NP-1)/NP),Y((NY+NP-1)/NP)
 INTEGER::IRANK,NSIZE,IERROR
 INTEGER::IX,NL,ICON,JUMP
 INTEGER::I
 INTEGER(8)::J0,J
 REAL(8)::WORK(8)

DM_VRANU5

II-236 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 REAL(8)::DSUM,DSUMALL,DMEAN
 INCLUDE 'mpif.h'
C
 CALL MPI_INIT(IERROR)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, IRANK, IERROR)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, NSIZE, IERROR)
 IF(NP.NE.NSIZE) THEN
 CALL MPI_FINALIZE(IERROR)
 STOP
 END IF
C
 IX=123
 JUMP=(NX+NP-1)/NP
 J=MIN(IRANK*JUMP,NX)
 NL=MIN(JUMP,NX-J)
 IF(NL.GE.1) THEN
 CALL DM_VRANU5(IX,X,NL,J,WORK,ICON)
 IF(ICON.NE.0) THEN
 WRITE(6,*) 'DM_VRANU5 ERROR ICON= ',ICON
 END IF
 J0=NX-(J+NL)
 ELSE
 J0=NX
 END IF
C
 DSUM=0.0D0
 DO I=1,NL
 DSUM=DSUM+X(I)
 END DO
 CALL MPI_REDUCE(DSUM,DSUMALL,1,MPI_REAL8,MPI_SUM,0,
 * MPI_COMM_WORLD,IERROR)
C Compute overall mean of X
 IF(IRANK.EQ.0) THEN
 DMEAN=DSUMALL/DFLOAT(NX)
 WRITE(6,*) 'Mean of X ',DMEAN
 END IF
C
 JUMP=(NY+NP-1)/NP
 J=MIN(IRANK*JUMP,NY)
 NL=MIN(JUMP,NY-J)
 J=J+J0
 IF(NL.GE.1) THEN
 CALL DM_VRANU5(IX,Y,NL,J,WORK,ICON)
 IF(ICON.NE.0) THEN
 WRITE(6,*) 'DM_VRANU5 ERROR ICON= ',ICON
 END IF
 END IF
C
 DSUM=0.0D0
 DO I=1,NL
 DSUM=DSUM+Y(I)
 END DO
 CALL MPI_REDUCE(DSUM,DSUMALL,1,MPI_REAL8,MPI_SUM,0,

 DM_VRANU5

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-237

 * MPI_COMM_WORLD,IERROR)
C Compute overall mean of Y
 IF(IRANK.EQ.0) THEN
 DMEAN=DSUMALL/DFLOAT(NY)
 WRITE(6,*) 'Mean of Y ',DMEAN
 END IF
C
 CALL MPI_FINALIZE(IERROR)
 END

 (4) Method

 This subroutine uses the Multiple Recursive Generator with 8th-order full primitive
polynomials (MRG8). The sequence of pseudo random numbers x1, x2, ... is generated by
the following formula.

 xi =(a1xi-1 + a2xi-2 + a3xi-3 + a4xi-4 + a5xi-5 + a6xi-6 + a7xi-7 + a8xi-8) mod p
 p=231-1,
 a1= 1089656042, a2= 1906537547, a3= 1764115693, a4= 1304127872,
 a5= 189748160, a6= 1984088114, a7= 626062218, a8= 1927846343.
 DA(i)= xi*(1/p)

 The period of the random number sequence is (232-1)8-1 (about 4.5*1074).

 The method and implementation details are described in [82] in Appendix A,
"References.".

MRG8 give the good result in Monte Carlo Simulations, see [83] in Appendix A,
"References."

 (5) Tests for uniform random numbers

 This subroutine passed bigCrush test of TESTU01 which is the statistical testing program
of uniform random number generators. See [84] for the details of TESU01.

DM_VSCHOL

II-238 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSCHOL

LDLT decomposition of a symmetric positive definite sparse matrix (Left-looking Cholesky
decomposition method)

CALL DM_VSCHOL(A, NZ, NROW, NFCNZ, N, IORDERING, NPERM, ISW, EPSZ,
NASSIGN, NSUPNUM, NFCNZFACTOR, PANELFACTOR,
NSIZEFACTOR, NFCNZINDEX, NPANELINDEX, NSIZEINDEX,
NDIM, NPOSTO, W, IW1, IW2, IW3, ICON)

(1) Function

 This subroutine executes LDLT decomposition for an n × n symmetric positive definite
sparse matrix using modified Cholesky decomposition method, so that

QPAPTQT = LDLT, (1.1)

 where P is a permutation matrix of ordering and Q is a permutation matrix of post
ordering. P and Q are orthogonal matrices, L is a unit lower triangular matrix, and D is a
diagonal matrix.

 (2) Parameter

A Input. The non-zero elements of the lower triangular part {aij | i  j} of a
symmetric sparse matrix A are stored in A(1:NZ).

One-dimensional array A(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector).

NZ Input. The total number of the nonzero elements belong to the lower triangular
part of a symmetric sparse matrix A.

NROW Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ Input. The position of the first nonzero element of each column stored in an
array A in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N Input. Order n of matrix A.

IORDERING Input. Control information whether to decompose the reordered matrix PAPT
permuted by the matrix P of ordering or to decompose the matrix A.

Specify IORDERING=1 for the decomposition of the matrix PAPT.

Specify the other value for the decomposition of the matrix A as it is.

NPERM Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

 DM_VSCHOL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-239

ISW..................... Input. Control information .

1) Specify ISW=1 for the first call.

2) Specify ISW=2 for the subsequent call if the previous call has failed with
ICON=31000, that means the size of PANELFACTOR or NPANELINDEX
were not enough. In this case, the PANELFACTOR or NPANELINDEX must
be reallocated with the necessary sizes which are returned in the
NSIZEFACTOR or NSIZEINDEX at the precedent call.

Besides, the values of A, NZ, NROW, NFCNZ, N, IORDERING, NPERM,
NASSIGN, NSUPNUM, NFCNZFACTOR, NFCNZINDEX, NPANELINDEX,
NPOSTO, NDIM, W, IW1, IW2, and IW3 must be unchanged after the first call.

3) Specify ISW=3 for the second and subsequent calls when solving another
system of equations which have the same non-zero pattern of the matrix A but
the values of its elements are different. In this case, the information obtained in
symbolic decomposition and the array PANELFACTOR and NPANELINDEX
of the same size required in previous call can be reused. Then numerical LDLT
decomposition will proceed with that information and the new linear equations
can be solved efficiently. Store the values of the matrix elements in the array A,
or store in another array B and let it be as the parameter A.

Besides, the values of NZ, NROW, NFCNZ, N, IORDERING, NPERM,
NASSIGN, NSUPNUM, NFCNZFACTOR, NSIZEFACTOR, NFCNZINDEX,
NPANELINDEX, NSIZEINDEX, NPOSTO, NDIM, W, IW1, IW2, and IW3
must be unchanged as the previous call.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is assumed.

(See note 2) in (3), "Comments on use.")

NASSIGN Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. The elements
of this array indicate the position, where this panel is allocated as a part of the
one-dimensional array PANELFACTOR. When j=NASSIGN(i), the i-th
supernode is allocated at j-th position.

Input. The values of the first call are reused when ISW  1 specified.

For the storage method of the decomposed results, refer to Figure
DM_VSCHOL-1.

One-dimensional array NASSIGN(N).

(See note 3) in (3), "Comments on use.")

NSUPNUM Output. The total number of supernodes.

Input. The values of the first call are reused when ISW  1 specified. ( n)

NFCNZFACTOR.. Output. Each supernode consists of multiple column vectors, and the factorized
matrix of supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. The elements
of this array indicate the position of the first element panel(1,1) of the i-th panel,
where this panel is allocated as a part of the one-dimensional array
PANELFACTOR.

One-dimensional 8-byte integer array NFCNZFACTOR(N+1).

DM_VSCHOL

II-240 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the storage method of the decomposed results, refer to Figure
DM_VSCHOL-1.

Input. The values set by the first call are reused when ISW  1 specified.

PANELFACTOR.. Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. These panels
are stored in this matrix.

The positions of the panel corresponding to the i-th supernode are indicated as
j=NASSIGN(i). The first position is stored in NFCNZFACTOR(j). The
decomposed result is stored in each panel.

The size of the i-th panel can be considered to be two-dimensional array of
DIM(1,i)  DIM(2,i). The corresponding part where the lower triangular unit
matrix except the diagonal part is stored in panel(s, t), s > t, s = 1,...,DIM(1, i),
t=1,...,DIM(2,i) of the i-th panel. The corresponding part of the diagonal matrix
D is stored in panel(t, t).

One-dimensional array PANELFACTOR(NSIZEFACTOR).

For the storage method of the decomposed results, refer to Figure
DM_VSCHOL-1.

(See note 4) in (3), "Comments on use.")

NSIZEFACTOR... Input. The size of the array PANELFACTOR. 8-byte integer.

Output. The necessary size for the array PANELFACTOR is returned.

(See note 4) in (3), "Comments on use.")

NFCNZINDEX..... Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. The elements
of this array indicate the position of the first element of the i-th row indices
vector, where this panel is allocated as a part of the one-dimensional array
NPANELINDEX.

One-dimensional 8-byte integer array NFCNZINDEX(N+1).

Input. The values set by the first call are reused when ISW  1 specified.

For the storage method of the decomposed results, refer to Figure
DM_VSCHOL-1.

NPANELINDEX.. Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. These row
indices vectors are stored in this matrix. The positions of the row pointer vector
corresponding to the i-th supernode are indicated as j=NASSIGN(i). The first
position is stored in NFCNZINDEX(j). The row indices vector is stored by
each panel. This row indices are the row indices of the matrix QAQT to which
the matrix A is permuted by post ordering.

One-dimensional array NPANELFACTOR(NSIZEINDEX).

For the storage method of the decomposed results, refer to Figure
DM_VSCHOL-1.

(See note 4) in (3), "Comments on use.")

NSIZEINDEX..... Input. The size of the array PANELINDEX. 8-byte integer.

 DM_VSCHOL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-241

Output. The necessary size is returned.

(See note 4) in (3), "Comments on use.")

NDIM Output. The size of first and second dimension of the i-th panel are stored in
NDIM(1,i) and NDIM(2,i) respectively.

Input. The values set by the first call are reused when ISW  1 specified.

Two-dimensional array NDIM(2,N).

For the storage method of the decomposed results, refer to Figure
DM_VSCHOL-1.

NPOSTO Output. The one dimensional vector is stored which indicates what column
index of A the i-th node in post ordering corresponds to.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array NPOSTO(N).

(See note 5) in (3), "Comments on use.")

W Work area.

Output/Input.

When IORDERING=1, one-dimensional array of size NZ.

When this subroutine is called repeatedly with ISW=1,2,3, This work area is
used for preserving information among calls. The contents must not be changed.

When IORDERING1, one-dimensional array of size 1.

IW1 Work area.

Output/Input.

When IORDERING=1, one-dimensional array of size NZ+N+1.

When this subroutine is called repeatedly with ISW=1,2,3, This work area is
used for preserving information among calls. The contents must not be changed.

When IORDERING1, one-dimensional array of size 1.

IW2 Work area.

Output/Input. One-dimensional array of size NZ+N+1.

When this subroutine is called repeatedly with ISW=1,2,3, This work area is
used for preserving information among calls. The contents must not be changed.

IW3 Work area.

Output/Input. One-dimensional array of size N35+35.

When this subroutine is called repeatedly with ISW=1,2,3, This work area is
used for preserving information among calls. The contents must not be changed.

ICON Output. Condition code.

(See Table DM_VSCHOL-1.)

DM_VSCHOL

II-242 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

panel row pointer vector

row indices of post ordering ・

Figure DM_VSCHOL-1 concept of storing the data for decomposed result

j = NASSIGN(i)  The i-th supernode is stored at the j-th position.

p = NFCNZFACTOR(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2,
j) from the p-th element of PANELFACTOR.

q = NFCNZINDEX(j)  The row pointer vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of PANELINDEX.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular unit matrix L except the diagonal part is stored in

 panel(s, t), s > t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The corresponding part of the diagonal matrix D is stored in panel(t, t).

The row pointers indicate the column indices of the matrix QAQT to which the node of the
matrix A is permuted by post ordering.

Table DM_VSCHOL-1 Condition codes

Code Meaning Processing

0 No error 

10000 The coefficient matrix is not positive definite. Processing is continued.

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

Processing is discontinued.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTOR < 1, NSIZEINDEX < 1,
EPSZ < 0.0, ISW < 1, or ISW > 3.

 DM_VSCHOL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-243

Code Meaning Processing

30100 The permutation matrix specified in NPREM is
not correct.

30200 The row pointer k stored in NROW(j) is k < i or
k > N.

Processing is discontinued.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n - i+1.

30400 There is a column without a diagonal element.

31000 The value of NSIZEFACTOR is not enough as
the size of PANELFACTOR,

or the value of NSIZEINDEX is not enough as
the size of NPANELINDEX.

Reallocate the
PANELFACTOR or
NPANELINDEX with the
necessary size which are
returned in the
NSIZEFACTOR or
NSIZEINDEX, and call this
subroutine again with
ISW=2.

(3) Comments on use

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LDLT decomposition. In this case, processing is
discontinued with ICON = 20000. When unit round off is u, the standard value
of EPSZ is 16  u. When the computation is to be continued even if the pivot is
small, assign the minimum value to EPSZ. In this case, however, the result is
not assured.
 When the pivot becomes negative during the decomposition, the coefficient
matrix is not a positive definite. In this case, processing is continued as
ICON=10000, but the numerical error may be large because of no pivoting.

3) The linear equations LDLTPQx = PQb which is a derived form from Ax = b can
be solved by calling subroutine DM_VSCHOLX following this subroutine with
the decomposed result data such as NASSIGN, NSUPNUM, NFCNZFACTOR,
NSIZEFACTOR, NFCNZINDEX, NPANELINDEX, NSIZEINDEX, NPOSTO,
NDIM, IW3 unchanged.

4) The necessary sizes for the array PANELFACTOR and NPANELINDEX that
store the decomposed results can not be determined beforehand. It is suggested
to reallocate them by using the result of the symbolic decomposition analysis
after the first call of this routine, or allocate large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And
call this routine with the small values such as one in the size specifying in

DM_VSCHOL

II-244 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

NSIZEFACTOR and NSIZEINDEX. This routine ends with ICON=31000, and
the necessary sizes for NSIZEFACTOR and NSIZEINDEX are returned. Then
the suspended process can be resumed by calling it with ISW=2 after
reallocating the arrays with the necessary sizes.

5) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

b. Example

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2,
a3 and c are zero constants, that means the operator is Laplacian. The matrix A in
Diagonal format is generated by the subroutine init_mat_diag, and transferred into
compressed column storage format.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7,NDIAGH=4)

 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1),
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION A(NDIAGH*N),NROW(K*NDIAG),NFCNZ(N+1),
 $ NPERM(N),NASSIGN(N),W(NDIAGH*N),
 $ NPOSTO(N),NDIM(2,N),
 $ IW1(NDIAGH*N+N+1),
 $ IW2(NDIAGH*N+N+1),
 $ IW3(35*N+35)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTOR
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEX
 REAL*8 DUMMYF
 INTEGER*4 NDUMMYI
 INTEGER*8 NSIZEFACTOR,NSIZEINDEX,

 DM_VSCHOL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-245

 $ NFCNZFACTOR(N+1),
 $ NFCNZINDEX(N+1)
 DIMENSION X(N),B(N),SOLEX(N)

 PRINT *,' LEFT-LOOKING MODIFIED CHOLESKY METHOD'
 PRINT *,' FOR SPARSE POSITIVE DEFINITE MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 0.0D0
 VA2 = 0.0D0
 VA3 = 0.0D0
 VC = 0.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)

 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZC=1
 NUMNZ=1
 DO J=1,N
 NTOPCFGC=1
 NTOPCFG=1
 DO I=NDIAG,1,-1
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 C(NUMNZC)=DIAG2(J,I)
 NROWC(NUMNZC)=NCOL
C
 IF(NCOL.GE.J)THEN

DM_VSCHOL

II-246 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOL
 ENDIF

C
 IF(NTOPCFGC.EQ.1)THEN
 NFCNZC(J)=NUMNZC
 NTOPCFGC=0
 ENDIF
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(NCOL.GE.J)THEN
 NUMNZ=NUMNZ+1
 ENDIF
C
 NUMNZC=NUMNZC+1
 ENDIF
C
 ENDDO
 ENDDO
 NFCNZC(N+1)=NUMNZC
 NNZC=NUMNZC-1
 NFCNZ(N+1)=NUMNZ
 NNZ=NUMNZ-1
C

 CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX,
 $ B,WC,IWC,ICON)
C
 X=B
 IORDERING=0
 ISW=1
 EPSZ=0.0D0
 NSIZEFACTOR=1
 NSIZEINDEX=1

 CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING,
 $ NPERM,ISW,EPSZ,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,DUMMYF,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NDUMMYI,NSIZEINDEX,NDIM,NPOSTO,
 $ W,IW1,IW2,IW3,ICON)

 PRINT *
 PRINT *,' ICON = ',ICON,' NSIZEFACTOR = ',NSIZEFACTOR,
 $ 'NSIZEINDEX = ',NSIZEINDEX
 PRINT *
C
C ALLOCATE STORAGES IN RETURNED SIZES

 DM_VSCHOL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-247

C
 ALLOCATE(PANELFACTOR(NSIZEFACTOR))
 ALLOCATE(NPANELINDEX(NSIZEINDEX))

 ISW=2

 CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING,
 $ NPERM,ISW,EPSZ,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,PANELFACTOR,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO,
 $ W,IW1,IW2,IW3,ICON)

 CALL DM_VSCHOLX(N,IORDERING,
 $ NPERM,X,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,PANELFACTOR,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO,
 $ IW3,ICON)

 ERR = ERRNRM(SOLEX,X,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF

 DEALLOCATE(PANELFACTOR,NPANELINDEX)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C

DM_VSCHOL

II-248 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1

 DM_VSCHOL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-249

 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE

DM_VSCHOL

II-250 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

 Through the symbolic decomposition process, this routine analyze the data dependence
among columns and the structure of the non-zero elements of matrix L which is a factor
matrix of modified Cholesky LDLT decomposition. Based on this analysis, the
supernodes that bundles certain columns are detected. The columns which have similar
non-zero pattern are merged as a supernode together. This means that some rows include
additional zero elements and that the number of columns composing a supernode
increases. Then data during the numerical decomposition on cache is reused efficiently.

 A union set of the row indices that indicate the row indices of the nonzero element of the
result of the modified Cholesky decomposition is computed on the columns that compose
a supernode. The result of the modified Cholesky decomposition of supernodes is stored
compressing it into the two-dimensional panel of which size of the first dimension
becomes the number of elements of this set of row indices. The set of row indices is
represented as a vector.

The left-looking modified Cholesky decomposition method is used.

For general information on this topic, refer to [19] in Appendix A, “References.”.

 DM_VSCHOLX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-251

DM_VSCHOLX

A system of linear equations with LDLT-decomposed symmetric positive definite sparse
matrices

CALL DM_VSCHOLX(N, IORDERING, NPERM, B, NASSIGN, NSUPNUM,
NFCNZFACTOR, PANELFACTOR, NSIZEFACTOR, NFCNZINDEX,
NPANELINDEX, NSIZEINDEX, NDIM, NPOSTO, IW3, ICON)

(1) Function

 This subroutine solves a system of equations with a LDLT-decomposed symmetric
positive definite sparse coefficient n  n matrix.

LDLTQPx = QPb, (1.1)

 where P is a permutation matrix of ordering and Q is a permutation matrix of post
ordering. P and Q are orthogonal matrices, L is a unit lower triangular matrix, D is a
diagonal matrix, b is a constant vector, and x is a solution vector.

(2) Parameter

N Input. Order n of matrix.

IORDERING Input. Control information whether the coefficient matrix was permuted into
PAPT by the permutation matrix P before decomposition.

Specify IORDERING=1 for the LDLT decomposed from PAPT.

Specify the other value for the LDLT decomposed matrix from A as it is.

NPERM Input. The permutation matrix P is specified as a vector when IORDERING=1.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

B Input. The right-hand side constant vector b of a system of linear equations Ax
= b.

Output. Solution vector x.

One-dimensional array B(N).

NASSIGN Input. Each supernode consists of multiple column vectors, and the supernodes
are stored in two-dimensional panel by compressing rows containing nonzero
elements with a common row indices vector. The elements of this array
indicate the position, where this panel is allocated as a part of the one-
dimensional array PANELFACTOR. When j=NASSIGN(i), the i-th supernode
is allocated at j-th position.

For the storage method of the decomposed results, refer to Figure
DM_VSCHOLX-1.

One-dimensional array NASSIGN(N).

NSUPNUM Input. The total number of supernodes.

NFCNZFACTOR.. Input. Each supernode consists of multiple column vectors, and the factorized
matrix of supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. The elements
of this array indicate the position of the first element panel(1,1) of the i-th panel,

DM_VSCHOLX

II-252 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

where this panel is allocated as a part of the one-dimensional array
PANELFACTOR.

One-dimensional 8-byte integer array NFCNZFACTOR(N+1).

For the storage method of the decomposed results, refer to Figure
DM_VSCHOLX-1.

(See note 3) in (3), "Comments on use.")

PANELFACTOR.. Input. Each supernode consists of multiple column vectors, and the supernodes
are stored in two-dimensional panel by compressing rows containing nonzero
elements with a common row indices vector. These panels are stored in this
matrix.

The positions of the panel corresponding to the i-th supernode are indicated as
j=NASSIGN(i). The first position is stored in NFCNZFACTOR(j). The
decomposed result is stored in each panel.

The size of the i-th panel can be considered to be two-dimensional array of
DIM(1,i)  DIM(2,i). The corresponding part where the lower triangular unit
matrix except the diagonal part is stored in panel(s, t), s > t, s = 1,...,DIM(1, i),
t=1,...,DIM(2,i) of the i-th panel. The corresponding part of the diagonal matrix
D is stored in panel(t, t).

One-dimensional array PANELFACTOR(NSIZEFACTOR).

For the storage method of the decomposed results, refer to Figure
DM_VSCHOLX-1.

NSIZEFACTOR.. Input. The size of the array PANELFACTOR. 8-byte integer.

NFCNZINDEX... Input. Each supernode consists of multiple column vectors, and the supernodes
are stored in two-dimensional panel by compressing rows containing nonzero
elements with a common row indices vector. The elements of this array
indicate the position of the first element of the i-th row indices vector, where
this panel is allocated as a part of the one-dimensional array NPANELINDEX.

One-dimensional 8-byte integer array NFCNZINDEX(N+1).

For the storage method of the decomposed results, refer to Figure
DM_VSCHOLX-1.

NPANELINDEX.. Input. Each supernode consists of multiple column vectors, and the supernodes
are stored in two-dimensional panel by compressing rows containing nonzero
elements with a common row indices vector. These row pointer vectors are
stored in this matrix. The positions of the row pointer vector corresponding to
the i-th supernode are indicated as j=NASSIGN(i). The first position is stored
in NFCNZINDEX(j). The row indices vector is stored by each panel. This row
indices are the row indices of the matrix QAQT to which the matrix A is
permuted by post ordering.

One-dimensional array NPANELFACTOR(NSIZEINDEX).

For the storage method of the decomposed results, refer to Figure
DM_VSCHOLX-1.

NSIZEINDEX..... Input. The size of the array PANELINDEX. 8-byte integer.

NDIM Input. The size of first and second dimension of the i-th panel are stored in
NDIM(1,i) and NDIM(2,i) respectively.

Two-dimensional array NDIM(2,N).

 DM_VSCHOLX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-253

For the storage method of the decomposed results, refer to Figure
DM_VSCHOLX-1.

NPOSTO Input. The one dimensional vector is stored which indicates what column index
of A the i-th node in post ordering corresponds to.

One-dimensional array NPOSTO(N).

(See note 2) in (3), "Comments on use.")

IW3 Input. Specify the IW3 which is used by DM_VSCHOL before calling this
routine. The contents must not be changed.

One-dimensional array IW3(N35+35).

ICON Output. Condition code.

(See Table DM_VSCHOLX-1.)

panel row pointer vector

row indices of post ordering ・

Figure DM_VSCHOLX-1 concept of storing the data for decomposed result

j = NASSIGN(i)  The i-th supernode is stored at the j-th position.

p = NFCNZFACTOR(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2,
j) from the p-th element of PANELFACTOR.

q = NFCNZINDEX(j)  The row pointer vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of PANELINDEX.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular unit matrix L except the diagonal part is stored in

 panel(s, t), s > t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The corresponding part of the diagonal matrix D is stored in panel(t, t).

The row pointers indicate the column indices of the matrix QAQT to which the node of the
matrix A is permuted by post ordering.

DM_VSCHOLX

II-254 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VSCHOLX-1 Condition codes

Code Meaning Processing

0 No error 

30000 N < 1, NSIZEFACTOR < 1, NSIZEINDEX <
1, or NSUPNUM < 1.

Processing is discontinued.
30100 The permutation matrix specified in NPREM is

not correct.

(3) Comments on use

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO

2) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

3) The linear system of equations can be solved by calling this subroutine with
specifying the LDLT-decomposed results which are calculated by DM_VSCHOL
subroutine.

b. Example

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2,
a3 and c are zero constants, that means the operator is Laplacian. The matrix A in
Diagonal format is generated by the subroutine init_mat_diag, and transferred into
compressed column storage format.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)

 DM_VSCHOLX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-255

 PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7,NDIAGH=4)

 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1),
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION A(NDIAGH*N),NROW(K*NDIAG),NFCNZ(N+1),
 $ NPERM(N),NASSIGN(N),W(NDIAGH*N),
 $ NPOSTO(N),NDIM(2,N),
 $ IW1(NDIAGH*N+N+1),
 $ IW2(NDIAGH*N+N+1),
 $ IW3(35*N+35)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTOR
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEX
 REAL*8 DUMMYF
 INTEGER*4 NDUMMYI
 INTEGER*8 NSIZEFACTOR,NSIZEINDEX,
 $ NFCNZFACTOR(N+1),
 $ NFCNZINDEX(N+1)
 DIMENSION X(N),B(N),SOLEX(N)

 PRINT *,' LEFT-LOOKING MODIFIED CHOLESKY METHOD'
 PRINT *,' FOR SPARSE POSITIVE DEFINITE MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 0.0D0
 VA2 = 0.0D0
 VA3 = 0.0D0
 VC = 0.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)

 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)

DM_VSCHOLX

II-256 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZC=1
 NUMNZ=1
 DO J=1,N
 NTOPCFGC=1
 NTOPCFG=1
 DO I=NDIAG,1,-1
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 C(NUMNZC)=DIAG2(J,I)
 NROWC(NUMNZC)=NCOL
C
 IF(NCOL.GE.J)THEN
 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOL
 ENDIF

C
 IF(NTOPCFGC.EQ.1)THEN
 NFCNZC(J)=NUMNZC
 NTOPCFGC=0
 ENDIF
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(NCOL.GE.J)THEN
 NUMNZ=NUMNZ+1
 ENDIF
C
 NUMNZC=NUMNZC+1
 ENDIF
C
 ENDDO
 ENDDO
 NFCNZC(N+1)=NUMNZC
 NNZC=NUMNZC-1
 NFCNZ(N+1)=NUMNZ
 NNZ=NUMNZ-1
C

 CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX,
 $ B,WC,IWC,ICON)
C

 DM_VSCHOLX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-257

 X=B
 IORDERING=0
 ISW=1
 EPSZ=0.0D0
 NSIZEFACTOR=1
 NSIZEINDEX=1

 CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING,
 $ NPERM,ISW,EPSZ,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,DUMMYF,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NDUMMYI,NSIZEINDEX,NDIM,NPOSTO,
 $ W,IW1,IW2,IW3,ICON)

 PRINT *
 PRINT *,' ICON = ',ICON,' NSIZEFACTOR = ',NSIZEFACTOR,
 $ 'NSIZEINDEX = ',NSIZEINDEX
 PRINT *
C
C ALLOCATE STORAGES IN RETURNED SIZES
C
 ALLOCATE(PANELFACTOR(NSIZEFACTOR))
 ALLOCATE(NPANELINDEX(NSIZEINDEX))

 ISW=2

 CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING,
 $ NPERM,ISW,EPSZ,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,PANELFACTOR,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO,
 $ W,IW1,IW2,IW3,ICON)

 CALL DM_VSCHOLX(N,IORDERING,
 $ NPERM,X,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,PANELFACTOR,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO,
 $ IW3,ICON)

 ERR = ERRNRM(SOLEX,X,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *
 PRINT *

DM_VSCHOLX

II-258 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF

 DEALLOCATE(PANELFACTOR,NPANELINDEX)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN

 DM_VSCHOLX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-259

 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF

DM_VSCHOLX

II-260 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-261

DM_VSCLU

LU decomposition of an unsymmetric complex sparse matrix

CALL DM_VSCLU(ZA, NZ, NROW, NFCNZ, N,
IPLEDSM, MZ, ISCLITERMAX,
IORDERING, NPERM, ISW,
NROWSYM, NFCNZSYM,
NASSIGN, NSUPNUM,
NFCNZFACTORL, ZPANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
SCLROW,SCLCOL,
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT,
NPIVOTP, NPIVOTQ, ZW, W, IW1, IW2, ICON)

(1) Function

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the
diagonal and then it is scaled in order to equilibrate both rows and columns norms. And
LU decomposition is performed, in which the pivot is taken as specified within the block
diagonal portion belonging to each supernode.

The absolute value of a complex number is approximated as a sum of the absolute value
of both its real part ant its imaginary part for the permutation of elements, scaling and
Pivot.

The unsymmetric complex sparse matrix is transformed as below.

A1=DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for
scaling rows and Dc is also a diagonal matrix for scaling columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper
triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than
or equal to the threshold specified in THEPSZ can not be found, the element with the
largest absolute value which in the block diagonal portion of a supernode is regarded as a
candidate.
If the absolute value of the candidate element is too small, the matrix can be
approximately decomposed into LU specifying an appropriate small value as a static pivot
in place of the candidate sought.

 (2) Parameter

ZA......................... Input. The nonzero elements of an unsymmetric sparse matrix A are stored in
ZA(1:NZ).

DM_VSCLU

II-262 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

A double precision complex one-dimensional array ZA(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector). For a complex matrix , a real array CC in this Figure
is replaced with a complex array.

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric
complex sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array ZA.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an
array ZA in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N......................... Input. Order n of matrix A.

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal
of a matrix A.
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting
large entries to the diagonal.

Otherwise no permutation is performed.

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns.
MZ(i)=j indicates that the j-th column which the element of aij belongs to is
permutated to i-th column. The element of aij is the large entry to be permuted
to the diagonal.
One-dimensional array MZ(N).

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr

and Dc to equilibrate both rows and columns of matrix A.

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and
Dc are assumed as unit matrices.

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of
iteration is considered as 10.

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT
permuted by the matrix P of ordering or to decompose the matrix A.

When IORDERING=10 is specified, calling this routine with ISW=1 produces
the informations which is needed to generate an ordering regarding A1 and they
are set in NROWSYM and NFCNZSYM.

When IORDERING 11 is specified, it is indicated that after an ordering is set in
NPERM, the computation is resumed.
Using the informations obtained in NROWSYM and NFCNZSYM after calling
this routines with ISW=1 and IORDERING=10, an ordering is determined.
After specifying this ordering in NPERM, this routine is called again with
ISW=1and IORDERING=11 and the computation is resumed.
LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is decomposed into LU.

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-263

Output. IORDERING is set to 11 after this routine is called with
IORDERING=10 and ISW=1. Therefore after an ordering is set in NPERM the
computation is resumed in the subsequent call without IORDERING=11 being
specified explicitly.

(See note 1) in (3), "Comments on use.")

NPERM.............. Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

ISW..................... Input. Control information.

1)When ISW=1 is specified.
After symmetrization of a matrix and symbolic decomposition, checking
whether the sufficient amount of memory for storing data are allocated the
computation is performed.
Call with IORDERING=10 produces the informations needed for seeking an
ordering in NROWSYM and NFCNZSYN. Using these informations an
ordering for SYM is determined. After an ordering is set in NPERM, calling this
routine with IORDERING=11 and also ISW=1 again resumes the computation.
When IORDERING is neither 10 nor 11, no ordering is specified.

2) When ISW=2 specified.
After the previous call ends with ICON=31000, that means that the sizes of
ZPANELFACTORL or ZPANELFACTORU or NPANELINDEXL or
NPANELINDEXU were not enough, the suspended computation is resumed.
Before calling again with ISW=2, the ZPANELFACTORL or
ZPANELFACTORU or NPANELINDEXL or NPANELINDEXU must be
reallocated with the necessary sizes which are returned in the NSIZEFACTORL
NSIZEFACTORU or NSIZEINDEXL or NSIZEINDEXU at the precedent call
and specified in corresponding arguments.
Besides, except these arguments and ISW as control information, the values in
the other augments must not be changed between the previous and following
calls.

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero
pattern of the lower triangular part of SYM=A1+A1

T in the compressed column
storage method are generated.

One-dimensional array NROWSYM(NZ+N).

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row
index of each column stored in array NROWSYM in the compressed column
storage method which stores the nonzero pattern of the lower part of a matrix
SYM column by column.

NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements
in the lower triangular part.

One-dimensional array NFCNZ(N+1).

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in
ZPANELFACTORL and ZPANELFACTORU as one dimensional subarray
consecutively and its block number is stored. The corresponding indices vectors
are similarly stored NPANELINDEXL and NPANELINDEXU respectively.
Data of the i-th supernode is stored into the j-th block of a subarray, where
j=NASSIN(i).

DM_VSCLU

II-264 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Input. When ISW≠1, the values stored in the first call are reused. Regarding
the storage methods of decomposed matrices, refer to Figure DM_VSCLU-1.
One-dimensional array NASSING(N).

NSUPNUM......... Output. The total number of supernodes.

Input. The values in the first call are reused when ISW  1 specified. ( n)

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric complex sparse
matrix are computed for each supernode respectively. The columns of L
belonging to each supernode are compressed to have the common row indices
vector and stored into a two dimensional panel with the corresponding parts of
U in its block diagonal portion. The index number of the top array element of
the one dimensional subarray where the i-th panel is mapped into
ZPANELFACTORL consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

Input. The values set by the first call are reused when ISW  1 specified.

ZPANELFACTORL..Output. The columns of the decomposed matrix L belonging to each
supernode are compressed to have the common row indices vector and stored in
a two dimensional panel with the corresponding parts of the decomposed matrix
U in its block diagonal portion. The block number of the section where the
panel corresponding to the i-th supernode is assigned is known from
j=NASSIGN(i). The location of its top of subarray including the portion of
decomposed matrices is stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i).
The corresponding block diagonal portion of the unit upper triangular matrix U
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).

A double precision complex one-dimensional array
ZPANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORL.. Input. The size of the array ZPANELFACTORL. 8-byte integer.

Output. The necessary size for the array ZPANELFACTORL is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-265

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the
row indices vector corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray is stored in
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into
which SYM is permuted in its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEXL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is
allocated in the i-th location.
NDIM(3,i) indicates the total amount of the size of the first dimension of the
panel where a matrix U is transposed and stored and the size of its block
diagonal portion.

Input. When ISW1, the values set by the first call are reused.

Two-dimensional array NDIM(3,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an
unsymmetric complex sparse matrix, the rows of U except the of block diagonal
portion belonging to each supernode are compressed to have the common
column indices vector and stored into a two dimensional panel. The index
number of the top array element of the one dimensional subarray where the i-th
panel is mapped into ZPANELFACTORU consecutively or the location of
panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

Input. When ISW  1, the values set by the first call are reused.

ZPANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode
are compressed to have the common column indices vector, transposed and
stored in a two dimensional panel without its block diagonal portion. The block
number of the section where the panel corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray
including the portion of decomposed matrices is stored in NFCNZFACTORU(j).
The size of the panel in the i-th block can be considered to be two dimensional
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular
matrix U except the block diagonal portion are compressed, transposed and
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).

DM_VSCLU

II-266 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

A double precision complex one-dimensional array
ZPANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORU.. Input. The size of the array ZPANELFACTORU. 8-byte integer.

Output. The necessary size for the array ZPANELFACTORU is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The index
number of the top array element of the one dimensional subarray where the i-th
column indices vector including indices of the block diagonal portion is mapped
into NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode
are compressed, transposed and stored in a two dimensional panel without its
block diagonal portion. The column indices vector including indices of the
block diagonal portion is mapped into NPANELINDEXU consecutively. The
block number of the section where the column indices vector corresponding to
the i-th supernode is assigned is known from j=NASSIGN(i). The location of its
top of subarray is stored in NFCNZINDEXU(j). These column indices are the
column numbers of the matrix into which SYM is permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEXU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NPOSTO............ Output. The information about what column number of A the i-th node in post
order corresponds to is stored.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array NPOSTO(N).

(See note 4) in (3), "Comments on use.")

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array SCLROW (N).

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-267

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns
are stored in one dimensional array.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array SCLCOL(N).

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0).

Output. When EPSZ ≤ 0.0, it is set to the standard value.

(See note 2) in (3), "Comments on use.")

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in
pivot search is considered to have the value greater than or equal to the
threshold specified, it is accepted as a pivot and the search of a pivot is broken
off.
For example, 1.0D-2.

Output. When THEPSZ≤0.0D0, 1.0D-2 is set.
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ.

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is
searched and what kind of pivoting is chosen if any.
For example, 40 for complete pivoting.

 IPIVOT<10 or IPIVOT≥ 50, no pivoting.

 10≤IPIVOT<20, partial pivoting

 20≤IPIVOT<30, diagonal pivoting

 21 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting.

 22 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting. If Rook pivoting fails, it is changed to complete pivoting.

 30≤IPIVOT<40, Rook pivoting

 32 : When within a supernode Rook pivoting fails, it is changed to complete
pivoting.

 40≤IPIVOT<50, complete pivoting

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.

1) When ISTATIC=1 is specified.
When the pivot searched within a supernode is not greater than SPEPSZ, it is
replaced with its approximate value of a complex number with the absolute
value of SPEPSZ.
If its value is 0.0D0, SPEPSZ is used as an approximation value.

The following conditions must be satisfied.
a) EPSZ must be less than or equal to the standard value of EPSZ.
b) Scaling must be performed with ISCLITERMAX=10.
c) THEPSZ≥SPEPSZ must hold.

2) When ISTATIC≠1 is specified.
No static pivot is performed.

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is
specified.
The following conditions must hold.
THEPSZ≥SPEPSZ≥EPSZ

DM_VSCLU

II-268 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 Output. When SPEPSZ<EPSZ, it is set to 1.0D-10.

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and
column exchanges for pivoting within each supernode is stored.

The block number of the section where the information on the i-th supernode is
assigned is known by j=NASSIGN(i). The position of the first element of that
section is stored in NFCNZPIVOT(j). The information of exchange rows and
columns within the i-th supernode is stored in the elements of
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and
NPIVOTQ respectively.

One-dimensional array NFCNZPIVOT(NSUPNUM+1).

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored.

One-dimensional array NPIVOTP(N).

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is
stored.

One-dimensional array NPIVOTQ(N).

ZW......................... Work area.

Output/Input.
A double precision complex one-dimensional array of size 2*NZ.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

W......................... Work area.

Output/Input.
One-dimensional array of size 4*NZ+6*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

IW1..................... Work area.

Output/Input.
One-dimensional array of size 2*NZ+2*(N+1)+16*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

IW2..................... Work area.

Output/Input.
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N).

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

ICON................... Output. Condition code.

(See Table DM_VSCLU-1.)

Figure DM_VSCLU-1 Conceptual scheme for storing decomposed results

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-269

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2,
j) from the p-th element of ZPANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of
decomposed results is stored in

 panel(s, t), s < t, s = 1,...,DIM(2, j),

 t = 1,...,DIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of
ZPANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area
with a length DIM(3,j) from the v-th element of
NPANELINDEXU.

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of
decomposed results is stored in

 panel(x, y), x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix
A is permuted in post ordering.

Table DM_VSCLU-1 Condition codes

DM_VSCLU

II-270 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Code Meaning Processing

0 No error 

10000 When ISTATIC=1 is specified, Static pivot
which replaces the pivot candidate with too
small value with SPEPSZ is made.



20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

20100 When IPLEDSM is specified, maximum
matching with the length N is sought in order
to permute large entries to the diagonal but can
not be found. The coefficient matrix A may be
singular.

20200 When seeking diagonal matrices for
equilibrating both rows and columns, there is a
zero vector in either rows or columns of the
matrix A. The coefficient matrix A may be
singular.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEXL < 1,
NSIZEFACTORU < 1, NSIZEINDEXU < 1,
ISW < 1, or ISW > 2

30100 The permutation matrix specified in NPREM
is not correct.

Processing is discontinued.

30200 The row index k stored in NROW(j) is k < 1 or
k >n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

30500 When ISTATIC=1 is specified, the required
conditions are not satisfied.
EPSZ is greater than 16u of the standard value
or ISCLITERMAX<10
or SPEPSZ>THEPSZ

31000 The value of NSIZEFACTORL is not enough
as the size of ZPANELFACTORL,
or the value of NSIZEINDEXL is not enough
as the size of NPANELINDEXL,
or the value of NSIZEFACTORU is not
enough as the size of ZPANELFACTORU,
 or the value of NSIZEINDEXU is not enough
as the size of NPANELINDEXU.

Reallocate the
ZPANELFACTORL or
NPANELINDEXL or
ZPANELFACTORU or
NPANELINDEXU
with the necessary size which
are returned in the
NSIZEFACTORL or
NSIZEINDEXL or
NSIZEFACTORU or
NSIZEINDEXU respectively
and call this subroutine again
with ISW=2 specified.

(3) Comments on use

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-271

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO
Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LU decomposition. In this case, processing is
discontinued with ICON = 20000. When unit round off is u, the standard value
of EPSZ is 16  u.
The absolute value of a complex number is approximated as a sum of the
absolute value of both its real part ant its imaginary part for Pivot.
When the computation is to be continued even if the absolute value of diagonal
element is small, assign the minimum value to EPSZ. In this case, however, the
result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller
than SPEPSZ, LU decomposition is approximately continued replacing it with a
complex number with the absolute value of SPEPSZ.

3) The necessary sizes for the array ZPANELFACTORL, NPANELINDEXL,
ZPANELFACTORU and NPANELINDEXU that store the decomposed results
can not be determined beforehand. It is suggested to reallocate them by using the
result of the symbolic decomposition analysis after the first call of this routine,
or allocate large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And
call this routine with the small values such as one in the size specifying in
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU
with ISW=1. This routine ends with ICON=31000, and the necessary sizes for
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are
returned. Then the suspended process can be resumed by calling it with ISW=2
after reallocating the arrays with the necessary sizes.

4) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

5) A system of equations Ax=b can be solved by calling DM_VSCLUX
subsequently in use of the results of LU decomposition obtained by this routine.
The following arguments used in this routine are specified.
See example in (3), "Comments on use.".

ZA, NZ, NROW, NFCNZ, N,
IPLEDSM, MZ, IORDERING, NPERM,
NASSIGN, NSUPNUM,
NFCNZFACTORL, ZPANELFACTORL,

DM_VSCLU

II-272 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
SCLROW,SCLCOL,
NFCNZPIVOT,
NPIVOTP, NPIVOTQ, IW2

b. Example

The linear system of equations Ax=f is solved, where a matrix is built using results
from the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag
and the portion in only its six lower diagonals are converted in compressed column
storage format. The linear system of equations with an unsymmetric real sparse
matrix A built in this way is stored into a complex sparse array and is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD,
 $ N = KX*KY*KZ)
 PARAMETER (NBORDER=N+1,NOFFDIAG=6)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 INTEGER*4 WL,ZWL
 PARAMETER (NALL=NDIAG*N,
C
 $ ZWL =2*NALL,
 $ WL =4*NALL+6*N,
 $ IW1L=2*NALL+2*(N+1)+16*N,
 $ IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))
C
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 COMPLEX*16 ZA(K*NDIAG),ZWC(K*NDIAG),
 $ ZW(ZWL),ZONE
 PARAMETER(ZONE=(1.0D0,0.0D0))
 DIMENSION NROW(K*NDIAG),NFCNZ(N+1),
 $ NROWSYM(K*NDIAG+N),NFCNZSYM(N+1),
 $ IWC(2,K*NDIAG)
 DIMENSION NPERM(N),W(WL),
 $ NPOSTO(N),NDIM(3,N),
 $ NASSIGN(N),
 $ MZ(N),
 $ IW1(IW1L),IW2(IW2L)
 COMPLEX*16, DIMENSION(:), ALLOCATABLE ::
 $ ZPANELFACTORL,ZPANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU
 COMPLEX*8 ZDUMMYFL,ZDUMMYFU
 INTEGER*4 NDUMMYIL,
 $ NDUMMYIU
 INTEGER*8 NSIZEFACTORL,
 $ NSIZEINDEXL,

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-273

 $ NSIZEINDEXU,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 COMPLEX*16 ZB(N),ZSOLEX(N)
 REAL*8 THEPSZ,EPSZ,SPEPSZ,
 $ SCLROW(N),SCLCOL(N)
C
 INTEGER*4 IPIVOT,ISTATIC,NFCNZPIVOT(N+1),
 $ NPIVOTP(N),NPIVOTQ(N),
 $ IREFINE,ITERMAX,ITER,IPLEDSM
C
 PRINT *,' LU DECOMPOSITION METHOD'
 PRINT *,' FOR SPARSE UNSYMMETRIC COMPLEX MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *
C
 DO I=1,N
 ZSOLEX(I)= ZONE
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',ZSOLEX(1),' X(N) = ',ZSOLEX(N)
 PRINT *
C
 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
C
 DO J=1,N
 NTOPCFG=1
C
 DO I=NDIAG,1,-1
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF

DM_VSCLU

II-274 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C
 IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN
 CONTINUE
 ELSE
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 ZA(NUMNZ)=DCMPLX(DIAG2(J,I),0.0D0)
 NROW(NUMNZ)=NCOL
C
 NUMNZ=NUMNZ+1
C
 ENDIF
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZ(N+1)=NUMNZ
 NZ=NUMNZ-1
C
 CALL DM_VMVSCCC(ZA,NZ,NROW,NFCNZ,N,ZSOLEX,
 $ ZB,ZWC,IWC,ICON)
C
C INITIAL CALL WITH IORDER=1
C
 IORDERING= 0
 IPLEDSM=1
 ISCLITERMAX=10
 ISW=1
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEXL=1
 NSIZEINDEXU=1
 EPSZ=1.0D-16
 THEPSZ=1.0D-2
 SPEPSZ=0.0D0
 IPIVOT=40
 ISTATIC=0
 IREFINE=1
 EPSR=0.0D0
 ITERMAX=10
C
 CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZDUMMYFL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZDUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NDUMMYIU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-275

 $ ZW,W,IW1,IW2,ICON)
C
 PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEXL=',NSIZEINDEXL,
 $ 'NSIZEINDEXU=',NSIZEINDEXU,
 $ 'NSUPNUM=',NSUPNUM
C
 ALLOCATE(ZPANELFACTORL(NSIZEFACTORL))
 ALLOCATE(ZPANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEXL))
 ALLOCATE(NPANELINDEXU(NSIZEINDEXU))
C
 ISW=2
C
 CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZPANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZPANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ ZW,W,IW1,IW2,ICON)
C
 CALL DM_VSCLUX(N,
 $ IORDERING,
 $ NPERM,
 $ ZB,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZPANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZPANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ IPLEDSM,MZ,
 $ SCLROW,SCLCOL,
 $ NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ ZA,NZ,NROW,NFCNZ,
 $ IW2,ICON)
C
 ERR = ERRNRM(ZSOLEX,ZB,N)

DM_VSCLU

II-276 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',ZB(1),' X(N) = ',ZB(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF
C
 DEALLOCATE(ZPANELFACTORL,ZPANELFACTORU,
 $ NPANELINDEXL,
 $ NPANELINDEXU)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

 DM_VSCLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-277

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF

DM_VSCLU

II-278 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END
C ==
* SOLUTE ERROR
* | Z1 - Z2 |
C ==
 REAL*8 FUNCTION ERRNRM(Z1,Z2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 COMPLEX*16 Z1(*),Z2(*),SS
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = Z1(I) - Z2(I)
 S = S + DREAL(SS * DCONJG(SS))
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

The permutation which moves large entries to the diagonal is performed. And the
permutated matrix is scaled in order to equilibrate both rows and columns norms.
The absolute value of a complex number is approximated as a sum of the absolute value
of both its real part ant its imaginary part for the permutation of elements, scaling and
Pivot.
The LU decomposition of this matrix is made. Nonzero elements belonging to each
supernode is stored in two-dimensional panel respectively. The pivot for numerical
stabilization is sought with in its block diagonal portion. The threshold for pivot search
can be specified so that immediately after a pivot candidate with the absolute value
greater than it is encountered in pivot search it is accepted as a pivot. In addition the static
pivoting can be specified so that even if the pivot obtained after pivot search is considered
as too small, it is replaced with the value of SPEPSZ and LU decomposition can be
approximately performed.
Refer to references in Appendix A, “References.” in detail.
Refer to [23], [57] on the method how the elements of large absolute value are permuted
to diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps,
to [19], [2], [22], [48], [68] on the base of the LU decomposition of unsymmetric complex
sparse matrices and to [63], [69] on equilibration of matrices and pivoting.

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-279

DM_VSCLUX

A system of linear equations with LU-decomposed unsymmetric complex sparse matrices

CALL DM_VSCLUX(N, IORDERING, NPERM,
ZB, NASSIGN, NSUPNUM,
NFCNZFACTORL, ZPANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
IPLEDSM, MZ,
SCLROW,SCLCOL, NFCNZPIVOT,
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,
ZA, NZ, NROW, NFCNZ,
IW2, ICON)

(1) Function

An n × n unsymmetric complex sparse matrix A of which LU decomposition is made as
below is given. In this decomposition the large entries of an n × n unsymmetric complex
sparse matrix A are permutated to the diagonal and then it is scaled in order to equilibrate
both rows and columns norms. Subsequently LU decomposition in which the pivot is
taken as specified within the block diagonal portion belonging to each supernode is
performed and results in the following form. This routine solves the following linear
equation in use of these results of LU decomposition.
The absolute value of a complex number is approximated as a sum of the absolute value
of both its real part ant its imaginary part for the permutation of elements, scaling and
Pivot.

 Ax=b

A matrix A is decomposed into as below.

 PrsQPDrAPcDcPTQTPcs=LU

The unsymmetric complex sparse matrix A is transformed as below.

A1=DrAPcDc

 where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for
scaling rows and Dc is also a diagonal matrix for scaling columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.
The actual exchanges are restricted to the reduced part of the matrix belonging to each
supernode.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper
triangular matrix.
It can be specified to improve the precision of the solution by iterative refinement.

(2) Parameter

DM_VSCLUX

II-280 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

N......................... Input. Order n of matrix A.

IORDERING..... Input. When IORDERING 11 is specified, it is indicated that LU decomposition
is performed with an ordering specified in NPERM.
The matrix PA1PT is decomposed into LU decomposition.

Otherwise. No ordering is specified.

 (See note 1) in (3), "Comments on use.")

NPERM.............. Input. When IORDEING=11 is specified, a vector presenting the permutation
matrix P used is stored.

One-dimensional array NPERM(N).

(See note 2) in (3), "Comments on use.")

ZB......................... Input. The right-hand side constant vector b of a system of linear equations Ax
= b.

Output. Solution vector x.

A double precision complex one-dimensional array ZB(N).

NASSIGN.......... Input. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in
ZPANELFACTORL and ZPANELFACTORU as one dimensional subarray
consecutively and its block number is stored. The corresponding indices vectors
are similarly stored NPANELINDEXL and NPANELINDEXU respectively.
Data of the i-th supernode is stored into the j-th block of a subarray, where
j=NASSIN(i).

Regarding the storage methods of decomposed matrices, refer to Figure
DM_VSCLUX-1.
One-dimensional array NASSING(N).

NSUPNUM......... Input. The total number of supernodes.( n)

NFCNZFACTORL..Input. The decomposed matrices L and U of an unsymmetric complex sparse
matrix are computed for each supernode respectively. The columns of L
belonging to each supernode are compressed to have the common row indices
vector and stored into a two dimensional panel with the corresponding parts of
U in its block diagonal portion. The index number of the top array element of
the one dimensional subarray where the i-th panel is mapped into
ZPANELFACTORL consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

ZPANELFACTORL..Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i).
The location of its top of subarray including the portion of decomposed
matrices is stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i).
The corresponding block diagonal portion of the unit upper triangular matrix U
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-281

A double precision complex one-dimensional array
ZPANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

NSIZEFACTORL.. Input. The size of the array ZPANELFACTORL. 8-byte integer.

NFCNZINDEXL... Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

NPANELINDEXL..Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the
row indices vector corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray is stored in
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into
which SYM is permuted in its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEXL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer.

NDIM................. Input. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is
allocated in the i-th location.
NDIM(3,i) indicates the total amount of the size of the first dimension of the
panel where a matrix U is transposed and stored and the size of its block
diagonal portion.

Two-dimensional array NDIM(3,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

NFCNZFACTORU..Input. Regarding a matrix U derived from LU decomposition of an
unsymmetric complex sparse matrix, the rows of U except the of block diagonal
portion belonging to each supernode are compressed to have the common
column indices vector and stored into a two dimensional panel. The index
number of the top array element of the one dimensional subarray where the i-th
panel is mapped into ZPANELFACTORU consecutively or the location of
panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

DM_VSCLUX

II-282 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

ZPANELFACTORU..Input. The rows of the decomposed matrix U belonging to each supernode
are compressed to have the common column indices vector, transposed and
stored in a two dimensional panel without its block diagonal portion. The block
number of the section where the panel corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray
including the portion of decomposed matrices is stored in NFCNZFACTORU(j).
The size of the panel in the i-th block can be considered to be two dimensional
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular
matrix U except the block diagonal portion are compressed, transposed and
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).

A double precision complex one-dimensional array
ZPANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

NSIZEFACTORU.. Input. The size of the array ZPANELFACTORU. 8-byte integer.

 (See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Input. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The index
number of the top array element of the one dimensional subarray where the i-th
column indices vector including indices of the block diagonal portion is mapped
into NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

NPANELINDEXU..Input. The rows of the decomposed matrix U belonging to each supernode are
compressed, transposed and stored in a two dimensional panel without its block
diagonal portion. The column indices vector including indices of the block
diagonal portion is mapped into NPANELINDEXU consecutively. The block
number of the section where the column indices vector corresponding to the i-th
supernode is assigned is known from j=NASSIGN(i). The location of its top of
subarray is stored in NFCNZINDEXU(j). These column indices are the column
numbers of the matrix into which SYM is permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEXU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCLUX-1.

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer.

NPOSTO............ Input. The information about what column number of A the i-th node in post
order corresponds to is stored.

One-dimensional array NPOSTO(N).

(See note 3) in (3), "Comments on use.")

IPLEDSM............ Input. Information indicating whether for LU decomposition it is specified to
permute the large entries to the diagonal of a matrix A.
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting
large entries to the diagonal.

Otherwise no permutation is performed.

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-283

MZ....................... Input. When IPLEDSM=1 is specified, it indicates a permutation of columns.
MZ(i)=j indicates that the j-th column which the element of aij belongs to is
permutated to i-th column. The element of aij is the large entry to be permuted
to the diagonal.
One-dimensional array MZ(N).

SCLROW............ Input. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

One-dimensional array SCLROW (N).

SCLCOL............ Input. The diagonal elements of Dc or a diagonal matrix for scaling columns are
stored in one dimensional array.

One-dimensional array SCLCOL(N).

NFCNZPIVOT.... Input. The location for the storage where the history of relative row and column
exchanges for pivoting within each supernode is stored.

The block number of the section where the information on the i-th supernode is
assigned is known by j=NASSIGN(i). The position of the first element of that
section is stored in NFCNZPIVOT(j). The information of exchange rows and
columns within the i-th supernode is stored in the elements of
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and
NPIVOTQ respectively.

One-dimensional array NFCNZPIVOT(NSUPNUM+1).

 NPIVOTP.......... Input. The information on exchanges of rows within each supernode is stored.

One-dimensional array NPIVOTP(N).

NPIVORQ.......... Input. The information on exchanges of columns within each supernode is
stored.

One-dimensional array NPIVOTQ(N).

IREFINE............ Input. Control information indicating whether iterative refinement is performed
when the solution is computed in use of results of LU decomposition. A
residual vector is computed in quadruple precision.

When IREFINE=1 is specified.
The iterative refinement is performed. It is iterated until in the sequences of the
solutions obtained in refinement the difference of the absolute values of their
corresponding residual vectors become larger than a fourth of that of
immediately previous ones.

When IREFINE≠1is specified.
No iterative refinement is performed.

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector
b-Ax is sufficiently smaller compared with the absolute value of b.

When EPSR ≤ 0.0, it is set to 1.0D-6.

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1).

ITER.................. Output. Actual iterative count for refinement.

ZA......................... Input. The nonzero elements of an unsymmetric complex sparse matrix A are
stored in ZA(1:NZ).

A double precision complex one-dimensional array ZA(NZ).

DM_VSCLUX

II-284 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector). For a complex matrix , a real array CC in this Figure
is replaced with a complex array.

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric
complex sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array ZA.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an
array ZA in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

IW2..................... Work area.

Input.
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N).

The data derived from calling DM_VSCLU of LU decomposition of an
unsymmetric complex sparse matrix is transferred in this work area. The
contents must not be changed among calls.

ICON................... Output. Condition code.

(See Table DM_VSCLUX-1.)

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure DM_VSCLUX-1 Conceptual scheme for storing decomposed results

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2,
j) from the p-th element of ZPANELFACTORL.

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-285

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of
decomposed results is stored in

 panel(s, t), s < t, s = 1,...,DIM(2, j),

 t = 1,...,DIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of
ZPANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area
with a length DIM(3,j) from the v-th element of
NPANELINDEXU.

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of
decomposed results is stored in

 panel(x, y), x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix
A is permuted in post ordering.

Table DM_VSCLUX-1 Condition codes

Code Meaning Processing

0 No error 

20400 There is a zero element in diagonal of resultant
matrices of LU decomposition.

20500 The norm of residual vector for the solution
vector is greater than that of b multiplied by
EPSR, which is the right term constant vector
in Ax=b. The coefficient matrix A may be
close to a singular matrix.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEXL < 1,
NSIZEFACTORU < 1, NSIZEINDEXU < 1,
ITERMAX<1 when IREFINE=1.

30100 The permutation matrix specified in NPREM
is not correct.

Processing is discontinued.

30200 The row index k stored in NROW(j) is k < 1 or
k > n.

DM_VSCLUX

II-286 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Code Meaning Processing

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

Processing is discontinued.

(3) Comments on use

a. Notes

1) The results of LU decomposition obtained by DM_VSCLU is used.
See note 5) (3), "Comments on use." of DM_VSCLU and example in (3),
"Comments on use." of DM_VSCLUX.

2) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO

3) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 2) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

b. Example

The linear system of equations Ax=f is solved, where a matrix is built using results
from the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag
and the portion in only its six lower diagonals are converted in compressed column
storage format. The linear system of equations with an unsymmetric real sparse
matrix A built in this way is stored into a complex sparse matrix and is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD,
 $ N = KX*KY*KZ)
 PARAMETER (NBORDER=N+1,NOFFDIAG=6)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-287

 INTEGER*4 WL,ZWL
 PARAMETER (NALL=NDIAG*N,
C
 $ ZWL =2*NALL,
 $ WL =4*NALL+6*N,
 $ IW1L=2*NALL+2*(N+1)+16*N,
 $ IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))
C
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 COMPLEX*16 ZA(K*NDIAG),ZWC(K*NDIAG),
 $ ZW(ZWL),ZONE
 PARAMETER(ZONE=(1.0D0,0.0D0))
 DIMENSION NROW(K*NDIAG),NFCNZ(N+1),
 $ NROWSYM(K*NDIAG+N),NFCNZSYM(N+1),
 $ IWC(2,K*NDIAG)
 DIMENSION NPERM(N),W(WL),
 $ NPOSTO(N),NDIM(3,N),
 $ NASSIGN(N),
 $ MZ(N),
 $ IW1(IW1L),IW2(IW2L)
 COMPLEX*16, DIMENSION(:), ALLOCATABLE ::
 $ ZPANELFACTORL,ZPANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU
 COMPLEX*8 ZDUMMYFL,ZDUMMYFU
 INTEGER*4 NDUMMYIL,
 $ NDUMMYIU
 INTEGER*8 NSIZEFACTORL,
 $ NSIZEINDEXL,
 $ NSIZEINDEXU,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 COMPLEX*16 ZB(N),ZSOLEX(N)
 REAL*8 THEPSZ,EPSZ,SPEPSZ,
 $ SCLROW(N),SCLCOL(N)
C
 INTEGER*4 IPIVOT,ISTATIC,NFCNZPIVOT(N+1),
 $ NPIVOTP(N),NPIVOTQ(N),
 $ IREFINE,ITERMAX,ITER,IPLEDSM
C
 PRINT *,' LU DECOMPOSITION METHOD'
 PRINT *,' FOR SPARSE UNSYMMETRIC COMPLEX MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *
C
 DO I=1,N
 ZSOLEX(I)= ZONE
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',ZSOLEX(1),' X(N) = ',ZSOLEX(N)
 PRINT *
C
 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST

DM_VSCLUX

II-288 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 & ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
C
 DO J=1,N
 NTOPCFG=1
C
 DO I=NDIAG,1,-1
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN
 CONTINUE
 ELSE
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 ZA(NUMNZ)=DCMPLX(DIAG2(J,I),0.0D0)
 NROW(NUMNZ)=NCOL
C
 NUMNZ=NUMNZ+1
C
 ENDIF
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZ(N+1)=NUMNZ
 NZ=NUMNZ-1
C
 CALL DM_VMVSCCC(ZA,NZ,NROW,NFCNZ,N,ZSOLEX,
 $ ZB,ZWC,IWC,ICON)
C
C INITIAL CALL WITH IORDER=1
C
 IORDERING= 0
 IPLEDSM=1
 ISCLITERMAX=10
 ISW=1
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEXL=1
 NSIZEINDEXU=1

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-289

 EPSZ=1.0D-16
 THEPSZ=1.0D-2
 SPEPSZ=0.0D0
 IPIVOT=40
 ISTATIC=0
 IREFINE=1
 EPSR=0.0D0
 ITERMAX=10
C
 CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZDUMMYFL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZDUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NDUMMYIU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ ZW,W,IW1,IW2,ICON)
C
 PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEXL=',NSIZEINDEXL,
 $ 'NSIZEINDEXU=',NSIZEINDEXU,
 $ 'NSUPNUM=',NSUPNUM
C
 ALLOCATE(ZPANELFACTORL(NSIZEFACTORL))
 ALLOCATE(ZPANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEXL))
 ALLOCATE(NPANELINDEXU(NSIZEINDEXU))
C
 ISW=2
C
 CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZPANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZPANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,

DM_VSCLUX

II-290 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 $ NPIVOTP,NPIVOTQ,
 $ ZW,W,IW1,IW2,ICON)
C
 CALL DM_VSCLUX(N,
 $ IORDERING,
 $ NPERM,
 $ ZB,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZPANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZPANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ IPLEDSM,MZ,
 $ SCLROW,SCLCOL,
 $ NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ ZA,NZ,NROW,NFCNZ,
 $ IW2,ICON)
C
 ERR = ERRNRM(ZSOLEX,ZB,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',ZB(1),' X(N) = ',ZB(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF
C
 DEALLOCATE(ZPANELFACTORL,ZPANELFACTORU,
 $ NPANELINDEXL,
 $ NPANELINDEXU)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-291

 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

DM_VSCLUX

II-292 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END
C ==
* SOLUTE ERROR
* | Z1 - Z2 |
C ==
 REAL*8 FUNCTION ERRNRM(Z1,Z2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 COMPLEX*16 Z1(*),Z2(*),SS
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = Z1(I) - Z2(I)
 S = S + DREAL(SS * DCONJG(SS))
 100 CONTINUE
C

 DM_VSCLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-293

 ERRNRM = SQRT(S)
 RETURN
 END

DM_VSCS

II-294 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSCS

A system of linear equations with unsymmetric complex sparse matrices (LU decomposition
method)

CALL DM_VSCS(ZA, NZ, NROW, NFCNZ, N,
IPLEDSM, MZ, ISCLITERMAX,
IORDERING, NPERM, ISW,
NROWSYM, NFCNZSYM, ZB,
NASSIGN, NSUPNUM,
NFCNZFACTORL, ZPANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
SCLROW, SCLCOL,
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT,
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,
ZW, W, IW1, IW2, ICON)

(1) Function

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the
diagonal and then it is scaled in order to equilibrate both rows and columns norms.
Subsequently this subroutine solves a system of equations Ax=b in use of LU decomposition
in which the pivot is taken as specified within the block diagonal portion belonging to each
supernode.
The absolute value of a complex number is approximated as a sum of the absolute value of
both its real part ant its imaginary part for the permutation of elements, scaling and Pivot.

 Ax=b

The unsymmetric complex sparse matrix is transformed as below.

A1=DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling
rows and Dc is also a diagonal matrix for scaling columns.

A2=QPA1PTQT

A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM. P
and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular
matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or
equal to the threshold specified in THEPSZ can not be found, the element with the largest
absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately
decomposed into LU specifying an appropriate small value as a static pivot in place of the
candidate sought.
The solution is computed using LU decomposition.
It can be specified to improve the precision of the solution by iterative refinement.

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-295

(2) Parameter

ZA......................... Input. The nonzero elements of an unsymmetric complex sparse matrix A are stored
in ZA(1:NZ).

A double precision complex one-dimensional array ZA(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1 in the
description for DM_VMVSCC routine (multiplication of a real sparse matrix and a
real vector). For a complex matrix, a real array CC in this Figure is replaced with a
complex array.

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric complex
sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array ZA.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an array
ZA in the compressed column storage method which stores the nonzero elements
column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N......................... Input. Order n of matrix A.

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal of a
matrix A.
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting
large entries to the diagonal.

Otherwise no permutation is performed.

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns.
MZ(i)=j indicates that the j-th column which the element of aij belongs to is
permutated to i-th column. The element of aij is the large entry to be permuted to the
diagonal.
One-dimensional array MZ(N).

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr and
Dc to equilibrate both rows and columns of matrix A.

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and Dc
are assumed as unit matrices.

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of iteration
is considered as 10.

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT
permuted by the matrix P of ordering or to decompose the matrix A.

When IORDERING=10 is specified, calling this routine with ISW=1 produces the
informations which is needed to generate an ordering regarding A1 and they are set
in NROWSYM and NFCNZSYM.

When IORDERING 11 is specified, it is indicated that after an ordering is set in
NPERM, the computation is resumed.
Using the informations obtained in NROWSYM and NFCNZSYM after calling this
routines with ISW=1 and IORDERING=10, an ordering is determined. After
specifying this ordering in NPERM, this routine is called again with ISW=1and

DM_VSCS

II-296 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

IORDERING=11 and the computation is resumed.
LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is decomposed into LU.

Output. IORDERING is set to 11 after this routine is called with IORDERING=10
and ISW=1. Therefore after an ordering is set in NPERM the computation is
resumed in the subsequent call without IORDERING=11 being specified explicitly.

(See note 1) in (3), "Comments on use.")

NPERM.............. Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

ISW..................... Input. Control information.

1)When ISW=1 is specified.
After symmetrization of a matrix and symbolic decomposition, checking whether
the sufficient amount of memory for storing data are allocated the computation is
performed.
Call with IORDERING=10 produces the informations needed for seeking an
ordering in NROWSYM and NFCNZSYN. Using these informations an ordering
for SYM is determined. After an ordering is set in NPERM, calling this routine with
IORDERING=11 and also ISW=1 again resumes the computation.
When IORDERING is neither 10 nor 11, no ordering is specified.

2) When ISW=2 specified.
After the previous call ends with ICON=31000, that means that the sizes of
ZPANELFACTORL or ZPANELFACTORU or NPANELINDEXL or
NPANELINDEXU were not enough, the suspended computation is resumed.
Before calling again with ISW=2, the ZPANELFACTORL or ZPANELFACTORU
or NPANELINDEXL or NPANELINDEXU must be reallocated with the necessary
sizes which are returned in the NSIZEFACTORL NSIZEFACTORU or
NSIZEINDEXL or NSIZEINDEXU at the precedent call and specified in
corresponding arguments.
Besides, except these arguments and ISW as control information, the values in the
other augments must not be changed between the previous and following calls.

3) When ISW=3 is specified.
The subsequent call with ISW=3 solves another system of equations of which the
coefficient matrix is as same as previous call but the right-hand side vector b is
changed. In this case, the information obtained by the previous LU decomposition
can be reused.
Besides, except ISW as control information and B for storing the new right-hand
side b, the values in the other arguments must not be changed between the previous
and following calls.

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero pattern
of the lower triangular part of SYM=A1+A1

T in the compressed column storage
method are generated.

One-dimensional array NROWSYM(NZ+N).

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row index
of each column stored in array NROWSYM in the compressed column storage
method which stores the nonzero pattern of the lower part of a matrix SYM column
by column.

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-297

NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements in the
lower triangular part.

One-dimensional array NFCNZ(N+1).

ZB......................... Input. The right-hand side constant vector b of a system of linear equations Ax = b.

Output. Solution vector x.

A double precision complex one-dimensional array ZB(N).

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in ZPANELFACTORL
and ZPANELFACTORU as one dimensional subarray consecutively and its block
number is stored. The corresponding indices vectors are similarly stored
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th supernode
is stored into the j-th block of a subarray, where j=NASSIN(i).

Input. When ISW≠1, the values stored in the first call are reused. Regarding
the storage methods of decomposed matrices, refer to Figure DM_VSCS-1.
One-dimensional array NASSING(N).

NSUPNUM......... Output. The total number of supernodes.

Input. The values in the first call are reused when ISW  1 specified. (≤ n)

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric complex sparse
matrix are computed for each supernode respectively. The columns of L belonging
to each supernode are compressed to have the common row indices vector and
stored into a two dimensional panel with the corresponding parts of U in its block
diagonal portion. The index number of the top array element of the one dimensional
subarray where the i-th panel is mapped into ZPANELFACTORL consecutively or
the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

Input. The values set by the first call are reused when ISW  1 specified.

ZPANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). The
location of its top of subarray including the portion of decomposed matrices is
stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). The
corresponding block diagonal portion of the unit upper triangular matrix U except
its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).

A double precision complex one-dimensional array
ZPANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORL.. Input. The size of the array ZPANELFACTORL. 8-byte integer.

DM_VSCS

II-298 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Output. The necessary size for the array ZPANELFACTORL is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the row
indices vector corresponding to the i-th supernode is assigned is known from
j=NASSIGN(i). The location of its top of subarray is stored in NFCNZINDEXL(j).
This row indices are the row numbers of the matrix into which SYM is permuted in
its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEXL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is allocated in
the i-th location.
NDIM(3,i) indicates the total amount of the size of the first dimension of the panel
where a matrix U is transposed and stored and the size of its block diagonal portion.

Input. When ISW1, the values set by the first call are reused.

Two-dimensional array NDIM(3,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an unsymmetric
complex sparse matrix, the rows of U except the of block diagonal portion
belonging to each supernode are compressed to have the common column indices
vector and stored into a two dimensional panel. The index number of the top array
element of the one dimensional subarray where the i-th panel is mapped into
ZPANELFACTORU consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-299

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

Input. When ISW  1, the values set by the first call are reused.

ZPANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored in a
two dimensional panel without its block diagonal portion. The block number of the
section where the panel corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray including the portion of
decomposed matrices is stored in NFCNZFACTORU(j). The size of the panel in
the i-th block can be considered to be two dimensional array of {DIM(3,i)-
DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular matrix U except the
block diagonal portion are compressed, transposed and stored in this panel(s, t), s =
1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).

A double precision complex one-dimensional array
ZPANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORU.. Input. The size of the array ZPANELFACTORU. 8-byte integer.

Output. The necessary size for the array ZPANELFACTORU is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored in a
two dimensional panel without its block diagonal portion. The index number of the
top array element of the one dimensional subarray where the i-th column indices
vector including indices of the block diagonal portion is mapped into
NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSCS-1.

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode are
compressed, transposed and stored in a two dimensional panel without its block
diagonal portion. The column indices vector including indices of the block diagonal
portion is mapped into NPANELINDEXU consecutively. The block number of the
section where the column indices vector corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray is stored
in NFCNZINDEXU(j). These column indices are the column numbers of the matrix
into which SYM is permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEXU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer.

Output. The necessary size is returned.

DM_VSCS

II-300 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(See note 3) in (3), "Comments on use.")

NPOSTO............ Output. The information about what column number of A the i-th node in post order
corresponds to is stored.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array NPOSTO(N).

(See note 4) in (3), "Comments on use.")

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array SCLROW (N).

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns are
stored in one dimensional array.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array SCLCOL(N).

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0).

Output. When EPSZ ≤ 0.0, it is set to the standard value.

(See note 2) in (3), "Comments on use.")

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in
pivot search is considered to have the value greater than or equal to the threshold
specified, it is accepted as a pivot and the search of a pivot is broken off.
For example, 1.0D-2.

Output. When THEPSZ≤0.0D0, 1.0D-2 is set.
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ.

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is searched
and what kind of pivoting is chosen if any.
For example, 40 for complete pivoting.

 IPIVOT<10 or IPIVOT≥ 50, no pivoting.

 10≤IPIVOT<20, partial pivoting

 20≤IPIVOT<30, diagonal pivoting

 21 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting.

 22 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting. If Rook pivoting fails, it is changed to complete pivoting.

 30≤IPIVOT<40, Rook pivoting

 32 : When within a supernode Rook pivoting fails, it is changed to complete
pivoting.

 40≤IPIVOT<50, complete pivoting

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.

1) When ISTATIC=1 is specified.
When the pivot searched within a supernode is not greater than SPEPSZ, it is
replaced with its approximate value of a complex number with the absolute value of

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-301

SPEPSZ.
If its value is 0.0D0, SPEPSZ is used as an approximation value.

The following conditions must be satisfied.
a) EPSZ must be less than or equal to the standard value of EPSZ.
b) Scaling must be performed with ISCLITERMAX=10.
c) THEPSZ≥SPEPSZ must hold.
d) IREFINE=1 must be specified for the iterative refinement of the solution.

2) When ISTATIC≠1 is specified.
No static pivot is performed.

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is specified.
The following conditions must hold.
1.0D-8≥SPEPSZ≥EPSZ

 Output. When SPEPSZ<EPSZ, it is set to 1.0D-10.

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and column
exchanges for pivoting within each supernode is stored.

The block number of the section where the information on the i-th supernode is
assigned is known by j=NASSIGN(i). The position of the first element of that
section is stored in NFCNZPIVOT(j). The information of exchange rows and
columns within the i-th supernode is stored in the elements of
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and
NPIVOTQ respectively.

One-dimensional array NFCNZPIVOT(NSUPNUM+1).

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored.

One-dimensional array NPIVOTP(N).

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is stored.

One-dimensional array NPIVOTQ(N).

IREFINE............ Input. Control information indicating whether iterative refinement is performed
when the solution is computed in use of results of LU decomposition. A residual
vector is computed in quadruple precision.

When IREFINE=1 is specified.
The iterative refinement is performed. It is iterated until in the sequences of the
solutions obtained in refinement the difference of the absolute values of their
corresponding residual vectors become larger than a fourth of that of immediately
previous ones.

When IREFINE≠1is specified.
No iterative refinement is performed.

When ISTATIC=1 is specified, IREFINE=1 must be specified.

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector
b-Ax is sufficiently smaller compared with the absolute value of b.

When EPSR ≤ 0.0, it is set to 1.0D-6.

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1).

ITER.................. Output. Actual iterative count for refinement.

ZW......................... Work area.

DM_VSCS

II-302 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Output/Input.
A double precision complex one-dimensional array of size 2*NZ.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for
preserving information among calls. The contents must not be changed.

W......................... Work area.

Output/Input.
One-dimensional array of size 4*NZ+6*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for
preserving information among calls. The contents must not be changed.

IW1..................... Work area.

Output/Input.
One-dimensional array of size 2*NZ+2*(N+1)+16*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for
preserving information among calls. The contents must not be changed.

IW2..................... Work area.

Output/Input.
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N).

When this subroutine is called repeatedly with ISW=1, 2, 3 this work area is used
for preserving information among calls. The contents must not be changed.

ICON................... Output. Condition code.

(See Table DM_VSCS-1.)

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure DM_VSCS-1 Conceptual scheme for storing decomposed results

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, j)
from the p-th element of ZPANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of NPANELINDEXL.

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-303

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed
results is stored in

 panel(s, t), s < t, s = 1,...,DIM(2, j),

 t = 1,...,DIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of ZPANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area with a
length DIM(3,j) from the v-th element of NPANELINDEXU.

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed
results is stored in

 panel(x, y), x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A
is permuted in post ordering.

Table DM_VSCS-1 Condition codes

Code Meaning Processing

0 No error 

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

20100 When IPLEDSM is specified, maximum
matching with the length N is sought in order
to permute large entries to the diagonal but can
not be found. The coefficient matrix A may be
singular.

Processing is discontinued.

20200 When seeking diagonal matrices for
equilibrating both rows and columns, there is a
zero vector in either rows or columns of the
matrix A. The coefficient matrix A may be
singular.

20400 There is a zero element in diagonal of resultant
matrices of LU decomposition.

20500 The norm of residual vector for the solution
vector is greater than that of b multiplied by
EPSR, which is the right term constant vector
in Ax=b. The coefficient matrix A may be
close to a singular matrix.

DM_VSCS

II-304 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Code Meaning Processing

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEXL < 1,
NSIZEFACTORU < 1, NSIZEINDEXU < 1,
ISW < 1, or ISW > 3,
ITERMAX<1 when IREFINE=1.

30100 The permutation matrix specified in NPREM
is not correct.

Processing is discontinued.

30200 The row index k stored in NROW(j) is k < 1 or
k > n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

30500 When ISTATIC=1 is specified, the required
conditions are not satisfied.
EPSZ is greater than 16u of the standard value
or ISCLITERMAX<10
or IREFINE≠1
or SPEPSZ>THEPSZ
or SPEPSZ>1.0D-8

31000 The value of NSIZEFACTORL is not enough
as the size of ZPANELFACTORL,
or the value of NSIZEINDEXL is not enough
as the size of NPANELINDEXL,
or the value of NSIZEFACTORU is not
enough as the size of ZPANELFACTORU,
 or the value of NSIZEINDEXU is not enough
as the size of NPANELINDEXU.

Reallocate the
ZPANELFACTORL or
NPANELINDEXL or
ZPANELFACTORU or
NPANELINDEXU
with the necessary size which
are returned in the
NSIZEFACTORL or
NSIZEINDEXL or
NSIZEFACTORU or
NSIZEINDEXU respectively
and call this subroutine again
with ISW=2 specified.

(3) Comments on use

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO
Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than EPSZ
in the process of LU decomposition. In this case, processing is discontinued with
ICON = 20000. When unit round off is u, the standard value of EPSZ is 16  u.
 The absolute value of a complex number is approximated as a sum of the absolute
value of both its real part ant its imaginary part for Pivot. When the computation is
to be continued even if the absolute value of diagonal element is small, assign the

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-305

minimum value to EPSZ. In this case, however, the result is not assured.
 If Static pivot is specified to be performed, when the diagonal element is smaller
than SPEPSZ, LU decomposition is approximately continued replacing it with
SPEPSZ. It is required to specify to do iterative refinement.

3) The necessary sizes for the array ZPANELFACTORL, NPANELINDEXL,
ZPANELFACTORU and NPANELINDEXU that store the decomposed results can
not be determined beforehand. It is suggested to reallocate them by using the result
of the symbolic decomposition analysis after the first call of this routine, or allocate
large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And call
this routine with the small values such as one in the size specifying in
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU with
ISW=1. This routine ends with ICON=31000, and the necessary sizes for
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are
returned. Then the suspended process can be resumed by calling it with ISW=2 after
reallocating the arrays with the necessary sizes.

4) Nodes corresponding to column number is considered. The node number permuted
in post order is stored in NPOSTO. This array indicates what node number in
original node number the i-th node in post order is corresponding. It means j-th
position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also as
well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

5) Instead of this routine, a system of equations Ax=b can be solved by calling both
DM_VSCLU to perform LU decomposition of an unsymmetric complex sparse
matrix A and DM_VSCLUX to solve the linear equation in use of decomposed
results.

b. Example

 The linear system of equations Ax=f is solved, where a matrix is built using results from
the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag and
the portion in only its six lower diagonals are converted in compressed column storage
format. The linear system of equations with an unsymmetric real sparse matrix A built in
this way is stored into a complex sparse matrix and is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this
program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD,
 $ N = KX*KY*KZ)
 PARAMETER (NBORDER=N+1,NOFFDIAG=6)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 INTEGER*4 WL,ZWL

DM_VSCS

II-306 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 PARAMETER (NALL=NDIAG*N,
C
 $ ZWL =2*NALL,
 $ WL =4*NALL+6*N,
 $ IW1L=2*NALL+2*(N+1)+16*N,
 $ IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))
C
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 COMPLEX*16 ZA(K*NDIAG),ZWC(K*NDIAG),
 $ ZW(ZWL),ZONE
 PARAMETER(ZONE=(1.0D0,0.0D0))
 DIMENSION NROW(K*NDIAG),NFCNZ(N+1),
 $ NROWSYM(K*NDIAG+N),NFCNZSYM(N+1),
 $ IWC(2,K*NDIAG)
 DIMENSION NPERM(N),W(WL),
 $ NPOSTO(N),NDIM(3,N),
 $ NASSIGN(N),
 $ MZ(N),
 $ IW1(IW1L),IW2(IW2L)
 COMPLEX*16, DIMENSION(:), ALLOCATABLE ::
 $ ZPANELFACTORL,ZPANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU
 COMPLEX*16 ZDUMMYFL,ZDUMMYFU
 INTEGER*4 NDUMMYIL,
 $ NDUMMYIU
 INTEGER*8 NSIZEFACTORL,
 $ NSIZEINDEXL,
 $ NSIZEINDEXU,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 COMPLEX*16 ZB(N),ZSOLEX(N)
 REAL*8 EPSZ,THEPSZ,SPEPSZ,
 $ SCLROW(N),SCLCOL(N)
C
 INTEGER*4 IPIVOT,ISTATIC,NFCNZPIVOT(N+1),
 $ NPIVOTP(N),NPIVOTQ(N),
 $ IREFINE,ITERMAX,ITER,IPLEDSM
C
 PRINT *,' LU DECOMPOSITION METHOD'
 PRINT *,' FOR SPARSE UNSYMMETRIC COMPLEX MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *
C
 DO I=1,N
 ZSOLEX(I)=ZONE
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',ZSOLEX(1),' X(N) = ',ZSOLEX(N)
 PRINT *
C
 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-307

 & ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
C
 DO J=1,N
 NTOPCFG=1
C
 DO I=NDIAG,1,-1
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN
 CONTINUE
 ELSE
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 ZA(NUMNZ)=DCMPLX(DIAG2(J,I),0.0D0)
 NROW(NUMNZ)=NCOL
C
 NUMNZ=NUMNZ+1
C
 ENDIF
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZ(N+1)=NUMNZ
 NZ=NUMNZ-1
C
 CALL DM_VMVSCCC(ZA,NZ,NROW,NFCNZ,N,ZSOLEX,
 $ ZB,ZWC,IWC,ICON)
C
C INITIAL CALL WITH IORDER=1
C
 IORDERING= 0
 IPLEDSM=1
 ISCLITERMAX=10
 ISW=1
 EPSZ=1.0D-16
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEXL=1

DM_VSCS

II-308 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 NSIZEINDEXU=1
 THEPSZ=1.0D-2
 SPEPSZ=0.0D0
 IPIVOT=40
 ISTATIC=0
 IREFINE=1
 EPSR=0.0D0
 ITERMAX=10
C
 CALL DM_VSCS(ZA,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ ZB,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZDUMMYFL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZDUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NDUMMYIU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ ZW,W,IW1,IW2,ICON)
C
 PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEXL=',NSIZEINDEXL,
 $ 'NSIZEINDEXU=',NSIZEINDEXU,
 $ 'NSUPNUM=',NSUPNUM
C
 ALLOCATE(ZPANELFACTORL(NSIZEFACTORL))
 ALLOCATE(ZPANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEXL))
 ALLOCATE(NPANELINDEXU(NSIZEINDEXU))
C
 ISW=2
C
 CALL DM_VSCS(ZA,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ ZB,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,ZPANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,ZPANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-309

 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ ZW,W,IW1,IW2,ICON)
C
 ERR = ERRNRM(ZSOLEX,ZB,N)
C
 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',ZB(1),' X(N) = ',ZB(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *
C
 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF
C
 DEALLOCATE(ZPANELFACTORL,ZPANELFACTORU,
 $ NPANELINDEXL,
 $ NPANELINDEXU)
C
 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO

DM_VSCS

II-310 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN

 DM_VSCS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-311

 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | Z1 - Z2 |
C ==
 REAL*8 FUNCTION ERRNRM(Z1,Z2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 COMPLEX*16 Z1(*),Z2(*),SS
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = Z1(I) - Z2(I)
 S = S + DREAL(SS * DCONJG(SS))
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

The permutation which moves large entries to the diagonal is performed. And the permutated
matrix is scaled in order to equilibrate both rows and columns norms.
The absolute value of a complex number is approximated as a sum of the absolute value of
both its real part ant its imaginary part for the permutation of elements, scaling and Pivot.
Subsequently the LU decomposition of this matrix is made. Nonzero elements belonging to
each supernode is stored in two-dimensional panel respectively. The pivot for numerical
stabilization is sought with in its block diagonal portion. The threshold for pivot search can be
specified so that immediately after a pivot candidate with the absolute value greater than it is
encountered in pivot search it is accepted as a pivot. In addition the static pivoting can be
specified so that even if the pivot obtained after pivot search is considered as too small, it is
replaced with the value of SPEPSZ and LU decomposition can be approximately performed.

DM_VSCS

II-312 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Refer to references in Appendix A, “References.” in detail.
Refer to [23], [57] on the method how the elements of large absolute value are permuted to
diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps, to
[19], [2], [22], [48], [68] on the base of the LU decomposition of unsymmetric complex parse
matrices and to [63], [69] on equilibration of matrices and pivoting.

 DM_VSEVPH

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-313

DM_VSEVPH

Eigenvalues and eigenvectors of real symmetric matrices (tridiagonalization, multisection
method, and inverse iteration)

CALL DM_VSEVPH (A, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE,
 M, EV, ICON)

(1) Function

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of n-
dimensional real symmetric matrix A.

 First, the matrix is reduced to tridiagonal form using the Householder reductions. Then,
the specified eigenvalues are obtained by the multisection method. The eigenvectors are
obtained by the inverse iteration.

Ax = x (1.1)

 where, A is an n  n real symmetric matrix.

(2) Parameters

A Input. The lower triangular part {aij | i  j}of real symmetric matrix A is stored
in the lower triangular part {A(i, j) | i  j} of A(1:N,1:N).

After calculation, the value of A is not assured.

Two-dimensional double-precision real array A(K,N).

K.. Input. Size of first-dimension of array A. (K  N).

N Input. Order n of real symmetric matrix A

NF Input. Number assigned to the first eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

NL Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC Input. Control information.

When the value of IVEC is 1, the eigenvalues and corresponding eigenvectors
are calculated.

When the value of IVEC is not 1, only the eigenvalues are calculated.

ETOL Input. Criterion value for checking whether the eigenvalues are numerically
different from each other or are multiple. When ETOL is less than 3.0D-16,
this value is used as the standard value.

CTOL Input. Criterion value for checking whether the adjacent eigenvalues can be
considered to be approximately equal to each other. This check uses formula
(3.1). This value is used to assure the linear independence of the eigenvector
corresponding to the eigenvalue belonging to approximately multiple
eigenvalues (clusters).

The value of CTOL should be generally 5.0D-12. For a very large cluster, a
large CTOL value is required.

DM_VSEVPH

II-314 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

1.0D-6  CTOL  ETOL

When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6.

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the
standard value.

(See 1) in a, “Notes,” in (3), “Comments on use.”)

NEV Output. Number of eigenvalues calculated.

One-dimensional array NEV(5).

The detail information is as follows:

NEV(1) indicates the number of different eigenvalues calculated.

NEV(2) indicates the number of approximately multiple, different eigenvalues
(clusters) calculated.

NEV(3) indicates the total number of eigenvalues (including multiple
eigenvalues) calculated.

NEV(4) indicates the number representing the first of the eigenvalues calculated.

NEV(5) indicates the number representing the last of the eigenvalues calculated.

E Output. Eigenvalues are stored in E.

The eigenvalues calculated are stored in E(1:NEV(3)).

One-dimensional array E(MAXNE).

MAXNE Input. Maximum number of eigenvalues that can be calculated.

When it can be considered that there are two or more eigenvalues with
multiplicity m, MAXNE must be set to a larger value than NLNF+1 + 2m
that is bounded by n. Size of the dimension of array E.

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be
calculated.

(See 2) in a, “Notes,” in (3), “Comments on use.”)

M Output. Information about multiplicity of eigenvalues calculated.

M(i,l) indicates the multiplicity of the i-th eigenvalue i. M(i,2) indicates the
multiplicity of the i-th cluster when the adjacent eigenvalues are regarded as
clusters.

(See 1) in a, “Notes,” in (3), “Comments on use.”)

Two-dimensional array M(MAXNE,2).

EV Output. When IVEC = 1, the eigenvectors corresponding to the eigenvalues are
stored in EV.

The eigenvectors are stored in EV(1:N,1:NEV(3)).

Two-dimensional array EV(K,MAXNE).

ICON Output. Condition code.

See Table DM_VSEVPH-1.

 DM_VSEVPH

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-315

Table DM_VSEVPH-1 Condition codes

Code Meaning Processing

0 No error 

20000 During calculation of clustered eigenvalues, the
total number of eigenvalues exceeded the value
of MAXNE.

Processing is discontinued.
The eigenvectors cannot be
calculated, but the different
eigenvalues themselves are
already calculated.
A suitable value for
MAXNE to allow
calculation to proceed is
returned in NEV(3).

(See 2) in a, “Notes,” in (3),
“Comments on use.”)

30000 NF < 1, NL > N, NL < NF, N < 1, K < N, or
MAXNE < NL  NF + 1.

Processing is discontinued.

(3) Comments on use

a. Notes

1) This routine calculates eigenvalues independently from each other by dividing
them into nonoverlapping, sequenced sets (parallel processing).

When  = ETOL, the following condition is satisfied for consecutive eigenvalues
j (j = s  1, s, ..., s + k (k  0)):














),max(1 1

1

ii

ii (3.1)

If formula (3.1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when
i = s1 and i = s + k + 1, it is assumed that the eigenvalues j (j = s  1, s, ..., s +
k) are numerically multiple.

The standard value of ETOL is 3.0D-16 (about the unit round off). With this
value, the eigenvalues are refined up to the maximum machine precision.

If formula (3.1) is not satisfied when  = ETOL, it can be considered that i-1 and
i are distinct eigenvalues.

When  = ETOL, assume that consecutive eigenvalues m (m = t - 1, t, ..., t + k (k
 0)) are different eigenvalues. Also, when  = CTOL, assume that formula (3.1)
is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and i = t
+ k + 1. In this case, it is assumed that their different eigenvalues m (m = t - 1,
t, ..., t + k) are approximately multiple (i.e. form a cluster). In this case,
independent starting vectors are generated for inverse iteration, and eigenvectors
corresponding to m (m = t - 1, t, …, t + k) are reorthogonalized.

2) The maximum number of eigenvalues that can be calculated is specified in
MAXNE. When the value of CTOL is increased, the cluster size also increases.
Therefore, the total number of eigenvalues calculated might exceed the value of
MAXNE. In this case, decrease the value of CTOL or increase the value of
MAXNE.

DM_VSEVPH

II-316 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

If the total number of eigenvalues calculated exceeds the value of MAXNE,
ICON = 20000 is returned. In this case, the eigenvectors cannot be calculated
even if eigenvector calculation is specified. Eigenvalues are calculated, but are
not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in E(1:NEV(1)). The information
about the multiplicity of the corresponding eigenvalues is stored in
M(1:NEV(1),1).

When all the eigenvalues are different from each other and there are no
approximately multiple eigenvalues, MAXNE can be set to NT (NT=NL-NF+1).
However, when there are multiple eigenvalues and the multiplicity can be
assumed to be m, then MAXNE must be set to at least NT + 2  m.

If the total number of eigenvalues to be calculated exceeds the value of MAXNE,
the value required to continue the calculation is returned to NEV(3). The
calculation can be continued by allocating the area by using this returned value
and by calling the routine again.

b. Example

 This example calculates the specified eigenvalues and eigenvectors of a real
symmetric matrix whose eigenvalues and eigenvectors are known.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N=2000,K=N)
 PARAMETER (NE=N,MAX_NEV=NE)
 DIMENSION A(K,N),B(K,N),C(K,N),D(K,N),AC(K,N)
 DIMENSION NEV(5),MULT(MAX_NEV,2)
 DIMENSION EVAL(MAX_NEV),EVEC(K,MAX_NEV)
CC
 PAI=4.0D0*DATAN(1.0D0)
 COEF=DSQRT(2.0D0/(N+1))
 DO J=1,N
 DO I=1,N
 D(I,J)=COEF*DSIN(PAI/(N+1)*I*J)
 ENDDO
 ENDDO
CC
 DO J=1,N
 DO I=1,N
 IF(I.EQ.J)THEN
 C(I,J)=I
 ELSE
 C(I,J)=0.0D0
 ENDIF
 ENDDO
 ENDDO
CC
CC d x c -> b
CC

 DM_VSEVPH

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-317

 CALL DM_VMGGM(D,K,C,K,B,K,N,N,N,ICON)
CC
CC b x d -> a
CC
 CALL DM_VMGGM(B,K,D,K,A,K,N,N,N,ICON)
CC
 DO I=1,N
 DO J=I,N
 AC(J,I)=A(J,I)
 ENDDO
 ENDDO
 NF=1
 NL=NE
 IVEC=1
 EVAL_TOL=1.0D-15
 CLUS_TOL=1.0D-10
 CALL DM_VSEVPH(AC,K,N,NF,NL,IVEC,EVAL_TOL,CLUS_TOL,NEV,
 & EVAL,MAX_NEV,MULT,EVEC,ICON)
 DO I=1,NE,N/20
 PRINT*,'EIGEN VALUE IN EVAL(',I,') = ',EVAL(I)
 ENDDO
C
 STOP
 END

(4) Method

 This routine solves an eigenvalue problem of a tridiagonal matrix created from a real
symmetric matrix. The reduction to a tridiagonal form is a parallel version of the
Householder reduction to tridiagonal form. (See [30] in Appendix A, “References.”)

 The eigenvalue problem of a tridiagonal matrix is calculated using multisectioning to
find the eigenvalues and inverse iteration for the eigenvectors. For details, see
“DM_VTDEVC” and see [61] in Appendix A, “References.”

 The eigenvectors of the original matrix are found by multiplying the matrix of
eigenvectors of the tridiagonal matrix by the matrix of transformations carried out in the
reduction to the tridiagonal.

DM_VSLDL

II-318 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSLDL

LDLT decomposition of a symmetric positive definite matrix (blocked modified Cholesky
decomposition method)

CALL DM_VSLDL(A,K,N,EPSZ,ICON)

(1) Function

 This subroutine executes LDLT decomposition for an n  n positive definite matrix A
using the blocked modified Cholesky decomposition method of outer product type, so that

 A = LDLT

 where, L is a unit lower triangular matrix and D is a diagonal matrix.

(2) Parameters

A Input. The coefficient matrix A

Output. Matrices L and D-1.

For input, the lower triangular part of A {aij | i  j} is stored in the lower
triangular part {A(i, j) | i  j} of A(1:N,1:N).

For output, the contents of A(i,j) is

lij (i > j),

A reciprocal of dii (i = j).

altered (i < j),

 (See Figure DM_VSLDL-1.)

This is a double precision real two-dimensional array A(K,N).

K Input. The adjustable dimension of array A ( N).

N Input. Order n of coefficient matrix A.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is assumed.

(See note 1) in (3), "Comments on use.")

ICON Output. Condition code.

(See Table DM_VSLDL-1.)

 DM_VSLDL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-319

an1

a21

Unnecessary

N

N

K

Input Array A

ln1

l21 d22

-1

d11

-1

dnn

-1

Altered

N

N

K

Output Array A

ann

a11

a22

Figure DM_VSLDL-1 Storing data by Cholesky decomposition

 The diagonal elements and lower triangular part aij of the positive definite matrix for
which LDLT decomposition is performed is stored in array A(i, j), i = j,..., n, j =1,..., n.

 After LDLT decomposition, the matrix D-1 is stored in diagonal elements and L (except
the diagonal elements) are stored in the lower triangular part respectively.

Table DM_VSLDL-1 Condition codes

Code Meaning Processing

0 No error 

10000 The pivot became negative. The coefficient
matrix is not positive definite.

Processing is continued.

20000 The pivot became relatively zero. The
coefficient matrix may be singular.

Processing is discontinued.

30000 N < 1, EPSZ < 0, K < N

(3) Comments on use

a. Notes

1) If a value is set for EPSZ, the value has the following meaning: if the absolute
value of the selected pivot is less than the value for EPSZ during LDLT
decomposition by the modified Cholesky decomposition, the value of the pivot
is assumed to be relatively zero and processing is discontinued with ICON =
20000. When unit round off is u, the standard value of EPSZ is 16  u.
 When the computation is to be continued even if the value of the pivot becomes
small, assign the minimum value to EPSZ. In this case, however the result is not
assured.

2) If the pivotal value becomes negative during decomposition, the coefficient
matrix is no longer positive definite. Processing continues with ICON = 10000.
However, the accuracy of the result may not be maintained because no pivoting
is performed.

DM_VSLDL

II-320 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

3) After the calculation has been completed, the determinant of the coefficient
matrix is computed by multiplying all the n diagonal elements of the array A and
taking the reciprocal of the result.

b. Example

 LDLT decomposition is executed for a 4000  4000 matrix.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (K=4000,N=4000)
 REAL*8 A(K,N)
C
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)
 DO J=1,N
 DO I=J,N
 A(I,J)=MIN(I,J)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

 CALL DM_VSLDL(A,K,N,1.D-13,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 10
C
 S=1.D0
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)
!$OMP+ REDUCTION(*:S)
 DO I=1,N
 S=S*A(I,I)
 ENDDO
!$OMP END PARALLEL DO

 DET=S
 DET=1.D0/DET
 WRITE(6,620) DET
 WRITE(6,640)
 DO J=1,5
 WRITE(6,600) J,(A(I,J),I=J,5)
 ENDDO
 GO TO 10
 600 FORMAT(1H,I5/(10X,3D23.16))
 610 FORMAT(/10X,5HICON=,I5)
 620 FORMAT(//10X
 *,22HDETERMINANT OF MATRIX=,D23.16)
 640 FORMAT(/10X,17HDECOMPOSED MATRIX)
 10 stop
 END

 DM_VSLDL

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-321

 (4) Method

 See [30], [54], and [70] in Appendix A, "References" for details of blocked modified
Cholesky decomposition method of the outer product type.

DM_VSRLU

II-322 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSRLU

LU decomposition of an unsymmetric real sparse matrix

CALL DM_VSRLU(A, NZ, NROW, NFCNZ, N,
IPLEDSM, MZ, ISCLITERMAX,
IORDERING, NPERM, ISW,
NROWSYM, NFCNZSYM,
NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
SCLROW,SCLCOL,
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT,
NPIVOTP, NPIVOTQ, W, IW1, IW2, ICON)

(1) Function

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the
diagonal and then it is scaled in order to equilibrate both rows and columns norms. And
LU decomposition is performed, in which the pivot is taken as specified within the block
diagonal portion belonging to each supernode.

The unsymmetric real sparse matrix is transformed as below.

A1=DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for
scaling rows and Dc is also a diagonal matrix for scaling columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper
triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than
or equal to the threshold specified in THEPSZ can not be found, the element with the
largest absolute value which in the block diagonal portion of a supernode is regarded as a
candidate.
If the absolute value of the candidate element is too small, the matrix can be
approximately decomposed into LU specifying an appropriate small value as a static pivot
in place of the candidate sought.

 (2) Parameter

A......................... Input. The nonzero elements of an unsymmetric real sparse matrix A are stored
in A(1:NZ).

One-dimensional array A(NZ).

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-323

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector).

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric real
sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an
array A in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N......................... Input. Order n of matrix A.

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal
of a matrix A.
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting
large entries to the diagonal.

Otherwise no permutation is performed.

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns.
MZ(i)=j indicates that the j-th column which the element of aij belongs to is
permutated to i-th column. The element of aij is the large entry to be permuted
to the diagonal.
One-dimensional array MZ(N).

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr

and Dc to equilibrate both rows and columns of matrix A.

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and
Dc are assumed as unit matrices.

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of
iteration is considered as 10.

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT
permuted by the matrix P of ordering or to decompose the matrix A.

When IORDERING=10 is specified, calling this routine with ISW=1 produces
the informations which is needed to generate an ordering regarding A1 and they
are set in NROWSYM and NFCNZSYM.

When IORDERING 11 is specified, it is indicated that after an ordering is set in
NPERM, the computation is resumed.
Using the informations obtained in NROWSYM and NFCNZSYM after calling
this routines with ISW=1 and IORDERING=10, an ordering is determined.
After specifying this ordering in NPERM, this routine is called again with
ISW=1and IORDERING=11 and the computation is resumed.
LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is decomposed into LU.

Output. IORDERING is set to 11 after this routine is called with
IORDERING=10 and ISW=1. Therefore after an ordering is set in NPERM the

DM_VSRLU

II-324 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

computation is resumed in the subsequent call without IORDERING=11 being
specified explicitly.

(See note 1) in (3), "Comments on use.")

NPERM.............. Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

ISW..................... Input. Control information.

1)When ISW=1 is specified.
After symmetrization of a matrix and symbolic decomposition, checking
whether the sufficient amount of memory for storing data are allocated the
computation is performed.
Call with IORDERING=10 produces the informations needed for seeking an
ordering in NROWSYM and NFCNZSYN. Using these informations an
ordering for SYM is determined. After an ordering is set in NPERM, calling this
routine with IORDERING=11 and also ISW=1 again resumes the computation.
When IORDERING is neither 10 nor 11, no ordering is specified.

2) When ISW=2 specified.
After the previous call ends with ICON=31000, that means that the sizes of
PANELFACTORL or PANELFACTORU or NPANELINDEXL or
NPANELINDEXU were not enough, the suspended computation is resumed.
Before calling again with ISW=2, the PANELFACTORL or
PANELFACTORU or NPANELINDEXL or NPANELINDEXU must be
reallocated with the necessary sizes which are returned in the NSIZEFACTORL
NSIZEFACTORU or NSIZEINDEXL or NSIZEINDEXU at the precedent call
and specified in corresponding arguments.
Besides, except these arguments and ISW as control information, the values in
the other augments must not be changed between the previous and following
calls.

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero
pattern of the lower triangular part of SYM=A1+A1

T in the compressed column
storage method are generated.

One-dimensional array NROWSYM(NZ+N).

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row
index of each column stored in array NROWSYM in the compressed column
storage method which stores the nonzero pattern of the lower part of a matrix
SYM column by column.

NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements
in the lower triangular part.

One-dimensional array NFCNZ(N+1).

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in PANELFACTORL
and PANELFACTORU as one dimensional subarray consecutively and its
block number is stored. The corresponding indices vectors are similarly stored
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th
supernode is stored into the j-th block of a subarray, where j=NASSIN(i).

Input. When ISW≠1, the values stored in the first call are reused. Regarding
the storage methods of decomposed matrices, refer to Figure DM_VSRLU-1.
One-dimensional array NASSING(N).

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-325

NSUPNUM......... Output. The total number of supernodes.

Input. The values in the first call are reused when ISW  1 specified. ( n)

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric real sparse
matrix are computed for each supernode respectively. The columns of L
belonging to each supernode are compressed to have the common row indices
vector and stored into a two dimensional panel with the corresponding parts of
U in its block diagonal portion. The index number of the top array element of
the one dimensional subarray where the i-th panel is mapped into
PANELFACTORL consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

Input. The values set by the first call are reused when ISW  1 specified.

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i).
The location of its top of subarray including the portion of decomposed
matrices is stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i).
The corresponding block diagonal portion of the unit upper triangular matrix U
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).

One-dimensional array PANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORL.. Input. The size of the array PANELFACTORL. 8-byte integer.

Output. The necessary size for the array PANELFACTORL is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. This column indices vector is mapped into

DM_VSRLU

II-326 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

NPANELINDEXL consecutively. The block number of the section where the
row indices vector corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray is stored in
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into
which SYM is permuted in its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEXL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is
allocated in the i-th location.
NDIM(3,i) indicates the total amount of the size of the first dimension of the
panel where a matrix U is transposed and stored and the size of its block
diagonal portion.

Input. When ISW1, the values set by the first call are reused.

Two-dimensional array NDIM(3,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an
unsymmetric real sparse matrix, the rows of U except the of block diagonal
portion belonging to each supernode are compressed to have the common
column indices vector and stored into a two dimensional panel. The index
number of the top array element of the one dimensional subarray where the i-th
panel is mapped into PANELFACTORU consecutively or the location of
panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

Input. When ISW  1, the values set by the first call are reused.

PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode
are compressed to have the common column indices vector, transposed and
stored in a two dimensional panel without its block diagonal portion. The block
number of the section where the panel corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray
including the portion of decomposed matrices is stored in NFCNZFACTORU(j).
The size of the panel in the i-th block can be considered to be two dimensional
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular
matrix U except the block diagonal portion are compressed, transposed and
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).

One-dimensional array PANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-327

(See note 3) in (3), "Comments on use.")

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer.

Output. The necessary size for the array PANELFACTORU is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The index
number of the top array element of the one dimensional subarray where the i-th
column indices vector including indices of the block diagonal portion is mapped
into NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode
are compressed, transposed and stored in a two dimensional panel without its
block diagonal portion. The column indices vector including indices of the
block diagonal portion is mapped into NPANELINDEXU consecutively. The
block number of the section where the column indices vector corresponding to
the i-th supernode is assigned is known from j=NASSIGN(i). The location of its
top of subarray is stored in NFCNZINDEXU(j). These column indices are the
column numbers of the matrix into which SYM is permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEXU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NPOSTO............ Output. The information about what column number of A the i-th node in post
order corresponds to is stored.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array NPOSTO(N).

(See note 4) in (3), "Comments on use.")

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array SCLROW (N).

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns
are stored in one dimensional array.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array SCLCOL(N).

DM_VSRLU

II-328 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0).

Output. When EPSZ ≤ 0.0, it is set to the standard value.

(See note 2) in (3), "Comments on use.")

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in
pivot search is considered to have the value greater than or equal to the
threshold specified, it is accepted as a pivot and the search of a pivot is broken
off.
For example, 1.0D-2.

Output. When THEPSZ≤0.0D0, 1.0D-2 is set.
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ.

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is
searched and what kind of pivoting is chosen if any.
For example, 40 for complete pivoting.

 IPIVOT<10 or IPIVOT≥ 50, no pivoting.

 10≤IPIVOT<20, partial pivoting

 20≤IPIVOT<30, diagonal pivoting

 21 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting.

 22 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting. If Rook pivoting fails, it is changed to complete pivoting.

 30≤IPIVOT<40, Rook pivoting

 32 : When within a supernode Rook pivoting fails, it is changed to complete
pivoting.

 40≤IPIVOT<50, complete pivoting

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.

1) When ISTATIC=1 is specified.
When the pivot searched within a supernode is not greater than SPEPSZ, it is
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT).
If its value is 0.0D0, SPEPSZ is used as an approximation value.

The following conditions must be satisfied.
a) EPSZ must be less than or equal to the standard value of EPSZ.
b) Scaling must be performed with ISCLITERMAX=10.
c) THEPSZ≥SPEPSZ must hold.

2) When ISTATIC≠1 is specified.
No static pivot is performed.

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is
specified.
The following conditions must hold.
THEPSZ≥SPEPSZ≥EPSZ

 Output. When SPEPSZ<EPSZ, it is set to 1.0D-10.

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and
column exchanges for pivoting within each supernode is stored.

The block number of the section where the information on the i-th supernode is
assigned is known by j=NASSIGN(i). The position of the first element of that

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-329

section is stored in NFCNZPIVOT(j). The information of exchange rows and
columns within the i-th supernode is stored in the elements of
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and
NPIVOTQ respectively.

One-dimensional array NFCNZPIVOT(NSUPNUM+1).

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored.

One-dimensional array NPIVOTP(N).

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is
stored.

One-dimensional array NPIVOTQ(N).

W......................... Work area.

Output/Input.
One-dimensional array of size 4*NZ+6*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

IW1..................... Work area.

Output/Input.
One-dimensional array of size 2*NZ+2*(N+1)+16*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

IW2..................... Work area.

Output/Input.
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N).

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

ICON................... Output. Condition code.

(See Table DM_VSRLU-1.)

Figure DM_VSRLU-1 Conceptual scheme for storing decomposed results

DM_VSRLU

II-330 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2,
j) from the p-th element of PANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of
decomposed results is stored in

 panel(s, t), s < t, s = 1,...,DIM(2, j),

 t = 1,...,DIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of
PANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area
with a length DIM(3,j) from the v-th element of
NPANELINDEXU.

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of
decomposed results is stored in

 panel(x, y), x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix
A is permuted in post ordering.

Table DM_VSRLU-1 Condition codes

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-331

Code Meaning Processing

0 No error 

10000 When ISTATIC=1 is specified, Static pivot
which replaces the pivot candidate with too
small value with SPEPSZ is made.



20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

20100 When IPLEDSM is specified, maximum
matching with the length N is sought in order
to permute large entries to the diagonal but can
not be found. The coefficient matrix A may be
singular.

20200 When seeking diagonal matrices for
equilibrating both rows and columns, there is a
zero vector in either rows or columns of the
matrix A. The coefficient matrix A may be
singular.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEXL < 1,
NSIZEFACTORU < 1, NSIZEINDEXU < 1,
ISW < 1, or ISW > 2

30100 The permutation matrix specified in NPREM
is not correct.

Processing is discontinued.

30200 The row index k stored in NROW(j) is k < 1 or
k >n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

30500 When ISTATIC=1 is specified, the required
conditions are not satisfied.
EPSZ is greater than 16u of the standard value
or ISCLITERMAX<10
or SPEPSZ>THEPSZ

31000 The value of NSIZEFACTORL is not enough
as the size of PANELFACTORL,
or the value of NSIZEINDEXL is not enough
as the size of NPANELINDEXL,
or the value of NSIZEFACTORU is not
enough as the size of PANELFACTORU,
 or the value of NSIZEINDEXU is not enough
as the size of NPANELINDEXU.

Reallocate the
PANELFACTORL or
NPANELINDEXL or
PANELFACTORU or
NPANELINDEXU
with the necessary size which
are returned in the
NSIZEFACTORL or
NSIZEINDEXL or
NSIZEFACTORU or
NSIZEINDEXU respectively
and call this subroutine again
with ISW=2 specified.

(3) Comments on use

DM_VSRLU

II-332 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO
Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LU decomposition. In this case, processing is
discontinued with ICON = 20000. When unit round off is u, the standard value
of EPSZ is 16  u. When the computation is to be continued even if the absolute
value of diagonal element is small, assign the minimum value to EPSZ. In this
case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller
than SPEPSZ, LU decomposition is approximately continued replacing it with
SPEPSZ.

3) The necessary sizes for the array PANELFACTORL, NPANELINDEXL,
PANELFACTORU and NPANELINDEXU that store the decomposed results
can not be determined beforehand. It is suggested to reallocate them by using the
result of the symbolic decomposition analysis after the first call of this routine,
or allocate large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And
call this routine with the small values such as one in the size specifying in
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU
with ISW=1. This routine ends with ICON=31000, and the necessary sizes for
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are
returned. Then the suspended process can be resumed by calling it with ISW=2
after reallocating the arrays with the necessary sizes.

4) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

5) A system of equations Ax=b can be solved by calling DM_VSRLUX
subsequently in use of the results of LU decomposition obtained by this routine.
The following arguments used in this routine are specified.
See example in (3), "Comments on use.".

A, NZ, NROW, NFCNZ, N,
IPLEDSM, MZ, IORDERING, NPERM,
NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-333

NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
SCLROW,SCLCOL,
NFCNZPIVOT,
NPIVOTP, NPIVOTQ, IW2

b. Example

The linear system of equations Ax=f is solved, where a matrix is built using results
from the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag
and the portion in only its six lower diagonals are converted in compressed column
storage format. The linear system of equations with an unsymmetric real sparse
matrix A built in this way is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD,
 $ N = KX*KY*KZ)
 PARAMETER (NBORDER=N+1,NOFFDIAG=6)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 INTEGER*4 WL
 PARAMETER (NALL=NDIAG*N,
C
 $ WL =4*NALL+6*N,
 $ IW1L=2*NALL+2*(N+1)+16*N,
 $ IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))
C
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1),
 $ NROWSYM(K*NDIAG+N),NFCNZSYM(N+1),
 $
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION NPERM(N),W(WL),
 $ NPOSTO(N),NDIM(3,N),
 $ NASSIGN(N),
 $ MZ(N),
 $ IW1(IW1L),IW2(IW2L)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTORL,PANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU
 REAL*8 DUMMYFL,DUMMYFU
 INTEGER*4 NDUMMYIL,
 $ NDUMMYIU
 INTEGER*8 NSIZEFACTORL,
 $ NSIZEINDEXL,
 $ NSIZEINDEXU,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 DIMENSION B(N),SOLEX(N)
 REAL*8 THEPSZ,EPSZ,SPEPSZ,

DM_VSRLU

II-334 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 $ SCLROW(N),SCLCOL(N)
C
 INTEGER*4 IPIVOT,ISTATIC,NFCNZPIVOT(N+1),
 $ NPIVOTP(N),NPIVOTQ(N),
 $ IREFINE,ITERMAX,ITER,IPLEDSM
C
 PRINT *,' LU DECOMPOSITION METHOD'
 PRINT *,' FOR SPARSE UNSYMMETRIC REAL MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *
C
 DO I=1,N
 SOLEX(I)=DBLE(1)
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *
C
 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
C
 DO J=1,N
 NTOPCFG=1
C
 DO I=NDIAG,1,-1
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN
 CONTINUE
 ELSE
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-335

 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOL
C
 NUMNZ=NUMNZ+1
C
 ENDIF
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZ(N+1)=NUMNZ
 NZ=NUMNZ-1
C
 CALL DM_VMVSCC(A,NZ,NROW,NFCNZ,N,SOLEX,
 $ B,WC,IWC,ICON)
C
C INITIAL CALL WITH IORDER=1
C
 IORDERING= 0 !
 IPLEDSM=1
 ISCLITERMAX=10
 ISW=1
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEXL=1
 NSIZEINDEXU=1
 EPSZ=1.0D-16
 THEPSZ=1.0D-2
 SPEPSZ=0.0D0
 IPIVOT=40
 ISTATIC=0
 IREFINE=1
 EPSR=0.0D0
 ITERMAX=10
C
 CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,DUMMYFL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,DUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NDUMMYIU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ W,IW1,IW2,ICON)
C
 PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEXL=',NSIZEINDEXL,
 $ 'NSIZEINDEXU=',NSIZEINDEXU,
 $ 'NSUPNUM=',NSUPNUM
C

DM_VSRLU

II-336 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ALLOCATE(PANELFACTORL(NSIZEFACTORL))
 ALLOCATE(PANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEXL))
 ALLOCATE(NPANELINDEXU(NSIZEINDEXU))
C
 ISW=2
C
 CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ W,IW1,IW2,ICON)
C
 CALL DM_VSRLUX(N,
 $ IORDERING,
 $ NPERM,
 $ B,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ IPLEDSM,MZ,
 $ SCLROW,SCLCOL,
 $ NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ A,NZ,NROW,NFCNZ,
 $ IW2,ICON)
C
 ERR = ERRNRM(SOLEX,B,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',B(1),' X(N) = ',B(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N
 PRINT *
 PRINT *,' ERROR = ',ERR

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-337

 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF
C

 DEALLOCATE(PANELFACTORL,PANELFACTORU,
 $ NPANELINDEXL,
 $ NPANELINDEXU)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF

DM_VSRLU

II-338 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN

 DM_VSRLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-339

 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

The permutation which moves large entries to the diagonal is performed. And the
permutated matrix is scaled in order to equilibrate both rows and columns norms. The LU
decomposition of this matrix is made. Nonzero elements belonging to each supernode is
stored in two-dimensional panel respectively. The pivot for numerical stabilization is
sought with in its block diagonal portion. The threshold for pivot search can be specified
so that immediately after a pivot candidate with the absolute value greater than it is
encountered in pivot search it is accepted as a pivot. In addition the static pivoting can be
specified so that even if the pivot obtained after pivot search is considered as too small, it
is replaced with the value of SPEPSZ and LU decomposition can be approximately
performed.
Refer to references in Appendix A, “References.” in detail.
Refer to [23], [57] on the method how the elements of large absolute value are permuted
to diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps,
to [19], [2], [22], [48], [68] on the LU decomposition of unsymmetric real sparse matrices
and to [63], [69] on equilibration of matrices and pivoting.

DM_VSRLUX

II-340 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSRLUX

A system of linear equations with LU-decomposed unsymmetric real sparse matrices

CALL DM_VSRLUX(N, IORDERING, NPERM,
B, NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
IPLEDSM, MZ,
SCLROW,SCLCOL, NFCNZPIVOT,
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,
A, NZ, NROW, NFCNZ,
IW2, ICON)

(1) Function

An n × n unsymmetric real sparse matrix A of which LU decomposition is made as below
is given. In this decomposition the large entries of an n × n unsymmetric real sparse
matrix A are permutated to the diagonal and then it is scaled in order to equilibrate both
rows and columns norms. Subsequently LU decomposition in which the pivot is taken as
specified within the block diagonal portion belonging to each supernode is performed and
results in the following form. This routine solves the following linear equation in use of
these results of LU decomposition.

 Ax=b

A matrix A is decomposed into as below.

 PrsQPDrAPcDcPTQTPcs=LU

The unsymmetric real sparse matrix A is transformed as below.

A1=DrAPcDc

 where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for
scaling rows and Dc is also a diagonal matrix for scaling columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.
The actual exchanges are restricted to the reduced part of the matrix belonging to each
supernode.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper
triangular matrix.
It can be specified to improve the precision of the solution by iterative refinement.

(2) Parameter

N......................... Input. Order n of matrix A.

 DM_VSRLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-341

IORDERING..... Input. When IORDERING 11 is specified, it is indicated that LU decomposition
is performed with an ordering specified in NPERM.
The matrix PA1PT is decomposed into LU decomposition.

Otherwise. No ordering is specified.

 (See note 1) in (3), "Comments on use.")

NPERM.............. Input. When IORDEING=11 is specified, a vector presenting the permutation
matrix P used is stored.

One-dimensional array NPERM(N).

(See note 2) in (3), "Comments on use.")

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax
= b.

Output. Solution vector x.

One-dimensional array B(N).

NASSIGN.......... Input. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in PANELFACTORL
and PANELFACTORU as one dimensional subarray consecutively and its
block number is stored. The corresponding indices vectors are similarly stored
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th
supernode is stored into the j-th block of a subarray, where j=NASSIN(i).

Regarding the storage methods of decomposed matrices, refer to Figure
DM_VSRLUX-1.
One-dimensional array NASSING(N).

NSUPNUM......... Input. The total number of supernodes.( n)

NFCNZFACTORL..Input. The decomposed matrices L and U of an unsymmetric real sparse matrix
are computed for each supernode respectively. The columns of L belonging to
each supernode are compressed to have the common row indices vector and
stored into a two dimensional panel with the corresponding parts of U in its
block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th panel is mapped into PANELFACTORL
consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

PANELFACTORL..Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i).
The location of its top of subarray including the portion of decomposed
matrices is stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i).
The corresponding block diagonal portion of the unit upper triangular matrix U
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).

One-dimensional array PANELFACTORL(NSIZEFACTORL).

DM_VSRLUX

II-342 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

NSIZEFACTORL.. Input. The size of the array PANELFACTORL. 8-byte integer.

NFCNZINDEXL... Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

NPANELINDEXL..Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the
row indices vector corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray is stored in
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into
which SYM is permuted in its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEXL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer.

NDIM................. Input. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is
allocated in the i-th location.
NDIM(3,i) indicates the total amount of the size of the first dimension of the
panel where a matrix U is transposed and stored and the size of its block
diagonal portion.

Two-dimensional array NDIM(3,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

NFCNZFACTORU..Input. Regarding a matrix U derived from LU decomposition of an
unsymmetric real sparse matrix, the rows of U except the of block diagonal
portion belonging to each supernode are compressed to have the common
column indices vector and stored into a two dimensional panel. The index
number of the top array element of the one dimensional subarray where the i-th
panel is mapped into PANELFACTORU consecutively or the location of
panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

PANELFACTORU..Input. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The block
number of the section where the panel corresponding to the i-th supernode is

 DM_VSRLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-343

assigned is known from j=NASSIGN(i). The location of its top of subarray
including the portion of decomposed matrices is stored in NFCNZFACTORU(j).
The size of the panel in the i-th block can be considered to be two dimensional
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular
matrix U except the block diagonal portion are compressed, transposed and
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).

One-dimensional array PANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer.

 (See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Input. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The index
number of the top array element of the one dimensional subarray where the i-th
column indices vector including indices of the block diagonal portion is mapped
into NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

NPANELINDEXU..Input. The rows of the decomposed matrix U belonging to each supernode are
compressed, transposed and stored in a two dimensional panel without its block
diagonal portion. The column indices vector including indices of the block
diagonal portion is mapped into NPANELINDEXU consecutively. The block
number of the section where the column indices vector corresponding to the i-th
supernode is assigned is known from j=NASSIGN(i). The location of its top of
subarray is stored in NFCNZINDEXU(j). These column indices are the column
numbers of the matrix into which SYM is permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEXU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRLUX-1.

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer.

NPOSTO............ Input. The information about what column number of A the i-th node in post
order corresponds to is stored.

One-dimensional array NPOSTO(N).

(See note 3) in (3), "Comments on use.")

IPLEDSM............ Input. Information indicating whether for LU decomposition it is specified to
permute the large entries to the diagonal of a matrix A.
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting
large entries to the diagonal.

Otherwise no permutation is performed.

MZ....................... Input. When IPLEDSM=1 is specified, it indicates a permutation of columns.
MZ(i)=j indicates that the j-th column which the element of aij belongs to is
permutated to i-th column. The element of aij is the large entry to be permuted
to the diagonal.
One-dimensional array MZ(N).

DM_VSRLUX

II-344 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

SCLROW............ Input. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

One-dimensional array SCLROW (N).

SCLCOL............ Input. The diagonal elements of Dc or a diagonal matrix for scaling columns are
stored in one dimensional array.

One-dimensional array SCLCOL(N).

NFCNZPIVOT.... Input. The location for the storage where the history of relative row and column
exchanges for pivoting within each supernode is stored.

The block number of the section where the information on the i-th supernode is
assigned is known by j=NASSIGN(i). The position of the first element of that
section is stored in NFCNZPIVOT(j). The information of exchange rows and
columns within the i-th supernode is stored in the elements of
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and
NPIVOTQ respectively.

One-dimensional array NFCNZPIVOT(NSUPNUM+1).

 NPIVOTP.......... Input. The information on exchanges of rows within each supernode is stored.

One-dimensional array NPIVOTP(N).

NPIVORQ.......... Input. The information on exchanges of columns within each supernode is
stored.

One-dimensional array NPIVOTQ(N).

IREFINE............ Input. Control information indicating whether iterative refinement is performed
when the solution is computed in use of results of LU decomposition. A
residual vector is computed in quadruple precision.

When IREFINE=1 is specified.
The iterative refinement is performed. It is iterated until in the sequences of the
solutions obtained in refinement the difference of the absolute values of their
corresponding residual vectors become larger than a fourth of that of
immediately previous ones.

When IREFINE≠1is specified.
No iterative refinement is performed.

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector
b-Ax is sufficiently smaller compared with the absolute value of b.

When EPSR ≤ 0.0, it is set to 1.0D-6.

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1).

ITER.................. Output. Actual iterative count for refinement.

A......................... Input. The nonzero elements of an unsymmetric real sparse matrix A are stored
in A(1:NZ).

One-dimensional array A(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector).

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric real
sparse matrix A.

 DM_VSRLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-345

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an
array A in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

IW2..................... Work area.

Input.
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N).

The data derived from calling DM_VSRLU of LU decomposition of an
unsymmetric real sparse matrix is transferred in this work area. The contents
must not be changed among calls.

ICON................... Output. Condition code.

(See Table DM_VSRLUX-1.)

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure DM_VSRLUX-1 Conceptual scheme for storing decomposed results

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2,
j) from the p-th element of PANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

DM_VSRLUX

II-346 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

The block diagonal portion except diagonals of the unit upper triangular matrix U of
decomposed results is stored in

 panel(s, t), s < t, s = 1,...,DIM(2, j),

 t = 1,...,DIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of
PANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area
with a length DIM(3,j) from the v-th element of
NPANELINDEXU.

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of
decomposed results is stored in

 panel(x, y), x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix
A is permuted in post ordering.

Table DM_VSRLUX-1 Condition codes

Code Meaning Processing

0 No error 

20400 There is a zero element in diagonal of resultant
matrices of LU decomposition.

20500 The norm of residual vector for the solution
vector is greater than that of b multiplied by
EPSR, which is the right term constant vector
in Ax=b. The coefficient matrix A may be
close to a singular matrix.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEXL < 1,
NSIZEFACTORU < 1, NSIZEINDEXU < 1,
ITERMAX<1 when IREFINE=1.

30100 The permutation matrix specified in NPREM
is not correct.

Processing is discontinued.

30200 The row index k stored in NROW(j) is k < 1 or
k > n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

(3) Comments on use

a. Notes

1) The results of LU decomposition obtained by DM_VSRLU is used.
See note 5) (3), "Comments on use." of DM_VSRLU and example in (3),
"Comments on use." of DM_VSRLUX.

 DM_VSRLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-347

2) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO

3) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 2) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

b. Example

The linear system of equations Ax=f is solved, where a matrix is built using results
from the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag
and the portion in only its six lower diagonals are converted in compressed column
storage format. The linear system of equations with an unsymmetric real sparse
matrix A built in this way is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD,
 $ N = KX*KY*KZ)
 PARAMETER (NBORDER=N+1,NOFFDIAG=6)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 INTEGER*4 WL
 PARAMETER (NALL=NDIAG*N,
C
 $ WL =4*NALL+6*N,
 $ IW1L=2*NALL+2*(N+1)+16*N,
 $ IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))
C
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1),
 $ NROWSYM(K*NDIAG+N),NFCNZSYM(N+1),
 $
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION NPERM(N),W(WL),

DM_VSRLUX

II-348 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 $ NPOSTO(N),NDIM(3,N),
 $ NASSIGN(N),
 $ MZ(N),
 $ IW1(IW1L),IW2(IW2L)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTORL,PANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU
 REAL*8 DUMMYFL,DUMMYFU
 INTEGER*4 NDUMMYIL,
 $ NDUMMYIU
 INTEGER*8 NSIZEFACTORL,
 $ NSIZEINDEXL,
 $ NSIZEINDEXU,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 DIMENSION B(N),SOLEX(N)
 REAL*8 THEPSZ,EPSZ,SPEPSZ,
 $ SCLROW(N),SCLCOL(N)
C
 INTEGER*4 IPIVOT,ISTATIC,NFCNZPIVOT(N+1),
 $ NPIVOTP(N),NPIVOTQ(N),
 $ IREFINE,ITERMAX,ITER,IPLEDSM
C
 PRINT *,' LU DECOMPOSITION METHOD'
 PRINT *,' FOR SPARSE UNSYMMETRIC REAL MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *
C
 DO I=1,N
 SOLEX(I)=DBLE(1)
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *
C
 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C

 DM_VSRLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-349

 NUMNZ=1
C
 DO J=1,N
 NTOPCFG=1
C
 DO I=NDIAG,1,-1
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN
 CONTINUE
 ELSE
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOL
C
 NUMNZ=NUMNZ+1
C
 ENDIF
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZ(N+1)=NUMNZ
 NZ=NUMNZ-1
C
 CALL DM_VMVSCC(A,NZ,NROW,NFCNZ,N,SOLEX,
 $ B,WC,IWC,ICON)
C
C INITIAL CALL WITH IORDER=1
C
 IORDERING= 0 !
 IPLEDSM=1
 ISCLITERMAX=10
 ISW=1
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEXL=1
 NSIZEINDEXU=1
 EPSZ=1.0D-16
 THEPSZ=1.0D-2
 SPEPSZ=0.0D0
 IPIVOT=40
 ISTATIC=0
 IREFINE=1
 EPSR=0.0D0
 ITERMAX=10
C
 CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,DUMMYFL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,

DM_VSRLUX

II-350 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 $ NDUMMYIL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,DUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NDUMMYIU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ W,IW1,IW2,ICON)
C
 PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEXL=',NSIZEINDEXL,
 $ 'NSIZEINDEXU=',NSIZEINDEXU,
 $ 'NSUPNUM=',NSUPNUM
C
 ALLOCATE(PANELFACTORL(NSIZEFACTORL))
 ALLOCATE(PANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEXL))
 ALLOCATE(NPANELINDEXU(NSIZEINDEXU))
C
 ISW=2
C
 CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ W,IW1,IW2,ICON)
C
 CALL DM_VSRLUX(N,
 $ IORDERING,
 $ NPERM,
 $ B,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,

 DM_VSRLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-351

 $ NPOSTO,
 $ IPLEDSM,MZ,
 $ SCLROW,SCLCOL,
 $ NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ A,NZ,NROW,NFCNZ,
 $ IW2,ICON)
C
 ERR = ERRNRM(SOLEX,B,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',B(1),' X(N) = ',B(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF
C

 DEALLOCATE(PANELFACTORL,PANELFACTORU,
 $ NPANELINDEXL,
 $ NPANELINDEXU)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)

DM_VSRLUX

II-352 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY

 DM_VSRLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-353

 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

DM_VSRS

II-354 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSRS

A system of linear equations with unsymmetric real sparse matrices (LU decomposition
method)

CALL DM_VSRS(A, NZ, NROW, NFCNZ, N,
IPLEDSM, MZ, ISCLITERMAX,
IORDERING, NPERM, ISW,
NROWSYM, NFCNZSYM, B,
NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEXL, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO,
SCLROW, SCLCOL,
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT,
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,
W, IW1, IW2, ICON)

(1) Function

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal
and then it is scaled in order to equilibrate both rows and columns norms. Subsequently this
subroutine solves a system of equations Ax=b in use of LU decomposition in which the pivot
is taken as specified within the block diagonal portion belonging to each supernode.

 Ax=b

The unsymmetric real sparse matrix is transformed as below.

A1=DrAPcDc

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling
rows and Dc is also a diagonal matrix for scaling columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM. P
and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular
matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or
equal to the threshold specified in THEPSZ can not be found, the element with the largest
absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately
decomposed into LU specifying an appropriate small value as a static pivot in place of the
candidate sought.
The solution is computed using LU decomposition.
It can be specified to improve the precision of the solution by iterative refinement.

(2) Parameter

A......................... Input. The nonzero elements of an unsymmetric real sparse matrix A are stored in
A(1:NZ).

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-355

One-dimensional array A(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1 in the
description for DM_VMVSCC routine (multiplication of a real sparse matrix and a
real vector).

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric real
sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an array A
in the compressed column storage method which stores the nonzero elements
column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N......................... Input. Order n of matrix A.

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal of a
matrix A.
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting
large entries to the diagonal.

Otherwise no permutation is performed.

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns.
MZ(i)=j indicates that the j-th column which the element of aij belongs to is
permutated to i-th column. The element of aij is the large entry to be permuted to the
diagonal.
One-dimensional array MZ(N).

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr and
Dc to equilibrate both rows and columns of matrix A.

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and Dc
are assumed as unit matrices.

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of iteration
is considered as 10.

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT
permuted by the matrix P of ordering or to decompose the matrix A.

When IORDERING=10 is specified, calling this routine with ISW=1 produces the
informations which is needed to generate an ordering regarding A1 and they are set
in NROWSYM and NFCNZSYM.

When IORDERING 11 is specified, it is indicated that after an ordering is set in
NPERM, the computation is resumed.
Using the informations obtained in NROWSYM and NFCNZSYM after calling this
routines with ISW=1 and IORDERING=10, an ordering is determined. After
specifying this ordering in NPERM, this routine is called again with ISW=1and
IORDERING=11 and the computation is resumed.
LU decomposition of the matrix PA1PT is continued.

Otherwise. Without any ordering, the matrix A1 is decomposed into LU.

DM_VSRS

II-356 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Output. IORDERING is set to 11 after this routine is called with IORDERING=10
and ISW=1. Therefore after an ordering is set in NPERM the computation is
resumed in the subsequent call without IORDERING=11 being specified explicitly.

(See note 1) in (3), "Comments on use.")

NPERM.............. Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

ISW..................... Input. Control information.

1)When ISW=1 is specified.
After symmetrization of a matrix and symbolic decomposition, checking whether
the sufficient amount of memory for storing data are allocated the computation is
performed.
Call with IORDERING=10 produces the informations needed for seeking an
ordering in NROWSYM and NFCNZSYN. Using these informations an ordering
for SYM is determined. After an ordering is set in NPERM, calling this routine with
IORDERING=11 and also ISW=1 again resumes the computation.
When IORDERING is neither 10 nor 11, no ordering is specified.

2) When ISW=2 specified.
After the previous call ends with ICON=31000, that means that the sizes of
PANELFACTORL or PANELFACTORU or NPANELINDEXL or
NPANELINDEXU were not enough, the suspended computation is resumed.
Before calling again with ISW=2, the PANELFACTORL or PANELFACTORU or
NPANELINDEXL or NPANELINDEXU must be reallocated with the necessary
sizes which are returned in the NSIZEFACTORL NSIZEFACTORU or
NSIZEINDEXL or NSIZEINDEXU at the precedent call and specified in
corresponding arguments.
Besides, except these arguments and ISW as control information, the values in the
other augments must not be changed between the previous and following calls.

3) When ISW=3 is specified.
The subsequent call with ISW=3 solves another system of equations of which the
coefficient matrix is as same as previous call but the right-hand side vector b is
changed. In this case, the information obtained by the previous LU decomposition
can be reused.
Besides, except ISW as control information and B for storing the new right-hand
side b, the values in the other arguments must not be changed between the previous
and following calls.

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero pattern
of the lower triangular part of SYM=A1+A1

T in the compressed column storage
method are generated.

One-dimensional array NROWSYM(NZ+N).

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row index
of each column stored in array NROWSYM in the compressed column storage
method which stores the nonzero pattern of the lower part of a matrix SYM column
by column.

NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements in the
lower triangular part.

One-dimensional array NFCNZ(N+1).

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax = b.

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-357

Output. Solution vector x.

One-dimensional array B(N).

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in PANELFACTORL and
PANELFACTORU as one dimensional subarray consecutively and its block
number is stored. The corresponding indices vectors are similarly stored
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th supernode
is stored into the j-th block of a subarray, where j=NASSIN(i).

Input. When ISW≠1, the values stored in the first call are reused. Regarding
the storage methods of decomposed matrices, refer to Figure DM_VSRS-1.
One-dimensional array NASSING(N).

NSUPNUM......... Output. The total number of supernodes.

Input. The values in the first call are reused when ISW  1 specified. (≤ n)

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric real sparse matrix
are computed for each supernode respectively. The columns of L belonging to each
supernode are compressed to have the common row indices vector and stored into a
two dimensional panel with the corresponding parts of U in its block diagonal
portion. The index number of the top array element of the one dimensional subarray
where the i-th panel is mapped into PANELFACTORL consecutively or the
location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

Input. The values set by the first call are reused when ISW  1 specified.

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). The
location of its top of subarray including the portion of decomposed matrices is
stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). The
corresponding block diagonal portion of the unit upper triangular matrix U except
its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).

One-dimensional array PANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORL.. Input. The size of the array PANELFACTORL. 8-byte integer.

Output. The necessary size for the array PANELFACTORL is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in its

DM_VSRS

II-358 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the row
indices vector corresponding to the i-th supernode is assigned is known from
j=NASSIGN(i). The location of its top of subarray is stored in NFCNZINDEXL(j).
This row indices are the row numbers of the matrix into which SYM is permuted in
its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEXL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is allocated in
the i-th location.
NDIM(3,i) indicates the total amount of the size of the first dimension of the panel
where a matrix U is transposed and stored and the size of its block diagonal portion.

Input. When ISW1, the values set by the first call are reused.

Two-dimensional array NDIM(3,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an unsymmetric
real sparse matrix, the rows of U except the of block diagonal portion belonging to
each supernode are compressed to have the common column indices vector and
stored into a two dimensional panel. The index number of the top array element of
the one dimensional subarray where the i-th panel is mapped into
PANELFACTORU consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

Input. When ISW  1, the values set by the first call are reused.

PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored in a
two dimensional panel without its block diagonal portion. The block number of the

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-359

section where the panel corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray including the portion of
decomposed matrices is stored in NFCNZFACTORU(j). The size of the panel in
the i-th block can be considered to be two dimensional array of {DIM(3,i)-
DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular matrix U except the
block diagonal portion are compressed, transposed and stored in this panel(s, t), s =
1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).

One-dimensional array PANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer.

Output. The necessary size for the array PANELFACTORU is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored in a
two dimensional panel without its block diagonal portion. The index number of the
top array element of the one dimensional subarray where the i-th column indices
vector including indices of the block diagonal portion is mapped into
NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode are
compressed, transposed and stored in a two dimensional panel without its block
diagonal portion. The column indices vector including indices of the block diagonal
portion is mapped into NPANELINDEXU consecutively. The block number of the
section where the column indices vector corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray is stored
in NFCNZINDEXU(j). These column indices are the column numbers of the matrix
into which SYM is permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEXU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSRS-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NPOSTO............ Output. The information about what column number of A the i-th node in post order
corresponds to is stored.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array NPOSTO(N).

(See note 4) in (3), "Comments on use.")

DM_VSRS

II-360 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array SCLROW (N).

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns are
stored in one dimensional array.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array SCLCOL(N).

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0).

Output. When EPSZ ≤ 0.0, it is set to the standard value.

(See note 2) in (3), "Comments on use.")

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in
pivot search is considered to have the value greater than or equal to the threshold
specified, it is accepted as a pivot and the search of a pivot is broken off.
For example, 1.0D-2.

Output. When THEPSZ≤0.0D0, 1.0D-2 is set.
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ.

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is searched
and what kind of pivoting is chosen if any.
For example, 40 for complete pivoting.

 IPIVOT<10 or IPIVOT≥ 50, no pivoting.

 10≤IPIVOT<20, partial pivoting

 20≤IPIVOT<30, diagonal pivoting

 21 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting.

 22 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting. If Rook pivoting fails, it is changed to complete pivoting.

 30≤IPIVOT<40, Rook pivoting

 32 : When within a supernode Rook pivoting fails, it is changed to complete
pivoting.

 40≤IPIVOT<50, complete pivoting

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.

1) When ISTATIC=1 is specified.
When the pivot searched within a supernode is not greater than SPEPSZ, it is
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT).
If its value is 0.0D0, SPEPSZ is used as an approximation value.

The following conditions must be satisfied.
a) EPSZ must be less than or equal to the standard value of EPSZ.
b) Scaling must be performed with ISCLITERMAX=10.
c) THEPSZ≥SPEPSZ must hold.
d) IREFINE=1 must be specified for the iterative refinement of the solution.

2) When ISTATIC≠1 is specified.
No static pivot is performed.

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-361

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is specified.
The following conditions must hold.
1.0D-10≥SPEPSZ≥EPSZ

 Output. When SPEPSZ<EPSZ, it is set to 1.0D-10.

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and column
exchanges for pivoting within each supernode is stored.

The block number of the section where the information on the i-th supernode is
assigned is known by j=NASSIGN(i). The position of the first element of that
section is stored in NFCNZPIVOT(j). The information of exchange rows and
columns within the i-th supernode is stored in the elements of
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and
NPIVOTQ respectively.

One-dimensional array NFCNZPIVOT(NSUPNUM+1).

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored.

One-dimensional array NPIVOTP(N).

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is stored.

One-dimensional array NPIVOTQ(N).

IREFINE............ Input. Control information indicating whether iterative refinement is performed
when the solution is computed in use of results of LU decomposition. A residual
vector is computed in quadruple precision.

When IREFINE=1 is specified.
The iterative refinement is performed. It is iterated until in the sequences of the
solutions obtained in refinement the difference of the absolute values of their
corresponding residual vectors become larger than a fourth of that of immediately
previous ones.

When IREFINE≠1is specified.
No iterative refinement is performed.

When ISTATIC=1 is specified, IREFINE=1 must be specified.

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector
b-Ax is sufficiently smaller compared with the absolute value of b.

When EPSR ≤ 0.0, it is set to 1.0D-6.

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1).

ITER.................. Output. Actual iterative count for refinement.

W......................... Work area.

Output/Input.
One-dimensional array of size 4*NZ+6*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for
preserving information among calls. The contents must not be changed.

IW1..................... Work area.

Output/Input.
One-dimensional array of size 2*NZ+2*(N+1)+16*N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for
preserving information among calls. The contents must not be changed.

DM_VSRS

II-362 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

IW2..................... Work area.

Output/Input.
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N).

When this subroutine is called repeatedly with ISW=1, 2, 3 this work area is used
for preserving information among calls. The contents must not be changed.

ICON................... Output. Condition code.

(See Table DM_VSRS-1.)

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure DM_VSRS-1 Conceptual scheme for storing decomposed results

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, j)
from the p-th element of PANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed
results is stored in

 panel(s, t), s < t, s = 1,...,DIM(2, j),

 t = 1,...,DIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of PANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area with a
length DIM(3,j) from the v-th element of NPANELINDEXU.

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-363

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed
results is stored in

 panel(x, y), x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A
is permuted in post ordering.

Table DM_VSRS-1 Condition codes

Code Meaning Processing

0 No error 

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

20100 When IPLEDSM is specified, maximum
matching with the length N is sought in order
to permute large entries to the diagonal but can
not be found. The coefficient matrix A may be
singular.

Processing is discontinued.

20200 When seeking diagonal matrices for
equilibrating both rows and columns, there is a
zero vector in either rows or columns of the
matrix A. The coefficient matrix A may be
singular.

20400 There is a zero element in diagonal of resultant
matrices of LU decomposition.

20500 The norm of residual vector for the solution
vector is greater than that of b multiplied by
EPSR, which is the right term constant vector
in Ax=b. The coefficient matrix A may be
close to a singular matrix.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEXL < 1,
NSIZEFACTORU < 1, NSIZEINDEXU < 1,
ISW < 1, or ISW > 3,
ITERMAX<1 when IREFINE=1.

30100 The permutation matrix specified in NPREM
is not correct.

30200 The row index k stored in NROW(j) is k < 1 or
k > n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

DM_VSRS

II-364 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Code Meaning Processing

30500 When ISTATIC=1 is specified, the required
conditions are not satisfied.
EPSZ is greater than 16u of the standard value
or ISCLITERMAX<10
or IREFINE≠1
or SPEPSZ>THEPSZ
or SPEPSZ>1.0D-10

Processing is discontinued.

31000 The value of NSIZEFACTORL is not enough
as the size of PANELFACTORL,
or the value of NSIZEINDEXL is not enough
as the size of NPANELINDEXL,
or the value of NSIZEFACTORU is not
enough as the size of PANELFACTORU,
 or the value of NSIZEINDEXU is not enough
as the size of NPANELINDEXU.

Reallocate the
PANELFACTORL or
NPANELINDEXL or
PANELFACTORU or
NPANELINDEXU
with the necessary size which
are returned in the
NSIZEFACTORL or
NSIZEINDEXL or
NSIZEFACTORU or
NSIZEINDEXU respectively
and call this subroutine again
with ISW=2 specified.

(3) Comments on use

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO
Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than EPSZ
in the process of LU decomposition. In this case, processing is discontinued with
ICON = 20000. When unit round off is u, the standard value of EPSZ is 16  u.
When the computation is to be continued even if the absolute value of diagonal
element is small, assign the minimum value to EPSZ. In this case, however, the
result is not assured.
 If Static pivot is specified to be performed, when the diagonal element is smaller
than SPEPSZ, LU decomposition is approximately continued replacing it with
SPEPSZ. It is required to specify to do iterative refinement.

3) The necessary sizes for the array PANELFACTORL, NPANELINDEXL,
PANELFACTORU and NPANELINDEXU that store the decomposed results can
not be determined beforehand. It is suggested to reallocate them by using the result
of the symbolic decomposition analysis after the first call of this routine, or allocate
large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And call
this routine with the small values such as one in the size specifying in
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU with
ISW=1. This routine ends with ICON=31000, and the necessary sizes for
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-365

returned. Then the suspended process can be resumed by calling it with ISW=2 after
reallocating the arrays with the necessary sizes.

4) Nodes corresponding to column number is considered. The node number permuted
in post order is stored in NPOSTO. This array indicates what node number in
original node number the i-th node in post order is corresponding. It means j-th
position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also as
well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

5) Instead of this routine, a system of equations Ax=b can be solved by calling both
DM_VSRLU to perform LU decomposition of an unsymmetric real sparse matrix A
and DM_VSRLUX to solve the linear equation in use of decomposed results.

b. Example

 The linear system of equations Ax=f is solved, where a matrix is built using results from
the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag and
the portion in only its six lower diagonals are converted in compressed column storage
format. The linear system of equations with an unsymmetric real sparse matrix A built in
this way is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this
program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD,
 $ N = KX*KY*KZ)
 PARAMETER (NBORDER=N+1,NOFFDIAG=6)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 INTEGER*4 WL
 PARAMETER (NALL=NDIAG*N,
C
 $ WL =4*NALL+6*N,
 $ IW1L=2*NALL+2*(N+1)+16*N,
 $ IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))
C
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1),
 $ NROWSYM(K*NDIAG+N),NFCNZSYM(N+1),
 $
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION NPERM(N),W(WL),
 $ NPOSTO(N),NDIM(3,N),
 $ NASSIGN(N),
 $ MZ(N),
 $ IW1(IW1L),IW2(IW2L)

DM_VSRS

II-366 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTORL,PANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU
 REAL*8 DUMMYFL,DUMMYFU
 INTEGER*4 NDUMMYIL,
 $ NDUMMYIU
 INTEGER*8 NSIZEFACTORL,
 $ NSIZEINDEXL,
 $ NSIZEINDEXU,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 DIMENSION B(N),SOLEX(N)
 REAL*8 EPSZ,THEPSZ,SPEPSZ,
 $ SCLROW(N),SCLCOL(N)
C
 INTEGER*4 IPIVOT,ISTATIC,NFCNZPIVOT(N+1),
 $ NPIVOTP(N),NPIVOTQ(N),
 $ IREFINE,ITERMAX,ITER,IPLEDSM
C
 PRINT *,' LU DECOMPOSITION METHOD'
 PRINT *,' FOR SPARSE UNSYMMETRIC REAL MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *
C
 DO I=1,N
 SOLEX(I)=DBLE(1)
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *
C
 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZ=1
C
 DO J=1,N
 NTOPCFG=1

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-367

C
 DO I=NDIAG,1,-1
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN
 CONTINUE
 ELSE
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOL
C
 NUMNZ=NUMNZ+1
C
 ENDIF
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZ(N+1)=NUMNZ
 NZ=NUMNZ-1
C
 CALL DM_VMVSCC(A,NZ,NROW,NFCNZ,N,SOLEX,
 $ B,WC,IWC,ICON)
C
C INITIAL CALL WITH IORDER=1
C
 IORDERING= 0 !
 IPLEDSM=1
 ISCLITERMAX=10
 ISW=1
 EPSZ=1.0D-16
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEXL=1
 NSIZEINDEXU=1
 THEPSZ=1.0D-2
 SPEPSZ=0.0D0
 IPIVOT=40
 ISTATIC=0
 IREFINE=1
 EPSR=0.0D0
 ITERMAX=10
C
 CALL DM_VSRS(A,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ B,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,DUMMYFL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,DUMMYFU,

DM_VSRS

II-368 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NDUMMYIU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ W,IW1,IW2,ICON)
C
 PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEXL=',NSIZEINDEXL,
 $ 'NSIZEINDEXU=',NSIZEINDEXU,
 $ 'NSUPNUM=',NSUPNUM
C
 ALLOCATE(PANELFACTORL(NSIZEFACTORL))
 ALLOCATE(PANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEXL))
 ALLOCATE(NPANELINDEXU(NSIZEINDEXU))
C
 ISW=2
C
 CALL DM_VSRS(A,NZ,NROW,NFCNZ,N,
 $ IPLEDSM,MZ,ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NROWSYM,NFCNZSYM,
 $ B,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,
 $ NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEXL,
 $ NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,
 $ NPANELINDEXU,NSIZEINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,THEPSZ,
 $ IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,
 $ NPIVOTP,NPIVOTQ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ W,IW1,IW2,ICON)
C
 ERR = ERRNRM(SOLEX,B,N)
C
 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',B(1),' X(N) = ',B(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *
C
 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-369

 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF
C

 DEALLOCATE(PANELFACTORL,PANELFACTORU,
 $ NPANELINDEXL,
 $ NPANELINDEXU)
C
 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN

DM_VSRS

II-370 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ

 DM_VSRS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-371

 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

The permutation which moves large entries to the diagonal is performed. And the permutated
matrix is scaled in order to equilibrate both rows and columns norms. Subsequently the LU
decomposition of this matrix is made. Nonzero elements belonging to each supernode is
stored in two-dimensional panel respectively. The pivot for numerical stabilization is sought
with in its block diagonal portion. The threshold for pivot search can be specified so that
immediately after a pivot candidate with the absolute value greater than it is encountered in
pivot search it is accepted as a pivot. In addition the static pivoting can be specified so that
even if the pivot obtained after pivot search is considered as too small, it is replaced with the
value of SPEPSZ and LU decomposition can be approximately performed.
Refer to references in Appendix A, “References.” in detail.
Refer to [23], [57] on the method how the elements of large absolute value are permuted to
diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps, to
[19], [2], [22], [48], [68] on the LU decomposition of unsymmetric real sparse matrices and to
[63], [69] on equilibration of matrices and pivoting.

DM_VSSPS

II-372 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSSPS

A system of linear equations with symmetric positive definite sparse matrices (Left-looking
LDLT decomposition method)

CALL DM_VSSPS(A, NZ, NROW, NFCNZ, N, IORDERING, NPERM, ISW, EPSZ, B,
NASSIGN, NSUPNUM, NFCNZFACTOR, PANELFACTOR,
NSIZEFACTOR, NFCNZINDEX, NPANELINDEX, NSIZEINDEX,
NDIM, NPOSTO, W, IW1, IW2, IW3, ICON)

(1) Function

 This subroutine solves a system of equations Ax=b using modified Cholesky LDLT
decomposition, where A is a symmetric positive definite sparse matrix (n × n).

 The positive definite sparse matrix is decomposed as

QPAPTQT = LDLT, (1.1)

 where P is a permutation matrix of ordering and Q is a permutation matrix of post
ordering. P and Q are orthogonal matrices, L is a unit lower triangular matrix, and D is a
diagonal matrix.

(2) Parameter

A Input. The non-zero elements of the lower triangular part {aij | i  j} of a
symmetric sparse matrix A are stored in A(1:NZ).

One-dimensional array A(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector).

NZ Input. The total number of the nonzero elements belong to the lower triangular
part of a symmetric sparse matrix A.

NROW Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ Input. The position of the first nonzero element of each column stored in an
array A in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N Input. Order n of matrix A.

IORDERING Input. Control information whether to decompose the reordered matrix PAPT
permuted by the matrix P of ordering or to decompose the matrix A.

Specify IORDERING=1 for the decomposition of the matrix PAPT.

Specify the other value for the decomposition of the matrix A as it is.

NPERM Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

 DM_VSSPS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-373

(See note 1) in (3), "Comments on use.")

ISW Input. Control information .

1) Specify ISW=1 for the first call.

2) Specify ISW=2 for the subsequent call if the previous call has failed with
ICON=31000, that means the size of PANELFACTOR or NPANELINDEX
were not enough. In this case, the PANELFACTOR or NPANELINDEX must
be reallocated with the necessary sizes which are returned in the
NSIZEFACTOR or NSIZEINDEX at the precedent call.

Besides, the values of A, NZ, NROW, NFCNZ, N, IORDERING, NPERM,
NASSIGN, NSUPNUM, NFCNZFACTOR, NFCNZINDEX, NPANELINDEX,
NPOSTO, NDIM, W, IW1, IW2, and IW3 must be unchanged after the first call.

3) Specify ISW=3 for the second and subsequent calls when solving another
system of equations which have the same non-zero pattern of the matrix A but
the values of its elements are different. In this case, the information obtained in
symbolic decomposition and the array PANELFACTOR and NPANELINDEX
of the same size required in previous call can be reused. Then numerical LDLT
decomposition will proceed with that information and the new linear equations
can be solved efficiently. Store the values of the matrix elements in the array A,
or store in another array C and let it be as the parameter A. The value of
NROW must be unchanged in both cases.

Besides, the values of NZ, NROW, NFCNZ, N, IORDERING, NPERM,
NASSIGN, NSUPNUM, NFCNZFACTOR, NSIZEFACTOR, NFCNZINDEX,
NPANELINDEX, NSIZEINDEX, NPOSTO, NDIM, W, IW1, IW2, and IW3
must be unchanged also as the previous call.

4) Specify ISW=4 for the second and subsequent calls when solving another
system of equations of which the coefficient matrix is as same as previous call
but the right-hand side vector b is changed. In this case, the information
obtained by the previous LDLT decomposition can be reused.

Besides the values of N, IORDERING, NPERM, NASSIGN, NSUPNUM,
NFCNZFACTOR, NSIZEFACTOR, NFCNZINDEX, NPANELINDEX,
NSIZEINDEX, NPOSTO, NDIM, and IW3 must be unchanged as the previous
call.

EPSZ Input. Judgment of relative zero of the pivot ( 0.0).

When EPSZ is 0.0, the standard value is assumed.

(See note 2) in (3), "Comments on use.")

B Input. The right-hand side constant vector b of a system of linear equations Ax
= b.

Output. Solution vector x.

One-dimensional array B(N).

NASSIGN Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. The elements
of this array indicate the position, where this panel is allocated as a part of the
one-dimensional array PANELFACTOR. When j=NASSIGN(i), the i-th
supernode is allocated at j-th position.

Input. The values in the first call are reused when ISW  1 specified.

DM_VSSPS

II-374 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1.

One-dimensional array NASSIGN(N).

(See note 3) in (3), "Comments on use.")

NSUPNUM Output. The total number of supernodes.

Input. The values in the first call are reused when ISW  1 specified. ( n)

NFCNZFACTOR.. Output. Each supernode consists of multiple column vectors, and the factorized
matrix of supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. The elements
of this array indicate the position of the first element panel(1,1) of the i-th panel,
where this panel is allocated as a part of the one-dimensional array
PANELFACTOR.

One-dimensional 8-byte integer array NFCNZFACTOR(N+1).

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1.

Input. The values set by the first call are reused when ISW  1 specified.

PANELFACTOR.. Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. These panels
are stored in this matrix.

The positions of the panel corresponding to the i-th supernode are indicated as
j=NASSIGN(i). The first position is stored in NFCNZFACTOR(j). The
decomposed result is stored in each panel.

The size of the i-th panel can be considered to be two-dimensional array of
DIM(1,i)  DIM(2,i). The corresponding part where the lower triangular unit
matrix except the diagonal part is stored in panel(s, t), s > t, s = 1,...,DIM(1, i),
t=1,...,DIM(2,i) of the i-th panel. The corresponding part of the diagonal matrix
D is stored in panel(t, t).

One-dimensional array PANELFACTOR(NSIZEFACTOR).

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTOR.. Input. The size of the array PANELFACTOR. 8-byte integer.

Output. The necessary size for the array PANELFACTOR is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEX... Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. The elements
of this array indicate the position of the first element of the i-th row indices
vector, where this panel is allocated as a part of the one-dimensional array
NPANELINDEX.

One-dimensional 8-byte integer array NFCNZINDEX(N+1).

Input. The values set by the first call are reused when ISW  1 specified.

 DM_VSSPS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-375

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1.

NPANELINDEX.. Output. Each supernode consists of multiple column vectors, and the
supernodes are stored in two-dimensional panel by compressing rows
containing nonzero elements with a common row indices vector. These row
indices vectors are stored in this matrix. The positions of the row pointer vector
corresponding to the i-th supernode are indicated as j=NASSIGN(i). The first
position is stored in NFCNZINDEX(j). The row indices vector is stored by
each panel. This row indices are the row indices of the matrix QAQT to which
the matrix A is permuted by post ordering.

One-dimensional array NPANELFACTOR(NSIZEINDEX).

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEX..... Input. The size of the array PANELINDEX. 8-byte integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NDIM Output. The size of first and second dimension of the i-th panel are stored in
NDIM(1,i) and NDIM(2,i) respectively.

Input. The values set by the first call are reused when ISW  1 specified.

Two-dimensional array NDIM(2,N).

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1.

NPOSTO Output. The one dimensional vector is stored which indicates what column
index of A the i-th node in post ordering corresponds to.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array NPOSTO(N).

(See note 4) in (3), "Comments on use.")

W Work area.

Output/Input.

When IORDERING=1, one-dimensional array of size NZ.

When this subroutine is called repeatedly with ISW=1,2,3, This work area is
used for preserving information among calls. The contents must not be changed.

When IORDERING1, one-dimensional array of size 1.

IW1 Work area.

Output/Input.

When IORDERING=1, one-dimensional array of size NZ+N+1.

When this subroutine is called repeatedly with ISW=1,2,3, This work area is
used for preserving information among calls. The contents must not be changed.

When IORDERING1, one-dimensional array of size 1.

IW2 Work area.

DM_VSSPS

II-376 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Output/Input. One-dimensional array of size NZ+N+1.

When this subroutine is called repeatedly with ISW=1,2,3, This work area is
used for preserving information among calls. The contents must not be changed.

IW3 Work area.

Output/Input. One-dimensional array of size N35+35.

When this subroutine is called repeatedly with ISW=1,2,3,4, This work area is
used for preserving information among calls. The contents must not be changed.

ICON Output. Condition code.

(See Table DM_VSSPS-1.)

panel row pointer vector

row indices of post ordering ・

Figure DM_VSSPS-1 concept of storing the data for decomposed result

j = NASSIGN(i)  The i-th supernode is stored at the j-th position.

p = NFCNZFACTOR(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2,
j) from the p-th element of PANELFACTOR.

q = NFCNZINDEX(j)  The row pointer vector of the j-th panel occupies the area with a
length DIM(1,j) from the q-th element of PANELINDEX.

A panel is regarded as an array of the size DIM(1, j)DIM(2, j).

The lower triangular unit matrix L except the diagonal part is stored in

 panel(s, t), s > t, s = 1,...,DIM(1, j),

 t = 1,...,DIM(2, j).

The corresponding part of the diagonal matrix D is stored in panel(t, t).

The row pointers indicate the column indices of the matrix QAQT to which the node of the
matrix A is permuted by post ordering.

 DM_VSSPS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-377

Table DM_VSSPS-1 Condition codes

Code Meaning Processing

0 No error 

10000 The coefficient matrix is not positive definite. Processing is continued.

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTOR < 1, NSIZEINDEX < 1,
EPSZ < 0, ISW < 1, or ISW > 4.

30100 The permutation matrix specified in NPREM is
not correct.

Processing is discontinued.

30200 The row pointer k stored in NROW(j) is k < i or
k > N.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n - i+1.

30400 There is a column without a diagonal element.

31000 The value of NSIZEFACTOR is not enough as
the size of PANELFACTOR,

or the value of NSIZEINDEX is not enough as
the size of NPANELINDEX.

Reallocate the
PANELFACTOR or
NPANELINDEX with the
necessary size which are
returned in the
NSIZEFACTOR or
NSIZEINDEX, and call this
subroutine again.

(3) Comments on use

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO

Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LDLT decomposition. In this case, processing is
discontinued with ICON = 20000. When unit round off is u, the standard value
of EPSZ is 16  u. When the computation is to be continued even if the pivot is
small, assign the minimum value to EPSZ. In this case, however, the result is
not assured.
 When the pivot becomes negative during the decomposition, the coefficient
matrix is not a positive definite. In this case, processing is continued as
ICON=10000, but the numerical error may be large because of no pivoting.

3) The necessary sizes for the array PANELFACTOR and NPANELINDEX that
store the decomposed results can not be determined beforehand. It is suggested

DM_VSSPS

II-378 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

to reallocate them by using the result of the symbolic decomposition analysis
after the first call of this routine, or allocate large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And
call this routine with the small values such as one in the size specifying in
NSIZEFACTOR and NSIZEINDEX. This routine ends with ICON=31000, and
the necessary sizes for NSIZEFACTOR and NSIZEINDEX are returned. Then
the suspended process can be resumed by calling it with ISW=2 after
reallocating the arrays with the necessary sizes.

4) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

b. Example

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2,
a3 and c are zero constants, that means the operator is Laplacian. The matrix A in
Diagonal format is generated by the subroutine init_mat_diag, and transferred into
compressed column storage format.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7,NDIAGH=4)

 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1),
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION A(NDIAGH*N),NROW(K*NDIAG),NFCNZ(N+1),
 $ NPERM(N),NASSIGN(N),W(NDIAGH*N),
 $ NPOSTO(N),NDIM(2,N),
 $ IW1(NDIAGH*N+N+1),
 $ IW2(NDIAGH*N+N+1),
 $ IW3(35*N+35)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTOR

 DM_VSSPS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-379

 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEX
 REAL*8 DUMMYF
 INTEGER*4 NDUMMYI
 INTEGER*8 NSIZEFACTOR,NSIZEINDEX,
 $ NFCNZFACTOR(N+1),
 $ NFCNZINDEX(N+1)
 DIMENSION X(N),B(N),SOLEX(N)

 PRINT *,' LEFT-LOOKING MODIFIED CHOLESKY METHOD'
 PRINT *,' FOR SPARSE POSITIVE DEFINITE MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 0.0D0
 VA2 = 0.0D0
 VA3 = 0.0D0
 VC = 0.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)

 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZC=1
 NUMNZ=1
 DO J=1,N
 NTOPCFGC=1
 NTOPCFG=1
 DO I=NDIAG,1,-1
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)

DM_VSSPS

II-380 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 C(NUMNZC)=DIAG2(J,I)
 NROWC(NUMNZC)=NCOL
C
 IF(NCOL.GE.J)THEN
 A(NUMNZ)=DIAG2(J,I)
 NROW(NUMNZ)=NCOL
 ENDIF

C
 IF(NTOPCFGC.EQ.1)THEN
 NFCNZC(J)=NUMNZC
 NTOPCFGC=0
 ENDIF
C
 IF(NTOPCFG.EQ.1)THEN
 NFCNZ(J)=NUMNZ
 NTOPCFG=0
 ENDIF
C
 IF(NCOL.GE.J)THEN
 NUMNZ=NUMNZ+1
 ENDIF
C
 NUMNZC=NUMNZC+1
 ENDIF
C
 ENDDO
 ENDDO
 NFCNZC(N+1)=NUMNZC
 NNZC=NUMNZC-1
 NFCNZ(N+1)=NUMNZ
 NNZ=NUMNZ-1
C

 CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX,
 $ B,WC,IWC,ICON)
C
 X=B
 IORDERING=0
 ISW=1
 EPSZ=0.0D0
 NSIZEFACTOR=1
 NSIZEINDEX=1

 CALL DM_VSSPS(A,NNZ,NROW,NFCNZ,N,IORDERING,
 $ NPERM,ISW,EPSZ,X,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,DUMMYF,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NDUMMYI,NSIZEINDEX,NDIM,NPOSTO,
 $ W,IW1,IW2,IW3,ICON)

 PRINT *
 PRINT *,' ICON = ',ICON,' NSIZEFACTOR = ',NSIZEFACTOR,

 DM_VSSPS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-381

 $ 'NSIZEINDEX = ',NSIZEINDEX
 PRINT *
C
C ALLOCATE STORAGES IN RETURNED SIZES
C
 ALLOCATE(PANELFACTOR(NSIZEFACTOR))
 ALLOCATE(NPANELINDEX(NSIZEINDEX))

 ISW=2

 CALL DM_VSSPS(A,NNZ,NROW,NFCNZ,N,IORDERING,
 $ NPERM,ISW,EPSZ,X,NASSIGN,NSUPNUM,
 $ NFCNZFACTOR,PANELFACTOR,
 $ NSIZEFACTOR,NFCNZINDEX,
 $ NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO,
 $ W,IW1,IW2,IW3,ICON)

 ERR = ERRNRM(SOLEX,X,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF

 DEALLOCATE(PANELFACTOR,NPANELINDEX)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'

DM_VSSPS

II-382 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN

 DM_VSSPS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-383

 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

DM_VSSPS

II-384 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

 Through the symbolic decomposition process, this routine analyze the data dependence
among columns and the structure of the non-zero elements of matrix L which is a factor
matrix of modified Cholesky LDLT decomposition. Based on this analysis, the
supernodes that bundles certain columns are detected. The columns which have similar
non-zero pattern are merged as a supernode together. This means that some rows include
additional zero elements and that the number of columns composing a supernode
increases. Then data during the numerical decomposition on cache is reused efficiently.

 A union set of the row indices that indicate the row indices of the nonzero element of the
result of the modified Cholesky decomposition is computed on the columns that compose
a supernode. The result of the modified Cholesky decomposition of supernodes is stored
compressing it into the two-dimensional panel of which size of the first dimension
becomes the number of elements of this set of row indices. The set of row indices is
represented as a vector.

The left-looking modified Cholesky decomposition method is used.

For general information on this topic, refer to [19] in Appendix A, “References.”.

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-385

DM_VSSSLU

LU decomposition of a structurally symmetric real sparse matrix

CALL DM_VSSSLU(A, NZ, NROW, NFCNZ, N,
ISCLITERMAX,
IORDERING, NPERM, ISW,
NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEX, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NPOSTO,
SCLROW,SCLCOL,
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ,
W, IW, ICON)

(1) Function

An n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both
rows and columns norms. And LU decomposition is performed, in which the pivot is
taken as specified within the block diagonal portion belonging to each supernode.
(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero
elements in its symmetric position. But the values of elements in a symmetric position
are not necessarily same.)

The structurally symmetric real sparse matrix is transformed as below.

A1= DrADc

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling
columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
elements for A and Q is a permutation matrix of postorder. P and Q are orthogonal
matrices.
Due to its structural symmetry each pattern of nonzero elements in the decomposed
matrices L and U respectively is also symmetric to each other. L is a lower triangular
matrix and U is a unit upper triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than
or equal to the threshold specified in THEPSZ can not be found, the element with the
largest absolute value which in the block diagonal portion of a supernode is regarded as a
candidate.
If the absolute value of the candidate element is too small, the matrix can be
approximately decomposed into LU specifying an appropriate small value as a static pivot
in place of the candidate sought.

 (2) Parameter

A......................... Input. The nonzero elements of a structurally symmetric real sparse matrix A
are stored in A(1:NZ).

One-dimensional array A(NZ).

DM_VSSSLU

II-386 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector).

NZ...................... Input. The total number of the nonzero elements belong to a structurally
symmetric real sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an
array A in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N......................... Input. Order n of matrix A.

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr

and Dc to equilibrate both rows and columns of matrix A.

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and
Dc are assumed as unit matrices.

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of
iteration is considered as 10.

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT
permuted by the matrix P of ordering or to decompose the matrix A.

When IORDERING 1 is specified, the matrix PA1PT is decomposed into LU.

Otherwise. Without any ordering, the matrix A1 is decomposed into LU.

(See note 1) in (3), "Comments on use.")

NPERM.............. Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

ISW..................... Input. Control information.

1)When ISW=1 is specified.
A first call. After symbolic decomposition, checking whether the sufficient
amount of memory for storing data are allocated the computation is performed.

2) When ISW=2 specified.
After the previous call ends with ICON=31000, that means that the sizes of
PANELFACTORL or PANELFACTORU or NPANELINDEXL or
NPANELINDEXU were not enough, the suspended computation is resumed.
Before calling again with ISW=2, the PANELFACTORL or
PANELFACTORU or NPANELINDEXL or NPANELINDEXU must be
reallocated with the necessary sizes which are returned in the NSIZEFACTORL
NSIZEFACTORU or NSIZEINDEX at the precedent call and specified in
corresponding arguments.
Besides, except these arguments and ISW as control information, the values in
the other augments must not be changed between the previous and following
calls.

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-387

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in PANELFACTORL
and PANELFACTORU as one dimensional subarray consecutively and its
block number is stored. The corresponding indices vectors are similarly stored
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th
supernode is stored into the j-th block of a subarray, where j=NASSIN(i).

Input. When ISW≠1, the values stored in the first call are reused. Regarding
the storage methods of decomposed matrices, refer to Figure DM_VSSSLU -1.
One-dimensional array NASSING(N).

NSUPNUM......... Output. The total number of supernodes.

Input. The values in the first call are reused when ISW  1 specified. ( n)

NFCNZFACTORL..Output. The decomposed matrices L and U of a structurally symmetric real
sparse matrix are computed for each supernode respectively. The columns of L
belonging to each supernode are compressed to have the common row indices
vector and stored into a two dimensional panel with the corresponding parts of
U in its block diagonal portion. The index number of the top array element of
the one dimensional subarray where the i-th panel is mapped into
PANELFACTORL consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU -1.

Input. The values set by the first call are reused when ISW  1 specified.

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i).
The location of its top of subarray including the portion of decomposed
matrices is stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of NDIM(1,i)  NDIM(2,i). The corresponding parts of the lower
triangular matrix L are store in this panel(s, t), s≥ t, s = 1,...,NDIM(1, i),
t=1,...,NDIM(2,i). The corresponding block diagonal portion of the unit upper
triangular matrix U except its diagonals is stored in the panel(s,t), s<t,
t=1,...,NDIM(2,i).

One-dimensional array PANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU -1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORL.. Input. The size of the array PANELFACTORL. 8-byte integer.

Output. The necessary size for the array PANELFACTORL is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The index number of the top array element of the one

DM_VSSSLU

II-388 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU-1.

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the
row indices vector corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray is stored in
NFCNZINDEXL(j). This row indices are the row numbers of the matrix
permuted in its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEX).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEX.... Input. The size of the arrays NPANELINDEXL and NPANELINDEXU. 8-byte
integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is
allocated in the i-th location.
NDIM(1,i)-NDIM(2,i) and NDIM(2,i) indicates the total amount of the size of
the first dimension and second dimension of the panel where a matrix U is
transposed and stored.

Input. When ISW1, the values set by the first call are reused.

Two-dimensional array NDIM(2,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU-1.

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of a
structurally symmetric real sparse matrix, the rows of U except the of block
diagonal portion belonging to each supernode are compressed to have the
common column indices vector and stored into a two dimensional panel. The
index number of the top array element of the one dimensional subarray where
the i-th panel is mapped into PANELFACTORU consecutively or the location
of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU-1.

Input. When ISW  1, the values set by the first call are reused.

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-389

PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode
are compressed to have the common column indices vector, transposed and
stored in a two dimensional panel without its block diagonal portion. The block
number of the section where the panel corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray
including the portion of decomposed matrices is stored in NFCNZFACTORU(j).
The size of the panel in the i-th block can be considered to be two dimensional
array of {NDIM(1,i)-NDIM(2,i)}  NDIM(2,i). The rows of the unit upper
triangular matrix U except the block diagonal portion are compressed,
transposed and stored in this panel(s, t), s = 1,...,NDIM(1, i)-NDIM(2,i),
t=1,...,NDIM(2,i).

One-dimensional array PANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer.

Output. The necessary size for the array PANELFACTORU is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The index
number of the top array element of the one dimensional subarray where the i-th
column indices vector including indices of the block diagonal portion is mapped
into NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU-1.

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode
are compressed, transposed and stored in a two dimensional panel without its
block diagonal portion. The column indices vector including indices of the
block diagonal portion is mapped into NPANELINDEXU consecutively. The
block number of the section where the column indices vector corresponding to
the i-th supernode is assigned is known from j=NASSIGN(i). The location of its
top of subarray is stored in NFCNZINDEXU(j). These column indices are the
column numbers of the matrix permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEX).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLU-1.

(See note 3) in (3), "Comments on use.")

NPOSTO............ Output. The information about what column number of A the i-th node in post
order corresponds to is stored.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array NPOSTO(N).

(See note 4) in (3), "Comments on use.")

DM_VSSSLU

II-390 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array SCLROW (N).

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns
are stored in one dimensional array.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array SCLCOL(N).

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0).

Output. When EPSZ ≤ 0.0, it is set to the standard value.

(See note 2) in (3), "Comments on use.")

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in
pivot search is considered to have the value greater than or equal to the
threshold specified, it is accepted as a pivot and the search of a pivot is broken
off.
For example, 1.0D-2.

Output. When THEPSZ≤0.0D0, 1.0D-2 is set.
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ.

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is
searched and what kind of pivoting is chosen if any.
For example, 40 for complete pivoting.

 IPIVOT<10 or IPIVOT≥ 50, no pivoting.

 10≤IPIVOT<20, partial pivoting

 20≤IPIVOT<30, diagonal pivoting

 21 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting.

 22 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting. If Rook pivoting fails, it is changed to complete pivoting.

 30≤IPIVOT<40, Rook pivoting

 32 : When within a supernode Rook pivoting fails, it is changed to complete
pivoting.

 40≤IPIVOT<50, complete pivoting

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.

1) When ISTATIC=1 is specified.
When the pivot searched within a supernode is not greater than SPEPSZ, it is
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT).
If its value is 0.0D0, SPEPSZ is used as an approximation value.

The following conditions must be satisfied.
a) EPSZ must be less than or equal to the standard value of EPSZ.
b) Scaling must be performed with ISCLITERMAX=10.
c) THEPSZ≥SPEPSZ must hold.

2) When ISTATIC≠1 is specified.
No static pivot is performed.

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-391

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is
specified.
The following conditions must hold.
THEPSZ≥SPEPSZ≥EPSZ

 Output. When SPEPSZ<EPSZ, it is set to 1.0D-10.

W......................... Work area.

Output/Input.
One-dimensional array of size NZ+N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

IW..................... Work area.

Output/Input.
One-dimensional array of size 36*N+36+2*NZ+3*(N+1).

When this subroutine is called repeatedly with ISW=1, 2 this work area is used
for preserving information among calls. The contents must not be changed.

ICON................... Output. Condition code.

(See Table DM_VSSSLU-1.)

Figure DM_VSSSLU-1 Conceptual scheme for storing decomposed results

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length NDIM(1,
j)NDIM(2, j) from the p-th element of PANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length NDIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size NDIM(1, j)NDIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,NDIM(1, j),

DM_VSSSLU

II-392 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 t = 1,...,NDIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of
decomposed results is stored in

 panel(s, t), s < t, s = 1,...,NDIM(2, j),

 t = 1,...,NDIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (NDIM(1, j)-
NDIM(2,j))NDIM(2, j) from the u-th element of
PANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area
with a length NDIM(1,j) from the v-th element of
NPANELINDEXU.

A panel is regarded as an array of the size (NDIM(1, j)-NDIM(2, j))NDIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of
decomposed results is stored in

 panel(x, y), x = 1,..., NDIM(1, j)-NDIM(2, j), y = 1,...,NDIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix
A is permuted in post ordering.

Table DM_VSSSLU-1 Condition codes

Code Meaning Processing

0 No error 

10000 When ISTATIC=1 is specified, Static pivot
which replaces the pivot candidate with too
small value with SPEPSZ is made.



20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

20200 When seeking diagonal matrices for
equilibrating both rows and columns, there is a
zero vector in either rows or columns of the
matrix A. The coefficient matrix A may be
singular.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEX < 1,
NSIZEFACTORU < 1, ISW < 1, or ISW > 2

Processing is discontinued.

30100 The permutation matrix specified in NPREM
is not correct.

30200 The row index k stored in NROW(j) is k < 1 or
k >n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-393

Code Meaning Processing

30500 When ISTATIC=1 is specified, the required
conditions are not satisfied.
EPSZ is greater than 16u of the standard value
or ISCLITERMAX<10
or SPEPSZ>THEPSZ

Processing is discontinued.

30700 The matrix A is not structurally symmetric.

31000 The value of NSIZEFACTORL is not enough
as the size of PANELFACTORL,
or the value of NSIZEINDEX is not enough as
the size of NPANELINDEXL and
NPANELINDEXU,
or the value of NSIZEFACTORU is not
enough as the size of PANELFACTORU.

Reallocate the
PANELFACTORL or
NPANELINDEXL and
NPANELINDEXU or
PANELFACTORU or
with the necessary size which
are returned in the
NSIZEFACTORL or
NSIZEINDEX or
NSIZEFACTORU
respectively
and call this subroutine again
with ISW=2 specified.

(3) Comments on use

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO
Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than
EPSZ in the process of LU decomposition. In this case, processing is
discontinued with ICON = 20000. When unit round off is u, the standard value
of EPSZ is 16  u. When the computation is to be continued even if the absolute
value of diagonal element is small, assign the minimum value to EPSZ. In this
case, however, the result is not assured.
If Static pivot is specified to be performed, when the diagonal element is smaller
than SPEPSZ, LU decomposition is approximately continued replacing it with
SPEPSZ.

3) The necessary sizes for the array PANELFACTORL, NPANELINDEXL,
PANELFACTORU and NPANELINDEXU that store the decomposed results
can not be determined beforehand. It is suggested to reallocate them by using the
result of the symbolic decomposition analysis after the first call of this routine,
or allocate large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And
call this routine with the small values such as one in the size specifying in
NSIZEFACTORL, NSIZEINDEX and NSIZEFACTORU with ISW=1. This
routine ends with ICON=31000, and the necessary sizes for NSIZEFACTORL,
NSIZEINDEX and NSIZEFACTORU are returned. Then the suspended process

DM_VSSSLU

II-394 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

can be resumed by calling it with ISW=2 after reallocating the arrays with the
necessary sizes.

4) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

5) A system of equations Ax=b can be solved by calling DM_VSSSLUX
subsequently in use of the results of LU decomposition obtained by this routine.
The following arguments used in this routine are specified.
See example in (3), "Comments on use.".

A, NZ, NROW, NFCNZ, N,
IORDERING, NPERM,
NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEX, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NPOSTO,
SCLROW,SCLCOL,
IW

b. Example

The linear system of equations Ax=f is solved, where a matrix is built using results
from the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag
and then it is converted in compressed column storage format. The linear system of
equations with a structurally symmetric real sparse matrix A built in this way is
solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ,NXY=NX*NY)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 PARAMETER (NALL=NDIAG*N,
 $ IWL=36*N+36+2*NALL+3*(N+1))
 PARAMETER(IPRINT=0)
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1),

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-395

 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION A(NDIAG*N),NCOLUMN(K*NDIAG),NFCNZ(N+1),
 $ NPERM(N),W(NDIAG*N+N),
 $ NPOSTO(N),NDIM(2,N),
 $ NASSIGN(N),
 $ IW(IWL)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTORL,PANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,
 $ NPANELINDEXU
 REAL*8 DUMMYFL,DUMMYFU
 INTEGER*4 NDUMMYIL,NDUMMYIU
 INTEGER*8 NSIZEFACTORL,NSIZEINDEX,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 DIMENSION X(N),B(N),SOLEX(N),NPERM1(N)
C
 REAL*8 THEPSZ,
 $ EPSR,
 $ SEPSZ,
 $ SCLROW(N),SCLCOL(N)

 INTEGER*4 IPIVOT,ISTATIC,
 $ ISCLITERMAX,
 $ IREFINE,ITERMAX,ITER

 PRINT *,' DIRECT METHOD'
 PRINT *,' FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *

 DO I=1,N
 SOLEX(I)=1.0D0
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE

DM_VSSSLU

II-396 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZC=1
C
 DO J=1,N
 NTOPCFGC=1
C
 DO I=NDIAG,1,-1
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 C(NUMNZC)=DIAG2(J,I)
 NROWC(NUMNZC)=NCOL
C
 IF(NTOPCFGC.EQ.1)THEN
 NFCNZC(J)=NUMNZC
 NTOPCFGC=0
 ENDIF
C
 NUMNZC=NUMNZC+1
C
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZC(N+1)=NUMNZC
 NNZC=NUMNZC-1
C
 CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX,
 $ B,WC,IWC,ICON)
C
C
 X=B
 IORDERING=0
 ISCLITERMAX=10
 ISW=1
 EPSZ=1.0D-16
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEX=1
 THEPSZ=1.0D-2
 EPSR=1.0D-8
 SEPSZ=1.0D-10
 IPIVOT=40
 ISTATIC=1
 IREFINE=1
 ITERMAX=10

 CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N,
 $ ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,DUMMYFL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,DUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NDUMMYIU,

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-397

 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,
 $ THEPSZ,
 $ IPIVOT,ISTATIC,SEPSZ,
 $ W,IW,ICON)
 PRINT*,' ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEX=',NSIZEINDEX
 PRINT*,' NSUPNUM=',NSUPNUM
 PRINT *
C
 ALLOCATE(PANELFACTORL(NSIZEFACTORL))
 ALLOCATE(PANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEX))
 ALLOCATE(NPANELINDEXU(NSIZEINDEX))
C
 ISW=2
 CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N,
 $ ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NPANELINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,
 $ THEPSZ,
 $ IPIVOT,ISTATIC,SEPSZ,
 $ W,IW,ICON)
 CALL GETTOD(T3)
C
 CALL DM_VSSSLUX(N,
 $ IORDERING,
 $ NPERM,
 $ X,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NPANELINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ C,NNZC,NROWC,NFCNZC,
 $ IW,
 $ ICON)

C
 ERR = ERRNRM(SOLEX,X,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' ICON = ',ICON

DM_VSSSLU

II-398 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF

 DEALLOCATE(PANELFACTORL,PANELFACTORU,NPANELINDEXL,
 $ NPANELINDEXU)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY

 DM_VSSSLU

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-399

 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1

DM_VSSSLU

II-400 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

The permutation which moves large entries to the diagonal is performed. And the
permutated matrix is scaled in order to equilibrate both rows and columns norms. The LU
decomposition of this matrix is made. Nonzero elements belonging to each supernode is
stored in two-dimensional panel respectively. The pivot for numerical stabilization is
sought with in its block diagonal portion. The threshold for pivot search can be specified
so that immediately after a pivot candidate with the absolute value greater than it is
encountered in pivot search it is accepted as a pivot. In addition the static pivoting can be
specified so that even if the pivot obtained after pivot search is considered as too small, it
is replaced with the value of SPEPSZ and LU decomposition can be approximately
performed.
Refer to references in Appendix A, “References.” in detail.
Refer to [19], [2], [22], [48], [68] on the LU decomposition of real sparse matrices and to
[63], [69] on equilibration of matrices and pivoting.

 DM_VSSSLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-401

DM_VSSSLUX

A system of linear equations with LU-decomposed structurally symmetric real sparse matrices

CALL DM_VSSSLUX(N, IORDERING, NPERM, B,
NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEX, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NPOSTO,
SCLROW,SCLCOL,
IREFINE, EPSR, ITERMAX, ITER,
A, NZ, NROW, NFCNZ,
IW, ICON)

(1) Function

An n × n structurally symmetric real sparse matrix A of which LU decomposition is made
as below is given. In this decomposition an n × n structurally symmetric real sparse
matrix A is scaled in order to equilibrate both rows and columns norms. Subsequently LU
decomposition in which the pivot is taken as specified within the block diagonal portion
belonging to each supernode is performed and results in the following form. This routine
solves the following linear equation in use of these results of LU decomposition.

 Ax=b

A matrix A is decomposed into as below.

 PrsQPDrADcPTQTPcs =LU

The structurally symmetric real sparse matrix A is transformed as below.

A1= DrADc

Where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for
scaling columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.
The actual exchanges are restricted to the reduced part of the matrix belonging to each
supernode.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
nonzero elements for A and Q is a permutation matrix of postorder. P and Q are
orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular matrix.
It can be specified to improve the precision of the solution by iterative refinement.

(2) Parameter

N......................... Input. Order n of matrix A.

IORDERING..... Input. When IORDERING 1 is specified, it is indicated that LU decomposition
is performed with an ordering specified in NPERM.
The matrix PA1PT is decomposed into LU decomposition.

Otherwise. No ordering is specified.

DM_VSSSLUX

II-402 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 (See note 1) in (3), "Comments on use.")

NPERM.............. Input. When IORDEING=1 is specified, a vector presenting the permutation
matrix P used is stored.

One-dimensional array NPERM(N).

(See note 2) in (3), "Comments on use.")

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax
= b.

Output. Solution vector x.

One-dimensional array B(N).

NASSIGN.......... Input. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in PANELFACTORL
and PANELFACTORU as one dimensional subarray consecutively and its
block number is stored. The corresponding indices vectors are similarly stored
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th
supernode is stored into the j-th block of a subarray, where j=NASSIN(i).

Regarding the storage methods of decomposed matrices, refer to Figure
DM_VSSSLUX-1.
One-dimensional array NASSING(N).

NSUPNUM......... Input. The total number of supernodes.( n)

NFCNZFACTORL..Input. The decomposed matrices L and U of a structurally symmetric real
sparse matrix are computed for each supernode respectively. The columns of L
belonging to each supernode are compressed to have the common row indices
vector and stored into a two dimensional panel with the corresponding parts of
U in its block diagonal portion. The index number of the top array element of
the one dimensional subarray where the i-th panel is mapped into
PANELFACTORL consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

PANELFACTORL..Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i).
The location of its top of subarray including the portion of decomposed
matrices is stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of NDIM(1,i)  NDIM(2,i). The corresponding parts of the lower
triangular matrix L are store in this panel(s, t), s≥ t, s = 1,...,NDIM(1, i),
t=1,...,NDIM(2,i). The corresponding block diagonal portion of the unit upper
triangular matrix U except its diagonals is stored in the panel(s,t), s<t,
t=1,...,NDIM(2,i).

One-dimensional array PANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

NSIZEFACTORL.. Input. The size of the array PANELFACTORL. 8-byte integer.

 DM_VSSSLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-403

NFCNZINDEXL... Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

NPANELINDEXL..Input. The columns of the decomposed matrix L belonging to each supernode
are compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in
its block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the
row indices vector corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray is stored in
NFCNZINDEXL(j). This row indices are the row numbers of the matrix
permuted in its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEX).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

NSIZEINDEX.... Input. The size of the arrays NPANELINDEXL and NPANELINDEXU. 8-byte
integer.

NDIM................. Input. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is
allocated in the i-th location.
NDIM(1,i) -NDIM(2,i) and NDIM(2,i) indicates the total amount of the size of
the first dimension and second dimension of the panel where a matrix U is
transposed and stored.

Two-dimensional array NDIM(2,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

NFCNZFACTORU..Input. Regarding a matrix U derived from LU decomposition of a structurally
symmetric real sparse matrix, the rows of U except the of block diagonal
portion belonging to each supernode are compressed to have the common
column indices vector and stored into a two dimensional panel. The index
number of the top array element of the one dimensional subarray where the i-th
panel is mapped into PANELFACTORU consecutively or the location of
panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

PANELFACTORU..Input. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The block
number of the section where the panel corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray
including the portion of decomposed matrices is stored in NFCNZFACTORU(j).
The size of the panel in the i-th block can be considered to be two dimensional

DM_VSSSLUX

II-404 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

array of {NDIM(1,i)-NDIM(2,i)}  NDIM(2,i). The rows of the unit upper
triangular matrix U except the block diagonal portion are compressed,
transposed and stored in this panel(s, t), s = 1,...,NDIM(1, i)-NDIM(2,i),
t=1,...,NDIM(2,i).

One-dimensional array PANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer.

 (See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Input. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored
in a two dimensional panel without its block diagonal portion. The index
number of the top array element of the one dimensional subarray where the i-th
column indices vector including indices of the block diagonal portion is mapped
into NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

NPANELINDEXU..Input. The rows of the decomposed matrix U belonging to each supernode are
compressed, transposed and stored in a two dimensional panel without its block
diagonal portion. The column indices vector including indices of the block
diagonal portion is mapped into NPANELINDEXU consecutively. The block
number of the section where the column indices vector corresponding to the i-th
supernode is assigned is known from j=NASSIGN(i). The location of its top of
subarray is stored in NFCNZINDEXU(j). These column indices are the column
numbers of the matrix permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEX).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSLUX-1.

NPOSTO............ Input. The information about what column number of A the i-th node in post
order corresponds to is stored.

One-dimensional array NPOSTO(N).

(See note 3) in (3), "Comments on use.")

SCLROW............ Input. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

One-dimensional array SCLROW (N).

SCLCOL............ Input. The diagonal elements of Dc or a diagonal matrix for scaling columns are
stored in one dimensional array.

One-dimensional array SCLCOL(N).

IREFINE............ Input. Control information indicating whether iterative refinement is performed
when the solution is computed in use of results of LU decomposition. A
residual vector is computed in quadruple precision.

When IREFINE=1 is specified.
The iterative refinement is performed. It is iterated until in the sequences of the
solutions obtained in refinement the difference of the absolute values of their

 DM_VSSSLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-405

corresponding residual vectors become larger than a fourth of that of
immediately previous ones.

When IREFINE≠1is specified.
No iterative refinement is performed.

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector
b-Ax is sufficiently smaller compared with the absolute value of b.

When EPSR ≤ 0.0, it is set to 1.0D-6.

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1).

ITER.................. Output. Actual iterative count for refinement.

A......................... Input. The nonzero elements of a structurally symmetric real sparse matrix A
are stored in A(1:NZ).

One-dimensional array A(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1
in the description for DM_VMVSCC routine (multiplication of a real sparse
matrix and a real vector).

NZ...................... Input. The total number of the nonzero elements to belong to a structurally
symmetric real sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element to stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an
array A in the compressed column storage method which stores the nonzero
elements column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

IW..................... Work area.

Input.
One-dimensional array of size 36*N+36+2*NZ+3*(N+1).

The data derived from calling DM_VSSSLU of LU decomposition of a
structurally symmetric real sparse matrix is transferred in this work area. The
contents must not be changed among calls.

ICON................... Output. Condition code.

(See Table DM_VSSSLUX-1.)

DM_VSSSLUX

II-406 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure DM_VSSSLUX-1 Conceptual scheme for storing decomposed results

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length NDIM(1,
j)NDIM(2, j) from the p-th element of PANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length NDIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size NDIM(1, j)NDIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,..., NDIM(1, j),

 t = 1,..., NDIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of
decomposed results is stored in

 panel(s, t), s < t, s = 1,..., NDIM(2, j),

 t = 1,..., NDIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (NDIM(1, j)-
NDIM(2,j))NDIM(2, j) from the u-th element of
PANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area
with a length NDIM(1,j) from the v-th element of
NPANELINDEXU.

A panel is regarded as an array of the size (NDIM(1, j)-NDIM(2, j))NDIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of
decomposed results is stored in

 panel(x, y), x = 1,..., NDIM(1, j)-NDIM(2, j), y = 1,...,NDIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix
A is permuted in post ordering.

 DM_VSSSLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-407

Table DM_VSSSLUX-1 Condition codes

Code Meaning Processing

0 No error 

20400 There is a zero element in diagonal of resultant
matrices of LU decomposition.

20500 The norm of residual vector for the solution
vector is greater than that of b multiplied by
EPSR, which is the right term constant vector
in Ax=b. The coefficient matrix A may be
close to a singular matrix.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEX < 1,
NSIZEFACTORU < 1,
ITERMAX<1 when IREFINE=1.

30100 The permutation matrix specified in NPREM
is not correct.

Processing is discontinued.

30200 The row index k stored in NROW(j) is k < 1 or
k > n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

(3) Comments on use

a. Notes

1) The results of LU decomposition obtained by DM_VSSSLU is used.
See note 5) (3), "Comments on use." of DM_VSSSLU and example in (3),
"Comments on use." of DM_VSSSLUX.

2) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO

3) Nodes corresponding to column number is considered. The node number
permuted in post order is stored in NPOSTO. This array indicates what node
number in original node number the i-th node in post order is corresponding. It
means j-th position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also
as well as note 2) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

b. Example

DM_VSSSLUX

II-408 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

The linear system of equations Ax=f is solved, where a matrix is built using results
from the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag
and then it is converted in compressed column storage format. The linear system of
equations with a structurally symmetric real sparse matrix A built in this way is
solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ,NXY=NX*NY)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 PARAMETER (NALL=NDIAG*N,
 $ IWL=36*N+36+2*NALL+3*(N+1))
 PARAMETER(IPRINT=0)
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1),
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION A(NDIAG*N),NCOLUMN(K*NDIAG),NFCNZ(N+1),
 $ NPERM(N),W(NDIAG*N+N),
 $ NPOSTO(N),NDIM(2,N),
 $ NASSIGN(N),
 $ IW(IWL)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTORL,PANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,
 $ NPANELINDEXU
 REAL*8 DUMMYFL,DUMMYFU
 INTEGER*4 NDUMMYIL,NDUMMYIU
 INTEGER*8 NSIZEFACTORL,NSIZEINDEX,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 DIMENSION X(N),B(N),SOLEX(N),NPERM1(N)
C
 REAL*8 THEPSZ,
 $ EPSR,
 $ SEPSZ,
 $ SCLROW(N),SCLCOL(N)

 INTEGER*4 IPIVOT,ISTATIC,
 $ ISCLITERMAX,
 $ IREFINE,ITERMAX,ITER

 PRINT *,' DIRECT METHOD'
 PRINT *,' FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'

 DM_VSSSLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-409

 PRINT *

 DO I=1,N
 SOLEX(I)=1.0D0
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZC=1
C
 DO J=1,N
 NTOPCFGC=1
C
 DO I=NDIAG,1,-1
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 C(NUMNZC)=DIAG2(J,I)
 NROWC(NUMNZC)=NCOL
C
 IF(NTOPCFGC.EQ.1)THEN
 NFCNZC(J)=NUMNZC
 NTOPCFGC=0
 ENDIF
C
 NUMNZC=NUMNZC+1
C
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZC(N+1)=NUMNZC
 NNZC=NUMNZC-1
C
 CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX,

DM_VSSSLUX

II-410 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 $ B,WC,IWC,ICON)
C
C
 X=B
 IORDERING=0
 ISCLITERMAX=10
 ISW=1
 EPSZ=1.0D-16
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEX=1
 THEPSZ=1.0D-2
 EPSR=1.0D-8
 SEPSZ=1.0D-10
 IPIVOT=40
 ISTATIC=1
 IREFINE=1
 ITERMAX=10

 CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N,
 $ ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,DUMMYFL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,DUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NDUMMYIU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,
 $ THEPSZ,
 $ IPIVOT,ISTATIC,SEPSZ,
 $ W,IW,ICON)
 PRINT*,' ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ ' NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEX=',NSIZEINDEX
 PRINT*,' NSUPNUM=',NSUPNUM
 PRINT *
C
 ALLOCATE(PANELFACTORL(NSIZEFACTORL))
 ALLOCATE(PANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEX))
 ALLOCATE(NPANELINDEXU(NSIZEINDEX))
C
 ISW=2
 CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N,
 $ ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NPANELINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,
 $ THEPSZ,

 DM_VSSSLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-411

 $ IPIVOT,ISTATIC,SEPSZ,
 $ W,IW,ICON)
 CALL GETTOD(T3)
C
 CALL DM_VSSSLUX(N,
 $ IORDERING,
 $ NPERM,
 $ X,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NPANELINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ C,NNZC,NROWC,NFCNZC,
 $ IW,
 $ ICON)

C
 ERR = ERRNRM(SOLEX,X,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF

 DEALLOCATE(PANELFACTORL,PANELFACTORU,NPANELINDEXL,
 $ NPANELINDEXU)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN

DM_VSSSLUX

II-412 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN

 DM_VSSSLUX

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-413

 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

DM_VSSSS

II-414 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VSSSS

A system of linear equations with structurally symmetric real sparse matrices (LU
decomposition method)

CALL DM_VSSSS(A, NZ, NROW, NFCNZ, N,
ISCLITERMAX,
IORDERING, NPERM, ISW, B,
NASSIGN, NSUPNUM,
NFCNZFACTORL, PANELFACTORL,
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL,
NSIZEINDEX, NDIM,
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU,
NFCNZINDEXU, NPANELINDEXU, NPOSTO,
SCLROW, SCLCOL,
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ,
IREFINE, EPSR, ITERMAX, ITER,
W, IW, ICON)

(1) Function

An n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both
rows and columns norms. Subsequently this subroutine solves a system of equations Ax=b in
use of LU decomposition in which the pivot is taken as specified within the block diagonal
portion belonging to each supernode.
(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero
element in its symmetric position. But the values of elements in a symmetric position are not
necessarily same.)

 Ax=b

The structurally symmetric real sparse matrix is transformed as below.

A1= DrADc

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling
columns.

A2=QPA1PTQT
A2 is decomposed into LU decomposition permuting rows and columns within the block
diagonal portion of each supernode according to specified pivoting.
In the right term P is a permutation matrix of ordering which is sought for a pattern of
elements for A and Q is a permutation matrix of postorder. P and Q are orthogonal matrices.
Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices
L and U respectively is also symmetric to each other. L is a lower triangular matrix and U is a
unit upper triangular matrix.
When in pivoting process a candidate matrix element whose absolute value is larger than or
equal to the threshold specified in THEPSZ can not be found, the element with the largest
absolute value which in the block diagonal portion of a supernode is regarded as a candidate.
If the absolute value of the candidate element is too small, the matrix can be approximately
decomposed into LU specifying an appropriate small value as a static pivot in place of the
candidate sought.
The solution is computed using LU decomposition.
It can be specified to improve the precision of the solution by iterative refinement.

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-415

(2) Parameter

A......................... Input. The nonzero elements of a structurally symmetric real sparse matrix A are
stored in A(1:NZ).

One-dimensional array A(NZ).

For the compressed column storage method, refer to Figure DM_VMVSCC-1 in the
description for DM_VMVSCC routine (multiplication of a real sparse matrix and a
real vector).

NZ...................... Input. The total number of the nonzero elements belong to a structurally symmetric
real sparse matrix A.

NROW............... Input. The row indices used in the compressed column storage method, which
indicate the row number of each nonzero element stored in an array A.

One-dimensional array NROW(NZ).

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an array A
in the compressed column storage method which stores the nonzero elements
column by column.

NFCNZ(N+1)=NZ+1.

One-dimensional array NFCNZ(N+1).

N......................... Input. Order n of matrix A.

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr and
Dc to equilibrate both rows and columns of matrix A.

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and Dc
are assumed as unit matrices.

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of iteration
is considered as 10.

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT
permuted by the matrix P of ordering or to decompose the matrix A.

When IORDERING=1 is specified, the matrix PA1PT is decomposed into LU.

Otherwise. Without any ordering, the matrix A1 is decomposed into LU.

 (See note 1) in (3), "Comments on use.")

NPERM.............. Input. The permutation matrix P is stored as a vector.

One-dimensional array NPERM(N).

(See note 1) in (3), "Comments on use.")

ISW..................... Input. Control information.

1)When ISW=1 is specified.
A first call. Symbolic decomposition, checking whether the sufficient amount of
memory for storing data are allocated the computation is performed.

2) When ISW=2 specified.
After the previous call ends with ICON=31000, that means that the sizes of
PANELFACTORL or PANELFACTORU or NPANELINDEXL or
NPANELINDEXU were not enough, the suspended computation is resumed.
Before calling again with ISW=2, the PANELFACTORL or PANELFACTORU or
NPANELINDEXL or NPANELINDEXU must be reallocated with the necessary
sizes which are returned in the NSIZEFACTORL NSIZEFACTORU or
NSIZEINDEX at the precedent call and specified in corresponding arguments.

DM_VSSSS

II-416 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Besides, except these arguments and ISW as control information, the values in the
other augments must not be changed between the previous and following calls.

3) When ISW=3 is specified.
The subsequent call with ISW=3 solves another system of equations of which the
coefficient matrix is as same as previous call but the right-hand side vector b is
changed. In this case, the information obtained by the previous LU decomposition
can be reused.
Besides, except ISW as control information and B for storing the new right-hand
side b, the values in the other arguments must not be changed between the previous
and following calls.

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax = b.

Output. Solution vector x.

One-dimensional array B(N).

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two
dimensional panels respectively. These panels are stored in PANELFACTORL and
PANELFACTORU as one dimensional subarray consecutively and its block
number is stored. The corresponding indices vectors are similarly stored
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th supernode
is stored into the j-th block of a subarray, where j=NASSIN(i).

Input. When ISW≠1, the values stored in the first call are reused. Regarding
the storage methods of decomposed matrices, refer to Figure DM_VSSSS-1.
One-dimensional array NASSING(N).

NSUPNUM......... Output. The total number of supernodes.

Input. The values in the first call are reused when ISW  1 specified. (≤ n)

NFCNZFACTORL..Output. The decomposed matrices L and U of a structurally symmetric real sparse
matrix are computed for each supernode respectively. The columns of L belonging
to each supernode are compressed to have the common row indices vector and
stored into a two dimensional panel with the corresponding parts of U in its block
diagonal portion. The index number of the top array element of the one dimensional
subarray where the i-th panel is mapped into PANELFACTORL consecutively or
the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORL(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

Input. The values set by the first call are reused when ISW  1 specified.

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. The block number of the section where the panel
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). The
location of its top of subarray including the portion of decomposed matrices is
stored in NFCNZFACTORL(j).

The size of the panel in the i-th block can be considered to be two dimensional
array of NDIM(1,i)  NDIM(2,i). The corresponding parts of the lower triangular
matrix L are store in this panel(s, t), s≥ t, s = 1,...,NDIM(1, i), t=1,...,NDIM(2,i).
The corresponding block diagonal portion of the unit upper triangular matrix U
except its diagonals is stored in the panel(s,t), s<t, t=1,...,NDIM(2,i).

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-417

One-dimensional array PANELFACTORL(NSIZEFACTORL).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORL.. Input. The size of the array PANELFACTORL. 8-byte integer.

Output. The necessary size for the array PANELFACTORL is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored in a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. The index number of the top array element of the one
dimensional subarray where the i-th row indices vector is mapped into
NPANELINDEXL consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXL(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode are
compressed to have the common row indices vector and stored into a two
dimensional panel with the corresponding parts of the decomposed matrix U in its
block diagonal portion. This column indices vector is mapped into
NPANELINDEXL consecutively. The block number of the section where the row
indices vector corresponding to the i-th supernode is assigned is known from
j=NASSIGN(i). The location of its top of subarray is stored in NFCNZINDEXL(j).
This row indices are the row numbers of the matrix permuted in its post order.

One-dimensional array NPANELINDEXL(NSIZEINDEX).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

(See note 3) in (3), "Comments on use.")

NSIZEINDEX.... Input. The size of the arrays NPANELINDEXL and NPANELINDEXU. 8-byte
integer.

Output. The necessary size is returned.

(See note 3) in (3), "Comments on use.")

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and
second dimension of the panel to store a matrix L respectively, which is allocated in
the i-th location.
NDIM(1,i)-NDIM(2,i) and NDIM(2,i) indicates the total amount of the size of the
first dimension and second dimension of the panel where a matrix U is transposed
and stored.

Input. When ISW1, the values set by the first call are reused.

Two-dimensional array NDIM(2,N).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

DM_VSSSS

II-418 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of a structurally
symmetric real sparse matrix, the rows of U except the of block diagonal portion
belonging to each supernode are compressed to have the common column indices
vector and stored into a two dimensional panel. The index number of the top array
element of the one dimensional subarray where the i-th panel is mapped into
PANELFACTORU consecutively or the location of panel(1,1) is stored.

One-dimensional 8-byte integer array NFCNZFACTORU(N+1).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

Input. When ISW  1, the values set by the first call are reused.

PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored in a
two dimensional panel without its block diagonal portion. The block number of the
section where the panel corresponding to the i-th supernode is assigned is known
from j=NASSIGN(i). The location of its top of subarray including the portion of
decomposed matrices is stored in NFCNZFACTORU(j). The size of the panel in
the i-th block can be considered to be two dimensional array of {NDIM(1,i)-
NDIM(2,i)}  NDIM(2,i). The rows of the unit upper triangular matrix U except the
block diagonal portion are compressed, transposed and stored in this panel(s, t), s =
1,...,NDIM(1, i)-NDIM(2,i), t=1,...,NDIM(2,i).

One-dimensional array PANELFACTORU(NSIZEFACTORU).

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

(See note 3) in (3), "Comments on use.")

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer.

Output. The necessary size for the array PANELFACTORU is returned.

(See note 3) in (3), "Comments on use.")

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are
compressed to have the common column indices vector, transposed and stored in a
two dimensional panel without its block diagonal portion. The index number of the
top array element of the one dimensional subarray where the i-th column indices
vector including indices of the block diagonal portion is mapped into
NPANELINDEXU consecutively is stored.

One-dimensional 8-byte integer array NFCNZINDEXU(N+1).

Input. When ISW  1, the values set by the first call are reused.

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode are
compressed, transposed and stored in a two dimensional panel without its block
diagonal portion. The column indices vector including indices of the block diagonal
portion is mapped into NPANELINDEXU consecutively. The block number of the
section where the column indices vector corresponding to the i-th supernode is
assigned is known from j=NASSIGN(i). The location of its top of subarray is stored
in NFCNZINDEXU(j). These column indices are the column numbers of the matrix
permuted in its post order.

One-dimensional array NPANELINDEXU(NSIZEINDEX).

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-419

Regarding the storage method of the decomposed results, refer to Figure
DM_VSSSS-1.

(See note 3) in (3), "Comments on use.")

NPOSTO............ Output. The information about what column number of A the i-th node in post order
corresponds to is stored.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array NPOSTO(N).

(See note 4) in (3), "Comments on use.")

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are
stored in one dimensional array.

Input. When ISW  1, the values set by the first call are reused.

One-dimensional array SCLROW (N).

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns are
stored in one dimensional array.

Input. The values set by the first call are reused when ISW  1 specified.

One-dimensional array SCLCOL(N).

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0).

Output. When EPSZ ≤ 0.0, it is set to the standard value.

(See note 2) in (3), "Comments on use.")

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in
pivot search is considered to have the value greater than or equal to the threshold
specified, it is accepted as a pivot and the search of a pivot is broken off.
For example, 1.0D-2.

Output. When THEPSZ≤0.0D0, 1.0D-2 is set.
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ.

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is searched
and what kind of pivoting is chosen if any.
For example, 40 for complete pivoting.

 IPIVOT<10 or IPIVOT≥ 50, no pivoting.

 10≤IPIVOT<20, partial pivoting

 20≤IPIVOT<30, diagonal pivoting

 21 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting.

 22 : When within a supernode diagonal pivoting fails, it is changed to Rook
pivoting. If Rook pivoting fails, it is changed to complete pivoting.

 30≤IPIVOT<40, Rook pivoting

 32 : When within a supernode Rook pivoting fails, it is changed to complete
pivoting.

 40≤IPIVOT<50, complete pivoting

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.

DM_VSSSS

II-420 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

1) When ISTATIC=1 is specified.
When the pivot searched within a supernode is not greater than SPEPSZ, it is
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT).
If its value is 0.0D0, SPEPSZ is used as an approximation value.

The following conditions must be satisfied.
a) EPSZ must be less than or equal to the standard value of EPSZ.
b) Scaling must be performed with ISCLITERMAX=10.
c) THEPSZ≥SPEPSZ must hold.
d) IREFINE=1 must be specified for the iterative refinement of the solution.

2) When ISTATIC≠1 is specified.
No static pivot is performed.

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is specified.
The following conditions must hold.
1.0D-10≥SPEPSZ≥EPSZ

 Output. When SPEPSZ<EPSZ, it is set to 1.0D-10.

IREFINE............ Input. Control information indicating whether iterative refinement is performed
when the solution is computed in use of results of LU decomposition. A residual
vector is computed in quadruple precision.

When IREFINE=1 is specified.
The iterative refinement is performed. It is iterated until in the sequences of the
solutions obtained in refinement the difference of the absolute values of their
corresponding residual vectors become larger than a fourth of that of immediately
previous ones.

When IREFINE≠1is specified.
No iterative refinement is performed.

When ISTATIC=1 is specified, IREFINE=1 must be specified.

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector
b-Ax is sufficiently smaller compared with the absolute value of b.

When EPSR ≤ 0.0, it is set to 1.0D-6.

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1).

ITER.................. Output. Actual iterative count for refinement.

W......................... Work area.

Output/Input.
One-dimensional array of size NZ+N.

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for
preserving information among calls. The contents must not be changed.

IW..................... Work area.

Output/Input.
One-dimensional array of size 36*N+36+2*NZ+3*(N+1).

When this subroutine is called repeatedly with ISW=1, 2, 3 this work area is used
for preserving information among calls. The contents must not be changed.

ICON................... Output. Condition code.

(See Table DM_VSSSS-1.)

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-421

 U

 L UT

panel row indices vector
in postorder

 ・ ・

panel
column indices vector
in postorder

Figure DM_VSSSS-1 Conceptual scheme for storing decomposed results

j = NASSIGN(i)  The i-th supernode is stored at the j-th section.

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length NDIM(1, j)NDIM(2,
j) from the p-th element of PANELFACTORL.

q = NFCNZINDEXL(j)  The row indices vector of the j-th panel occupies the area with a
length NDIM(1,j) from the q-th element of NPANELINDEXL.

A panel is regarded as an array of the size NDIM(1, j)NDIM(2, j).

The lower triangular matrix L of decomposed results is stored in

 panel(s, t), s ≥ t, s = 1,...,NDIM(1, j),

 t = 1,...,NDIM(2, j).

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed
results is stored in

 panel(s, t), s < t, s = 1,...,NDIM(2, j),

 t = 1,...,NDIM(2, j).

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (NDIM(1, j)-
NDIM(2,j))NDIM(2, j) from the u-th element of
PANELFACTORU.

v = NFCNZINDEXU(j)  The column indices vector of the j-th panel occupies the area with a
length NDIM(1,j) from the v-th element of NPANELINDEXU.

A panel is regarded as an array of the size (NDIM(1, j)-NDIM(2, j))NDIM(2, j).

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed
results is stored in

 panel(x, y), x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j).

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A
is permuted in post ordering.

DM_VSSSS

II-422 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_VSSSS-1 Condition codes

Code Meaning Processing

0 No error 

20000 The pivot became relatively zero. The
coefficient matrix A may be singular.

20200 When seeking diagonal matrices for
equilibrating both rows and columns, there is a
zero vector in either rows or columns of the
matrix A. The coefficient matrix A may be
singular.

Processing is discontinued.

20400 There is a zero element in diagonal of resultant
matrices of LU decomposition.

20500 The norm of residual vector for the solution
vector is greater than that of b multiplied by
EPSR, which is the right term constant vector
in Ax=b. The coefficient matrix A may be
close to a singular matrix.

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,
NSIZEFACTORL < 1, NSIZEINDEX < 1,
NSIZEFACTORU < 1, ISW < 1, or ISW > 3,
ITERMAX<1 when IREFINE=1.

30100 The permutation matrix specified in NPREM
is not correct.

30200 The row index k stored in NROW(j) is k < 1 or
k > n.

30300 The number of row indices belong to i-th
column is NFCNZ(i+1)-NFCNZ(i) > n.

30500 When ISTATIC=1 is specified, the required
conditions are not satisfied.
EPSZ is greater than 16u of the standard value
or ISCLITERMAX<10
or IREFINE≠1
or SPEPSZ>THEPSZ
or SPEPSZ>1.0D-10

30700 The matrix A is not structurally symmetric.

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-423

Code Meaning Processing

31000 The value of NSIZEFACTORL is not enough
as the size of PANELFACTORL,
or the value of NSIZEINDEX is not enough as
the size of NPANELINDEXL and
NPANELINDEXU,
or the value of NSIZEFACTORU is not
enough as the size of PANELFACTORU.

Reallocate the
PANELFACTORL or
NPANELINDEXL and
NPANELINDEXU or
PANELFACTORU or
with the necessary size which
are returned in the
NSIZEFACTORL or
NSIZEINDEX or
NSIZEFACTORU
respectively
and call this subroutine again
with ISW=2 specified.

(3) Comments on use

a. Notes

1) When the element pij=1 of the permutation matrix P, set NPERM(i)=j.
The inverse of the matrix can be obtained as follows:
 DO i = 1,n
 j = NPERM(i)
 NPERMINV(j) = i
 ENDDO
Fill-reduction Orderings are obtained in use of METIS and so on.
Refer to [43], [44] in Appendix A, “References.” in detail.

2) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than EPSZ
in the process of LU decomposition. In this case, processing is discontinued with
ICON = 20000. When unit round off is u, the standard value of EPSZ is 16  u.
When the computation is to be continued even if the absolute value of diagonal
element is small, assign the minimum value to EPSZ. In this case, however, the
result is not assured.
 If Static pivot is specified to be performed, when the diagonal element is smaller
than SPEPSZ, LU decomposition is approximately continued replacing it with
SPEPSZ. It is required to specify to do iterative refinement.

3) The necessary sizes for the array PANELFACTORL, NPANELINDEXL,
PANELFACTORU and NPANELINDEXU that store the decomposed results can
not be determined beforehand. It is suggested to reallocate them by using the result
of the symbolic decomposition analysis after the first call of this routine, or allocate
large enough arrays at first call.
 For instance, allocate the small one-dimensional arrays of size one at first. And call
this routine with the small values such as one in the size specifying in
NSIZEFACTORL, NSIZEINDEX and NSIZEFACTORU with ISW=1. This routine
ends with ICON=31000, and the necessary sizes for NSIZEFACTORL,
NSIZEINDEX and NSIZEFACTORU are returned. Then the suspended process can
be resumed by calling it with ISW=2 after reallocating the arrays with the necessary
sizes.

4) Nodes corresponding to column number is considered. The node number permuted
in post order is stored in NPOSTO. This array indicates what node number in
original node number the i-th node in post order is corresponding. It means j-th
position when j = NPOSTO(i).
 This array represents a permutation matrix Q which is an orthogonal matrix also as

DM_VSSSS

II-424 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

well as note 1) above, and corresponds to permute the matrix A into QAQT.
 The inverse matrix QT can be obtained as follows:
 DO i = 1,n
 j = NPOSTO(i)
 NPOSTOINV(j) = i
 ENDDO

5) Instead of this routine, a system of equations Ax=b can be solved by calling both
DM_VSSSLU to perform LU decomposition of a structurally symmetric real sparse
matrix A and DM_VSSSLUX to solve the linear equation in use of decomposed
results.

b. Example

 The linear system of equations Ax=f is solved, where a matrix is built using results from
the finite difference method applied to the elliptic equation

fcuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).
The matrix in diagonal storage format is generated by the subroutine init_mat_diag and
then it is converted in compressed column storage format. The linear system of equations
with a structurally symmetric real sparse matrix A built in this way is solved.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this
program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**

 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ,NXY=NX*NY)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 PARAMETER (NALL=NDIAG*N,
 $ IWL=36*N+36+2*NALL+3*(N+1))
 PARAMETER(IPRINT=0)
 DIMENSION NOFST(NDIAG)
 DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)
 DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1),
 $ WC(K*NDIAG),IWC(2,K*NDIAG)
 DIMENSION A(NDIAG*N),NCOLUMN(K*NDIAG),NFCNZ(N+1),
 $ NPERM(N),W(NDIAG*N+N),
 $ NPOSTO(N),NDIM(2,N),
 $ NASSIGN(N),
 $ IW(IWL)
 REAL*8, DIMENSION(:), ALLOCATABLE :: PANELFACTORL,PANELFACTORU
 INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,
 $ NPANELINDEXU
 REAL*8 DUMMYFL,DUMMYFU
 INTEGER*4 NDUMMYIL,NDUMMYIU
 INTEGER*8 NSIZEFACTORL,NSIZEINDEX,
 $ NSIZEFACTORU,
 $ NFCNZFACTORL(N+1),
 $ NFCNZFACTORU(N+1),
 $ NFCNZINDEXL(N+1),
 $ NFCNZINDEXU(N+1)
 DIMENSION X(N),B(N),SOLEX(N),NPERM1(N)
C
 REAL*8 THEPSZ,
 $ EPSR,
 $ SEPSZ,

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-425

 $ SCLROW(N),SCLCOL(N)

 INTEGER*4 IPIVOT,ISTATIC,
 $ ISCLITERMAX,
 $ IREFINE,ITERMAX,ITER

 PRINT *,' DIRECT METHOD'
 PRINT *,' FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES'
 PRINT *,' IN COMPRESSED COLUMN STORAGE'
 PRINT *

 DO I=1,N
 SOLEX(I)=1.0D0
 ENDDO
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 1.0D0
 VA2 = 2.0D0
 VA3 = 3.0D0
 VC = 4.0D0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
C
 DIAG2=0
C
 DO I=1,NDIAG
C
 IF(NOFST(I).LT.0)THEN
 NBASE=-NOFST(I)
 LENGTH=N-NBASE
 DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I)
 ELSE
 NBASE=NOFST(I)
 LENGTH=N-NBASE
 DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I)
 ENDIF
C
 ENDDO
C
 NUMNZC=1
C
 DO J=1,N
 NTOPCFGC=1
C
 DO I=NDIAG,1,-1
C
 IF(DIAG2(J,I).NE.0.0D0)THEN
C
 NCOL=J-NOFST(I)
 C(NUMNZC)=DIAG2(J,I)
 NROWC(NUMNZC)=NCOL
C
 IF(NTOPCFGC.EQ.1)THEN
 NFCNZC(J)=NUMNZC
 NTOPCFGC=0
 ENDIF

DM_VSSSS

II-426 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C
 NUMNZC=NUMNZC+1
C
 ENDIF
 ENDDO
 ENDDO
C
 NFCNZC(N+1)=NUMNZC
 NNZC=NUMNZC-1
C
 CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX,
 $ B,WC,IWC,ICON)
C
C
 X=B
 IORDERING=0
 ISCLITERMAX=10
 ISW=1
 EPSZ=1.0D-16
 NSIZEFACTORL=1
 NSIZEFACTORU=1
 NSIZEINDEX=1
 THEPSZ=1.0D-2
 EPSR=1.0D-8
 SEPSZ=1.0D-10
 IPIVOT=40
 ISTATIC=1
 IREFINE=1
 ITERMAX=10
C
 CALL DM_VSSSS(C,NNZC,NROWC,NFCNZC,N,
 $ ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ X,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,DUMMYFL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NDUMMYIL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,DUMMYFU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NDUMMYIU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,
 $ THEPSZ,
 $ IPIVOT,ISTATIC,SEPSZ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ W,IW,ICON)
C
 PRINT*,' ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL,
 $ 'NSIZEFACTORU=',NSIZEFACTORU,
 $ 'NSIZEINDEX=',NSIZEINDEX
 PRINT*,' NSUPNUM=',NSUPNUM
 PRINT *
C
 ALLOCATE(PANELFACTORL(NSIZEFACTORL))
 ALLOCATE(PANELFACTORU(NSIZEFACTORU))
 ALLOCATE(NPANELINDEXL(NSIZEINDEX))
 ALLOCATE(NPANELINDEXU(NSIZEINDEX))
C
 ISW=2
 CALL DM_VSSSS(C,NNZC,NROWC,NFCNZC,N,

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-427

 $ ISCLITERMAX,IORDERING,
 $ NPERM,ISW,
 $ X,
 $ NASSIGN,
 $ NSUPNUM,
 $ NFCNZFACTORL,PANELFACTORL,
 $ NSIZEFACTORL,NFCNZINDEXL,
 $ NPANELINDEXL,NSIZEINDEX,NDIM,
 $ NFCNZFACTORU,PANELFACTORU,
 $ NSIZEFACTORU,
 $ NFCNZINDEXU,NPANELINDEXU,
 $ NPOSTO,
 $ SCLROW,SCLCOL,
 $ EPSZ,
 $ THEPSZ,
 $ IPIVOT,ISTATIC,SEPSZ,
 $ IREFINE,EPSR,ITERMAX,ITER,
 $ W,IW,ICON)

C
 ERR = ERRNRM(SOLEX,X,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *
 PRINT *,' ERROR = ',ERR
 PRINT *,' ITER=',ITER
 PRINT *
 PRINT *

 IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN
 WRITE(*,*)' ********** OK **********'
 ELSE
 WRITE(*,*)' ********** NG **********'
 ENDIF

 DEALLOCATE(PANELFACTORL,PANELFACTORU,NPANELINDEXL,
 $ NPANELINDEXU)

 STOP
 END

C ==
C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET

DM_VSSSS

II-428 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1

 DM_VSSSS

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-429

 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* SOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

DM_VSSSS

II-430 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

(4) Method

The matrix is scaled in order to equilibrate both rows and columns norms. Subsequently the
LU decomposition of this matrix is made. Nonzero elements belonging to each supernode is
stored in two-dimensional panel respectively. The pivot for numerical stabilization is sought
with in its block diagonal portion. The threshold for pivot search can be specified so that
immediately after a pivot candidate with the absolute value greater than it is encountered in
pivot search it is accepted as a pivot. In addition the static pivoting can be specified so that
even if the pivot obtained after pivot search is considered as too small, it is replaced with the
value of SPEPSZ and LU decomposition can be approximately performed.
Refer to references in Appendix A, “References.” in detail.
Refer to [19], [2], [22], [48], [68] on the LU decomposition of real sparse matrices and to [63],
[69] on equilibration of matrices and pivoting.

 DM_VTDEVC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-431

DM_VTDEVC

Eigenvalues and eigenvectors of real tridiagonal matrices

CALL DM_VTDEVC (D, SL, SU, N, NF, NL, IVEC, ETOL, CTOL, NEV, E,
 MAXNE, EV, K, M, ICON)

(1) Function

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of a real
tridiagonal matrix.

Tx = x (1.1)

where, T is an n-dimensional real tridiagonal matrix.

 Tridiagonal matrix T must satisfy the following condition:

li ui-1 > 0, where, i = 2, ..., n (1.2)

 When the element of tridiagonal matrix T is tij, di indicates a tridiagonal element, and li =
ti,i-1 and ui = ti,i+1 indicate subdiagonal elements, where, l1 = un = 0.

(Tv)i = li vi-1 + di vi + ui vi+1, i = 1,2,...,n (1.3)

 (2) Parameters

D Input. The diagonal elements di are stored in real double-precision one-
dimensional array D(N).

SL Input. The subdiagonal elements li are stored in SL(2:N) of real double-
precision one-dimensional array SL(N). SL(1) = 0.

SU Input. The super-diagonal elements ui are stored in SU(1:N-1) of real double-
precision one-dimensional array SU(N). SU(N) = 0.

N Input. Order n of tridiagonal matrix

NF Input. Number assigned to the first eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

NL Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvalues in ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC Input. Control information.

When the IVEC value is 1, the eigenvalues and corresponding eigenvectors are
calculated.

When the IVEC value is not 1, only the eigenvalues are calculated.

ETOL Input. Criterion value for checking whether the eigenvalues are numerically
different from each other or are multiple. This check uses formula (3.4). When
ETOL is less than 3.0D-16, this value is used as the standard value.

(See 2) in a, “Notes,” in (3), “Comments on use.”)

CTOL Input. The CTOL value is used to check whether the adjacent eigenvalues are
approximately equal to each other. This check uses formula (3.4).

1.0D-6  CTOL  ETOL

DM_VTDEVC

II-432 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6.

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the
standard value.

(See 2) in a, “Notes,” in (3), “Comments on use.”)

NEV Output. Number of eigenvalues calculated.

Details are given below.

NEV(1) indicates the number of different eigenvalues calculated.

NEV(2) indicates the number of approximately multiple, different eigenvalues
(clusters) calculated.

NEV(3) indicates the total number of eigenvalues (including multiple
eigenvalues) calculated.

NEV(4) indicates the number representing the first of the eigenvalues calculated.

NEV(5) indicates the number representing the last of the eigenvalues calculated.

One-dimensional array NEV(5).

E Output. Eigenvalues are stored in E.

The eigenvalues calculated are stored in E(1:NEVG(3)).

One-dimensional array E(MAXNE).

MAXNE Input. Maximum number of eigenvalues that can be calculated.

When it can be considered that there are two or more eigenvalues with
multiplicity m, MAXNE must be set to a larger value than NL - NF + 1 + 2  m
that is bounded by n. Size of the dimension of array E.

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be
calculated.

(See 3) in a, “Notes,” in (3), “Comments on use.”)

EV Output. When IVEC = 1, the eigenvectors that correspond to the eigenvalues
are stored in EV.

The eigenvectors calculated are stored in EV(1:N,1:NEV(3)).

Two-dimensional array EV(K,MAXNE).

K Input. Size of first-dimension of EV. (K  N).

M Output. Information about multiplicity of eigenvalues calculated.

M(i,l) indicates the multiplicity of the i-th eigenvalue i. M(i,2) indicates the
multiplicity of the i-th cluster calculated when the adjacent eigenvalues are
regarded as approximately multiple eigenvalues (clusters).

(See 2) in a, “Notes,” in (3), “Comments on use.”)

Two-dimensional array M(MAXNE,2).

ICON Output. Condition code.

See Table DM_VTDEVC-1.

 DM_VTDEVC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-433

Table DM_VTDEVC-1 Condition codes

Code Meaning Processing

0 No error 

20000 During calculation of multiple eigenvalues, the
total number of eigenvalues exceeded the
MAXNE value.

Processing is discontinued.

The eigenvectors cannot be
calculated, but the different
eigenvalues themselves are
already calculated.

A suitable value for
MAXNE to allow
calculation to proceed is
returned in NEV(3).

(See 3) in a, “Notes,” in (3),
“Comments on use.”)

30000 N < 1, K < 1, NF < 1, NL > N, NL < NF,
MAXNE < NL  NF + 1, or N > K.

Processing is discontinued.

30100 SL(i)  SU(i  1)  0.

The matrix could not be converted into a
symmetrical form.

(3) Comments on use

a. Notes

1) Problems that can be solved using this function

This routine requires only that liui-1 > 0, i=2,...,n. Thus it will also solve the
generalized eigenvalue problem

Tx = Dx (3.1)

where D > 0 (every diagonal element is positive) is diagonal by setting
T  D1T. Also, the eigenvalue problem for T can be reduced to a symmetric
generalized problem

 DTv = Dv (3.2)

where d1 = 1, di = ui-1di-1/li, i = 2, ..., n. If di can cause scaling problems then it
is preferable to consider the symmetric problem

 D1/2 TD1/2 w =  w (3.3)

where w = D1/2v.

2) This routine calculates eigenvalues independently from each other by dividing
them into nonoverlapping, sequenced sets (parallel processing).

When  = ETOL, the following condition is satisfied for consecutive eigenvalues
 j (j = s  1, s, ..., s + k (k  0)):















),max(1 1

1

ii

ii
 (3.4)

DM_VTDEVC

II-434 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 If formula (3.4) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when
i = s  1 and i = s + k + 1, it is assumed that the eigenvalues  j (j = s  1, s, ..., s
+ k) are numerically multiple.

The standard value of ETOL is 3.0D-16 (about the unit round off). In this case,
the eigenvalues are refined up to the maximum machine precision.

If formula (3.4) is not satisfied when  = ETOL, it can be considered that i-1 and
i are distinct eigenvalues.

When  = ETOL, assume that consecutive eigenvalues m (m = t  1, t, ..., t + k
(k  0)) are different eigenvalues. Also, when  = CTOL, assume that formula
(3.4) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and
i = t + k + 1. In this case, it is assumed that the distinct eigenvalues m (m = t - 1,
t, ..., t + k) are approximately multiple (i.e. form a cluster). In this case,
independent starting vectors are generated for inverse iteration, and eigenvectors
corresponding to m (m = t  1, t, …, t + k) are reorthogonilized.

3) The maximum number of eigenvalues that can be calculated is specified in
MAXNE. When the value of CTOL is increased, the cluster size also increases.
Therefore, the total number of eigenvalues calculated might exceed the value of
MAXNE. In this case, decrease the value of CTOL or increase the value of
MAXNE.

If the total number of eigenvalues calculated exceeds the value of MAXNE,
ICON = 20000 is returned. In this case, the eigenvectors cannot be calculated
even if eigenvector calculation is specified. Eigenvalues are calculated, but are
not stored repeatedly according to the multiplicity.

The calculated different eigenvalues are stored in E(1:NEV(1)). The multiplicity
of the corresponding eigenvalues is stored in M(1:NEV(1),1).

When all the eigenvalues are different from each other and there are no
approximately multiple eigenvalues, MAXNE can be set to NT (=NLNF+1).
However, when there are multiple eigenvalues and the multiplicity is m,
MAXNE must be set to at least NT + 2  m.

If the total number of eigenvalues to be calculated exceeds the value of MAXNE,
the value required to continue the calculation is returned in NEV(3). The
calculation can be continued by allocating the area specified by this returned
value and by calling the routine again.

b. Example

 This example calculates ne = nf  nl + 1 eigenvalues and corresponding
eigenvectors of a model problem based on a modification to an example problem
due to Wilkinson (see [81] in Appendix A, “References”). (This problem is
known to have numerically multiple eigenvalues.)

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
C
 INTEGER K,N,N0,N1,NE,MAX_CLUS,MAX_NEV,NWR,P1,Q1,IVEC
 REAL*8 EVAL_TOL,CLUS_TOL
C

 DM_VTDEVC

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-435

 PARAMETER (K=7001)
 PARAMETER (P1=70,Q1=100,N=P1*Q1,N0=6001,N1=7000,
 & NE=N1-N0+1)
 PARAMETER (MAX_CLUS=2*Q1,MAX_NEV=NE+MAX_CLUS)
 PARAMETER (EVAL_TOL=3.D-16,CLUS_TOL=5.D-12)
 PARAMETER (NWR=2*N+2)
C
C
 REAL*8 A(N),B(N),C(N),EVAL(MAX_NEV),
 & EVEC(K,MAX_NEV),WR(NWR)
 INTEGER MULT(MAX_NEV,2),NEV(3),ICON,I,J,II,L
 INTEGER N0X,N1X
C
C W^+_n (Wilkinson): Pathologically close eigenvalues
C
 J = (P1 + 1) / 2
 B(J) = 0.D0
 DO 40 I=1,J-1
 A(I+1) = 1.D0
 C(I) = 1.D0
 A(J+I) = 1.D0
 C(J+I-1) = 1.D0
 B(I) = DFLOAT(J - I)
 40 B(2*J-I) = B(I)
 A(1) = 0.D0
 C(P1) = 0.D0
 DO 45 L=2,Q1
 II = (L-1) * P1
 DO 45 I=1,P1
 A(II+I) = A(I)
 C(II+I) = C(I)
 B(II+I) = B(I)
 45 CONTINUE
C
 A(1)=0.D0
 C(N)=0.D0
C
 N0X=N0
 N1X=N1
 IVEC=1
C
 CALL DM_VTDEVC(B,A,C,N,N0X,N1X,IVEC,EVAL_TOL,CLUS_TOL,NEV,
 & EVAL,MAX_NEV,EVEC,K,MULT,ICON)
C
 CALL CHECK(A,B,C,N,EVEC,K,EVAL,NEV,WR,WR(N+3))
C
 STOP
 END

 SUBROUTINE CHECK(SL,D,SU,N,EV,LD,E,NEV,W,W2)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION SU(*),D(*),SL(*),EV(LD,*),E(*),NEV(3),
 & W(N+2),W2(N)

DM_VTDEVC

II-436 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C
 TMP=0.0
 DO I=1,NEV(3)
C
 DO J=1,N
 W(J+1)=EV(J,I)
 ENDDO
 W(1)=0.0
 W(N+2)=0.0
 DO J=1,N
 W2(J)=SL(J)*W(J)+D(J)*W(J+1)+SU(J)*W(J+2)-E(I)*W(J+1)
 TMP=MAX(TMP,ABS(W2(J)/(ABS(E(I))+1)))
 ENDDO
 ENDDO
C
 PRINT*,'== maximum element error in ||T*x-eig*x||= ',
 & TMP,' =='

 RETURN
 END

(4) Method

 When each processor calculates eigenvalues by interval refinement the section, the Sturm
sequence is calculated at roughly npts/nev points. (npts  4*MAXNE.) nev indicates the
number of eigenvalues to be calculated.

 The value of npts is determined as explained in [71] in Appendix A, “References.”

 A composite data structure is used. An array structure is combined with a last-in first-out
(LIFO) structure to maintain eigenvalue ordering and multisectioning. This is explained
in [61] in Appendix A, “References.” This computation is carried out until the limit of
section ETOL refinement is reached. When the standard value is set (3.0d-16), the
precision of the eigenvalues approaches machine precision relative to the scale of the
matrix.

 For an explanation of the Sturm count, see [80] in Appendix A, “References.”

 It has the property that the sign count is a monotonic function of the eigenvalue
parameter in IEEE floating-point arithmetic. (See [20] in Appendix A, “References.”)

 Eigenvectors are calculated by inverse iteration.

 The initial vector is determined using the sign structure of the Sturm sequence, except
when numerically multiple (or approximately multiple) eigenvalues have been detected.

 When the eigenvalues are numerically or approximately multiple, random initial vectors
are generated and orthogonalized with respect to other eigenvectors of the cluster.
Usually, one step of inverse iteration suffices. The eigenvectors corresponding to the
clustered eigenvalues are also reorthogonalized after inverse iteration.

 DM_VTFQD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-437

DM_VTFQD

System of linear equations with unsymmetric or indefinite sparse matrices (TFQMR method,
diagonal format storage method)

CALL DM_VTFQD(A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS,
 X, ITER, ICON)

(1) Function

 This subroutine solves, using the transpose-free quasi minimal residual [TFQMR]
method, a system of linear equations with unsymmetric or indefinite sparse matrices as
coefficient matrices.

 Ax = b

 The n  n coefficient matrix is stored using the diagonal format storage method. Vectors
b and x are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the
SSL II Extended Capability User’s Guide II.

(2) Parameters

A Input. The nonzero elements of a coefficient matrix are stored in A.

The coefficient matrix is stored in A(1:N,1:NDIAG).

Two-dimensional array A(K,NDIAG)

For an explanation of the diagonal format storage method, see b, "Diagonal
format storage method of general sparse matrices," in Section 3.2.1.1, "Storing
the general sparse matrices," in Part I, "Outline," in the SSL II Extended
Capability User's Guide II.

K Input. Size of first-dimension of array A ( N).

NDIAG Input. Number of columns in array A and size of array NOFST. Must be
greater than or equal to the number of nonzero diagonals in matrix A. Size of
second-dimension of array A.

N Input. Order n of matrix A

NOFST Input. Offsets of diagonals of A stored A. Main diagonal has offset 0,
subdiagonals have negative offsets, and superdiagonals have positive offsets.

One-dimensional array NOFST(NDIAG)

B Input. The right-side constant vectors of a system of linear equations are stored
in B(1:N).

One-dimensional array B(N).

ITMAX Input. Upper limit of iterative count for TFQMR method. The value of
ITMAX should usually be set to about 2000.

EPS Input. Criterion value for judgment of convergence.

When the value of EPS is 0.0 or smaller, EPS is set to 10-6.

(See 1) in a, "Notes," in (3), "Comments on use.")

DM_VTFQD

II-438 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

IGUSS Input. Control information specifying whether iterative computation is to be
performed using the approximate values of the solution vectors specified in
array X.

When the value of IGUSS is 0, the approximate values of the solution vectors
are not specified and set to zero by DM_VTFQD.

When the value of IGUSS is not 0, the iterative computation is performed using
the approximate values of the solution vectors specified in array X.

X Input. The approximate values of solution vectors can be specified in X(1:N).

Output. Solution vectors are stored in X.

One-dimensional array X(N).

ITER Output. Actual iterative count for TFQMR method.

ICON Output. Condition code.

See Table DM_VTFQD-1.

Table DM_VTFQD-1 Condition codes

Code Meaning Processing

0 No error 

20000 A breakdown state occurred. Processing is discontinued.

20001 The iteration count reached the maximum limit. Processing is discontinued.
The already calculated
approximate value is output
to array X, but its precision
is not assured.

30000 N < 1, N > K, NDIAG < 1, ITMAX  0. Processing is discontinued.

32001 |NOFST(I)| > N – 1

(3) Comments on use

a. Notes

1) When the residual Euclidean norm is equal to or smaller than the product of the
first residual Euclidean norm and the value of EPS, it is assumed that the
solution converged. The error between the correct solution and the calculated
approximate solution is roughly equal to the product of the matrix A condition
number and the value of EPS.

2) Conditions for using the diagonal format

 The external diagonal vector element of coefficient matrix A must be set to 0.
The order in which diagonal vectors (refer to Section 3.2.1.1, "Storage method
for general sparse matrices" in the SSL II Extended Capabilities User’s Guide II)
are stored into array A is not restricted.

 The merit of this method is that a matrix vectors can be calculated without using
an indirect index. The demerit of this method is that a matrix without a diagonal
structure cannot be stored efficiently.

 DM_VTFQD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-439

b. Example

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

fuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2
and a3 are some constants. The matrix A in Diagonal format is generated by the
subroutine init_mat_diag.

 The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (EPS = 1D-8)
 PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD,
 $ N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (NDIAG = 7)
 PARAMETER(NVW=3*K)

 DIMENSION NOFST(NDIAG)
 DIMENSION A(K,NDIAG)
 DIMENSION X(N),B(N),SOLEX(N),Y(N)
 DIMENSION VW(NVW)

 PRINT *,' BICGSTAB(L) METHOD'
 PRINT *,' DIAGONAL FORMAT'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K)
 NBANDL=0
 NBANDR=0
 DO I=1,NDIAG
 IF(NOFST(I).LT.0)THEN
 NBANDL=MAX(NBANDL,-NOFST(I))
 ELSE
 NBANDR=MAX(NBANDR,NOFST(I))
 ENDIF

DM_VTFQD

II-440 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDDO

 VW(1+NBANDL:N+NBANDL) = SOLEX(1:N)
 CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON2)

 X(1:N)=0.0D0
 ERR1 = ERRNRM(SOLEX,X,N)
 VW(1+NBANDL:N+NBANDL) = X(1:N)
 CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2)
 ERR2 = ERRNRM(Y,B,N)

 IGUSS = 0
 ITMAX = 2000

 CALL DM_VTFQD(A,K,NDIAG,N,NOFST,B,ITMAX
 & ,EPS,IGUSS,X,ITER,ICON)

 ERR3 = ERRNRM(SOLEX,X,N)
 VW(1+NBANDL:N+NBANDL) = X(1:N)
 CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2)
 ERR4 = ERRNRM(Y,B,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)
 PRINT *
 PRINT *,' DM_VTFQD ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *,' NBANDL = ',NBANDL,', NBANDR = ',NBANDR
 PRINT *,' ITER MAX = ',ITMAX
 PRINT *,' ITER = ',ITER
 PRINT *
 PRINT *,' EPS = ',EPS
 PRINT *
 PRINT *,' INITIAL ERROR = ',ERR1
 PRINT *,' INITIAL RESIDUAL ERROR = ',ERR2
 PRINT *,' CRITERIA RESIDUAL ERROR = ',ERR2*EPS
 PRINT *
 PRINT *,' ERROR = ',ERR3
 PRINT *,' RESIDUAL ERROR = ',ERR4
 PRINT *
 PRINT *

 IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF

 STOP
 END

C ==

 DM_VTFQD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-441

C INITIALIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET
 & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION D_L(NDIVP,NDIAG)
 INTEGER OFFSET(NDIAG)
C
 IF (NDIAG .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:'
 WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP)

C NDIAG CANNOT BE GREATER THAN 7
 NDIAG_LOC = NDIAG
 IF (NDIAG .GT. 7) NDIAG_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

!$OMP DO
 DO I = 1,NDIVP
 DO J = 1,NDIAG
 D_L(I,J) = 0.0
 ENDDO
 ENDDO
!$OMP ENDDO

 NXY = NX*NY

C OFFSET SETTING
!$OMP SINGLE
 L = 1
 IF (NDIAG_LOC .GE. 7) THEN
 OFFSET(L) = -NXY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 OFFSET(L) = -NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 OFFSET(L) = -1
 L = L+1
 ENDIF
 OFFSET(L) = 0

DM_VTFQD

II-442 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 OFFSET(L) = 1
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 4) THEN
 OFFSET(L) = NX
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 OFFSET(L) = NXY
 ENDIF
!$OMP END SINGLE

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NXY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,'ERROR; K0.GH.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NXY*(K0-1))/NX+1
 I0 = JS - NXY*(K0-1) - NX*(J0-1)
 L = 1

 IF (NDIAG_LOC .GE. 7) THEN
 IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 5) THEN
 IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 3) THEN
 IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 L = L+1
 ENDIF
 D_L(J,L) = 2.0/HX**2+VC
 IF (NDIAG_LOC .GE. 5) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HY**2
 IF (NDIAG_LOC .GE. 7) THEN
 D_L(J,L) = D_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 L = L+1
 IF (NDIAG_LOC .GE. 2) THEN
 IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 L = L+1
 ENDIF

 DM_VTFQD

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-443

 IF (NDIAG_LOC .GE. 4) THEN
 IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 L = L+1
 ENDIF
 IF (NDIAG_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
* ABSOLUTE ERROR
* | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

(4) Method

 For an explanation of the TFQMR method, see [26] in Appendix A, "References."

DM_VTFQE

II-444 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VTFQE

System of linear equations with unsymmetric or indefinite sparse matrices (TFQMR method,
ELLPACK format storage method)

CALL DM_VTFQE(A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS,
 X, ITER, ICON)

(1) Function

 This subroutine solves, using the transpose-free quasi minimal residual [TFQMR]
method, a system of linear equations with unsymmetric or indefinite sparse matrices as
coefficient matrices.

Ax = b

 The n  n coefficient matrix is stored using the ELLPACK format storage method.
Vectors b and x are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the
SSL II Extended Capability User's Guide II.

(2) Parameters

A Input. The nonzero elements of a coefficient matrix are stored in
A(1:N,1:IWIDT).

Two-dimensional array A(K,IWIDT)

For an explanation of the ELLPACK format storage method, see Section 3.2.1.1,
"Storing the general sparse matrices," in Part I, "Outline," in the SSL II
Extended Capability User's Guide II.

K Input. Size of first-dimension of A and ICOL. (K  n).

IWIDT Input. Maximum number of row-vector-direction nonzero elements of
coefficient matrix A. Size of second-dimension of A and ICOL.

N Input. Order n of matrix A.

ICOL Input. Column index used in ELLPACK format. Used to indicate to which
column vector the corresponding element of A belongs.

Two-dimensional array ICOL(K,IWIDT)

B Input. The right-side constant vectors of a system of linear equations are stored
in B(1:N).

One-dimensional array B(N)

ITMAX Input. Upper limit of iterative count for TFQMR method. The value of
ITMAX should usually be set to about 2000.

EPS Input. Criterion value for judgment of convergence.

When the value of EPS is 0.0 or smaller, EPS is set to 10-6.

(See 1) in a, "Notes," in (3), "Comments on use.")

 DM_VTFQE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-445

IGUSS Input. Control information specifying whether iterative computation is to be
performed using the approximate values of the solution vectors specified in
array X.

When the value of IGUSS is 0, the approximate values of the solution vectors
are not specified and set to zero by DM_VTFQE.

When the value of IGUSS is not 0, the iterative computation is performed using
the approximate values of the solution vectors specified in array X.

X Input. The approximate values of solution vectors can be specified in X(1:N).

Output. Solution vectors are stored in X(1:N).

One-dimensional array X(N)

ITER Output. Iterative count for TFQMR method.

ICON Output. Condition code.

See Table DM_VTFQE-1.

Table DM_VTFQE-1 Condition codes

Code Meaning Processing

0 No error 

20000 A breakdown state occurred. Processing is discontinued.

20001 The iteration count reached the maximum limit. Processing is discontinued.
The already calculated
approximate value is output
to array X, but its precision
is not assured.

30000 K < 1, IWIDT < 1, N < 1, ITMAX  0, N > K. Processing is discontinued.

30001 The band width is zero.

(3) Comments on use

a. Notes

1) When the residual Euclidean norm is equal to or smaller than the product of the
first residual Euclidean norm and the EPS, it is assumed that the solution
converged. The error between the correct solution and the calculated
approximate solution is roughly equal to the product of the matrix A condition
number and the EPS.

b. Example

 The linear system of equations Ax=f is solved, where A results from the finite
difference method applied to the elliptic equation

 fuuau 

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2

and a3 are some constants. The matrix A in Ellpack format is generated by the
subroutine init_mat_ell.

DM_VTFQE

II-446 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (EPS = 1D-8)
 PARAMETER (NORD=60,NX =NORD ,NY = NORD,NZ = NORD,
 & N = NX*NY*NZ)
 PARAMETER (K = N+1)
 PARAMETER (IWIDT = 7)
 DIMENSION ICOL(K,IWIDT)
 DIMENSION A(K,IWIDT)
 DIMENSION X(N),B(N),SOLEX(N),Y(N)

 PRINT *,' BICGSTAB(L) METHOD'
 PRINT *,' ELLPACK FORMAT'
 PRINT *

 SOLEX(1:N)=1.0D0
 PRINT *,' EXPECTED SOLUTIONS'
 PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N)
 PRINT *

 VA1 = 3D0
 VA2 = 1D0/3D0
 VA3 = 5D0
 VC = 1.0
 XL = 1.0
 YL = 1.0
 ZL = 1.0
 CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL
 & ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K)

 CALL DM_VMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON2)

 X(1:N)=0.0D0
 ERR1 = ERRNRM(SOLEX,X,N)
 CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2)
 ERR2 = ERRNRM(Y,B,N)

 IGUSS = 0
 ITMAX = 2000

 CALL DM_VTFQE(A,K,IWIDT,N,ICOL,B,ITMAX
 & ,EPS,IGUSS,X,ITER,ICON)

 ERR3 = ERRNRM(SOLEX,X,N)
 CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2)
 ERR4 = ERRNRM(Y,B,N)

 PRINT *,' COMPUTED VALUES'
 PRINT *,' X(1) = ',X(1),' X(N) = ',X(N)

 DM_VTFQE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-447

 PRINT *
 PRINT *,' DM_VTFQE ICON = ',ICON
 PRINT *
 PRINT *,' N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ
 PRINT *,' ITER MAX = ',ITMAX
 PRINT *,' ITER = ',ITER
 PRINT *
 PRINT *,' EPS = ',EPS
 PRINT *
 PRINT *,' INITIAL ERROR = ',ERR1
 PRINT *,' INITIAL RESIDUAL ERROR = ',ERR2
 PRINT *,' CRITERIA RESIDUAL ERROR =',ERR2*EPS
 PRINT *
 PRINT *,' ERROR = ',ERR3
 PRINT *,' RESIDUAL ERROR = ',ERR4
 PRINT *
 PRINT *

 IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN
 WRITE(*,*)'********** OK **********'
 ELSE
 WRITE(*,*)'********** NG **********'
 ENDIF

 STOP
 END

C ==
C INITILIZE COEFFICIENT MATRIX
C ==
 SUBROUTINE INIT_MAT_ELL(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ
 & ,XL,YL,ZL,IWIDTH,LEN,NDIVP)
 IMPLICIT REAL*8(A-H,O-Z)
 DIMENSION A_L(NDIVP,IWIDTH)
 DIMENSION ICOL_L(NDIVP,IWIDTH)
C
 IF (IWIDTH .LT. 1) THEN
 WRITE (*,*) 'SUBROUTINE INIT_MAT_ELL:'
 WRITE (*,*) ' IWIDTH SHOULD BE GREATER THAN OR EQUAL TO 1'
 RETURN
 ENDIF
!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ
!$OMP+ ,XL,YL,ZL,IWIDTH,LEN,NDIVP)

C IWIDTH CANNOT BE GREATER THAN 7
 IWIDTH_LOC = IWIDTH
 IF (IWIDTH .GT. 7) IWIDTH_LOC = 7

C INITIAL SETTING
 HX = XL/(NX+1)
 HY = YL/(NY+1)
 HZ = ZL/(NZ+1)

DM_VTFQE

II-448 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$OMP DO
 DO J = 1,IWIDTH
 DO I = 1,NDIVP
 A_L(I,J) = 0.0
 ICOL_L(I,J) = I
 ENDDO
 ENDDO
!$OMP ENDDO

C MAIN LOOP
!$OMP DO
 DO 100 J = 1,LEN
 JS = J
 L = 1

C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1
 K0 = (JS-1)/NX/NY+1
 IF (K0 .GT. NZ) THEN
 PRINT*,' ERROR; K0.GT.NZ '
 GOTO 100
 ENDIF
 J0 = (JS-1-NX*NY*(K0-1))/NX+1
 I0 = JS - NX*NY*(K0-1) - NX*(J0-1)
 IF (IWIDTH_LOC .GE. 7) THEN
 IF (K0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ
 ICOL_L(J,L) = JS-NX*NY
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 5) THEN
 IF (J0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HY+0.5*VA2)/HY
 ICOL_L(J,L) = JS-NX
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 3) THEN
 IF (I0 .GT. 1) THEN
 A_L(J,L) = -(1.0/HX+0.5*VA1)/HX
 ICOL_L(J,L) = JS-1
 L = L+1
 ENDIF
 ENDIF
 A_L(J,L) = 2.0/HX**2+VC
 IF (IWIDTH_LOC .GE. 5) THEN
 A_L(J,L) = A_L(J,L) + 2.0/HY**2
 IF (IWIDTH_LOC .GE. 7) THEN
 A_L(J,L) = A_L(J,L) + 2.0/HZ**2
 ENDIF
 ENDIF
 ICOL_L(J,L) = JS

 DM_VTFQE

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-449

 L = L+1
 IF (IWIDTH_LOC .GE. 2) THEN
 IF (I0 .LT. NX) THEN
 A_L(J,L) = -(1.0/HX-0.5*VA1)/HX
 ICOL_L(J,L) = JS+1
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 4) THEN
 IF (J0 .LT. NY) THEN
 A_L(J,L) = -(1.0/HY-0.5*VA2)/HY
 ICOL_L(J,L) = JS+NX
 L = L+1
 ENDIF
 ENDIF
 IF (IWIDTH_LOC .GE. 6) THEN
 IF (K0 .LT. NZ) THEN
 A_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ
 ICOL_L(J,L) = JS+NX*NY
 ENDIF
 ENDIF
 100 CONTINUE
!$OMP ENDDO

!$OMP END PARALLEL

 RETURN
 END

C ==
C ABSOLUTE ERROR
C | X1 - X2 |
C ==
 REAL*8 FUNCTION ERRNRM(X1,X2,LEN)
 IMPLICIT REAL*8 (A-H,O-Z)
 DIMENSION X1(*),X2(*)
C
 S = 0D0
 DO 100 I = 1,LEN
 SS = X1(I) - X2(I)
 S = S + SS * SS
 100 CONTINUE
C
 ERRNRM = SQRT(S)
 RETURN
 END

 (4) Method

 For an explanation of the TFQMR method, see [26] in Appendix A, "References."

DM_VTRID

II-450 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_VTRID

Tridiagonalization of real symmetric matrices.

CALL DM_VTRID (A, K, N, D, SL, ICON)

(1) Function

 This subroutine reduces the real symmetric matrix A to tridiagonal form using the
Housholder reductions.

T = QTAQ

 where A is an n  n real symmetric matrix, Q is an n  n othogonal matrix and T is a real
tridiagonal matrix.

(2) Parameters

A Input. The lower triangular part {aij | i  j}of real symmetric matrix A is stored
in the lower triangular part {A(i, j) | i  j} of A(1:N,1:N).

Output. The information on Householder transforms used for tridiagonalization
in stored in the lower triangular part {A(i, j) | i  j} of A(1:N,1:N)

After calculation, the values in the upper triangular part of A is not assured.

(See 1) in a, “Notes,” in (3), “Comments on use.”)

Two-dimensional double-precision real array A(K,N).

K.. Input. Size of first-dimension of array A. (K  N).

N Input. Order n of real symmetric matrix A

D Input. The diagonal elements of the reduced tridiagonal matrix are stored in
real double-precision one-dimensional array D(N).

SL Input. The subdiagonal elements of reduced tridiagonal matrix are stored in
SL(2:N) of real double-precision one-dimensional array SL(N). SL(1) = 0.

ICON Output. Condition code.

See Table DM_VTRID-1.

Table DM_VTRID-1 Condition codes

Code Meaning Processing

0 No error 

30000 N < 2, K < N. Processing is discontinued.

(3) Comments on use

a. Notes

1) Tridiagonalization is performed by the reapeated transforms varying k = 1, ... ,
n-2.

 AAQAQA   01T ,k
k

k
k

 DM_VTRID

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-451

Put bT = (0, ... , 0, A k-1(k+1:n, k)T).

bT = (0, ... , 0, bk+1, ... , bn)

bT∙b = S2 and put wT = (0, ... , 0, bk+1+S, bk+2, ... , bn).

The sign of S is chosen same as that of bk+1.

Then the transform matrix is represented as follow.

SbS ik
k




2
T 1

,I  wwQ

w(k+1:n) and  are stored in A(k+1:n, k) and A(k, k) respectively.

b. Example

 This example calculates the tridiagonalization of a real symmetric matrix whose
eigenvalues are known.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

c **example**
 implicit real*8(a-h,o-z)
 parameter(n=2000,k=n)
 parameter(ne=n,max_nev=ne)
 dimension a(k,n),b(k,n),c(k,n),d(k,n),ac(k,n)
 dimension dd(n),sld(n),sud(n)
 dimension nev(5),mult(max_nev,2)
 dimension eval(max_nev),evec(k,max_nev)
cc
 pai=4.0d0*datan(1.0d0)
 coef=dsqrt(2.0d0/(n+1))
 do j=1,n
 do i=1,n
 d(i,j)=coef*dsin(pai/(n+1)*i*j)
 enddo
 enddo
cc
 do j=1,n
 do i=1,n
 if(i.eq.j)then
 c(i,j)=i
 else
 c(i,j)=0.0d0
 endif
 enddo
 enddo
cc
cc d x c -> b
cc
 call dm_vmggm(d,k,c,k,b,k,n,n,n,icon)
cc
cc b x d -> a

DM_VTRID

II-452 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

cc
 call dm_vmggm(b,k,d,k,a,k,n,n,n,icon)
cc
 do i=1,n
 do j=i,n
 ac(j,i)=a(j,i)
 enddo
 enddo
c
 call dm_vtrid(ac,k,n,dd,sld,icon)
 if(icon.ne.0)then
 print*,' icon of dm_vtrid =',icon
 stop
 endif
c
 do i=2,n
 sud(i-1)=sld(i)
 enddo
 sud(n)=0.0d0
c
 nf=1
 nl=n
 ivec=0
 eval_tol=1.0d-15
 clus_tol=1.0d-10
 call dm_vtdevc(dd,sld,sud,n,nf,nl,ivec,
 & eval_tol,clus_tol,nev,
 & eval,max_nev,evec,k,mult,icon)
 do i=1,ne,n/20
 print*,'eigen value in eval(',i,') = ',eval(i)
 enddo
c
 stop
 end

(4) Method

 This routine reduces a tridiagonal matrix from a real symmetric matrix. The reduction to
a tridiagonal form is a parallel version of the Householder reduction to tridiagonal form.
(See [30] in Appendix A, “References.”)

 DM_V1DCFT

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-453

DM_V1DCFT

One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

CALL DM_V1DCFT(X,KX,Y,KY,N1,N2,ISN,ICON)

(1) Function

 The subroutine DM_V1DCFT performs a one-dimensional complex Fourier transform or
its inverse transform using a mixed radix FFT.

 The length of data transformed n(=n1  n2) is a product of the powers of 2, 3, 5 and 7.

a. The one-dimensional Fourier transform

 When {xj} is input, the transform defined by (1.1) below is calculated to obtain
{nk}.

)2(exp ,

1,...,1,0 ,
1

0

i/n =

 n k = xn

n

jk
n

n

j
jk



  



 (1.1)

b. The one-dimensional Fourier inverse transform

 When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}.

)2(exp ,

1,...,1,0,
1

0

i/n

 n jx

n

jk
n

n

k

kj











 (1.2)

It is recommended to use DVCFM1 in “SSL II Extended Capabilities User’s Guide II”
when the length of data is not large enough.

(2) Parameters

X Input. The complex data. The data is stored in X(1:N1,1:N2).

See Figure DM_V1DCFT-1.

This is a double precision complex two-dimensional array X(KX,N2).

(See notes 1) in (3), "Comments on use.")

KX Input. The size of the first dimension of array X ( N1).

Y Output. The complex transformed data. The data is stored in Y(1:N2,1:N1).
See Figure DM_V1DCFT-1.

This is a double precision complex two-dimensional array Y(KY,N1).

(See notes 1) in (3), "Comments on use.")

KY Input. The size of the first dimension of array Y ( N2).

N1 Input. Assuming that the length of the data transformed (n=N1  N2) is two-
dimensional data, the size of first dimension N1 must be a product of the
powers of 2, 3, 5 and 7.

 (See note 1) in (3), "Comments on use.")

DM_V1DCFT

II-454 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

N2 Input. Assuming that the length of the data transformed (n=N1  N2) is two-
dimensional data, the size of the second dimension, N2 must be a product of the
powers of 2, 3, 5 and 7.

 (See note 1) in (3), "Comments on use.")

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform

ISN = -1 for the inverse transform

ICON Output. Condition code.

See Table DM_V1DCFT-1.

N2

N1

KX

Input Array X

X1

X0

Xn1-1

Xn1

X2n1-1

Xn1(n2-1)

Xn1n2-1



*



N1

N2

KY

Output Array Y

Y1

Y0

Yn2-1

Yn2

Y2n2-1

Yn2(n1-1)

Yn2n1-1



*

Figure DM_V1DCFT-1 The input/Output data storage method

Table DM_V1DCFT-1 Condition codes

Code Meaning Processing

0 No error 

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued

30002 The leading dimensions are less than the actual
dimensions.

30008 The order of transform is not radix 2/3/5/7.

30016 The invalid value for the parameter ISN

(3) Comments on use

a. Notes

1) If the one-dimensional data of n = n1  n2 is numbered k = 0 , ..., n-1,

 k = k1 + k2  n1 , k1 = 0, ..., n11

 , k2 = 0, ..., n21

 DM_V1DCFT

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-455

 i = i1 + i2  n2 , i1 = 0, ..., n21

 , i2 = 0, ..., n11

 The input and output data are regarded as two-dimensional arrays with
subscripts of (k1, k2) and (i1, i2), respectively. (See Figure DM_V1DCFT-1.)

2) General definition of a Fourier transform

 The one-dimensional discrete complex Fourier transform and its inverse
transform is defined as in (3.1) and (3.2).

 1,...,1,0,
1

1

0

 



 n k = x

n
jk

n

n

j
jk  (3.1)

 1,...,1,0,
1

0






 n jx jk
n

n

k

kj  (3.2)

 where, n = exp(2 i/n)

 This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1)
or (3.2), respectively. Normalization of the results may be required.

b. Example

 A one-dimensional FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N1=4000,N2=3000)
 PARAMETER (KX=N1+1,KY=N2+1)
 COMPLEX*16 X(KX,N2),Y(KY,N1)
 INTEGER ISN
*
* Set up the input data arrays
*
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
 DO I=1,N2
 DO J=1,N1
 X(J,I)=DCMPLX(FLOAT(J)+FLOAT(N1)*(I-1),0.0)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO
*
* Do the forward transform
*
 ISN=1
 CALL DM_V1DCFT(X,KX,Y,KY,N1,N2,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Do the reverse transform

DM_V1DCFT

II-456 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

*
 ISN=-1
 CALL DM_V1DCFT(Y,KY,X,KX,N2,N1,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Find the error after the forward and
* inverse transform.
*
 ERROR=0

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
!$OMP+ REDUCTION(MAX:ERROR)
 DO I=1,N2
 DO J=1,N1
 ERROR=MAX(ABS(DBLE(X(J,I))/N2/N1)-
 & (FLOAT(J)+FLOAT(N1)*(I-1)),ERROR)
 ERROR=MAX(ABS(DIMAG(X(J,I))/N2/N1),
 & ERROR)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

 WRITE(*,*) 'Error ', ERROR
 STOP
 END

 (4) Method

 DM_V1DCFT is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V1DCFT2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-457

DM_V1DCFT2

One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

CALL DM_V1DCFT2(X,N,Y,ISN,ICON)

(1) Function

 The subroutine DM_V1DCFT performs a one-dimensional complex Fourier transform
or its inverse transform using a mixed radix FFT.

 The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

a. The one-dimensional Fourier transform

 When {xj} is input, the transform defined by (1.1) below is calculated
to obtain {nk}.

)2(exp ,

1,...,1,0,
1

0

i/n =

 n k = xn

n

jk
n

n

j

jk



  





 (1.1)

b. The one-dimensional Fourier inverse transform

 When { k} is input, the transform defined by (1.2) below is calculated
to obtain {xj}.

)2(exp ,

1,...,1,0,
1

0

i/n

 n j x

n

jk
n

n

k

kj











 (1.2)

It is recommended to use DVCFM1 in “SSL II Extended Capabilities User’s Guide II”
when the length of data is not large enough.

(2) Parameters

X................. Input. Complex data is stored in X(1:N).

This is a double precision complex one-dimensional array X(N).

N Input. The length of the data transformed. N must be a product of the powers of
2, 3, 5 and 7.

Integer (INTEGER*4)

Y Output. Transformed complex data is stored in Y(1:N).

This is a double precision complex one-dimensional array Y(N).

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform

ISN = -1 for the inverse transform

Integer (INTEGER*4)

ICON Output. Condition code.

See Table DM_V1DCFT2-1.

DM_V1DCFT2

II-458 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Table DM_V1DCFT2-1 Condition codes

Code Meaning Processing

0 No error 

30008 The order of transform is not radix 2/3/5/7. Processing is discontinued

30016 The invalid notation parameter ISN

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse
transform is defined as in (3.1) and (3.2).

1,,1,0 ,
1

1

0

 



 n ... k = x

n
jk

n

n

j

jk  (3.1)

1...,,1,0,
1

0






 n jx jk
n

n

k

kj  (3.2)

where, n = exp(2 i/n)

This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1)
or (3.2), respectively. Normalization of the results may be required.

b. Example

 A one-dimensional FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N1=1024,N2=N1,N=N1*N2)
 COMPLEX*16 X(N),Y(N),XX(N)
C
 DO I=1,N
 X(I)=DBLE(I)
 XX(I)=X(I)
 ENDDO
C
 CALL DM_V1DCFT2(X,N,Y,1,ICON)
 PRINT*,'ICON =',ICON
C
 CALL DM_V1DCFT2(Y,N,X,-1,ICON)
 PRINT*,'ICON =',ICON
C
 TMP=0.0D0

 DM_V1DCFT2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-459

 DO I=1,N
 TMP=MAX(ABS(X(I)/DBLE(N)-XX(I)),TMP)
 ENDDO
 PRINT*,' ERROR =',TMP
C
 STOP
 END

(4) Method

 DM_V1DCFT2 is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

DM_V1DMCFT

II-460 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_V1DMCFT

One-dimensional multiple discrete complex Fourier transforms (mixed radices of 2, 3, 5 and
7)

CALL DM_V1DMCFT(X,KX,N,M,ISN,ICON)

(1) Function

 The subroutine DM_V1DMCFT performs multiple one-dimensional complex Fourier
transforms or its inverse transforms using a mixed radix FFT.

 The length of data transformed n is a product of the powers of 2, 3, 5 and 7.

a. The one-dimensional Fourier transform

 When {xj} is input, the transform defined by (1.1) below is calculated to obtain
{nk}.

)2exp(,

1...,,1,0 ,
1

0

i/n =

 n k = xn

n

jk
n

n

j

jk



  



 (1.1)

b. The one-dimensional Fourier inverse transform

 When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}.

)2exp(,

1...,,1,0,
1

0

i/n

 n jx

n

jk
n

n

k

kj











 (1.2)

(2) Parameters

X Input. The complex data. Store the data in X(1:N,1:M).

Output. The complex transformed data. The data is stored in X(1:N,1:M).

This is a double precision complex two-dimensional array X(KX,M).

(See notes 1) in (3), "Comments on use.")

KX Input. The size of the first dimension of array X ( N).

N Input. The length of the data transformed must be a product of the powers of 2,
3, 5 and 7.

M Input. The multiplicity of the data transformed.

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform

ISN = -1 for the inverse transform

ICON Output. Condition code.

See Table DM_V1DMCFT-1.

 DM_V1DMCFT

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-461

Table DM_V1DMCFT-1 Condition codes

Code Meaning Processing

0 No error 

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued

30002 The leading dimensions are less than the actual
dimensions.

30008 The order of transform is not radix 2/3/5./7

30016 The invalid value for the parameter ISN

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The one-dimensional discrete complex Fourier transform and its inverse
transform is defined as in (3.1) and (3.2).

 1,...,1,0,
1

1

0

 



 n k = x

n
jk

n

n

j
jk  (3.1)

 1,...,1,0,
1

0






n jx jk
n

n

k

kj  (3.2)

 where, n = exp(2 i/n)

 This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1)
or (3.2), respectively. Normalization of the results may be required.

b. Example

Multiple one-dimensional FFTs are computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N1=2048,M=256)
 PARAMETER (KX=N1+1)
 COMPLEX*16 X(KX,M)
 INTEGER ISN

*
* Set up the input data arrays
*
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
 DO I=1,M
 DO J=1,N1
 X(J,I)=dcmplx(FLOAT(J)+FLOAT(N1)*(I-1),0.0)
 ENDDO

DM_V1DMCFT

II-462 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDDO
!$OMP END PARALLEL DO

*
* Do the forward transform
*
 ISN=1
 CALL dm_v1dmcft(X,KX,N1,M,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Do the reverse transform
*
 ISN=-1
 CALL dm_v1dmcft(X,KX,N1,M,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Find the error after the forward and
* inverse transform.
*
 ERROR=0

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
!$OMP+ REDUCTION(MAX:ERROR)
 DO I=1,M
 DO J=1,N1
 ERROR=MAX(ABS(dble(X(J,I))/N1-
 & (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR)
 ERROR=MAX(ABS(dimag(X(J,I))/N1),
 & ERROR)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

 WRITE(*,*) 'Error ', ERROR
 STOP
 END

 (4) Method

DM_V1DMCFT is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V2DCFT

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-463

DM_V2DCFT

Two-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

CALL DM_V2DCFT(X,KX,N1,N2,ISN,ICON)

(1) Function

 The subroutine DM_V2DCFT performs a two-dimensional complex Fourier transform or
its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of two-dimensional data (n1, n2) is a product of the powers of
2, 3, 5 and 7.

a. The two-dimensional Fourier transform

 When {xj1j2} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2k1k2}.

)2(exp,

)2(exp,

1,,1,0,

1,,1,0,

22

11

22

11

22
2

11
1

11

01

12

02

212121

i/n

i/n

 n ... k

 n ... k

xnn

 n

 n

kj
n

kj
n

n

j

n

j

jjkk













 








 (1.1)

b. The two-dimensional Fourier inverse transform

 When {k1k2} is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2}.

)2exp(,

)2exp(,

1,,1,0,

1,,1,0,

22

11

22

11

22
2

11
1

11

01

12

02

2121

i/n

i/n

 n ... j

 n ... j

x

 n

 n

kj
n

kj
n

n

k

n

k

kkjj













 








 (1.2)

(2) Parameters

X Input. The complex data.

The data is stored in X(1:N1,1:N2).

Output. The transformed complex data.

The results are stored in X(1:N1,1:N2).

This is a double precision complex two-dimensional array X(KX,N2).

(See note 1) in (3), "Comments on use.")

KX Input. The size of the first dimension of input data array X.

N1 Input. The size n1 of data in the first dimension of the two-dimensional array to
be transformed.

DM_V2DCFT

II-464 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

N2 Input. The size n2 of data in the second dimension of the two-dimensional array
to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

ICON Output. Condition code.

See Table DM_V2DCFT-1.

Table DM_V2DCFT-1 Condition codes

Code Meaning Processing

0 No error 

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued

30002 The leading dimensions are less than the actual
dimensions.

30008 The order of transform is not radix 2/3/5/7.

30016 The invalid value for the parameter ISN

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The two-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

 n ... k

 n ... k

x
nn

kj
n

kj
n

n

j

n

j

jjkk

1,,1,0,

1,,1,0,

1

22

11

22
2

11
1

11

01

12

02

21
21

21




 






 


 (3.1)

 n ... j

 n ... j

x kj
n

kj
n

n

k

n

k

 kkjj

1,,1,0,

1,,1,0,

22

11

22
2

22
1

11

01

12

02

2121




 









 (3.2)

 where, n1 = exp(2 i/n1),  n2 = exp(2 i/n2)

 This subroutine calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of
(3.1) or (3.2), respectively. Normalization of the results may be required.

b. Example

 A two-dimensional FFT is computed.

 DM_V2DCFT

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-465

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N1=4000,N2=3000)
 PARAMETER (KX=4400)
 COMPLEX*16 X(KX,N2)
 INTEGER ISN

*
* Set up the input data arrays
*
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
 DO I=1,N2
 DO J=1,N1
 X(J,I)=DCMPLX(FLOAT(J)+FLOAT(N1)*(I-1),0.0)
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

*
* Do the forward transform
*
 ISN=1
 CALL DM_V2DCFT(X,KX,N1,N2,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Do the reverse transform
*
 ISN=-1
 CALL DM_V2DCFT(X,KX,N1,N2,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Find the error after the forward and
* inverse transform.
*
 ERROR=0

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
!$OMP+ REDUCTION(MAX:ERROR)
 DO I=1,N2
 DO J=1,N1
 ERROR=MAX(ABS(DBLE(X(J,I))/(N2*N1)-
 & (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR)
 ERROR=MAX(ABS(DIMAG(X(J,I))/(N2*N1)),
 & ERROR)
 ENDDO

DM_V2DCFT

II-466 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 ENDDO
!$OMP END PARALLEL DO

 WRITE(*,*) 'Error ', ERROR
 STOP
 END

 (4) Method

 DM_V2DCFT is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V3DCFT

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-467

DM_V3DCFT

Three-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

CALL DM_V3DCFT(X,KX,N1,N2,N3,ISN,ICON)

(1) Function

 The subroutine DM_V3DCFT performs a three-dimensional complex Fourier transform
or its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of
the powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321321

i/n

i/n

i/n

 n ... k

 n ... k

 n ... k

xnnn

 n

 n

 n

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk
















 






 

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3 } is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2(exp,

)2(exp,

)2(exp,

1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321

i/n

i/n

i/n

 n ... j

 n ... j

 n ... j

x

 n

 n

 n

kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj
















  






 (1.2)

(2) Parameters

X Input. The complex data.

Data is stored in X(1:N1,1:N2,1:N3).

Output. The transformed complex data.

The results are stored in X(1:N1,1:N2,1:N3).

This is a double precision complex three-dimensional array X(KX,N2,N3).

KX Input. The size of the first dimension of input data arrays X ( N1).

DM_V3DCFT

II-468 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

ICON Output. Condition code.

See Table DM_V3DCFT-1.

Table DM_V3DCFT-1 Condition codes

Code Meaning Processing

0 No error 

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued

30002 The leading dimensions are less than the actual
dimensions.

30008 The order of transform is not radix 2/3/5/7.

30016 The invalid value for the parameter ISN

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

 n ... k

 n ... k

 n ... k

x
nnn

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk

1,,1,0,

1,,1,0,

1,,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321
321

321





 






  


 (3.1)

 1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321





  






 n ... j

 n ... j

 n ... j

x kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj 


 (3.2)

 DM_V3DCFT

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-469

 where, n1 = exp (2 i/n1), n2 = exp (2 i/n2),

 n3= exp (2 i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

b. Example

 A three-dimensional FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

C **EXAMPLE**
 IMPLICIT REAL*8 (A-H,O-Z)
 PARAMETER (N1=400,N2=100,N3=200)
 PARAMETER (KX=440)
 COMPLEX*16 X(KX,N2,N3)
 INTEGER ISN
*
* Set up the input data arrays
*
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
 DO K=1,N3
 DO I=1,N2
 DO J=1,N1
 X(J,I,K)=DCMPLX(FLOAT(J)+FLOAT(N1)*(I-1),0.0)
 ENDDO
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

*
* Do the forward transform
*
 ISN=1
 CALL DM_V3DCFT(X,KX,N1,N2,N3,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Do the reverse transform
*
 ISN=-1
 CALL DM_V3DCFT(X,KX,N1,N2,N3,ISN,ICON)
 IF(ICON.NE.0) THEN
 WRITE(*,*) 'error occurred : ',ICON
 ENDIF
*
* Find the error after the forward and
* inverse transform.
*
 ERROR=0

DM_V3DCFT

II-470 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)
!$OMP+ REDUCTION(MAX:ERROR)

 DO K=1,N3
 DO I=1,N2
 DO J=1,N1
 ERROR=MAX(ABS(DBLE(X(J,I,K))/(N3*N2*N1)-
 & (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR)
 ERROR=MAX(ABS(DIMAG(X(J,I,K))/(N3*N2*N1)),
 & ERROR)
 ENDDO
 ENDDO
 ENDDO
!$OMP END PARALLEL DO

 WRITE(*,*) 'Error ', ERROR
 STOP
 END

 (4) Method

 DM_V3DCFT is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V3DCFT2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-471

DM_V3DCFT2

Three-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7)

CALL DM_V3DCFT2(X,K1,K2,N1,N2,N3,ISN,ICON)

(1) Function

 The subroutine DM_V3DCFT2 performs a three-dimensional complex Fourier transform
or its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of
the powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321321

i/n

i/n

i/n

 n ... k

 n ... k

 n ... k

xnnn

 n

 n

 n

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk
















 






 

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3 } is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2(exp,

)2(exp,

)2(exp,

1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321

i/n

i/n

i/n

 n ... j

 n ... j

 n ... j

x

 n

 n

 n

kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj
















  






 (1.2)

(2) Parameters

X Input. The complex data.

Data is stored in X(1:N1,1:N2,1:N3).

Output. The transformed complex data.

The results are stored in X(1:N1,1:N2,1:N3).

This is a double precision complex three-dimensional array X(K1,N2,N3).

K1 Input. The size of the first dimension of input data arrays X ( N1).

DM_V3DCFT2

II-472 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

K2 Input. The size of the second dimension of input data arrays X ( N2).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

ICON Output. Condition code.

See Table DM_V3DCFT2-1.

Table DM_V3DCFT2-1 Condition codes

Code Meaning Processing

0 No error 

30000 n1, n2 or n3 less than or equal to 0, or K1<N1,
or K2<N2, or invalid value for the parameter
ISN.

Processing is discontinued

30008 The order of transform is not radix 2/3/5/7.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

 n ... k

 n ... k

 n ... k

x
nnn

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk

1,,1,0,

1,,1,0,

1,,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321
321

321





 






  


 (3.1)

 1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321





  






 n ... j

 n ... j

 n ... j

x kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj 


 (3.2)

 DM_V3DCFT2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-473

 where, n1 = exp (2 i/n1), n2 = exp (2 i/n2),

 n3= exp (2 i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

b. Example

 A three-dimensional FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

c **example**
 implicit real*8 (a-h,o-z)
 parameter (n1=128,n2=128,n3=128)
 parameter (k1=n1+1,k2=n2)
 complex*16 x(k1,k2,n3)
 integer isn
*
* set up the input data arrays
*
!$omp parallel do default(private) shared(x)
 do k=1,n3
 do i=1,n2
 do j=1,n1
 x(j,i,k)=dcmplx(float(j)+float(n1)*(i-1),0.0)
 enddo
 enddo
 enddo
!$omp end parallel do

*
* do the forward transform
*
 isn=1
 call dm_v3dcft2(x,k1,k2,n1,n2,n3,isn,icon)
 if(icon.ne.0) then
 write(*,*) 'error occurred : ',icon
 endif
*
* do the reverse transform
*
 isn=-1
 call dm_v3dcft2(x,k1,k2,n1,n2,n3,isn,icon)
 if(icon.ne.0) then
 write(*,*) 'error occurred : ',icon
 endif
*
* find the error after the forward and
* inverse transform.
*
 error=0

DM_V3DCFT2

II-474 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$omp parallel do default(private) shared(x)
!$omp+ reduction(max:error)

 do k=1,n3
 do i=1,n2
 do j=1,n1
 error=max(abs(dble(x(j,i,k))/(n3*n2*n1)-
 & (float(j)+float(n1)*(i-1))),error)
 error=max(abs(dimag(x(j,i,k))/(n3*n2*n1)),
 & error)
 enddo
 enddo
 enddo
!$omp end parallel do

 write(*,*) 'error=', error
 stop
 end

 (4) Method

 DM_V3DCFT2 is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V1DRCF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-475

DM_V1DRCF

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7)

CALL DM_V1DRCF(X,KX,Y,KY,N1,N2,ISIN,ISN,ICON)

(1) Function

 The subroutine DM_V1DRCF performs a one-dimensional real Fourier transform or its
inverse transform using a mixed radix FFT.

 The data count n (=n1  n2) is a product of the powers of 2, 3, 5 and 7.

a. One-dimensional Fourier transform

 When {xj} is input, the transform defined by (1.1) below is calculated
 to obtain {n k}.

)2(exp,

1...,,1,0,
1

0

i/n =

 n k = xn

n

jkr
n

n

j
jk



  





 (1.1)

 r = 1 or r = 1

b. One-dimensional Fourier inverse transform

 When { k} is input, the transform defined by (1.2) below is calculated
 to obtain {xj}.

)2(exp,

1...,,1,0,
1

0

i/n

 n jx

n

jkr
n

n

k

kj










 (1.2)

 r = 1 or r = 1

 This routine can perform about 30% faster than DM_V1DRCF2 or more, provided that
the n is factorized into n1 and n2 appropriately.

(2) Parameters

X Input/output. Real data. is stored in X(1:N1,1:N2).

For the real to complex transform (ISN = 1), data is input; for the complex to
real transform (ISN = 1), data is output. For ISN = 1, the input data is not
saved.

This is a double precision real two-dimensional array X(KX,N2).

See Figure DM_V1DRCF-1.

(See notes 1) in (3), “Comments on use.”)

KX Input. The size of the first dimension of array X ( N1).

Integer (INTEGER*4)

Y Output/input. Transformed complex data.

Data is stored in Y(1:N2/2 + 1,1:N1).

DM_V1DRCF

II-476 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the real to complex transform (ISN = 1), data is output; for the complex to
real transform (ISN = 1), data is input.

The input data is not guaranteed when ISN = 1.

The complex data obtained from real data by Fourier transformation has the
conjugate complex relation. About half data is stored.

This is a double precision complex two-dimensional array Y(KY,N1).

 (See note 3), (3) “Comments on use” and Figure DM_V1DRCF-1.)

KY Input. The size of the first dimension of arrays Y (KY  N2/2 + 1).

Integer (INTEGER*4).

N1 Input. The size of the first dimension assuming that the real data to be
transformed (n = n1  n2) is two-dimensional data.

N1 must be a product of the powers of 2, 3, 5 and 7.

N1*N2 must be the length of the data sequence to be transformed.

Integer (INTEGER*4).

(See note 1),4) in (3), “Comments on use.”)

N2 Input. The size of the second dimension assuming that the real data to be
transformed (n = n1  n2) is two-dimensional data.

N2 must be a product of the powers of 2, 3, 5 and 7.

N1*N2 must be the length of the data sequence to be transformed.

Integer (INTEGER*4).

(See note 1),4) in (3), “Comments on use.”)

ISIN Input. The direction of transformation.

ISIN=1 for r = 1.

ISIN=1 for r = 1.

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = 1 for the inverse transform.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DM_V1DRCF-1.

 DM_V1DRCF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-477

N2

N1

KX

Array X

X1

X0

Xn1-1

Xn1

X2n1-1

Xn1(n2-1)

Xn1n2-1



*



N1

N2

KY

Array Y

Y1

Y0

Yn2/2

Yn2

Y2n2/2

Yn2(n1-1)

Yn2n1-n2/2



*



Figure DM_V1DRCF-1 Input/Output data storage method

Table DM_V1DRCF-1 Condition codes

Code Meaning Processing

0 No error 

30000 KX < N1, KY < N2/2+1, N1 < 1, N2 < 1, ISIN
 1,1, or ISN  1, 1.

Processing is discontinued.

30008 The order of the transform is not radix 2/3/5/7.

(3) Comments on use

a. Notes

1) If one-dimensional data of n = n1  n2 is numbered k = 0 , ..., n1,

k = k1 + k2  n1 , k1 = 0, ..., n11

 , k2 = 0, ..., n21

k = i1 + i2  n2 , i1 = 0, ..., n21

 , i2 = 0, ..., n11

Real data and complex data are regarded as two-dimensional data with subscripts
of (k1, k2) and (i1, i2), respectively. However, i1 = 0 , ..., n2/2 are stored in Y.

(See Figure DM_V1DRCF-1.)

2) General definition of a Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse
transform can be defined as in (3.1) and (3.2).

1...,,1,0,
1

1

0

 




 n k = x
n

n

j

jk
njk  (3.1)

DM_V1DRCF

II-478 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

1...,,1,0,
1

0






 n jx jk
n

n

k

kj  (3.2)

where, n = exp(2 i/n)

This subroutine calculates {nk} or {xj} corresponding to the left term of (3.1) or
(3.2), respectively. Normalization of the results may be required.

3) The result of the one-dimensional real Fourier transform has the following
complex conjugate relation (indicated by ¯).

k = kn k=1, ..., n1

n = n1  n2

i1 = 0, 1, ..., n21

i2 = 0, 1, ..., n11

If k = i1 + i2  n2 is assumed,

n  k = n2  i1 + (n11i2)  n2

The rest of data can be obtained from data numbered i1 = 1, ..., n2/2 (the first part
excluding zeros).

4) The performance of this routine will be the best when the n can be factorized
into adequately large n1 and n2 which are about the same size.

b. Example

 A one-dimensional real FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N1=1024,N2=1024,KX=N1+1,KY=N2/2+1+1)
 REAL*8 X(KX,N2), XX(N1,N2)
 COMPLEX*16 Y(KY,N1)
CC
 DO I=1,N2
 DO J=1,N1
 X(J,I)=J+N1*(I-1)
 XX(J,I)=X(J,I)
 ENDDO
 ENDDO
 ISW=1
 CALL DM_V1DRCF(X,KX,Y,KY,N1,N2,1,ISW,ICON)
 PRINT*,' ICON =',ICON
CC
 ISW=-1
 CALL DM_V1DRCF(X,KX,Y,KY,N1,N2,1,ISW,ICON)
 PRINT*,' ICON =',ICON
CC
 TMP=0.0D0

 DM_V1DRCF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-479

 DO I=1,N2
 DO J=1,N1
 TMP=MAX(DABS(DBLE(X(J,I))/DBLE(N1)/DBLE(N2)
 $ -DBLE(XX(J,I))),TMP)
 ENDDO
 ENDDO
CC
 PRINT*,' ERROR =',TMP
 STOP
 END

(4) Method

 DM_V1DRCF is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

DM_V1DRCF2

II-480 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

DM_V1DRCF2

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7)

CALL DM_V1DRCF2(X,N,Y,ISIN,ISN,ICON)

(1) Function

 This subroutine performs a one-dimensional real Fourier transform or its inverse
transform using a mixed radix FFT.

 The data count n is a product of the powers of 2, 3, 5 and 7.

a. One-dimensional Fourier transform

When {xj} is input, the transform defined by (1.1) below is calculated
 to obtain {n k}.

)2(exp,

1...,,1,0,
1

0

i/n =

 n k = xn

n

jkr
n

n

j

jk



  





 (1.1)

 r = 1 or r = 1

b. One-dimensional Fourier inverse transform

When { k} is input, the transform defined by (1.2) below is calculated
 to obtain {xj}.

)2(exp,

1...,,1,0,
1

0

i/n

 n jx

n

jkr
n

n

k

kj










 (1.2)

 r = 1 or r = 1

 (2) Parameters

X Input/output. Real data is stored in X(1:N).

For the real to complex transform (ISN = 1), data is input; for the complex to
real transform (ISN = 1), data is output.

This is a double precision real One-dimensional array X(N).

N Input. The size of the data to be transformed.

N must be an even number and a product of the powers of 2, 3, 5 and 7.

Y Output/input. About a half of the complex is stored in Y(1:N/2 + 1).

For the real to complex transform (ISN = 1), data is output; for the complex to
real transform (ISN = 1), data is input.

 (See note 1), (3) “Comments on use.”)

This is a double precision complex one-dimensional array Y(N/2+1).

ISIN Input. The direction of transformation.

ISIN=1 for r = 1.

 DM_V1DRCF2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-481

ISIN=1 for r = 1.

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = 1 for the inverse transform.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DM_V1DRCF2-1.

Table DM_V1DRCF2-1 Condition codes

Code Meaning Processing

0 No error 

30000 N is not a multiple of 2, or N is not a product of
the powers of 2, 3, 5 and 7, or ISIN  1,-1,
or ISN  1, -1.

Processing is discontinued.

(3) Comments on use

a. Notes

1) The result of the one-dimensional real Fourier transform has the following
complex conjugate relation (indicated by ¯).

k = kn k=1, ..., n1 (excluding 0).

2) General definition of a Fourier transform

The one-dimensional discrete complex Fourier transform and its inverse
transform can be defined as in (3.1) and (3.2).

)2(exp,

1...,,1,0,
1

1

0

i/n =

 n k = x
n

n

jk
n

n

j

jk



  





 (3.1)

)2(exp,

1...,,1,0,
1

0

i/n

 n jx

n

jk
n

n

k

kj










 (3.2)

This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1)
or (3.2), respectively. Normalization of the results may be required.

b. Example

 A one-dimensional real FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

DM_V1DRCF2

II-482 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N1=1024,N2=N1,N=N1*N2)
 REAL*8 X(N)
 COMPLEX*16 Y(N/2+1),XX(N)
C
 DO I=1,N
 X(I)=DBLE(I)
 XX(I)=X(I)
 ENDDO
C
 CALL DM_V1DRCF2(X,N,Y,1,1,ICON)
 PRINT*,'ICON =',ICON
C
 CALL DM_V1DRCF2(X,N,Y,1,-1,ICON)
 PRINT*,'ICON =',ICON
C
 TMP=0.0D0
 DO I=1,N
 TMP=MAX(ABS(X(I)/DBLE(N)-XX(I)),TMP)
 ENDDO
 PRINT*,' ERROR =',TMP
C
 STOP
 END

 DM_V2DRCF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-483

DM_V2DRCF

Two-dimensional discrete real Fourier transform (mixed radices of 2, 3, 5 and 7)

CALL DM_V2DRCF(X,K,N1,N2,ISIN,ISN,ICON)

(1) Function

 The subroutine DM_V2DRCF performs a two-dimensional real Fourier transform or its
inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of the two-dimensional data (n1, n2) can be a product of the
powers of 2, 3, 5 and 7.

a. The two-dimensional Fourier transform

 When {xj1j2} is input, the transform defined by (1.1) below is calculated
 to obtain {n1n2k1k2}.

1or,1

)2(exp,

)2(exp,

1...,10,

1...,,1,0,

22

11

22

11

22
2

11
1

11

01

12

02

212121








 








 r = r =

i/n

i/n

 n, , k

 n k

xnn

 n

 n

rkj
n

rkj
n

n

j

n

j

jjkk







 (1.1)

b. The two-dimensional Fourier inverse transform

 When {k1k2} is input, the transform defined by (1.2) below is calculated
 to obtain {xj1j2}.

1or,1

)2(exp,

)2(exp,

1...,,1,0,

1...,,1,0,

22

11

22

11

22
2

11
1

11

01

12

02
2121








  






 r = r =

i/n

i/n

 n j

 n j

x

 n

 n

rkj
n

rkj
n

n

k

n

k
kkjj







 (1.2)

(2) Parameters

X Input/Output. Two-dimensional real data is stored in X(1:N1,1:N2).

For the real to complex transform (INS = 1), data is input; for the complex to
real transform (INS = -1), data is output.

Output/input. The real and imaginary parts of the transformed complex data are
stored as follows:

The real and imaginary parts are stored in X(1,1:N1/2+1,1:N2) and
X(2,1:N1/2+1,N2) respectively assuming that the array X was a three-
dimensional array X(2,K/2,N2).

DM_V2DRCF

II-484 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the real to complex transform (ISN = 1), data is output; for the complex to
real transform (ISN = -1), data is input.

The complex data transformed Fourier has the complex conjugate relation. And
about half data is stored.

(See note 2) in (3), “Comments on use.”)

This is a double precision real two-dimensional array X(K,N2).

K Input. The size of the first dimension of array X ( 2(n1/2+1)).

K must be an even number.

Integer (INTEGER*4)

N1 Input. The length n1 of data in the first dimension of the two- dimensional array
to be transformed.

n1 must be a value that can be a product of powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of data in the second dimension of the two- dimensional
array to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

ISIN Input. The direction of transformation.

ISIN=1 for r = 1.

ISIN=1 for r = 1.

Integer (INTEGER*4)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = 1 for the inverse transform.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DM_V2DRCF-1.

Table DM_V2DRCF-1 Condition codes

Code Meaning Processing

0 No error 

30000 K < 2(N1/2+1), K is not an even number,
N1 < 1, N2 < 1, ISIN  1, 1,or ISN  1, 1.

Processing is discontinued.

30008 The order of the transform is not radix 2/3/5/7.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 DM_V2DRCF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-485

The two-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3,1) and (3,2).

 1...,,1,0,

1...,,1,0,

1

22

11

22
2

11
1

11

01

12

02

21
21

21




 








 n k

 n k

x
nn

kj
n

kj
n

n

j

n

j

jjkk 


 (3.1)

 1...,,1,0,

1...,,1,0,

22

11

22
2

11
1

11

01

12

02

2121




 






 n j

 n j

x kj
n

kj
n

n

k

n

k

kkjj 


 (3.2)

where n1= exp (2 i/n1), n2 = exp (2 i/n2)

This subroutine calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of
(3.1) or (3.2), respectively. Normalization of the results is required, if necessary.

2) The results of the two-dimensional real Fourier transform that has the following
complex conjugate relation (indicated by –).

221121 -k n-knkk   (3.3)

The remainder of the data is obtained from the data in k1 = 0, ..., n1/2 and k2 =
0, ..., n21.

b. Example

 A two-dimensional real FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N1=2048,N2=2048,K=(N1/2+1)*2)
 REAL*8 X(K,N2), Y(N1,N2)
CC
 DO I=1,N2
 DO J=1,N1
 X(J,I)=J+N2*(I-1)
 Y(J,I)=X(J,I)
 ENDDO
 ENDDO
 ISW=1
 CALL DM_V2DRCF(X,K,N1,N2,1,ISW,ICON)
 PRINT*,' ICON =',ICON
CC
 ISW=-1
 CALL DM_V2DRCF(X,K,N1,N2,1,ISW,ICON)
 PRINT*,' ICON =',ICON
CC
 TMP=0.0D0

DM_V2DRCF

II-486 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

 DO I=1,N2
 DO J=1,N1
 TMP=MAX(DABS(DBLE(X(J,I))/DBLE(N1)/DBLE(N2)
 $ -DBLE(Y(J,I))),TMP)
 ENDDO
 ENDDO
CC
 PRINT*,' ERROR =',TMP
 STOP
 END

(4) Method

 DM_V2DRCF is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V3DRCF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-487

DM_V3DRCF

Three-dimensional discrete real Fourier transform (mixed radices of 2, 3, 5 and 7)

CALL DM_V3DRCF(X,K,N1,N2,N3,ISIN,ISN,ICON)

(1) Function

 The subroutine DM_V3DRCF performs a three-dimensional real Fourier transform or its
inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of
the powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated
 to obtain {n1n2n3k1k2k3}.

1or1

)2(exp,

)2(exp,

)2(exp,

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321321










 






 

 r = r =

i/n

i/n

i/n

 n k

 n k

 n k

xnnn

 n

 n

 n

rkj
n

rkj
n

rkj
n

n

j

n

j

-n

=j

jjjkkk








 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated
 to obtain {xj1j2j3}.

1or1

)2(exp,

)2(exp,

)2(exp,

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321










  






 r = r =

i/n

i/n

i/n

 n j

 n j

 n j

x

 n

 n

 n

rkj
n

rkj
n

rkj
n

n

k

n

k

-n

=k
kkkjjj








 (1.2)

(2) Parameters

X Input/Output. Three-dimensional real data is stored in X(1:N1,1:N2,1:N3).

For the real to complex transform (ISN = 1), data is input; for the complex to
real transform (ISN = 1), data is output.

Output/input. The real and imaginary parts of the transformed complex data are
stored as follows:

DM_V3DRCF

II-488 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the real to complex transform (ISN = 1), data is output; for the complex to
real transform (ISN = 1), data is input.

The complex data obtained from real data by Fourier transformation has the
complex conjugate relation. And about half data is stored.

(See note 2) in (3), “Comments on use.”)

The real and imaginary parts are stored in X(1,1:N1/2+1,1:N2,1:N3) and
X(2,1:N1/2+1,1:N2,1:N3) respectively assuming that the array X was a four-
dimensional array X(2,K/2,N2,N3).

This is a double precision real three-dimensional array X(K,N2,N3).

K Input. The size of the first dimension of array X ( 2(n1/2+1)). Even number.

Integer (INTEGER*4)

N1 Input. The length n1 of real data in the first dimension to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of real data in the second dimension to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of real data in the third dimension to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

ISIN Input. The direction of the transformation.

ISIN=1 for r = 1.

ISIN=1 for r = 1.

Integer (INTEGER*4)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = 1 for the inverse transform.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DM_V3DRCF-1.

 DM_V3DRCF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-489

Table DM_V3DRCF-1 Condition codes

Code Meaning Processing

0 No error 

30000 K < 2  (N1/2+1), K is not an even number,
N1 < 1, N2 < 1, N3 < 1, ISIN  1, 1,
 or ISN  1, 1.

Processing is discontinued.

30008 The order of the transform is not radix 2/3/5/7.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

 1...,,1,0,

1...,,1,0,

1...,,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321
321

321





 






 

 n k

 n k

 n k

x
nnn

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk 


 (3.1)

 n j

 n j

 n j

x kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321





  









 (3.2)

where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left
term of (3.1) or (3.2), respectively. The normalization of the results may be
required.

2) The results of the three-dimensional real Fourier transform has the following
complex conjugate relation (indicated by –).

332211321 -k n-k n-knkkk   (3.3)

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2–1,
and k3 = 0, ..., n31.

b. Example

 A three-dimensional real FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

DM_V3DRCF

II-490 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

C **EXAMPLE**
 IMPLICIT REAL*8(A-H,O-Z)
 PARAMETER (N1=128,N2=128,N3=128,K=(N1/2+1)*2)
 DIMENSION YY(K,N2,N3), YR(K,N2,N3)
C
 DO I3=1,N3
 DO I2=1,N2
 DO I1=1,N1
 YY(I1,I2,I3)=DBLE(I1+N1*(I2-1)+N1*N2*(I3-1))
 YR(I1,I2,I3)=YY(I1,I2,I3)
 ENDDO
 ENDDO
 ENDDO
C
 ISW=1
 CALL DM_V3DRCF(YY,K,N1,N2,N3,1,ISW,ICON)
 PRINT*,'ICON =',ICON
C
 ISW=-1
 CALL DM_V3DRCF(YY,K,N1,N2,N3,1,ISW,ICON)
 PRINT*,'ICON =',ICON
C
 TMP=0.0D0
 DO I3=1,N3
 DO I2=1,N2
 DO I1=1,N1
 TMP=MAX(DABS(YY(I1,I2,I3)/DBLE(N1)/DBLE(N2)/DBLE(N3)
 $ -YR(I1,I2,I3)),TMP)
 ENDDO
 ENDDO
 ENDDO
 PRINT*,' ERROR =',TMP
C
 STOP
 END

(4) Method

 DM_V3DRCF is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V3DRCF2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-491

DM_V3DRCF2

Three-dimensional discrete real Fourier transform (mixed radices of 2, 3, 5 and 7)

CALL DM_V3DRCF2(X,K1,K2,N1,N2,N3,ISIN,ISN,ICON)

(1) Function

 The subroutine DM_V3DRCF2 performs a three-dimensional real Fourier transform or
its inverse Fourier transform using a mixed radix FFT.

 The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of
the powers of 2, 3, 5 and 7.

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated
 to obtain {n1n2n3k1k2k3}.

1or1

)2(exp,

)2(exp,

)2(exp,

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321321










 






 

 r = r =

i/n

i/n

i/n

 n k

 n k

 n k

xnnn

 n

 n

 n

rkj
n

rkj
n

rkj
n

n

j

n

j

-n

=j

jjjkkk








 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated
 to obtain {xj1j2j3}.

1or1

)2(exp,

)2(exp,

)2(exp,

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03
321321










  






 r = r =

i/n

i/n

i/n

 n j

 n j

 n j

x

 n

 n

 n

rkj
n

rkj
n

rkj
n

n

k

n

k

-n

=k
kkkjjj








 (1.2)

(2) Parameters

X Input/Output. Three-dimensional real data is stored in X(1:N1,1:N2,1:N3).

For the real to complex transform (ISN = 1), data is input; for the complex to
real transform (ISN = 1), data is output.

Output/input. The real and imaginary parts of the transformed complex data are
stored as follows:

DM_V3DRCF2

II-492 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

For the real to complex transform (ISN = 1), data is output; for the complex to
real transform (ISN = 1), data is input.

The complex data obtained from real data by Fourier transformation has the
complex conjugate relation. And about half data is stored.

(See note 2) in (3), “Comments on use.”)

The real and imaginary parts are stored in X(1,1:N1/2+1,1:N2,1:N3) and
X(2,1:N1/2+1,1:N2,1:N3) respectively assuming that the array X was a four-
dimensional array X(2,K1/2,K2,N3).

This is a double precision real three-dimensional array X(K1,K2,N3).

K1 Input. The size of the first dimension of array X ( 2(n1/2+1)). Even number.

Integer (INTEGER*4)

K2 Input. The size of the second dimension of array X (n2).

Integer (INTEGER*4)

N1 Input. The length n1 of real data in the first dimension to be transformed.

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N2 Input. The length n2 of real data in the second dimension to be transformed.

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

N3 Input. The length n3 of real data in the third dimension to be transformed.

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7.

Integer (INTEGER*4)

ISIN Input. The direction of the transformation.

ISIN=1 for r = 1.

ISIN=1 for r = 1.

Integer (INTEGER*4)

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = 1 for the inverse transform.

Integer (INTEGER*4).

ICON Output. Condition code.

See Table DM_V3DRCF2-1.

 DM_V3DRCF2

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-493

Table DM_V3DRCF2-1 Condition codes

Code Meaning Processing

0 No error 

30000 K1 < 2  (N1/2+1), K1 is not an even number,
K2 < N2, N1 < 1, N2 < 1, N3 < 1, ISIN  1, 1,
 or ISN  1, 1.

Processing is discontinued.

30008 The order of the transform is not radix 2/3/5/7.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

 1...,,1,0,

1...,,1,0,

1...,,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321
321

321





 






 

 n k

 n k

 n k

x
nnn

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk 


 (3.1)

 n j

 n j

 n j

x kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj

1...,,1,0,

1...,,1,0,

1...,,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321





  









 (3.2)

where, n1 = exp(2i/n1), n2 = exp(2i/n2),

 n3= exp(2i/n3)

This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left
term of (3.1) or (3.2), respectively. The normalization of the results may be
required.

2) The results of the three-dimensional real Fourier transform has the following
complex conjugate relation (indicated by –).

332211321 -k n-k n-knkkk   (3.3)

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2–1,
and k3 = 0, ..., n31.

b. Example

 A three-dimensional real FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4
when this program is to be executed in parallel with 4 threads on the system of 4
processors.

DM_V3DRCF2

II-494 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

c **example**
 implicit real*8(a-h,o-z)
 parameter(n1=128,n2=128,n3=128,k1=(n1/2+1)*2,k2=n2+1)
 dimension yy(k1,k2,n3),yr(k1,k2,n3)
c
 do i3=1,n3
 do i2=1,n2
 do i1=1,n1
 yy(i1,i2,i3)=dble(i1+n1*(i2-1)+n1*n2*(i3-1))
 yr(i1,i2,i3)=yy(i1,i2,i3)
 enddo
 enddo
 enddo
c
 isw=1
 call dm_v3drcf2(yy,k1,k2,n1,n2,n3,1,isw,icon)
 print*,'icon =',icon
c
 isw=-1
 call dm_v3drcf2(yy,k1,k2,n1,n2,n3,1,isw,icon)
 print*,'icon =',icon
c
 tmp=0.0d0
 do i3=1,n3
 do i2=1,n2
 do i1=1,n1
 tmp=max(dabs(yy(i1,i2,i3)
 $ /dble(n1)/dble(n2)/dble(n3)
 $ -yr(i1,i2,i3)),tmp)
 enddo
 enddo
 enddo
 print*,' error =',tmp
c
 stop
 end

(4) Method

 DM_V3DRCF2 is implemented using DVCFM1 which is the routine of one-dimensional
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II
Extended Capabilities User's Guide II” in detail.

 DM_V3DCPF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-495

DM_V3DCPF

Three-dimensional prime factor discrete complex Fourier transforms

CALL DM_V3DCPF(X,K1,K2,N1,N2,N3,ISN,ICON)

(1) Function

 The subroutine DM_V3DCPF performs a three-dimensional complex Fourier transform
or its inverse Fourier transform.

 The size of each dimension of three-dimensional data (n1, n2, n3) must satisfy the
following condition.

The size must be expressed by a product of a mutual prime factor p, selected from the
following numbers:

factor p (p  {2, 3, 4, 5, 7, 8, 9, 16, 25})

a. The three-dimensional Fourier transform

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain
{n1n2n3k1k2k3}.

)2(exp,

)2(exp,

)2(exp,

1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321321

i/n

i/n

i/n

 n ... k

 n ... k

 n ... k

xnnn

 n

 n

 n

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk
















 






 

 (1.1)

b. The three-dimensional Fourier inverse transform

 When {k1k2k3 } is input, the transform defined by (1.2) below is calculated to obtain
{xj1j2j3}.

)2(exp,

)2(exp,

)2(exp,

1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321

i/n

i/n

i/n

 n ... j

 n ... j

 n ... j

x

 n

 n

 n

kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj
















  






 (1.2)

(2) Parameters

X Input. The complex data.

Data is stored in X(1:N1,1:N2,1:N3).

Output. The transformed complex data.

DM_V3DCPF

II-496 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

The results are stored in X(1:N1,1:N2,1:N3).

This is a double precision complex three-dimensional array X(K1,K2,N3).

K1 Input. The size of the first dimension of input data arrays X ( N1).

K2 Input. The size of the second dimension of input data arrays X ( N2).

N1 Input. The length n1 of data in the first dimension of the three- dimensional
array to be transformed.

N2 Input. The length n2 of data in the second dimension of the three- dimensional
array to be transformed.

N3 Input. The length n3 of data in the third dimension of the three- dimensional
array to be transformed.

ISN Input. Either the transform or the inverse transform is indicated.

ISN = 1 for the transform.

ISN = -1 for the inverse transform.

ICON Output. Condition code.

See Table DM_V3DCPF-1.

Table DM_V3DCPF-1 Condition codes

Code Meaning Processing

0 No error 

20000 n1, n2 or n3 can not be factored into the product
of the factors in 2, 3, 4, 5, 7, 8, 9, 16, 25.

Processing is discontinued

30000 n1, n2 or n3 less than or equal 0, or K1<N1, or
K2<N2, or invalid value for the parameter ISN.

(3) Comments on use

a. Notes

1) General definition of a Fourier transform

 The three-dimensional discrete complex Fourier transform and its inverse
transform can generally be defined as in (3.1) and (3.2).

 n ... k

 n ... k

 n ... k

x
nnn

kj
n

kj
n

kj
n

n

j

n

j

-n

=j

jjjkkk

1,,1,0,

1,,1,0,

1,,1,0,

1

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321
321

321





 






  


 (3.1)

 1,,1,0,

1,,1,0,

1,,1,0,

33

22

11

33
3

22
2

11
1

11

01

12

02

13

03

321321





  






 n ... j

 n ... j

 n ... j

x kj
n

kj
n

kj
n

n

k

n

k

-n

=k

kkkjjj 


 (3.2)

 DM_V3DCPF

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-497

 where, n1 = exp (2 i/n1), n2 = exp (2 i/n2),

 n3= exp (2 i/n3)

 This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively. Normalization of the results may
be required.

b. Example

 A three-dimensional FFT is computed.

The number of the threads can be specified with an environment variable
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when
this program is to be executed in parallel with 4 threads on the system of 4 processors.

c **example**
 implicit real*8 (a-h,o-z)
 parameter (n1=40,n2=240,n3=90)
 parameter (k1=n1,k2=n2)
 complex*16 x(k1,k2,n3)
 integer isn
*
* set up the input data arrays
*
!$omp parallel do default(private) shared(x)
 do k=1,n3
 do i=1,n2
 do j=1,n1
 x(j,i,k)=dcmplx(float(j)+float(n1)*(i-1),0.0)
 enddo
 enddo
 enddo
!$omp end parallel do

*
* do the forward transform
*
 isn=1
 call dm_v3dcpf(x,k1,k2,n1,n2,n3,isn,icon)
 if(icon.ne.0) then
 write(*,*) 'error occurred : ',icon
 endif
*
* do the reverse transform
*
 isn=-1
 call dm_v3dcpf(x,k1,k2,n1,n2,n3,isn,icon)
 if(icon.ne.0) then
 write(*,*) 'error occurred : ',icon
 endif
*
* find the error after the forward and
* inverse transform.
*
 error=0

DM_V3DCPF

II-498 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

!$omp parallel do default(private) shared(x)
!$omp+ reduction(max:error)

 do k=1,n3
 do i=1,n2
 do j=1,n1
 error=max(abs(dble(x(j,i,k))/(n3*n2*n1)-
 & (float(j)+float(n1)*(i-1))),error)
 error=max(abs(dimag(x(j,i,k))/(n3*n2*n1)),
 & error)
 enddo
 enddo
 enddo
!$omp end parallel do

 write(*,*) 'error ', error
 stop
 end

Appendixes

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) A-1

Appendix A
References

[1] P. AMESTOY, M. DAYDE and I. DUFF

 Use of computational kernels in the solution of full and sparse linear equations, M.
COSNARD, Y. ROBERT, Q. QUINTON and M. RAYNAL, PARALLEL &
DISTRIBUTED ALGORITHMS, North-Holland, 1989, pp. 13-19.

[2] P.R.AMESTOY and C.PUGLISH

 AN UNSYMMETRIZED MULTIFRONTAL LU FACTORIZATION, SIAM J.
MATRIX ANAL. APPL. Vol. 24, No. 2, pp. 553-569, 2002

[3] A.A. Anda and H. Park

 Fast Plane Rotations with Dynamic Scaling, to appear in SIAM J, Matrix Analysis and
Applications, 1994.

[4] S.L. Anderson

 Random number generators on vector supercomputers and other advanced architectures,
SIAM Rev. 32 (1990), 221-251.

[5] C. Ashcraft

 The distributed solution of linear systems using the torus wrap data mapping, Tech.
Report ECA-TR-147, Boeing Computer Services, October 1990.

[6] O.Axelsson and M.Neytcheva

Algebraic multilevel iteration method for Stieltjes matrices. Num. Lin. Alg. Appl., 1:213-
236, 1994.

[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.

Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM,
Philadelphia, 2000.

[8] Å.Björck

 Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT, 7:1-21,
1967.

[9] R.P. Brent

 Uniform random number generators for supercomputers, Proc. Fifth Australian
Supercomputer Conference, Melbourne, Dec. 1992, 95-104.

[10] R.P. Brent

 Uniform random number generators for vector and parallel computers, Report TR-CS-
92-02, Computer Sciences Laboratory, Australian National University, Canberra, March
1992

[11] R.P. Brent

 Fast normal random number generators on vector processors, Technical Report TR-CS-
93-04, Computer Sciences Laboratory, Australian National University, Canberra, March
1993.

References

A-2 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

[12] R.P.Brent

 A Fast Vectorised Implementation of Wallace's Normal Random Number Generator,
Technical Report, Computer Sciences Laboratory, Australian National University, to
appear.

[13] R.Burkard, M.Dell’Amico and S.Martello

 Assignment Problems, SIAM Philadelphia, 2009

[14] J. Choi, J. Dongarra, R. Pozo, and D. Walker

 ScaLAPACK: A scalable linear algebra library for distributed memory concurrent
computers., Technical Report 53, LAPACK Working Note, 1993.

[15] A. Cleary

 A comparison of algorithms for Cholesky factorization on a massively parallel MIMD
computer, Parallel Processing for Scientific Computing, 1991.

[16] A. Cleary

 A Scalable Algorithm for Triangular System Solution Using the Torus Wrap Mapping,
ANU-CMA Tech Report, series 1994.

[17] T.H.CORMEN, C.E.LEISERSON, R.L.RIVEST and C.STEIN

 INTRODUCTION TO ALGORITHMS, SECOND EDITION, The MIT Press, 2001

[18] J.K. Cullum and R.A. Willoughby

 “Lanczos algorithm for large symmetric eigenvalue computations”, Birkhauser, 1985.

[19] T.Davis,
Direct Methods for Sparse Linear Systems, SIAM 2006.

[20] J. Demmel and W. Kahan

 Accurate singular values of bidiagonal matrices, SISSC 11, 873-912, 1990.

[21] J.J. Dongarra and R.A. Van de Geijn

 Reduction to condensed form for the eigenvalue problem on distributed memory
architectures, Parallel Computing, 18, pp. 973-982, 1992.

[22] I.S.DUFF, A.M.ERISMAN and J.K.REID

 Direct Methods for Sparse Matrices, OXFORD SCIENCE PUBLICATIONS, 1986

[23] I.S.DUFF and J.KOSTER

 ON ALGORITHMS FOR PERMUTING LARGE ENTRIES TO THE DIAGONAL OF
A SPARSE MATRIX, SIAM J. MATRIX ANAL. APPL. Vol. 22, No. 4, pp. 973-996,
2001

[24] A.M. Ferrenberg, D.P. Landau and Y.J. Wong

 Monte Carlo simulations: Hidden errors from good” random number generators, Phys.
Rev. Lett. 69 (1992), 3382-3384.

[25] G. Fox

 Square matrix decomposition — Symmetric, local, scattered, Caltech Publication Hm-97,
California Institute of Technology, Pasadena, CA, 1985.

[26] R. Freund

 “A transpose-free quasi-minimal residual algorithm for nonhermitian linear systems,
SIAM J. Sci. Comput. 14, 1993, pp. 470-482.

 References

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) A-3

[27] R. Freund and N. Nachtigal

 “QMR: a quasi minimal residual method for non-Hermitian linear systems”, Numer.
Math. 60, 1991, pp. 315-339.

[28] K.A. Gallivan, R.J. Plemmons, and A.H. Sameh

 Parallel Algorithms for Dense Linear Algebra Computations, SIAM Review, 1990.

[29] Martin B. van Gijzen and Peter Sonneveld

"An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties",
Delft university of technology, Report 08-21, 2008.

[30] G.H. Golub, C.F. van Loan

 Matrix Computations Second Edition, The Johns Hopkins University Press, 1989

[31] Marcus J. Grote and Thomas Huckle

"Parallel preconditioning with sparse approximate inverse",
SIAM J. Sci. Comput., Vol.18, No.3, pp838-853, May 1997.

[32] M.H.Gutknecht

 Variants of BiCGStab for matrices with complex spectrum,IPS Research report No. 91-
14, 1991.

[33] E. Hairer, S.P.Norsett, and G. Wanner

"Solving Ordinary Differential Equations I: Nonstiff Problems." Second Revised Edition,
Springer, 2000.

[34] E. Hairer, and G. Wanner

“Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems.”
Second Revised Edition, Springer, 2002

[35] Japanese translation of [33] , Springer, 2007

[36] Japanese translation of [34], Springer, 2008

[37] Markus Hegland

 An implementation of multiple and multi-variate Fourier transforms on vector processors,
submitted to SIAM J. Sci. Comput., 1992.

[38] Markus Hegland

 Block Algorithms for FFTs on Vector and Parallel Computers. PARCO 93, Grenoble,
1993.

[39] Markus Hegland

 On the parallel solution of tridiagonal systems by wrap-around partitioning and
incomplete LU factorization, Numer. Math. 59, 453-472, 1991.

[40] B. Hendrickson and D.Womble

 The torus-wrap mapping for dense matrix calculations on massively parallel computers,
SAND Report SAND 92-0792, Sandia National Laboratories, Albuquerque, NM, 1992.

[41] J.R. Heringa, H.W.J. Blöte and A. Compagner

 New primitive trinomials of Mersenne-exponent degrees for random-number generation,
International J. of Modern Physics C 3 (1992), 561-564.

References

A-4 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

[42] F. James

 A review of pseudorandom number generators, Computer Physics Communications 60
(1990), 329-344.

[43] G.KARYPIS AND V.KUMAR

 A fast and high quality multilevel scheme for partitioning irregurar graphs, SIAM J. Sci.
Comput., 20 pp.359-392, 1998

[44] G.KARYPIS AND V.KUMAR

 METIS

 A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices

 Version 4.0

 University of Minnesota, Department of Computer Science / Army HPC Research Center
Minneapolis, MN 55455

 September 20, 1998

[45] D. Kincaid, T. Oppe

 ITPACK on supercomputers, Numerical methods, Lecture Notes in Mathematics 1005
(1982).

[46] D.E. Knuth

 The Art of Computer Programming, Volume 2: Seminumerical Algorithms (second
edition). Addison-Wesley, Menlo Park, 1981, Sec. 3.4.1, Algorithm P.

[47] Z. Leyk

 Modified generalized conjugate residuals for nonsymmetric systems of linear equations,
in Proceedings of the 6th Biennial Conference on Computational Techniques and
Applications: CTAC93, D.Stewart, H.Gardner and D.Singleton, eds., World Scientific,
1994, pp.338-344. Also published as CMA Research Report CMA-MR33-93, Australian
National University, 1993.

[48] X.S.Li AND J.W.DEMMEL

 A scalable sparse direct solver using static pivoting, in Proceedings of the Ninth SIAM
Conference on Parallel Processing for Scientific Computing, San Antonio, Texas, 1999,
CD-ROM, SIAM, Philadelphia, PA, 1999

[49] Charles Van Loan

 Computational Frameworks for the Fast Fourier Transform, SIAM, 1992.

[50] F.T. Luk

 Computing the Singular-Value Decomposition on the ILIAC IV, ACM Trans. Math.
Softw., 6, 1980, pp. 259-273.

[51] F.T. Luk and H. Park

 On Parallel Jacobi Orderings, SIAM J. Sci. Comput., 10, 1989, pp. 18-26.

[52] N.K. Madsen, G.h. Rodrigue, and J.I. Karush

 “Matrix multiplication by diagonals on a vector/parallel processor”, Information
Processing Letters, vol. 5, 1976, pp. 41-45

 References

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) A-5

[53] G. Marsaglia

 A current view of random number generators, Computer Science and Statistics: The
Interface (edited by L.Billard), Elsevier Science Publishers B.V. (North-Holland), 1985,
3-10.

[54] M. Nakanishi, H. Ina, K. Miura

 A high performance linear equation solver on the VPP500 parallel supercomputer,
Proceedings of Supercomputing ’94, Washington D.C., Nov. 1994.

[55] M. Nakanishi, J. Mikami

 Tuning techniques for blocking LU decomposition in VP2000 series, 42nd IPSJ
Conference (1991) [in Japanese]

[56] M. Nakanishi, J. Mikami

 High performance methods for solving linear equations, IPSJ Tech Report 91-OS-54,
Vol.92, No.22, pp.33-40 (1992) [in Japanese]

[57] M.OLSCHOWKA and A.NEUMAIER

 A new pivoting strategy for Gaussian elimination, Linear Algebra Appl., 240(1996),
pp.131-151

[58] T. Oppe, W. Joubert and D. Kincaid

 An overview of NSPCG: a nonsymmetric preconditioned conjugate gradient package,
Computer Physics communications 53 p283 (1989).

[59] T.C. Oppe and D.R. Kincaid

 “Are there iterative BLAS?”, Int. J. Sci. Comput. Modeling (to appear or has appeared).

[60] M.R. Osborne

 Solving least squares problems on parallel vector processors, Area 4 working notes no.
17, 1994.

[61] M.R. Osborne

 Computing the eigenvalues of tridiagonal matrices on parallel vector processors,
Mathematics Research Report No. MRR 044-94, Australian National University, 1994.

[62] J.R. Rice and R.F. Boisvert

 Solving Elliptic Problems Using Ellpack, Springer-Verlag, New York, 1985.

[63] D. Ruiz

 A scaling algorithm to equilibrate both rows and columns norms in matrices, Tech. rep.
RAL-TR-2001-034, Rutherford Appleton Laboratory, Chilton, U.K., 2001

 [64] Y.Saad

 A dual threshold incomplete LU factorization. Research Report UMSI 92/38, University
of Minnesota, Supercomputer Institute, 1200 Washington Avenue South, Minneapolis,
Minnesota 55415, USA, 1992.

[65] Y.Saad

 A multi-elimination ILU preconditioner for general sparse 591 matrices. SIAM
J.Sci.Comput, 17:830-847, 1996.

References

A-6 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

[66] Y.Saad

"Iterative methods for sparse linear systems, second edition",
Univ.Minnesota,SIAM, 2003

[67] Y. Saad and M.H. Schultz

 “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems”, SIAM J. Sci. Stat. Comput. 7, 1986, p.856-869.

[68] O.Schenk , K.Gärtner

 Solving unsymmetric sparse systems of linear equations with PARDISO, Future
Generation Computer Systems 20(2004)475-487

[69] J.A.SCOTT

 Scaling and Pivoting in an Out-of-Core Sparse Direct Solver
ACM Transactions on Mathematical Software, Vol. 37, No. 2, Article 19, April 2010

[70] M. Shimasaki

 Supercomputer and Programming, Kyoritsu Publishers (1989) [in Japanese]

[71] H.D. Simon

 Bisection is not optimal on vector processors, SISSC 10, 205-209, 1989.

[72] G. Sleijpen, D. Fokkema

 BCG for linear equations involving unsymmetric matrices with complex spectrum,
Electronic Transactions on Numerical Analysis, 1 p11 1993

[73] Gerard L.G. Sleijpen and Martin B. van Gijzen

"Exploiting BICGSTAB(l) Strategies to Induce Dimension Reduction",
Delft university of technology, Report 09-02, 2009.

[74] Tomohiro Sogabe,Shao-Liang Zhang

"A COCR method for solving complex symmetric linear systems",
Journal of Computational and SIAM Applied Mathematics,199(2007)297-303.

[75] J.C. Strikwerda

 Finite Difference Schemes and Partial Differential Equations. Wadsworth and
Brooks/Cole, Pacific Grove, 1989.

[76] Paul N. Swarztrauber

 Multiprocessor FFTs. Parallel Comput. 5, 197-210, 1987.

[77] H.A.Van Der Vorst

 “BCG: A fast and smoothly converging variant of BI-CG for the solution of non-
symmetric linear systems”, SIAM J. Sci. Statist. Comput., 13 p631 1992

[78] C.S.Wallace

 “Fast Pseudo-Random Generators for Normal and Exponential Variates”, ACM Trans.
on Mathematical Software 22 (1996), 119-127.

[79] R.Weiss

 Parameter-Free Iterative Linear Solvers. Mathematical Research, vol. 97. Akademie
Verlag, Berlin, 1996.

 References

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) A-7

[80] J.H. Wilkinson

 The Algebraic Eigenvalue Problem, O.U.P., 1965.

[81] B.B. Zhou and R.P. Brent

 A Parallel Ordering Algorithm for Efficient One-Sided Jacobi SVD Computations, to
appear in Proc. Sixty IASTED-ISMM International Conference on Parallel and
Distributed Computing Systems, 1994.

[82] K. Miura

 Full Polynomial Multiple Recursive Generator(MRG) Revisited, MCQMC 2006, Ulm,
Germany

[83] Kenta Hongo, Ryo Maezono, and Kenichi Miura

 Random Number Generators Tested on Quantum Monte Carlo Simulations, Journal of
Computational Chemistry, 31, 2186-2194, 2010

[84] P. L'Ecuyer and R. Simard

 TestU01: A C Library for Empirical Testing of Random Number Generators, ACM
Transactions on Mathematical Software, Vol. 33, article 22, 2007.

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) B-1

Appendix B
Contributors and Their Work

The almost full or partial parts of the codes and algorithms developed for SSL II/VPP are used
or tailored to implement the functions in SSL II Thread-Parallel Capabilities. The following
table shows the contributors for the SSL II/VPP subroutines used.

Author Subroutine in
SSLII/VPP
(Subroutine in
Thread-Parallel
Capabilities)

Item

Richard Peirce Brent
Peter Frederick Price

DP_VRANU4
(DM_VRANU4)

Generation of uniform random numbers [0,1)

Richard Peirce Brent
Margaret Helen Kahn

DP_VRANN3
(DM_VRANN3)

Generation of normal random numbers

Richard Peirce Brent DP_VRANN4
(DM_VRANN4)

Generation of normal random numbers
(Wallace’s method)

Murry Leslie Dow DP_VBCSD
(DM_VBCSD)

System of linear equations with unsymmetric or
indefinite sparse matrices (BICGSTAB(l)
method, diagonal format storage method)

DP_VBCSE
(DM_VBCSE)

System of linear equations with unsymmetric or
indefinite sparse matrices (BICGSTAB(l)
method, ELLPACK format storage method)

DP_VCGD
(DM_VCGD)

A system of linear equations with symmetric
positive definite sparse matrices (preconditioned
CG method, diagonal format storage method)

DP_VCGE
(DM_VCGE)

A system of linear equations with symmetric
positive definite sparse matrices (preconditioned
CG method, ELLPACK format storage method)

Lutz Grosz DP_VAMLID
(DM_VAMLID)

System of linear equations with sparse matrices
of M-matrix (Algebraic multilevel iteration
method [AMLI Method], diagonal format
storage method)



(DM_VMLBIFE)

System of linear equations with sparse matrices
(Multilevel iteration method based on
incomplete block factorization, ELLPACK
format storage method)

DP_VPDE2D
(DM_VPDE2D)

Generation of System of linear equations with
sparse matrices by the finite difference
discretization of a two dimensional boundary
value problem for second order partial
differential equation

Contributors and Their Work

B-2 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

Author Subroutine in
SSLII/VPP
(Subroutine in
Thread-Parallel
Capabilities)

Item

Lutz Grosz DP_VPDE3D
(DM_VPDE3D)

Generation of System of linear equations with
sparse matrices by the finite difference
discretization of a three dimensional boundary
value problem for second order partial
differential equation

Zbigniew Leyk DP_VMVSD
(DM_VMVSD)

Multiplication of real sparse matrices and real
vectors (diagonal format storage method)

DP_VMVSE
(DM_VMVSE)

Multiplication of real sparse matrices and real
vectors (ELLPACK format storage method)

DP_VTFQD
(DM_VTFQD)

System of linear equations with unsymmetric or
indefinite sparse matrices (TFQMR method,
diagonal format storage method)

DP_VTFQE
(DM_VTFQE)

System of linear equations with unsymmetric or
indefinite sparse matrices (TFQMR method,
ELLPACK format storage method)

Michael Robert Osborne
David Lawrence Harrar II

DP_VTDEVC
(DM_VTDEVC)

Eigenvalues and eigenvectors of real tridiagonal
matrices

Subroutine DM_VRADAU5 is based on the free software RADAU5 developed by Ernst
Hairer and distributed under the following condition.

Copyright (c) 2004, Ernst Hairer

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

 References

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) B-3

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) IN-1

Index

A

algebraic multilevel iteration method .. II-5
AMLI Method II-5
AMLI preconditioner II-14
approximately multiple..................... II-73,

II-78, II-315, II-434
approximative Schur complements ... II-14

B

BICG algorithm II-22, II-29, II-36
BICGSTAB method II-22, II-29, II-36
BICGSTAB(l) algorithm II-22,

II-29, II-36
BICGSTAB(l) method ... II-15, II-23, II-30
Bi-Conjugate Gradient Stabilized (l)

method II-15, II-23, II-30
block incomplete Cholesky method . II-50,

II-57
blocked Gauss-Jordan method II-69,

II-152, II-153
blocked LU decomposition method II-1,

II-61, II-122
blocked LU-decomposition method of

outer product type II-104
blocked matrix multiplication II-151
blocked modified Cholesky

decomposition method II-142, II-318
blocked modified Cholesky

decomposition method of outer product
type II-145, II-318

blocked modified Cholesky
decomposition method of the outer
product type II-321

blocked modified Cholesky
decomposition of outer products . II-142

C

centered finite difference schemes . II-185,
II-192

chi-squared tests II-230
cluster II-73, II-78, II-315, II-434
condition number II-16,

II-24, II-31, II-438, II-445
Conjugate A-Orthogonal Conjugate

Residual method, COCR method II-120
conjugate gradient method II-53, II-59
convective term II-185, II-192

D

determinant .. II-40
determinant of matrix II-1, II-61
diagonal format spares matrix storage

method ... II-47
diagonal format storage method II-5,

II-23, II-47, II-174, II-180, II-186
diagonal format storage method for

normalized symmetric positive definite
sparse matrices II-47, II-48

diffusion term II-185, II-192
discretization of a partial differential

equation .. II-51

E

eigenvalues and eigenvectors of a
complex sparse matrix II-94

eigenvalues and eigenvectors of an
Hermitian sparse matrix II-84

eigenvalues and eigenvectors of Hermite
matrices .. II-76

eigenvalues and eigenvectors of real
symmetric matrices II-313

eigenvalues and eigenvectors of real
tridiagonal matrices II-431

elliptic partial differential equation II-50
elliptical boundary value problem II-10
ELLPACK format storage method ... II-30,

II-54, II-154, II-177
ELLPACK format storage method for

normalized symmetric positive definite
sparse matrices II-54

F

finite difference discretization II-180,
II-186

finite difference discretization of a three
dimensional boundary value problem
for second order partial differential
equation .. II-186

finite difference discretization of a two
dimensional boundary value problem
for second order partial differential
equation .. II-180

forward and back-substitution II-46,
II-67, II-128

G

Gaussian elimination II-37

Index

IN-2 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library)

generalized Fibonacci method II-229,
II-237

GMRES .. II-5,
II-7, II-11, II-14, II-154, II-156, II-161

H

Householder method II-80, II-83
Householder reduction II-317
Householder reductions II-313

I

incomplete Cholesky method
preconditioner II-53

Induced Dimension Reduction method
with stabilization, IDRstab(s,l) II-140

inner iteration II-5, II-154
inverse iteration II-80,

II-313, II-317, II-436
inverse of real matrix II-152
iteration is started from an approximate

value of the solution vector .. II-48, II-55

J

Jacobi-Davidson method II-92, II-102

L

LDLT decomposition II-318
LDLT decomposition of a symmetric

positive definite sparse matrix II-238
LDLT-decomposed II-125, II-128
LU decomposition II-1, II-61
LU decomposition of a structurally

symmetric real sparse matrix II-385
LU decomposition of an unsymmetric

complex sparse matrix II-261
LU decomposition of an unsymmetric real

sparse matrix II-322
LU decomposition of banded real matrices

 ... II-37
LU-decomposed II-43, II-65
LU-decomposed matrices II-46
LU-decomposition II-42

M

Matrix multiplication II-149
mixed radices II-453, II-457, II-460,

 II-463, II-467, II-471,
II-483, II-487, II-491

mixed radix II-475, II-480
M-matrix II-5, II-10
modification for incomplete Cholesky

decomposition II-48, II-55
Multilevel iteration method II-154
Multiplication of a complex sparse matrix

and a complex vector II-171

Multiplication of a real sparse matrix and
a real vector II-167, II-174, II-177

multisection method II-313
multisectioning II-80, II-317, II-436

N

Neumann II-50, II-55, II-57
Neumann preconditioner II-48
normal random numbers II-222
normalization II-7, II-54, II-156
normalized sparse matrix II-47, II-54
numerically multiple II-73,

II-78, II-315, II-434

O

one-dimensional discrete complex Fourier
transforms II-453, II-457

one-dimensional discrete real Fourier
transform II-475, II-480

one-dimensional multiple discrete
complex Fourier transforms II-460

ORTHOMIN II-5,
II-7, II-10, II-14, II-154, II-156, II-160

outer iteration II-5, II-154
outer product type blocked LU

decomposition method II-4
outer product type
 Gaussian elimination II-1, II-42, II-61

P

partial pivoting II-1, II-61, II-62, II-65,
II-104, II-110, II-122

period... II-229
period of the random number
 sequence ... II-230
pivot II-105, II-110, II-123, II-143
precondition using the incomplete

Cholesky method II-59
preconditional CG method II-47, II-54
preconditioner matrix II-50, II-57
preconditioner using block incomplete

Cholesky decomposition II-48

R

residual vector II-50, II-57
Runge-Kutta method II-217

S

seed II-219, II-223, II-227, II-233
singular II-2, II-40, II-62, II-66,

II-105, II-110, II-123, II-132
starting point IX II-219, II-223,

II-227, II-233
statistical tests II-230
sturm sequence II-436

 References

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) IN-3

symmetric positive definite matrix .. II-318
symmetric positive definite sparse matrix

 ... II-54
system of linear equations with a real

matrix .. II-104
system of linear equations with banded

real matrices II-107
system of linear equations with complex

matrices II-122
system of linear equations with LDLT-

decomposed positive definite matrices
 ... II-125

system of linear equations with LDLT-
decomposed symmetric positive
definite sparse matrices II-251

system of linear equations with LU-
decomposed banded real matrices . II-43

system of linear equations with LU-
decomposed complex matrix II-65

system of linear equations with LU-
decomposed real matrices II-146

system of linear equations with LU-
decomposed structurally symmetric real
sparse matrices II-401

system of linear equations with LU-
decomposed unsymmetric complex
sparse matrices II-279

system of linear equations with LU-
decomposed unsymmetric real sparse
matrices II-340

system of linear equations with
 non-Hermitian symmetric complex sparse

 ... II-113
system of linear equations with sparse

matrices II-154
system of linear equations with sparse

matrices of M-matrix II-5

system of linear equations with
structurally symmetric real sparse
matrices
(LU decomposition method) II-414

system of linear equations with symmetric
positive definite matrices II-142

system of linear equations with symmetric
positive definite sparse
matrices II-47, II-54, II-372

system of linear equations with
unsymmetric complex sparse matrices
(LU decomposition method) II-294

system of linear equations with
unsymmetric or indefinite sparse
matrices II-15, II-23, II-30

system of linear equations with
unsymmetric real sparse matrices II-129

system of linear equations with
unsymmetric real sparse matrices (LU
decomposition method) II-354

system of stiff ordinary differential
equations or differential-algebraic
equations II-193

T

testing of statistical hypotheses II-230
three-dimensional discrete complex

Fourier transforms II-467, II-471
three-dimensional discrete real Fourier

transform II-487, II-491
two-dimensional discrete complex Fourier

transforms II-463
two-dimensional discrete real Fourier

transform II-483

U

uniform random numbers II-226, II-232
upwind scheme II-185, II-192

W

Wallace’s method II-222, II-225
wavefront ordering II-53, II-59

	FUJITSU SSL II Thread-Parallel CapabilitiesUser's Guide(Scientific Subroutine Library)
	Preface
	SSL II Thread-Parallel CapabilitiesSubroutine List
	Contents
	Part I General Descriptions
	Chapter 1 Outline
	Chapter 2 General rules
	2.1 Precision of Subroutines
	2.2 Subroutine Names
	2.3 Parameters
	2.4 How to Use SSL II Thread Parallel Capabilities
	2.5 Condition Codes

	Part II Usage of Subroutines
	DM_VALU
	DM_VAMLID
	DM_VBCSCC
	DM_VBCSD
	DM_VBCSE
	DM_VBLU
	DM_VBLUX
	DM_VCGD
	DM_VCGE
	DM_VCLU
	DM_VCLUX
	DM_VCMINV
	DM_VGEVPH
	DM_VHEVP
	DM_VHTRID
	DM_VJDHECR
	DM_VJDNHCR
	DM_VLAX
	DM_VLBX
	DM_VLCSPSXCR1
	DM_VLCX
	DM_VLDLX
	DM_VLSPAXCR2
	DM_VLSX
	DM_VLUX
	DM_VMGGM
	DM_VMINV
	DM_VMLBIFE
	DM_VMVSCC
	DM_VMVSCCC
	DM_VMVSD
	DM_VMVSE
	DM_VPDE2D
	DM_VPDE3D
	DM_VRADAU5
	DM_VRANN3
	DM_VRANN4
	DM_VRANU4
	DM_VRANU5
	DM_VSCHOL
	DM_VSCHOLX
	DM_VSCLU
	DM_VSCLUX
	DM_VSCS
	DM_VSEVPH
	DM_VSLDL
	DM_VSRLU
	DM_VSRLUX
	DM_VSRS
	DM_VSSPS
	DM_VSSSLU
	DM_VSSSLUX
	DM_VSSSS
	DM_VTDEVC
	DM_VTFQD
	DM_VTFQE
	DM_VTRID
	DM_V1DCFT
	DM_V1DCFT2
	DM_V1DMCFT
	DM_V2DCFT
	DM_V3DCFT
	DM_V3DCFT2
	DM_V1DRCF
	DM_V1DRCF2
	DM_V2DRCF
	DM_V3DRCF
	DM_V3DRCF2
	DM_V3DCPF

	Appendixes
	Appendix AReferences
	Appendix BContributors and Their Work

	Index

