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Preface 

This manual describes the functions and usage of the Scientific Subroutine Library II Thread-Parallel 
Capabilities. 

SSL II Thread-Parallel Capabilities provide the computational functionality to efficiently compute or 
solve large-scale problems on a shared-memory parallel computer with scalar processors.  New 
algorithms for parallel processing have been adopted. 

The interfaces of subroutines are generally different from those used in the SSL II, SSLII/VP, SSL 
II/VPP or SSL II/HPF. This manual describes the usage of these subroutines. 

Additionally, the SSL II Thread-Parallel Capabilities include some thread-parallelized routines 
derived from existing sequential SSL II double precision routines. The initial characters of these 
thread-parallelized routine names start with “DM_” to be distinguished from the sequential double 
precision routine names starting with “D”. These routines can be used with the identical arguments 
with the sequential version. For the list of the thread-parallelized routines, refer to the section 2, 
“Thread-Parallelized routines from sequential SSL II functions” in “SSL II Thread-Parallel 
Capabilities Subroutines list” in this manual. And for each usage of them, refer to SSL II manuals of 
the sequential version. 

This manual consists of two parts. 

Part I  General Description 

General rules which should be kept in mind when using SSL II Thread-Parallel Capabilities are 
outlined. 

Part II  Usage of Subroutines 

The functions and usage of each subroutine are described in alphabetical order of their subroutine 
names. 

Readers of this manual are assumed to be familiar with the OpenMP Fortran.  For details of the 
OpenMP Fortran specification, refer to “OpenMP Application Program Interface Version 2.5 May 
2005.” 

For details of Fujitsu OpenMP Fortran compiler, refer to the Fortran User’s Guide. 

For how to store a sparse matrix and convergence of iterative methods, refer to the FUJITSU SSL II 
Extended Capabilities User’s Guide II. 

SSL II Thread-Parallel Capabilities include some functions using codes and algorithms, with 
appropriate modifications, which have been developed for SSL II/VPP.  SSL II/VPP is the library 
developed in collaboration with the Australian National University (ANU).   Development at the 
ANU has been led by professors Mike Osborne and Richard Brent and coordinated by Dr. Bob 
Gingold, Head, ANU Supercomputer Facility.  The following is a complete list of those ANU experts 
involved in the design and implementation of SSL II/VPP.  Fujitsu acknowledges their cooperation. 

Professor Richard Peirce Brent 
Dr Andrew James Cleary 
Dr Murray Leslie Dow 
Mr Christopher Robert Dun 
Dr Lutz Grosz 
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Dr David Lawrence Harrar II 
Dr Markus Hegland 
Ms Judith Helen Jenkinson 
Dr Margaret Helen Kahn 
Dr Zbigniew Leyk 
Mr David John Miron 
Professor Michael Robert Osborne 
Dr Peter Frederick Price 
Dr Stephen Gwyn Roberts 
Dr David Barry Singleton 
Dr David Edward Stewart 
Dr Bing Bing Zhou 

 

Note 

The asterisks in the table of contents and the subroutine list of this manual indicate items added or 
changed from the previous edition. 

 

Export Controls 

Exportation/release of this document may require necessary procedures in accordance with the 
regulations of your resident country and/or US export control laws. 
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Update History 
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16th Version 
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DM_VSSPS 

 

Correction of a slip of the pen DM_VSRS, DM_VSRLU,  
DM_VSRLUX 

 

The following routine was added. 
• DM_VSSSLU 
• DM_VSSSLUX 
• DM_VSSSS 

SSL II Thread-Parallel 
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Subroutine List, 
Usage of Subroutines 

17th Version 

Correction of a wrong word DM_VRANU5, 
DM_VSCLUX, 
DM_VSRLUX 

 

Correction of wrong sentences SSL II Thread-Parallel 
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Subroutine List, 
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References 

18th Version 

The explanation for the size of stack area for each 
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2.4 How to Use SSL II 
Thread Parallel 
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Changed the look according to product upgrades. - 19th Version 
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SSL II Thread-Parallel Capabilities 
Subroutine List 

1. Thread-Parallel routines adopting parallel algorithms for SMP 
This manual describes the usage of the following thread-parallel routines adopting parallel 
algorithms suited for SMP machines. 

 
Matrix operations 

Subroutine name Item Page 

DM_VMGGM Matrix multiplication (real matrix) II-149 

DM_VMVSCC Multiplication of a real sparse matrix and a real vector 
(compressed column storage method) 

II-167 

DM_VMVSCCC  Multiplication of a complex sparse matrix and a complex 
vector (compressed column storage method) 

II-171 

DM_VMVSD Multiplication of a real sparse matrix and a real vector 
(diagonal format storage method) 

II-174 

DM_VMVSE Multiplication of a real sparse matrix and a real vector 
(ELLPACK format storage method) 

II-177 

 

Linear  equations (Direct method) 

Subroutine name Item Page 

DM_VLAX A system of linear equations with real matrices (blocked 
LU decomposition method) 

II-104 

DM_VALU LU decomposition of real matrices (blocked LU 
decomposition method) 

II-1 

DM_VLUX A system of linear equations with LU-decomposed real 
matrices 

II-146 

DM_VLSX A system of linear equations with symmetric positive 
definite matrices (blocked modified Cholesky 
decomposition method) 

II-142 

DM_VSLDL LDLT decomposition of symmetric positive definite 
matrices (blocked modified Cholesky decomposition 
method) 

II-318 

DM_VLDLX A system of linear equations with LDLT-decomposed 
symmetric positive definite matrices 

II-125 

DM_VLCX A system of linear equations with complex matrices 
(blocked LU decomposition method) 

II-122 

DM_VCLU LU decomposition of complex matrices (blocked LU 
decomposition method) 

II-61 
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Subroutine name Item Page 

DM_VCLUX A system of linear equations with LU-decomposed 
complex matrices 

II-65 

DM_VLBX A system of linear equations with banded real matrices 
(Gaussian elimination) 

II-107 

DM_VBLU LU decomposition of banded real matrices (Gaussian 
elimination) 

II-37 

DM_VBLUX A system of linear equations with LU-decomposed 
banded real matrices 

II-43 

DM_VSSPS  A system of linear equations with symmetric positive 
definite sparse matrices (Left-looking LDLT 
decomposition method) 

II-372 

DM_VSCHOL  LDLT decomposition of a symmetric positive definite 
sparse matrices (Left-looking Cholesky decomposition 
method) 

II-238 

DM_VSCHOLX  A system of linear equations with LDLT-decomposed 
symmetric positive definite sparse matrices 

II-251 

DM_VSRS A system of linear equations with unsymmetric real 
sparse matrices (LU decomposition method) 

II-354 

DM_VSRLU LU decomposition of an unsymmetric real sparse matrix II-322 

DM_VSRLUX A system of linear equations with LU-decomposed 
unsymmetric real sparse matrices 

II-340 

DM_VSCS  A system of linear equations with unsymmetric complex 
sparse matrices (LU decomposition method) 

II-294 

DM_VSCLU  LU decomposition of an unsymmetric complex sparse 
matrix 

II-261 

DM_VSCLUX  A system of linear equations with LU-decomposed 
unsymmetric complex sparse matrices 

II-279 

DM_VSSSS * A system of linear equations with structurally symmetric 
real sparse matrices (LU decomposition method) 

II-414 

DM_VSSSLU * LU decomposition of a structurally symmetric real 
sparse matrix 

II-385 

DM_VSSSLUX * A system of linear equations with LU-decomposed 
structurally symmetric real sparse matrices 

II-401 

 

Linear  equations (Iterative method) 

Subroutine name Item Page 

DM_VCGD A system of linear equations with symmetric positive 
definite sparse matrices (preconditioned CG method, 
diagonal format storage method) 

II-47 

DM_VCGE A system of linear equations with symmetric positive 
definite sparse matrices (preconditioned CG method, 
ELLPACK format storage method) 

II-54 
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Subroutine name Item Page 

DM_VBCSCC A system of linear equations with unsymmetric positive 
definite sparse matrices (BICGSTAB(l) method, 
compressed column storage method) 

II-15 

DM_VBCSD A system of linear equations with unsymmetric or 
indefinite sparse matrices (BICGSTAB(l) method, 
diagonal format storage method) 

II-23 

DM_VBCSE A system of linear equations with unsymmetric or 
indefinite sparse matrices (BICGSTAB(l) method, 
ELLPACK format storage method) 

II-30 

DM_VTFQD A system of linear equations with unsymmetric or 
indefinite sparse matrices (TFQMR method, diagonal 
format storage method) 

II-437 

DM_VTFQE A system of linear equations with unsymmetric or 
indefinite sparse matrices (TFQMR method, ELLPACK 
format storage method) 

II-444 

DM_VAMLID System of linear equations with sparse matrices of M-
matrix (Algebraic multilevel iteration method [AMLI 
Method], diagonal format storage method) 

II-5 

DM_VMLBIFE System of linear equations with sparse matrices 
(Multilevel iteration method based on incomplete block 
factorization, ELLPACK format storage method) 

II-154 

DM_VLCSPSXCR1 System of linear equations with non-Hermitian 
symmetric complex sparse matrices 
 (Conjugate A-Orthogonal Conjugate Residual method 
with preconditioning by incomplete LDLT 

decomposition, symmetric compressed row storage 
method) 

II-113 

DM_VLSPAXCR2  System of linear equations with unsymmetric real sparse 
matrices  
(Induced Dimension Reduction method with 
preconditioning by sparse approximate inverse, 
compressed row storage method) 

II-129 

 

Differential equations 

Subroutine name Item Page 

DM_VRADAU5 System of stiff ordinary differential equations or 
differential-algebraic equations (Implicit Runge-Kutta 
method) 

II-193 

 

Discretization of partial differential equation 

Subroutine name Item Page 

DM_VPDE2D Generation of System of linear equations with sparse 
matrices by the finite difference discretization of a two 
dimensional boundary value problem for second order 
partial differential equation 

II-180 
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Subroutine name Item Page 

DM_VPDE3D Generation of System of linear equations with sparse 
matrices by the finite difference discretization of a three 
dimensional boundary value problem for second order 
partial differential equation 

II-186 

 
 

Inverse matrices 

Subroutine name Item Page 

DM_VMINV Inverse of real matrices (blocked Gauss-Jordan method) II-152 

DM_VCMINV Inverse of complex matrices (blocked Gauss-Jordan 
method) 

II-68 

 

Eigenvalue problem 

Subroutine name Item Page 

DM_VSEVPH Eigenvalues and eigenvectors of a real symmetric matrix 
(tridiagonalization, multisection method, inverse 
iteration) 

II-313 

DM_VHEVP Eigenvalues and eigenvectors of Hermite matrices II-76 

DM_VTDEVC Eigenvalues and eigenvectors of real tridiagonal matrices II-431 

DM_VGEVPH Generalized eigenvalue problem for real symmetric 
matrices (eigenvalues and eigenvectors) 
(tridiagonalization, multisection method, inverse 
iteration) 

II-70 

DM_VTRID Tridiagonalization of real symmetric matrices. II-450 

DM_VHTRID Tridiagonalization of Hermite matrices. II-81 

DM_VJDHECR Eigenvalues and eigenvectors of an Hermitian sparse 
matrix (Jacobi-Davidson method, compressed row 
storage method) 

II-84 

DM_VJDNHCR Eigenvalues and eigenvectors of a complex sparse matrix 
(Jacobi-Davidson method, compressed row storage 
method) 

II-94 

 

Fourier transforms 

Subroutine name Item Page 

DM_V1DCFT One-dimensional discrete complex Fourier transforms 
(mixed radix of 2, 3, 5 and 7) 

II-453 

DM_V1DCFT2 One-dimensional discrete complex Fourier transforms 
(mixed radix of 2, 3, 5 and 7) 

II-457 

DM_V1DMCFT One-dimensional multiple discrete complex Fourier 
transforms (mixed radix of 2, 3, 5 and 7) 

II-460 
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Subroutine name Item Page 

DM_V2DCFT Two-dimensional discrete complex Fourier transforms 
(mixed radix of 2, 3, 5 and 7) 

II-463 

DM_V3DCFT Three-dimensional discrete complex Fourier transforms 
(mixed radix of 2, 3, 5 and 7) 

II-467 

DM_V3DCFT2 Three-dimensional discrete complex Fourier transforms 
(mixed radix of 2, 3, 5 and 7) 

II-471 

DM_V1DRCF One-dimensional discrete real Fourier transforms (mixed 
radix of 2, 3, 5 and 7) 

II-475 

DM_V1DRCF2 One-dimensional discrete real Fourier transforms (mixed 
radix of 2, 3, 5 and 7) 

II-480 

DM_V2DRCF Two-dimensional discrete real Fourier transforms (mixed 
radix of 2, 3, 5 and 7) 

II-483 

DM_V3DRCF Three-dimensional discrete real Fourier transforms 
(mixed radix of 2, 3, 5 and 7) 

II-487 

DM_V3DRCF2 Three-dimensional discrete real Fourier transforms 
(mixed radix of 2, 3, 5 and 7) 

II-491 

DM_V3DCPF Three-dimensional prime factor discrete complex Fourier 
transforms. 

II-495 

 

Random numbers 

Subroutine name Item Page 

DM_VRANU4 Generation of uniform random numbers [0,1) II-226 

DM_VRANU5  Generation of uniform random numbers [0,1) (MRG8) II-232 

DM_VRANN3 Generation of normal random numbers II-218 

DM_VRANN4 Generation of normal random numbers (Wallace’s 
method) 

II-222 

 



Contents 

xii FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

2. Thread-Parallelized routines from sequential SSL II functions 
This section lists thread-parallelized routines derived from sequential SSL II. The names of these 
routines begin with "DM_" instead of the initial letter "D" of the sequential SSL II double-
precision routine names. These routines can be used with the identical arguments with the 
sequential version. 

 

2.1 from Standard capabilities 

Refer to the FUJITSU SSL II User’s Guide when using the following routines. 

 

Matrix manipulation 

Subroutine name Item 

DM_VMAV Multiplication of a real matrix by a real vector 

DM_VMCV Multiplication of a complex matrix by a complex vector 

 

Least squares solution 

Subroutine name Item 

DM_VLAXL Least squares solution with a real matrix (Householder 
transformation) 

DM_VLAXLM Least squares minimal norm solution with a real matrix (Singular 
value decomposition method) 

DM_GINV Generalized Inverse of a real matrix (Singular value decomposition 
method) 

DM_ASVD1 Singular value decomposition of a real matrix (Householder and QR 
methods) 

 

Eigenvalues and eigenvectors 

Subroutine name Item 

DM_EIG1 Eigenvalues and corresponding eigenvectors of a real matrix 
(double QR method) 

DM_HSQR Eigenvalues of a real Hessenberg matrix (double QR method) 

DM_HVEC Eigenvectors of a real Hessenberg matrix (Inverse iteration method) 

DM_CHVEC Eigenvectors of a complex Hessenberg matrix (Inverse iteration 
method) 

DM_BLNC Balancing of a real matrix 

DM_CBLNC Balancing of a complex matrix 

DM_HES1 Reduction of a real matrix to a real Hessenberg matrix (Householder 
method) 

DM_CHES2 Reduction of a complex matrix to a complex Hessenberg matrix 
(Stabilized elementary transformation) 

DM_HBK1 Back transformation and normalization of the eigenvectors of a real 
Hessenberg matrix to the eigenvectors of the original matrix 
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Subroutine name Item 

DM_CHBK2 Back transformation of the eigenvectors of a complex Hessenberg 
matrix to the eigenvectors of the original matrix 

DM_NRML Normalization of eigenvectors 

DM_CNRML Normalization of eigenvectors of a complex matrix 

 

2.2 from Extended capabilities 

Refer to the FUJITSU SSL II Extended Capabilities User’s Guide II when using the following 
routines 

 

Eigenvalues and eigenvectors 

Subroutine name Item 

DM_VLAND Eigenvalues and eigenvectors of a real symmetric sparse matrix 
(Lanczos method, diagonal storage format) 

 

Transforms 

Subroutine name Item 

DM_VMCST Discrete cosine transform 

DM_VMSNT Discrete sine transform 

DM_VCCVF Discrete convolution or correlation of complex data 

DM_VRCVF Discrete convolution or correlation of real data 

 



FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) xiv 

Contents 

Preface ii 

SSL II Thread-Parallel Capabilities Subroutine List vii 

Contents xiv 

Part I General Descriptions 

Chapter 1  Outline I-1 

Chapter 2 General rules I-3 

2.1 Precision of Subroutines ......................................................................................... I-3 

2.2 Subroutine Names ................................................................................................... I-3 

2.3 Parameters ............................................................................................................... I-3 

2.4 How to Use SSL II Thread Parallel Capabilities .................................................. I-3 

2.5 Condition Codes ...................................................................................................... I-7 

Part II Usage of Subroutines 

DM_VALU .......................................................................................................................... II-1 

DM_VAMLID .................................................................................................................... II-5 

DM_VBCSCC ................................................................................................................... II-15 

DM_VBCSD ...................................................................................................................... II-23 

DM_VBCSE ...................................................................................................................... II-30 

DM_VBLU ........................................................................................................................ II-37 

DM_VBLUX ..................................................................................................................... II-43 

DM_VCGD ....................................................................................................................... II-47 

DM_VCGE ........................................................................................................................ II-54 

DM_VCLU ........................................................................................................................ II-61 

DM_VCLUX ..................................................................................................................... II-65 

DM_VCMINV .................................................................................................................. II-68 

DM_VGEVPH .................................................................................................................. II-70 

DM_VHEVP ..................................................................................................................... II-76 

DM_VHTRID ................................................................................................................... II-81 

DM_VJDHECR ................................................................................................................ II-84 

DM_VJDNHCR ................................................................................................................ II-94 

DM_VLAX ...................................................................................................................... II-104 

DM_VLBX ...................................................................................................................... II-107 



FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) xv 

DM_VLCSPSXCR1 ....................................................................................................... II-113  

DM_VLCX ...................................................................................................................... II-122 

DM_VLDLX ................................................................................................................... II-125 

DM_VLSPAXCR2 ......................................................................................................... II-129  

DM_VLSX ...................................................................................................................... II-142 

DM_VLUX ...................................................................................................................... II-146 

DM_VMGGM ................................................................................................................ II-149 

DM_VMINV ................................................................................................................... II-152 

DM_VMLBIFE .............................................................................................................. II-154 

DM_VMVSCC ................................................................................................................ II-167 

DM_VMVSCCC ............................................................................................................. II-171  

DM_VMVSD .................................................................................................................. II-174 

DM_VMVSE ................................................................................................................... II-177 

DM_VPDE2D ................................................................................................................. II-180 

DM_VPDE3D ................................................................................................................. II-186 

DM_VRADAU5 .............................................................................................................. II-193 

DM_VRANN3 ................................................................................................................. II-218 

DM_VRANN4 ................................................................................................................. II-222 

DM_VRANU4 ................................................................................................................. II-226 

DM_VRANU5 ................................................................................................................. II-232  

DM_VSCHOL ................................................................................................................ II-238  

DM_VSCHOLX ............................................................................................................. II-251  

DM_VSCLU .................................................................................................................... II-261  

DM_VSCLUX ................................................................................................................. II-279  

DM_VSCS ....................................................................................................................... II-294  

DM_VSEVPH ................................................................................................................. II-313 

DM_VSLDL .................................................................................................................... II-318 

DM_VSRLU .................................................................................................................... II-322  

DM_VSRLUX ................................................................................................................. II-340  

DM_VSRS ....................................................................................................................... II-354  

DM_VSSPS ..................................................................................................................... II-372  

DM_VSSSLU .................................................................................................................. II-385 * 

DM_VSSSLUX ............................................................................................................... II-401 * 

DM_VSSSS ..................................................................................................................... II-414 * 

DM_VTDEVC ................................................................................................................ II-431 

DM_VTFQD ................................................................................................................... II-437 

DM_VTFQE ................................................................................................................... II-444 

DM_VTRID .................................................................................................................... II-450 

DM_V1DCFT ................................................................................................................. II-453 

DM_V1DCFT2 ............................................................................................................... II-457 



Contents 

xvi FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

DM_V1DMCFT .............................................................................................................. II-460 

DM_V2DCFT ................................................................................................................. II-463 

DM_V3DCFT ................................................................................................................. II-467 

DM_V3DCFT2 ............................................................................................................... II-471 

DM_V1DRCF ................................................................................................................. II-475 

DM_V1DRCF2 ............................................................................................................... II-480 

DM_V2DRCF ................................................................................................................. II-483 

DM_V3DRCF ................................................................................................................. II-487 

DM_V3DRCF2 ............................................................................................................... II-491 

DM_V3DCPF .................................................................................................................. II-495 

 

Appendixes 

Appendix A References A-1 

Appendix B Contributors and Their Work B-1 

 
 
 



 

 

Part I  
General Descriptions 

 





 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) I-1 

Chapter 1  
Outline 

SSLII Thread-Parallel Capabilities is a parallel mathematical subroutine library to execute on 
a shared-memory parallel computer with scalar processors.  The library provides subroutines 
to efficiently compute such large-scale problems by parallel processing that are intractable on 
a single processor. 

  Each subroutine in the library is supplied as a subroutine written in OpenMP Fortran and can 
be called by a CALL statement in OpenMP Fortran environment. 

  The mechanism of "Thread-Parallel" means that multiple execution flows, each of which is 
called a thread, share the calculation where each thread is responsible for undertaking pieces 
of calculation using one CPU in the shared memory system.  If the number of created threads 
is less or equal to the number of CPU available, the process can be executed by threads in 
parallel with all threads carried out by separated CPU.  This Thread-Parallel mechanism 
enables a calculation to be divided into multiple parallel executions (as far as the algorithm 
could be parallelized). 

  Each subroutine of SSL II Thread-Parallel Capabilities creates multiple threads internally 
and solves the problem with a parallel algorithm with these threads.  Where, the creation and 
extinction of the threads, work-sharing constructs and synchronization are directed with 
OpenMP Fortran specifications.  Therefore SSL II Thread-Parallel Capabilities need the run-
time execution environment of the OpenMP Fortran. 

  The number of the threads used by a subroutine of SSL II Thread-Parallel Capabilities can be 
assigned by the user with OpenMP environment variables or run-time library routines.  With 
these, the subroutine can be executed by as any number of threads as specified. 

  The scope of functionality, subroutine names, and calling interface of SSL II Thread-Parallel 
Capabilities are different from those used in the mathematical library SSL II, SSLII/VP, SSL 
II/VPP or SSL II/HPF. 
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Chapter 2 
General rules 

2.1 Precision of Subroutines 
SSL II Thread-Parallel Capabilities provides subroutines of double precision only. 

2.2 Subroutine Names 
  The subroutine names that are callable by the user begin with DM_V,  and the names of 
slave subroutines which are called internally begin with DM_U or DL_.  And there is an 
auxiliary subroutine DMACH. 

  This manual describes the usage of the subroutines which are callable by the user. 

2.3 Parameters 
(1) Order of parameter sequence 

  In general, the order of parameter sequence is the same as that in standard SSL II: 

 (input and output parameter list, input parameter list, output parameter list, ICON) 

(2) Parameter types 

  Parameters beginning with I, J, K, L, M, or N are of 4-byte integer type.  Parameters 
beginning with other characters are of double precision type or double precision complex 
type. 

2.4 How to Use SSL II Thread Parallel Capabilities 
(1) Positions of the CALL statements 

  SSL II Thread-Parallel Capabilities consist of OpenMP subroutines which can be called 
from both inside and outside of the OpenMP parallel regions in user programs.  And these 
subroutines also can be called from serial programs without OpenMP directives, and also 
they can be called from programs that are auto-parallelized by the Fortran compiler. 

  In cases where the subroutine is called from inside of the parallel region, it is necessary 
that every actual argument as input and output, out put and work areas which is dealt with 
by each thread must be mapped to different memory area respectively. 

  In every calling case above, the frt command option "-Kopenmp" must be specified at 
the time the compiled user program is to be linked with SSL II Thread-Parallel 
Capabilities.  The load module can be OpenMP executable with this option.  Refer to 
"Fortran User's Guide" for details. 

(2) How to specify the number of threads 

  A subroutine of SSL II Thread-Parallel Capabilities is executed by multiple threads in 
parallel within parallel region which is created internal of the subroutine.  The number of  
threads used by the subroutine can be assigned by the user with an OpenMP environment 
variable "OMP_NUM_THREADS" or a run-time library routine 
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"OMP_SET_NUM_THREADS( )".  Usually, specify the number of threads in the former 
way. 

  The run-time library routine can be used in situations where the user wants to assign a 
specific number of threads for the parallel region.  Specifying the number of threads with 
this run-time routine just before the SSL II Thread-Parallel subroutine makes it possible 
to execute the subroutine with a specific number of threads. 

  Refer to "Fortran User's Guide" and " OpenMP Application Program Interface Version 
2.5 May 2005." for details about OpenMP environment variables and run-time library 
routines. 

(3) Size of stack area for each thread 

  Some subroutines of SSL II Thread-Parallel Capabilities takes work area internally as 
auto allocatable array on "stack" area for each thread.  Suppose that the number of threads 
to be generated is NT and the total available memory size is M, it is recommended to set 
the environmental variable OMP_STACKSIZE to about M/(5  NT) as the stack size for 
each thread before the execution. When compiler option -Nfjomplib is specified, the 
environmental variable THREAD_STACK_SIZE can be set as the stack size.  Refer to 
"Fortran User's Guide" for details about setting the stack size for OpenMP executables. 

(4) Example programs 

a. To call a subroutine from outside of the parallel region 

  The example program below solves a system of linear equations with input of a real 
coefficient matrix of 4000  4000.  If the environment variable 
OMP_NUM_THREADS is set to be 4 on the system of 4 processors, execution will 
be with 4 threads in parallel. 

 

      implicit real*8 (a-h,o-z) 
      parameter(nord=4000,ld=nord+1) 
c 
      real*8    a(ld,nord),b(nord) 
      integer ip(nord),is 
c 
      c=sqrt(2.0d0/dble(1+nord)) 
      t=datan(1.0d0)*4./(1+nord) 
c 
      do j=1,nord 
      do i=1,nord 
      a(i,j)=c*sin(t*i*j) 
      enddo 
      enddo 
c 
      do i=1,nord 
      s=0. 
      do j=1,nord 
      s=s+sin(t*i*j) 
      b(i)=s*c 
      enddo 
      enddo 
c 
      k=ld 
      n=nord 
      epsz=0.0d0 
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      isw=1 
      call dm_vlax(a,k,n,b,epsz,isw,is,ip,icon)    
      print*,'icon=',icon 
      print*,'n=',n,', b(1)=',b(1),', b(n)=',b(n) 
      stop 
      end 
 

 

b. To call subroutines from inside of the parallel region 

  The example program below solves two independent systems of linear equations.  
One input of a real coefficient matrix is 4000  4000, and the other is 4200  4200.  
If the environment variable OMP_NUM_THREADS is set to be 2 and 
OMP_NESTED is set to be TRUE on the system of 4 processors, each system of 
linear equation is solved with 2 threads respectively.  The execution will be 
parallelized with 4 threads total. 

 
      implicit real*8 (a-h,o-z) 
      parameter(nord1=4000,ld1=nord1+1) 
      parameter(nord2=4200,ld2=nord2+1) 
c 
      real*8    a1(ld1,nord1),b1(nord1), 
     &          a2(ld2,nord2),b2(nord2),epsz1,epsz2 
      integer ip1(nord1),ip2(nord2),is1,is2, 
     &        icon1,icon2,n1,n2,k1,k2,num, 
     &        omp_get_thread_num 
c 
      c=sqrt(2.0d0/dble(1+nord1)) 
      t=datan(1.0d0)*4./(1+nord1) 
c 
      do j=1,nord1 
      do i=1,nord1 
      a1(i,j)=c*sin(t*i*j) 
      enddo 
      enddo 
c 
      do i=1,nord1 
      s=0. 
      do j=1,nord1 
      s=s+sin(t*i*j) 
      b1(i)=s*c 
      enddo 
      enddo 
c 
      c=sqrt(2.0d0/dble(1+nord2)) 
      t=datan(1.0d0)*4./(1+nord2) 
c 
      do j=1,nord2 
      do i=1,nord2 
      a2(i,j)=c*sin(t*i*j) 
      enddo 
      enddo 
c 
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      do i=1,nord2 
      s=0. 
      do j=1,nord2 
      s=s+sin(t*i*j) 
      b2(i)=s*c 
      enddo 
      enddo 
c 
!$OMP PARALLEL default(shared)  
!$OMP+      private(num) 
      num=omp_get_thread_num() 
      if(num.eq.0)then 
      k1=ld1 
      n1=nord1 
      epsz1=0.0d0 
      isw1=1 
      call dm_vlax(a1,k1,n1,b1,epsz1,isw1,is1,ip1,icon1)    
      print*,'icon1=',icon1 
      else 
      k2=ld2 
      n2=nord2 
      epsz2=0.0d0 
      isw2=1 
      call dm_vlax(a2,k2,n2,b2,epsz2,isw2,is2,ip2,icon2)    
      print*,'icon2=',icon2 
      endif 
!$OMP END PARALLEL 
      print*,'n1=',n1,', b1(1)=',b1(1),', b1(n1)=',b1(n1) 
      print*,'n2=',n2,', b2(1)=',b2(1),', b2(n2)=',b2(n2) 
      stop 
      end 
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2.5 Condition Codes 
The parameter ICON is prepared to indicate the status after the execution of SSLII Thread-
Parallel Capabilities. 

A value between 0 and 39999 is set as the condition code.  The values are classified as shown 
below depending on whether the result is guaranteed. 

 
Table 2.1 Condition codes 

Code Meaning Integrity of the result Classification 

0 Processing has ended 
normally. 

The results are correct. Normal 

1 to 9999 Processing has ended 
normally, but auxiliary 
information was included. 

  

10000 to 19999 Processing has ended with 
the placing of internal 
restrictions during execution. 

The results are correct 
on the restrictions. 

Warning 

20000 to 29999 Processing was discontinued 
due to abnormal conditions 
which had occurred during 
execution. 

The results are not 
correct. 

Abnormal 

30000 to 39999 Processing was discontinued 
due to invalid input 
parameter. 

  

 

 





 

 

Part II  
Usage of Subroutines 
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DM_VALU 
 

LU decomposition of real matrices (blocked LU decomposition method) 

CALL DM_VALU(A,K,N,EPSZ,IP,IS,ICON) 

 

(1) Function 

 An n  n non-singular real matrix A is decomposed by blocked outer product type 
Gaussian elimination. 

 PA = LU 

 where, P is the permutation matrix which exchanges the rows of A by partial pivoting, L 
is the lower triangular matrix, and U is the unit upper triangular matrix (n  1). 

(2) Parameters 

A ................ Input.  Store matrix A in A(1:N,1:N). 

Output.  Matrices L and U are stored in A(1:N,1:N). 

See Figure DM_VALU-1. 

This is a two-dimensional double precision real array A(K,N). 

K ................ Input.  Size of the first dimension of the storage array A. 

N ................ Input.  Order n of matrix A. 

EPSZ .......... Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, a standard value is assumed.  (See note 1) in (3), 
"Comments on use".) 

IP ............... Output.  The transposition vector indicating the history of the exchange of rows 
by partial pivoting.  One-dimensional array of size n.  (See note 2) in (3), 
"Comments on use.") 

IS ............... Output.  Information to calculate the determinant of matrix A. 

The determinant is obtained by multiplying the product of the n diagonal 
elements of array A by the value of IS after the calculation. 

ICON .......... Output.  Condition code. 

See Table DM_VALU-1. 
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Figure DM_VALU-1   Storing L and U in array A after the calculation 

 After LU decomposition, matrix L and the upper triangular part (except the diagonal 
elements) of matrix U are stored in array A(1:N,1:N). 

 
Table DM_VALU-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All elements in some row of array A were zero, 
or the pivot became relatively zero.  Matrix A 
may be singular. 

Processing is discontinued. 

30000 K < N, N < 1, or EPSZ < 0.0  

 

(3) Comments on use 

a. Notes 

1) If a value is set for EPSZ, the value has the following meaning:  if the absolute 
value of the selected pivot is less than EPSZ, the pivot is assumed to be zero and 
processing is discontinued with ICON = 20000.  When unit round off is u, the 
standard value of EPSZ is 16u.  

 When computation is to be continued even if the pivot becomes small, assign the 
minimum value to EPSZ.  In this case, however, the result is not assured. 

2) The transposition vector corresponds to the permutation matrix P in LU 
decomposition PA = LU with partial pivoting. 

 In this subroutine, the contents of array A are actually exchanged by partial 
pivoting.  That is, when the I-th row (I  J) is selected as the pivot row in the J-th 
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stage (J = 1, ..., n) of decomposition, the contents of the I-th row and J-th row of 
array A are exchanged.  To indicate this exchange, I is stored in IP (J). 

3) The linear equation can be solved by calling subroutine DM_VLUX following 
this subroutine.  Normally, the linear equation can be solved in one step by 
calling subroutine DM_VLAX. 

b. Example 

  LU decomposition is executed by inputting a real 4000  4000 matrix. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION A(4001,4000) 
      DIMENSION IP(4000) 
C 
C 
      N=4000 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,N)    
      DO J=1,N 
      DO I=1,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
C 
      K=4001 
      CALL DM_VALU(A,K,N,0.0D0,IP,IS,ICON) 
      WRITE(6,610)ICON 
      IF(ICON.GE.20000)STOP 
 
      S=1.0D0 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,N)  
!$OMP+         REDUCTION(*:S) 
      DO 20 I=1,N 
      S=S*A(I,I) 
   20 CONTINUE 
!$OMP END PARALLEL DO 
 
C 
      DET=IS*S 
 
   40 CONTINUE 
      WRITE(6,620)DET 
  610 FORMAT(1H0,10X,16HCONDITION CODE =,I5) 
  620 FORMAT(1H0,10X, 
     *27HDETERMINANT OF THE MATRIX =,D23.16) 
      END 
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(4) Method 

 For details of the outer product type blocked LU decomposition method, see [1], [30], 
[54], [55], [56], and [70] in Appendix A, "References." 
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DM_VAMLID 
 

System of linear equations with sparse matrices of M-matrix (Algebraic multilevel iteration 
method[AMLI Method], diagonal format storage method) 

CALL DM_VAMLID ( A, K, NDIAG, N, NOFST, B, ISW, IGUSS, INFO, 
                                       EPSOT, EPSIN, X, W, NW, IW, NIW, ICON ) 

 

(1) Function 

 This subroutine solves, using the iterative method, a system of linear equations with   
sparse matrices of M-matrix as coefficient matrices. (See 1) in a, “Notes,” in (3), 
“Comments on use.”) 

 Ax = b 

 The n  n coefficient matrix is stored using the diagonal format storage method.  Vectors 
b and x are n-dimensional vectors. 

 The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-
symmetric. The iteration (called outer iteration) is preconditioned by the algebraic 
multilevel iteration method (called AMLI) which requires the solution of small linear 
system that is also solved iteratively (called inner iteration) , and stable. (In the 
preconditioner of the algebraic multilevel iteration method, the generated linear system 
becomes smaller as the level is deeper.) 

 (2) Parameters 

A ................ Input.  The nonzero elements of a coefficient matrix A are stored in A. 

The coefficient matrix is stored in A(1:N,1:NDIAG). 

Two-dimensional array A(K,N). 

For an explanation of the diagonal format storage method, see b, “Diagonal 
format storage method of general sparse matrices,” in Section 3.2.1.1, “Storing 
the general sparse matrices,” in Part I, “Outline,” in the SSL II Extended 
Capability User’s Guide II. 

K ................ Input.  Size of first-dimension of array A(K  N). 

NDIAG ...... Input.  Number of columns in array A and size of array NOFST.  Must be equal 
to the number of nonzero diagonals in matrix A. 

N ................ Input.  Order n of matrix A. 

NOFST ...... Input. Offsets of diagonals of A stored in array A.  Main diagonal has offset 0, 
subdiagonals have negative offsets, and superdiagonals have positive offsets. 

One-dimensional array NOFST(NDIAG). 

B ................ Input.  The right-side constant vectors of a system of linear equations are stored 
in B(1:N). 

One-dimensional array B(N) . 

ISW ........... Input. Control information. 

ISW=1 Initial calling. 

ISW=2 Second or subsequent calling. 
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The values of A, IW and W must not be changed if the routine is called again 
with ISW=2.  

(See 2) in a, “Notes,” in (3), “Comments on use.”) 

IGUSS ........ Input.  Control information specifying whether iterative computation is to be 
performed using the approximate values of the solution vectors specified in 
array X. 

When the value of IGUSS is 0, the approximate values of the solution vectors 
are not specified and set to zero by DM_VAMLID. 

When the value of IGUSS is not 0, the iterative computation is performed using 
the approximate values of the solution vectors specified in array X. 

INFO .......... Input.  The control information of the iteration. 

One dimensional array of INFO(14). 

For example, for symmetric coefficient matrix A, INFO is set as follows; 

INFO(1)=-1 

INFO(2)=NTHRD100 

INFO(3)=0 

INFO(5)=1 

INFO(6)=2000 

INFO(10)=1 

INFO(11)=1000 

For example, for unsymmetric coefficient matrix A, INFO is set as follows; 

INFO(1)=-1 

INFO(2)=NTHRD100 

INFO(3)=0 

INFO(5)=2 

INFO(6)=2000 

INFO(7)=5 

INFO(8)=20 

INFO(10)=2 

INFO(11)=1000 

INFO(12)=10 

INFO(13)=0 

Where NTHRD is the number of threads which are executed in parallel. 

INFO(1)=MAXLVL  

Input.  Maximal number of levels in the algebraic multilevel iteration method. 

MAXLVL<0 The optimal level evaluated internally is used. 

MAXLVL=0 The multi-level method is not used. 

MAXLVL>0 The coarser level than the specified depth is not used. 
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(See 6),7) in a, “Notes,” in (3), “Comments on use.”) 

INFO(2)=MINUK 

Input.  Minimal number of unknowns for the smallest linear system in the 
deepest level in the inner iteration. It is recommendable to set MINUK very 
larger than the number of threads NTHRD and very smaller than N. For 
example, 100NTHRD. 

INFO(3)=NORM 

Input.  The type of normalization. 

NORM<1 The matrix is normalized from the right and the left by the inverse of 
the square root of the main diagonal of A. This effects that the main diagonal of 
the normalized matrix A is equal to one and the matrix is symmetric if A is 
symmetric.  

It is recommendable to use symmetrical normalization. However, in some cases 
the non-symmetrical normalization can produce faster convergence. Criterion 
value for judgment of convergency. 

 (See 4) in a, “Notes,” in (3), “Comments on use.”) 

NORM1 The matrix is normalized from the left by the inverse of the main 
diagonal of A. This effects that the main diagonal is equal to one but the 
normalized matrix will be non-symmetric even if the matrix A is symmetric.  

 (See 5) in a, “Notes,” in (3), “Comments on use.”) 

INFO(4) 

Output. Number of levels. 

INFO(5)=METHOT 

Input. The iterative method used in the outer iteration.  

METHOT=1 Preconditioned ORTHOMIN is used. It should be used if the 
matrix A is symmetric and a symmetrical normalization is used.  

METHOT1 Restarted and truncated GMRES is used. It should be used if the 
matrix A is non-symmetric or a non-symmetrical normalization is used. 

INFO(6)=ITMXOT 

Input.  The maximal number of iteration steps in the outer iteration, for example 
2000. If the maximum iteration number of outer iteration is reached the 
processing is terminated and the returned solution does not fulfill the stopping 
criterion. 

INFO(7)=NRESOT 

Input.  The number of residuals in the orthogonalization procedure of the outer 
iteration, i.e. truncation after NRESOT residuals. For example, 5. Only used if 
GMRES is applied.  

(See 5) in a, “Notes,” in (3), “Comments on use.”) 

INFO(8)=NRSTOT 

Input.  Input. After NRSTOT iteration steps the outer iteration is restarted. For 
example , 20. If it is NRSTOT<1 there is no restart. Only used if GMRES is 
applied.  

(See 5) in a, “Notes,” in (3), “Comments on use.”) 
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INFO(9)=ITEROT 

Output.  The number of iteration steps in the outer iteration procedure.  

INFO(10)=METHIN 

Input.  The iterative method used in the inner iteration. 

METHIN=1 Preconditioned ORTHOMIN is used. It should be used if the 
matrix A is symmetric and a symmetrical normalization is used.  

METHIN1 Restarted and truncated GMRES is used. It should be used if the 
matrix  A is non-symmetric or a non-symmetrical normalization is used.  

INFO(11)=ITMXIN 

Input.  The maximal number of iteration steps in the inner iteration, for example 
1000.  

If ITMXIN is reached the processing is continued on the outer iteration.  

INFO(12)=NRESIN  

Input. The number of residuals in the orthogonalization procedure of the inner 
iteration, ie. truncation after NRESIN residuals. For example, 10. Only used if 
GMRES is applied.  

(See 5) in a, “Notes,” in (3), “Comments on use.”) 

INFO(13)=NRSTIN 

Input.  After NRSTIN iteration steps the inner iteration is restarted.  

Only used if GMRES is applied. If it is NRSTIN<1 there is no restart. 

(See 5) in a, “Notes,” in (3), “Comments on use.”) 

INFO(14) 

Output.  The average number of the inner iteration. 

EPSOT ........ Input.  The desired accuracy for the solution. The outer iteration is stopped in 

the k-th iteration step if the normalized kkk bxAr ˆˆˆ   residual of the current 

approximation xk satisfies the condition  

brk
ˆEPSOTˆ   

where yyy T2   denotes the Euclidean norm Â  and b̂  are the coefficient 

matrix and the right hand side of the normalized linear system. 

EPSIN ........ Input.  The tolerance for the inner iteration. Normally 10-3 is optimal. 

X ................ Input.  The approximate values of solution vectors can be specified in X(1:N). 

Output.  Solution vectors are stored in X. 

One-dimensional array X(N). 

W ............... Work area.  One-dimensional array W(NW) . 

NW ............ Input. Size of the work array W.  

NW  NT(3NAMAX+5) +3(NLVL+1)NBANDMAXT 
           +max(NAMAX NT, 7NT+LR0(NT)), 

where, NT=N+MAXT, and MAXT is the maximum number of threads which 
are created in this routine.  NBAND is the maximum of the lower and upper 
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bandwidth of the matrix, NLVL is the number of levels in the algebraic 
multilevel iteration method.  When INFO(1)<0, NLVL is 10.  
NAMAXNDIAG 

(See 3) in a, “Notes,” in (3), “Comments on use.”) 

LR0(NT)=4NT if ORTHOMIN is used and 

LR0(NT)=(2NRES+1)NT if GMRES with truncation after NRES residuals is 
used (See section 'Comment on use'). 

It is sufficient to set NRES=MAX(NRESOT,NRESIN). 

IW .............. Work area.  One-dimensional array IW(NIW). 

NIW ........... Input. Size of the work array IW.  

NIW  MAXT((6MAXT+12NAMAX)(NLVL+1)+8NBAND+3000) 
           +4(N+MAXT), 

where, MAXT is the maximum number of threads which are created in this 
routine.  NBAND is the maximum of the lower and upper bandwidth of the 
matrix, NLVL is the number of levels in the algebraic multilevel iteration 
method. When INFO(1)<0, NLVL is 10.  NAMAXNDIAG 

(See 3) in a, “Notes,” in (3), “Comments on use.”) 

ICON ......... Output.  Condition code. 

See Table DM_VAMILD-1. 

 
Table DM_VAMILD-1   Condition codes 

Code Meaning Processing 

0 No error  

10700 Vector vpos could not be found. Processing is used with 
vpos=1. 

10800 Curable break down in GMRES.  Processing is continued. 

20001 Stopping criterion could not be reached  within 
the given number of iteration steps. 

Processing is discontinued. 
The approximate value 
obtained is output in array X, 
but the precision is not 
assured. 

20003 Non-curable break down in GMRES. Processing is discontinued. 

 20005 Non-curable break down in ORTHOMIN by 
pTAp=0 with p0. 

20006 Non-curable break down in ORTHOMIN by 
pTr=0. 

 

30000 N<1,N>KA,NDIAG<1, ISW<1, ISW>2.  

30104 Incorrect diagonal offset NOFST.  

30105 Main diagonal is missed.  

30200 Matrix is not an M-matrix.   
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Table DM_VAMILD-1   Condition codes 

Code Meaning Processing 

30210 Matrix condensation fails by non-positive 
value. 

Processing is discontinued. 

30212 There is a zero entry on the main diagonal.  

30310 Too small integer work array.  

30320 Too small real work array.  

 

(3) Comments on use 

a. Notes 

1) A coefficient matrix arising from order two finite difference discretization or, in 
some cases, from order one finite element discretization of an elliptical boundary 
value problem is an M-matrix.  It can be produced using the routines for 
discretization of a boundary value problem for second order partial differential 
equation (DM_VPDE2D, DM_VPDE3D).  

To be an M-matrix means that 

 All main diagonal entries are positive ai,i>0 for all i=1,...,N and all other 
entries are non-positive ai,j 0 for all i,j=1,...,N with ij. 

 There is a positive vector vpos so Avpos is positive.  

If the first condition is not fulfilled, processing is not continued with ICON = 
30200. This routine can not find the vector vpos (ICON = 10700) it is set vpos 
=(1,...,1) the matrix A is assumed and processing is continued with the risk of a 
breakdown in AMLI with ICON = 30212, 30210 or slow convergence or 
breakdowns in the outer or inner iteration.  

To define the coarse levels the rectangular grid used to assemble the coefficient 
matrix is recovered. If the recovering is not successful there can be a breakdown 
in AMLI with ICON=30212, 30210, a disproportionately increase of the number 
of diagonals in the coarser levels or slow convergence or breakdowns in the 
outer or inner iteration. 

2) When multiple linear equations with the same coefficient matrix but different 
right hand side vectors are solved set ISW=1 in the first call and ISW=2 in the 
second and all subsequent calls. Then the coarse level matrices assembled in the 
first call are reused. 

3) Normally it is sufficient to set NAMAX=NDIAG in the formulas for the length 
for the work arrays. It can happen that the number of diagonals in the coarse 
level matrices is larger than the number of diagonals in the given matrix. In this 
case NAMAX has to be increased.  

4) It is always recommendable to use ORTHOMIN if possible. This requires that 
the matrix is symmetric. As this routine removes easily computable unknowns 
from the matrix before the iteration starts it can happen that the actual iteration 
matrix is symmetric even if the given matrix is not. Therefore it is 
recommendable to try ORTHOMIN with symmetrical normalization first if there 
is a chance that the iteration matrix is symmetric.  
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5) If the matrix is non-symmetric it is recommendable to use the non-symmetric 
normalization together with GMRES. Normally it is sufficient to truncate after 
NRESOT=5 residuals and to restart after 20 steps in the outer iteration. In the 
inner iteration it can be necessary to select a higher value for the truncation 
NRESIN and to restart after a larger number of iteration steps or even to forbid a 
restart. If NRESIN is increased it can happen that more real work space is 
required. Then it is necessary to increase NRES in the formula for the length 
workspace NW but, NRES can be set to a smaller value than NRESOT. In 
general the convergence of GMRES method becomes better as NRESIN and 
NRESOT are set to larger. But it requires longer computation time and larger 
amount of memory. 

6) This routine tries to find the optimal number of levels. In some rare applications 
the computing time can be reduced by setting the number of levels by hand but 
normally the improvements are not significant. 

7) The preconditioner bases on a nested incomplete block factorizations using the 
Schur complement.   The matrix An, n=1,...,MAXLVL1 of each level can be 
blocked as follows choosing the sets of eliminated unknown from the 
coordination in a virtual grid: 

An = 








2221

1211

AA

AA
. 

 And define a matrix S = A22  A21 A11
-1 A12, which is called Schur complement. 

An can be factorized as follows: 

An = 


















 

S

AAI

IA

A

0

0 12
1

11

21

11 . 

 The matrix An+1of next level n+1 can be regarded as a Schur complement matrix 
with approximating the A11

-1 to a diagonal matrix.  These incomplete 
factorization are used for preconditioning in this routine. 

 

b. Example 

 The partial differential equation  

 1)(
2

2

2

1
2

2









 cu
x

u

x

u
 

 is solved on the domain [0,1]2. Dirichlet boundary conditions are set to 

 u=0. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT NONE 
      INTEGER   MAXT,N1,N2,KA,NA,NLVL,L1,L2,NW,NIW 
 
      PARAMETER(MAXT=4,N1=1281,N2=1537,NLVL=10, 
     &          L1=N1,L2=N2, 
     &          KA=N1*N2,NA=5, 
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     &          NW=(3*NA+5)*(KA+MAXT)+3*(NLVL+1)*N1*MAXT 
     &             +11*(KA+MAXT), 
     &          NIW=((6*MAXT+12*NA)*(NLVL+1) 
     &             +8*N1+2000)*MAXT+4*(KA+MAXT)) 
 
      INTEGER          NOFST(NA),INFO(100),IW(NIW) 
      DOUBLE PRECISION X1(L1),X2(L2), 
     &                 A1(L1,L2),A2(L1,L2),B1(L1,L2),B2(L1,L2), 
     &                 C(L1,L2),F(L1,L2), 
     &                 W(NW),EPSIN,EPSOT 
 
      DOUBLE PRECISION A(KA,NA),B(KA),U(KA),SOL(3*N1*N2), 
     &                 RHS(N1*N2),RHSC(N1*N2),TMP 
 
      INTEGER Z1,Z2,NDIAG,N,ICON,ISW,IGUSS,I,Z,NBAND 
C 
C--------------------------------------------------------------- 
C 
C***** CREATE NODE COORDINATES 
C 
      DO 11 Z1=1,N1 
        X1(Z1)=DBLE(Z1-1)/DBLE(N1-1) 
11    CONTINUE 
      DO 12 Z2=1,N2 
        X2(Z2)=DBLE(Z2-1)/DBLE(N2-1) 
12    CONTINUE 
C 
C***** COEFFICIENTS IN THE PARTIAL DIFFERENTIAL EQUATION : 
C 
      DO 2000 Z2=1,N2 
 
        DO 20 Z1=1,N1 
          A1(Z1,Z2)=1 
          A2(Z1,Z2)=1 
          B1(Z1,Z2)=0 
          B2(Z1,Z2)=0 
          C (Z1,Z2)=1 
          F (Z1,Z2)=1 
20    CONTINUE 
C 
C***** DIRICHLET BOUNDARY CONDITIONS: 
C 
      C(1,Z2)=1 
      F(1,Z2)=0 
      C(N1,Z2)=1 
      F(N1,Z2)=0 
      IF (Z2.EQ.1) THEN 
        DO 25 Z1=1,N1 
          C(Z1,1)=1 
          F(Z1,1)=0 
 25     CONTINUE 
      END IF 
      IF (Z2.EQ.N2) THEN 
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        DO 26 Z1=1,N1 
          C(Z1,N2)=1 
          F(Z1,N2)=0 
 26     CONTINUE 
      END IF 
2000  CONTINUE 
 
      N=N1*N2 
      CALL DM_VPDE2D(A1,L1,N1,N2,A2,X1,X2,B1,B2,C,F,A,KA,NA,N, 
     &               NDIAG,NOFST,B,ICON) 
      PRINT*,'ICON OF DM_VPDE2D =',ICON 
      IF (ICON.GT.29999) GOTO 9999 
C 
      DO Z=1,N 
      RHS(Z)=B(Z) 
      ENDDO 
      NBAND=0 
      DO I=1,NDIAG 
      NBAND=MAX(NBAND,ABS(NOFST(I))) 
      ENDDO 
C 
C--------------------------------------------------------------- 
C 
C**** CALL DAMLI: 
C 
      ISW=1 
      IGUSS=0 
C 
      INFO(1)=-1 
      INFO(2)=MAXT*100 
      INFO(3)=0 
      INFO(5)=1 
      INFO(6)=2000 
      INFO(10)=1 
      INFO(11)=1000 
C 
      EPSOT=1.D-6 
      EPSIN=1.D-3 
 
      CALL DM_VAMLID(A,KA,NDIAG,N,NOFST,B,ISW,IGUSS, 
     &     INFO,EPSOT,EPSIN,U,W,NW,IW,NIW,ICON) 
      PRINT*,'ICON OF DM_VAMLID = ',ICON 
      IF (ICON.GT.29999) GOTO 9999 
C 
9999  CONTINUE 
C 
      DO I=1,NBAND 
      SOL(I)=0.0D0 
      SOL(NBAND+N+I)=0.0D0 
      ENDDO 
      DO Z=1,N 
      SOL(NBAND+Z)=U(Z) 
      ENDDO 
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      CALL DM_VMVSD(A,KA,NDIAG,N,NOFST,NBAND,SOL,RHSC,ICON) 
      TMP=0 
      DO Z=1,N 
      TMP=MAX(TMP,ABS((RHS(Z)-RHSC(Z))/(RHS(Z)+1.0))) 
      ENDDO 
C 
      PRINT*,' ERROR = ',TMP 
C 
      END 
 

(4) Method 

  Before the calculation starts the linear system is normalized to achieve that the main 
diagonal contains only the entries one. Moreover rows containing only zero entries 
outside the main diagonal (typically arising from Dirichlet boundary conditions) are 
removed from the matrix. The normalized system is solved by preconditioned 
ORTHOMIN or GMRES method see [79] in Appendix A, “References.” The AMLI 
preconditioner bases on a nested block incomplete factorizations using approximative 
Schur complements, see [6] in Appendix A, “References.”   The set of simultaneously 
eliminated unknowns are defined by alternating direction technique after a virtual grid has 
been recovered from the diagonals of the matrix. The linear system on the coarsest level 
is normalized and is iteratively solved by ORTHOMIN or GMRES. 
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DM_VBCSCC 
 

System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate 
Gradient Stabilized (l) [BICGSTAB(l)] method, compressed column storage method) 

CALL DM_VBCSCC (A, NZ, NROW, NFCNZ, N, B, ITMAX, EPS, IGUSS, L, X, ITER, 
                                      W, IW, ICON) 

 

(1) Function 

 This subroutine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient 
Stabilized(l) method, a system of linear equations with unsymmetric or indefinite sparse 
matrices as coefficient matrices. 

 Ax = b 

 The n  n coefficient matrix is stored using the compressed column storage method.  
Vectors b and x are n-dimensional vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see   
Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the 
SSL II Extended Capability User's Guide II. 

(2) Parameters 

A ............... Input.  The nonzero elements of a coefficient matrix are stored in A. 

The coefficient matrix is stored in A(1:NZ). 

One-dimensional array A(NZ) 

For an explanation of the compressed column storage method, see Figure 
DM_VMVSCC-1 in the description of a DM_VMVSCC routine, 
"Multiplication of a real sparse matrix and a real vector (compressed column 
storage method)". 

NZ ............... Input.  The total number of the nonzero elements belong to a coefficient matrix 
A. 

NROW ..... Input.  The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ ..... Input.  The position of the first nonzero element stored in an array A by the 
compressed column storage method which stores the nonzero elements column 
by column.  NFCNZ(N+1) = NZ + 1. 

One-dimensional array NFCNZ(N+1). 

N ................ Input.  Order n of matrix A 

B ................ Input.  The right-side constant vectors of a system of linear equations are stored 
in B(1:N). 

One-dimensional array B(N). 

ITMAX ...... Input.  Upper limit of iterative count for BICGSTAB(l) method.  The value of 
ITMAX should usually be set to about 2000. 

EPS ............ Input.  Criterion value for judgment of convergence. 
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When the value of EPS is 0.0 or smaller, EPS is set to 10-6. 

(See 1) in a, "Notes," in (2), "Comments on use.") 

IGUSS ........ Input.  Control information specifying whether iterative computation is to be 
performed using the approximate values of the solution vectors specified in 
array X. 

When the value of IGUSS is 0, the approximate values of the solution vectors 
are not specified and set to zero by DM_VBCSCC. 

When the value of IGUSS is not 0, the iterative computation is performed using 
the approximate values of the solution vectors specified in array X. 

L ................ Input.  The order of stabilizer in BICGSTAB(l) method. 1  L  8. The value of 
L should usually be set to 1 or 2.  

(See 3) in a, "Notes," in (3), "Comments on use.") 

X ............... Input.  The approximate values of solution vectors can be specified in X(1:N). 

Output.  Solution vectors are stored in X. 

One-dimensional array X(N). 

ITER .......... Output.  Actual iterative count for BICGSTAB(l) method. 

W ............. Work area.  One-dimensional array W(NZ). 

IW ............ Work area.  Two-dimensional array IW(2, NZ). 

ICON ......... Output.  Condition code. 

See Table DM_VBCSCC-1. 

 
Table DM_VBCSCC-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 A breakdown state occurred. Processing is discontinued. 

20001 The iteration count reached the maximum limit. Processing is discontinued.  
The already calculated 
approximate value is output 
to array X, but its precision 
is not assured. 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1,  
ITMAX  0, L < 1, or L > 8. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) When the residual Euclidean norm is equal to or smaller than the product of the 
first residual Euclidean norm and the value of EPS, it is assumed that the 
solution converged.  The error between the correct solution and the calculated 
approximate solution is roughly equal to the product of the matrix A condition 
number and the value of EPS. 

2) When L is set to one,  the algorithm is same as that of BICGSTAB method. As 
the value of L is lager, the cost of one iteration becomes larger however the total 
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number of iteration is reduced.  Consequently in some cases it becomes faster 
with larger L. 
 

b. Example 

  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

fuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 
and a3 are some constants.  The matrix A in Diagonal format is generated by the 
subroutine init_mat_diag.  Then it is converted into the storage scheme in 
compressed column storage. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      PARAMETER (L = 4) 
 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG) 
      DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1), 
     $          W(K*NDIAG),IW(2,K*NDIAG) 
      DIMENSION X(N),B(N),SOLEX(N),Y(N) 
 
      PRINT *,'    BICGSTAB(L) METHOD' 
      PRINT *,'    COMPRESSED COLUMN STORAGE' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
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      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
      DO J=1,N 
      NTOPCFG=1 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN 
C 
      NCOL=J-NOFST(I) 
      A(NUMNZ)=DIAG2(J,I) 
      NROW(NUMNZ)=NCOL 
C 
      IF(NTOPCFG.EQ.1)THEN 
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF 
C 
      NUMNZ=NUMNZ+1 
      ENDIF 
C 
      ENDDO 
      ENDDO 
      NFCNZ(N+1)=NUMNZ 
      NNZ=NUMNZ-1 
 
      CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,SOLEX, 
     $             B,W,IW,ICON) 
      ERR1 = ERRNRM(SOLEX,X,N) 
C 
      X(1:N)=0.0D0 
      CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X, 
     $             Y,W,IW,ICON) 
      ERR2 = ERRNRM(Y,B,N) 
 
      IGUSS = 0 
      ITMAX = 2000 
      EPS=1.0D-8 
 
      CALL DM_VBCSCC(A,NNZ,NROW,NFCNZ,N,B,ITMAX 
     &          ,EPS,IGUSS,L,X,ITER,W,IW,ICON) 
 
      ERR3 = ERRNRM(SOLEX,X,N) 
      CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X, 
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     $             Y,W,IW,ICON) 
      ERR4 = ERRNRM(Y,B,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    DM_VBCSCC ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT *,'    ITER MAX = ',ITMAX 
      PRINT *,'    ITER = ',ITER 
      PRINT * 
      PRINT *,'    EPS = ',EPS 
      PRINT * 
      PRINT *,'    INITIAL ERROR = ',ERR1 
      PRINT *,'    INITIAL RESIDUAL ERROR = ',ERR2 
      PRINT *,'    CRITERIA RESIDUAL ERROR = ',ERR2*EPS 
      PRINT * 
      PRINT *,'    ERROR = ',ERR3 
      PRINT *,'    RESIDUAL ERROR = ',ERR4 
      PRINT * 
      PRINT * 
 
      IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
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      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
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        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* ABSOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
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      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 

 (4) Method 

 The BICG algorithm is described in [72] in Appendix A, "References."  The 
BICGSTAB(l) algorithm is a modification of the BICGSTAB method,  see [77] and[32] 
in Appendix A, "References." 
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DM_VBCSD 
 

System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate 
Gradient Stabilized (l) [BICGSTAB(l)] method, diagonal format storage method) 

CALL DM_VBCSD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS,  
                                    L, X, ITER, ICON) 

 

(1) Function 

 This subroutine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient 
Stabilized(l) method, a system of linear equations with unsymmetric or indefinite sparse 
matrices as coefficient matrices. 

 Ax = b 

 The n  n coefficient matrix is stored using the diagonal format storage method.  Vectors 
b and x are n-dimensional vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see   
Chapter 4 "Iterative linear equation solvers and Convergence,"  in Part I, "Outline," in the 
SSL II Extended Capability User's Guide II. 

 (2) Parameters 

A ............... Input.  The nonzero elements of a coefficient matrix are stored in A. 

The coefficient matrix is stored in A(1:N,1:NDIAG). 

Two-dimensional array A(K,NDIAG) 

For an explanation of the diagonal format storage method, see b, "Diagonal 
format storage method of general sparse matrices," in Section 3.2.1.1, "Storing 
the general sparse matrices," in Part I, "Outline," in the SSL II Extended 
Capability User's Guide II. 

K ................ Input.  Size of first-dimension of array A ( N). 

NDIAG ...... Input.  Number of columns in array A and size of array NOFST.  Must be 
greater than or equal to the number of nonzero diagonals in matrix A.  Size of 
second-dimension of array A. 

N ................ Input.  Order n of matrix A 

NOFST ....... Input.  Offsets of diagonals of A stored A.  Main diagonal has offset 0, 
subdiagonals have negative offsets, and superdiagonals have positive offsets.  

One-dimensional array NOFST(NDIAG) 

B ................ Input.  The right-side constant vectors of a system of linear equations are stored 
in B(1:N). 

One-dimensional array B(N). 

ITMAX ...... Input.  Upper limit of iterative count for BICGSTAB(l) method.  The value of 
ITMAX should usually be set to about 2000. 

EPS ............ Input.  Criterion value for judgment of convergence. 

When the value of EPS is 0.0 or smaller, EPS is set to 10-6. 

(See 1) in a, "Notes," in (3), "Comments on use.") 
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IGUSS ........ Input.  Control information specifying whether iterative computation is to be 
performed using the approximate values of the solution vectors specified in 
array X. 

When the value of IGUSS is 0, the approximate values of the solution vectors 
are not specified and set to zero by DM_VBCSD. 

When the value of IGUSS is not 0, the iterative computation is performed using 
the approximate values of the solution vectors specified in array X. 

L ................ Input.  The order of stabilizer in BICGSTAB(l) method. 1  L  8. The value of 
L should usually be set to 1 or 2.  

(See 3) in a, "Notes," in (3), "Comments on use.") 

X ............... Input.  The approximate values of solution vectors can be specified in X(1:N). 

Output.  Solution vectors are stored in X. 

One-dimensional array X(N). 

ITER .......... Output.  Actual iterative count for BICGSTAB(l) method. 

ICON ......... Output.  Condition code. 

See Table DM_VBCSD-1. 

 
Table DM_VBCSD-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 A breakdown state occurred. Processing is discontinued. 

20001 The iteration count reached the maximum limit. Processing is discontinued.  
The already calculated 
approximate value is output 
to array X, but its precision 
is not assured. 

30000 N < 1, N > K, NDIAG < 1, ITMAX  0, L < 1, 
or L > 8. 

Processing is discontinued. 

32001 |NOFST(I)| > N – 1  

 

(3) Comments on use 

a. Notes 

1) When the residual Euclidean norm is equal to or smaller than the product of the 
first residual Euclidean norm and the value of EPS, it is assumed that the 
solution converged.  The error between the correct solution and the calculated 
approximate solution is roughly equal to the product of the matrix A condition 
number and the value of EPS. 

2) Conditions for using the diagonal format 

 The external diagonal vector element of coefficient matrix A must be set to 0. 
The order in which diagonal vectors (refer to Section 3.2.1.1, "Storage method 
for general sparse matrices" in the SSL II Extended Capabilities User's Guide II) 
are stored into array A is not restricted. 
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 The merit of this method is that a matrix vectors can be calculated without using 
an indirect index.  The demerit of this method is that a matrix without a diagonal 
structure cannot be stored efficiently. 

3) When L is set to one,  the algorithm is same as that of BICGSTAB method. As 
the value of L is lager, the cost of one iteration becomes larger however the total 
number of iteration is reduced.  Consequently in some cases it becomes faster 
with larger L. 
 

b. Example 

  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

fuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 
and a3 are some constants.  The matrix A in Diagonal format is generated by the 
subroutine init_mat_diag. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (EPS = 1D-8) 
      PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      PARAMETER (L = 4) 
      PARAMETER(NVW=3*K) 
 
      DIMENSION NOFST(NDIAG) 
      DIMENSION A(K,NDIAG) 
      DIMENSION X(N),B(N),SOLEX(N),Y(N) 
      DIMENSION VW(NVW) 
 
      PRINT *,'    BICGSTAB(L) METHOD' 
      PRINT *,'    DIAGONAL FORMAT' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
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      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      NBANDL=0 
      NBANDR=0 
      DO I=1,NDIAG 
      IF(NOFST(I).LT.0)THEN 
      NBANDL=MAX(NBANDL,-NOFST(I)) 
      ELSE 
      NBANDR=MAX(NBANDR,NOFST(I)) 
      ENDIF 
      ENDDO 
 
      VW(1+NBANDL:N+NBANDL) = SOLEX(1:N) 
      CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON2) 
 
      X(1:N)=0.0D0 
      ERR1 = ERRNRM(SOLEX,X,N) 
      VW(1+NBANDL:N+NBANDL) = X(1:N) 
      CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2) 
      ERR2 = ERRNRM(Y,B,N) 
 
      IGUSS = 0 
      ITMAX = 2000 
 
      CALL DM_VBCSD(A,K,NDIAG,N,NOFST,B,ITMAX 
     &          ,EPS,IGUSS,L,X,ITER,ICON) 
 
      ERR3 = ERRNRM(SOLEX,X,N) 
      VW(1+NBANDL:N+NBANDL) = X(1:N) 
      CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2) 
      ERR4 = ERRNRM(Y,B,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    DM_VBCSD ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT *,'    NBANDL = ',NBANDL,', NBANDR = ',NBANDR 
      PRINT *,'    ITER MAX = ',ITMAX 
      PRINT *,'    ITER = ',ITER 
      PRINT * 
      PRINT *,'    EPS = ',EPS 
      PRINT * 
      PRINT *,'    INITIAL ERROR = ',ERR1 
      PRINT *,'    INITIAL RESIDUAL ERROR = ',ERR2 
      PRINT *,'    CRITERIA RESIDUAL ERROR = ',ERR2*EPS 
      PRINT * 
      PRINT *,'    ERROR = ',ERR3 
      PRINT *,'    RESIDUAL ERROR = ',ERR4 
      PRINT * 
      PRINT * 
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      IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
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      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
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          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* ABSOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 

 (4) Method 

 The BICG algorithm is described in [72] in Appendix A, "References."  The 
BICGSTAB(l) algorithm is a modification of the BICGSTAB method,  see [77] and[32] 
in Appendix A, "References." 
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DM_VBCSE 
 

System of linear equations with unsymmetric or indefinite sparse matrices (Bi-Conjugate 
Gradient Stabilized (l)  [BICGSTAB(l) ] method, ELLPACK format storage method) 

CALL DM_VBCSE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, 
                                   L, X, ITER, ICON) 

 

(1) Function 

 This subroutine solves, using the BICGSTAB(l) method, Bi-Conjugate Gradient 
Stabilized (l) method, a system of linear equations with unsymmetric or indefinite sparse 
matrices as coefficient matrices. 

 Ax = b 

 The n  n coefficient matrix is stored using the ELLPACK format storage method.  
Vectors b and x are n-dimensional vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see   
Chapter 4 "Iterative linear equation solvers and Convergence,"  in Part I, "Outline," in the 
SSL II Extended Capability User's Guide II. 

(2) Parameters 

A ............... Input.  The nonzero elements of a coefficient matrix are stored in 
A(1:N,1:IWIDT). 

Two-dimensional array A(K,IWIDT) 

For an explanation of the ELLPACK format storage method, see Section 3.2.1.1, 
"Storing the general sparse matrices," in Part I, "Outline," in the SSL II 
Extended Capability User's Guide II. 

K ................ Input.  Size of first-dimension of A and ICOL.  (K  n). 

IWIDT ....... Input.  Maximum number of row-vector-direction nonzero elements of 
coefficient matrix A.  Size of second-dimension of A and ICOL. 

N ................ Input.  Order n of matrix A. 

ICOL ......... Input.  Column index used in ELLPACK format.  Used to indicate to which 
column vector the corresponding element of A belongs. 

Two-dimensional array ICOL(K,IWIDT) 

B ............... Input.  The right-side constant vectors of a system of linear equations are stored 
in B(1:N). 

One-dimensional array B(N) 

ITMAX ...... Input.  Upper limit of iterative count for BICGSTAB(l) method.  The value of 
ITMAX should usually be set to about 2000. 

EPS ............ Input.  Criterion value for judgment of convergence. 

When the value of EPS is 0.0 or smaller, EPS is set to 10-6. 

(See 1) in a, "Notes," in (3), "Comments on use.") 
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IGUSS ........ Input.  Control information specifying whether iterative computation is to be 
performed using the approximate values of the solution vectors specified in 
array X. 

When the value of IGUSS is 0, the approximate values of the solution vectors 
are not specified and set to zero by DM_VBCSE. 

When the value of IGUSS is not 0, the iterative computation is performed using 
the approximate values of the solution vectors specified in array X. 

L ................ Input.  The order of stabilizer in BICGSTAB(l) method. 1  L  8. The value of 
L should usually be set to 1 or 2.  

(See 2) in a, "Notes," in (3), "Comments on use.") 

X ............... Input.  The approximate values of solution vectors can be specified in X(1:N). 

Output.  Solution vectors are stored in X(1:N). 

One-dimensional array X(N) 

ITER .......... Output.  Iterative count for BICGSTAB(l) method. 

ICON .......... Output.  Condition code. 

See Table DM_VBCSE-1. 

 
Table DM_VBCSE-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 A breakdown state occurred. Processing is discontinued. 

20001 The iteration count reached the maximum limit. Processing is discontinued.  
The already calculated 
approximate value is output 
to array X, but its precision 
is not assured. 

30000 K < 1, IWIDT < 1, N < 1, ITMAX  0, N > K, 
L < 1, or L > 8. 

Processing is discontinued. 

30001 The band width is zero. 

 

(3) Comments on use 

a. Notes 

1) When the residual Euclidean norm is equal to or smaller than the product of the 
first residual Euclidean norm and the EPS, it is assumed that the solution 
converged. The error between the correct solution and the calculated 
approximate solution is roughly equal to the product of the matrix A condition 
number and the EPS. 

2) When L is set to one,  the algorithm is same as that of BICGSTAB method. As 
the value of L is lager, the cost of one iteration becomes larger however the total 
number of iteration is reduced.  Consequently in some cases it becomes faster 
with larger L. 
 

b. Example 
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  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

 fuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 

and a3 are some constants.  The matrix A in Ellpack format is generated by the 
subroutine init_mat_ell. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (EPS = 1D-8) 
      PARAMETER (NORD=60,NX =NORD ,NY = NORD,NZ = NORD, 
     &            N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (IWIDT = 7) 
      PARAMETER (L = 4) 
      DIMENSION ICOL(K,IWIDT) 
      DIMENSION A(K,IWIDT) 
      DIMENSION X(N),B(N),SOLEX(N),Y(N) 
 
      PRINT *,'    BICGSTAB(L) METHOD' 
      PRINT *,'    ELLPACK FORMAT' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL 
     &          ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K) 
 
      CALL DM_VMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON2) 
 
      X(1:N)=0.0D0 
      ERR1 = ERRNRM(SOLEX,X,N) 
      CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2) 
      ERR2 = ERRNRM(Y,B,N) 
 
      IGUSS = 0 
      ITMAX = 2000 
 
      CALL DM_VBCSE(A,K,IWIDT,N,ICOL,B,ITMAX 



 DM_VBCSE 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-33 

     &          ,EPS,IGUSS,L,X,ITER,ICON) 
 
      ERR3 = ERRNRM(SOLEX,X,N) 
      CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2) 
      ERR4 = ERRNRM(Y,B,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    DM_VBCSE ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT *,'    ITER MAX = ',ITMAX 
      PRINT *,'    ITER = ',ITER 
      PRINT * 
      PRINT *,'    EPS = ',EPS 
      PRINT * 
      PRINT *,'    INITIAL ERROR = ',ERR1 
      PRINT *,'    INITIAL RESIDUAL ERROR = ',ERR2 
      PRINT *,'    CRITERIA RESIDUAL ERROR =',ERR2*EPS 
      PRINT * 
      PRINT *,'    ERROR = ',ERR3 
      PRINT *,'    RESIDUAL ERROR = ',ERR4 
      PRINT * 
      PRINT * 
 
      IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
 
      STOP 
      END 
 
C ======================================== 
C INITILIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_ELL(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ 
     &          ,XL,YL,ZL,IWIDTH,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION A_L(NDIVP,IWIDTH) 
      DIMENSION ICOL_L(NDIVP,IWIDTH) 
C 
      IF (IWIDTH .LT. 1) THEN 
         WRITE (*,*) 'SUBROUTINE INIT_MAT_ELL:' 
         WRITE (*,*) ' IWIDTH SHOULD BE GREATER THAN OR EQUAL TO 1' 
         RETURN 
      ENDIF 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+  SHARED(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ 
!$OMP+        ,XL,YL,ZL,IWIDTH,LEN,NDIVP) 
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C IWIDTH CANNOT BE GREATER THAN 7 
      IWIDTH_LOC = IWIDTH 
      IF (IWIDTH .GT. 7) IWIDTH_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO J = 1,IWIDTH 
      DO I = 1,NDIVP   
      A_L(I,J) = 0.0 
      ICOL_L(I,J) = I 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN 
        JS = J 
        L = 1 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NX/NY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,' ERROR; K0.GT.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NX*NY*(K0-1))/NX+1 
        I0 = JS - NX*NY*(K0-1) - NX*(J0-1) 
        IF (IWIDTH_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) THEN 
            A_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
            ICOL_L(J,L) = JS-NX*NY 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) THEN 
            A_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
            ICOL_L(J,L) = JS-NX 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) THEN 
            A_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
            ICOL_L(J,L) = JS-1 
            L = L+1 
          ENDIF 
        ENDIF 
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        A_L(J,L) = 2.0/HX**2+VC 
        IF (IWIDTH_LOC .GE. 5) THEN 
          A_L(J,L) = A_L(J,L) + 2.0/HY**2 
          IF (IWIDTH_LOC .GE. 7) THEN 
            A_L(J,L) = A_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        ICOL_L(J,L) = JS 
        L = L+1 
        IF (IWIDTH_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) THEN 
            A_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
            ICOL_L(J,L) = JS+1 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) THEN 
            A_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
            ICOL_L(J,L) = JS+NX 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) THEN 
            A_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
            ICOL_L(J,L) = JS+NX*NY 
          ENDIF 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
  
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
C ABSOLUTE ERROR 
C | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
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      END 
 

 (4) Method 

 The BICG algorithm is described in [72] in Appendix A, "References."  The 
BICGSTAB(l) algorithm is a modification of the BICGSTAB method,  see [77] and[32] 
in Appendix A, "References."  

 



 DM_VBLU 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-37 

DM_VBLU 
 

LU decomposition of banded real matrices (Gaussian elimination) 

CALL DM_VBLU(A,K,N,NH1,NH2,EPSZ,IS,IP,ICON) 

 

(1) Function 

 This subroutine executes LU decomposition for banded matrix A of n  n, lower 
bandwidth h1, and upper bandwidth h2 using Gaussian elimination. 

 PA = LU 

 where, P is the permutation matrix of the row vector, L is the unit lower banded matrix, 
and U is the upper banded matrix. 

 n > h1  0, n > h2  0 

(2) Parameters 

A ............... Input.  Store banded coefficient matrix A. 

Matrix A is stored in A(NH1 + 1:2  NH1 + NH2 +1,1:N). For A(1:NH1, 1:N), 
set zero for the elements of matrix A outside the band. 

See Figure DM_VBLU-1. 

Output.  LU-decomposed matrices L and U are stored. 

See Figure DM_VBLU-2. 

This is a double precision real two-dimensional array A(K,N). 

The value of A(2NH1+NH2+2:K, 1:N) is not assured after operation. 

K ............... Input.  The size of first dimension of array A( 2NH1+NH2+1). 

N ............... Input.  Order n of matrix A. 

NH1 .......... Input.  Lower bandwidth size h1. 

NH2 .......... Input.  Upper bandwidth size h2. 

EPSZ ........ Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is set. 

(See note 1) in (3), “Comments on use.”) 

IS .............. Output.  Indicates row vector exchange count. 

When IS is 1, exchange count is even. 

When IS is -1, exchange count is odd. 

(See 4) in (3), “Comments on use.”) 

IP .............. Output.  One-dimensional array of size n.  The transposition vector to contain 
row exchange information is stored. 

(See note 2) in (3), “Comments on use.”) 

ICON ........ Output.  Condition code. 

See Table DM_VBLU-1. 
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Figure DM_VBLU-1   Storing matrix A in array A 

 The column vector of matrix A is continuously stored in columns of array A in the same 
manner as diagonal elements of banded matrix A aii, i = 1, ..., n, are stored in A(nh1 + nh2 
+ 1,1:n). 

 Upper banded matrix part 

 aj-i,j, i = 1, ..., nh1, j = 1, ..., n, j - i  1 is stored in A (nh1 + 1:nh1 + nh2, + 1,1:n). 

 Lower banded matrix part 

 aj+i,j, i = 1, ... , nh1, j = 1, ... , n, j + i  n is stored in A(nh1 + nh2 + 2:2  nh1 + nh2 + 1, 
1:n).  For A(1:nh1,1:n), set zero for the elements of matrix A outside the band. 

 * indicates undefined values. 
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Figure DM_VBLU-2   Storing LU-decomposed matrix L and U in array A 

 LU-decomposed unit upper banded matrix except diagonal elements 

 uj-i+1,j, i = 1, ... , h1 + h2, j = 1, ... , n, j - i + 1  1 is stored in A(1:h1 + h2,1:n). 

 Lower banded matrix part 

 1j+i, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in A(h1 + h2 + 1:2  h1 + h2 + 1,1:n). 

 * indicates undefined values. 
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Table DM_VBLU-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All elements in some row of array A were zero, 
or the pivot became relatively zero.  Matrix A 
may be singular. 

Processing is discontinued. 

30000 N < 1, NH1  N, NH1 < 0, NH2  N, NH2 < 0, 
K < 2NH1+NH2+1, EPSZ < 0. 

 

 

(3) Comments on use 

a. Notes 

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LU decomposition.  In this case, processing is 
discontinued with ICON = 20000.  When unit round off is u, the standard value 
of EPSZ is 16  u. 

 When the computation is to be continued even if the pivot is small, assign the 
minimum value to EPSZ.  In this case, however, the result is not assured. 

2) In this subroutine, the row vector is exchanged using partial pivoting.  That is, 
when the I-th row (I  J) is selected as the pivot row in the J-th stage (J = 1, ..., 
n) of decomposition, the contents of the I-th row and J-th row are exchanged.  To 
indicate this exchange, I is stored in IP (J). 

3) The linear equation can be solved by calling subroutine DM_VBLUX following 
this subroutine.  Normally, the linear equation can be solved in one step by 
calling subroutine DM_VLBX. 

4) The determinant can be obtained by multiplying IS and A(h1 + h2 + 1,i), where i 
= 1, ... , n. 

b. Example 

 The system of linear equations with banded matrices is solved with the input of a 
banded real matrix of n = 10000, nh1 = 2000, nh2 = 3000. 

  
      implicit real*8(a-h,o-z) 
      parameter(nh1=2000,nh2=3000,n=10000) 
      parameter(ka=2*nh1+nh2+1,n2=n) 
      real*8 a(ka,n2),b(n),dwork(4500) 
      integer ip(n) 
 
c 
      ix=123 
      nwork=4500 
      nn=nh1+nh2+1 
      do i=1,n 
      call dvrau4(ix,a(nh1+1,i),nn,dwork,nwork,icon) 
      do j=1,nh1+nh2+1 
      enddo 
      enddo 
c 
c     zero clear 
c 
      print*,'nh1=',nh1,',nh2=',nh2,',n=',n 
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c 
c     a(1:nh1,n)=0.0d0 
c 
      do j=1,n 
      do i=1,nh1 
      a(i,j)=0.0d0 
      enddo 
      enddo 
c 
c     left upper triangular part 
c 
      do j=1,nh2 
      do i=1,nh2+1-j 
      a(i+nh1,j)=0.0d0 
      enddo 
      enddo 
c 
c    right rower triangular part 
c 
      nbase=2*nh1+nh2+1 
      do j=1,nh1 
      do i=1,j 
      a(nbase-i+1,n-nh1+j)=0.0d0 
      enddo 
      enddo 
c 
c     set right hand constant vector 
c 
      do i=1,n 
      b(i)=0.0d0 
      enddo 
c 
      do i=1,n 
      nptr=i-1 
      do j=max(nptr+1-nh2,1),min(n,nptr+nh1+1) 
      b(j)=b(j)+a(j-i+nh1+nh2+1,i) 
      enddo 
      enddo 
 
c 
      epsz=0.0d0 
      call gettod(tt1) 
      call dm_vblu(a,ka,n,nh1,nh2,epsz,is,ip,icon ) 
      call gettod(tt2) 
      print*,'factor time (wall clock)=',(tt2-tt1)*1.0d-6 
c 
      call gettod(tt1) 
      call dm_vblux(b,a,ka,n,nh1,nh2,ip,icon) 
      call gettod(tt2) 
      print*,'solve time (wall clock)=',(tt2-tt1)*1.0d-6 
 
c 
      tmp=0.0d0 
      do i=1,n 
      tmp=max(tmp,dabs(b(i)-1)) 
      enddo 
c 
      print*,'maximum error =',tmp 
c 
      stop 
      end 
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(4) Method 

 LU-decomposition is executed using outer product type Gaussian elimination. 
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DM_VBLUX 
 

A system of linear equations with LU-decomposed banded real matrices 

CALL DM_VBLUX(B,FA,K,N,NH1,NH2,IP,ICON) 

 

(1) Function 

 This subroutine solves a linear equation having an LU-decomposed banded matrix as 
coefficient. 

 LUx = b 

 where, L is a unit lower banded matrix of lower bandwidth h1, U is an upper banded 
matrix of upper bandwidth h (= min (h1 + h2, n-1)), and b is an n-dimensional real 
constant vector.  The order of matrix A before LU decomposition, lower bandwidth, and 
upper bandwidth is n, h1, and h2. 

 n > h1  0, n > h2  0 

(2) Parameters 

B ................ Input.  Constant vector b. 

Output.  Solution vector x. 

Double precision real one-dimensional array B(N). 

FA  ............. Input.  LU-decomposed matrices L and U are stored. 

See Figure DM_VBLUX-1. 

This is a Double precision real two-dimensional array FA(K,N). 

The value of FA(2NH1+NH2+2:K, 1:N) is not assured after operation. 

K ............... Input.  The size of first dimension of array FA( 2NH1+NH2+1). 

N ................ Input.  Order n of matrix A. 

NH1 ........... Input.  Lower bandwidth h1 of banded matrix A. 

NH2 ........... Input.  Upper bandwidth h2 of banded matrix A. 

IP ............... Input.  One-dimensional array of size n.  Transposition vector which indicates 
the history of row vector exchange. 

ICON ......... Output.  Condition code. 

See Table DM_VBLUX-1. 
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Figure DM_VBLUX-1   Storing LU-decomposed matrices L and U into array FA 

 LU-decomposed unit upper banded matrix except diagonal elements 

 uj-i+1,j, i = 1, ... , h1 + h2, j = 1, ... , n, j - i + 1  1 is stored in FA(1:h1 + h2,1:n). 

 Lower banded matrix part 

 1j+i, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in FA(h1 + h2 + 1:2  h1 + h2 + 1,1:n). 

 * indicates undefined values. 
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Table DM_VBLUX-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N < 1, NH1  N, NH1 < 0, NH2  N, NH2 < 0, 
K < 2NH1+NH2+1. 
Diagonal element of lower banded matrix was 
zero. 
Contents of IP are invalid. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) A system of linear equations with banded matrices can be solved by calling this 
subroutine following the subroutine DM_VBLU.  In this case, specify the output 
parameters of the subroutine DM_VBLU without modification of the input 
parameters (except the constant vector) of this subroutine.  Normally, a solution 
can be obtained in one step by calling the subroutine DM_VLBX. 

b. Example 

 The system of linear equations with banded matrices is solved with the input of a 
banded real matrix of n = 10000, h1 = 2000, h2 = 3000. 

  
      implicit real*8(a-h,o-z) 
      parameter(nh1=2000,nh2=3000,n=10000) 
      parameter(ka=2*nh1+nh2+1,n2=n) 
      real*8 a(ka,n2),b(n),dwork(4500) 
      integer ip(n) 
 
c 
      ix=123 
      nwork=4500 
      nn=nh1+nh2+1 
      do i=1,n 
      call dvrau4(ix,a(nh1+1,i),nn,dwork,nwork,icon) 
      do j=1,nh1+nh2+1 
      enddo 
      enddo 
c 
c     zero clear 
c 
      print*,'nh1=',nh1,',nh2=',nh2,',n=',n 
c 
c     a(1:nh1,n)=0.0d0 
c 
      do j=1,n 
      do i=1,nh1 
      a(i,j)=0.0d0 
      enddo 
      enddo 
c 
c     left upper triangular part 
c 
      do j=1,nh2 
      do i=1,nh2+1-j 
      a(i+nh1,j)=0.0d0 
      enddo 
      enddo 
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c 
c    right rower triangular part 
c 
      nbase=2*nh1+nh2+1 
      do j=1,nh1 
      do i=1,j 
      a(nbase-i+1,n-nh1+j)=0.0d0 
      enddo 
      enddo 
c 
c     set right hand constant vector 
c 
      do i=1,n 
      b(i)=0.0d0 
      enddo 
c 
      do i=1,n 
      nptr=i-1 
      do j=max(nptr+1-nh2,1),min(n,nptr+nh1+1) 
      b(j)=b(j)+a(j-i+nh1+nh2+1,i) 
      enddo 
      enddo 
 
c 
      epsz=0.0d0 
      call gettod(tt1) 
      call dm_vblu(a,ka,n,nh1,nh2,epsz,is,ip,icon ) 
      call gettod(tt2) 
      print*,'factor time (wall clock)=',(tt2-tt1)*1.0d-6 
c 
      call gettod(tt1) 
      call dm_vblux(b,a,ka,n,nh1,nh2,ip,icon) 
      call gettod(tt2) 
      print*,'solve time (wall clock)=',(tt2-tt1)*1.0d-6 
 
c 
      tmp=0.0d0 
      do i=1,n 
      tmp=max(tmp,dabs(b(i)-1)) 
      enddo 
c 
      print*,'maximum error =',tmp 
c 
      stop 
      end 
 

(4) Method 

 The linear equation with LU-decomposed matrices as coefficient is solved by forward and 
back-substitution. 
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DM_VCGD 
 

A system of linear equations with symmetric positive definite sparse matrices (preconditional 
CG method, diagonal format storage method) 

CALL DM_VCGD(A,K, NW, N,NDLT,B,IPC,ITMAX,ISW,OMEGA,EPS, 
                                 IGUSS,X,ITER,RZ,W,IW,ICON) 

 

(1) Function 

 This subroutine solves a linear equation having an n  n normalized symmetric positive 
definite sparse matrix as coefficient matrix using the preconditioned CG method. 

 Ax = b 

 The n  n matrix coefficient is normalized so that its diagonal elements are 1, and non-
zero elements except the diagonal elements are stored using the diagonal format spares 
matrix storage method. 

 For the normalization of a linear equation with a symmetric positive definite sparse 
matrix as its coefficient matrix and the diagonal format storage method, refer to the SSL 
II Extended Capability User’s Guide II, Part I, “Overview,” Section 3.2.1.2, “Storage 
method for symmetric positive definite sparse matrix.”  For the diagonal format storage 
method, it is assumed that non-zero elements of the coefficient matrix A exist only in 
vectors on some diagonal lines parallel to the main diagonal vector. 

 When the linear equation is obtained by discretizing a partial differential equation on the 
lattices parallel to the boundary of the specifically defined domain, it has the structure 
described above. 

 In this case, information indicating the position (column vector of coefficient matrix) of 
each element is not necessary.  Only the distance from the main diagonal vector is 
required.  This enables efficient execution. 

(2) Parameters 

A ............... Input.  The normalized sparse matrix is stored in A(1:N,1:NW). 

The value of A(N + 1:K,*) is not assured after operation. 

Two-dimensional array A(K,NW). 

Non-zero elements of the coefficient matrix of normalized symmetric positive 
definite sparse matrix are stored in diagonal format. 

For the diagonal format storage method for normalized symmetric positive 
definite sparse matrices, refer to the SSL II Extended Capability User’s Guide II, 
Part I, “Overview,” Section 3.2.1.2, “Storage method for symmetric positive 
definite sparse matrix,” b., “Diagonal format storage method for symmetric 
positive definite sparse matrix.” 

K ............... Input.  The size of the first dimension of array A ( n). 

NW ........... Input.  Number of vectors in the diagonal direction where the coefficient matrix 
A is stored using the diagonal format storage method.  Even number. The size 
of the second dimension of array A. 

N ............... Input.  Order n of matrix A. 
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NDLT ....... Input.  One-dimensional array NDLT (NW) indicating the distance from the 
main diagonal vector. 

For the diagonal format storage method for normalized symmetric positive 
definite sparse matrices, refer to the SSL II Extended Capability User’s Guide II, 
Part I, “Overview,” Section 3.2.1.2, “Storage method for symmetric positive 
definite sparse matrix,” b., “Diagonal format storage method for symmetric 
positive definite sparse matrix.” 

B ............... Input.  The constant vector of right-hand-side terms of linear equation is stored 
in B(1:N). 

One-dimensional array B(N). 

IPC ........... Input.  Preconditioner control information. 

When 1:  No preconditioner. 

When 2:  Neumann preconditioner. 

When 3:  Preconditioner using block incomplete Cholesky decomposition. 
In this case, OMEGA needs to be specified. 

(See note 3) in (3), “Comments on use.”) 

ITMAX ..... Input.  Upper limit of the iteration count ( 0). 

ISW ........... Input.  Control information. 

1:  Initial calling. 

2:  Second or subsequent calling. 

The values of A, NDLT, W, and IW must not be changed because the values set 
at the initial calling are used for these parameters. 

(See note 1) in (3), “Comments on use.”) 

OMEGA ... Input.  Modification for incomplete Cholesky decomposition.  0  OMEGA  1 

This is used when IPC = 3. 

(See note 3) in (3), “Comments on use.”) 

EPS ........... Input.  Value used for convergency judgment. 

When 0 is set,  |b| is set as EPS.  For , 10-6 is set. 

(See note 2) in (3), “Comments on use.”) 

IGUSS ....... Input.  Sets the information indicating whether the iteration is started from an 
approximate value of the solution vector specified in array X. 

When 0 is set, the approximate value of the solution vector is not specified. 

When non-zero is set, the iterative computation is started from an approximate 
value of the solution vector specified in array X. 

X ............... Input.  An approximate value of the solution vector of the linear equation can be 
specified in X(1:N). 

Output.  The solution vector linear equation is stored in X(1:N). 

This is a one-dimensional array X(N). 

ITER.......... Output.  The actual iteration count. 

RZ ............. Output.  The square root of the residual rz after the convergency judgment. 
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(See note 2) in (3), “Comments on use.”) 

W ............... Work area. 

When IPC=3, two-dimensional array of size W(N+MAXT, NW+8). 

When IPC3, two-dimensional array of size W(N+MAXT, 7), 

where MAXT is the maximum number of threads executed in parallel. 

IW ............. Work area. 

When IPC=3,  two-dimensional array of size IW(N+2MAXT,4). 

When IPC3,  two-dimensional array of size IW(MAXT,2), 

where MAXT is the maximum number of threads executed in parallel. 

ICON ........ Output.  Condition code.  See Table DM_VCGD-1. 

 
Table DM_VCGD-1   Condition codes 

Code Meaning Processing 

0 No error  

10000 Diagonal vectors in A were reordered as U/L in 
ascending distance order. 

Processing is continued. 

20001 The upper iteration count limit was reached. Processing is discontinued. 
The approximate value 
obtained is output in array 
X, but the precision is not 
assured. 

20003 Breakdown occurred.  

30003 ITMAX  0 Processing is discontinued. 

30005 K < N  

30006 Incomplete LLT decomposition could not be 
performed. 

 

30007 The pivot became minus.  

30089 NW is not an even number.  

30091 NBAND = 0  

30092 NW  0  

30093 K  0, n  0  

30096 OMEGA < 0, OMEGA > 1  

30097 IPC < 1, IPC > 3  

30102 The upper triangular part is not correctly 
stored. 

 

30103 The lower triangular part is not correctly 
stored. 
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Table DM_VCGD-1   Condition codes 

Code Meaning Processing 

30104 The number of diagonal vectors in the upper 
triangular does not equal that in the lower 
triangular. 

Processing is discontinued. 

30105 ISW  1, 2  

30200 |NDLT(i) | > n1 or NDLT(i) = 0  

 

(3) Comments on use 

a. Notes 

1) When multiple sets of the linear equations having the same coefficient matrix 
and different constant vectors are solved with IPC = 3: 

-  First, they are solved with ISW = 1. 

-  Second, they are solved with ISW = 2. 

In the second and subsequent operations, the linear equations are solved by 
reusing the result of incomplete Cholesky decomposition obtained in the first 
calling. 

2) Convergency judgment 

A judgment on whether the n-th iteration solution converged is made when 

RZ rz EPS =  < ( )  is satisfied. 

Where, rz = rTM1r, and r is the residual vector r = b  Axn , M is the 
preconditioner matrix. 

3) Preconditioner 

Two types of preconditioners and a function without a preconditioner are 
provided. 

To solve an elliptic partial differential equation by use a discretization, use a 
preconditioner derived by the incomplete Cholesky method. 

When A = I  N, the preconditioner M of linear equation (I  N) x = b is as 
follows: 

IPC=1 No preconditioner M = I 

IPC=2 Neumann M1= (I + N) 

IPC=3 Block incomplete Cholesky method M = LLT, where M is the 
preconditioner matrix which is constituted from incomplete Cholesky 
decomposed matrices of  the each blocked matrix of A that is partitioned by the 
number of threads executed in parallel.  

When IPC=2, the preconditioner also must be a positive definite matrix. For 
example, diagonal dominance of the matrix ( I + N ) is a sufficient condition for 
the positive definiteness. Additionally, note that using a preconditioner may not 
improve the convergence when the preconditioner does not approximate the 
inverse matrix of A in some situations such that the maximum absolute value of 
the eigenvalues of the matrix N is larger than one. 
When IPC=3, the user must specify a value for OMEGA(0 ≤ OMEGA ≤ 1). 
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When OMEGA = 0, the incomplete Cholesky method is used.  When OMEGA = 
1, a modified incomplete Cholesky decomposition method is used. 

For linear equations obtained from the discretization of a partial differential 
equation, it has been proved that the optimal value of OMEGA is between 0.92 
and 1.00. 

When IPC = 3, the equation is rearranged in order of wavefront, to increase the 
efficiency of the preconditioner. 

b. Example 

 This example solves a system of linear equations with symmetric positive 
definition matrices in which n = 51200. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      INTEGER ND,N,KA,WMAX,NDIAG 
      PARAMETER (ND=80,MAXT=4,N=ND**3,KA=N) 
      PARAMETER (WMAX=8) 
      REAL*8  A(KA,WMAX),B(KA),X(KA),OMEGA,EPS 
      REAL*8  IW(MAXT,2),W(N+MAXT,7) 
      INTEGER DELTA(WMAX),IPREC,ITER,ITMAX 
C 
      CALL LAP3D(A,DELTA,KA,N,ND,WMAX,NDIAG) 
C 
      CALL RHS(A,N,KA,NDIAG,W,DELTA,B) 
C 
      EPS=1D-6 
      ITMAX=2000 
      ISW=1 
      IGUSS=0 
      IPREC=2 
C 
      CALL DM_VCGD(A,KA,NDIAG,N,DELTA,B,IPREC,ITMAX,ISW,OMEGA, 
     &     EPS,IGUSS,X,ITER,RZ,W,IW,ICON) 
      PRINT*,'ICON=',ICON 
      PRINT*,'X(1)=',X(1) 
      PRINT*,'X(N)=',X(N) 
      STOP 
      END 
C  
      SUBROUTINE LAP3D(A,DELTA,KA,N,ND,NDMAX,NDIAG) 
      INTEGER NDMAX,NDIAG,N,I,J,L 
      INTEGER DELTA(NDMAX),ND,NX,NY 
      REAL*8  A(KA,NDMAX) 
 
      DO J=1,NDMAX 
      DO I=1,KA 
      A(I,J)=0D0 
      ENDDO 
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      ENDDO 
 
      DO J=1,NDMAX 
      DELTA(J)=0 
      ENDDO 
  
C 3D PROBLEM 
      NDIAG=6 
      NX=ND 
      NY=ND 
      DO I=1,N 
      L=I  
      IF((L/NX)*NX.NE.L.AND.L.LE.N-1) THEN 
        A(I,1)=-1.D0/6.D0 
      ENDIF 
      ENDDO 
      DO I=1,N 
      L=I 
      IZ=(L-1)/(NX*NY) 
      IY=(L-1-IZ*NX*NY)/NX 
      IF(L.LE.N-NX.AND.IY.NE.NY-1) THEN 
        A(I,2)=-1.D0/6.D0 
      ENDIF 
      ENDDO 
      DO I=1,N 
      L=I  
      IF(L.LE.N-NX*NY) THEN 
        A(I,3)=-1.D0/6.D0 
      ENDIF 
      ENDDO 
      DO I=1,N 
      L=I  
      IF(((L-1)/NX)*NX.NE.L-1.AND.L.GE.2.AND.L.LE.N) THEN 
        A(I,4)=-1.D0/6.D0 
      ENDIF 
      ENDDO 
      DO I=1,N 
      L=I  
      IZ=(L-1)/(NX*NY) 
      IY=(L-1-IZ*NX*NY)/NX 
      IF(L.GE.NX+1.AND.L.LE.N.AND.IY.NE.0) THEN 
        A(I,5)=-1.D0/6.D0 
      ENDIF 
      ENDDO 
      DO I=1,N 
      L=I  
      IF(L.GE.NX*NY+1.AND.L.LE.N) THEN 
        A(I,6)=-1.D0/6.D0 
      ENDIF 
      ENDDO 
      DELTA(1)=1 
      DELTA(2)=NX 
      DELTA(3)=NX*NY 
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      DELTA(4)=-1 
      DELTA(5)=-NX 
      DELTA(6)=-NX*NY 
      RETURN 
      END 
C 
      SUBROUTINE RHS(A,N,KA,NDIAG,DP,DELTA,B) 
      IMPLICIT NONE 
      INTEGER N,KA,NDIAG,I,J,DSHIFT 
      REAL*8 DP(*),A(KA,*),B(KA) 
      INTEGER DELTA(*),ICON 
C 
      DSHIFT=0 
      DO J=1,NDIAG 
      DSHIFT=MAX(DSHIFT,ABS(DELTA(J))) 
      ENDDO 
      DO I=1,3*N 
      DP(I)=0 
      ENDDO 
      DO I=1,N 
      DP(I+DSHIFT)=1.D0 
      ENDDO 
      CALL DM_VMVSD(A,KA,NDIAG,N,DELTA,DSHIFT,DP,B,ICON) 
      DO I=1,N 
      B(I)=B(I)+DP(DSHIFT+I) 
      ENDDO 
      RETURN 
      END 
 

(4) Method 

  The standard conjugate gradient method algorithm is used.  (See [30] in Appendix A, 
“References.”)   For the incomplete Cholesky method preconditioner, see [58] in 
Appendix A, “References.”   For vectorization by wavefront ordering, see [45] in 
Appendix A, “References.”   For the diagonal format storage method for sparse matrices, 
see [59], [52] in Appendix A, “References.” 

(5) Acknowledgement 

  Fujitsu is grateful to the authors of ITPACK and NSPCG who permitted the use of the 
routines of modified incomplete Cholesky decomposition and wavefront ordering. 
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DM_VCGE 
 

A system of linear equations with symmetric positive definite sparse matrices (preconditional 
CG method, ELLPACK format storage method) 

CALL DM_VCGE(A,K, NW, N,ICOL,B,IPC,ITMAX,ISW,OMEGA,EPS, 
                                 IGUSS,X,ITER,RZ,W,IW,ICON) 

 

(1) Function 

 This subroutine solves a linear equation having an n  n normalized symmetric positive 
definite sparse matrix as a coefficient matrix using the preconditioned CG method. 

 Ax = b 

 The n  n coefficient matrix is normalized so that the diagonal elements are 1, and the 
non-zero elements except the diagonal elements are stored by the ELLPACK format 
storage method. 

 For the normalization of linear equations with symmetric positive definite sparse 
matrices as coefficient matrices, refer to the SSL II Extended Capability User’s Guide II, 
Part I, “Overview,” Section 3.2.1.2, “Storage method for symmetric positive definite 
sparse matrices.” 

(2) Parameters 

A ............... Input.  The normalized sparse matrix is stored in A(1:N,1:NW). 

This is a two-dimensional array A(K, NW). 

For the ELLPACK format storage method for normalized symmetric positive 
definite sparse matrices, refer to the SSL II Extended Capability User’s Guide II, 
Part I, “Overview,” Section 3.2.1.2·a, “ELLPACK format storage method for 
symmetric positive definite sparse matrix.” 

(See note 1) in (3), “Comments on use.”) 

K .............. Input.  Size of the first dimension of arrays A and ICOL ( N).  Multiple of 
NTHRD. 

NW .......... Input. 

When the maximum numbers of non-zero elements of row vectors of upper and 
lower triangular matrices are NSU and NSL, respectively, 2  max (NSU, NSL). 

For details, refer to the SSL II Extended Capability User’s Guide II, Part I, 
“Overview,” Section 3.2.1.2·a, “ELLPACK format storage method for 
symmetric positive definite sparse matrix.” 

N .............. Input.  Order n of matrix A. 

IOCL ....... Input.  The information on the column vector to which non-zero elements 
belong is stored in ICOL(1:N,1:NW). 

This is a two-dimensional array ICOL(K, NW). 

B .............. Input.  The constant vector of right-hand-side terms of the linear equation is 
stored in B(1:N).  This is a one-dimensional array B(N). 

IPC ........... Input.  Preconditioner control information. 

When 1:  No preconditioner. 
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When 2:  Neumann preconditioner. 

When 3:  Preconditioner using block incomplete Cholesky decomposition. 
                In this case, OMEGA needs to be specified. 

(See note 4) in (3), “Comments on use.”) 

ITMAX ..... Input.  Upper limit of the iteration count.  Positive integer. 

ISW ........... Input.  Control information.  (> 0) 

1:  Initial calling. 

2:  Second or subsequent calling.  The values of A, ICOL, W, and IW must not 
be changed because the values set at the initial calling are used in second or 
subsequent calls. 

(See note 2) in (3), “Comments on use.”) 

OMEGA ... Input.  Modification for incomplete Cholesky decomposition.  0  OMEGA  1 

EPS ........... Input.  Value used for convergency judgment. 

When RZ < EPS, it is assumed that convergency occurred. 

When EPS = 0,  |b| is set as EPS.  For , 10-6 is set. 

(See note 3) in (3), “Comments on use.”) 

IGUSS ...... Input.  Sets the information indicating whether an iteration is started from an 
approximate value of the solution vector specified in array X. 

When 0 is set, no approximate value of the solution vector is specified. 

When non-zero is set, an iterative computation is started from an approximate 
value of the solution vector specified in array X. 

X .............. Input.  An approximate value of the solution vector of the linear equation can be 
specified in X(1:N). 

After operation, output.  The solution vector of the linear equation is stored in 
X(1:N). 

This is a one-dimensional array X(N).   

ITER ......... Output.  The actual iteration count. 

RZ ............. Output.  The square root of residual rz after the convergency judgment. 
(See note 2) in (3), “Comments on use.”) 

W ............... Work area. 

When IPC=3,  two-dimensional array of size W(N+MAXT, NW+8). 

When IPC3,  two-dimensional array of size W(N+MAXT, 7), 

where MAXT is the maximum number of threads executed in parallel. 

IW ............. Work area. 

When IPC=3,  two-dimensional array of size IW(N+2MAXT, NW+5). 

When IPC3,  two-dimensional array of size W(MAXT, 2), 

where MAXT is the maximum number of threads executed in parallel. 

ICON ........ Output.  condition code. 

See Table DM_VCGE-1. 
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Table DM_VCGE-1   Condition codes 

Code Meaning Processing 

0 No error  

10000 Elements of A and ICOL are rearranged as 
U/L. 

Processing is continued. 

20001 The iteration count reaches the upper limit. Processing is discontinued. 
The approximate values 
that have been obtained are 
output in array X, but 
precision is not assured. 

20003 Breakdown occurred.  

30003 ITMAX  0 Processing is discontinued. 

30005 K < N  

30006 Incomplete LLT decomposition could not be 
executed. 

 

30007 Pivot became minus.  

30092 NW  0  

30093 K  0, N  0  

30096 OMEGA < 0, OMEGA > 1  

30097 IPC < 1, IPC > 3  

30098 ISW  1, 2  

30100 NW  2  max(NSU, NSL)  

30104 The upper triangular part or the lower 
triangular part is not correctly stored. 

 

Negative 
number 

The non-diagonal element is present in the  
icon row. 

 

 

(3) Comments on use 

a. Notes 

1) The sparse matrix is stored using the ELLPACK format storage method.  (See 
Appendix A, “References,” [45], [62].) 

The upper triangular part is stored in A(*,1:NW/2), and the lower triangular part 
is stored in A(*,NW/2 + 1:NW), where NW = 2  max(NSU,NSL). 

When IPC is other than 3 (when a preconditioner other than that using the 
incomplete Cholesky decomposition is specified), a less constrained storage 
method than those described in the following is accepted: SSL II Extended 
Capability User’s Guide II, Part I, “Overview,” Section 3.2.1.2·a, “ELLPACK 
format storage method for symmetric positive definite sparse matrix.”  That is, 
the following sparse matrix is also accepted as input:  A normalized symmetric 
positive definite sparse matrix excluding diagonal elements stored using the 
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ELLPACK format storage method for general sparse matrix.  In this case, the 
value of NW need not be 2  max(NSU,NSL). 

2) When multiple sets of linear equations having the same coefficient matrix and 
different constant vectors are solved with IPC = 3: 

-  The primary is solved using ISW = 1. 

-  The secondary, is solved using ISW = 2. 

In the second and subsequent operations, the linear equations are solved by 
reusing the result of the incomplete Cholesky decomposition obtained in the first 
calling. 

3) Convergency judgment 

A judgement on whether the n-th iteration solution has converged is made when   

RZ = )(rz  < EPS is satisfied. 

Where, rz = rTM 1r , and r is a residual vector r = b  Axn , and M is a 
preconditioner matrix. 

4) Preconditioner 

Two types of preconditioners and a function without a preconditioner are 
provided. 

When A = I  N, the preconditioner M of the linear equation (I  N) x = b is as 
follows: 

IPC=1 No preconditioner M = I 

IPC=2 Neumann M 1 = (I + N) 

IPC=3 Block incomplete Cholesky method M = LLT, where M is the 
preconditioner matrix which is constituted from incomplete Cholesky 
decomposed matrices of  the each blocked matrix of A that is partitioned by the 
number of threads executed in parallel. 

When IPC=2, the preconditioner also must be a positive definite matrix. For 
example, diagonal dominance of the matrix ( I + N ) is a sufficient condition for 
the positive definiteness. Additionally, note that using a preconditioner may not 
improve the convergence when the preconditioner does not approximate the 
inverse matrix of A in some situations such that the maximum absolute value of 
the eigenvalues of the matrix N is larger than one.  
When IPC=3, the user must specify a value for OMEGA(0 ≤ OMEGA ≤ 1). 

When OMEGA = 0, the incomplete Cholesky method is used.  When OMEGA = 
1, a modified incomplete Cholesky decomposition method is used. 

For a linear equation obtained from the discretization of the partial differential 
equation, it is proved that the optimal value of OMEGA is 0.92 to 1.00. 

When IPC = 3, the equation is rearranged in order of wavefront, to increase the 
efficiency of the preconditioner. 

b. Example 

 This example solves the system of linear equations with symmetric positive 
definition matrix with n = 51200. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
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when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      INTEGER NMAX,N,WMAX,W 
      PARAMETER (MAXT=4,NORD=80,WMAX=6) 
      PARAMETER (NMAX=NORD**3,N=NMAX) 
 
      REAL*8  RS(NMAX),X(NMAX),EPS,OMEGA,AP(NMAX),RZ 
      REAL*8  A(NMAX,WMAX),XW(NMAX+MAXT,7) 
      INTEGER ICOL(NMAX,WMAX),XIW1(MAXT,2),IPREC,I,ITMAX,ITER 
C 
      CALL SET(A,ICOL,NMAX,N,NORD,WMAX) 
      DO I=1,N 
      AP(I)=1.0D0 
      ENDDO 
      W=6 
      CALL DM_VMVSE(A,NMAX,W,N,ICOL,AP,RS,ICON) 
      DO I=1,N 
      RS(I)=RS(I)+1.0D0 
      ENDDO 
      ITMAX=2000 
      EPS=1D-6 
      ISW=1 
      IPREC=2 
      IGUSS=0 
      CALL DM_VCGE(A,NMAX,W,N,ICOL,RS,IPREC,ITMAX,ISW,OMEGA,EPS, 
     &             IGUSS,X,ITER,RZ,XW,XIW1,ICON) 
      PRINT*,'ICON = ',ICON 
C 
      PRINT*,'X(1)=',X(1) 
      PRINT*,'X(N)=',X(N) 
C 
      STOP 
      END 
C 
      SUBROUTINE SET(A,ICOL,NMAX,N,NORD,WMAX) 
      INTEGER WMAX,N,I,J 
      INTEGER ICOL(NMAX,WMAX),NORD 
      REAL*8  A(NMAX,WMAX) 
      N=N 
      DO J=1,WMAX 
      DO I=1,N 
       A(I,J)=0D0 
       ICOL(I,J)=I 
      ENDDO 
      ENDDO 
C 3D PROBLEM 
      NX=NORD 
      NY=NORD 
C 
      DO I=1,N 
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       IF((I/NX)*NX.NE.I.AND.I.LE.N-1) THEN 
        A(I,1)=-1.0D0/6.0D0 
        ICOL(I,1)=I+1 
       ENDIF 
      ENDDO 
C 
      DO I=1,N 
       IZ=(I-1)/(NX*NY) 
       IY=(I-1-IZ*NX*NY)/NX 
       IF(I.LE.N-NX.AND.IY.NE.NY-1) THEN 
        A(I,2)=-1.0D0/6.0D0 
        ICOL(I,2)=I+NX 
       ENDIF 
      ENDDO 
C 
      DO I=1,N 
       IF(I.LE.N-NX*NY) THEN 
        A(I,3)=-1.0D0/6.0D0 
        ICOL(I,3)=I+NX*NY 
       ENDIF 
      ENDDO 
C 
      DO I=1,N 
       IF(((I-1)/NX)*NX.NE.I-1.AND.I.GE.2.AND.I.LE.N) THEN 
        A(I,4)=-1.0D0/6.0D0 
        ICOL(I,4)=I-1 
       ENDIF 
      ENDDO 
C 
      DO I=1,N 
       IZ=(I-1)/(NX*NY) 
       IY=(I-1-IZ*NX*NY)/NX 
       IF(I.GE.NX+1.AND.I.LE.N.AND.IY.NE.0) THEN 
        A(I,5)=-1.0D0/6.0D0 
        ICOL(I,5)=I-NX 
       ENDIF 
      ENDDO 
C 
      DO I=1,N 
       IF(I.GE.NX*NY+1.AND.I.LE.N) THEN 
        A(I,6)=-1.0D0/6.0D0 
        ICOL(I,6)=I-NX*NY 
       ENDIF 
      ENDDO 
      RETURN 
      END 
 
 

(4) Method 

  The algorithm of the standard conjugate gradient method is used.  (See [30] in Appendix 
A, “References.”)  To precondition using the incomplete Cholesky method,  see [58] in 
Appendix A, “References.”  For vectorization by wavefront ordering, see [45] in 
Appendix A, “References.” 
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DM_VCLU 
 

LU decomposition of complex matrices (blocked LU decomposition method) 

CALL DM_VCLU(ZA,K,N,EPSZ,IP,IS,ICON) 

 

(1) Function 

 This subroutine executes LU decomposition for non-singular complex n  n matrices 
using blocked outer product type Gaussian elimination. 

 PA = LU 

 where, P is the permutation matrix which exchanges rows by partial pivoting, L is the 
lower triangular matrix, and U is unit upper triangular matrix (n  1). 

(2) Parameters 

ZA ............ Input.  Store matrix A in ZA(1:N,1:N). 

Output.  Matrices L and U are stored in ZA(1:N,1:N). 

See Figure DM_VCLU-1. 

This is a double precision complex two-dimensional array ZA(K,N). 

K............... Input.  The size of the first array dimension for storage ZA ( N). 

N .............. Input.  Order n of matrix A. 

EPSZ ........ Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is assumed.  (See note 1) in (3), 
“Comments on use.”) 

IP .............. Output.  The transposition vector indicating the history of row exchange by 
partial pivoting.  One-dimensional array of size n.  (See note 2) in (3), 
“Comments on use.”) 

IS ............. Output.  Information to obtain the determinant of matrix A.  The determinant is 
obtained by multiplying the n diagonal elements of array ZA by the value of IS 
after the operation. 

ICON ........ Output.  Condition code. 

See Table DM_VCLU-1. 
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Figure DM_VCLU-1   Storing L and U in array ZA after the operation 

 After LU decomposition of matrices L and U, the upper triangular part (except 
diagonal elements) of matrix U and L are stored in array ZA(I:N,I:N). 

 
Table DM_VCLU-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All elements in some row of array A were zero, 
or the pivot became relatively zero.  Matrix A 
may be singular. 

Processing is discontinued. 

30000 K < N, N < 1, or EPSZ < 0.0.  

 

(3) Comments on use 

a. Notes 

1) If a value is set for EPSZ, the value has the following meaning:  if the absolute 
value of the selected pivot is less than EPSZ, the pivot is assumed to be zero and 
processing is discontinued when ICON = 20000.  When unit round off is u, the 
standard value of EPSZ is 16u.  When the computation is to be continued even if 
the pivot becomes small, assign the minimum value to EPSZ.  In this case, 
however, the result is not assured. 

2) The transposition vector corresponds to the permutation matrix P in LU 
decomposition PA = LU with partial pivoting. 

In this subroutine, the contents of array ZA are exchanged using partial pivoting.  
That is, when the I-th row (I  J) is selected as the pivot row in the J-th stage (J = 
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I, ..., n) of decomposition, the contents of the I-th row and J-th row of array ZA 
are exchanged.  To indicate this exchange, I is stored in IP (J). 

3) The linear equation can be solved by calling subroutine DM_VCLUX following 
this subroutine.  Normally, the linear equation can be solved in one step by 
calling subroutine DM_VLCX. 

b. Example 

 A system of linear equations with a complex coefficient matrix is LU-
decomposed and solved. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N=2000,K=N+1) 
C 
      COMPLEX*16 A(K,N),B(N) 
      REAL*8     C 
      INTEGER    IP(N),IS 
C 
      C=SQRT(1.0D0/DBLE(1+N)) 
      T=DATAN(1.0D0)*8./(1+N) 
C 
      DO 100 J=1,N 
      DO 100 I=1,N 
      A(I,J)=DCMPLX(C*COS(T*I*J),C*SIN(T*I*J)) 
 100  CONTINUE 
C 
      DO 200 I=1,N 
      S=(0.,0.) 
      DO 200 J=1,N 
      S=S+DCMPLX(COS(T*I*J),SIN(T*I*J)) 
      B(I)=S*C 
 200  CONTINUE 
C 
      EPSZ=0.0D0 
      CALL DM_VCLU(A,K,N,EPSZ,IP,IS,ICON) 
C 
      CALL DM_VCLUX(B,A,K,N,IP,ICON) 
      PRINT*,'ICON=',ICON 
 
      ERROR=0.0D0 
      DO I=1,N 
      ERROR=MAX(ERROR,ABS(1.0D0-B(I))) 
      ENDDO 
      PRINT*,'ERROR =',ERROR 
 
      PRINT*,'ORDER=',N,' B(1)=',B(1),'B(N)=',B(N) 
      STOP 
      END 
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(4) Method 

  For details of the blocked LU decomposition method for outer product type, see [1], [30], 
[54], [55], [56], and [70] in Appendix A, “References.” 
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DM_VCLUX 
 

A system of linear equations with LU-decomposed complex matrix 

CALL DM_VCLUX(ZB,ZFA,KFA,N,IP,ICON) 

 

(1) Function 

 This subroutine solves a linear equation with an LU-decomposed complex coefficient 
matrices. 

 LUx = Pb 

 where, L is a lower triangular matrix of n  n, U is a unit upper triangular matrix of n  n, 
and P is a permutation matrix.  (Rows are exchanged by partial pivoting when the 
coefficient matrix is LU-decomposed.)  b is an n-dimensional complex constant vector, 
and x is an n-dimensional solution vector (n  1). 

(2) Parameters 

ZB ............ Input.  Constant vector b. 

Output.  Solution vector x. 

A double precision complex one-dimensional array of size n. 

ZFA .......... Input.  Matrices L and U are stored in ZFA(1:N,1:N). 

See Figure DM_VCLUX-1. 

This is a double precision complex two-dimensional array ZFA(KFA,N). 

KFA .......... Input.  The size of the first dimension of storage array ZFA ( N). 

N ............... Input.  Order n of matrices L and U. 

IP .............. Input.  The transposition vector which indicates the history of row exchange by 
partial pivoting.  A one-dimensional array of size n. 

(See note 2) in (3), “Comments on use,” for subroutine DM_VCLU.) 

ICON ......... Output.  Condition code. 

See Table DM_VCLUX-1. 
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Figure DM_VCLUX-1   Storing L and U in array ZFA 

 For LU-decomposed matrices L and U, L and the upper triangular part (except 
diagonal elements) of U are stored in array ZFA(1:N,1:N). 

 
Table DM_VCLUX-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 The coefficient matrix was singular. Processing is discontinued. 

30000 KFA <N, N < 1, or IP was invalid.  

 

(3) Comments on use 

a. Notes 

1) The linear equations can be solved by calling subroutine DM_VCLU, LU-
decomposing the coefficient matrix, then calling this subroutine.  Normally, the 
solution can be obtained in one step by calling subroutine DM_VLCX. 

b. Example 

 A system of linear equations with a complex coefficient matrix is LU-
decomposed and solved. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
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      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N=2000,K=N+1) 
C 
      COMPLEX*16 A(K,N),B(N) 
      REAL*8     C 
      INTEGER    IP(N),IS 
C 
      C=SQRT(1.0D0/DBLE(1+N)) 
      T=DATAN(1.0D0)*8./(1+N) 
C 
      DO 100 J=1,N 
      DO 100 I=1,N 
      A(I,J)=DCMPLX(C*COS(T*I*J),C*SIN(T*I*J)) 
 100  CONTINUE 
C 
      DO 200 I=1,N 
      S=(0.,0.) 
      DO 200 J=1,N 
      S=S+DCMPLX(COS(T*I*J),SIN(T*I*J)) 
      B(I)=S*C 
 200  CONTINUE 
C 
      EPSZ=0.0D0 
      CALL DM_VCLU(A,K,N,EPSZ,IP,IS,ICON) 
C 
      CALL DM_VCLUX(B,A,K,N,IP,ICON) 
      PRINT*,'ICON=',ICON 
 
      ERROR=0.0D0 
      DO I=1,N 
      ERROR=MAX(ERROR,ABS(1.0D0-B(I))) 
      ENDDO 
      PRINT*,'ERROR =',ERROR 
 
      PRINT*,'ORDER=',N,' B(1)=',B(1),'B(N)=',B(N) 
      STOP 
      END 
 

(4) Method 

  The linear equation with LU-decomposed complex matrix as its coefficient is solved by 
forward and back-substitution.  (See [54] in Appendix A, “References.”) 
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DM_VCMINV 
 

Inverse of complex matrix (blocked Gauss-Jordan method) 

CALL DM_VCMINV(ZA,K,N,EPSZ,ICON) 

 

(1) Function 

  This subroutine obtains the inverse A1 of the n  n non-singular complex matrix A 
using the Gauss-Jordan method. 

(2) Parameters 

ZA ............... Input.  Matrix A is stored in ZA(1:N,1:N). 

Output.  Matrix A1 is stored in ZA(1:N,1:N). 

The double precision complex two-dimensional array ZA(K,N). 

K ............... Input.  The size of the first dimension of the array ZA. ( N) 

N ............... Input.  Order n of matrix A. 

EPSZ ........ Input.  Judgment of relative zero of the pivot.  ( 0.0) 

When EPSZ is 0.0, the standard value is assumed. 

(See note 1) in (3), “Comments on use.”) 

ICON ........ Output.  Condition code. 

See Table DM_VCMINV-1. 

 
Table DM_VCMINV-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All row elements in matrix A are zero or the 
pivot becomes a relatively zero.  Matrix A may 
be singular. 

Processing is discontinued. 

30000 N < 1, K < N, or EPSZ < 0.0.  

 

(3) Comments on use 

a. Notes 

1) When the pivot element selected by partial pivoting is 0.0 or the absolute value 
is less than EPSZ, it is assumed to be relatively zero.  In this case, processing is 
discontinued with ICON=20000.  When unit round off is u, the standard value of 
EPSZ is 16u.  If the minimum value is assigned to EPSZ, processing is 
continued, but the result is not assured. 

b. Example 

The inverse of a matrix is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
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when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
cc    **example** 
      implicit complex*16 (a-h,o-z) 
      parameter(n=2000,k=n+1) 
c 
      complex*16    a(k,n) 
      complex*16    as(k,n),tmpz 
      real*8    c,t,tmp2,tmp 
c 
      c=sqrt(1.0d0/dble(n)) 
      t=datan(1.0d0)*8.d0/(n) 
c 
      do 100 j=1,n 
      do 100 i=1,n 
      a(i,j)=dcmplx(c*cos(t*(i-1)*(j-1)), 
     $              c*sin(t*(i-1)*(j-1))) 
      as(i,j)=dcmplx(c*cos(t*(i-1)*(j-1)), 
     $              -c*sin(t*(i-1)*(j-1))) 
 100  continue 
c 
      epsz=0.0d0 
      call  dm_vcminv(a,k,n,epsz,icon) 
cc 
      tmp=0.0d0 
      do j=1,n 
      do i=1,n 
      tmpz=(a(i,j)-as(i,j)) 
      tmp2=dabs(dble(tmpz))+dabs(dimag(tmpz)) 
      if(tmp2.gt.tmp)tmp=tmp2 
      enddo 
      enddo 
      print*,'order=',n,' , error = ',tmp 
  99  continue  
      stop 
      end 
 

(4) Method 

  This subroutine solves an inverse of matrix using the blocked Gauss-Jordan method (see 
[30] in Appendix A, “References.”). 
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DM_VGEVPH 
 

Generalized eigenvalue problem for real symmetric matrices (eigenvalues and eigenvectors) 
(Tridiagonalization, multisection method, and inverse iteration) 

CALL DM_VGEVPH (A, K, N, B, EPSZ, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE, 
                                      M, EV, ICON) 

 

(1) Function 

  This subroutine obtains all the eigenvalues and eigenvectors to solve a generalized 
eigenvalue problem. 

Ax = Bx 

where, A is an n  n real symmetric matrix and B is an n  n positive definite matrix. 

(2) Parameters 

A ............. Input.  The lower triangular part {aij | i  j} of real symmetric matrix A is stored 
in the lower triangular part {A(i,j) | i  j}of A(1:N,1:N). 

After calculation, the value of A is not assured. 

Two-dimensional double-precision real array A(K,N). 

K ............... Input.  Size of first-dimension of array A (K  N). 

N ............... Input.  Order n of real symmetric matrix A. 

B ............. Input.  The lower triangular part {bij | i  j} of the positive definite symmetric 
matrix B is stored in the lower triangular part {B(i,j) | i  j}of B(1:N,1:N). 

Output.  The LLT-decomposed matrix is stored. 
The lower triangular matrix L { lij | i  j} is stored in the lower triangular part 
{ B(i,j) | i  j } of B(1:N, 1:N). 

This is a two-dimensional double-precision real array of B(K,N). 

EPSZ ......... Input.  The zero judgment value of the pivot when B is LLT-decomposed. ( 
0.0) 

When EPSZ is 0.0, the standard value is assumed. 

(See 1) in a, “Notes,” in (3), “Comments on use. ”) 

NF ............. Input.  Number assigned to the first eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

NL ............. Input.  Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

IVEC ......... Input.  Control information. 

When the value of IVEC is 1, the eigenvalues and corresponding eigenvectors 
are calculated. 

When the value of IVEC is not 1, only the eigenvalues are calculated. 
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ETOL ........ Input.  Criterion value for checking whether the eigenvalues are numerically 
different from each other or are multiple.  When ETOL is less than 3.0D-16, 
this value is used as the standard value. 

CTOL ........ Input.  Criterion value for checking whether the adjacent eigenvalues can be 
considered to be approximately equal to each other. This check uses formula 
(3.1).  This value is used to assure the linear independence of the eigenvector 
corresponding to the eigenvalue belonging to approximately multiple 
eigenvalues (clusters). 

The value of CTOL should be generally 5.0D-12.  For a very large cluster, a 
large CTOL value is required. 

1.0D-6  CTOL  ETOL 

When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6. 

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the 
standard value. 

(See 2) in a, “Notes,” in (3), “Comments on use.”) 

NEV .......... Output.  Number of eigenvalues calculated.   

One-dimensional array NEV(5). 

The detail information is as follows: 

NEV(1) indicates the number of different eigenvalues calculated. 

NEV(2) indicates the number of approximately multiple, different eigenvalues 
(clusters) calculated. 

NEV(3) indicates the total number of eigenvalues (including multiple 
eigenvalues) calculated. 

NEV(4) indicates the number representing the first of the eigenvalues calculated. 

NEV(5) indicates the number representing the last of the eigenvalues calculated. 

E ................ Output.  Eigenvalues are stored in E. 

The eigenvalues calculated are stored in E(1:NEV(3)). 

One-dimensional array E(MAXNE). 

MAXNE .... Input.  Maximum number of eigenvalues that can be calculated. 

When it can be considered that there are two or more eigenvalues with 
multiplicity m, MAXNE must be set to a larger value than NL  NF + 1 + 2  m 
that is bounded by n.  Size of the dimension of array E. 

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be 
calculated. 

(See 3) in a, “Notes,” in (3), “Comments on use.”) 

M .............. Output.  Information about the multiplicity of eigenvalues calculated. 

M(i,l) indicates the multiplicity of the i-th eigenvalue i.  M(i,2) indicates the 
multiplicity of the i-th cluster when the adjacent eigenvalues are regarded as 
clusters. 

(See 2) in a, “Notes,” in (3), “Comments on use.”) 

Two-dimensional array M(MAXNE,2). 



DM_VGEVPH 

II-72 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

EV ............ Output.  When IVEC = 1, the eigenvectors corresponding to the eigenvalues are 
stored in EV. 

The eigenvectors are stored in EV(1:N,1:NEV(3)). 

Two-dimensional array EV(K,MAXNE). 

ICON ......... Output.  Condition code. 

See Table DM_VGEVPH-1. 

 
Table DM_VGEVPH-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 The pivot becomes negative at LLT 
decomposition of matrix B.  Matrix B is not 
positive. 

Processing is discontinued. 

20100 The pivot becomes relatively zero at LLT 
decomposition of matrix B.  Matrix B may be 
singular. 

20200 During calculation of clustered eigenvalues, the 
total number of eigenvalues exceeded the value 
of MAXNE. 

Processing is discontinued. 
The eigenvectors cannot be 
calculated, but the different 
eigenvalues themselves are 
already calculated. 
A suitable value for 
MAXNE to allow 
calculation to proceed is 
returned in NEV(3). 
(See 2) in a, “Notes,” in (3), 
“Comments on use.”) 

30000 NF < 1, NL > N, NL < NF, N < 1, K < N, 
MAXNE < NL - NF + 1, or EPSZ < 0. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LLT decomposition.  In this case, processing is 
discontinued with ICON=20100.  When unit round off is u,  the standard value 
of EPSZ is 16  u.  When the computation is to be continued even if the pivot is 
small, assign, the minimum value to EPSZ.  In this case, however, the result is 
not assured. 

2) This routine calculates eigenvalues independently from each other by dividing 
them into nonoverlapping, sequenced sets (parallel processing). 

When  = ETOL, the following condition is satisfied for consecutive eigenvalues 
 j (j = s - 1, s, ... , s + k, (k  0)): 















),max(1 1

1

ii

ii  (3.1) 
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If formula (3.1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when 
i = s-1 and i = s + k + 1, it is assumed that the eigenvalues  j (j = s - 1, s, ..., s + 
k) are numerically multiple. 

The standard value of ETOL is 3.0D-16 (about the unit round off).  With this 
value, the eigenvalues are refined up to the maximum machine precision. 

If formula (3.1) is not satisfied when  =ETOL, it can be considered that  i-1 and 
i are distinct eigenvalues. 

When  =ETOL, assume that consecutive eigenvalues m (m = t -1, t, ..., t + k (k 
 0)) are different eigenvalues.  Also, when  = CTOL, assume that formula (3.1) 
is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t -1 and i = t 
+ k + 1.  In this case, it is assumed that their different eigenvalues m (m = t - 1, 
t, ..., t + k) are approximately multiple (i.e., form a cluster).  In this case, 
independent starting vectors are generated for inverse iteration, and eigenvectors 
corresponding to m (m = t - 1, t, …, t + k) are reorthogonalized. 

3) The maximum number of eigenvalues that can be calculated is specified in 
MAXNE. When the value of CTOL is increased, the cluster size also increases.  
Therefore, the total number of eigenvalues calculated might exceed the value of 
MAXNE.  In this case, decrease the value of CTOL or increase the value of 
MAXNE. 

If the total number of eigenvalues calculated exceeds the value of MAXNE, 
ICON = 20200 is returned. In this case, the eigenvectors cannot be calculated 
even if eigenvector calculation is specified. Eigenvalues are calculated, but are 
not stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in E(1:NEV(1)).  The information 
about the multiplicity of the corresponding eigenvalues is stored in 
M(1:NEV(1),1). 

When all the eigenvalues are different from each other and there are no 
approximately multiple eigenvalues, MAXNE can be set to NT (NT=NL-NF+1).  
However, when there are multiple eigenvalues and the multiplicity can be 
assumed to be m, then MAXNE must be set to at least NT + 2  m. 

If the total number of eigenvalues to be calculated exceeds the value of MAXNE, 
the value required to continue the calculation is returned to NEV(3).  The 
calculation can be continued by allocating the area by using this returned value 
and by calling the routine again. 

b. Example 

 This example calculates the specified eigenvalues and eigenvectors of a 
generalized eigenvalue problem whose eigenvalues and eigenvectors are known. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
cc    **example** 
      implicit real*8(a-h,o-z) 
      parameter(n=2000 ,k=n+1) 
      parameter(nf=1,nl=n,max_nev=nl-nf+1,tau=1.0d0) 
      dimension a(k,n),b(k,n),b2(k,n),c(k,n),d(k,n) 
      dimension nev(5),mult(max_nev,2) 
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      dimension eval(max_nev),evec(k,max_nev) 
cc 
      pai=4.0d0*datan(1.0d0) 
      coef=dsqrt(2.0d0/(n+1)) 
      do j=1,n 
      do i=1,n 
      d(i,j)=coef*dsin(pai/(n+1)*i*j) 
      enddo 
      enddo 
cc 
      do j=1,n 
      do i=1,n 
      if(i.eq.j)then 
      c(J,J)=DBLE(J) 
      else 
      c(i,j)=0.0d0 
      endif 
      enddo 
      enddo 
cc 
cc    d x c -> b 
cc 
      call dm_vmggm(d,k,c,k,b,k,n,n,n,icon) 
cc 
cc    b x d -> a 
cc 
      call dm_vmggm(b,k,d,k,a,k,n,n,n,icon) 
cc 
cc       B = LL^t , A <- LALt 
cc 
      do i=1,n 
      do j=1,n 
      b(j,i)=1.0d0/dsqrt(tau) 
      b2(j,i)=min(i,j)/tau 
      enddo 
      enddo 
      call dtrmm('Left','Lower','Not transpose','Not-unit', 
     $           n,n,1.0d0,b,k,a,k) 
      call dtrmm('Right','Upper','Not transpose','Not-unit', 
     $           n,n,1.0d0,b,k,a,k) 
cc 
      n0x=nf 
      n1x=nl 
      ivec=1 
      etol=1.0d-15 
      ctol=1.0d-10 
      max_nevx=max_nev 
      epsz=0.0d0 
      call dm_vgevph( a,k,n,b2,epsz,n0x,n1x,ivec, 
     &                      etol,ctol,nev, 
     &                      eval,max_nevx,mult,evec,icon ) 
      do i=1,nev(3),nev(3)/10 
      print*,'eigen value in eval(',i,') = ',eval(i) 
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      enddo 
      stop 
      end 
 

(4) Method 

  The generalized eigenvalue problem (4.1) is solved.  Here, B is a positive definite matrix 
so that Cholesky decomposition can be executed. 

Ax = Bx (4.1) 

LLT = B (4.2) 

Multiply (4.1) by L-1 from left-side. 

L-1Ax = LTx (4.3) 

y = LTx (4.4) 

Then 

x = L-Ty (4.5) 

Substitute (4.5) into (4.3). 

L-1AL-Ty = y (4.6) 

C = L-1AL-T (4.7) 

Substituting C we get 

C y = y (4.8) 

(4.8) can be regarded as an eigenvalue problem for a real symmetric matrix.  The 
eigenvalue problem of the real symmetric matrix is solved using DM_VSEVPH.  (See the 
description on (4) Method of DM_VSEVPH.) 
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DM_VHEVP 
 

Eigenvalues and eigenvectors of Hermite matrices 

CALL DM_VHEVP (ZA, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, EH, 
                                    MAXNE, M, ZEV, ICON) 

 

(1) Function 

  This subroutine calculates specified eigenvalues and, optionally, eigenvectors of an n-
dimensional Hermite matrix. 

Ax = x (1.1) 

(2) Parameters 

ZA ............. Input.  The lower triangular part {aij | i  j } of Hermite matrix A whose 
eigenvalues and eigenvectors are to be calculated is stored in the lower 
triangular part {ZA(i,j) | i  j }of ZA(1:N,1:N).  The value of ZA is not assured 
after operation. 

Two-dimensional double-precision real array ZA(K,N). 

K ............... Input.  Size of first-dimension of array ZA (K  N). 

N ............... Input.  Order n of Hermite matrix A 

NF ............. Input.  Number assigned to the first eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

NL ............. Input.  Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

IVEC ......... Input.  Control information. 

When IVEC is 1, the eigenvalues and the corresponding eigenvectors are 
calculated. 

When IVEC is not 1, only the eigenvalues are calculated. 

ETOL ........ Input.  Criterion value for checking whether the eigenvalues are different from 
each other or equal to each other.  This check uses formula (3.1).  When ETOL 
is less than 3.0D-16, this value is used as the standard value. 

(See 1) in a, “Notes,” in (3), “Comments on use.”) 

CTOL ........ Input.  Criterion value for checking whether the adjacent eigenvalues are 
approximately equal to each other.  This check uses formula (3.1).  CTOL is 
used to assure the linear independence of the eigenvector corresponding to the 
eigenvalue belonging to approximately multiple eigenvalues (clusters). 

The CTOL value should generally be 5.0D-12.  For a very large cluster, a large 
CTOL value is required. 

1.0D-6  CTOL  ETOL 

When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6. 

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the 
standard value. 
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(See 1) in a, “Notes,” in (3), “Comments on use.”) 

NEV .......... Output.  Number of eigenvalues calculated.   

One-dimensional array NEV(5). 

Details are given below. 

NEV(1) indicates the number of different eigenvalues calculated. 

NEV(2) indicates the number of approximately multiple different eigenvalues 
(different clusters) calculated. 

NEV(3) indicates the total number of eigenvalues (including multiple 
eigenvalues) calculated. 

NEV(4) indicates the number representing the first of the eigenvalues calculated. 

NEV(5) indicates the number representing the last of the eigenvalues calculated. 

EH ............. Output.  Eigenvalues are stored in EH. 

The eigenvalues calculated are stored in EH(1:NEV(3)). 

One-dimensional double-precision array EH(MAXNE). 

MAXNE .... Input.  Maximum number of eigenvalues that can be calculated.  Size of the 
first-dimension of array EH. 

When it can be assumed that there are two or more eigenvalues with 
multiplicity m, MAXNE must be a larger value than NL  NF + 1 + 2  m that 
is bounded by n. 

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be 
calculated.   (See 2) in a, “Notes,” in (3), “Comments on use.”) 

M .............. Output.  Information about the multiplicity of eigenvalues calculated. 

M(i,l) indicates the multiplicity of the i-th eigenvalue i calculated.  M(i,2) 
indicates the multiplicity of the i-th cluster calculated when the adjacent 
eigenvalues are regarded as approximately multiple eigenvalues (clusters). 

(See 3) in a, “Notes,” in (2), “Comments on use.”) 

Two-dimensional array M(MAXNE,2). 

ZEV ............ Output.  When IVEC = 1, the eigenvectors corresponding to the eigenvalues are 
stored in ZEV. 

The eigenvectors are stored in ZEV(1:N,1:NEV(3)). 

Two-dimensional double-precision array ZEV(K,MAXNE). 

ICON ......... Output.  Condition code. 

See Table DM_VHEVP-1. 



DM_VHEVP 

II-78 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

 
Table DM_VHEVP-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 During calculation of clustered eigenvalues, the 
total number of eigenvalues exceeded 
MAXNE. 

Processing is discontinued. 
The eigenvectors cannot be 
calculated, but the different 
eigenvalues themselves are 
already calculated. 
A suitable value for 
MAXNE to allow 
calculation to proceed is 
returned in NEV(3). 

(See 2) in a, “Notes,” in (3), 
“Comments on use.”) 

30000 NF < 1, NL > N, NL < NF, K < N, N < 1, or 
MAXNE < NL - NF + 1. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) This routine calculates eigenvalues independently from each other by dividing 
them into nonoverlapping, sequenced sets (parallel processing). 

When  = ETOL, the following condition is satisfied for consecutive eigenvalues 
 j (j = s - 1, s, ..., s + k, (k  0)): 















),max(1 1

1

ii

ii  (3.1) 

If formula (3.1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when 
i = s - 1 and i = s + k + 1, it is assumed that the eigenvalues  j (j = s - 1, s, ..., s + 
k) are numerically multiple. 

The standard value of ETOL is 3.0D-16 (about the unit round off).  In this case, 
the eigenvalues are refined up to the maximum machine precision. 

If formula (3.1) is not satisfied when  = ETOL, it can be considered that  i-1 
and i are distinct eigenvalues. 

When  = ETOL, assume that consecutive eigenvalues m (m = t - 1, t, ..., t + k 
(k  0)) are different eigenvalues.  Also, when  = CTOL, assume that formula 
(3.1) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and 
i = t + k + 1.  In this case, it is assumed that the distinct eigenvalues m (m = t - 1, 
t, ..., t + k) are approximately multiple (i.e., form a cluster).  In this case, 
independent starting vectors are generated for inverse iteration, and eigenvectors 
corresponding to m (m = t - 1, t, …, t + k) are reorthogonalized. 

2) The maximum number of eigenvalues calculated can be specified in MAXNE.  
When the CTOL value is increased, the cluster size also increases.  Therefore, 
the total number of eigenvalues calculated might exceed the MAXNE value.  In 
this case, decrease the CTOL value or increase the MAXNE value. 
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If the total number of eigenvalues calculated exceeds the MAXNE value, ICON 
= 20000 is returned.  In this case, the eigenvectors cannot be calculated even if 
eigenvector calculation is specified.  Eigenvalues are calculated, but are not 
stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in EH(1:NEV(1)).  The 
multiplicity of the corresponding eigenvalues is stored in M(1:NEV(1),1). 

When all the eigenvalues are different from each other and there are no 
approximately multiple eigenvalues, the MAXNE value can be NT (NT=NL-
NF+1 is the total number of eigenvalues calculated).  However, when there are 
multiple eigenvalues and the multiplicity is m, the MAXNE value must be at 
least NT + 2  m. 

If the total number of eigenvalues to be calculated exceeds the MAXNE value, 
the value required to continue the calculation is returned to NEV(3).  The 
calculation can be continued by allocating the area by using this returned value 
and by calling the routine again. 

b. Example 

 This example calculates the specified eigenvalues and eigenvectors of a Hermite 
matrix. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N=2000,K=N,NE=N,MAX_NEV=NE) 
      COMPLEX*16 A(K,N),B(K,N),C(K,N),D(K,N),DH(K,N),ALPHA,BETA, 
     &           EVECH(K,MAX_NEV) 
      DIMENSION  NEV(5),MULT(MAX_NEV,2) 
      DIMENSION  EVAL(MAX_NEV) 
CC 
      PAI2=8.0D0*DATAN(1.0D0) 
      COEF=DSQRT(1.0D0/(N)) 
      DO J=1,N 
      DO I=1,N 
      PART1 =COEF*DCOS(PAI2/N*(I-1)*(J-1)) 
      PART2 =COEF*DSIN(PAI2/N*(I-1)*(J-1)) 
      D(I,J)=DCMPLX(PART1,PART2) 
      DH(I,J)=DCMPLX(PART1,-PART2) 
      ENDDO 
      ENDDO 
CC 
      DO J=1,N 
      DO I=1,N 
      IF(I.EQ.J)THEN 
      C(I,J)=DCMPLX(DBLE(I),0.0D0) 
      ELSE 
      C(I,J)=(0.0D0,0.0D0) 
      ENDIF 
      ENDDO 
      ENDDO 
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CC 
CC    D X C -> B 
CC 
 
      ALPHA=(1.0D0,0.0D0) 
      BETA=(0.0D0,0.0D0) 
      CALL ZGEMM('NO TRANSPOSE','NO TRANSPOSE',N,N,N,ALPHA, 
     $            D,K,C,K,BETA,B,K) 
CC 
CC    B X D^H -> A 
CC 
      CALL ZGEMM('NO TRANSPOSE','NO TRANSPOSE',N,N, N,ALPHA, 
     &            B,K,DH,K,BETA,A,K) 
CC 
      IVEC=1 
      NF=1 
      NL=NE 
      EVAL_TOL=1.0D-15 
      CLUS_TOL=1.0D-10 
      CALL  DM_VHEVP( A,K,N,NF,NL,IVEC,EVAL_TOL,CLUS_TOL,NEV, 
     &                EVAL,MAX_NEV,MULT,EVECH,ICON ) 
      DO I=1,NE,100 
      PRINT*,'EIGEN VALUE IN EVEC(',I,') = ',EVAL(I) 
      ENDDO 
      STOP 
      END 
 

(4) Method 

 The n  n Hermite matrix A = AR + iAI must satisfy AR = ART and AI = -AIT 

 The blocking Householder method is used to reduce the Hermite matrix to a Hermite 
tridiagonal matrix.  Then, the diagonal unitary transformation is applied to further reduce 
the matrix to a real tridiagonal matrix. 

 The eigenvalues and eigenvectors of the tridiagonal matrix are calculated using 
techniques of multisectioning and inverse iteration (see “DM_VTDEVC” and [61] in 
Appendix A, “References”). 

 In the final step, the eigenvectors of the Hermite matrix are constructed from the 
eigenvectors of the tridiagonal matrix. 
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DM_VHTRID 
 

Tridiagonalization of Hermite matrices 

CALL DM_VHTRID (ZA, K, N, D, SL, ZS, ICON) 

 

(1) Function 

  This subroutine reduces an Hermite matrix into an Hermite tridiagonal matrix and this 
matrix is transformed into a real tridiagonal matrix using diagonal unitary transform. 

H = P*AP 

T = V*HV 

A is an n  n Hermite matrix, P is an n  n unitary matrix. V is an n  n diagonal unitary 
matrix and T is a real tridiagonal matrix.. 

(2) Parameters 

ZA ............. Input.  The lower triangular part {aij | i  j } of Hermite matrix A is stored in the 
lower triangular part {ZA(i,j) | i  j }of ZA(1:N,1:N). 

Two-dimensional double-precision complex array ZA(K,N). 

Output.  The information on Householder transforms used for Hermite 
tridiagonalization is stored in the lower triangular part {ZA(i,j) | i  j }of 
ZA(1:N,1:N).  The values in the upper triangular part of ZA is not assured after 
operation. 

(See 1) in a, “Notes,” in (3), “Comments on use.”) 

K ............... Input.  Size of first-dimension of array ZA (K  N). 

N ............... Input.  Order n of Hermite matrix A 

D ................ Input.  The diagonal elements of the reduced tridiagonal matrix are stored in 
real double-precision one-dimensional array D(N). 

SL .............. Input.  The subdiagonal elements of reduced tridiagonal matrix are stored in 
SL(2:N) of real double-precision one-dimensional array SL(N).  SL(1) = 0. 

ZS .............. Output.  Diagonal elements of the diagonal unitary matrix are stored in ZS(1:N). 

One-dimensional double-precision complex array ZS(N). 

ICON ......... Output.  Condition code. 

See Table DM_VHTRID-1. 

 
Table DM_VHTRID-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 K < N, N < 2. Processing is discontinued. 
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(3) Comments on use 

a. Notes 

1) Hermite tridiagonalization is performed by the repeated transforms varying k = 
1, ... , n-2. 

AAPAPA   01* ,k
k

k
k

 

Put  bT = (0, ... , 0, A k(k+1:n, k)T). 

b*∙b = S2  and  put  wT = (0, ... , 0, 














1
1 1

k
k b

S
b , bk+2, ... , bn). 

Then the transform matrix is represented as follows. 

SbS k
k

1
2

* 1
,I


  wwP . 

w(k+1:n)  and  are stored in  A(k+1:n, k) and  A(k, k) respectively. 

b. Example 

 This example calculates the tridiagonalization of a Hermite matrix with the 
known eigenvalues. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
c     **example** 
      implicit real*8(a-h,o-z) 
      parameter(n=2000,k=n,ne=n,max_nev=ne) 
      complex*16 a(k,n),b(k,n),c(k,n),d(k,n), 
     &          dh(k,n),alpha,beta, 
     &          tr(n) 
      dimension nev(5),mult(max_nev,2) 
      dimension eval(max_nev),evec(k,max_nev),dd(n),sld(n),sud(n) 
cc 
      pai2=8.0d0*datan(1.0d0) 
      coef=dsqrt(1.0d0/(n)) 
      do j=1,n 
      do i=1,n 
      part1 =coef*dcos(pai2/n*(i-1)*(j-1)) 
      part2 =coef*dsin(pai2/n*(i-1)*(j-1)) 
      d(i,j)=dcmplx(part1,part2) 
      dh(i,j)=dcmplx(part1,-part2) 
      enddo 
      enddo 
cc 
      do j=1,n 
      do i=1,n 
      if(i.eq.j)then 
      c(i,j)=dcmplx(dble(i),0.0d0) 
      else 
      c(i,j)=(0.0d0,0.0d0) 
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      endif 
      enddo 
      enddo 
cc 
cc    d x c -> b 
cc 
 
      alpha=(1.0d0,0.0d0) 
      beta=(0.0d0,0.0d0) 
      call zgemm('No transpose','No transpose',n,n, 
     $            n,alpha,d,k,c,k,beta,b,k) 
cc 
cc    b x d^h -> a 
cc 
      call zgemm('No transpose','No transpose',n,n, 
     $            n,alpha,b,k,dh,k,beta,a,k) 
cc 
      call  dm_vhtrid(a,k,n,dd,sld,tr,icon) 
      if(icon.ne.0)then 
      print*,' icon of dm_vhtrid =',icon 
      stop 
      endif 
c 
      do i=2,n 
      sud(i-1)=sld(i) 
      enddo 
      sud(n)=0.0d0 
c 
      nf=1 
      nl=n 
      ivec=0 
      eval_tol=1.0d-15 
      clus_tol=1.0d-10 
      call dm_vtdevc(dd,sld,sud,n,nf,nl,ivec, 
     &                eval_tol,clus_tol,nev, 
     &                eval,max_nev,evec,k,mult,icon ) 
      do i=1,ne,n/20 
      print*,'eigen value in eval(',i,') = ',eval(i) 
      enddo 
 
      stop 
      end 
 

(4) Method 

 The n  n Hermite matrix A = AR + iAI must satisfy AR = ART and AI = -AIT 

 The blocking Householder method is used to reduce the Hermite matrix to a Hermite 
tridiagonal matrix.  Then, the diagonal unitary transformation is applied to further reduce 
the matrix to a real tridiagonal matrix. 

 



DM_VJDHECR 

II-84 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

DM_VJDHECR 
 

Eigenvalues and eigenvectors of an Hermitian sparse matrix (Jacobi-Davidson method, 
compressed row storage method) 

CALL DM_VJDHECR(ZH, NZ, NCOL, NFRNZ, N, ITRGT, DTRGT, NSEL, NEV, 
               ITMAX, ITER, IFLAG, DPRM, DEVAL, ZEVEC, KV, DHIS, KH, ICON) 

 

(1) Function 

 This subroutine computes a few of selected eigenvalues and corresponding eigenvectors 
of an Hermitian sparse eigenvalue problem 

Ax =  x 

 using the Jacobi-Davidson method, where A is an nn Hermitian sparse matrix, the lower 
triangular part of which is stored using the compressed row storage method, and x is an n-
dimensional vector. 

 (2) Parameters 

ZH .............. Input.  The non-zero elements of the lower triangular part of the sparse matrix A 
are stored. 

One-dimensional complex array ZH(NZ). 

For the compressed row storage method, refer to Figure DM_VJDHECR-1. 

NZ............... Input.  The total number of the nonzero elements which belong to the lower 
triangular part of the matrix A. 

NCOL.......... Input.  The column indices used in the compressed row storage method, which 
indicate the column number of each nonzero element stored in the array ZH. 

One-dimensional array NCOL(NZ). 

NFRNZ........ Input.  The position of the first nonzero element of each row stored in the array 
ZH in the compressed row storage method which stores the lower part of the 
nonzero elements row by row.  Specify NFRNZ(N+1)=NZ+1. 

One-dimensional array NFRNZ(N+1). 

N.................. Input.  Order n of matrix A. 

ITRGT......... Input.  Select a way of specifying the eigenvalues to be sought (0ITRGT4). 

Specify ITRGT=0 to compute eigenvalues closest to a target value DTRGT. 

Specify ITRGT=1 to compute eigenvalues with largest magnitude. 

Specify ITRGT=2 to compute eigenvalues with smallest magnitude. 

Specify ITRGT=3 to compute eigenvalues with largest real part. 

Specify ITRGT=4 to compute eigenvalues with smallest real part. 

(See note 1) and 2) in (3), "Comments on use.") 

DTRGT........ Input.  The target value  is specified when ITRGT=0.  In the following cases, 
the convergence might be improved by specifying a value near the seeking 
eigenvalue even when ITRGT0. 
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1) The value  is used as a shift of the test subspace <W>=<(A I)V> when 
DPRM(3)=1 which indicates that the harmonic algorithm is to be used. (See 
note 2) in (3), "Comments on use.") 

2) When DPRM(9)1, the value  is used as an approximated eigenvalue in the 
Jacobi-Davidson correction equation while the initial phase of the iteration is 
proceeding. (See note 5) in (3), "Comments on use.") 

3) When DPRM(15) 1, the value  is used as a shift value of the 
preconditioner for the Jacobi-Davidson correction equation. (See note 7) in (3), 
"Comments on use.") 

In other cases, DTRGT is not referred in this subroutine. 

NSEL............ Input.  The number of eigenvalues to be computed (1NSELN). (See note 1) 
in (3), "Comments on use.") 

NEV.............. Output.  The number of eigenvalues converged. 

ITMAX......... Input.  Upper limit of iterative count for the Jacobi-Davidson method (0). 

ITER............. Output.  Actual iterative count for the Jacobi-Davidson method. 

IFLAG.......... Input.  Control information array specifying whether the auxiliary parameter is 
specified explicitly in DPRM array. 

When IFLAG(i)0, the parameter specified in DPRM(i) is to be used. 

When IFLAG(i)=0, a default parameter is used and DPRM(i) is not referred. 

Set IFLAG(16:32) to be all zero since these area are preserved for future 
enhanced functionality. 

One-dimensional array IFLAG(32). 

DPRM.......... Input.  Auxiliary parameters are specified as for the IFLAG(i) denotes that the 
user specified value is to be used. 

For definition of each parameter in the algorithm, see (4), "Method." 

If all of IFLAG(1:32) are set to be zero, DPRM(1:32) are not referred and 
default parameters are used. Changing the parameter is recommended when the 
iteration did not converge with default parameters. 

One-dimensional array DPRM(32). 

DPRM(1): The dimension mmin of shrunk subspace when restarting (1 mmin 
N).  The default value is mmin=50. 

DPRM(2): Upper limit of the dimension mmax of subspace (mmin  mmax N).  
The default value is mmax= mmin +30. 
(See note 8) in (3), "Comments on use.") 

DPRM(3): The type of the algorithm, which is associated with setting of a test 
subspace. 
When DPRM(3)=0, the standard algorithm is adopted. The algorithm 
is appropriate for seeking the extreme eigenvalues in the spectrum. 
When DPRM(3)=1, the harmonic algorithm is adopted. The 
algorithm is appropriate for seeking the internal eigenvalues in the 
spectrum. 
The default value is the harmonic algorithm for ITRGT=0 or 2, or the 
standard algorithm in other cases. 
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DPRM(4): The criterion value for judgment of acceptable convergence. The 
default value is 10-6. (See note 4) in (3), "Comments on use.") 

DPRM(5): The way how to calculate the residual norm with respect to the 
approximated eigenvalue  and eigenvector u. 
When DPRM(5)=0, the residual norm relative to the absolute value 
of approximated eigenvalue |Auu|/|| is adopted. 
When DPRM(5)=1, the residual norm relative to the 1-norm of the 
matrix |Auu|/|A|1 is adopted. 
When DPRM(5)=2, the residual norm relative to the Frobenius norm 
of the matrix |Auu|/|A|F is adopted. 
When DPRM(5)=3, the residual norm relative to the infinity-norm of 
the matrix |Auu|/|A| is adopted. 
When DPRM(5)=4, the absolute residual norm |Auu| is adopted. 
The default is DPRM(5)=0. (See note 3) in (3), "Comments on use.") 

DPRM(6): A criterion value for a delay-deflation scheme (1.0). 
The default value is DPRM(6)=0.9. (See note 4) in (3), "Comments 
on use.") 

DPRM(7): Control information indicating whether the iteration is started from a 
vector specified in the array ZEVEC(1:N,1). 
When DPRM(7)=0, the iteration is started from a random vector 
generated in this subroutine internally. 
When DPRM(7)=1, set an initial vector in the array ZEVEC(1:N,1). 
The default setting is using a random vector. 

DPRM(8): A seed to generate a random vector (1.0). The default value is 1. 

DPRM(9): While the iteration count is less or equal to DPRM(9), the process is 
regarded as an initial phase of the iteration. Then the fixed value of  
is used as an approximated eigenvalue instead of the value of  in the 
Jacobi-Davidson correction equation. 
When DPRM(3)=0, the default value is DPRM(9)=0. 
When DPRM(3)=1, the default value is DPRM(9)= mmax. 
(See note 5) in (3), "Comments on use.") 

DPRM(10): The method to solve the Jacobi-Davidson correction equation. 
When DPRM(10)=0, t=r is set without using the correction equation. 
When DPRM(10)=1, the GMRES method is adopted. 
When DPRM(10)=2, the BiCGstab(L) method is adopted. 
When DPRM(10)=11, the MINRES method is adopted. 
The default is using the MINRES method. (See 7) and 8) in (3), 
"Comments on use.") 

DPRM(11): A parameter for the solver of the correction equation. 
When the BiCGstab(L) is used, specify the value of L (10). The 
default value is 4. 

DPRM(12): Upper limit of the iteration count of the solver for the Jacobi-
Davidson correction equation (1). The default value is 30. 

DPRM(13): A parameter to determine the stopping criterion for the iterative 
solver of the correction equation (>0.0). 
The default value is 0.7. (See 6) in (3), "Comments on use.") 

DPRM(14): A parameter to determine the stopping criterion for the iterative 
solver of the correction equation (0.0<DPRM(14)1.0). The stopping 
criterion is set to DPRM(13)DPRM(14)l, where l is an iteration 



 DM_VJDHECR 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-87 

counter of the outer loop which is reset in each deflation. 
The default value is 0.7. (See 6) in (3), "Comments on use.") 

DPRM(15): The type of preconditioning of the correction equation (1). 
When DPRM(15)=0, no preconditioning is used. 
When DPRM(15)=1, the diagonal left preconditioning is exploited. 
(See 7) in (3), "Comments on use.") 
The default is DPRM(15)=0. 

DPRM(16:32): Preserved area for future enhanced functionality. 

DEVAL......... Output.  Detected eigenvalues are stored in DEVAL(1:NEV). 

One-dimensional array DEVAL(NSEL). 

ZEVEC......... Output.  Detected eigenvectors are stored in ZEVEC(1:N,1:NEV). 

Two-dimensional complex array ZEVEC(KV,NSEL). 

Input.  Set the initial vector in ZEVEC(1:N,1) when IFLAG(7)0 and 
DPRM(7)=1.0. 

KV................ Input.  Size of the first dimension of array ZEVEC (N). 

DHIS............ Output.  The convergence history of the residuals of the eigenproblem are 
stored in DHIS(1:min(KH,ITER),1). The final relative residual norm of the each 
correction equation are stored in DHIS(1:min(KH,ITER),2). 

Two-dimensional array DHIS(KH,2). 

KH................ Input.  Size of the first dimension of array DHIS (0). Setting KH=ITMAX is 
enough. If KH=0 is set, the outputs to the array DHIS are suppressed. 

ICON............ Output.  Condition code. 

(See Table DM_VJDHECR-1.) 

 
Table DM_VJDHECR-1   Condition codes 

Code Meaning Processing 

0 No error  

1000 Breakdown occurred in the iterative linear 
equations solver. 

Processing is continued with 
the approximated solution 
until the point. 

2000 A null vector is detected in a sort of process of 
the orthogonalization. 

Processing is continued with 
the subspace expanded by a 
random vector. 

3000 A recovery procedure is activated in a sort of 
restorative process of the delay deflation. 

Processing is continued 

10000 The iteration count reached the maximum limit 
before NSEL-th eigenvalue is obtained. 

The calculated eigenpairs up 
to NEV are correct. 

20000 The projected dense eigenproblem can not be 
solved. 

Processing is discontinued. 

The calculated eigenpairs up 
to NEV are correct if 
NEV>0. 
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Code Meaning Processing 

21000 The iteration count reached the maximum limit 
without a single convergence. 

Processing is discontinued. 

The approximate values 
obtained up to this point are 
output in array DEVAL(1) 
and ZEVEC(1:N,1), but their 
precision cannot be 
guaranteed. 

29000 An internal error occurred. Processing is discontinued. 

30000 N<1, ITRGT<0, ITRGT>4, NSEL<1, 
NSEL>N, ITMAX<0, KV<N or KH<0. 

 

30001 to 

30032 

The value of IFLAG or DPRM is not correct.  

31000 The value of NZ, NCOL or NFRNZ is not 
correct. 
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Figure DM_VJDHECR-1 Storing a matrix A in compressed row storage method 

 

(3) Comments on use 

a. Notes 

1) Robustness of the Jacobi-Davidson algorithm 
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as 
robust as the method for dense matrices based on the reduction of matrix elements.  
The results obtained using the Jacobi-Davidson method depends on choice of the 
initial vector, and the order of obtained eigenvalues are not guaranteed to be the 
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order of precedence user specified.  This method is applicable when the seeking 
eigenvalues are only a few of the entire spectrum. 

 The convergence behavior of this routine is affected by various auxiliary 
parameters.  For description of these parameters, refer to "Comments on use." 

2) ITRGT and DTRGT parameter 
The default value of DPRM(3), which specifies a type of algorithm, is switched 
automatically according to the setting of ITRGT, which specifies a way of 
selecting eigenvalues.  However, an explicit specification of the value in 
DPRM(3) by setting IFLAG(3)0 is prior to the default value of course.  Which 
means that the standard algorithm can be used with ITRGT=0 or 2, and that the 
harmonic algorithm can be used with ITRGT=1,3,4,5 or 6, as long as user knows 
its adaptivity. 

Note that the DTRGT parameter is referred as a shift of the test subspace for the 
default harmonic algorithm when just setting ITRGT=2, which specifies to 
compute eigenvalues with smallest magnitude.  Define the DTRGT to be 0.0D0 if 
other appropriate value is not known. 

3) Calculating the residual norm 
In the default setting, convergence of the eigenproblem is judged based on the 
residual norm relative to absolute value of the approximated eigenvalue.  When 
the absolute value of the seeking eigenvalue is far smaller than the norm of the 
matrix, however, it is difficult to satisfy the convergence condition 
|Auu|/||<DPRM(4).  In that case, adjust the convergence criterion DPRM(4), 
or change the way of calculating the residual norm which can be specified by 
DPRM(5) parameter. 

4) Delay deflation procedure 
This subroutine adopts an ingenious scheme to improve the precision of the 
results.  After the residual becomes below the convergence criterion, this 
subroutine still continues some more iteration without deflation while the 
decrease ratio of the residual remains valid.  This procedure is called delay-
deflation here.  The decrease ratio is regarded valid if the ratio of the residual 
norm relative to the preceding residual is less than the parameter DPRM(6). If the 
residual deteriorates while this extra iteration, the better previous variables are 
restored and the deflation with the vector takes place.  With setting DPRM(6)=0.0, 
this delay-deflation does not act and then the parameter DPRM(4) is regarded as 
an ordinary convergence criterion. 

5) Approximated eigenvalue in the correction equation 
In the initial few steps of the process, the values of  are usually poor 
approximations of the wanted eigenvalue. This subroutine takes the target value  
specified in the DTRGT as an approximated eigenvalue instead of  in the initial 
phase, since the validity of the expansion vector t is affected by the closeness to 
the approximated eigenvalue in the Jacobi-Davidson correction equation.  The 
process is regarded as the initial phase of the iteration while the iteration count is 
less than or equal to DPRM(9).  However, the default value of this parameter is 
DPRM(9)=0 when DPRM(3)=0 is adopted, because it is difficult to determine a 
value of  in advance when the standard algorithm is specified. 

6) Stopping criterion for inner iteration 
The Jacobi-Davidson correction equation is solved by some iterative method in 
this subroutine, thus the whole algorithm consists of two nested iterations.  In the 
outer iteration the approximation for the eigenproblem is constructed , and in the 
inner iteration the correction equation is approximately solved.  If the residual of 
the eigenproblem still not be small in the outer iteration, solving accurately the 
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correction equation in the inner iteration might be unnecessary.  Therefore, the 
stopping criterion for the inner iteration can be varied according to a counter 
associated with the outer iteration.  The criterion is set to be 
DPRM(13)DPRM(14)l, where l is the outer iteration counter which is reset to 
zero at each deflation.  Incidentally, the upper limit count for the inner iteration is 
specified by DPRM(12). 

7) Precondition for the correction equation 
It is known that a good preconditioner improves the convergence of the iterative 
method for linear equations.  The preconditioner to be applied is controlled by the 
parameter DPRM(15) in this subroutine.  Note that the value of DTRGT is used 
for constructing a matrix M  (A I), which approximates a part of the 
coefficient matrix in some way.  The preconditioner is derived from the inverse 
procedure of the matrix M and projections on both sides.  If the preconditioner 
does not approximate the coefficient matrix of the correction equation properly or 
the parameter DTRGT is far from the seeking eigenvalue, the convergence may 
deteriorate.  Additionally, DPRM(10) must specify a kind of the iterative method 
that is applicable to nonsymmetric linear systems, because the coefficient matrix 
becomes nonsymmetric with a left preconditioner adopted in this routine. 

8)  Memory usage 
This subroutine exploits work area internally as auto allocatable arrays. Therefore 
an abnormal termination could occur when the available area of the memory runs 
out.  The necessary size for the outer iteration is at least n(2mmax2NSEL) 
16 bytes for the standard algorithm and n(3mmax2NSEL) 16 bytes for the 
harmonic algorithm.  And when the GMRES method is used as the solver of the 
correction equation, the additional necessary area is nDPRM(12)16 bytes for 
the inner iteration. 

 

b. Example 

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an 
eigenproblem Ax= x are sought, where A is a 1000010000 example Hermitian 
matrix of the random sparsity pattern with about 20 nonzero entries in each row. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on a system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT NONE 
      INTEGER NNZMAX,NMAX,LDK,NZC 
      PARAMETER (NMAX=10000,NZC=20) 
      PARAMETER (NNZMAX=NMAX*NZC) 
      PARAMETER (LDK=10) 
      COMPLEX*16 ZH(NNZMAX),ZEVEC(NMAX,LDK) 
      COMPLEX*16 RVEC(NMAX),ZW(NMAX) 
      REAL*8 DTRGT,DEVAL(LDK),DERR,DPRM(32),DHIS(NMAX,2) 
      INTEGER NZ,NCOL(NNZMAX),NFRNZ(NMAX+1),N,ITRGT 
      INTEGER IFLAG(32),NSEL,NEV,ITMAX,ITER,LDX,LDH,ICON 
      INTEGER I,J,K,NCOLJ 
 
      N=NMAX 
      CALL MKSPMAT(N,NZC,ZH,NCOL,NFRNZ) 
      NZ=NFRNZ(N+1)-1 
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      ITMAX = 500 
      NSEL = 10 
      DO I = 1,32 
       IFLAG(I)=0 
      ENDDO 
      LDX = NMAX 
      LDH = NMAX 
      DTRGT = 0.0D0 
      ITRGT = 1 
 
      CALL DM_VJDHECR(ZH,NZ,NCOL,NFRNZ,N,ITRGT,DTRGT,NSEL, 
     &                NEV,ITMAX,ITER,IFLAG,DPRM, 
     &                DEVAL,ZEVEC,LDX,DHIS,LDH,ICON) 
 
      PRINT *,'DM_VJDHECR ICON=',ICON 
      PRINT *,'ITER=',ITER 
      DO K = 1,NEV 
!$OMP PARALLEL PRIVATE(I,J,ZW,NCOLJ) 
       ZW(1:N) = (0.0D0,0.0D0) 
!$OMP DO 
       DO I=1,N 
        RVEC(I)=(0.0D0,0.0D0) 
        DO J=NFRNZ(I),NFRNZ(I+1)-1 
         NCOLJ=NCOL(J) 
         RVEC(I)=RVEC(I)+ZH(J)*ZEVEC(NCOLJ,K) 
         IF(I.NE.NCOLJ)THEN 
          ZW(NCOLJ)=ZW(NCOLJ)+DCONJG(ZH(J))*ZEVEC(I,K) 
         ENDIF 
        ENDDO 
       ENDDO 
!$OMP CRITICAL 
       DO I=1,N 
        RVEC(I)=RVEC(I)+ZW(I) 
       ENDDO 
!$OMP END CRITICAL 
!$OMP END PARALLEL 
       DERR=0.0D0 
       DO I=1,N 
        RVEC(I)=RVEC(I)-DEVAL(K)*ZEVEC(I,K) 
        DERR=DERR +DREAL(RVEC(I))**2 +DIMAG(RVEC(I))**2 
       ENDDO 
       DERR=DSQRT(DERR) 
       PRINT*,'EIGEN VALUE',K,'=',DEVAL(K) 
       PRINT*,'ERROR=',DERR/DABS(DEVAL(K)) 
      ENDDO 
      END 
 
      SUBROUTINE MKSPMAT(N,NZC,ZH,NCOL,NFRNZ) 
      IMPLICIT NONE 
      INTEGER N,NZC,NCOL(*),NFRNZ(*) 
      COMPLEX*16 ZH(*) 
      INTEGER I,IC,ICT,J,K,ISEED,LDW,ICON,NNZ 
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      PARAMETER(LDW=1350) 
      REAL*8 DWORK(NZC),RNDWORK(LDW) 
      ISEED=1 
      NNZ=0 
      DO I=1,N 
       NFRNZ(I)=NNZ+1 
 10    CALL DVRAU4(ISEED,DWORK,NZC,RNDWORK,LDW,ICON) 
       IC=0 
       DO J=1,NZC 
        ICT=N*DABS(DWORK(J))+1 
        IF(ICT.LE.I)THEN 
         DO K=1,IC 
          IF(ICT.EQ.NCOL(NNZ-K+1))THEN 
           NNZ=NNZ-IC 
           GO TO 10 
          ENDIF 
         ENDDO 
         NNZ=NNZ+1 
         IC=IC+1 
         NCOL(NNZ)=ICT 
        ENDIF 
       ENDDO 
      ENDDO 
      NFRNZ(N+1)=NNZ+1 
      ISEED = 1 
      CALL DVRAN4(0.0D0,1.0D0,ISEED,ZH,2*NNZ,RNDWORK,LDW, 
     &            ICON) 
      DO I=1,N 
       DO J=NFRNZ(I),NFRNZ(I+1)-1 
        IF(I.EQ.NCOL(J))ZH(J)=DREAL(ZH(J))+DIMAG(ZH(J)) 
       ENDDO 
      ENDDO 
      RETURN 
      END 
 
 

(4) Method 

 This subroutine solves large sparse eigenproblems using the Jacobi-Davidson method.   
In the Jacobi–Davidson approach a small m-dimensional search subspace is updated in 
each iteration, from which an approximated eigenvector of the given n-dimensional 
eigenproblem is sought.  In each iteration there are two important phases of procedure, 
one is expansion in which the subspace is enlarged by adding a new appropriate basis 
vector to it, and one is extraction in which a sensible approximate eigenpair is sought 
from the search subspace.  For the subspace expansion phase, a correction vector against 
an approximated eigenvector is calculated as a solution vector of the Jacobi-Davidson 
correction equation.  For the extraction phase, an approximated eigenpair is calculated as 
a solution of a small projected eigenproblem.  Even when the seeking eigenvalues are in 
the interior of the spectrum, this method extracts them ingeniously using distinct search 
and test subspaces. 

 

 The following shows the overall procedure of the algorithm and describes some auxiliary 
parameters used in this subroutine. 
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1. Prepare an expansion vector t. 

2. Expand the search subspace <V> and the test subspace <W> according to the 
vector t, where V and W are nm matrices, and <V> represents a linear subspace 
spanned by the column vectors of the matrix V.  The type of the algorithm 
whether standard or harmonic can be distinguished by the setting of the test 
subspace, W=V for standard and <W>=<(A I)V> for harmonic. The setting is 
specified by DPRM(3). 

3. Solve a projected m-dimensional eigenvalue problem with a standard technique 
for dense matrices. The results are called Ritz values or harmonic-Ritz values. 

4. Select an eigenvalue from the results of the projected eigenproblem according to 
the way ITRGT or DTRGT specifies. 

5. Extract an approximating eigenvector u of the given large eigenproblem from 
the search space by expanding the eigenvector corresponds to the selected 
eigenvalue of the projected eigenproblem, and let  be its Rayleigh quotient. 

6. Set a residual vector r =Au u. 

7. Calculate the residual norm according to the way DPRM(5) specifies. 

8. Deflate the eigenproblem by the vector u, if the residual norm satisfies 
convergence conditions which are indicated by the convergence criterion 
DPRM(4) and by the criterion ratio DPRM(6) of the delay-deflation. 

9. Reduce the dimensions of the subspaces m to mmin with restarting, when the m is 
greater than mmax.  The values of mmax and mmin are specified by DPRM(1) and 
DPRM(2) respectively. 

10. Obtain the next expansion vector t for the subsequent loop, which is the solution 
of the Jacobi-Davidson correction equation (Iuu*)(A I)(Iuu*)t = r  using 
some iterative method.  In this inner iteration, the parameters from DPRM(9) to 
DPRM(15) are used. 

 Note that some projection procedures needed after deflation are omitted to explain for 
simplicity. 

 

For details of the Jacobi-Davidson method, see [7] in Appendix A, "References." 
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DM_VJDNHCR 
 

Eigenvalues and eigenvectors of a complex sparse matrix (Jacobi-Davidson method, 
compressed row storage method) 

CALL DM_VJDNHCR(ZA, NZ, NCOL, NFRNZ, N, ITRGT, ZTRGT, NSEL, NEV, 
               ITMAX, ITER, IFLAG, DPRM, ZEVAL, ZEVEC, KV, DHIS, KH, ICON) 

 

(1) Function 

 This subroutine computes a few of selected eigenvalues and corresponding eigenvectors 
of a complex sparse eigenvalue problem 

Ax =  x 

 using the Jacobi-Davidson method, where A is an nn complex sparse matrix stored 
using the compressed row storage method and x is an n-dimensional vector. 

 (2) Parameters 

ZA .............. Input.  The non-zero elements of the sparse matrix A are stored. 

One-dimensional complex array ZA(NZ). 

For the compressed row storage method, refer to Figure DM_VJDNHCR-1. 

NZ............... Input.  The total number of the nonzero elements of the matrix A. 

NCOL......... Input.  The column indices used in the compressed row storage method, which 
indicate the column number of each nonzero element stored in the array ZA. 

One-dimensional array NCOL(NZ). 

NFRNZ........ Input.  The position of the first nonzero element of each row stored in the array 
ZA in the compressed row storage method which stores the nonzero elements 
row by row.  Specify NFRNZ(N+1)=NZ+1. 

One-dimensional array NFRNZ(N+1). 

N.................. Input.  Order n of matrix A. 

ITRGT......... Input.  Select a way of specifying the eigenvalues to be sought (0ITRGT6). 

Specify ITRGT=0 to compute eigenvalues closest to a target value ZTRGT. 

Specify ITRGT=1 to compute eigenvalues with largest magnitude. 

Specify ITRGT=2 to compute eigenvalues with smallest magnitude. 

Specify ITRGT=3 to compute eigenvalues with largest real part. 

Specify ITRGT=4 to compute eigenvalues with smallest real part. 

Specify ITRGT=5 to compute eigenvalues with largest imaginary part. 

Specify ITRGT=6 to compute eigenvalues with smallest imaginary part. 

(See note 1) and 2) in (3), "Comments on use.") 

ZTRGT........ Input.  The target value  is specified as a complex variable when ITRGT=0.  In 
the following cases, the convergence might be improved by specifying a value 
near the seeking eigenvalue even when ITRGT0. 
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1) The value  is used as a shift of the test subspace <W>=<(A I)V> when 
DPRM(3)=1 which indicates that the harmonic algorithm is to be used. (See 
note 2) in (3), "Comments on use.") 

2) When DPRM(9)1, the value  is used as an approximated eigenvalue in the 
Jacobi-Davidson correction equation while the initial phase of the iteration is 
proceeding. (See note 5) in (3), "Comments on use.") 

3) When DPRM(15) 1, the value  is used as a shift value of the 
preconditioner for the Jacobi-Davidson correction equation. (See note 7) in (3), 
"Comments on use.") 

In other cases, ZTRGT is not referred in this subroutine. 

NSEL............ Input.  The number of eigenvalues to be computed (1NSELN). (See note 1) 
in (3), "Comments on use.") 

NEV.............. Output.  The number of eigenvalues converged. 

ITMAX......... Input.  Upper limit of iterative count for the Jacobi-Davidson method (0). 

ITER............. Output.  Actual iterative count for the Jacobi-Davidson method. 

IFLAG.......... Input.  Control information array specifying whether the auxiliary parameter is 
specified explicitly in DPRM array. 

When IFLAG(i)0, the parameter specified in DPRM(i) is to be used. 

When IFLAG(i)=0, a default parameter is used and DPRM(i) is not referred. 

Set IFLAG(16:32) to be all zero since these area are preserved for future 
enhanced functionality. 

One-dimensional array IFLAG(32). 

DPRM.......... Input.  Auxiliary parameters are specified as for the IFLAG(i) denotes that the 
user specified value is to be used. 

For definition of each parameter in the algorithm, see (4), "Method." 

If all of IFLAG(1:32) are set to be zero, DPRM(1:32) are not referred and 
default parameters are used. Changing the parameter is recommended when the 
iteration did not converge with default parameters. 

One-dimensional array DPRM(32). 

DPRM(1): The dimension mmin of shrunk subspace when restarting (1 mmin 
N).  The default value is mmin=50. 

DPRM(2): Upper limit of the dimension mmax of subspace (mmin  mmax N).  
The default value is mmax= mmin +30. 
(See note 8) in (3), "Comments on use.") 

DPRM(3): The type of the algorithm, which is associated with setting of a test 
subspace. 
When DPRM(3)=0, the standard algorithm is adopted. The algorithm 
is appropriate for seeking the extreme eigenvalues in the spectrum. 
When DPRM(3)=1, the harmonic algorithm is adopted. The 
algorithm is appropriate for seeking the internal eigenvalues in the 
spectrum. 
The default value is the harmonic algorithm for ITRGT=0 or 2, or the 
standard algorithm in other cases. 
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DPRM(4): The criterion value for judgment of acceptable convergence. The 
default value is 10-6. (See note 4) in (3), "Comments on use.") 

DPRM(5): The way how to calculate the residual norm with respect to the 
approximated eigenvalue  and eigenvector u. 
When DPRM(5)=0, the residual norm relative to the absolute value 
of approximated eigenvalue |Auu|/|| is adopted. 
When DPRM(5)=1, the residual norm relative to the 1-norm of the 
matrix |Auu|/|A|1 is adopted. 
When DPRM(5)=2, the residual norm relative to the Frobenius norm 
of the matrix |Auu|/|A|F is adopted. 
When DPRM(5)=3, the residual norm relative to the infinity-norm of 
the matrix |Auu|/|A| is adopted. 
When DPRM(5)=4, the absolute residual norm |Auu| is adopted. 
The default is DPRM(5)=0. (See note 3) in (3), "Comments on use.") 

DPRM(6): A criterion value for a delay-deflation scheme (1.0). 
The default value is DPRM(6)=0.9. (See note 4) in (3), "Comments 
on use.") 

DPRM(7): Control information indicating whether the iteration is started from a 
vector specified in the array ZEVEC(1:N,1). 
When DPRM(7)=0, the iteration is started from a random vector 
generated in this subroutine internally. 
When DPRM(7)=1, set an initial vector in the array ZEVEC(1:N,1). 
The default setting is using a random vector. 

DPRM(8): A seed to generate a random vector (1.0). The default value is 1. 

DPRM(9): While the iteration count is less or equal to DPRM(9), the process is 
regarded as an initial phase of the iteration. Then the fixed value of  
is used as an approximated eigenvalue instead of the value of  in the 
Jacobi-Davidson correction equation. 
When DPRM(3)=0, the default value is DPRM(9)=0. 
When DPRM(3)=1, the default value is DPRM(9)= mmax. 
(See note 5) in (3), "Comments on use.") 

DPRM(10): The method to solve the Jacobi-Davidson correction equation. 
When DPRM(10)=0, t=r is set without using the correction equation. 
When DPRM(10)=1, the GMRES method is adopted. 
When DPRM(10)=2, the BiCGstab(L) method is adopted. 
The default is using the GMRES method. (See 8) in (3), "Comments 
on use.") 

DPRM(11): A parameter for the solver of the correction equation. 
When the BiCGstab(L) is used, specify the value of L (10). The 
default value is 4. 

DPRM(12): Upper limit of the iteration count of the solver for the Jacobi-
Davidson correction equation (1). The default value is 30. 

DPRM(13): A parameter to determine the stopping criterion for the iterative 
solver of the correction equation (>0.0). 
The default value is 0.7. (See 6) in (3), "Comments on use.") 

DPRM(14): A parameter to determine the stopping criterion for the iterative 
solver of the correction equation (0.0<DPRM(14)1.0). The stopping 
criterion is set to DPRM(13)DPRM(14)l, where l is an iteration 
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counter of the outer loop which is reset in each deflation. 
The default value is 0.7. (See 6) in (3), "Comments on use.") 

DPRM(15): The type of preconditioning of the correction equation (1). 
When DPRM(15)=0, no preconditioning is used. 
When DPRM(15)=1, the diagonal left preconditioning is exploited. 
(See 7) in (3), "Comments on use.") 
The default is DPRM(15)=0. 

DPRM(16:32): Preserved area for future enhanced functionality. 

ZEVAL......... Output.  Detected eigenvalues are stored in ZEVAL(1:NEV). 

One-dimensional complex array ZEVAL(NSEL). 

ZEVEC......... Output.  Detected eigenvectors are stored in ZEVEC(1:N,1:NEV). 

Two-dimensional complex array ZEVEC(KV,NSEL). 

Input.  Set the initial vector in ZEVEC(1:N,1) when IFLAG(7)0 and 
DPRM(7)=1.0. 

KV................ Input.  Size of the first dimension of array ZEVEC (N). 

DHIS............ Output.  The convergence history of the residuals of the eigenproblem are 
stored in DHIS(1:min(KH,ITER),1). The final relative residual norm of the each 
correction equation are stored in DHIS(1:min(KH,ITER),2). 

Two-dimensional array DHIS(KH,2). 

KH................ Input.  Size of the first dimension of array DHIS (0). Setting KH=ITMAX is 
enough. If KH=0 is set, the outputs to the array DHIS are suppressed. 

ICON............ Output.  Condition code. 

(See Table DM_VJDNHCR-1.) 

 
Table DM_VJDNHCR-1   Condition codes 

Code Meaning Processing 

0 No error  

1000 Breakdown occurred in the iterative linear 
equations solver. 

Processing is continued with 
the approximated solution 
until the point. 

2000 A null vector is detected in a sort of process of 
the orthogonalization. 

Processing is continued with 
the subspace expanded by a 
random vector. 

3000 A recovery procedure is activated in a sort of 
restorative process of the delay deflation. 

Processing is continued 

10000 The iteration count reached the maximum limit 
before NSEL-th eigenvalue is obtained. 

The calculated eigenpairs up 
to NEV are correct. 

20000 The projected dense eigenproblem can not be 
solved. 

Processing is discontinued. 

The calculated eigenpairs up 
to NEV are correct if 
NEV>0. 



DM_VJDNHCR 

II-98 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

Code Meaning Processing 

21000 The iteration count reached the maximum limit 
without a single convergence. 

Processing is discontinued. 

The approximate values 
obtained up to this point are 
output in array ZEVAL(1) 
and ZEVEC(1:N,1), but their 
precision cannot be 
guaranteed. 

29000 An internal error occurred. Processing is discontinued. 

30000 N<1, ITRGT<0, ITRGT>6, NSEL<1, 
NSEL>N, ITMAX<0, KV<N or KH<0. 

 

30001 to 

30032 

The value of IFLAG or DPRM is not correct.  

31000 The value of NZ, NCOL or NFRNZ is not 
correct. 
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Figure DM_VJDNHCR-1 Storing a matrix A in compressed row storage method 

 

(3) Comments on use 

a. Notes 
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1) Robustness of the Jacobi-Davidson algorithm 
The Jacobi-Davidson algorithm is not a decisive procedure, and hence is not as 
robust as the method for dense matrices based on the reduction of matrix elements.  
The results obtained using the Jacobi-Davidson method depends on choice of the 
initial vector, and the order of obtained eigenvalues are not guaranteed to be the 
order of precedence user specified.  This method is applicable when the seeking 
eigenvalues are only a few of the entire spectrum. 

The convergence behavior of this routine is affected by various auxiliary 
parameters.  For description of these parameters, refer to "Comments on use." 

2) ITRGT and ZTRGT parameter 
The default value of DPRM(3), which specifies a type of algorithm, is switched 
automatically according to the setting of ITRGT, which specifies a way of 
selecting eigenvalues.  However, an explicit specification of the value in 
DPRM(3) by setting IFLAG(3)0 is prior to the default value of course.  Which 
means that the standard algorithm can be used with ITRGT=0 or 2, and that the 
harmonic algorithm can be used with ITRGT=1,3,4,5 or 6, as long as user knows 
its adaptivity. 

Note that the ZTRGT parameter is referred as a shift of the test subspace for the 
default harmonic algorithm when just setting ITRGT=2, which specifies to 
compute eigenvalues with smallest magnitude.  Define the ZTRGT to be (0.0,0.0) 
if other appropriate value is not known. 

3) Calculating the residual norm 
In the default setting, convergence of the eigenproblem is judged based on the 
residual norm relative to the absolute value of the approximated eigenvalue.  
When the absolute value of the seeking eigenvalue is far smaller than the norm of 
the matrix, however, it is difficult to satisfy the convergence condition 
|Auu|/||<DPRM(4).  In that case, adjust the convergence criterion DPRM(4), 
or change the way of calculating the residual norm which can be specified by 
DPRM(5) parameter. 

4) Delay deflation procedure 
This subroutine adopts an ingenious scheme to improve the precision of the 
results.  After the residual becomes below the convergence criterion, this 
subroutine still continues some more iteration without deflation while the 
decrease ratio of the residual remains valid.  This procedure is called delay-
deflation here.  The decrease ratio is regarded valid if the ratio of the residual 
norm relative to the preceding residual is less than the parameter DPRM(6). If the 
residual deteriorates while this extra iteration, the better previous variables are 
restored and the deflation with the vector takes place.  With setting DPRM(6)=0.0, 
this delay-deflation does not act and then the parameter DPRM(4) is regarded as 
an ordinary convergence criterion. 

5) Approximated eigenvalue in the correction equation 
In the initial few steps of the process, the values of  are usually poor 
approximations of the wanted eigenvalue. This subroutine takes the target value  
specified in the ZTRGT as an approximated eigenvalue instead of  in the initial 
phase, since the validity of the expansion vector t is affected by the closeness to 
the approximated eigenvalue in the Jacobi-Davidson correction equation.  The 
process is regarded as the initial phase of the iteration while the iteration count is 
less than or equal to DPRM(9).  However, the default value of this parameter is 
DPRM(9)=0 when DPRM(3)=0 is adopted, because it is difficult to determine a 
value of  in advance when the standard algorithm is specified. 
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6) Stopping criterion for inner iteration 
The Jacobi-Davidson correction equation is solved by some iterative method in 
this subroutine, thus the whole algorithm consists of two nested iterations.  In the 
outer iteration the approximation for the eigenproblem is constructed , and in the 
inner iteration the correction equation is approximately solved.  If the residual of 
the eigenproblem still not be small in the outer iteration, solving accurately the 
correction equation in the inner iteration might be unnecessary.  Therefore, the 
stopping criterion for the inner iteration can be varied according to a counter 
associated with the outer iteration.  The criterion is set to be 
DPRM(13)DPRM(14)l, where l is the outer iteration counter which is reset to 
zero at each deflation.  Incidentally, the upper limit count for the inner iteration is 
specified by DPRM(12). 

7) Precondition for the correction equation 
It is known that a good preconditioner improves the convergence of the iterative 
method for linear equations.  The preconditioner to be applied is controlled by the 
parameter DPRM(15) in this subroutine.  Note that the value of ZTRGT is used 
for constructing a matrix M  (A I), which approximates a part of the 
coefficient matrix in some way.  The preconditioner is derived from the inverse 
procedure of the matrix M and projections on both sides.  If the preconditioner 
does not approximate the coefficient matrix of the correction equation properly or 
the parameter ZTRGT is far from the seeking eigenvalue, the convergence may 
deteriorate. 

8)  Memory usage 
This subroutine exploits work area internally as auto allocatable arrays. Therefore 
an abnormal termination could occur when the available area of the memory runs 
out.  The necessary size for the outer iteration is at least n(3mmax2NSEL) 
16 bytes for the standard algorithm and n(4mmax2NSEL) 16 bytes for the 
harmonic algorithm.  And when the GMRES method is used as the solver of the 
correction equation, the additional necessary area is nDPRM(12)16 bytes for 
the inner iteration. 

 

b. Example 

Ten largest eigenvalues in magnitude and corresponding eigenvectors of an 
eigenproblem Ax= x are sought, where A is a 1000010000 example matrix of the 
random sparsity pattern with 20 nonzero entries in each row. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on a system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT NONE 
      INTEGER NNZMAX,NMAX,LDK,NZC 
      PARAMETER (NMAX=10000,NZC=20) 
      PARAMETER (NNZMAX=NMAX*NZC) 
      PARAMETER (LDK=10) 
      COMPLEX*16 ZA(NNZMAX),ZTRGT,ZEVAL(LDK),ZEVEC(NMAX,LDK) 
      COMPLEX*16 RVEC(NMAX) 
      REAL*8 DERR,DPRM(32),DHIS(NMAX,2) 
      INTEGER NZ,NCOL(NNZMAX),NFRNZ(NMAX+1),N,ITRGT,IFLAG(32) 
      INTEGER NSEL,NEV,ITMAX,ITER,I,J,K,ICON,LDX,LDH 
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      N=NMAX 
      CALL MKSPMAT(N,NZC,ZA,NCOL,NFRNZ) 
      NZ=NFRNZ(N+1)-1 
 
      ITMAX = 500 
      NSEL = 10 
      DO I = 1,32 
       IFLAG(I)=0 
      ENDDO 
      LDX = NMAX 
      LDH = NMAX 
      ZTRGT = (0.0D0,0.0D0) 
      ITRGT = 1 
 
      CALL DM_VJDNHCR(ZA,NZ,NCOL,NFRNZ,N,ITRGT,ZTRGT,NSEL,NEV, 
     &          ITMAX,ITER,IFLAG,DPRM,ZEVAL,ZEVEC,LDX,DHIS,LDH,ICON) 
 
      PRINT *,'DM_VJDNHCR ICON=',ICON 
      PRINT *,'ITER=',ITER 
      DO K = 1,NEV 
       RVEC(1:N)=(0.0D0,0.0D0) 
!$OMP PARALLEL DO PRIVATE(J) 
       DO I=1,N 
        DO J=NFRNZ(I),NFRNZ(I+1)-1 
         RVEC(I)=RVEC(I)+ZA(J)*ZEVEC(NCOL(J),K) 
        ENDDO 
        RVEC(I)=RVEC(I)-ZEVAL(K)*ZEVEC(I,K) 
       ENDDO 
       DERR=0.0D0 
       DO I=1,N 
        DERR=DERR +DREAL(RVEC(I))**2 +DIMAG(RVEC(I))**2 
       ENDDO 
       DERR=DSQRT(DERR) 
       PRINT*,'EIGEN VALUE',K,'=',ZEVAL(K) 
       PRINT*,'ERROR=',DERR/CDABS(ZEVAL(K)) 
      ENDDO 
      STOP 
      END 
 
      SUBROUTINE MKSPMAT(N,NZC,ZA,NCOL,NFRNZ) 
      IMPLICIT NONE 
      INTEGER N,NZC,NCOL(*),NFRNZ(*) 
      COMPLEX*16 ZA(*) 
      INTEGER I,IC,ICT,J,K,ISEED,LDW,ICON 
      PARAMETER(LDW=1350) 
      REAL*8 DWORK(NZC),RNDWORK(LDW) 
      ISEED=1 
      CALL DVRAN4(0.0D0,1.0D0,ISEED,ZA,2*N*NZC,RNDWORK,LDW,ICON) 
      ISEED=1 
      DO I=1,N 
       NFRNZ(I)=(I-1)*NZC+1 
 10    CALL DVRAU4(ISEED,DWORK,NZC,RNDWORK,LDW,ICON) 
       IC=(I-1)*NZC 
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       DO J=1,NZC 
        ICT=N*DABS(DWORK(J))+1 
        DO K=1,J-1 
         IF(ICT.EQ.NCOL(IC-K+1))GO TO 10 
        ENDDO 
        IC=IC+1 
        NCOL(IC)=ICT 
       ENDDO 
      ENDDO 
      NFRNZ(N+1)=IC+1 
      RETURN 
      END 

 
 
 

(4) Method 

 This subroutine solves large sparse eigenproblems using the Jacobi-Davidson method.   
In the Jacobi–Davidson approach a small m-dimensional search subspace is updated in 
each iteration, from which an approximated eigenvector of the given n-dimensional 
eigenproblem is sought.  In each iteration there are two important phases of procedure, 
one is expansion in which the subspace is enlarged by adding a new appropriate basis 
vector to it, and one is extraction in which a sensible approximate eigenpair is sought 
from the search subspace.  For the subspace expansion phase, a correction vector against 
an approximated eigenvector is calculated as a solution vector of the Jacobi-Davidson 
correction equation.  For the extraction phase, an approximated eigenpair is calculated as 
a solution of a small projected eigenproblem.  Even when the seeking eigenvalues are in 
the interior of the spectrum, this method extracts them ingeniously using distinct search 
and test subspaces. 

 

 The following shows the overall procedure of the algorithm and describes some auxiliary 
parameters used in this subroutine. 

1. Prepare an expansion vector t. 

2. Expand the search subspace <V> and the test subspace <W> according to the 
vector t, where V and W are nm matrices, and <V> represents a linear subspace 
spanned by the column vectors of the matrix V.  The type of the algorithm 
whether standard or harmonic can be distinguished by the setting of the test 
subspace, W=V for standard and <W>=<(A I)V> for harmonic. The setting is 
specified by DPRM(3). 

3. Solve a projected m-dimensional eigenvalue problem with a standard technique 
for dense matrices. The results are called Ritz values or harmonic-Ritz values. 

4. Select an eigenvalue from the results of the projected eigenproblem according to 
the way ITRGT or ZTRGT specifies. 

5. Extract an approximating eigenvector u of the given large eigenproblem from 
the search space by expanding the eigenvector corresponds to the selected 
eigenvalue of the projected eigenproblem, and let  be its Rayleigh quotient. 

6. Set a residual vector r =Au u. 

7. Calculate the residual norm according to the way DPRM(5) specifies. 
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8. Deflate the eigenproblem by the vector u, if the residual norm satisfies 
convergence conditions which are indicated by the convergence criterion 
DPRM(4) and by the criterion ratio DPRM(6) of the delay-deflation. 

9. Reduce the dimensions of the subspaces m to mmin with restarting, when the m is 
greater than mmax.  The values of mmax and mmin are specified by DPRM(1) and 
DPRM(2) respectively. 

10. Obtain the next expansion vector t for the subsequent loop, which is the solution 
of the Jacobi-Davidson correction equation (Iuu*)(A I)(Iuu*)t = r  using 
some iterative method.  In this inner iteration, the parameters from DPRM(9) to 
DPRM(15) are used. 

 Note that some projection procedures needed after deflation are omitted to explain for 
simplicity. 

 

For details of the Jacobi-Davidson method, see [7] in Appendix A, "References." 

 



DM_VLAX 

II-104 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

DM_VLAX 
 

A system of linear equations with a real matrix (blocked LU decomposition method) 

CALL DM_VLAX(A,K,N,B,EPSZ,ISW,IS,IP,ICON) 

 

(1) Function 

 This subroutine solves a system of real coefficient linear equations using the blocked 
LU-decomposition method of outer product type. 

 Ax = b 

 where, A is a non-singular real matrix of n  n,  b is an n-dimensional real constant 
vector, and x is an n-dimensional solution vector.  (n  1) 

(2) Parameters 

A ............... Input.  Matrix A is stored in A(1:N,1:N). 

Output.  Matrices L and U are stored in A(1:N,1:N). 

This is a double precision real two-dimensional array A(K,N). 

The value of A other than A(1:N,1:N) is not assured after operation. 

K ............... Input.  The size of first dimension of array for storage A ( N). 

N ............... Input.  Order n of the matrix A. 

B ............... Input.  Constant vector b. 

Output.  Solution vector x. 

A double precision one-dimensional array of size N. 

EPSZ ........ Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is assumed.  (See note 1) in (3), 
"Comments on use.") 

ISW .......... Input.  Control information. 

When solving k ( 1) sets of equations having the same coefficient matrix, 
specify as follows. 

Specify ISW = 1 for the first set of equations. 

Specify ISW = 2 for the second and subsequent sets.  When specifying ISW = 2, 
change only the value of B into a new constant vector b and do not change other 
parameters. 

(See note 2) in (3), "Comments on use.") 

IS .............. Output.  Information to obtain the determinant of matrix A.  The determinant is 
obtained by multiplying the product of the n diagonal elements of array A by 
the value of IS after decomposition. 

(See note 2) in (3), "Comments on use.") 

IP .............. Output.  The transposition vector which indicates the history of row exchange 
by partial pivoting.  A one-dimensional array of size n. 
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ICON ........ Output.  Condition code. 

See Table DM_VLAX-1. 

 
Table DM_VLAX-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All the elements in some row of matrix A are 
zero, or the pivot becomes relatively zero.  
Matrix A may be singular. 

Processing is discontinued. 

30000 K < N, N < 1 or EPSZ < 0.0 Processing is discontinued 

 

(3) Comments on use 

a. Notes 

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ.  In this case, processing is discontinued with ICON = 20000.  When unit 
round off is u, the standard value of EPSZ is 16  u.  When the computation is to 
be continued even if the pivot is small, assign the minimum value to EPSZ.  In 
this case, however, the result is not assured. 

2) When several sets of linear equations that have an identical coefficient matrix 
are successively solved, the value of ISW should be 2 from the second time on.  
This reduces the execution time because LU decomposition of coefficient matrix 
A is bypassed.  The value of IS does not change from the time ISW = 1. 

3) This subroutine calls DM_VALU and DM_VLUX internally.  Therefore,  
instead of calling this function in a parallel region with specifying the number of 
threads by run-time library OMP_SET_NUM_THREADS(),  call DM_VALU 
and DM_VLUX directly with specifying the number of threads with 
OMP_SET_NUM_THREADS() just before the each of them. 

b. Example 

 A system of linear equations having on 4000  4000 coefficient matrix is solved. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION A(4001,4000) 
      DIMENSION IP(4000),B(4000) 
C 
      N=4000 
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B,N)   
 
!$OMP DO 
      DO J=1,N 
      DO I=1,N 
      A(I,J)=MIN(I,J) 
      ENDDO 



DM_VLAX 

II-106 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

      ENDDO 
!$OMP END DO 
 
!$OMP DO 
      DO I=1,N 
      B(I)=I*(I+1)/2+I*(N-I) 
      ENDDO 
!$OMP END DO 
 
!$OMP END PARALLEL  
C 
      K=4001 
      CALL DM_VLAX(A,K,N,B,0.0D0,1,IS,IP,ICON) 
      WRITE(6,610)ICON 
      IF(ICON.GE.20000)STOP 
 
      S=1.0D0 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,N)  
!$OMP+          REDUCTION(*:S) 
      DO I=1,N 
      S=S*A(I,I) 
      ENDDO 
!$OMP END PARALLEL DO 
 
      DET=IS*S 
 
C 
      WRITE(6,620)(I,B(I),I=1,10) 
      WRITE(6,630)DET 
  610 FORMAT(1H0,10X,16HCONDITION CODE =,I5) 
  620 FORMAT(1H0,10X,15HSOLUTION VECTOR 
     */(10X,3(1H(,I3,1H),D23.16))) 
  630 FORMAT(1H0,10X, 
     *27HDETERMINANT OF THE MATRIX =,D23.16) 
      END 
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DM_VLBX 
 

A system of linear equations with banded real matrices (Gaussian elimination) 

CALL DM_VLBX(A,K,N,NH1,NH2,B,EPSZ,ISW,IS,IP,ICON) 

 

(1) Function 

 This subroutine solves a system of linear equations with the banded real matrix using 
Gaussian elimination. 

 Ax = b 

 where, A is an n  n banded matrix, with the lower bandwidth h1, and upper bandwidth h2, 
b is an n-dimensional real constant vector, and x is an n-dimensional solution vector. 

 n > h1   0, n > h2   0 

(2) Parameters 

A  .............. Input.  Store a banded coefficient matrix A. 

Matrix A is stored in A(NH1 + 1:2  NH1 + NH2 +1,1:N).  For A(1:NH1, 1:N), 
set zero for the elements of matrix A outside the band. 

See Figure DM_VLBX-1. 

Output.  The LU-decomposed matrices L and U are stored. 

See Figure DM_VLBX-2. 

This is a double precision real two-dimensional array A(K,N). 

The value of A(2NH1+NH2+2:K, 1:N) is not assured after operation. 

K ............... Input.  The size of first dimension of array A( 2NH1+NH2+1). 

N ............... Input.  Order n of matrix A. 

NH1 .......... Input.  Lower bandwidth size h1. 

NH2 .......... Input.  Upper bandwidth size h2. 

B ............... Input.  Constant vector b. 

Output.  Solution vector x. 

A one-dimensional array of size n. 

EPSZ ........ Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is set.  (See note 1) in (3), “Comments on 
use.”) 

ISW .......... Input.  Control information. 

When solving k (k  1) sets of equations having the same coefficient matrix, 
specify as follows. 

Specify ISW = 1 for the first set of equations. 

Specify ISW = 2 for the second and subsequent sets of equations.  When 
specifying ISW = 2, change only the value of B into a new constant vector b 
and do not change any other parameters. 
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IS ............. Output.  Indicates the row vector exchange count. 

When IS is 1, the exchange count is even. 

When IS is -1, the exchange count is odd. 

(See note 3) in (3), “Comments on use.”) 

IP ............. Output.  A one-dimensional array of size n.  The transposition vector to contain 
row exchange information is stored. 

(See note 2) in (3), “Comments on use.”) 

ICON ........ Output.  The condition code. 

See Table DM_VLBX-1. 
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Figure DM_VLBX-1   Storing matrix A in array A 

 The column vector of matrix A is continuously stored in columns of array A in the same 
manner as diagonal elements of banded matrix A aii, i = 1, ..., n, are stored in A(nh1 + nh2 
+ 1,1:n). 

 Upper banded matrix part 

 aj-i,j, i = 1, ..., nh1, j = 1, ..., n, j - i  1 is stored in A (nh1 + 1:nh1 + nh2, + 1,1:n). 

 Lower banded matrix part 

 aj+i,j, i = 1, ... , nh1, j = 1, ... , n, j + i  n is stored in A(nh1 + nh2 + 2:2  nh1 + nh2 + 1, 
1:n).  For A(1:nh1,1:n), set zero for the elements of matrix A outside the band. 

 * indicates undefined values. 
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Figure DM_VLBX-2   Storing LU-decomposed matrix L and U in array A 

 LU-decomposed unit upper banded matrix except diagonal elements 

 uj-i+1,j, i = 1, ... , h1 + h2, j = 1, ... , n, j - i + 1  1 is stored in A(1:h1 + h2,1:n). 

 Lower banded matrix part 

 1j+i, j, i = 0, ... , h2, j = 1, ... , n, j + i  n is stored in A(h1 + h2 + 1:2  h1 + h2 + 1,1:n). 

 * indicates undefined values. 
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Table DM_VLBX-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All elements in some row of array A were zero, 
or the pivot became relatively zero.  Matrix A 
may be singular. 

Processing is discontinued. 

30000 N<1, NH1  N, NH1 < 0, NH2  N, NH2 < 0, 
K < 2NH1+NH2+1, EPSZ < 0. 

 

 

(3) Comments on use 

a. Notes 

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LU decomposition.  In this case, processing is 
discontinued with ICON = 20000.  When unit round off is u, the standard value 
of EPSZ is 16  u.  When the computation is to be continued even if the pivot is 
small, assign the minimum value to EPSZ.  In this case, however, the result is 
not assured. 

2) In this subroutine, row vector is exchanged using partial pivoting.  That is, when 
the I-th row (I  J) is selected as the pivot row in the J-th stage (J = 1, ... , n) of 
decomposition, the contents of the I-th row and J-th row are exchanged.  To 
indicate this exchange, I is stored in IP(J). 

3) The determinant can be obtained by multiplying IS and A(h1 + h2 + 1, i), i =1, ..., 
n. 
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b. Example 

 The system of linear equations with banded matrices is solved with the input of a 
banded real n = 10000 matrix, h1 = 2000, h2 = 3000. 

 
      implicit real*8(a-h,o-z) 
      parameter(nh1=2000,nh2=3000,n=10000) 
      parameter(ka=2*nh1+nh2+1,n2=n) 
      real*8 a(ka,n2),b(n),dwork(4500) 
      integer ip(n) 
 
c 
      ix=123 
      nwork=4500 
      nn=nh1+nh2+1 
      do i=1,n 
      call dvrau4(ix,a(nh1+1,i),nn,dwork,nwork,icon) 
      do j=1,nh1+nh2+1 
      enddo 
      enddo 
c 
c     zero clear 
c 
      print*,'nh1=',nh1,',nh2=',nh2,',n=',n 
c 
c     a(1:nh1,n)=0.0d0 
c 
      do j=1,n 
      do i=1,nh1 
      a(i,j)=0.0d0 
      enddo 
      enddo 
c 
c     left upper triangular part 
c 
      do j=1,nh2 
      do i=1,nh2+1-j 
      a(i+nh1,j)=0.0d0 
      enddo 
      enddo 
c 
c    right rower triangular part 
c 
      nbase=2*nh1+nh2+1 
      do j=1,nh1 
      do i=1,j 
      a(nbase-i+1,n-nh1+j)=0.0d0 
      enddo 
      enddo 
c 
c     set right hand constant vector 
c 
      do i=1,n 
      b(i)=0.0d0 
      enddo 
c 
      do i=1,n 
      nptr=i-1 
      do j=max(nptr+1-nh2,1),min(n,nptr+nh1+1) 
      b(j)=b(j)+a(j-i+nh1+nh2+1,i) 
      enddo 
      enddo 
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c 
      epsz=0.0d0 
      isw=1 
      call gettod(tt1) 
      call dm_vlbx(a,ka,n,nh1,nh2,b,epsz,isw,is,ip,icon) 
      call gettod(tt2) 
      print*,'time (wall clock)=',(tt2-tt1)*1.0d-6 
c 
      tmp=0.0d0 
      do i=1,n 
      tmp=max(tmp,dabs(b(i)-1)) 
      enddo 
c 
      print*,'maximum error =',tmp 
c 
      stop 
      end 
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DM_VLCSPSXCR1 
 

System of linear equations with non-Hermitian symmetric complex sparse matrices 
 (Conjugate A-Orthogonal Conjugate Residual method with preconditioning  
   by incomplete LDLT decomposition, symmetric compressed row storage method) 

CALL DM_VLCSPSXCR1(ZSA,NZ,NCOL,NFRNZ,N,ZB, ISW, ZX,IPAR,RPAR, 

ZVW,ICON) 

 

(1) Function 

This subroutine solves, using Conjugate A-Orthogonal Conjugate Residual method, 
COCR method, a system of linear equations with non-Hermitian symmetric complex 
sparse matrices as coefficient matrices.  

   Ax = b 

The n  n coefficient matrix A is stored using the symmetric compressed row storage 
method. Vectors b and x are n-dimensional vectors.  

(2) Parameters 

ZSA ............. Input. The nonzero elements of the coefficient matrix are stored in ZSA(1:NZ). 
One-dimensional complex array ZSA(NZ). Regarding the symmetric 
compressed row storage method, see Fig. DM_VCLSPSXCR1-1. 

NZ ............... Input. Total number of the nonzero elements belong to the coefficient matrix A 
(   1). 

NCOL .......... Input. The column indices used in the compressed row storage method, which 
indicate the column number of each nonzero element stored in the array ZSA. 
One-dimensional array NCOL(NZ). 

NFRNZ  ....... Input. The position of the first nonzero element stored in array ZSA by the 
symmetric compressed row storage methods which  stores the nonzero elements 
row by row of upper triangular portion of matrix A. NFRNZ(N+1)=NZ+1. One-
dimensional array NFRNZ(N+1). 

N ................. Input. Order n of the matrix A (   1). 

ZB ............... Input. The right-side constant vector of the system of linear equations is stored 
in ZB(1:N). One-dimensional complex array ZB(N). 

ISW ............. Input. Control information. 
When solving multiple sets of equations having the same coefficient matrix, 
specify as follows; 
Specify ISW = 1 for the first set of equations. 
Specify ISW = 3 for the second and subsequent sets with the same coefficient 
matrix and different constant vector b. 
When specifying ISW = 3, change only the value of ZB and ZX into a new 
constant vector b and initial vector x and do not change other parameters. 

ZX ............... Input. The initial value of solution can be specified in ZX(1:N).  
Output. The solution vector is stored in ZX(1:N). 
One-dimensional complex array ZX(N). 

IPAR ……… Control parameters having integer values. Some parameters may be modified 
on output. When specify 0 for any parameter, it will be assumed to specify 
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default value on it. If no convergence is met by using default parameters, it is 
recommended to try again by making parameters change. One-dimensional 
array IPAR(20). 
IPAR(1:5): Reserved for future extensions. Specify 0 for each, just in case. 

IPAR(6): Input. Specify the upper limit of iteration counts for the COCR 
 method (   0). Default value is 2000. 

IPAR(7): Output. Actual iteration counts.  

IPAR(8): Output. Actual evaluation counts of matrix-vector multiplications Av 
 where A is the coefficient matrix and v is iterative vector in the  
 COCR method. 

IPAR(9:10): Reserved for future extensions. Specify 0 for each, just in case.  

IPAR(11): Input. Specify control parameter how to make compensation for 
 dropped new nonzero elements which are filled in during incomplete   
 LDLT decomposition. If specify as IPAR(11)=0, no compensation 
 will be made. If specify as IPAR(11)=1, compensation will be 
 made by reflecting dropped entries into diagonal elements. Default 
 value is 0. 
 For more detail, see note 1) in (3), "Comments on use". 

IPAR(12): Output. Actual number of dropped new nonzero elements.  

 IPAR(13:20): Reserved for future extensions. Specify 0 for each, just in case. 

RPAR ........... Control parameters having real values. Some parameters may be modified on 
output. When specify 0.0 for any parameter, it will be assumed to specify 
default value on it. If no convergence is met by using default parameters, it is 
recommended to try again by making parameters change.  
One-dimensional array RPAR(20). 

RPAR(1): Reserved for future extensions. Specify 0.0 for each, just in case. 

 RPAR(2): Input. Specify convergence criteria epst for iterative solution of 
 given a system of linear equations by COCR method (   0.0). 
 Default value is 10-8.  

 RPAR(3): Output. Relative residual norm for residual vector of the solution. 

 RPAR(4): Output. Real part of the accumulated sum of dropped new nonzero 
 elements which are filled in during incomplete LDLT decomposition. 
 For more detail, see note 1) in (3), "Comments on use". 

 RPAR(5): Output. Imaginary part of the accumulated sum of dropped new 
 nonzero elements which are filled in during incomplete LDLT 
 decomposition. 
 For more detail, see note 1) in (3), "Comments on use". 

RPAR(6:20) : Reserved for future extensions. Specify 0.0 for each, just in case. 

ZVW ............ Work area. Input/Output. One-dimensional array ZVW(NZ). 

ICON .......... Output.  Condition code. 
See Table DM_VLCSPSXCR1-1. 

 
Table DM_VLCSPSXCR1  Condition codes 

Code Meaning Processing 

0 No error.  
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Code Meaning Processing 

20000 The iteration counts reached the upper limit. Processing is discontinued. 
The already calculated 
approximate value is output 
to array ZX along with 
relative residual error. 

29000 Matrix A is singular. Processing is discontinued. 

30000 Parameter error(s). 
N<1, NZ<1, NZ≠NFRNZ(N+1)-1, 
ISW<1, ISW=2, ISW>3,  
IPAR(6)<0, IPAR(11)<0, IPAR(11)>1, 
RPAR(2)<0.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure DM_VLCSPSXCR1_1  Storing matrix A in symmetric compressed row storage method 

 

(3) Comments on use 

a. Notes 

1) About drop of the new nonzero and its compensation 
In this subroutine, the new nonzero elements which are filled in during 
incomplete LDLT decomposition will be dropped in general. In order to ease up 
effect of such dropping, this subroutine attempts to compensate such dropping 
according to IPAR(11). If specify as IPAR(11)=1, it makes compensation for each 
diagonal elements by adding certain value which is accumulated sum of dropped 
new nonzero elements which are filled in on the row. By this compensation, it 
may affect to improve characteristic of the preconditioning matrix. 

























































































4

4

3

4

2

3

2

1

NCOL,

11

9

8

6

5

3

2

1

ZSA,

9

8

6

4

1

NFRNZ



DM_VLCSPSXCR1 

II-116 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

Further, this subroutine outputs the accumulated sum zdrp as an index regardless 
of IPAR(11) specification. The real part and imaginary part of zdrp are stored in 
RPAR(4) and RPAR(5) respectively. 

 

b. Example 

Read a symmetric complex matrix, then solve a linear system of equations Ax=b 
by this subroutine.  
The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C==================================================== 
C  TEST PROGRAM FOR KRYLOV ITERATION METHODS 
C  FOR SPARSE LINEAR EQUATIONS  
C  WITH NON-HERMIT COMPLEX SYMMETRIC MATRIX.  
C==================================================== 
      PARAMETER (NZMAX=500 000, NMAX=10 000) 
      IMPLICIT   REAL*8 (A-H,O-Y) 
      IMPLICIT   COMPLEX*16 (Z) 
      REAL*8     CNORM2 
      DIMENSION  ZSA(NZMAX),NFRNZ(NMAX+1), 
     1           NCOL(NZMAX),ZX(NMAX),ZB(NMAX), 
     2           ZSAT(NZMAX),NFRNZT(NMAX+1), 
     3           NCOLT(NZMAX),ZXT(NMAX),ZBT(NMAX), 
     4           ZVW(NZMAX) 
     5          ,IPAR(20),RPAR(20) 
      CHARACTER  TITLE*72 
C---------------------------------------------------- 
C     INPUT MATRIX FROM UF SPARSE MATRIX COLLECTION 
C---------------------------------------------------- 
      CALL CREADMAT(TITLE,ZSAT,N,NFRNZT,NCOLT,ZSA) 
      CALL CVECGEN(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT) 
      CALL CMATCOPY(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT, 
     +              ZSA,NFRNZ,NCOL,ZX,ZB) 
C 
      WRITE(6,600) TITLE 
  600 FORMAT( 
     */'---------------------------------------------' 
     */'TEST MATRIX : '/A36/A36) 
C---------------------------------------------------- 
      ISW=1 
      DO II=1,20 
         IPAR(II)=0 
         RPAR(II)=0.0D0 
      END DO 
      NZ=NFRNZ(N+1)-1 
      CALL DM_VLCSPSXCR1(ZSA,NZ,NCOL,NFRNZ,N,ZB, 
     *                   ISW,ZX,IPAR,RPAR,ZVW,ICON) 
C 
      IC    =IPAR(7) 
      ICMAV =IPAR(8) 
      MDRP  =IPAR(11) 
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      NZDRP =IPAR(12) 
      EPST  =RPAR(2) 
      RELRES=RPAR(3) 
      DRPR  =RPAR(4) 
      DRPI  =RPAR(5) 
      REL   =CNORM(ZB,N) 
      CALL CMSVCR1(ZSA,N,NFRNZ,NCOL,ZX,ZB,0) 
      RELERR=CNORM(ZB,N)/REL 
C 
      WRITE(6,601) 
  601 FORMAT( 
     */'---------------------------------------------' 
     */' SOLUTION RESULTS BY "DM_VLCSPSXCR1"') 
      WRITE(6,605) N,NFRNZ(N+1)-1,MDRP 
      WRITE(6,606) ICON,IC,ICMAV,NZDRP,DRPR, 
     *             DRPI,EPST,RELRES,RELERR 
  605 FORMAT(/' N           =',I12 
     *       /' NZ          =',I12 
     *       /' MDRP        =',I12) 
  606 FORMAT(/' ICON        =',I12 
     *       /' IC          =',I12 
     *       /' ICMAV       =',I12 
     *       /' NZDRP       =',I12 
     *       /' DRPR        =',D12.2 
     *       /' DRPI        =',D12.2 
     *       /' EPST        =',D12.2 
     *       /' RELRES      =',D12.2 
     *       /' RELERR      =',D12.2 
     */'--------------------------------------------') 
      IF(RELERR.LE.EPST*1.1D0.AND.ICON.EQ.0)THEN 
         WRITE(*,*)' ********** OK **********' 
      ELSE 
         WRITE(*,*)' ********** NG **********' 
      ENDIF 
      STOP 
      END 
C===================================================== 
C     READ TEST MATRIX FOR COMPLEX SYMMETRIC MATRIX. 
C===================================================== 
      SUBROUTINE CREADMAT(TITLE,A,NCOL,IS,JS,W) 
C 
C THIS ROUTINE READS MATRIX DATA OF RB SPARSE FORM.  
C THE FOLLOWING SAMPLE CODE IS ORIGINATED FROM MATRIX  
C MARKET; 
C 
      IMPLICIT NONE 
      CHARACTER TITLE*72,KEY*8,MXTYPE*3,RHSTYP*3, 
     1         PTRFMT*16,INDFMT*16,VALFMT*20,RHSFMT*20 
      INTEGER  TOTCRD,PTRCRD,INDCRD,VALCRD,RHSCRD, 
     1         NROW,NCOL,NNZERO,NELTVL, 
     2         NRHS,NRHSIX 
      INTEGER  IS(*),JS(*),I 
      REAL*8   A(*),W(*) 



DM_VLCSPSXCR1 

II-118 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

      INTEGER  IX 
C     ------------------------ 
C     READ IN HEADER BLOCK 
C     ------------------------ 
      READ(5,1000) TITLE,KEY,TOTCRD,PTRCRD,INDCRD, 
     +VALCRD,RHSCRD,MXTYPE,NROW,NCOL,NNZERO,NELTVL, 
     +PTRFMT,INDFMT,VALFMT,RHSFMT 
 1000 FORMAT(A72,A8/5I14/A3,11X,4I14/2A16,2A20)  
C 
      IF(RHSCRD.GT.0) READ(5,1001) RHSTYP,NRHS,NRHSIX 
 1001 FORMAT(A3,11X,2I14) 
C     ------------------------- 
C     READ MATRIX STRUCTURE 
C     ------------------------- 
      READ(5,PTRFMT) (IS(I),I=1,NCOL+1) 
      READ(5,INDFMT) (JS(I),I=1,NNZERO) 
C 
      IF(VALCRD.GT.0) THEN 
C     ---------------------- 
C     READ MATRIX VALUES 
C     ---------------------- 
      IF(MXTYPE(1:1).EQ.'R') THEN 
         READ(5,VALFMT) (A(I),I=1,NNZERO) 
      ELSE 
         READ(5,VALFMT) (A(I),I=1,2*NNZERO) 
      END IF 
      END IF 
      RETURN 
      END 
C===================================================== 
C     COPY COMPLEX MATRIX AND VECTORS. 
C===================================================== 
      SUBROUTINE CMATCOPY(ZSAT,N,NFRNZT,NCOLT, 
     +                 ZXT,ZBT,ZSA,NFRNZ,NCOL,ZX,ZB) 
      IMPLICIT   REAL*8 (A-H,O-Y) 
      IMPLICIT   COMPLEX*16 (Z) 
      DIMENSION  ZSAT(*),NFRNZT(*),NCOLT(*), 
     +           ZXT(*),ZBT(*),ZSA(*),NFRNZ(*), 
     +           NCOL(*),ZX(*),ZB(*) 
C 
      NZ=NFRNZT(N+1)-1 
      DO I=1,N+1 
         NFRNZ(I)=NFRNZT(I) 
      END DO 
      DO I=1,NZ 
         ZSA(I)=ZSAT(I) 
         NCOL(I)=NCOLT(I) 
      END DO 
C 
      DO I=1,N 
         ZX(I)=ZXT(I) 
         ZB(I)=ZBT(I) 
      END DO 
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      RETURN 
      END 
C===================================================== 
C     GENERATE COMPLEX B AND X VECTORS. 
C===================================================== 
      SUBROUTINE CVECGEN(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT) 
      IMPLICIT   REAL*8 (A-H,O-Y) 
      IMPLICIT   COMPLEX*16 (Z) 
      DIMENSION  ZSAT(*),NFRNZT(*),NCOLT(*), 
     +           ZXT(*),ZBT(*) 
C 
C     COMPUTE RIGHT HAND SIDE VECTOR B. 
      DO II=1,N 
         ZXT(II)=1.0D0+DFLOAT(II)/DFLOAT(N) 
      END DO 
      CALL CMSVCR1(ZSAT,N,NFRNZT,NCOLT,ZXT,ZBT,1) 
C 
C     SET INITIAL VALUE 
      DO II=1,N 
         ZXT(II)=0.0D0 
      END DO 
      RETURN 
      END 
C===================================================== 
C     MATRIX VECTOR MULTIPLICATION. 
C     COMPLEX SYMMETRIC MATRIX STORED IN CSR FORM. 
C===================================================== 
      SUBROUTINE CMSVCR1(ZSA,N,NFRNZ,NCOL,ZX,ZB,ISW) 
      IMPLICIT   REAL*8 (A-H,O-Y) 
      IMPLICIT   COMPLEX*16 (Z) 
      DIMENSION  ZSA(*),ZB(*),ZX(*),NFRNZ(*),NCOL(*) 
C 
      IF(ISW.EQ.1) THEN !*** MULTIPLICATION (AX=>B) 
C 
         DO I=1,N 
            ZB(I)=0.0D0 
         END DO 
         DO I=1,N 
            K1=NFRNZ(I) 
            K2=NFRNZ(I+1)-1 
            IF(ZX(I).NE.0.0D0) THEN 
               DO J=K1,K2 
                  ZB(NCOL(J))=ZSA(J)*ZX(I)+ZB(NCOL(J)) 
                  IF(NCOL(J).NE.I)  
     +                ZB(I)=ZSA(J)*ZX(NCOL(J))+ZB(I) 
               END DO 
            ELSE 
               DO J=K1,K2 
                  ZB(I)=ZSA(J)*ZX(NCOL(J))+ZB(I) 
               END DO 
            END IF 
         END DO 
C 
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      ELSE           !*** RESIDUAL VECTOR (B-AX=>B) 
C 
         DO I=1,N 
            K1=NFRNZ(I) 
            K2=NFRNZ(I+1)-1 
            IF(ZX(I).NE.0.0D0) THEN 
               DO J=K1,K2 
                 ZB(NCOL(J))=-ZSA(J)*ZX(I)+ZB(NCOL(J)) 
                  IF(NCOL(J).NE.I)  
     +                ZB(I)=-ZSA(J)*ZX(NCOL(J))+ZB(I) 
               END DO 
            ELSE 
               DO J=K1,K2 
                  ZB(I)=-ZSA(J)*ZX(NCOL(J))+ZB(I) 
               END DO 
            END IF 
         END DO 
      END IF 
      RETURN 
      END 
C===================================================== 
C     L2 NORM OF A COMPLEX VECTOR. 
C===================================================== 
      FUNCTION  CNORM(ZX,N) 
      IMPLICIT  REAL*8 (A-H,O-Y) 
      IMPLICIT  COMPLEX*16 (Z) 
      DIMENSION ZX(N) 
      CNORM=0.0D0 
      DO I=1,N 
         CNORM=ZX(I)*DCONJG(ZX(I))+CNORM 
      END DO 
      IF(CNORM.NE.0.0D0) CNORM=DSQRT(CNORM) 
      RETURN 
      END 
 

(4) Method 

This subroutine solves a system of linear equations with non-Hermitian symmetric complex 
sparse matrices as coefficient matrices using Conjugate A-Orthogonal Conjugate Residual 
method, COCR method, with preconditioning by incomplete LDLT decomposition. 

a. Incomplete LDLT decomposition 

Preconditioning method makes the system to more tractable form and reduces total 
iteration counts. On such point of view, incomplete decomposition method is well known. 

This subroutine employs a preconditioning method based on incomplete LDLT 

decomposition with dropping new nonzero elements.  

b. Conjugate A-Orthogonal Conjugate Residual, COCR method 

In general, there are popular methods for solving linear systems with non-Hermitian 
symmetric complex sparse matrix such as BiCG and CGS method based on Lanczos 
process,  BiCGSTAB method based on product type process and GMRES method based on 
Arnoldi process. However, since these methods do not take advantage of symmetric 
property of the matrix, number of matrix-vector multiplications come to 2 times per 
iteration in the kernel loop.  
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This subroutine employs Conjugate A-Orthogonal Conjugate Residual, COCR method, 
which takes advantage of symmetric property, holds a minimal residual property and 
takes stable convergence property. 
 

c. Algorithm of COCR method with preconditioning 
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Where the inner product (x,y) is defined by below. 

i

n

i
i yx

1
),( yx  

d. Convergence test 

The iterate xk is accepted as a solution of the system if the residual satisfies 

22
bAxb epstk  . 

Where epst is a convergence criteria specified in RPAR(2). Default value of epst is 10-8.  
The final relative residual norm 

22
/ bAxb k  

is stored in RPAR(3), even if in the case that the residual does not satisfy convergence 
test. The residual vector b - Axk is computed by using recurrence in the iteration formula. 

 

For details of the algorithms, see [66] and [74] in Appendix A, "References." 
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DM_VLCX 
 

A system of linear equations with complex matrices (blocked LU decomposition method) 

CALL DM_VLCX(ZA,K,N,ZB,EPSZ,ISW, IS,IP, ICON) 

 

(1) Function 

  This subroutine solves a system of complex coefficient linear equations using blocked 
LU-decomposition method of an outer product type. 

 Ax = b 

  where, A is a non-singular n  n complex matrix, b is an n-dimensional complex 
constant vector, and x is an n-dimensional solution vector (n  1). 

(2) Parameters 

ZA............. Input.  Matrix A is stored in ZA(1:N,1:N). 

Output.  Matrices L and U are stored in ZA(1:N,1:N). 

This is a two-dimensional double precision complex type array ZA(K,N). 

K............... Input.  The size of the first dimension of the array ZA. ( N). 

N .............. Input.  Order n of matrix A. 

ZB ............ Input.  Constant vector b. 

Output.  Solution vector x. 

A double precision complex type array ZB(N). 

EPSZ ........ Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, a standard value is assumed.  (See note 1) in (3), Comments 
on use.) 

ISW .......... Input.  Control information. 

When solving k ( 1) sets of equations having identical coefficient matrices, 
specify as follows. 

Specify ISW = 1 for the first set of equations. 

Specify ISW = 2 for the second and the subsequent sets of equations.  When 
specifying ISW = 2, change only the value of ZB into a new constant vector.  
Do not change any other parameters. 

(See note 2) in (3), “Comments on use.”) 

IS .............. Output.  Information to obtain the determinant of matrix A.   

The determinant is obtained by multiplying n diagonal elements of array ZA by 
the value of IS after the operation. 

(See note 2) in (3), “Comments on use.”) 

IP .............. Output.  The transposition vector which indicates the history of the row 
exchange by partial pivoting.  A one-dimensional array of size n.  

ICON ........ Output.  Condition code. 

See Table DM_VLCX-1. 
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Table DM_VLCX-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All the elements in some row of matrix A are 
zero, or the pivot becomes relatively zero.  
Matrix A may be singular. 

Processing is discontinued. 

30000 K < N, N < 1, EPSZ < 0.0.  

 

(3) Comments on use 

a. Notes 

1) If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ.  In this case, processing is discontinued with ICON = 20000.  When unit 
round off is u, the standard value of EPSZ is 16u.  When the computation is to be 
continued even if the pivot is small, assign the minimum value to EPSZ.  In this 
case, however, the result is not assured. 

2) When several sets of linear equations with an identical coefficient matrix are 
successively solved, the value of ISW should be 2 from the second time on.  This 
reduces the execution time because LU decomposition of coefficient matrix A is 
bypassed.  The value of IS does not change from the time ISW = 1. 

b. Example 

 A system of linear equations having an n  n complex coefficient matrix is 
solved. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N=2000,K=N+1) 
C 
      COMPLEX*16 A(K,N),B(N) 
      REAL*8     C 
      INTEGER    IP(N),IS 
C 
      C=SQRT(1.0D0/DBLE(1+N)) 
      T=DATAN(1.0D0)*8./(1+N) 
C 
      DO 100 J=1,N 
      DO 100 I=1,N 
      A(I,J)=DCMPLX(C*COS(T*I*J),C*SIN(T*I*J)) 
 100  CONTINUE 
C 
      DO 200 I=1,N 
      S=(0.,0.) 
      DO 200 J=1,N 
      S=S+DCMPLX(COS(T*I*J),SIN(T*I*J)) 
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      B(I)=S*C 
 200  CONTINUE 
C 
      ISW=1 
      EPSZ=0.0D0 
      CALL DM_VLCX(A,K,N,B,EPSZ,ISW,IS,IP,ICON) 
      PRINT*,'ICON=',ICON 
 
      ERROR=0.0D0 
      DO I=1,N 
      ERROR=MAX(ERROR,ABS(1.0D0-B(I))) 
      ENDDO 
      PRINT*,'ERROR =',ERROR 
 
      PRINT*,'ORDER=',N,' B(1)=',B(1),'B(N)=',B(N) 
      STOP 
      END 
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DM_VLDLX 
 

A system of linear equations with LDLT-decomposed positive definite matrices 

CALL DM_VLDLX(B,FA,KFA,N,ICON) 

 

(1) Function 

 This subroutine solves a system of linear equations with LDLT- decomposed symmetric 
positive definite coefficient matrix. 

 LDLT x = b (1.1) 

 where, L and D are a unit lower triangular matrix and an n  n diagonal matrix 
respectively, b is an n-dimensional real constant vector, x is an n-dimensional solution 
vector, and n  1. 

 This subroutine receives the LDLT-decomposed matrix from subroutine DM_VSLDL 
and calculates the solution of a system of linear equations. 

(2) Parameters 

B .............. Input.  Constant vector b. 

Output.  Solution vector x. 

A double precision real one-dimensional array of size n. 

FA ............ Input.  The LDLT-decomposed matrices L, D-1, and LT are stored. 

The LDLT-decomposed matrices are stored in FA(1:N,1:N).  That is, FA(i,j) 
contains 

lij    (when i > j) 

reciprocals of dii  (when i = j). 

See Figure DM_VLDLX-1. 

This is a double precision real two-dimensional array FA(KFA,N). 

KFA ......... Input.  The size of the first dimension of array FA ( N). 

N .............. Input.  Order n of matrices L and D. 

ICON ........ Output.  Condition code. 

See Table DM_VLDLX. 
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Figure DM_VLDLX-1   Storing matrices L, D-1 into array FA 

 After LDLT decomposition, matrix D-1 is stored in diagonal elements and L (excluding 
the diagonal elements) are stored in the lower triangular part respectively. 

 
Table DM_VLDLX-1   Condition codes 

Code Meaning Processing 

0 No error  

10000 The coefficient matrix is not positive definite. Processing is continued. 

30000 N < 1, KFA < N. Processing is discontinued. 

 

 (3) Comments on use 

a. Notes 

1) A system of linear equations with a positive definite coefficient matrix can be 
solved by calling this subroutine after calling subroutine DM_VSLDL.  However, 
subroutine DM_VLSX should be usually used to solve a system of linear 
equations in one step. 

 

b. Example 

  A 4000  4000 coefficient matrix is decomposed into LDLT-decomposed matrix, 
then the system of linear equations is solved. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N=4000,KFA=N+1) 
      REAL*8    A(KFA,N) 
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      REAL*8    B(N) 
C 
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B)   
!$OMP DO 
      DO J=1,N 
      DO I=J,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
!$OMP END DO 
 
!$OMP DO 
      DO I=1,N 
      B(I)=I*(I+1)/2+I*(N-I) 
      ENDDO 
!$OMP END DO 
 
!$OMP END PARALLEL  
C 
      CALL DM_VSLDL(A,KFA,N,1.D-13,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
 
      CALL DM_VLDLX(B,A,KFA,N,ICON) 
      WRITE(6,630) (B(I),I=1,10) 
 
      S=1.0D0 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)  
!$OMP+          REDUCTION(*:S) 
      DO I=1,N 
      S=S*A(I,I) 
      ENDDO 
!$OMP END PARALLEL DO 
 
      DET=S 
      DET=1.D0/DET 
      WRITE(6,620) DET 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(3D22.15) 
  600 FORMAT(1H,I5/(10X,3D23.16)) 
  610 FORMAT(/10X,5HICON=,I5) 
  620 FORMAT(/10X 
     *,34HDETERMINANT OF COEFFICIENT MATRIX= 
     *,D23.16) 
  630 FORMAT(/10X,15HSOLUTION VECTOR 
     *//(10X,3D23.16)) 
  640 FORMAT(/10X,12HINPUT MATRIX) 
  10  STOP 
      END 
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(4) Method 

 The system of linear equations with LDLT-decomposed coefficient matrices is solved by 
forward and back-substitution.  (See [54] in Appendix A, "References.") 
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DM_VLSPAXCR2 
 

System of linear equations with unsymmetric real sparse matrices (Induced Dimension 
Reduction method with preconditioning by sparse approximate inverse, compressed row 
storage method) 

CALL DM_VLSPAXCR2(A,NZ,NCOL,NFRNZ,N,B,ISW,X,AM,NZM,NCOLM, 
NFRNZM,NWM,IPAR,RPAR,VW1,IVW1,VW2,IVW2,LMMAX,LNMAX,NUMT,ICON) 

 

(1) Function 

 This subroutine solves, using IDR method with stabilization, IDRstab(s,l) method, a 
system of linear equations with unsymmetric real sparse matrices as coefficient matrices. 

   Ax = b 

 The n  n coefficient matrix A is stored using the compressed row storage method. 
Vectors b and x are n-dimensional vectors. The parameter s is the order of shadow 
residual and l is the order of acceleration polynomial. 

(2) Parameters 

A ................ Input. The nonzero elements of the coefficient matrix are stored in A(1:NZ). 
The compressed row storage method is to store transposed matrix of the 
coefficient matrix A in the compressed column storage method.   
Regarding the compressed column storage method, see Fig. DM_VMVSCC-1. 

NZ .............. Input. Total number of the nonzero elements belong to the coefficient matrix  
(  1). 

NCOL......... Input. The column indices used in the compressed row storage method, which 
indicate the column number of each nonzero element stored in the array A. 
One-dimensional array NCOL(NZ). 

NFRNZ....... Input. The position of the first nonzero element stored in array A by the 
compressed row storage methods which  stores the nonzero elements row by 
row. NFRNZ(N+1)=NZ+1. One-dimensional array NFRNZ(N+1). 

N ................ Input. Order n of the matrix A (  1). 

B ................ Input. The right-side constant vector of the system of linear equations is stored 
in B(1:N). One-dimensional array B(N). 

ISW............ Input. Control information. 
When solving multiple sets of equations having the same sparse structure and 
/or the same coefficient matrix, specify as follows; 
Specify ISW = 1 for the first set of equations. 
Specify ISW = 2 for the second and subsequent sets with the same sparse 
 structure and different coefficient matrix A and constant vector b. 
Specify ISW = 3 for the second and subsequent sets with different constant 
 vector b. 
When specifying ISW = 2 or 3, change only the parameters necessary to be 
changed such as A, B and/or X and do not change other parameters. 

X ............... Input. The initial value of solution can be specified in X(1:N).  
Output. The solution vector is stored in X(1:N). 
One-dimensional array X(N). 
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AM.............. Input. If any, the nonzero elements of the initial approximate inverse matrix M0 
are stored in AM(1:NZM) using the compressed row storage method. One-
dimensional array AM(NWM). 
The compressed row storage method is the same with matrix A. 
Output. The approximate inverse matrix M.  

NZM........... Input. If any, total number of the nonzero elements belong to the initial 
approximate inverse matrix M0 (  1). 
If not, specify as NZM=0. In this case, this subroutine employs the unit matrix 
as the initial approximate inverse internally. 
Output. Total number of the nonzero elements of approximate inverse matrix M. 

NCOLM...... Input. If any, the column indices used in the compressed row storage method, 
which indicate the column number of each nonzero element stored in the array 
AM. One-dimensional array NCOLM(NWM). 
Output. The column indices of approximate inverse matrix M. 

NFRNZM.... Input. If any,the position of the first nonzero element stored in array AM by the 
compressed row storage method which  stores the nonzero elements row by row. 
NFRNZM(N+1)=NZM+1. One-dimensional array NFRNZM(N+1). 
Output. The position of the first nonzero element of each row of approximate 
inverse matrix M. 

NWM.......... Input. Specify the maximum size of areas used for computation of approximate 
inverse matrix M (  1).  
Total number of the nonzero elements of approximate inverse matrix M is 
calculated by the formula below where nzk is number of nonzero elements in the 
k-th column of matrix A. 





n

k
k IPARnznzm

1
)100/)2(,1max(  

Then NWM is specified as follows; 
),max( nznzmNWM  . 

For more detail, see note 1) in (3), "Comments on use". 

IPAR .......... Control parameters having integer values. Some parameters may be modified 
on output. When specify 0 for any parameter, it will be assumed to specify 
default value on it. If no convergence is met by using default parameters, it is 
recommended to try again by making parameters change.  
One-dimensional array IPAR(20). 
IPAR(1):  Reserved for future extensions. Specify 0 for each, just in case. 

IPAR(2): Input. Specify percentage(%) which is the ratio of nonzero elements 
 of approximate inverse against that of the coefficient matrix A (  0).  
 It is used as upper limit control for nonzero elements generations. 
 For instance, if specify as IPAR(2)=50, approximate inverse matrix 
 will be generated having total nonzero number which is about 50% of 
 that of coefficient matrix as an upper limit. Default value is 100.  
 For more detail, see note 3) in (3), "Comments on use". 

IPAR(3): Input. Specify incremental number which is number of adding new 
 indices during computation of column vector of approximate inverse 
 matrix (n  IPAR(3)  0). For instance, if specify as IPAR(3)=2, the 
 number of indices within each column of approximate inverse will be 
 incremented by 2 indices which are the most effective indices in term 
 of the norm minimization. Default value is 1. 
 For more detail, see note 4) in (3), "Comments on use". 
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IPAR(4): Input. Specify the order of shadow residual s of Induced Dimension  
 Reduction method IDRstab(s,l) (n  s  0). Default value is 4. 

IPAR(5): Input. Specify the order of acceleration polynomial l of Induced  
 Dimension Reduction method IDRstab(s,l) (n  l  0).  
 Default value is 1. 

IPAR(6): Input. Specify the upper limit of iteration counts for IDRstab(s,l)  
 method (  0). Default value is 2000. 

IPAR(7): Output. Actual iteration counts.  

IPAR(8): Output. Actual evaluation counts of matrix-vector multiplications Av 
 where A is the coefficient matrix and v is iterative vector in 
 IDRstab(s,l) method. 

IPAR(9): Output. Estimated size NWM for AM, NCOLM etc. 
 For more detail, see note 1) in (3), "Comments on use". 

IPAR(10:12): Reserved for future extensions. Specify 0 for each, just in case. 

IPAR(13): Output. Actual size LMMAX used for VW2 and IVW2. 

IPAR(14): Output. Actual size LNMAX used for VW2. 

IPAR(15:20): Reserved for future extensions. Specify 0 for each, just in case. 

RPAR ......... Control parameters having real values. Some parameters may be modified on 
output. When specify 0.0 for any parameter, it will be assumed to specify 
default value on it. If no convergence is met by using default parameters, it is 
recommended to try again by making parameters change.  
One-dimensional array RPAR(20). 

 RPAR(1):Input. Specify convergence criteria eps with iterative computation for 
 each column of approximate inverse matrix (  0.0).  
 Default value is 0.3. For more detail, see note a. "Approximate  
 Inverse Matrix" in (4), "Method". 

 RPAR(2):Input. Specify convergence criteria epst for iterative solution of given  
 a system of linear equations by IDRstab(s,l) method (  0.0). 
 Default value is 10-8. For more detail, see note c. "Convergence  
 Check" in (4), "Method". 

 RPAR(3): Output. Relative residual norm for residual vector of the solution. 

RPAR(4:20): Reserved for future extensions. Specify 0.0 for each, just in case. 

VW1........... Work area. One-dimensional array VW1(NWM). 

IVW1 ......... Work area. One-dimensional array IVW1(NWM). 

VW2........... Work area. Three-dimensional array VW2(LMMAX,LNMAX+3,NUMT). 

IVW2 ......... Work area. Three-dimensional array IVW2(LMMAX,LNMAX+3,NUMT). 

LMMAX.... Input. The first dimension of working array (  1). 
LMMAX is a certain value related to the number of nonzero elements of matrix 
A. Lets see certain column of matrix A, we defines the total number of nonzero 
elements in the column and another columns which are relatives of the nonzero 
elements of the column. Specify the maximum number of the total number 
between columns. In general, it is adequate to specify as LMMAX=1000. If no 
solution is met, it is recommended to try again by making parameters change. 
For more detail, see note 5) in (3), "Comments on use". 
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LNMAX.…. Input. The second dimension of working array (  1). 
LNMAX is a certain value proportional to the maximum number of nonzero 
elements between columns of matrix A. In general, specify the maximum 
number of nonzero elements for regular use with IPAR(2)=100. If no solution is 
met, it is recommended to try again by making parameters change. 
For more detail, see note 5) in (3), "Comments on use". 

NUMT......... Input. The third dimension of working array (  1). 
Specify maximum number of threads for parallel processing. 

ICON .......... Output.  Condition code. 
See Table DM_VLSPAXCR2-1. 

 
Table DM_VLSPAXCR2  Condition codes 

Code Meaning Processing 

0 No error.  

11000 Matrix A may be near singular. Processing is continued. 

19000 Non diagonal element(s) is detected in matrix 
A. 

20000 The iteration counts reached the upper limit. Processing is discontinued. 
The already calculated 
approximate value is output 
to array X along with 
relative residual error. 

25000 Array AM and NCOLM overflow due to too 
small value NWM. 

Processing is discontinued. 
Estimated minimum size is 
output to IPAR(9). 

26000 Work area VW2, IVW2 overflow due to too 
small value LMMAX. 

Processing is discontinued. 

27000 Work area VW2 overflow due to too small 
value LNMAX. 

29000 Matrix A is singular. 

30000 Parameter error(s). 
N<1, NZ<1, NZ≠NFRFZ(N+1)-1, 
ISW<1, ISW>3, NWM<1N, NZM<0, 
IPAR(1)<0, IPAR(2)<0, IPAR(3)<0, 
IPAR(3)<0, IPAR(4)<0, n<IPAR(4), 
IPAR(5)<0, n<IPAR(5), IPAR(6)<0, 
LMMAX<1, LNMAX<1, NUMT<1, 
RPAR(1)<0.0, RPAR(2)<0.0. 

30011 Parameter error(s) related to matrix A.  
Some parameter value show following relation. 
NFRNZ(k)>NFRNZ(k+1), k=1,...,n 

30012 Parameter error(s) related to matrix A.  
Some parameter value show following relation. 
NCOL(l)>NCOL(l+1), 
l=NFRNZ(k),...,NFRNZ(k+1), k=1,...,n 
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Code Meaning Processing 

30021 Parameter error(s) related to matrix M0.  
Some parameter value show following relation. 
NFRNZM(k)>NFRNZM(k+1), k=1,…,n. 

Processing is discontinued. 

30022 Parameter error(s) related to matrix M0.  
Some parameter value show following relation. 
NCOLM(l)>NCOLM(l+1), 
l=NFRNZM(k),...,NFRNZM(k+1), k=1,...,n. 

 

(3)  Comments on use 

a. Notes 

1) About the size of arrays for approximate inverse matrix 
The size nzm of approximate inverse matrix M is calculated by the formula below 
where nzk is number of nonzero elements in the k-th column of matrix A. 

 


n

k
k IPARnznzm

1
)100/)2(,1max(  

Then the size of array NWM is specified as follows; 
),max( nznzmNWM  . 

In general, if you use default value for IPAR(2), that is IPAR(2)=0, which 
specifies upper limit of percentage of nonzero elements generations, it is adequate 
to specify as NWM=NZ. When it is difficult to calculate NWM by above formula, 
it is recommended to specify enough big size such as NWM=2×NZ. As a result of 
operation of this subroutine, the suggested size is output on IPAR(9). This 
resultant value gives good suggestion for subsequent call to solve a system with a 
similar sparse matrix. If you solve another system having the same sparse 
structure and the equivalent nonzero percentage of approximate inverse, you can 
take IPAR(9) as a suggestion. On the other hand, if you solve another system 
having much more nonzero elements than previous, or increasing percentage of 
nonzero elements in approximate inverse, you can take IPAR(9) multiplied by 
each increasing ratio as a suggestion. 
 

2) About the initial approximate inverse matrix  
If you have a good approximate inverse matrix M0, you can specify it as an initial 
value on relevant parameters. You can specify total nonzero number of the matrix 
M0 on NZM, and specify the initial approximate inverse matrix on AM,NCOLM  
and NFRNZM respectively. 
Such usage is recommended for user who would process following type of 
problems in efficient manner. 
#1  to solve multiple set of equations with the same sparse structure and different 
      coefficient matrix A and constant vector b. 
#2  to solve multiple set of equations with similar sparse structure. 
Process is controlled along with parameter ISW. In these cases, change only the 
value of A and/or related parameters and B, X, and do not change other 
parameters such as AM and work areas in which previous results are stored. 
In this case, it is possible to increase the upper limit by making parameter 
IPAR(2) change.  
 

3) About total nonzero number of approximate inverse matrix M 
This subroutine solves a system of linear equations with preconditioning based on 
approximate inverse matrix, 
   AMy = b, x = My. 
Approximate inverse matrix M is computed so as to be satisfied AM≒ I . The 
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total number of nonzero elements of M affects not only accuracy of inverse but 
also performance of matrix vector multiplication which is appeared frequently 
during iterations. In this subroutine, it is able to control the total number of 
nonzero elements of matrix M via parameter IPAR(2). In general, it is 
recommended the nonzero number take the same order with that of matrix A.  
That is, IPAR (2)=100 is recommended. 
This subroutine computes inverse matrix M column by column, mk , k=1,…,n. 
The iterate mk of inverse matrix M is accepted as a minimum solution if    

epskk 
2eAm  

is satisfied even if nonzero number in mk does not reach upper limit  
nzk×IPAR (2)/100. 
Where nzk is number of nonzero elements in k-th column of matrix A. 

 
4) About incremental number during computation of column vector of inverse 

This subroutine computes column vector mk of matrix M by solving least squares 
problems as follows; 

,...,n,k
m

kk
k

1min
2

 eAm . 

Where ek is unit vector. Residual vector based on the solution above may lead 
candidates of new nonzeros in next step mk. This subroutine selects new indices 
automatically from candidates in terms of the most profitable one which 
minimizes coming residual vector. Key point of this algorithm lies in determining 
a good sparsity structure of the column of approximate inverse. In order to 
increase nonzero elements gradually, it is recommended to specify as IPAR(3)=1 
which is number of adding new indices during computation of column vector. 
 

5) About work area VW2,IVW2 
Work area VW2 and IVW2 are three dimensional array respectively. These areas 
are used for solving least squares problems in order to compute column vector mk 
of approximate inverse matrix M. In general, column vector mk  is sparse vector 
and its density of nonzero elements is varied during computation. The least 
squares problems are defined corresponding to the formula of previous section 4).  
The residual vector Amk  -  ek can be formulated only by nonzero elements of mk 
and certain columns of A related with nonzero elements of mk . From such point 
of view, rectangular system which is constructed by nonzero elements is derived. 
You can specify LMMAX and LNMAX as maximum number of rectangular 
matrix and allocate array VW2 and IVW2. Actual number of rectangular matrix 
desired in this subroutine depend on characteristics of matrix A and value of 
parameters such as IPAR(2). Therefore you can try to call this subroutine by 
using suggested manner below. If no solution is met, it is recommended to try 
again by making parameters change. 
LMMAX is a certain value related to the number of nonzero elements of matrix A. 
Lets see k-th column of matrix A, we defines the total number of nonzero 
elements in k-th column and another columns which are relatives of the nonzero 
elements of k-th column. You can specify the maximum number of the total 
number between columns. In general, it is adequate to specify as LMMAX=1000. 
In case that density of nonzero elements is rather high or relation between 
elements tend to be strong or certain columns have more nonzero elements than 
others, it is recommended to increase LMMAX. 
LNMAX is a certain value proportional to the maximum number of nonzero 
elements between columns of matrix A. The maximum number of nonzero is 
calculated by the formula below where nzk  is number of nonzero elements in the 
k-th column of matrix A. 

 100)2(,1max(max IPARnz k
k

　  

You can specify LNMAX as this maximum number multiplied by 1.2. 
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After computation, this subroutine output the actual size in IPAR(13) and 
IPAR(14) corresponding to LMMAX and LNMAX respectively. 

 
 

b. Example 

The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation 
-  u+a u+u= f  
with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 and 
a3 are some constants. The matrix A in Diagonal format is generated by the subroutine 
INIT_MAT_DIAG. Then it is converted into the storage scheme in compressed storage.  
The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=60) 
      PARAMETER (NX=NORD,NY=NORD,NZ=NORD) 
      PARAMETER (N=NX*NY*NZ) 
      PARAMETER (K=N+1,NDIAG=7,L=4) 
      PARAMETER (LMMAX=1000,LNMAX=200,NUMT=4) 
      DIMENSION  NOFST(NDIAG),DIAG(K,NDIAG),DIAG2(K,NDIAG) 
      DIMENSION  A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1), 
     +           W(K*NDIAG),IW(2,K*NDIAG) 
      DIMENSION  X(N),B(N),SOLEX(N),Y(N),IVW(N) 
      DIMENSION  VW2(LMMAX,LNMAX+3,NUMT),IVW2(LMMAX,3,NUMT) 
      DIMENSION  IPAR(20),RPAR(20) 
      DIMENSION  NFRNZ(N+1),NFRNZM(N+1) 
C 
      REAL*8,ALLOCATABLE  :: AA(:),AM(:),VW1(:) 
      INTEGER,ALLOCATABLE :: NCOL(:),JVWB(:), 
     +                       NCOLM(:),IVW1(:) 
C 
      PRINT *,' *** SPARSE LINEAR EQUATIONS BY IDR METHOD', 
     +        ' WITH PRECONDITIONING' 
      PRINT *,' *** COMPRESSED ROW STORAGE.' 
      PRINT * 
      SOLEX(1:N)=1.0D0 
      PRINT *,' *** EXPECTED SOLUTIONS' 
      PRINT *,' X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
      VA1 = 3.0D0 
      VA2 = 1.0D0/3D0 
      VA3 = 5.0D0 
      VC = 1.0D0 
      XL = 1.0D0 
      YL = 1.0D0 
      ZL = 1.0D0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     & ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      DO I=1,NDIAG 
C 
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      IF(NOFST(I).LT.0)THEN 
         NBASE=-NOFST(I) 
         LENGTH=N-NBASE 
         DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
         NBASE=NOFST(I) 
         LENGTH=N-NBASE 
         DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
      DO J=1,N 
         NTOPCFG=1 
         DO I=NDIAG,1,-1 
            IF(DIAG2(J,I).NE.0.0D0)THEN 
               NCOLL=J-NOFST(I) 
               A(NUMNZ)=DIAG2(J,I) 
               NROW(NUMNZ)=NCOLL 
               IF(NTOPCFG.EQ.1)THEN 
                  NFCNZ(J)=NUMNZ 
                  NTOPCFG=0 
               ENDIF 
               NUMNZ=NUMNZ+1 
            ENDIF 
         ENDDO 
      ENDDO 
      NFCNZ(N+1)=NUMNZ 
      NNZ=NUMNZ-1 
      CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,SOLEX,B,W,IW,ICON) 
      ERR1 = ERRNRM(SOLEX,X,N) 
C 
      X(1:N)=0.0D0 
      CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X,Y,W,IW,ICON) 
      ERR2 = ERRNRM(Y,B,N) 
C 
      ALLOCATE (AA(NNZ),NCOL(NNZ),AM(NNZ),NCOLM(NNZ) 
     +         ,VW1(NNZ),IVW1(NNZ)) 
      ISW=1 
      DO I=1,20 
         IPAR(I)=0 
         RPAR(I)=0.0D0 
      END DO 
      NWM=NNZ 
      NZM=0 
C 
      CALL CONVGCR(A,N,NFCNZ,NROW,AA,NFRNZ,NCOL,IVW) 
      CALL DM_VLSPAXCR2(AA,NNZ,NCOL,NFRNZ,N,B,ISW,X 
     +    ,AM,NZM,NCOLM,NFRNZM,NWM,IPAR,RPAR 
     +    ,VW1,IVW1,VW2,IVW2,LMMAX,LNMAX,NUMT,ICON) 
C 
      EPS=RPAR(2) 
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      ITMAX=2000 
      ERR3 = ERRNRM(SOLEX,X,N) 
      CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X,Y,W,IW,ICONT) 
      ERR4 = ERRNRM(Y,B,N) 
      PRINT *,' *** COMPUTED SOLUTIONS' 
      PRINT *,' X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,' DM_VLSPAXCR2 ICON = ',ICON 
      PRINT * 
      PRINT *,' N        = ',N 
      PRINT *,'       NX = ',NX 
      PRINT *,'       NY = ',NY 
      PRINT *,'       NZ = ',NZ 
      PRINT *,' ITER MAX = ',ITMAX 
      PRINT *,' ITER     = ',IPAR(7) 
      PRINT *,' ICMAV    = ',IPAR(8) 
      PRINT * 
      PRINT *,' EPS      = ',RPAR(2) 
      PRINT * 
      PRINT *,' INITIAL ERROR           = ',ERR1 
      PRINT *,' INITIAL RESIDUAL ERROR  = ',ERR2 
      PRINT *,' CRITERIA RESIDUAL ERROR = ',ERR2*EPS 
      PRINT * 
      PRINT *,' ERROR                   = ',ERR3 
      PRINT *,' RESIDUAL ERROR          = ',ERR4 
      PRINT * 
      PRINT * 
      IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN 
      WRITE(*,*)' ********** OK **********' 
      ELSE 
      WRITE(*,*)' ********** NG **********' 
      ENDIF 
      STOP 
      END 
C ======================================== 
C INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     & ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
         WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
         WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
      RETURN 
      ENDIF 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+ SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+ ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
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      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
!$OMP DO 
      DO I = 1,NDIVP 
      DO J = 1,NDIAG 
         D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
      NXY = NX*NY 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
         OFFSET(L) = -NXY 
         L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
         OFFSET(L) = -NX 
         L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
         OFFSET(L) = -1 
         L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
         OFFSET(L) = 1 
         L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
         OFFSET(L) = NX 
         L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
         OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN 
         JS = J 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
         K0 = (JS-1)/NXY+1 
         IF (K0 .GT. NZ) THEN 
            PRINT*,'ERROR; K0.GH.NZ ' 
            GOTO 100 
         ENDIF 
         J0 = (JS-1-NXY*(K0-1))/NX+1 
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         I0 = JS - NXY*(K0-1) - NX*(J0-1) 
         L = 1 
         IF (NDIAG_LOC .GE. 7) THEN 
            IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 5) THEN 
            IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 3) THEN 
            IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
            L = L+1 
         ENDIF 
         D_L(J,L) = 2.0/HX**2+VC 
         IF (NDIAG_LOC .GE. 5) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HY**2 
            IF (NDIAG_LOC .GE. 7) THEN 
               D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
            ENDIF 
         ENDIF 
         L = L+1 
         IF (NDIAG_LOC .GE. 2) THEN 
            IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 4) THEN 
            IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
            L = L+1 
         ENDIF 
         IF (NDIAG_LOC .GE. 6) THEN 
            IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
         ENDIF 
  100 CONTINUE 
!$OMP ENDDO 
!$OMP END PARALLEL 
      RETURN 
      END 
C ======================================== 
C     ABSOLUTE ERROR : | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
      S = 0D0 
      DO 100 I = 1,LEN 
         SS = X1(I) - X2(I) 
         S = S + SS * SS 
  100 CONTINUE 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
C============================================================= 
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C     MODE CONV UNSYM MATRIX FROM COMPRESSED COLUMN TO ROW. 
C============================================================= 
      SUBROUTINE CONVGCR(AC,N,IC,JC,AR,IR,JR,IW) 
      IMPLICIT   REAL*8 (A-H,O-Z) 
      DIMENSION  AC(*),IC(N+1),JC(*),AR(*),IR(N+1),JR(*),IW(N) 
      NZ=IC(N+1)-1 
      DO I=1,N+1 
         IR(I)=0 
      END DO 
      DO J=1,NZ 
         IR(JC(J)+1)=IR(JC(J)+1)+1 
      END DO 
      IR(1)=1 
      DO I=2,N+1 
         IR(I)=IR(I)+IR(I-1) 
      END DO 
      DO I=1,N 
         IW(I)=IR(I) 
      END DO 
      ICOL=1 
      DO J=1,NZ 
         IF(J.EQ.IC(ICOL+1)) ICOL=ICOL+1 
         JR(IW(JC(J)))=ICOL 
         AR(IW(JC(J)))=AC(J) 
         IW(JC(J))=IW(JC(J))+1 
      END DO 
      RETURN 
      END 
 
 

(4) Method 

This subroutine solves a system of linear equations with unsymmetric real sparse matrices as 
coefficient matrices using Induced Dimension Reduction method with stabilization, 
IDRstab(s,l) , with preconditioning by sparse approximate inverse. 

 

a. Approximate inverse matrix 

In general, the convergence of iteration method is not guaranteed or may be extremely 
slow. Preconditioning method makes the system to more tractable form and reduces total 
iteration counts. On such point of view, incomplete decomposition method, e.g. ILU 
method, is well known. The ILU method is very simple algorithm and having very 
effective performance for well conditioned matrices. However, it tends to be poor for 
parallel processing because of its recurrence nature in triangular solvers which arise 
frequently during iterations.  
 

This subroutine employs a preconditioning on approximate inverse matrix method which 
has more suitable characteristics for parallel processing rather than incomplete 
decomposition method. This subroutine applies matrix M to the right preconditioned 
system as follows; 
   AMy = b, x = My. 
Where M is an approximate inverse matrix. In order to compute matrix M, this subroutine 
applies the Frobenius norm to minimize  || AM – I || . This choice leads to inherent 
parallelism, that is, the columns mk of M can be computed independently of one another. 
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Since 

 
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k
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2
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)( eIAMIAM , 

n set of independent least squares problems can be derived as follows; 
,...,n,k

m
kk

k

1min
2

 eAm . 

The unit vector is employed for initial value of mk as a default. This subroutine solves the 
least squares minimization problem by using QR method. 
Residual vector based on the minimum solution above may lead candidates of new 
nonzeros in next step mk. This subroutine selects new indices automatically from 
candidates in terms of the most profitable one which minimizes coming residual vector. 
The iterate mk of inverse matrix M is accepted as a minimum solution if  it satisfies 
convergence criteria by RPAR(1), that is  

epskk 
2eAm ,  

or if number of nonzero elements in the column reaches upper limit based on IPAR(2).  

 

b. Induced Dimension Reduction method IDRstab(s,l) 

Induced Dimension Reduction method is the one of the Krylov subspace method. This 
subroutine employs IDRstab(s,l) method which is revised by exploiting BICGstab(l) 
strategies to original IDR(s) method. Where the parameter s is the order of shadow 
residual and l is the order of acceleration polynomial. One of the key feature of 
IDRstab(s,l) method is that you are able to specify higher order of acceleration 
polynomial compared with original IDR(s) method. 
You can select arbitrary parameters s and l. When l=1, this subroutine select another 
method, BIDR(s) method, which is stabilized further more by taking bi-orthogonalization 
technique when s is large case. 

 

c. Convergence test 

The iterate xk is accepted as a solution of the system if the residual satisfies 

22
bAxb epstk  . 

Where epst is a convergence criteria specified in RPAR(2). Default value of epst is 10-8.  
The final relative residual norm 

22
/ bAxb k  

is stored in RPAR(3), even if in the case that the residual does not satisfy convergence 
test. The residual vector b - Axk is computed by using recurrence in the iteration formula. 

 

For details of the algorithms, see [29], [31] and [73] in Appendix A, "References".
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DM_VLSX 
 

A system of linear equations with symmetric positive definite matrices (blocked modified 
Cholesky decomposition method) 

CALL DM_VLSX(A, K,N, B,EPSZ,ISW,ICON) 

 

(1) Function 

 This subroutine decomposes the coefficient matrix A of a system of a real coefficient 
linear equation (1. 1) as shown in (1. 2) using the blocked modified Cholesky 
decomposition of outer products.  It then solves the system of equations, where A is a 
symmetric positive definite matrix (n  n),  b is an n-dimensional real constant vector, x is 
an n-dimensional solution vector, L is a unit lower triangular matrix, and D is a diagonal 
matrix.  It is assumed that n  1. 

 Ax = b (1.1) 

 A = LDLT (1.2) 

(2) Parameter 

A ............... Input.  Coefficient matrix A.  

The lower triangular part {aij | i  j} of A is stored in the lower triangular part 
{A(i,j) | i  j} of A(1:N,1:N) for input. 

Output.  Decomposed matrix. 

After the first set of equations has been solved, the lower triangular part of 
A(i,j) contains lij (i > j) and reciprocals of dii (i = j).  The upper triangular part 
{A(i,j) | i < j} is altered. 

 (See Figure DM_VLSX-1.) 

This is a double precision real two-dimensional array A(K,N). 

K .............. Input.  The size of the first dimension of array A. 

N .............. Input.  Order n of coefficient matrix A. 

B ............... Input.  Constant vector b 

Output.  Solution vector x.  

A double precision real one-dimensional array of size n. 

EPSZ ........ Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is assumed. 

(See note 1) in (3), "Comments on use.") 

ISW .......... Input.  Control information. 

When solving several sets of equations that have an identical coefficient matrix, 
specify as follows. 

Specify ISW = 1 for the first set of equations. 

Specify ISW = 2 for the second and subsequent sets of equations. 

When specifying ISW = 2, change only the value of array B into a new constant 
vector b.  Do not change any other parameters. 
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(See note 2) in (3), "Comments on use.") 

ICON ........ Output.  Condition code. 

(See Table DM_VLSX-1.) 

an1

a21

Unnecessary

N

N

K

Input Array A

ln1
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-1

d11
 

-1
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Figure DM_VLSX-1   Storing the data for the Cholesky decomposition method 

 The diagonal elements and lower triangular part (aij) of the LDLT-decomposed positive 
definite matrix are stored in array A(i,j), i = j, .... n, j = 1, ..., n. 

 After LDLT decomposition, the matrix D-1 is stored in the diagonal part and L (except for 
the diagonal elements) are stored in the lower triangular part respectively. 

 
Table DM_VLSX-1   Condition codes 

Code Meaning Processing 

0 No error  

10000 The pivot becomes negative.  The coefficient 
matrix is not positive definite. 

Processing is continued 

20000 The pivot became relatively zero.  The 
coefficient matrix A may be singular. 

Processing is discontinued. 

30000 N < 1, EPSZ < 0, K < N, or ISW   1, 2.  

 

(3) Comments on use 

a. Notes  

1) If a value is set for the judgment of relative zero, it has the following meaning:  
if the absolute value of the selected pivot is less than EPSZ during LDLT 
decomposition by the modified Cholesky decomposition, the pivot is assumed to 
be relatively zero and decomposition is discontinued with ICON = 20000.  When 
unit round off is u, the standard value of EPSZ is 16  u. 
 When the computation is to be continued even if the pivot becomes small, 
assign the minimum value to EPSZ.  In this case, however the result is not 
assured. 
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2) When several sets of linear equations having an identical coefficient matrix are 
solved, the value of ISW should be 2 from the second time on.  This reduces the 
execution time because LDLT decomposition for coefficient matrix A is 
bypassed. 

3) If the pivotal value becomes negative during decomposition, the coefficient 
matrix is no longer positive definite.  Processing is continued with ICON = 
10000.  However, the accuracy of the result may not be maintained because no 
pivoting is performed. 

4) After the calculation has been completed, the determinant of the coefficient 
matrix is computed by multiplying all the n diagonal elements of the array A and 
taking the reciprocal of the result. 

5) This subroutine calls DM_VSLDL and DM_VLDLX internally.  Therefore, 
instead of calling this function in a parallel region with specifying the number of 
threads by run-time library OMP_SET_NUM_THREADS(), call DM_VSLDL 
and DM_VLDLX directly with specifying the number of threads with 
OMP_SET_NUM_THREADS() just before the each of them. 

b. Example 

 A system of linear equations with a 4000  4000 coefficient matrix is solved. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (K=4001,N=4000) 
      REAL*8    A(K,N),B(N) 
C 
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B)   
!$OMP DO 
      DO J=1,N 
      DO I=J,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
!$OMP END DO 
 
!$OMP DO 
      DO I=1,N 
      B(I)=I*(I+1)/2+I*(N-I) 
      ENDDO 
!$OMP END DO 
 
!$OMP END PARALLEL  
 
      ISW=1 
      CALL DM_VLSX(A,K,N,B,1.D-13,ISW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 100 
      WRITE(6,620) (B(I),I=1,10) 
C 
      S=1.0D0 
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!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)  
!$OMP+          REDUCTION(*:S) 
      DO I=1,N 
      S=S*A(I,I) 
      ENDDO 
!$OMP END PARALLEL DO 
 
      DET=1.0D0 
      DET=1.D0/DET 
      WRITE(6,630) DET 
  100 STOP 
  600 FORMAT(1H1/10X,6HORDER=,I5) 
  610 FORMAT(1H0,10X,5HICON=,I5) 
  620 FORMAT(11X,15HSOLUTION VECTOR 
     */(10X,3D23.16)) 
  630 FORMAT(1H0,10X 
     *,34HDETERMINANT OF COEFFICIENT MATRIX= 
     *,D23.16) 
      END 
 

(4) Method 

 See [30], [54], and [70] in Appendix A, "References," for details of the blocked modified 
Cholesky decomposition method of outer product type. 
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DM_VLUX 
 

A system of linear equations with LU-decomposed real matrices 

CALL DM_VLUX(B,FA,KFA,N,IP,ICON) 

 

(1) Function 

 This subroutine solves a system of linear equations having LU-decomposed real 
coefficient matrices. 

 LUx = Pb 

 where, L and U are respectively a unit lower triangular matrix and a unit upper triangular 
n  n matrix, P is a permutation matrix (interchanging rows of the coefficient matrix for 
partial pivoting in LU-decomposition),  b is an n-dimensional real constant vector, and x 
is an n-dimensional solution vector (n  1). 

(2) Parameters 

B .............. Input.  Constant vector b. 

Output.  Solution vector x. 

A double precision one-dimensional array of size n. 

FA ............ Input.  Matrices L and U are stored into FA(1:N,1:N).  

See Figure DM_VLUX-1. 

This is a double precision real two-dimensional array FA(KFA,N). 

KFA .......... Input.  The size of the first dimension of the array for storage FA ( N). 

N .............. Input.  Order n of matrices L and U. 

IP ............. Input.  The transposition vector recording the process of row interchange in 
partial pivoting. 

A one-dimensional array of size n. 

(See note 2) in (3), "Comments on use" for subroutine DM_VALU.) 

ICON ........  Output.  Condition code. 

See Table DM_VLUX-1. 
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Figure DM_VLUX-1   Storing L and U in array  FA 

 After LU decomposition is executed, the upper triangular part of U (except for the 
diagonal elements) and the lower part of L are stored in array FA(1:N,1:N). 

 
Table DM_VLUX-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 The coefficient matrix is singular. Processing is discontinued. 

30000 KFA < N, N < 1.  The contents of IP are 
incorrect, ISW  1, 2. 

 

 

 (3) Comments on use 

a. Notes 

1) Although a system of linear equations with a coefficient matrix can be solved by 
calling this subroutine after calling subroutine DM_VALU, the subroutine 
DM_VLAX should be usually used to solve a system of linear equations in one 
step. 

b. Example 

 A system of linear equations is solved by LU-decomposing the coefficient 4000  
4000 matrix. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 
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C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (IPN=4) 
      DIMENSION  A(4001,4000) 
      DIMENSION  B(4000),IP(4000) 
C 
      N=4000 
 
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B,N)   
!$OMP DO 
      DO J=1,N 
      DO I=1,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
!$OMP END DO 
 
!$OMP DO 
      DO I=1,N 
      B(I)=I*(I+1)/2+I*(N-I) 
      ENDDO 
!$OMP END DO 
!$OMP END PARALLEL 
C 
      KFA=4001 
      CALL  DM_VALU(A,KFA,N,0.0D0,IP,IS,ICON) 
      WRITE(6,610)ICON 
      IF(ICON.GE.20000)STOP 
      CALL  DM_VLUX(B,A,KFA,N,IP,ICON) 
      WRITE(6,620)ICON 
      WRITE(6,630)(I,B(I),I=1,10) 
 
  610 FORMAT(1H0,10X,26HCONDITION CODE (DM_VALU) =,I5) 
  620 FORMAT(1H0,10X,26HCONDITION CODE (DM_VLUX) =,I5) 
  630 FORMAT(1H0,10X,17HSOLUTION VECTOR =, 
     */(10X,5(1H(,I3,1H),D23.16))) 
      END 
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DM_VMGGM 
 

Matrix multiplication (real matrix) 

CALL DM_VMGGM(A,KA,B,KB,C,KC,M,N,L,ICON) 

 

(1) Function 

 This subroutine obtains product C by multiplying a real matrix A (m  n) by a real matrix 
B (n  l). 

 C = AB 

 where C is a real matrix (m  l), where m, n, l  1. 

(2) Parameters 

A ............... Input.  Matrix A.  

Data must be stored in A(1:M,1:N). 

A double precision real two-dimensional array A(KA,N). 

KA ............ Input.  The size of the first dimension of the arrays A ( M). 

B ............... Input.  Matrix B. 

The data must be stored in B(1:N,1:L). 

The double precision real two-dimensional array B(KB,L). 

KB ........... Input.  The size of the first dimension of array B ( N). 

C .............. Output.  Matrix C. 

The data is stored in C(1:M,1:L). 

The double precision real two-dimensional array C(KC,L). 

KC ........... Input.  The size of the fist dimension of array C, ( M). 

M ............. Input.  The number of rows m in matrices A and C. 

N .............. Input.  The number of columns n in matrix A and number of rows n in matrix B. 

L .............. Input.  The number of columns l in matrices B and C. 

ICON ........ Output.  Condition code. 

See Table DM_VMGGM-1. 

 
Table DM_VMGGM-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 M < 1, N < 1, L < 1, KA < M, KB < N, KC < 
M. 

Processing is discontinued. 
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 (3) Comments on use 

a. Example 

 A product is obtained for real matrices A and B. 

  Subroutine PGM in this example is for printing a real matrix. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     ** EXAMPLE ** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (KK=4001,M=4000,N=M,L=M) 
      PARAMETER (KA=KK,KB=KK,KC=KK) 
      REAL*8    A(KA,N),B(KB,L),C(KC,L) 
 
C 
!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(A,B)   
!$OMP DO    
      DO J=1,M 
      DO I=1,N 
      IF(J.GT.I)THEN 
      A(I,J)=0.0d0 
      ELSE 
      A(I,J)=1.0d0 
      ENDIF 
      ENDDO 
      ENDDO 
!$OMP END DO 
       
!$OMP DO    
      DO J=1,M 
      DO I=1,N 
      IF(J.GE.I)THEN 
      B(I,J)=1.0d0 
      ELSE 
      B(I,J)=0.0d0 
      ENDIF 
      ENDDO 
      ENDDO 
!$OMP END DO 
!$OMP END PARALLEL 
 
      CALL DM_VMGGM(A,KA,B,KB,C,KC,M,N,L,ICON) 
      IF(ICON.NE.0) GOTO 10 
      CALL PGM(A,KA,N) 
      CALL PGM(B,KB,L) 
      CALL PGM(C,KC,L) 
      GOTO 10 
 
  150 FORMAT(1H1///10X,27H** MATRIX MULTIPLICATION **) 
  10  STOP 
      END 
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C     ** MATRIX PRINT(REAL NON-SYMMETRIC) ** 
      SUBROUTINE PGM(A,KA,N) 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION A(KA,N) 
      DO 10 I=1,5 
      WRITE(6,610) I,(J,A(I,J),J=1,5) 
   10 CONTINUE 
      RETURN 
  610 FORMAT(/5X,I3,3(4X,I3,D23.16),(/8X,3(4X,I3,D23.16))) 
      END 
 

 (4) Method 

 This subroutine uses the method of blocked matrix multiplication.  For details, see [30] in 
Appendix A, "References." 
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DM_VMINV 
 

Inverse of real matrix (blocked Gauss-Jordan method) 

CALL DM_VMINV(A,K,N,EPSZ,ICON) 

 

(1) Function 

  This subroutine obtains the inverse A1 of the n  n non-singular real matrix A using the 
Gauss-Jordan method. 

(2) Parameters 

A ............... Input.  Matrix A is stored in A(1:N,1:N). 

Output.  Matrix A1 is stored in A(1:N,1:N). 

The double precision real two-dimensional array A(K,N). 

K ............... Input.  The size of the first dimension of the array A. ( N) 

N ............... Input.  Order n of matrix A. 

EPSZ ........ Input.  Judgment of relative zero of the pivot.  ( 0.0) 

When EPSZ is 0.0, the standard value is assumed. 

(See note 1) in (3), “Comments on use.”) 

ICON ........ Output.  Condition code. 

See Table DM_VMINV-1. 

 
Table DM_VMINV-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 All row elements in matrix A are zero or the 
pivot becomes a relatively zero.  Matrix A may 
be singular. 

Processing is discontinued. 

30000 N < 1, K < N, or EPSZ < 0.0.  

 

(3) Comments on use 

a. Notes 

1) When the pivot element selected by partial pivoting is 0.0 or the absolute value 
is less than EPSZ, it is assumed to be relatively zero.  In this case, processing is 
discontinued with ICON=20000.  When unit round off is u, the standard value of 
EPSZ is 16u.  If the minimum value is assigned to EPSZ, processing is 
continued, but the result is not assured. 

b. Example 

The inverse of a matrix is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
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when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N=2000,K=N+1) 
C 
      REAL*8    A(K,N),AS(K,N) 
C 
       
      C=SQRT(2.0D0/DBLE(1+N)) 
      T=DATAN(1.0D0)*4.0D0/(1+N) 
C 
      DO 100 J=1,N 
      DO 100 I=1,N 
      A(I,J)=C*SIN(T*I*J) 
      AS(I,J)=A(I,J) 
 100  CONTINUE 
C 
      EPSZ=0.0D0 
      CALL  DM_VMINV(A,K,N,EPSZ,ICON) 
      PRINT*,'ICON=',ICON 
C 
      TMP=0.0D0 
      DO I=1,N 
      DO J=1,N 
      TMP2=DABS(A(I,J)-AS(I,J)) 
      IF(TMP2.GT.TMP)TMP=TMP2 
      ENDDO 
      ENDDO 
      PRINT*,'ORDER=',N,' ; ERROR = ',TMP 
C 
      STOP 
      END 
 

(4) Method 

  This subroutine solves an inverse of matrix using the blocked Gauss-Jordan method (see 
[30] in Appendix A, “References.”). 
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DM_VMLBIFE 
 

System of linear equations with sparse matrices (Multilevel iteration method based on 
incomplete block factorization, ELLPACK format storage method) 

CALL DM_VMLBIFE (A, K, IWIDT, N, ICOL, B, ISW, IGUSS, INFO, INFOEP, 
                                        EPSOT, EPSIN, EPSEP, X, W, NW, IW, NIW, ICON) 

 

(1) Function 

 This subroutine solves, using the iterative method, a system of linear equations with   
sparse matrices as coefficient matrices. 

 Ax = b 

The n  n coefficient matrix is stored using the ELLPACK format storage method.  
Vectors b and x are n-dimensional vectors. 

 The solution method is ORTHOMIN if A is symmetric and GMRES if A is non-
symmetric. The iteration (called outer iteration) is preconditioned by the multilevel 
incomplete block factorizations and stable.  The iteration procedure is preconditioned by 
repeated elimination of certain sets of unknowns.  The elimination procedure uses 
approximative inverses of the sub-matrices produced by the sets of eliminated unknowns.  
The elimination procedure is repeated until on the so-called coarsest level a smaller linear 
system is produced.  For every step of the outer iteration this linear system is solved 
iteratively (called inner iteration). 

 (2) Parameters 

A ................ Input.  The nonzero elements of a coefficient matrix are stored in 
A(1:N,1:IWIDT). 

Two-dimensional array A(K,IWIDT) 

For an explanation of the ELLPACK format storage method, see Section 3.2.1.1, 
"Storing the general sparse matrices," in Part I, "Outline," in the SSL II 
Extended Capability User's Guide II. 

K ................ Input.  Size of first-dimension of A and ICOL.  (K  n). 

IWIDT ....... Input.  Maximum number of row-vector-direction nonzero elements of 
coefficient matrix A.  Size of second-dimension of A and ICOL. 

N ................ Input.  Order n of matrix A. 

ICOL ......... Input.  Column index used in ELLPACK format.  Used to indicate to which 
column vector the corresponding element of A belongs. 

Two-dimensional array ICOL(K,IWIDT) 

B ................ Input.  The right-side constant vectors of a system of linear equations are stored 
in B(1:N). 

One-dimensional array B(N) . 

ISW ............ Input. Control information. 

ISW=1 Initial calling. 

ISW=2 Second or subsequent calling. 



 DM_VMLBIFE 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-155 

The values of A, IW and W must not be changed if the routine is called again 
with ISW=2.  

(See 1) in a, “Notes,” in (3), “Comments on use.”) 

IGUSS ........ Input.  Control information specifying whether iterative computation is to be 
performed using the approximate values of the solution vectors specified in 
array X. 

When the value of IGUSS is 0, the approximate values of the solution vectors 
are not specified and set to zero. 

When the value of IGUSS is not 0, the iterative computation is performed using 
the approximate values of the solution vectors specified in array X. 

INFO .......... Input.  The control information of the iteration. 

One dimensional array of INFO(14). 

For example, for symmetric coefficient matrix A, INFO is set as follows; 

INFO(1)=10 

INFO(2)=NTHRD100 

INFO(3)=0 

INFO(5)=1 

INFO(6)=2000 

INFO(10)=1 

INFO(11)=1000 

For example, for unsymmetric coefficient matrix A, INFO is set as follows; 

INFO(1)=10 

INFO(2)=NTHRD100 

INFO(3)=0 

INFO(5)=2 

INFO(6)=2000 

INFO(7)=5 

INFO(8)=20 

INFO(10)=2 

INFO(11)=1000 

INFO(12)=10 

INFO(13)=0 

Where NTHRD is the number of threads which are executed in parallel. 

INFO(1)=MAXLVL  

Input.  Maximal number of levels in the algebraic multilevel iteration method. 

MAXLVL<1 No preconditioner is applied. 

MAXLVL>0 The coarser level than the specified depth is not used. 

(See 5),8) in a, “Notes,” in (3), “Comments on use.”) 
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INFO(2)=MINUK 

Input.  Minimal number of unknowns for the smallest linear system in the 
deepest level in the inner iteration. It is recommendable to set MINUK very 
larger than the number of threads NTHRD and very smaller than N. For 
example, 100NTHRD. 

INFO(3)=NORM 

Input.  The type of normalization. 

NORM<1 The matrix is normalized from the right and the left by the inverse of 
the square root of the main diagonal of A. This effects that the main diagonal of 
the normalized matrix A is equal to one and the matrix is symmetric if A is 
symmetric.  

It is recommendable to use symmetrical normalization. However, in some cases 
the non-symmetrical normalization can produce faster convergence. Criterion 
value for judgment of convergency. 

 (See 3) in a, “Notes,” in (3), “Comments on use.”) 

NORM1 The matrix is normalized from the left by the inverse of the absolute 
row sums of A multiplied with the sign of the main diagonal element. In general 
the normalized matrix will be non-symmetric even if the matrix A is symmetric.  

 (See 4) in a, “Notes,” in (3), “Comments on use.”) 

INFO(4) 

Output. Number of levels. 

INFO(5)=METHOT 

Input. The iterative method used in the outer iteration.  

METHOT=1 Preconditioned ORTHOMIN is used. It should be used if the 
matrix A is symmetric and a symmetrical normalization is used.  

METHOT1 Restarted and truncated GMRES is used. It should be used if the 
matrix A is non-symmetric or a non-symmetrical normalization is used. 

INFO(6)=ITMXOT 

Input.  The maximal number of iteration steps in the outer iteration, for example 
2000. If the maximum iteration number of outer iteration is reached the 
processing is terminated and the returned solution does not fulfill the stopping 
criterion. 

INFO(7)=NRESOT 

Input.  The number of residuals in the orthogonalization procedure of the outer 
iteration, i.e. truncation after NRESOT residuals. For example , 5. Only used if 
GMRES is applied.  

(See 4) in a, “Notes,” in (3), “Comments on use.”) 

INFO(8)=NRSTOT 

Input.  Input. After NRSTOT iteration steps the outer iteration is restarted. For 
example , 20. NRSTOT  NRESOT = INFO(7). If it is NRSTOT<1 there is no 
restart. Only used if GMRES is applied.  

(See 4) in a, “Notes,” in (3), “Comments on use.”) 

INFO(9)=ITEROT 
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Output.  The number of iteration steps in the outer iteration procedure.  

INFO(10)=METHIN 

Input.  The iterative method used in the inner iteration. 

METHIN=1 Preconditioned ORTHOMIN is used. It should be used if the 
matrix A is symmetric and a symmetrical normalization is used.  

METHIN1 Restarted and truncated GMRES is used. It should be used if the 
matrix  A is non-symmetric or a non-symmetrical normalization is used.  

INFO(11)=ITMXIN 

Input.  The maximal number of iteration steps in the inner iteration, for example 
1000.  

If ITMXIN is reached the processing is continued on the outer iteration.  

INFO(12)=NRESIN  

Input. The number of residuals in the orthogonalization procedure of the inner 
iteration, ie. truncation after NRESIN residuals. For example , 10. Only used if 
GMRES is applied.  

(See 5) in a, “Notes,” in (3), “Comments on use.”) 

INFO(13)=NRSTIN 

Input.  After NRSTIN iteration steps the inner iteration is restarted.  NRSTIN  
NRESIN = INFO(12). 

Only used if GMRES is applied. If it is NRSTIN<1 there is no restart. 

(See 5) in a, “Notes,” in (3), “Comments on use.”) 

INFO(14) 

Output.  The average number of the inner iteration. 

INFOEP...... Input.  The control information for the block matrix of the removed unknowns 
and the reduced matrix.  One dimensional array of INFOEP(3). 

For example,  INFOEP is set as follows to specify the method for 
approximating the inverse matrix of a matrix block, which is used for 
calculating the Schur complement in each level: 

(See 7) in a, “Notes,” in (3), “Comments on use.”) 

1) in case of approximating the inverse matrix with a diagonal matrix 

INFOEP(1)=1 

INFOEP(2)=5 

INFOEP(3)=2NROW 

where, NROW indicates the representative number of nonzero entries per 
row in the coefficient matrix A. 

2) in case of seeking an approximative inverse matrix with an iterative method 

INFOEP(1)=NROW 

INFOEP(2)=5 

INFOEP(3)=2NROW 

INFOEP(1)=MAXNCV 
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Input.  Maximal number of nonzero entries per row in the approximative 
inverse of the eliminated matrix block.  Typically it is set MAXNCV=1 or 
MAXNCV=MAXNC.  Notice that MAXNCV=1 effects that the matrix block is 
approximated by its main diagonal. 

INFOEP(2)=MAXITV 

Input.  Maximal number of approximative inverse steps.  MAXITV specifies 
the maximal number of iteration steps which are allowed to calculate the 
approximative inverse matrix with accuracy TAUV.  If the number of iteration 
steps reaches MAXITV the procedure is terminated.  Notice that in any case the 

approximation procedure will need less than 
(LAMBDA)log

)TAUVlog(
 steps. If 

MAXITV1 the matrix block is approximated by its main diagonal. 

INFOEP(3)=MAXNC 

Input.  MAXNC limits the entries remaining in the reduced matrix as Schur 
complement in block decomposition.  If MAXNC<2 small entries of the 
reduces system less than TAU are dropped.  If MAXNC > 1 the number of non-
zero entries per row is limited by MAXNC.  In this case only the MAXNC 
largest entries in every row are kept.  Other entries are dropped even if they are 
greater than TAU. 

(See 8) in a, “Notes,” in (3), “Comments on use.”) 

EPSOT ....... Input.  The desired accuracy for the solution. The outer iteration is stopped in 

the k-th iteration step if the normalized kkk bxAr ˆˆˆ   residual of the current 

approximation xk satisfies the condition  

brk
ˆEPSOTˆ   

where yyy T2   denotes the Euclidean norm Â  and b̂  and are the coefficient 

matrix and the right hand side of the normalized linear system. 

EPSIN ........ Input.  The tolerance for the inner iteration. Normally 10-3 is optimal. 

EPSEP......... Input.  The control information for the approximation of the reduced system and 
the inverse of the eliminated matrix block.  One dimensional array of EPSEP(4). 

For example, set as follows: 

  EPSEP(1)=1.0D-2 

  EPSEP(2)=1.0D-2 

  EPSEP(3)=0.2 

  EPSEP(4)=1.0D-3 

EPSEP(1)=TAU 

Input.  The dropping tolerance.  In the reduced systems as Schur complement in 
block decomposition, entries less than TAU are dropped to keep the sparsity.  
As larger TAU as faster is the iterative solver on the lowest level.  But on the 
other hand there is a larger loss of information, which deteriorates the quality of 
the preconditioner.  It has to be 0  TAU < 1. 

EPSEP(2)=TAUV 
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Input.  The tolerance of the approximative inverse.  A small value for TAUV 
will increase the time for the elimination procedure but improve the quality of 
the preconditioner.  Normally EPSIN=TAUV is optimal. 

EPSEP(3)=LAMBDA 

Input.  Diagonal threshold for the block matrix.  The entries in the block matrix 
of the removed unknowns are selected such that the absolute sum per row is less 
than LAMBDA times the main diagonal entry.  A larger value for LAMBDA 
will produce a smaller set of removed unknowns but will increase the costs for 
the calculation of the approximative inverse of the block.  Recommendation: 
LAMBDA=0.2.  It should be TAUV  LAMBDA < 1 or LAMDA=0. 

EPSEP(4)=RHO 

Input.  Unknowns with small entries in their main diagonal are not considered 
in the elimination procedure.  A main diagonal entry is small if it is smaller than 
RHO times the absolute sum of the row entries.  
Recommendation: RHO=1.0D-3.  It has to be 0<RHO<1. 

X ................ Input.  The approximate values of solution vectors can be specified in X(1:N). 

Output.  Solution vectors are stored in X. 

One-dimensional array X(N). 

W ............... Work area.  One-dimensional array W(NW) . 

NW ............ Input. Size of the work array W.   A rough upper bound is given by  

NW  max(2MAXLVL+2,10)NBANDMAXT+(4NC+6)(N+MAXT) 
           +max(2NC(N+MAXT),LR0(N) 
           +max(LR0(Nf)+N+MAXT,6(N+MAXT))). 

In this formula MAXLVL denotes the number of levels of the incomplete block 
factorization, and NBAND denotes the bandwidth of the matrix,  NC an upper 
bound for the number of non-zero entries per row (typically NC=MAXNC),  
and Nf the number of unknowns in the final level  
(typically Nf=2-MAXLVL(N+MAXT)) and MAXT is the maximum number of 
threads which are created in this routine. 
Moreover it is  

LR0(N) = 







method GMRES  :)12(

method ORTHOMIN   :4

NNRES

N
, 

where NRES denotes the number of residuals used in GMRES.  Normally the 
term LR0(Nf) can be neglected. 

IW .............. Work area.  One-dimensional array IW(NIW). 

NIW ........... Input.  Size of the work array IW.  A rough upper bound is given by 

NIW  ((4MAXLVL+10)MAXT+12NBAND)+3400)MAXT 
            + (6NC+11)(N+MAXT) 
In this formula MAXLVL denotes the number of levels of the incomplete block 
factorization, and NBAND denotes the bandwidth of the matrix,  NC an upper 
bound for the number of non-zero entries per row (typically NC=MAXNC), and 
MAXT is the maximum number of threads which are created in this routine. 

ICON ......... Output.  Condition code. 

See Table DM_VMLBIFE-1. 
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Table DM_VMLBIFE-1   Condition codes 

Code Meaning Processing 

0 No error  

10100 Inverse matrix could not be calculated with 
sufficient accuracy. 

Processing is continued. 

10800 Curable break down in GMRES.  

20001 Stopping criterion could not be reached within 
the given number of iteration steps. 

Processing is discontinued. 
The approximate value 
obtained is output in array X, 
but the precision is not 
assured. 

20003 Non-curable break down in GMRES. Processing is discontinued. 

20005 Non-curable break down in ORTHOMIN by 
pTAp=0 with p0. 

20006 Non-curable break down in ORTHOMIN by 
pTr=0. 

30000 N<1,N>K,IWIDT<1, ISW<1, ISW>2. 

30103 Incorrect entry in column list ICOL. 

30105 Main diagonal is missed. 

30210 Matrix condensation fails by non-positive 
value. 

30213 There is a row with only non-zero entries. 

30310 Too small integer work array. 

30320 Too small real work array. 

 

(3) Comments on use 

a. Notes 

1) When multiple linear equations with the same coefficient matrix but different 
right hand side vectors are solved set ISW=1 in the first call and ISW=2 in the 
second and all subsequent calls. Then the coarse level matrices assembled in the 
first call are reused. 

2) Normally it is sufficient to set NC=IWIDT1.5 in the formulas for the length for 
the work arrays.  In general, if the work arrays are too small it is recommendable 
to increase NC.  If the given matrix has a very large bandwidth it is 
recommendable to increase NBAND first. 

3) It is always recommendable to use ORTHOMIN if possible. This requires that 
the matrix is symmetric. As this routine removes easily computable unknowns 
from the matrix before the iteration starts it can happen that the actual iteration 
matrix is symmetric even if the given matrix is not. Therefore it is 
recommendable to try ORTHOMIN with symmetrical normalization first if there 
is a chance that the iteration matrix is symmetric.  
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4) If the matrix is non-symmetric it is recommendable to use the non-symmetric 
normalization together with GMRES. Normally it is sufficient to truncate after 
NRESOT=5 residuals and to restart after 20 steps in the outer iteration. In the 
inner iteration it can be necessary to select a higher value for the truncation 
NRESIN and to restart after a larger number of iteration steps or even to forbid a 
restart. If NRESIN is increased it can happen that more real work space is 
required. Then it is necessary to increase NRES in the formula for the length 
workspace NW but, NRES can be set to a smaller value than NRESOT. In 
general the convergence of GMRES method becomes better as NRESIN and 
NRESOT are set to larger. But it requires longer computation time and larger 
amount of memory. 

5) The elimination of unknowns is stopped if one of the following conditions is 
fulfilled: 

 the number of level is greater or equal MAXLVL 

 the coefficient matrix of the final level is a diagonal matrix 

 the number of eliminated unknowns is less than 10% of the number of 
unknowns in the final level. 

6) When setting LAMBDA=0, RHO=0.99, TAU=0, MAXNC=IWIDT the routine 
is (similar to) the classical ILUM preconditioner with wavefront ordering. (See 
[65] in Appendix A, “References.”)  For LAMBDA=0, RHO<1, TAU>0 and 
MAXNC>>IWIDT the routine is the ILUM preconditioner with threshold. (See 
[64] in Appendix A, “References.”) 

7) It is emphasized that not every setting of the parameters produces necessarily an 
efficient preconditioner. So it can be necessary to test some values for the 
parameters till an optimal selection has been found. 

8) The preconditioner bases on nested incomplete block factorizations using the 
Schur complement.   The matrix An, n=1,...,MAXLVL1 in each level can be 
blocked as follows choosing the appropriate sets of eliminated unknowns: 

An = 








2221

1211

AA

AA
. 

 And define a matrix S = A22  A21 A11
-1 A12, which is called Schur complement. 

An can be factorized as follows: 

An = 


















 

S

AAI

IA

A

0

0 12
1

11

21

11 . 

 The matrix An+1of next level n+1 can be regarded as a Schur complement matrix 
with approximating the A11

1.  These incomplete factorization are used for 
preconditioning in this routine. 

 

b. Example 

 The partial differential equation  

 f
x

u
xx

x

u
xx

x

u
xxt

x

u

x

u

x

u














































3
21

2
13

1
32

3
2

2

2
2

2

1
2

2

)()()(  

 is solved on the domain [0,1]2. Dirichlet boundary condition u=0 is imposed and 
the value of t is set to 1.0. 
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The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT NONE 
      INTEGER   MAXT,N1,N2,N3,KA,NA,L1,L2,L3,LGRW,LGIW, 
     &          NLBMAX,MAXNC 
 
      PARAMETER(MAXT=2,N1=39,N2=N1,N3=N1, 
     &    L1=N1,L2=N2,L3=N3, 
     &    KA=N1*N2*N3,NA=7,NLBMAX=N1*N2, 
     &    MAXNC=11, 
     &    LGRW=(KA+MAXT)*(6*MAXNC+11)+(85*NLBMAX+100)*MAXT, 
     &    LGIW=(KA+MAXT)*(6*MAXNC+11)+(13*NLBMAX+200 
     &    +61*51+13)*MAXT) 
 
      INTEGER          NDLT(NA),IW(LGIW), 
     &                 ICOL(KA,NA) 
      DOUBLE PRECISION X1(L1),X2(L2),X3(L3), 
     &                 A1(L1,L2,L3),A2(L1,L2,L3),A3(L1,L2,L3), 
     &                 B1(L1,L2,L3),B2(L1,L2,L3),B3(L1,L2,L3), 
     &                 C(L1,L2,L3),F(L1,L2,L3), 
     &                 RW(LGRW) 
      REAL*8 EPSIN,EPSOT,EPSEP(10) 
      INTEGER INFO(40),INFOEP(10),ISW,IGUSS,IS,NBAND 
 
      DOUBLE PRECISION MAT(KA,NA),RHS(KA),V(KA), 
     &                 SOL(3*KA),RHSX(KA),RHSC(KA),TMP 
 
      INTEGER Z1,Z2,Z3,NDIAG,N,ICON,I,Z,NC 
      DOUBLE PRECISION ONE,T,HR1,HR2,HR3,HR4,HR6,HR7,HR13 
      PARAMETER (ONE=1.D0) 
C 
C--------------------------------------------------------------- 
C 
C**** THESE ARE PARAMETERS OF THE TEST PDES. CHANGES OF THE 
C     VALUES CAN PRODUCE DIVERGENCE IN THE ITERATIVE SOLVER. 
C 
      T=1 
C 
C****** CREATE NODE COORDINATES 
C 
        DO 11 Z1=1,N1 
          X1(Z1)=DBLE(Z1-1)/DBLE(N1-1) 
11      CONTINUE 
        DO 12 Z2=1,N2 
          X2(Z2)=DBLE(Z2-1)/DBLE(N2-1) 
12      CONTINUE 
        DO 13 Z3=1,N3 
          X3(Z3)=DBLE(Z3-1)/DBLE(N3-1) 
13      CONTINUE 
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C 
C   -UX1X1-UX2X2-UX3X3+T*((X2-X3)*UX1+(X3-X1)*UX2+(X1-X2)*UX3)=F 
C 
C   REMARK: IF T IS TO LARGE THE PDE IS SINGULAR. 
C 
      DO 203 Z3=1,N3 
      DO 203 Z2=1,N2 
      DO 203 Z1=1,N1 
      A1(Z1,Z2,Z3)=1 
      A2(Z1,Z2,Z3)=1 
      A3(Z1,Z2,Z3)=1 
      B1(Z1,Z2,Z3)=T*(X2(Z2)-X3(Z3)) 
      B2(Z1,Z2,Z3)=T*(X3(Z3)-X1(Z1)) 
      B3(Z1,Z2,Z3)=T*(X1(Z1)-X2(Z2)) 
      C (Z1,Z2,Z3)=0 
      HR1 = ONE-X2(Z2) 
      HR2 = X2(Z2)*HR1 
      HR3 = ONE-X3(Z3) 
      HR4 = X3(Z3)*HR3 
      HR6 = ONE-X1(Z1) 
      HR7 = X1(Z1)*HR6 
      HR13 = HR1*X3(Z3)*HR3 
      F(Z1,Z2,Z3) = 2*HR2*HR4+2*HR7*HR4+2*HR7*HR2+ 
     &          T*((X2(Z2)-X3(Z3))* 
     &          (HR6*X2(Z2)*HR13-X1(Z1)*X2(Z2)*HR13)+ 
     &          (X3(Z3)-X1(Z1))* 
     &          (HR7*HR13-HR7*X2(Z2)*X3(Z3)*HR3)+ 
     &          (X1(Z1)-X2(Z2))* 
     &          (HR7*HR2*HR3-HR7*HR2*X3(Z3))) 
203       CONTINUE 
C 
C***** DIRICHLET CONDITIONS: 
C 
        DO 300  Z3=1,N3 
        DO 300  Z2=1,N2 
        C(1,Z2,Z3)=1 
        B1(1,Z2,Z3)=0 
        B2(1,Z2,Z3)=0 
        B3(1,Z2,Z3)=0 
        F(1,Z2,Z3)=0 
        C(N1,Z2,Z3)=1 
        B1(N1,Z2,Z3)=0 
        B2(N1,Z2,Z3)=0 
        B3(N1,Z2,Z3)=0 
        F(N1,Z2,Z3)=0 
        IF (Z2.EQ.1) THEN 
         DO 325 Z1=1,N1 
         C(Z1,1,Z3)=1 
         B1(Z1,1,Z3)=0 
         B2(Z1,1,Z3)=0 
         B3(Z1,1,Z3)=0 
         F(Z1,1,Z3)=0 
325      CONTINUE 
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        ELSEIF (Z2.EQ.N2) THEN 
         DO 326 Z1=1,N1 
         C(Z1,N2,Z3)=1 
         B1(Z1,N2,Z3)=0 
         B2(Z1,N2,Z3)=0 
         B3(Z1,N2,Z3)=0 
         F(Z1,N2,Z3)=0 
326      CONTINUE  
        ENDIF 
        IF (Z3.EQ.1) THEN 
         DO 335 Z1=1,N1 
         C(Z1,Z2,1)=1 
         B1(Z1,Z2,1)=0 
         B2(Z1,Z2,1)=0 
         B3(Z1,Z2,1)=0 
         F(Z1,Z2,1)=0 
335      CONTINUE 
        ELSEIF (Z3.EQ.N3) THEN 
         DO 336 Z1=1,N1 
         C(Z1,Z2,N3)=1 
         B1(Z1,Z2,N3)=0 
         B2(Z1,Z2,N3)=0 
         B3(Z1,Z2,N3)=0 
         F(Z1,Z2,N3)=0 
336      CONTINUE  
        ENDIF 
300     CONTINUE 
C 
      N=N1*N2*N3 
      CALL DM_VPDE3D(A1,L1,L2,N1,N2,N3,  
     $               A2,A3,X1,X2,X3,B1,B2, 
     $               B3,C,F,MAT,KA,NA,N, 
     $               NDIAG,NDLT,RHS,ICON)  
      PRINT*,'ICON OF DM_VPDE3D = ',ICON 
      IF (ICON.GT.29999) STOP 
C 
C 
      DO Z=1,N 
      RHSX(Z)=RHS(Z) 
      ENDDO 
      NBAND=0 
      DO I=1,NDIAG 
      NBAND=MAX(NBAND,ABS(NDLT(I))) 
      ENDDO 
C 
C 
C**** CHANGE TO ELLPACK FORMAT: 
C 
      NC=NDIAG 
      DO I=1,NC 
      DO Z=1,KA 
      IS=Z+NDLT(I) 
      ICOL(Z,I)=IS 
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      ENDDO 
      ENDDO 
C 
C****** CALL THE ITERATIVE SOLVER: 
C 
      ISW=1 
      IGUSS=0 
      EPSOT=1.D-6 
      EPSIN=1.D-3 
      INFO(1)=10 
      INFO(2)=MAXT*100 
      INFO(3)=1 
      INFO(5)=2 
      INFO(6)=5000 
      INFO(7)=5 
      INFO(8)=20 
      INFO(11)=5000 
      INFO(10)=2 
      INFO(12)=20 
      INFO(13)=0 
      INFOEP(1)=1 
      INFOEP(2)=5 
      INFOEP(3)=14 
      EPSEP(1)=1.D-2 
      EPSEP(2)=EPSEP(1) 
      EPSEP(3)=0.2 
      EPSEP(4)=1.D-3 
      CALL DM_VMLBIFE(MAT,KA,NC,N,ICOL, 
     &              RHS,ISW,IGUSS,INFO,INFOEP,EPSOT,EPSIN, 
     &              EPSEP,V,RW,LGRW,IW,LGIW,ICON) 
      PRINT*,'ICON OF DM_VEBIFE = ',ICON 
      IF (ICON.GT.29999) STOP 
C 
      DO I=1,NBAND 
      SOL(I)=0.0D0 
      SOL(NBAND+N+I)=0.0D0 
      ENDDO 
      DO Z=1,N 
      SOL(NBAND+Z)=V(Z) 
      ENDDO 
      CALL DM_VMVSD(MAT,KA,NDIAG,N,NDLT,NBAND,SOL,RHSC,ICON) 
      TMP=0 
      DO Z=1,N 
      TMP=MAX(TMP,ABS((RHSX(Z)-RHSC(Z))/(RHSX(Z)+1.0))) 
      ENDDO 
C 
      PRINT*,' ERROR = ',TMP 
C 
      STOP 
      END 
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(4) Method 

  The calculation stars by removing rows containing only zero entries outside the main 
diagonal (typically arising from Dirichlet conditions).  This can effect that the matrix 
becomes symmetric.  The linear system is normalized to achieve that the row sums are in 
the order of one and the main diagonal contains only non-negative entries.  The 
normalized system is solved by the ORTHOMIN or GMRES method.  The preconditioner 
bases on a nested incomplete block factorizations using (approximative) Schur 
complements.  The set of simultaneously eliminated unknowns are defined by searching a 
maximal independent set in the undirected graph created by the large entries in the matrix. 
In the Schur complement the small entries are dropped to keep the sparsity of the matrices.  
The linear system on the final level is normalized and iteratively solved by ORTHOMIN 
or GMRES. 
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DM_VMVSCC 
 

Multiplication of a real sparse matrix and a real vector (compressed column storage method) 

CALL DM_VMVSCC(A, NZ, NROW, NFCNZ, N, X, Y, W, IW, ICON) 

 

(1) Function 

 This subroutine obtains a product by multiplying an n  n sparse matrix by a vector. 

 y = Ax 

 The sparse matrix A is stored by the compressed column storage method. 

 Vectors x and y are n-dimensional vectors. 

(2) Parameters 

A .............. Input.  The non-zero elements of a coefficient matrix are stored. 

The non-zero elements of a sparse matrix are stored in A(1:NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1. 

One-dimensional array A(NZ). 

NZ ............... Input.  The total number of the nonzero elements belong to a coefficient matrix 
A. 

NROW ..... Input.  The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ ..... Input.  The position of the first nonzero element stored in an array A by the 
compressed column storage method which stores the nonzero elements column 
by column.  NFCNZ(N+1) = NZ + 1. 

One-dimensional array NFCNZ(N+1). 

N ............... Input.  Order n of matrix A. 

X .............. Input.  Vector x is stored in X(1:N). 

One-dimensional array X(N). 

Y .............. Output.  The product of a matrix and vector is stored in Y(1:N). 

A one-dimensional array Y(N). 

W ............. Work area.  One-dimensional array W(NZ). 

IW ............ Work area.  Two-dimensional array IW(2, NZ). 

ICON ....... Output.  Condition code 

See Table DM_VMVSCC-1. 
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Table DM_VMVSCC-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ + 1. Processing is discontinued. 
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Figure DM_VMVSCC-1  Storing a coefficient matrix A in compressed column storage method 

 The way how to store a coefficient matrix A in compressed column storage method is 
explained. 

The nonzero elements of each column vector of a matrix A are stored in compressed 
mode into a one-dimensional array CC column by column.  The position in the array CC 
where the first nonzero element in the i-th column vector is stored is set into NFCNZ(i). 

The value of NFCNZ(N+1) is set to NZ+1, where N is an order of the matrix A and NZ is 
the total number of the nonzero elements in this matrix. 

The row number of the nonzero element of the matrix A stored in the i-th array element 
CC(i) is set into NROW(i). 

 

(3) Comments on use 

a. Example 

  A product is obtained by multiplying the sparse matrix by a vector. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 
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C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG) 
      DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1), 
     $          W(K*NDIAG),IW(2,K*NDIAG) 
      DIMENSION X(N),B(N),Y(N) 
 
      X(1:N)=1.0D0 
 
      NOFST(1)=-NX*NY 
      NOFST(2)=-NX 
      NOFST(3)=-1 
      NOFST(4)=0 
      NOFST(5)=1 
      NOFST(6)=NX 
      NOFST(7)=NX*NY 
 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG(1:LENGTH,I)=DBLE(I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG(NBASE+1:N,I)=DBLE(I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
      DO J=1,N 
      NTOPCFG=1 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG(J,I).NE.0.0D0)THEN 
C 
      NCOL=J-NOFST(I) 
      A(NUMNZ)=DIAG(J,I) 
      NROW(NUMNZ)=NCOL 
C 
      IF(NTOPCFG.EQ.1)THEN 
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF 
C 
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      NUMNZ=NUMNZ+1 
      ENDIF 
C 
      ENDDO 
      ENDDO 
      NFCNZ(N+1)=NUMNZ 
      NNZ=NUMNZ-1 
 
      CALL DM_VMVSCC(A,NNZ,NROW,NFCNZ,N,X, 
     $             Y,W,IW,ICON) 
C 
      B(1:N)=0.0D0 
      DO I=1,N 
      NS=NFCNZ(I) 
      NE=NFCNZ(I+1)-1 
      DO J=NS,NE 
      II=NROW(J) 
      B(II)=B(II)+A(J)*X(I) 
      ENDDO 
      ENDDO 
C 
      S=0.0D0 
      DO I=1,N 
      S=MAX(S,ABS(Y(I)-B(I))) 
      ENDDO 
C 
      PRINT*,'ERROR=',S 
 
      STOP 
      END 
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DM_VMVSCCC 
 

Multiplication of a complex sparse matrix and a complex vector  (compressed column storage 
method) 

CALL DM_VMVSCCC(ZA, NZ, NROW, NFCNZ, N, ZX, ZY, ZW, IW, ICON) 

 

(1) Function 

 This subroutine obtains a product by multiplying an n  n complex sparse matrix by a 
complex vector. 

 y = Ax 

 The sparse matrix A is stored by the compressed column storage method. 

 Vectors x and y are n-dimensional vectors. 

(2) Parameters 

ZA .............. Input.  The non-zero elements of a coefficient matrix are stored. 

The non-zero elements of a sparse matrix are stored in ZA(1:NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1. 
For a complex matrix , the real array CC in this Figure is replaced with complex 
array. 

A double precision complex one-dimensional array ZA(NZ). 

NZ ............... Input.  The total number of the nonzero elements belong to a coefficient matrix 
A. 

NROW ..... Input.  The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array ZA. 

One-dimensional array NROW(NZ). 

NFCNZ ..... Input.  The position of the first nonzero element stored in an array A by the 
compressed column storage method which stores the nonzero elements column 
by column.  NFCNZ(N+1) = NZ + 1. 

One-dimensional array NFCNZ(N+1). 

N ............... Input.  Order n of matrix A. 

ZX .............. Input.  Vector x is stored in ZX(1:N). 

A double precision complex one-dimensional array ZX(N). 

ZY .............. Output.  The product of a matrix and vector is stored in ZY(1:N). 

A double precision complex one-dimensional array ZY(N). 

ZW ............. Work area.  A double precision complex one-dimensional array ZW(NZ). 

IW ............ Work area.  Two-dimensional array IW(2, NZ). 

ICON ....... Output.  Condition code 

See Table DM_VMVSCCC-1. 
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Table DM_VMVSCCC-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ + 1. Processing is discontinued. 

 
 

(3) Comments on use 

a. Example 

  A product is obtained by multiplying the complex sparse matrix by a complex 
vector. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
 
      DIMENSION NOFST(NDIAG) 
      COMPLEX*16 ZDIAG(K,NDIAG),ZA(K*NDIAG),ZW(K*NDIAG)   
      DIMENSION NROW(K*NDIAG),NFCNZ(N+1),              
     $          IW(2,K*NDIAG)                         
      COMPLEX*16 ZX(N),ZB(N),ZY(N)               
 
      ZX(1:N)=(1.0D0,0.0D0)         
 
      NOFST(1)=-NX*NY 
      NOFST(2)=-NX 
      NOFST(3)=-1 
      NOFST(4)=0 
      NOFST(5)=1 
      NOFST(6)=NX 
      NOFST(7)=NX*NY 
 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      ZDIAG(1:LENGTH,I)=DCMPLX(DBLE(I),0.0D0) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      ZDIAG(NBASE+1:N,I)=DCMPLX(DBLE(I),0.0D0) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
      DO J=1,N 
      NTOPCFG=1 
      DO I=NDIAG,1,-1 



 DM_VMVSCCC 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-173 

C 
      IF(ZDIAG(J,I).NE.(0.0D0,0.0D0))THEN 
C 
      NCOL=J-NOFST(I) 
      ZA(NUMNZ)=ZDIAG(J,I) 
      NROW(NUMNZ)=NCOL 
C 
      IF(NTOPCFG.EQ.1)THEN 
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF 
C 
      NUMNZ=NUMNZ+1 
      ENDIF 
C 
      ENDDO 
      ENDDO 
      NFCNZ(N+1)=NUMNZ 
      NNZ=NUMNZ-1 
 
      CALL DM_VMVSCCC(ZA,NNZ,NROW,NFCNZ,N,ZX, 
     $             ZY,ZW,IW,ICON) 
C 
      ZB(1:N)=(0.0D0,0.0D0) 
      DO I=1,N 
      NS=NFCNZ(I) 
      NE=NFCNZ(I+1)-1 
      DO J=NS,NE 
      II=NROW(J) 
      ZB(II)=ZB(II)+ZA(J)*ZX(I) 
      ENDDO 
      ENDDO 
C 
      S=0.0D0 
      DO I=1,N 
      S=MAX(S,CDABS(ZY(I)-ZB(I))) 
      ENDDO 
C 
      PRINT*,'ERROR=',S 
 
      STOP 
      END 
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DM_VMVSD 
 

Multiplication of a real sparse matrix and a real vector (diagonal format storage method) 

CALL DM_VMVSD(A,K, NDIAG,N, NOFST,NLB,X,Y,ICON) 

 

(1) Function 

 This subroutine obtains a product by multiplying an n  n sparse matrix by a vector. 

 y = Ax 

 The sparse matrix A is stored by the diagonal format storage method. 

 Vectors x and y are n-dimensional vectors. 

(2) Parameters 

A .............. Input.  The non-zero elements of a coefficient matrix are stored. 

The non-zero elements of a sparse matrix are stored in A(1:N,1:NDIAG). 

For the diagonal format storage method, refer to Item b of Section 3.2.1.1 of 
Part I of the SSL II Extended Capabilities User's Guide. 

Two-dimensional array A(K,NDIAG). 

K ............... Input.  The size of the first dimension of array A( n). 

NDIAG ..... Input.  The total number of diagonal vectors including non-zero elements of a 
coefficient matrix to be stored in array A. 

The size of the second dimension of array A. 

N ............... Input.  Order n of matrix A. 

NOFST ..... Input.  The distance from the main diagonal vector corresponding to the 
diagonal vector to be stored in array A is stored.  The upper diagonal vector 
matrix is indicated by a positive value and the lower diagonal vector matrix is 
indicated by a negative value. 

One-dimensional array NOFST(NDIAG). 

NLB ......... Input.  The lower bandwidth of matrix A. 

X .............. Input.  Vector x is stored in X(NLB+1:NLB+N). 

One-dimensional array X(n+nlb+nub), where nlb is the lower band width and 
nub is the upper band width. 

Y .............. Output.  The product of a matrix and vector is stored in Y(1:N). 

A one-dimensional array Y(N). 

ICON ....... Output.  Condition code 

See Table DM_VMVSD-1. 
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Table DM_VMVSD-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N < 1, NDIAG < 1, K < N,  
NLB  Max(-NOFST(I)) or |NOFST(I) | > N-1. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) Notes an using the diagonal format  

 Zeros need to be set for those elements of the diagonal vectors outside the 
coefficient matrix A. 
 There are no special restrictions on the storage order of diagonal vector columns 
in array A. 
 The merit of this method is that the computation is possible without using an 
indirect index with matrix vector multiplication.  But its demerit is that matrices 
having no diagonal structure cannot be stored efficiently. 

b. Example 

  A product is obtained by multiplying the sparse matrix by a vector. 

  The sparse matrix is generated by init_mat_diag.  (Refer to the example program of 
DM_VBCSD.) 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      PARAMETER(NVW=3*K) 
      DIMENSION NOFST(NDIAG) 
      DIMENSION A(K,NDIAG) 
      DIMENSION Y(N),B(N) 
      DIMENSION X(NVW) 
 
 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
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!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,B)    
      DO I=1,N 
      B(I)=0.0D0 
      DO J=1,NDIAG 
      B(I)=B(I)+A(I,J) 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
 
 
      NBANDL=0 
      NBANDR=0 
      DO I=1,NDIAG 
      IF(NOFST(I).LT.0)THEN 
      NBANDL=MAX(NBANDL,-NOFST(I)) 
      ELSE 
      NBANDR=MAX(NBANDR,NOFST(I)) 
      ENDIF 
      ENDDO 
 
      X(1+NBANDL:N+NBANDL) = 1.0D0 
      CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,X,Y,ICON) 
      
      ERROR=0.0D0 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(Y,B)  
!$OMP+         REDUCTION(MAX:ERROR) 
      DO I=1,N 
      ERROR=MAX(ERROR,DABS(Y(I)-B(I))) 
      ENDDO 
!$OMP END PARALLEL DO 
 
      PRINT*,'ERROR = ',ERROR 
 
      STOP 
      END 
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DM_VMVSE 
 

Multiplication of a real sparse matrix and a real vector (ELLPACK format storage method) 

CALL DM_VMVSE(A,K,NW,N,ICOL,X,Y,ICON) 

 
(1) Function 

 This subroutine obtains a product by multiplying an n  n sparse matrix by a vector. 

 y = Ax 

 The coefficient matrix (n  n) is stored by the ELLPACK format storage method using 
two arrays. 

 Vectors x and y are n-dimensional vectors. 

(2) Parameters 

A ............... Input.  Non-zero elements of a coefficient matrix are stored in A(1:N,1:NW). 

For the ELLPACK format storage method, refer to Item b of Section 3.2.1.1 of 
Part I of the SSLII Extended Capabilities User's Guide. 

A two-dimensional array A(K,NW). 

K ............... Input.  The size of the first dimension of an array A( n). 

NW ........... Input. The size of the second dimension of array A and ICOL.  The maximum 
number of non-zero elements in each row of matrix A to be stored in array A. 

N ............... Input.  Order n of matrix A. 

ICOL ........ Input.  The column index used in the ELLPACK format storage method that 
indicates the column vector to which the element to be stored in A belongs. 

The two-dimensional array, ICOL(K,NW). 

X .............. Input.  The vector x is stored in X(1:N). 

A one-dimensional array X(N). 

Y .............. Output.  The product of a matrix and vector is stored in Y(1:N). 

A one-dimensional array Y(N). 

ICON ....... Output.  Condition code. 

See Table DM_VMVSE-1. 

 
Table DM_VMVSE-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N < 1, NW < 1, K < N. Processing is discontinued. 
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(3) Comments on use 

a. Note 

1) When using the ELLPACK storage format 
 It is recommended that array A is initialized with zero and ICOL with a row 
vector number. 

b. Example 

 A product is obtained by multiplying the sparse matrix by a vector. 

The sparse matrix is generated by init_mat_ell.  (Refer to the example program of 
DM_VBCSE.) 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=60,NX =NORD ,NY = NORD,NZ = NORD, 
     &            N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (IWIDT = 7) 
      DIMENSION ICOL(K,IWIDT) 
      DIMENSION A(K,IWIDT) 
      DIMENSION X(N),B(N),Y(N) 
 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL 
     &          ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K) 
 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A,B)    
      DO I=1,N 
      B(I)=0.0D0 
      DO J=1,IWIDT 
      B(I)=B(I)+A(I,J) 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
 
      Y(1:N)=1.0D0 
      CALL DM_VMVSE(A,K,IWIDT,N,ICOL,Y,X,ICON2) 
 
      ERROR=0.0D0 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,B)  
!$OMP+         REDUCTION(MAX:ERROR) 
      DO I=1,N 
      ERROR=MAX(ERROR,DABS(X(I)-B(I))) 
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      ENDDO 
!$OMP END PARALLEL DO 
 
      PRINT*,'ERROR = ',ERROR 
 
      STOP 
      END 
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DM_VPDE2D 
 

Generation of System of linear equations with sparse matrices by the finite difference 
discretization of a two dimensional boundary value problem for second order partial 
differential equation  

CALL DM_VPDE2D (A1, L1, N1, N2, A2, X1, X2, B1, B2, C, F, 
                                      A, K, NA, N, NDIAG, NOFST, R, ICON) 

 

(1) Function 

 This subroutine assembles the system of linear equations by the finite difference 
discretization of the linear, two dimensional boundary value problem on the rectangular 
domain B: 

 The partial differential equation (1) on the domain B with the boundary conditions (2) on 
the boundary of the domain B is satisfied.  

fcu
x

u
b

x

u
b

x

u
a

xx

u
a

x































2

2
1

1
2

2
21

1
1

 (1) 

 







u
x

u

x

u

2
2

1
1  (2) 

 a1, a2, b1, b2, c and f are given functions on the domain and 1, 2,   and  are given 
functions on the boundary of the domain.  

 The N1  N2 grid is defined by X(i,j)=(X1(i),X2(j)) 

    i=1,...,N1, j=1,...,N2 with 

   B:=[X1(1),X1(N1)]  [X2(1),X2(N2)] ; 

 The functions involved in the partial differential equation and the boundary conditions 
are defined by their values at the grid points. 

 The returned coefficient matrix is stored by the diagonal format storage method, see 
section 3.2.1.2 in the SSL II Extended Capabilities User’s Guide II.  

(2) Parameters 

A1 ............ Input.  The coefficients of a1(xij) are stored in A1(1:N1, 1:N2). 

Two-dimensional array A1(L1,N2). 

L1 ............. Input.  Size of first-dimension of array A1, A2, B1, B2, C and F (L1N1). 

N1 ............. Input.  Number of grid points in the x1-direction (N1>2). 

N2 ............. Input.  Number of grid points in the x2-direction (N2>2). 

A2 ........... Input.  The coefficients of a2(xij) are stored in A2(1:N1, 1:N2). 

Two-dimensional array A2(L1,N2). 

X1 ............. Input.  The x1-coordinates of the grid points are stored in X1(1:N1). The 

 coordinates of the grid points have to be increasing: 

 X1(i)<X1(i+1) , i=1,...,N1-1  

 One-dimensional array of X1(N1). 
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X2 ............. Input.  The x2-coordinates of the grid points are stored in X2(1:N2). The 

 coordinates of the grid points have to be increasing: 

 X2(i)<X2(i+1) , i=1,...,N2-1  

One-dimensional array X2(N2). 

B1 ............ Input.  The coefficients of b1(xij) and the boundary condition 1 are stored in 
B1(1:N1, 1:N2). 
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Two-dimensional array B1(L1,N2). 

B2 ............ Input.  The coefficients of b2(xij) and the boundary condition 2 are stored in 
B2(1:N1, 1:N2). 
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Two-dimensional array B2(L1,N2). 

C .............. Input.  The coefficients of c(xij) and the boundary condition   are stored in 
C(1:N1, 1:N2). 
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Two-dimensional array C(L1,N2). 

F .............. Input.  The coefficients of f(xij) and the boundary condition   are stored in 
F(1:N1, 1:N2). 
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Two-dimensional array F(L1,N2). 

A .............. Output.  The nonzero elements of a coefficient matrix are stored in A. 

The coefficient matrix is stored in A(1:N,1:NDIAG). 
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Two-dimensional array A(K,NA). 

For an explanation of the diagonal format storage method, see b, “Diagonal 
format storage method of general sparse matrices,” in Section 3.2.1.1, “Storing 
the general sparse matrices,” in Part I, “Outline,” in the SSL II Extended 
Capability User’s Guide II. 

K ................ Input.  Size of first-dimension of array A ( N=N1N2). 

NA ............. Input.  Size of second-dimension of array A.  ( NDIAG=5). 

N ................ Input.  Order n of matrix A (=N1N2). 

NDIAG ...... Output.  Number of columns in array A and size of array NOFST (=5). 

NOFST ....... Output.  Offsets of diagonals of A stored A.  Main diagonal has offset 0, 
subdiagonals have negative offsets, and superdiagonals have positive offsets. 

One-dimensional array NOFST(NDIAG) 

R ................ Output.  The right-side constant vectors of a system of linear equations are 
stored in R(1:N). 

One-dimensional array R(K) . 

ICON ......... Output.  Condition code. 

See Table DM_VPDE2D-1. 

 
Table DM_VPDE2D-1   Condition codes 

Code Meaning Processing 

0 No  error  

30000 L1 < N1, N1 < 3 , N2 < 3 ,NA < 5 , 
or K < N1  N2. 

Processing is discontinued. 

30001 The coordinates of the grid points is not 
increasing. 

 

(3) Comments on use 

a. Notes 

1) The quality of the value of the solution at the grid points delivered by the solver 
of the linear system or an eigenvalue problem solver depends strictly on the 
number and the location of the grid points. 

2) The changes of the distances of the grid points to their nearest neighbor should 
be moderate. For instance in x1-direction the condition 

1N1,...,2,2
)(X1)1(X1

)1(X1)(X1
5.0 




 i
ii

ii
 

should be met (for the x2-direction analogously). 

If this condition is not fulfilled the coefficient matrix can become ill--posed. 
Keep in mind that the condition number of the coefficient matrix is not only 
determined by the grid but also by the coefficient functions. 

b. Example 

 The domain is the box [1,1] 2. The partial differential equation is  
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 modeling a diffusion of the quantity u through the cannel driven by the rotating 

  velocity field 
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 where v0 is real constant (e.g. v0=1). The boundary conditions are set as follows: 
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 where n denotes the outer normal field at the boundary of the box. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT NONE 
 
      INTEGER   N1,N2,KA,NA,L1,L2 
 
      PARAMETER (N1=49,N2=49, L1=N1,L2=N2, KA=N1*N2,NA=5) 
 
      INTEGER   NOFST(NA) 
      DOUBLE PRECISION V0,X1(L1),X2(L2), 
     &         A1(L1,L2),A2(L1,L2),B1(L1,L2),B2(L1,L2), 
     &         C(L1,L2),F(L1,L2),A(KA,NA),R(KA) 
 
      INTEGER Z1,Z2,ICON,I,J,N,NDIAG 
 
      V0=1. 
C 
C create grid nodes nodes: 
C 
      DO 11 Z1=1,N1 
        X1(Z1)=(2*DBLE(Z1-1)/DBLE(N1-1)-1.) 
11    CONTINUE 
      DO 13 Z2=1,N2 
        X2(Z2)=(2*DBLE(Z2-1)/DBLE(N2-1)-1.) 
13    CONTINUE 
C 
C coefficient functions: 
C 
      DO 2000 Z2=1,N2 
 
       DO 20 Z1=1,N1 
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        A1(Z1,Z2)=1 
        A2(Z1,Z2)=1 
20     CONTINUE 
       DO 21 Z1=2,N1-1 
          B1(Z1,Z2)= V0*X2(Z2)/SQRT(X1(Z1)**2+X2(Z2)**2+1.D-10) 
          B2(Z1,Z2)=-V0*X1(Z1)/SQRT(X1(Z1)**2+X2(Z2)**2+1.D-10) 
          C (Z1,Z2)=0 
          F (Z1,Z2)=0 
21    CONTINUE 
C 
C boundary conditions at faces X1=-1 and X1=1: 
C 
      B1(1,Z2)=-1 
      B2(1,Z2)=0 
      C (1,Z2)=0 
      F (1,Z2)=0 
 
      B1(N1,Z2)=1 
      B2(N1,Z2)=0 
      C (N1,Z2)=0 
      F (N1,Z2)=0 
C 
C boundary conditions at faces X2=-1 and X2=1: 
C 
      IF (Z2.EQ.1) THEN 
        DO 103 Z1=1,N1 
          B1(Z1,1)=0 
          B2(Z1,1)=0 
          C (Z1,1)=1 
          F (Z1,1)=0 
103     CONTINUE 
      ELSE IF (Z2.EQ.N2) THEN 
        DO 113 Z1=1,N1 
          B1(Z1,N2)=0 
          B2(Z1,N2)=0 
          C (Z1,N2)=1 
          F (Z1,N2)=1 
113     CONTINUE 
      END IF 
2000  CONTINUE 
 
C 
C build the linear system: 
C 
      N=N1*N2 
      CALL DM_VPDE2D(A1,L1,N1,N2,A2,X1,X2, B1,B2,C,F,A,KA,NA,N, 
     &               NDIAG,NOFST,R,ICON) 
      PRINT*,'ICON of DM_VPDE2D =',ICON 
      IF (ICON.GT.29999) GOTO 9999 
C 
C write the matrix to a file: 
C 
      WRITE (6,'(3D23.16)') ((A(I,J),I=1,N,100),J=1,NDIAG) 
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      WRITE (6,'(3I10)') (NOFST(J),J=1,NDIAG) 
      WRITE (6,'(3D23.16)') (R(I),I=1,N,100) 
9999  CONTINUE 
      END 
 

(4) Method 

 The diffusion term a  is approximated by the product scheme of centered finite 
difference schemes of order two for the x1- and x2- direction. The convective term b  is 
approximated by an upwind scheme of order one. More details are presented in [75] in 
Appendix A, “References.” 
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DM_VPDE3D 
 

Generation of System of linear equations with sparse matrices by the finite difference 
discretization of a three dimensional boundary value problem for second order partial 
differential equation 

CALL DM_VPDE3D (A1, L1, L2, N1, N2, N3, A2, A3, X1, X2, X3, B1, 
                                      B2, B3, C, F, A, KA, NA, N, NDIAG, NOFST, R, ICON) 
 

(1) Function 

 This subroutine assembles the system of linear equations by the finite difference 
discretization of the linear, three dimensional boundary value problem on the rectangular 
domain B: 

 The partial differential equation (1) on the domain B with the boundary conditions (2) on 
the boundary of the domain B is satisfied.  
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 a1, a2, a3, b1, b2, b3, c and f are given functions on the domain and 1, 2, 3,   and  are 
given functions on the boundary of the domain.  

 The N1  N2  N3 grid is defined by X(i,j,k)=(X1(i),X2(j),X3(k)) 

 for i=1,...,N1, j=1,...,N2 and k=1,...,N3 with 

 B:=[X1(1),X1(N1)]  [X2(1),X2(N2)]  [X3(1),X3(N3)]; 

 The functions involved in the partial differential equation and the boundary conditions 
are defined by their values at the grid points. 

 The returned coefficient matrix is stored by the diagonal format storage method, see 
Section 3.2.1.2 in the SSL II Extended Capabilities User’s Guide II.  

(2) Parameters 

A1 ............ Input.  The coefficients of a1(xijk) are stored in A1(1:N1, 1:N2, 1:N3). 

Three-dimensional array A1(L1,L2,N3). 

L1 ............. Input.  Size of first-dimension of array A1, A2, A3, B1, B2, B3, C and F.  

L2 ............. Input.  Size of second-dimension of array A1, A2, A3, B1, B2, B3, C and F.  

N1 ............. Input.  Number of grid points in the x1-direction. (N1>2) 

N2 ............. Input.  Number of grid points in the x2-direction. (N2>2) 

N3 ............. Input.  Number of grid points in the x3-direction. (N3>2) 

A2 ............. Input.  The coefficients of a2(xijk) are stored in A2(1:N1, 1:N2, 1:N3). 

Three-dimensional array A2(L1,L2,N3). 
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A3 ............ Input.  The coefficients of a3(xijk) are stored in A3(1:N1, 1:N2, 1:N3). 

Three-dimensional array A3(L1,L2,N3). 

X1 ............. Input.  The x1-coordinates of the grid points are stored in X1(1:N1). The 

 coordinates of the grid points have to be increasing: 

 X1(i)<X1(i+1) , i=1,...,N1-1  

 One-dimensional array of X1(N1). 

X2 ............. Input.  The x2-coordinates of the grid points are stored in X2(1:N3). The 

 coordinates of the grid points have to be increasing: 

 X2(i)<X2(i+1) , i=1,...,N2-1  

 One-dimensional array of X2(N2). 

X3 ............. Input.  The x3-coordinates of the grid points are stored in X3(1:N3). The 

 coordinates of the grid points have to be increasing: 

 X3(i)<X3(i+1) , i=1,...,N3-1  

One-dimensional array X3(N3). 

B1 ............. Input.  The coefficients of b1(xijk) and the boundary condition 1 are stored in 
B1(1:N1, 1:N2, 1:N3) as follows. 
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Three-dimensional array B1(L1,L2,N3). 

B2 ............ Input.  The coefficients of b2(xijk) and the boundary condition 2 are stored in 
B2(1:N1, 1:N2, 1:N3) as follows. 
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Three-dimensional array B2(L1,L2,N3). 

B3 ............. Input.  The coefficients of b3(xijk) and the boundary condition 3 are stored in 
B3(1:N1, 1:N2, 1:N3) as follows. 
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Three-dimensional array B3(L1,L2,N3). 

C ............... Input.  The coefficients of c(xijk) and the boundary condition   are stored in 
C(1:N1, 1:N2, 1:N3) as follows. 
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Three-dimensional array C(L1,L2,N3). 

F ............... Input.  The coefficients of f(xijk) and the boundary condition   are stored in 
F(1:N1, 1:N2, 1:N3) as follows. 
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Three-dimensional array F(L1,L2,N3). 

A ............... Output.  The nonzero elements of a coefficient matrix are stored in 
A(1:N,1:NDIAG). 

Two-dimensional array A(KA,NA). 

For an explanation of the diagonal format storage method, see b, “Diagonal 
format storage method of general sparse matrices,” in Section 3.2.1.1, “Storing 
the general sparse matrices,” in Part I, “Outline,” in the SSL II Extended 
Capability User’s Guide II. 

KA ............. Input.  Size of first-dimension of array A (KA  N1  N2 N3). 

NA ............. Input. Size of second-dimension of array A.  (NA  NDIAG=7). 

N ................ Input.  Order n of matrix A (N=N1  N2 N3). 

NDIAG ...... Output.  Number of columns in array A and size of array NOFST. ( =7) 
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NOFST ....... Output.  Offsets of diagonals of A stored A. Main diagonal has offset 0, 
subdiagonals have negative offsets, and superdiagonals have positive offsets. 

One-dimensional array NOFST(NDIAG) 

R ............... Output.  The right-side constant vectors of a system of linear equations are 
stored in R(1:N). 

One-dimensional array R(N). 

ICON ......... Output.  Condition code. 

See Table DM_VPDE3D-1. 

 
Table DM_VPDE3D-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 L1 < N1, L2 < N2 , N1 < 3 , N2 < 3 ,  N3 < 3 , 
NA < 7 , KA < N1  N2  N3. 

Processing is discontinued. 

30001 The coordinates of the grid points is not 
increasing. 

 

 

(3) Comments on use 

a. Notes 

1) The quality of the value of the solution at the grid points delivered by the solver 
of the linear system or an eigenvalue problem solver depends strictly on the 
number and the location of the grid points. 

2) The changes of the distances of the grid points to their nearest neighbor should 
be moderate. For instance in x1-direction the condition 

1N1,...,2,2
)(X1)1(X1

)1(X1)(X1
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should be met (for the x2-direction and x3-direction analogously). 

If this condition is not fulfilled the coefficient matrix can become ill-posed. Keep 
in mind that the condition number of the coefficient matrix is not only 
determined by the grid but also by the coefficient functions. 

b. Example 

 The domain is the channel [-1,1]2  [0,5]. The partial differential 

 equation is  
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 modeling a diffusion of the quantity u through the cannel driven by the rotating 

 velocity field 
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 where v0 is real constant (e.g. v0=1). The boundary conditions 

 are set as follows: 

 

else
n

u
xu

xu

0

51

00

3

3








 

 where n denotes the outer normal field at the boundary of the channel. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT NONE 
 
      INTEGER   N1,N2,N3,KA,NA,L1,L2,L3 
 
      PARAMETER(N1=49,N2=49,N3=25,L1=N1,L2=N2,L3=N3, 
     &          KA=N1*N2*N3,NA=7) 
 
      INTEGER  NOFST(NA) 
      DOUBLE PRECISION V0,X1(L1),X2(L2),X3(L3), 
     &         A1(L1,L2,L3),A2(L1,L2,L3),A3(L1,L2,L3), 
     &         B1(L1,L2,L3),B2(L1,L2,L3),B3(L1,L2,L3), 
     &         C(L1,L2,L3),F(L1,L2,L3),A(KA,NA),R(KA) 
 
      INTEGER  Z1,Z2,Z3,ICON,I,J,N,NDIAG 
 
      V0=1. 
C 
C create grid nodes nodes: 
C 
      DO 11 Z1=1,N1 
        X1(Z1)=(2*DBLE(Z1-1)/DBLE(N1-1)-1.) 
11    CONTINUE 
      DO 12 Z2=1,N2 
        X2(Z2)=(2*DBLE(Z2-1)/DBLE(N2-1)-1.) 
12    CONTINUE 
      DO 13 Z3=1,N3 
        X3(Z3)=DBLE(Z3-1)/DBLE(N3-1) 
13    CONTINUE 
C 
C coefficient functions: 
C 
      DO 2000 Z3=1,N3 
 
       DO 20 Z2=1,N2 
        DO 20 Z1=1,N1 
          A1(Z1,Z2,Z3)=1 
          A2(Z1,Z2,Z3)=1 
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          A3(Z1,Z2,Z3)=1 
20     CONTINUE 
       DO 21 Z2=2,N2-1 
        DO 21 Z1=2,N1-1 
          B1(Z1,Z2,Z3)= V0*X2(Z2)/SQRT(X1(Z1)**2+X2(Z2)** 
     &                  2+1.D-10) 
          B2(Z1,Z2,Z3)=-V0*X1(Z1)/SQRT(X1(Z1)**2+X2(Z2)** 
     &                  2+1.D-10) 
          B3(Z1,Z2,Z3)=0 
          C (Z1,Z2,Z3)=0 
          F (Z1,Z2,Z3)=0 
21    CONTINUE 
C 
C boundary conditions at faces X1=-1 and X1=1: 
C 
      DO 101 Z2=1,N2 
        B1(1,Z2,Z3)=-1 
        B2(1,Z2,Z3)=0 
        B3(1,Z2,Z3)=0 
        C (1,Z2,Z3)=0 
        F (1,Z2,Z3)=0 
 
        B1(N1,Z2,Z3)=1 
        B2(N1,Z2,Z3)=0 
        B3(N1,Z2,Z3)=0 
        C (N1,Z2,Z3)=0 
        F (N1,Z2,Z3)=0 
101   CONTINUE 
C 
C boundary conditions at faces X2=-1 and X2=1: 
C 
      DO 102 Z1=1,N1 
        B1(Z1,1,Z3)=0 
        B2(Z1,1,Z3)=-1 
        B3(Z1,1,Z3)=0 
        C (Z1,1,Z3)=0 
        F (Z1,1,Z3)=0 
 
        B1(Z1,N2,Z3)=0 
        B2(Z1,N2,Z3)=1 
        B3(Z1,N2,Z3)=0 
        C (Z1,N2,Z3)=0 
        F (Z1,N2,Z3)=0 
102   CONTINUE 
C 
C boundary conditions at faces X3=0 and X3=5: 
C 
      IF (Z3.EQ.1) THEN 
        DO 103 Z1=1,N1 
          DO 103 Z2=1,N2 
            B1(Z1,Z2,1)=0 
            B2(Z1,Z2,1)=0 
            B3(Z1,Z2,1)=0 
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            C (Z1,Z2,1)=1 
            F (Z1,Z2,1)=0 
103     CONTINUE 
      ELSE IF (Z3.EQ.N3) THEN 
        DO 113 Z1=1,N1 
          DO 113 Z2=1,N2 
            B1(Z1,Z2,N3)=0 
            B2(Z1,Z2,N3)=0 
            B3(Z1,Z2,N3)=0 
            C (Z1,Z2,N3)=1 
            F (Z1,Z2,N3)=1 
113     CONTINUE 
      END IF 
 
2000  CONTINUE 
C 
C build the linear system: 
C 
      N=N1*N2*N3 
      CALL DM_VPDE3D (A1,L1,L2,N1,N2,N3,A2,A3,X1,X2,X3,B1,B2,B3, 
     &                C,F,A,KA,NA,N,NDIAG,NOFST,R,ICON) 
      PRINT*,'DM_VPDE3D : ICON=',ICON 
      IF (ICON.GT.29999) GOTO 9999 
C 
C write the matrix to a file: 
C 
      WRITE (6,'(3D23.16)') ((A(I,J),I=1,N,1000),J=1,NDIAG) 
      WRITE (6,'(3I10)') (NOFST(J),J=1,NDIAG) 
      WRITE (6,'(3D23.16)') (R(I),I=1,N,1000) 
9999  CONTINUE 
      STOP 
      END 
 

(4) Method 

 The diffusion term a  is approximated by the product scheme of centered finite 
difference schemes of order two for the x1-, x2- and x3-direction. The convective term b  
is approximated by an upwind scheme of order one. More details are presented in [75] in 
Appendix A, “References.”
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DM_VRADAU5 
 

System of stiff ordinary differential equations or differential-algebraic equations  (Implicit 
Runge-Kutta method) 

CALL DM_VRADAU5 (N,FCN,X,Y,XEND,H,RTOL,ATOL,ITOL,JAC,IJAC,MLJAC, 
                    MUJAC,MAS,IMAS,MLMAS,MUMAS,SOLOUT,IOUT, 
                    WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,ICON) 

 

(1) Function 

This subroutine solves a system of stiff ordinary differential equations or differential-
algebraic equations of the following form:  

              00 )()( yy             y,fMy'  xx
                                           (1.1) 

, where M is a constant n-by-n matrix ( called mass-matrix ) , y is the solution vector of 
size n (with components nyyy ,...,, 21 ), f(x,y) is function vector of size n ( with components 

nfff ,...,, 21 ) and 0y  is the initial value at 0xx   (with components nyyy 00201 ,...,, ) . 

When M is a non-singular matrix other than identity matrix, the system becomes an 
implicit system of ordinary differential equations. When M is a singular matrix, the 
system becomes a system of differential-algebraic equations.  
This subroutine returns to the caller program when a numerical solution at )( 0xxend   is 

obtained. When integrating the system from 0x  toward endx  , a numerical solution after 

each successful step can be provided to a user’s subroutine ( its subroutine name is given 
as parameter SOLOUT). 
 
This subroutine is based on RADAU5, a free software developed by E. Haier and G. 
Wanner ( Universite de Geneve , as of March 2011) and provided under license 
agreement which copy is listed in Appendix B. 
 

(2) Parameters 

N ................ Input. Dimension of the system(N  1). 

FCN ..............Input. Name(EXTERNAL) of subroutine computing the value of f(x,y): 

    SUBROUTINE FCN(N,X,Y,F,RPAR,IPAR) 

REAL*8 X,Y(N),F(N) 

F(1)=...   etc. 

RPAR, IPAR (see below) 

X ................ Input. Initial x-value x0. 

Output. x-value for which the solution has been computed( after successful 
return X=XEND). 

Y .................. Input. Initial values for y: Y(1)= 01y , Y(2)= 02y ,…,Y(N)= ny0 . 

One-dimensional array of size n.  
Output. Numerical solution at X ( =XEND on successful return). 

XEND ...........Input. Final x-value endx ( 0xxend   may be positive or negative) 
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H ............... Input. Initial step size guess; 
For stiff equations with initial transient, H=1.0/(norm of  yf x,' ), usually 1.D-
3 or 1.D-5, is good. This choice is not very important, the step size is quickly 
adapted (if H=0.D0, the code puts H=1.D-6). 
Output. Predicted step size of the last accepted step. 

RTOL,ATOL.Input. Relative and absolute error tolerances. They can be both scalars (must be 
variables) or else both vectors of length N.  ATOL (or ATOL(I))>0 and RTOL 
(or RTOL(I))> 10u, where u is the round off unit. 

ITOL………. Input. Switch for RTOL and ATOL:  
ITOL=0:Both RTOL and ATOL are scalars. The code keeps, roughly, the local 
error of Y(I) below RTOL*ABS(Y(I))+ATOL. 
ITOL  0: Both RTOL and ATOL are vectors. The code keeps, roughly, the 
local error of Y(I) below RTOL(I)*ABS(Y(I))+ATOL(I). 

JAC………... Input. Name(EXTERNAL) of the subroutine which computes the partial 
derivatives of  f(x,y) with respect to y (This subroutine is only called if 
IJAC  0; Supply a dummy subroutine in the case IJAC=0). 
For IJAC  0, this subroutine must have the form 
    SUBROUTINE JAC(N,X,Y,DFY,LDFY,RPAR,IPAR) 

 REAL*8 X,Y(N),DFY(LDFY,N) 

                            DFY(1,1)= ... 

LDFY, the column-length of the array, is furnished by the calling program.                 
If MLJAC=N the Jacobian is supposed to be full and the partial derivatives are 
stored in DFY as  

            DFY(I,J) = 
j

i

y

f




 

else, the Jacobian is taken as banded and the partial derivatives are stored 
diagonal-wise as 

      DFY( I-J+MUJAC+1, J) = 
j

i

y

f




 

Fig. DM_VRADAU5-1 shows how a banded Jacobian is stored in DFY in the 
case of N=6, MLJAC=3, and MUJAC=1, where jiij yfa  The elements 

marked *are not used.  
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Fig. DM_VRADAU5-1 

 

IJAC ............ Input. Switch for the computation of the Jacobian: 

IJAC=0: Jacobian is computed internally by finite differences , subroutine 
"JAC" is never called. 
IJAC  0: Jacobian is supplied by subroutine JAC. 

MLJAC……. Input. Switch for the banded structure of the Jacobian: 

* 
12a  23a  34a  45a  56a  

11a  22a  33a  44a  55a  66a  

21a  32a  43a  54a  65a  * 

31a  42a  53a  64a  * * 

41a  52a  63a  * * * 
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MLJAC=N: Jacobian is a full matrix.  The linear algebra is done by full-matrix 
Gauss-elimination. 
0  MLJAC<N: MLJAC is the lower bandwidth of Jacobian matrix (  number 
of non-zero diagonals below the main diagonal). 

MUJAC…… Input. Upper bandwidth of Jacobian matrix (  number of non-zero diagonals 
above the main diagonal). Need not be defined if MLJAC=N.  

MAS………. Input. Name (EXTERNAL) of subroutine computing the mass-matrix M. 

If IMAS=0, the matrix is assumed to be the identity matrix and needs not to be 
defined; Supply a dummy subroutine in this case. 
If IMAS  0, the subroutine MAS is of the form 
       SUBROUTINE MAS(N,AM,LMAS,RPAR,IPAR) 
       REAL*8 AM(LMAS,N) 
       AM(1,1)= .... 
If MLMAS=N the mass-matrix is stored as full matrix like  
       AM(I,J) = ijM  

else, the matrix is taken as banded and stored diagonal-wise as 
       AM(I-J+MUMAS+1,J) = ijM . 

IMAS……… Input. Information on the mass-matrix; 

IMAS=0: M is supposed to be the identity matrix, MAS is never called. 
IMAS  0: Mass-matrix is supplied. 

MLMAS…… Input. Switch for the banded structure of the mass-matrix: 

MLMAS=N: the full matrix case. The linear algebra is done by full-matrix 
Gauss-elimination. 
0  MLMAS<N: MLMAS is the lower bandwidth of the matrix (  number of 
non-zero diagonals below the main diagonals). MLMAS  MLJAC. 

MUMAS…... Input. Upper bandwidth of mass-matrix (  number of non-zero diagonals above 
the main diagonal). Need not be defined if MLMAS=N.MUMAS  MUJAC.  

SOLOUT….. Input. Name (EXTERNAL) of subroutine providing the numerical solution 
during integration. 

If IOUT  0, it is called after every successful step. Supply a dummy subroutine 
if IOUT=0.  
It must have the form 

                    SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N, 

                                       RPAR,IPAR,IRTRN,WORK2,IWORK2) 

                    REAL*8 X,Y(N),CONT(LRC) 

                    ....   
SOLOUT furnishes the solution "Y" at the NR-th grid-point "X" (thereby the 
initial value is the first grid-point with NR=1 and XEND is the final grid-point). 
"XOLD" is the preceding grid-point. "IRTRN" serves to interrupt the 
integration. If IRTRN is set <0, DM_VRADAU5 returns to the calling program. 
 
-----  CONTINUOUS OUTPUT: ----- 

During calls to "SOLOUT", a continuous solution for the interval [XOLD,X]  is 
available through the function of type REAL*8: 

             >>>   DM_VCONTR5(I,S,CONT,LRC,WORK2,IWORK2)   <<< 
which provides an approximation to the I-th component of the solution 
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(1  I  N) at the point S. The value S should lie in the interval [XOLD,X]. Do 
not change the entries of CONT(LRC),WORK2(*),and IWORK2(*).  

IOUT……… Input. Switch for calling the subroutine SOLOUT: 

IOUT=0: Subroutine is never called 
IOUT  0: Subroutine is available for output. 

WORK…….. Work area. One-dimensional array of size LWORK.  

WORK(1), WORK(2),.., WORK(20) serve as parameters for the code. For 
standard use of the code WORK(1),..,WORK(20) must be set to zero before 
calling. See below for a more sophisticated use. 
WORK(21),..,WORK(LWORK) serve as working space for all vectors and 
matrices. 
"LWORK" must be at least  
  N*(LJAC+LMAS+3*LE+12)+20 
where  
  LJAC=N  if MLJAC=N ( full Jacobian) 
  LJAC=MLJAC+MUJAC+1  if MLJAC<N (banded JAC.) 
and  
  LMAS=0  if IMAS=0 
  LMAS=N  if IMAS  0 and MLMAS=N (full) 
  LMAS=MLMAS+MUMAS+1 if MLMAS<N (banded mass-M.) 
and  
  LE=N    if MLJAC=N (full Jacobian) 
  LE=2*MLJAC+MUJAC+1 if MLJAC<N (banded JAC.) 
 
In the usual case where the Jacobian is full and the mass-matrix is the identity 
(IMAS=0), the minimum storage requirement is 
  LWORK = 4*N*N+12*N+20. 
If  IWORK(9)=M1>0 then "LWORK" must be at least 
  N*(LJAC+12)+(N-M1)*(LMAS+3*LE)+20 
where in the definitions of LJAC, LMAS and LE the number N can be replaced 
by N-M1. 

LWORK…… Input. Declared length of array “WORK”. 

IWORK…… Work area. One-dimensional integer array of size LIWORK. 

IWORK(1),IWORK(2),...,IWORK(20) serve as parameters for the code. For 
standard use, set IWORK(1),.., IWORK(20) to zero before calling. 
IWORK(21),...,IWORK(LIWORK) serve as working space. 
"LIWORK" must be at least 3*N+20. 
 
Output. IWORK(14) through IWORK(20) contain statistics at completion of 
integration up to XEND. 
IWORK(14) NFCN  Number of function evaluations(those for numerical 
                                  evaluation of the Jacobian are not counted) 
IWORK(15) NJAC  Number of Jacobian evaluations (either analytically or 
                                  numerically) 
IWORK(16) NSTEP  Number of computed steps 
IWORK(17) NACCPT Number of accepted steps 
IWORK(18) NREJCT Number of rejected steps(due to error test) ,(step 
                                     rejections in the first step are not counted) 
IWORK(19) NDEC  Number of LU-decompositions of both matrices 
IWORK(20) NSOL  Number of forward-backward substitutions, of both 
                                  systems; The NSTEP forward-backward substitutions, 
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                                  needed for step size selection, are not counted  
 

LIWORK….. Input. Declared length of array “IWORK”. 

RPAR,IPAR.. Real and integer parameters ( or parameter arrays) which can be used for 
communication between your calling program and subroutines FCN, JAC, 
MAS, and SOLOUT. 

ICON……… Output. Condition code. See Table DM_VRADAU5-1 Condition codes.  

 

Sophisticated Setting of Parameters: 

Several parameters of the code are tuned to make it work well. They may be defined by 
setting WORK(1),... as well as IWORK(1),... different from zero. For zero input, the code 
chooses default values: 

IWORK(1)… Input. If IWORK(1)  0, the code transforms the Jacobian matrix to Hessenberg 
form. This is particularly advantageous for large systems with full Jacobian. It 
does not work for banded Jacobian (MLJAC<N) and not for implicit systems 
(IMAS  0). 

IWORK(2)… Input. This is the maximal number of allowed steps. The default value (for 
IWORK(2)=0) is 100000. 

IWORK(3)… Input. The maximum number of Newton iterations for the solution of the 
implicit system in each step. The default value ( for IWORK(3)=0) is 7. 

IWORK(4)… Input. If IWORK(4)=0 the extrapolated collocation solution is taken as starting 
value for Newton’s method. If IWORK(4)  0 zero starting values are used. 
The latter is recommended if Newton’s method has difficulties with 
convergence (This is the case when NSTEP is larger than NACCPT + NREJCT; 
See output parameters). Default is IWORK(4)=0. 

The following 3 parameters are important for differential-algebraic systems of index > 1. 
The function-subroutine should be written such that the index 1,2,3 variables appear in 
this order. In estimating the error the index 2 variables are multiplied by H, the index 3 
variables by H**2. (In the cases where M is the identity matrix or non-singular, the 
system is just ordinary differential equations, so all variables are index 1 variables and it 
is sufficient to set 3 parameters to zero.) 
If the user sets any of these 3 parameters different from 0 ,the sum of 3 parameters must 
be N. 

IWORK(5)… Input. Dimension of the index 1 variables.  

IWORK(6)… Input. Dimension of the index 2 variables. Default IWORK(6)=0. 

IWORK(7)… Input. Dimension of the index 3 variables. Default IWORK(7)=0. 

IWORK(8)… Input. Switch for step size strategy. 
If IWORK(8) =1 modified predictive controller (Gustafsson) 
If IWORK(8) >1 classical step size control 
The default value (for IWORK(8)=0) is IWORK(8)=1. The choice 
IWORK(8)=1 seems to produce safer results. For simple problems, the choice 
IWORK(8)> 1 produces often slightly faster runs.  

If the differential system has the special structure that  
     Y(I)' = Y(I+M2)   for   I=1,...,M1, 
with M1 a multiple of M2, a substantial gain in computer time can be achieved by setting 
the parameters IWORK(9) and IWORK(10). For example, second order systems 
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)',,( ppgp" x can be rewritten as 

        
),,(' vpgv

vp

x

'




 

, where  p and v are vectors of dimension N/2. In this case one has to put M1=M2=N/2. 
For M1>0 some of the input parameters have different meanings:  

JAC……Input. Only the elements of the non-trivial part of the Jacobian have to be 
stored. For example, with the above first order system reduced from the second 
order system, subroutine JAC has to store only 

       













v

g

p

g
 

, which is N/2   N non-trivial matrix.  
Suppose Y and F are solution vector and right hand side function vector , 
respectively, of resulting first order system.   
If  MLJAC=N-M1 the Jacobian is supposed to be full;  

     DFY( I, J ) =
Y(J)

M1)F(I




 ,  I=1,…,N-M1,   J=1,…,N 

If  0  MLJAC<N-M1 the Jacobian is banded ( M1 = M2 * MM ); 

DFY(I-J+MUJAC+1,J+KM2)= 
M2)KY(J

M1)F(I




 

               I=1, ... ,N-M1,   J=1, …, M2,  K=0,..,MM 
In the banded case, N=M1+ M2 has to be met. 

MLJAC..Input.  
MLJAC=N-M1 : if the non-trivial part of the Jacobian is full. 
0  MLJAC<N-M1: if the (MM+1) submatrices (M1= M2 * MM), 

       
M2)KY(J

M1)F(I




,  I=1,…,N-M1  , J=1,…,M2,  K=0,…,MM 

are all banded , and MLJAC is the maximal lower bandwidth of these MM+1 
submatrices.  

MUJAC…Input. 
Maximal upper bandwidth of these MM+1 submatrices. Need not be defined if 
MLJAC=N-M1.  

MAS……Input. 
If IMAS=0 this matrix is assumed to be the identity and need not be defined. 
Supply a dummy subroutine in this case.  
If IMAS  0 it is assumed that only the elements of right lower block of 
dimension N-M1 differ from that of the identity matrix and only the elements 
of right lower block of dimension N-M1 must be given in subroutine MAS. For 
example , consider the following system.  
  )',,( ppgMp" x  
This can be rewritten as  

   
),,(' vpgMv

vp'
x


 

and expressed in the following form. 
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'
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x
 

In this case the coefficient matrix of the left hand side corresponds to M in (1.1). 
Denoting by M the coefficient matrix of the left hand side, if MLMAS=N-M1 
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the right lower block is supposed to be full; the array AM in the subroutine 
MAS should be set as  
  AM(I,J)= M(I+M1, J+M1) ,   I=1,…,N-M1 , J=1,…, N-M1. 
If MLMAS  N-M1 the right low block is supposed to be banded:  
    AM(I-J+MUMAS+1, J)= M(I+M1, J+M1)  

MLMAS…Input. 
MLMAS=N-M1: If the non-trivial part of M is full. 
0  MLMAS<N-M1: Lower bandwidth of the mass matrix. MLMAS  MLJAC 
must be met. 

MUMAS….Input. 
Upper bandwidth of the mass matrix. MUMAS  MUJAC must be met. Need 
not be defined if MLMAS=N-M1.  

 
 

IWORK(9)… Input. The value of M1 (  0). Default M1=0. 

IWORK(10).. Input. The value of M2 (  0). Default M2=M1. 
If IWORK(9) >0 , IWORK(9)+IWORK(10)  N must be met. 

WORK(1)…. Input. The round off unit u.  DMACH()  WORK(1)<1.0D0 must be met. 
Default u=DMACH(). 

WORK(2)…. Input. The safety factor in step size prediction.  
0.001D0<WORK(2)<1.0D0 must be met.  Default 0.9D0. 

WORK(3)…. Input.  
Decides whether the Jacobian should be recomputed; increase WORK(3), to 0.1 
say, when Jacobian evaluations are costly. For small systems WORK(3) should 
be smaller (0.001D0, say). Negative WORK(3) forces the code to compute the 
Jacobian after every accepted step.  
Default  0.001D0.  WORK(3) < 1.0D0 must be met. 

WORK(4)…. Input. 
Stopping criterion for Newton’s method, usually chosen <1. Smaller values of 
WORK(4) make the code slower , but safer.  

DEFAULT  MAX(10u/TOLST,MIN(0.03D0, TOLST )) , where u is the 
round off unit, TOLST=0.1∙RTOL**(2/3) , and RTOL=RTOL(1) when RTOL 
is vector. WORK(4) > u/TOLST must be met. 

WORK(5), 

WORK(6)…. Input. 
If WORK(5) < HNEW/HOLD < WORK(6), then the step size is not changed. 
This saves, together with a large WORK(3), LU-decompositions and computing 
time for large systems. For smaller systems one may have WORK(5)=1.D0, 
WORK(6)=1.2D0, for large full systems WORK(5)=0.99D0, WORK(6)=2.D0 
might be good.  
DEFAULTS WORK(5)=1.D0, WORK(6)=1.2D0 . 
WORK(5)  1.0D0 and WORK(6)  1.0D0 must be met. 

WORK(7)…. Input. Maximal step size. Default 0xxend  . 

WORK(8), 

WORK(9)…. Input. Parameters for step size selection. 
The new step size is chosen subject to the restriction  
   WORK(8)  HNEW/HOLD  WORK(9) 
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Default values : WORK(8)=0.2D0,WORK(9)=8.D0. 
WORK(8)  1.0D0  and WORK(9)  1.0D0 must be met. 

 
Table DM_VRADAU5-1   Condition codes 

Code Meaning Processing 

0 No error  

100 In subroutine SOLOUT, parameter IRTRN was 
set to be negative. 

Processing is discontinued. 
Solutions obtained so far 
were correct. 

10000 Number of steps exceeded the value specified 
in IWORK(2). 

Processing is discontinued. 
Integration did not reach 
XEND. The user can try a 
larger value for IWORK(2). 

21000 Step size became too small. Processing is discontinued. 

22000 Matrix was repeatedly singular. 

30000 There was an inconsistent input. 

 

(3) Comments on use 

a. Notes 

1) Role of SOLOUT  
During integration from 0x  to endx  this subroutine provides numerical solutions 

after every accepted step to the subroutine SOLOUT when IOUT  0. 
Namely, when endxx 0  , every accepted step results in a sequence of grid-point 

such as 
      endxxxx  210  

and ix and solutions at ix  are passed to SOLOUT ( 0x  and endx  included). ix  is 

determined under step size control to meet required accuracies.  
If the user requires solutions at intended grid-points, the function subprogram 
DM_VCONTR5 can be used for dense output. For instance, if solutions are 
required at equally spaced grid-points one can refer to Example 1 below.  
Note that repeated calls to DM_VRADAU5 by incrementing XEND is 
inefficient way for that purpose. 

2) Thread parallelization of user’s subroutines 
In any of user’s subroutines FCN, JAC, MAS, and SOLOUT, the user can use 
OpenMP parallelization when necessary. 

3) Index and initial values for differential-algebraic equations 
In the model ),( yfMy' x  if M is non-singular the system is just ordinary 
differential equations, and “index” of variables in y is 1. In this case IWORK(5) 
~IWORK(7) should be set to 0. 
If M is singular, the system becomes a differential-algebraic equations, and 
IWORK(5) ~IWORK(7) and initial values should be given carefully. Here is a 
brief guideline. 
For singular M, we can decompose the matrix (e.g., by Gaussian elimination 
with total pivoting) as  

   T
I

SM 









00

0
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where S and T are n-by-n non-singular matrices , and I  is the identity matrix of 
smaller size. Inserting this into (1.1), multiplying by S-1, and using the 
transformed variables 

   









w

u
Ty  

gives  
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
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
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or 

   
),(
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wuh

wugu'

,x

,x




0
 

These are called Hessenberg form of the differential-algebraic equations, where 
the system is split into a smaller ordinary differential equations and a smaller 
algebraic equations. The Hessenberg forms are often encountered in practice, 
and can be said as differential equations with algebraic constraints. Below, we 
give some typical Hessenberg forms which illustrate index 1,2 and 3 variables. 
We omit, from now on, the independent variable in equations to simplify 
mathematical expressions.  
a) System of index 1  
Let us consider the following system 
                    )( zyfy' ,                                                                    (3.1a) 
                    )( zyg ,0                                                                      (3.1b) 
, where  y and z are unknown function vectors, and sum of each size is n. 
The mass-matrix M here is  

                    









00

0I
M  

Differentiating (3.1b) and using (3.1a) we get 
                    '

zy zzygzyfzyg ),()()(  ,,0                                          (3.1c) 

 
, where )( zy,g y  and )( zy,g z  are yzy,g  )(  and  zzy,g  )( respectively. If 

)( zy,g z , the coefficient of 'z , is non-singular in a neighborhood of the solution 

we get  
                   ),(),()(1 zyfzygzy,gz yz

'   

In this case, y  and z  are index 1 variables. Initial values 0y  and 0z should be 

given to satisfy (3.1b).  
 
b) System of index 2  
Next, we consider the following 
                     ),( zyfy'                                                                    (3.2a) 
                     )(0 yg                                                                        (3.2b) 
, where z  is absent in the algebraic constraint and M  is as follows.  

     









00

0I
M  

Differentiating (3.2b) gives 
                     ),()(0 zyfyg y                                                           (3.2c) 

Differentiating (3.2c) gives the coefficient of 'z as  
                     ),()( zyfyg zy                                                                (3.2d) 

If (3.2d) is non-singular in a neighborhood of the solution, y is index 1 variable 
and z is index 2 variable. Initial values 0y  and 0z  should be given to satisfy not 
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only (3.2b) but (3.2c).  
 
c) System of index 3  
Finally, we consider the following system.  
                     ),( zyfy'                                                                  (3.3a) 

                     ),,( uzykz'                                                                (3.3b) 
                     )(0 yg                                                                       (3.3c) 
Here the sum of length of y , z , and u   is n. M  is written as  

                    















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00

00

I

I

M . 

Differentiating (3.3c) and using (3.3a) we get 
                     fg y0                                                                       (3.3d) 

Differentiating (3.3d) and using (3.3a,b) we get 
                     kfgffgf)(f,g zyyyyy 0                                        (3.3e) 

, where the first term of the right hand side means matrix vector multiplication 
with the matrix yg y  obtained by differentiating matrix yg  and the vector f . 

Furthermore, differentiating (3.3e) brings about 'u . If its coefficient, written as  

uzy kfg , is non-singular in a neighborhood of the solution, y  is index 1 variable, 

z  is index 2 variable, and u   is index 3 variable in the original system (3.3a,b,c). 
Initial values 0y , 0z  and  0u  should be given to satisfy the three constraints (3.3 

c,d,e). 

b. Example 

  ■ Example 1:Ordinary differential equations of the form  ),( yfy' x   
Let us consider a simple system:  

0)0(,2)0(
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))1((
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


　　  

Suppose we want to find solutions at 11,,2,1 x  and print them out. In this 
problem, the Jacobian matrix yf   is as follows. 

 










































 )1()12(

10
2
121

2

2

1

2

2

1

1

1

yyy
y

f

y

f
y

f

y

f

 

 
We provide subroutine JVPOL as real argument of JAC. 

 
        IMPLICIT REAL*8 (A-H,O-Z) 
        PARAMETER (ND=2,LWORK=4*ND*ND+12*ND+20,LIWORK=3*ND+20) 
        DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK) 
        DIMENSION RPAR(2) 
         
        EXTERNAL FVPOL,JVPOL,SOLOUT 
        RPAR(1)=1.0D-6 
        RPAR(2)=0.2D0 
        N=ND 
        IJAC=1 
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        MLJAC=N 
        IMAS=0 
        IOUT=1 
        X=0.0D0 
        Y(1)=2.0D0 
        Y(2)=-0.66D0 
        XEND=11.0D0 
        RTOL=1.0D-4 
        ATOL=1.0D0*RTOL 
        ITOL=0 
        H=1.0D-6  
        DO I=1,20 
           IWORK(I)=0 
           WORK(I)=0.D0 
        END DO 
        CALL DM_VRADAU5(N,FVPOL,X,Y,XEND,H, 
     &                  RTOL,ATOL,ITOL, 
     &                  JVPOL,IJAC,MLJAC,MUJAC, 
     &                  FVPOL,IMAS,MLMAS,MUMAS, 
     &                  SOLOUT,IOUT, 
     &                  WORK,LWORK,IWORK,LIWORK, 
     &   RPAR,IPAR,ICON) 
        WRITE(6,*) 'ICON=', ICON 
        WRITE (6,99) X,Y(1),Y(2) 
 99     FORMAT(1X,'X =',F5.2,'    Y =',2E18.10) 
        STOP 
        END 
C 
C 
        SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN, 
     &   WORK2,IWORK2) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        DIMENSION Y(N),CONT(LRC),RPAR(*) 
        IF (NR.EQ.1) THEN 
           WRITE (6,99) X,Y(1),Y(2),NR-1 
        ELSE 
 10        CONTINUE 
           IF (X.GE.RPAR(2)) THEN 
C --- CONTINUOUS OUTPUT FOR RADAU5 
        WRITE (6,99) RPAR(2),DM_VCONTR5(1,RPAR(2),CONT,LRC,WORK2, 
     &  IWORK2),DM_VCONTR5(2,RPAR(2),CONT,LRC,WORK2,IWORK2), 
     &  NR-1 
              RPAR(2)=RPAR(2)+0.2D0 
              GOTO 10 
           END IF 
        END IF 
 99     FORMAT(1X,'X =',F5.2,'    Y =',2E18.10,'    NSTEP =',I4) 
        RETURN 
        END 
C 
C 
        SUBROUTINE FVPOL(N,X,Y,F,RPAR,IPAR) 
        IMPLICIT REAL*8 (A-H,O-Z) 
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        DIMENSION Y(N),F(N),RPAR(*) 
        F(1)=Y(2) 
        F(2)=((1-Y(1)**2)*Y(2)-Y(1))/RPAR(1) 
        RETURN 
        END  
C 
C 
        SUBROUTINE JVPOL(N,X,Y,DFY,LDFY,RPAR,IPAR) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        DIMENSION Y(N),DFY(LDFY,N),RPAR(*) 
        DFY(1,1)=0.0D0 
        DFY(1,2)=1.0D0 
        DFY(2,1)=(-2.0D0*Y(1)*Y(2)-1.0D0)/RPAR(1) 
        DFY(2,2)=(1.0D0-Y(1)**2)/RPAR(1) 
        RETURN 
        END 
 

 ■ Example 2: ),( yfy' x   with banded Jacobian. 

Consider the following partial differential equations. “t” means time and “x” is 
scalar space variable.  

2

2
2 )1(

x

u
uBvuA

t

u






   

2

2
2

x

v
vuBu

t

v






   

501,3,1,10  BAx  

Boundary conditions : 3),1(),0(,1),1(),0(  tvtvtutu  

Initial values : 3)0,(),2sin(
2

1
1)0,(  xvxxu   

We replace the second spatial derivatives by finite differences on a grid of N 
points, )1(  Nixi  (1  i  N), )1(1  Nx and then obtain a system of 

ordinary differential equations with independent variable “t” and 2N unknowns  
),( ii xtuu   and ),( ii xtvv  . 

 

)2()(41 11
22'

  iiiiiii uuuxuvuu   

)2()(3 11
22'

  iiiiiii vvvxvuuv   

3)()(,1)()( 1010   tvtvtutu NN  

Nivxu iii ,,2,1,3)0(),2sin(
2

1
1)0(    

 
When using this subroutine we define y as T),,,,,,( 2211 NN vuvuvu y . Then 

the Jacobian becomes a banded matrix with the upper and lower bandwidth 2. In 
the following example, we set N=500, XEND=10, and IOUT=0 and print some 
components of the solutions at XEND. 
 

        IMPLICIT REAL*8 (A-H,O-Z) 
        PARAMETER (ND=1000,NL=2,NU=2) 
        PARAMETER (LWORK=(7*NL+4*NU+16)*ND+20,LIWORK=3*ND+20) 
        DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK) 
        DIMENSION RPAR(2) 
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        EXTERNAL FBRUS,JBRUS,SOLOUT 
        PI=3.14159265358979324D0 
        N=500 
        N2=2*N 
        USDELQ=(DBLE(N+1))**2 
        GAMMA=0.02D0*USDELQ 
        GAMMA2=2.D0*GAMMA 
        RPAR(1)=GAMMA 
        RPAR(2)=GAMMA2 
        X=0.D0 
        XEND=10.D0 
        ANP1=N+1 
        DO 1 I=1,N 
        XI=I/ANP1 
        Y(2*I)=3.D0 
   1    Y(2*I-1)=1.D0+0.5D0*DSIN(2.D0*PI*XI) 
        IJAC=1 
C   Jacobian is a banded matrix. 
        MLJAC=NL 
        MUJAC=NU 
        IMAS=0 
C   Output Routine is not used. 
        IOUT=0 
        RTOL=1.0D-6 
        ATOL=RTOL 
        ITOL=0 
        H=1.0D-6 
        DO I=1,20 
           WORK(I)=0.D0 
           IWORK(I)=0 
        END DO 
        CALL DM_VRADAU5(N2,FBRUS,X,Y,XEND,H, 
     &                  RTOL,ATOL,ITOL, 
     &                  JBRUS,IJAC,MLJAC,MUJAC, 
     &                  FBRUS,IMAS,MLMAS,MUMAS, 
     &                  SOLOUT,IOUT, 
     &                  WORK,LWORK,IWORK,LIWORK, 
     &  RPAR,IPAR,ICON) 
        WRITE(6,*) 'ICON=',ICON 
        WRITE(6,99) Y(1),Y(2),Y(N2-1),Y(N2) 
 99     FORMAT(1X,4F18.10) 
        STOP 
        END 
C 
        SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN, 
     &  WORK2,IWORK2) 
        RETURN 
        END 
C 
        SUBROUTINE FBRUS(N2,X,Y,F,RPAR,IPAR) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        DIMENSION Y(N2),F(N2),RPAR(*) 
        N=N2/2 
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        GAMMA=RPAR(1) 
        GAMMA2=RPAR(2) 
        I=1 
        IU=2*I-1 
        IV=2*I 
        UI=Y(IU) 
        VI=Y(IV) 
            UIM=1.D0 
            VIM=3.D0 
            UIP=Y(IU+2) 
            VIP=Y(IV+2) 
        PROD=UI*UI*VI 
        F(IU)=1.D0+PROD-4.D0*UI+GAMMA*(UIM-2.D0*UI+UIP) 
        F(IV)=3.D0*UI-PROD+GAMMA*(VIM-2.D0*VI+VIP) 
        DO 5 I=2,N-1 
        IU=2*I-1 
        IV=2*I 
        UI=Y(IU) 
        VI=Y(IV) 
            UIM=Y(IU-2) 
            VIM=Y(IV-2) 
            UIP=Y(IU+2) 
            VIP=Y(IV+2) 
        PROD=UI*UI*VI 
        F(IU)=1.D0+PROD-4.D0*UI+GAMMA*(UIM-2.D0*UI+UIP) 
        F(IV)=3.D0*UI-PROD+GAMMA*(VIM-2.D0*VI+VIP) 
    5   CONTINUE 
        I=N 
        IU=2*I-1 
        IV=2*I 
        UI=Y(IU) 
        VI=Y(IV) 
            UIM=Y(IU-2) 
            VIM=Y(IV-2) 
            UIP=1.D0 
            VIP=3.D0 
        PROD=UI*UI*VI 
        F(IU)=1.D0+PROD-4.D0*UI+GAMMA*(UIM-2.D0*UI+UIP) 
        F(IV)=3.D0*UI-PROD+GAMMA*(VIM-2.D0*VI+VIP) 
        RETURN 
        END 
C 
        SUBROUTINE JBRUS(N2,X,Y,DFY,LDFY,RPAR,IPAR) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        DIMENSION Y(N2),DFY(LDFY,N2),RPAR(*) 
        N=N2/2 
        GAMMA=RPAR(1) 
        GAMMA2=RPAR(2) 
        DO 1 I=1,N 
        IU=2*I-1 
        IV=2*I 
        UI=Y(IU) 
        VI=Y(IV) 
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        UIVI=UI*VI 
        UI2=UI*UI 
        DFY(3,IU)=2.D0*UIVI-4.D0-GAMMA2 
        DFY(2,IV)=UI2 
        DFY(4,IU)=3.D0-2.D0*UIVI 
        DFY(3,IV)=-UI2-GAMMA2 
        DFY(2,IU)=0.D0 
        DFY(4,IV)=0.D0 
    1   CONTINUE 
        DO 2 I=1,N2-2 
        DFY(1,I+2)=GAMMA 
        DFY(5,I)=GAMMA 
    2   CONTINUE 
        RETURN 
        END 
 

■ Example 3:Second order system ),,( ''' yyfy x  

Next , we consider a partial differential equations defined in rectangular plate 
}340,20);,{(  yxyx  :  
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             Boundary conditions: 0|,0|   uu  

             Initial conditions: 0)0,,(,0)0,,( 
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The plate   is discretized on a grid 8  5 interior points  
5,,2,1,8,,2,1,,  jijhyihx ji  , 92h . 

We replace the special derivatives by finite differences, then setting '
jiji uv   

gives the following ordinary differential system.  
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With mapping  k=i+8(j-1) from (i,j) , we set jik uy   and jik vy 40 .Then we 

obtain system with T),,,,,,( 80414021 yyyyy  as unknown vector. In the 

following program we set  IWORK(9)=40 and subroutine JPLATSB computes 
only non-trivial part of the Jacobian.  
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(2000
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      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER(MX=8,MY=5) 
      PARAMETER (ND=2*MX*MY,LWORK=4*ND*ND+12*ND+20,LIWORK=3*ND+20) 
      DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK) 
      EXTERNAL FPLATE,JPLATSB,SOLOUT 

if  2yy   or 4y  

for all other  y  
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      DIMENSION RPAR(4),IPAR(7) 
 
      NX=MX 
      NY=MY 
      NACHS1=2 
      NACHS2=4 
      NXM1=NX-1 
      NYM1=NY-1 
      NDEMI=NX*NY 
      OMEGA=1000.D0 
      STIFFN=100.D0 
      WEIGHT=200.D0 
      DENOM=NX+1 
      DELX=2.D0/DENOM 
      USH4=1.D0/(DELX**4) 
      FAC=STIFFN*USH4 
      N=ND 
      IMAS=0 
C --- OUTPUT ROUTINE IS USED DURING INTEGRATION 
      IOUT=1 
C --- INITIAL VALUES 
      X=0.0D0 
      DO  I=1,N 
      Y(I)=0.D0 
      END DO 
C --- REQUIRED TOLERANCE 
        RTOL=1.0D-6 
        ATOL=RTOL*1.0D-3 
        ITOL=0 
C --- INITIAL STEP SIZE 
        H=1.0D-2 
C --- SET DEFAULT VALUES  
        DO I=1,20 
           WORK(I)=0.D0 
           IWORK(I)=0 
        END DO 
C --- SECOND ORDER OPTION AND BANDED 
           IJAC=1 
           IWORK(9)=N/2 
           MLJAC=2*MX 
           MUJAC=2*MX 
C --- ENDPOINT OF INTEGRATION 
        XEND=7.D0 
C --- COMMUNICATION VALUES  
      IPAR(1)=NX 
      IPAR(2)=NXM1 
      IPAR(3)=NY 
      IPAR(4)=NYM1 
      IPAR(5)=NDEMI 
      IPAR(6)=NACHS1 
      IPAR(7)=NACHS2 
      RPAR(1)=OMEGA 
      RPAR(2)=DELX 
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      RPAR(3)=FAC 
      RPAR(4)=WEIGHT 
       
C --- CALL OF THE SUBROUTINE RADAU5  
        CALL DM_VRADAU5(N,FPLATE,X,Y,XEND,H, 
     &                  RTOL,ATOL,ITOL, 
     &                  JPLATSB,IJAC,MLJAC,MUJAC, 
     &                  FPLATE,IMAS,MLMAS,MUMAS, 
     &                  SOLOUT,IOUT, 
     &                  WORK,LWORK,IWORK,LIWORK, 
     &   RPAR,IPAR,ICON) 
      WRITE(6,*) 'ICON=',ICON 
      DO  K=1,N 
      WRITE (6,*) Y(K) 
      END DO 
      STOP 
      END 
C 
      SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN, 
     &  WORK2,IWORK2) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION Y(N),CONT(LRC) 
      NHALF=N/2 
      WRITE (6,991) X,NHALF,Y(1),Y(NHALF),NR-1 
 991  FORMAT(1X,'X =',F9.5,' Y(1) and Y(',I3,')=',2F18.10, 
     &  ' NSTEP =',I4) 
      RETURN 
      END 
C 
      SUBROUTINE FPLATE (N, X, Y, F, RPAR, IPAR) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION Y(N), F(N) 
      DIMENSION RPAR(*),IPAR(*) 
      NX=IPAR(1) 
      NXM1=IPAR(2) 
      NY=IPAR(3) 
      NYM1=IPAR(4) 
      NDEMI=IPAR(5) 
      NACHS1=IPAR(6) 
      NACHS2=IPAR(7) 
      OMEGA=RPAR(1) 
      DELX=RPAR(2) 
      FAC=RPAR(3) 
      WEIGHT=RPAR(4) 
 
      DO 1 I=1,NX 
      DO 1 J=1,NY 
      K=I+NX*(J-1) 
C -------- SECOND DERIVATIVE ---- 
      F(K)=Y(K+NDEMI) 
C ------ CENTRAL POINT--- 
      UC=16.D0*Y(K) 
      IF(I.GT.1)THEN 
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         UC=UC+Y(K) 
         UC=UC-8.D0*Y(K-1) 
      END IF 
      IF(I.LT.NX)THEN 
         UC=UC+Y(K) 
         UC=UC-8.D0*Y(K+1) 
      END IF 
      IF(J.GT.1)THEN 
         UC=UC+Y(K) 
         UC=UC-8.D0*Y(K-NX) 
      END IF 
      IF(J.LT.NY)THEN 
         UC=UC+Y(K) 
         UC=UC-8.D0*Y(K+NX) 
      END IF 
      IF(I.GT.1 .AND.J.GT.1 )UC=UC+2.D0*Y(K-NX-1) 
      IF(I.LT.NX.AND.J.GT.1 )UC=UC+2.D0*Y(K-NX+1) 
      IF(I.GT.1 .AND.J.LT.NY)UC=UC+2.D0*Y(K+NX-1) 
      IF(I.LT.NX.AND.J.LT.NY)UC=UC+2.D0*Y(K+NX+1) 
      IF(I.GT.2)UC=UC+Y(K-2) 
      IF(I.LT.NXM1)UC=UC+Y(K+2) 
      IF(J.GT.2)UC=UC+Y(K-2*NX) 
      IF(J.LT.NYM1)UC=UC+Y(K+2*NX) 
      IF(J.EQ.NACHS1.OR.J.EQ.NACHS2)THEN 
         XI=I*DELX 
         FORCE=EXP(-5.D0*(X-XI-2.D0)**2)+EXP(-5.D0*(X-XI-5.D0)**2) 
      ELSE 
         FORCE=0.D0 
      END IF 
      F(K+NDEMI)=-OMEGA*Y(K+NDEMI)-FAC*UC+FORCE*WEIGHT 
  1   CONTINUE 
      RETURN 
      END 
 
      SUBROUTINE JPLATSB(N,X,Y,DFY,LDFY,RPAR,IPAR) 
      IMPLICIT REAL*8 (A-H,O-Z) 
      DIMENSION Y(N),DFY(LDFY,N) 
      DIMENSION RPAR(*),IPAR(*) 
      NX=IPAR(1) 
      NXM1=IPAR(2) 
      NY=IPAR(3) 
      NYM1=IPAR(4) 
      NDEMI=IPAR(5) 
      OMEGA=RPAR(1) 
      FAC=RPAR(3) 
 
      DO 1 I=1,LDFY 
      DO 1 J=1,N 
  1   DFY(I,J)=0.D0 
      MU=2*NX+1 
      FAC2=FAC*2.0D0 
      FAC8=FAC*8.0D0 
      FAC16=FAC*16.0D0 
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      DO 2 I=1,NX 
      DO 2 J=1,NY 
      K=I+NX*(J-1) 
      DFY(MU,K)=-FAC16 
      IF(I.GT.1)THEN 
         DFY(MU,K)=DFY(MU,K)-FAC 
         DFY(MU+1,K-1)=FAC8 
      END IF 
      IF(I.LT.NX)THEN 
         DFY(MU,K)=DFY(MU,K)-FAC 
         DFY(MU-1,K+1)=FAC8 
      END IF 
      IF(J.GT.1)THEN 
         DFY(MU,K)=DFY(MU,K)-FAC 
         DFY(MU+NX,K-NX)=FAC8 
      END IF 
      IF(J.LT.NY)THEN 
         DFY(MU,K)=DFY(MU,K)-FAC 
         DFY(MU-NX,K+NX)=FAC8 
      END IF 
      IF(I.GT.1 .AND.J.GT.1 )DFY(MU+NX+1,K-NX-1)=-FAC2 
      IF(I.LT.NX.AND.J.GT.1 )DFY(MU+NX-1,K-NX+1)=-FAC2 
      IF(I.GT.1 .AND.J.LT.NY)DFY(MU-NX+1,K+NX-1)=-FAC2 
      IF(I.LT.NX.AND.J.LT.NY)DFY(MU-NX-1,K+NX+1)=-FAC2 
      IF(I.GT.2)DFY(MU+2,K-2)=-FAC 
      IF(I.LT.NXM1)DFY(MU-2,K+2)=-FAC 
      IF(J.GT.2)DFY(MU+2*NX,K-2*NX)=-FAC 
      IF(J.LT.NYM1)DFY(MU-2*NX,K+2*NX)=-FAC 
      DFY(MU,K+NDEMI)= -OMEGA 
  2   CONTINUE 
      RETURN 
      END 
 
 

■ Example 4:Differential-algebraic system ),( yfMy' x . 
Finally, we consider the following system with independent variable t and 8 
unknowns 821 ,,, yyy  . 

008
'
8

'
71

672172
'
7

'
81

6736
'
62

67454
'
4

'
53

346546
'
4

'
53

3473
'
34

82834
'
1

'
25

91
'
1

'
25

)()(

)()1()11()(

)(

)()(

)()1()11()(

)(

)()(

)(

RtURyyyC

yyfRRyRUyyC

yyfRyyC

yyfRyRUyyC

yyfRRyRUyyC

yyfRyyC

RyRUyyfyyC

RyyyC

e

b

b

b

b

























 

         where 
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With T),,,( 821 yyy y  the left hand side of the above 8 equations can be 

written as My’, where M is a tridiagonal matrix.  
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Obviously, M is singular and its rank is 5. Because of this, the system is a 
differential-algebraic system. According to a detailed analysis this system is 
index 1 problem.  
We integrate from t=0 through t=0.2. Initial values y(0) must be chosen so that 
the vector with 8 components from the right hand side of the above equations 
lies in the range of the matrix M. Such initial values are as follows.  

0)0(,)1()0()0(,)0(

)1()0()0(,)0()0(,0)0(

812765

564398121


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bb

bb  

 
The Jacobian matrix in this model becomes a banded matrix with upper 
bandwidth 2 and lower bandwidth 1. Additionally, all the unknown variables can 
be proved to be index 1. 

 
        IMPLICIT REAL*8 (A-H,O-Z) 
        PARAMETER (ND=8,LJAC=4,LMAS=3,LE=5) 
        PARAMETER (LWORK=ND*(LJAC+LMAS+3*LE+12)+20,LIWORK=3*ND+20) 
        DIMENSION Y(ND),WORK(LWORK),IWORK(LIWORK),RPAR(16) 
        EXTERNAL FAMPL,JBAMPL,BBAMPL,SOLOUT 
        UE=0.1D0 
          RPAR(1)=UE 
        UB=6.0D0 
          RPAR(2)=UB 
        UF=0.026D0 
          RPAR(3)=UF 
        ALPHA=0.99D0 
          RPAR(4)=ALPHA 
        BETA=1.0D-6 
          RPAR(5)=BETA 
        R0=1000.0D0 
          RPAR(6)=R0 
        R1=9000.0D0 
          RPAR(7)=R1 
        R2=9000.0D0 
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          RPAR(8)=R2 
        R3=9000.0D0 
          RPAR(9)=R3 
        R4=9000.0D0 
          RPAR(10)=R4 
        R5=9000.0D0 
          RPAR(11)=R5 
        R6=9000.0D0 
          RPAR(12)=R6 
        R7=9000.0D0 
          RPAR(13)=R7 
        R8=9000.0D0 
          RPAR(14)=R8 
        R9=9000.0D0 
          RPAR(15)=R9 
        RPAR(16)=0.0025D0 
        N=8 
        IJAC=1 
        MLJAC=1 
        MUJAC=2 
        IMAS=1 
        MLMAS=1 
        MUMAS=1 
        IOUT=1 
        X=0.0D0 
        Y(1)=0.D0 
        Y(2)=UB-Y(1)*R8/R9 
        Y(3)=UB/(R6/R5+1.D0) 
        Y(4)=UB/(R6/R5+1.D0) 
        Y(5)=UB 
        Y(6)=UB/(R2/R1+1.D0) 
        Y(7)=UB/(R2/R1+1.D0) 
        Y(8)=0.D0 
        XEND=0.2D0 
        RTOL=1.0D-5 
        ATOL=1.0D-6*RTOL 
        ITOL=0 
        H=1.0D-6  
        DO 10 I=1,20 
        IWORK(I)=0 
  10    WORK(I)=0.D0 
        CALL DM_VRADAU5(N,FAMPL,X,Y,XEND,H, 
     &                  RTOL,ATOL,ITOL, 
     &                  JBAMPL,IJAC,MLJAC,MUJAC, 
     &                  BBAMPL,IMAS,MLMAS,MUMAS, 
     &                  SOLOUT,IOUT, 
     &                  WORK,LWORK,IWORK,LIWORK,RPAR,IPAR,ICON) 
        WRITE(6,*) 'ICON=',ICON 
        WRITE (6,99) X,Y(1),Y(2) 
 99     FORMAT(1X,'X =',F7.4,'    Y =',2E18.10) 
        STOP 
        END 
C 
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C 
        SUBROUTINE SOLOUT (NR,XOLD,X,Y,CONT,LRC,N,RPAR,IPAR,IRTRN, 
     &  WORK2,IWORK2) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        DIMENSION Y(N),CONT(LRC),RPAR(*) 
        IF (NR.EQ.1) THEN 
           WRITE (6,99) X,Y(1),Y(2),NR-1 
        ELSE 
 10        CONTINUE 
           IF (X.GE.RPAR(16)) THEN 
           WRITE (6,99) RPAR(16), 
     &     DM_VCONTR5(1,RPAR(16),CONT,LRC,WORK2,IWORK2), 
     &     DM_VCONTR5(2,RPAR(16),CONT,LRC,WORK2,IWORK2),NR-1 
           RPAR(16)=RPAR(16)+0.0025D0 
           GOTO 10 
           END IF 
        END IF 
 99     FORMAT(1X,'X =',F7.4,'    Y =',2E18.10,'    NSTEP =',I4) 
        RETURN 
        END 
C 
C 
        SUBROUTINE FAMPL(N,X,Y,F,RPAR,IPAR) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        REAL*8 Y(N),F(N),RPAR(*) 
        UE=RPAR(1) 
        UB=RPAR(2) 
        UF=RPAR(3) 
        ALPHA=RPAR(4) 
        BETA=RPAR(5) 
        R0=RPAR(6) 
        R1=RPAR(7) 
        R2=RPAR(8) 
        R3=RPAR(9) 
        R4=RPAR(10) 
        R5=RPAR(11) 
        R6=RPAR(12) 
        R7=RPAR(13) 
        R8=RPAR(14) 
        R9=RPAR(15) 
        W=2.D0*3.141592654D0*100.D0 
        UET=UE*DSIN(W*X) 
        FAC1=BETA*(DEXP((Y(4)-Y(3))/UF)-1.D0) 
        FAC2=BETA*(DEXP((Y(7)-Y(6))/UF)-1.D0) 
        F(1)=Y(1)/R9 
        F(2)=(Y(2)-UB)/R8+ALPHA*FAC1 
        F(3)=Y(3)/R7-FAC1 
        F(4)=Y(4)/R5+(Y(4)-UB)/R6+(1.D0-ALPHA)*FAC1 
        F(5)=(Y(5)-UB)/R4+ALPHA*FAC2 
        F(6)=Y(6)/R3-FAC2 
        F(7)=Y(7)/R1+(Y(7)-UB)/R2+(1.D0-ALPHA)*FAC2 
        F(8)=(Y(8)-UET)/R0 
        RETURN 
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        END 
C 
C 
        SUBROUTINE JBAMPL(N,X,Y,DFY,LDFY,RPAR,IPAR) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        REAL*8 Y(N),DFY(LDFY,N),RPAR(*) 
        UE=RPAR(1) 
        UB=RPAR(2) 
        UF=RPAR(3) 
        ALPHA=RPAR(4) 
        BETA=RPAR(5) 
        R0=RPAR(6) 
        R1=RPAR(7) 
        R2=RPAR(8) 
        R3=RPAR(9) 
        R4=RPAR(10) 
        R5=RPAR(11) 
        R6=RPAR(12) 
        R7=RPAR(13) 
        R8=RPAR(14) 
        R9=RPAR(15) 
        FAC14=BETA*DEXP((Y(4)-Y(3))/UF)/UF 
        FAC27=BETA*DEXP((Y(7)-Y(6))/UF)/UF 
        DO  J=1,8 
         DFY(1,J)=0.D0 
         DFY(2,J)=0.D0 
         DFY(4,J)=0.D0 
        END DO 
        DFY(3,1)=1.D0/R9 
        DFY(3,2)=1.D0/R8 
        DFY(2,3)=-ALPHA*FAC14 
        DFY(1,4)=ALPHA*FAC14 
        DFY(3,3)=1.D0/R7+FAC14 
        DFY(2,4)=-FAC14 
        DFY(3,4)=1.D0/R5+1.D0/R6+(1.D0-ALPHA)*FAC14 
        DFY(4,3)=-(1.D0-ALPHA)*FAC14 
        DFY(3,5)=1.D0/R4 
        DFY(2,6)=-ALPHA*FAC27 
        DFY(1,7)=ALPHA*FAC27 
        DFY(3,6)=1.D0/R3+FAC27 
        DFY(2,7)=-FAC27 
        DFY(3,7)=1.D0/R1+1.D0/R2+(1.D0-ALPHA)*FAC27 
        DFY(4,6)=-(1.D0-ALPHA)*FAC27 
        DFY(3,8)=1.D0/R0 
        RETURN 
        END  
C 
        SUBROUTINE BBAMPL(N,B,LB,RPAR,IPAR) 
        IMPLICIT REAL*8 (A-H,O-Z) 
        REAL*8 B(LB,N),RPAR(*) 
        DO  I=1,8 
         B(1,I)=0.D0 
         B(3,I)=0.D0 
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        END DO 
        C1=1.D-6 
        C2=2.D-6 
        C3=3.D-6 
        C4=4.D-6 
        C5=5.D-6 
C 
        B(2,1)=-C5 
        B(1,2)=C5 
        B(3,1)=C5 
        B(2,2)=-C5 
        B(2,3)=-C4 
        B(2,4)=-C3 
        B(1,5)=C3 
        B(3,4)=C3 
        B(2,5)=-C3 
        B(2,6)=-C2 
        B(2,7)=-C1 
        B(1,8)=C1 
        B(3,7)=C1 
        B(2,8)=-C1 
        RETURN 
        END 
 
  

(4) Method 

This subroutine employs a 3-stage 5-th order implicit Runge-Kutta method (referred to as 
Radau IIA of order 5 in [33] and [34]) which is stable and efficient for stiff differential 
equations and differential-algebraic equations.  
We first consider the case of  M=I and think about the situation where the code advances 
one step from 0x  to 1x  with step size h. Here 0x does not mean the initial value for x . 

A 3-stage implicit Runge-Kutta method can be expressed as follows   

　 


3

1
00 ),(

j
jjiji hcxah gfyg   3,2,1i                                                             (4.1a) 

　 


3

1
001 ),(

j
jjj hcxbh gfyy                                                                            (4.1b) 

, where jij ca ,  and jb  are coefficients of Runge-Kutta formula and usually represented 

by the following table.  
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The coefficients of 3-stage 5-th order Radau IIA formula, which this subroutine employs, 
are as follows.  
 



 DM_VRADAU5 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-217 

9

1

36

616

36

616
9

1

36

616

36

616
1

225

632

360

6788

1800

6169296

10

64
225

632

1800

6169296

360

6788

10

64









 

 

In principle, the numerical solution 1y  can be obtained by solving 3n dimensional non-

linear equations (4.1a) for 21, gg  and 3g  then substituting them into (4.1b). In real 

implementation, however, we use variables 0ygz  ii  for reducing computational errors, 

solve the non-linear system for iz  and use another form of (4.1b) to avoid evaluations of f.  

The non-linear algebraic system is solved by Newton iteration. The Jacobin is evaluated 
only once at 00 , yx  when solving for iz  and reused throughout iterations (Simplified 

Newton Iterations). 
The step size h is controlled and chosen as large as possible on the condition that required 
accuracies are satisfied. For the step size control, error estimation of 1y  is made and 

based on the difference 1ŷ - 1y  where  1ŷ  is another approximation computed by an 

embedded formula of order 4 (using the same 21, gg  and 3g  but different ib̂  , j=1,2,3).  

When M  I in (1.1), we can formally replace all f in Radau IIA formula by M-1 f and 
multiply the resulting formula by M, giving the method for (1.1). 
For details, see [33] and [34] in Appendix A “References”. [33] presents a general 
discussion on methods for solving ordinary differential equations including Runge-Kutta 
methods and [34] treats stiff differential equations and differential-algebraic equations. 
[35] and [36] are Japanese translation of [33] and [34] , respectively. 
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DM_VRANN3 
 

Generation of normal random numbers 

CALL DM_VRANN3(DAM, DSD, IX, DA, K, N, DWORK, NWORK, ICON) 

 

(1) Function 

This subroutine generates normal random numbers from a normal-distribution density 
function (1.1) with given mean m and standard deviation . 

 )
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exp(

2

1
)(

2

2


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  (1.1) 

 (2) Parameters 

DAM .......... Input.  Mean m of normal distribution. 

Double-precision real type. 

DSD ........... Input.  Standard deviation  (> 0) of normal distribution. 

Double-precision real type. 

IX ............... Input.  Starting point. 

On the first call, the value of IX must be positive.  On the second and later calls, 
return value 0 must be used.  When a different starting point is specified for the 
initial call, a different random number sequence is created. 

(See 1) in b, “Notes,” in (3), “Comments on use.”) 

Output.  0. 

DA ............. Output.  N normal pseudorandom numbers generated by each thread. 

Double precision two-dimensional array DA(K,NUMT),  where, NUMT is the 
number of threads. 

N pseudo random numbers generated by thread number p (which is from 0 to 
NUMT-1) are stored in DA(1:N,p+1). 

K ............... Input.  The size of the first dimension of the array DA ( N). 

N .............. Input.  Number of normally distributed pseudorandom numbers to be returned 
by each thread in DA. 

(See note 2) in (3), "Comments on use.") 

DWORK ... Work area.  A double precision two-dimensional array of 
DWORK(NWORK,NUMT). 

When this subroutine is called repeatedly, the contents and NUMT must not be 
changed.  DWORK contains all the current information required to restart this 
subroutine from its current point. 

(See note 3) and 6) in (3), "Comments on use.") 

NWORK ... Input.  The size of array DWORK.  NWORK  1156. 

ICON ........ Output.  Condition codes. 

(See Table DM_VRANN3-1.) 
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Table DM_VRANN3-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 K < N or K < 1 Processing is discontinued. 

30001 The value of NWORK is too small. 

IX < 0, DSD  0 

 

30002 An internal error occurred.  

30003 to 
30009 

The value of DWORK was changed.  Or, IX 
was set to 0 at the first call. 

 

40000 The value of IX is too large.  

 
 

 (3) Comments on use 

a. Notes 

1) Starting point IX 
 When a sequence of pseudo random numbers is to be generated by a 
deterministic program, there must be some random input.  Thus, the user must 
give a starting point IX.  This is often called a "seed".  On the first call to this 
subroutine the seed IX should be a positive integer.  (For exception, See note 5) 
in (3), "Comments on use.")  On the subsequent call IX should be zero.  This 
indicates that more pseudo random numbers from the same sequence are to be 
generated.  To simplify programming, IX is returned as zero after the first call to 
this subroutine. 
 This subroutine appends the thread number +1, OMP_GET_THREAD_NUM() 
+1, to the seed, as in seed = seed * OMP_GET_NUM_THREADS() + 
OMP_GET_THREAD_NUM() +1.  Thus the seeds used on different threads are 
assured to be distinct, and hence subsequences of length less than 1018 will not 
overlap.  (See (4), "Method" below.) 

2) Parameter N 
 This subroutine returns the next N pseudo random numbers from the infinite 
sequence defined by the initial seed IX.  If N  0, no pseudo random numbers are 
returned. 
 For efficiency, N should be large (for example, N = 100,000).  This reduces the 
overhead of subroutine calls.  N may be different on successive calls to this 
routine, provided that K (the size of the first dimension of the array DA) is larger 
than the maximum value of N. 

3) Work area DWORK 
When this subroutine is to be called two or more times, DWORK is used as the 
work area for storing the information for the next call.  While this subroutine is 
called, the contents of DWORK must not be changed by the called program. 

4) Parameter NWORK 
DWORK(1,:), ... and, DWORK(NWORK,:) are used by this subroutine.  The 
value of NWORK must not be changed at any call of this subroutine.  For 
efficient processing, NWORK must be set to 1,156 or higher.  When this 
subroutine is to be used on a vector processor, the value of NWORK must be 
100,000 or higher. 
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5) Regeneration of the same random numbers 
When DWORK(1,:), ... and, DWORK(NWORK,:) are saved, the same random 
number sequence as that used during the saving can be regenerated by reusing 
the DWORK and by calling this subroutine with condition IX=0. 

6) The number of the threads or NUMT, used with this subroutine can be assigned 
by user with an OpenMP environment variable "OMP_NUM_THREADS" or a 
run-time library routine "OMP_SET_NUM_THREADS( )".  In case of 
specifying the number of threads with run-time library 
OMP_SET_NUM_THREADS(),  assign the same number of threads as that of 
first calling immediately before the second or later calling also with 
OMP_SET_NUM_THREADS(). 

 

b. Example 

 10,000,000  4 normal pseudorandom numbers are generated, and their mean and 
standard deviation are calculated. 

 
C     ** EXAMPLE ** 
      PARAMETER (NUMT=4) 
      PARAMETER (NRAN=10000000) 
      PARAMETER (NSEED=12345) 
      PARAMETER (NWMAX=100000) 
      PARAMETER (NBUF=120000,K=NBUF) 
      DOUBLE PRECISION DA(K,NUMT) 
      DOUBLE PRECISION DWORK(NWMAX,NUMT) 
      DOUBLE PRECISION DSUM,DSUM2,DSSUM,DSSUM2 
      DOUBLE PRECISION DMEAN,DSIG 
      DOUBLE PRECISION DAM,DSD 
      INTEGER NTOT 
C     Initialize ix,n and nwork 
      IX=NSEED 
      WRITE (*,*)' Seed ',IX 
      DAM=0.0D0 
      DSD=1.0D0 
      WRITE (*,*)' Mean ',DAM 
      WRITE (*,*)' Standard deviation ',DSD 
      N=NBUF 
      NWORK=NWMAX 
      DSUM=0.0D0 
      DSSUM=0.0D0 
C     ngen counts down to 0 
      NGEN=NRAN 
      NTOT=NRAN*NUMT 
C     Generate ngen numbers 
C     with maximum NBUF at a time. 
      KRPT=(NRAN+NBUF-1)/NBUF 
      WRITE (*,*)' Generating ',NTOT,' numbers' 
      WRITE (*,*)' with ',KRPT, 
     $   ' calls to dm-vrann3 on ',NUMT,' threads' 
      CALL OMP_SET_NUM_THREADS(NUMT) 
      DO 20 IZ=1,KRPT 
      N=MIN0(NBUF,NGEN) 
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      CALL DM_VRANN3(DAM,DSD,IX,DA,K,N,DWORK,NWORK,ICON) 
      IF (ICON.NE.0) WRITE (*,*)' ICON ',ICON 
C     Accumulate sum of numbers 
      DSUM2=0.0D0 
      DO 30 J=1,NUMT 
      DO 10 I=1,N 
      DSUM2=DSUM2+DA(I,J) 
  10  CONTINUE 
  30  CONTINUE 
C     Accumulate sum of numbers globally. 
      DSSUM2=0.0D0 
      DO 40 J=1,NUMT 
      DO 50 I=1,N 
       DSSUM2=DSSUM2+DA(I,J)*DA(I,J) 
 50   CONTINUE 
 40   CONTINUE 
      DSUM=DSUM+DSUM2 
      DSSUM=DSSUM+DSSUM2 
C Count down numbers still to generate 
C on each processor 
      NGEN=NGEN-N 
 20   CONTINUE 
C Compute overall mean. 
      DMEAN=DSUM/DFLOAT(NTOT) 
      WRITE (*,*) ' Sample mean ',DMEAN 
C Compute overall sample standard deviation. 
      DSIG=DSSUM/DFLOAT(NTOT) 
      WRITE (*,*)' Sample standard deviation ',DSIG 
      STOP 
      END 
 

 (4) Method 

  This routine uses the Polar method with fast elementary function calculation to generate 
normally distributed pseudorandom numbers.  This method requires uniform 
pseudorandom numbers generated using the same technique as that of DVRAU4 (see SSL 
II Extended Capability User’s Guide II). 

 For an explanation of the Polar method, see [46] in Appendix A, “References.”  For 
details of the actual processing and comparisons with other methods, see [11] in 
Appendix A, “References.” 
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DM_VRANN4 
 

Generation of normal random numbers (Wallace’s method) 

CALL DM_VRANN4 (DAM, DSD, IX, DA, K, N, DWORK, NWORK, ICON) 

 

(1) Function 

This subroutine generates normal random numbers from a normal-distribution density 
function (1.1) with given mean m and standard deviation . 

 )
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  (1.1) 

 (2) Parameters 

DAM .......... Input.  Mean m of normal distribution. 

Double-precision real type. 

DSD ........... Input.  Standard deviation  (> 0) of normal distribution. 

Double-precision real type. 

IX ............... Input.  Starting point. 

On the first call, the value of IX must be positive.  On the second and later calls, 
return value 0 must be used.  When a different starting point is specified for the 
initial call, a different random number sequence is created. 

(See 1) in b, “Notes,” in (3), “Comments on use.”) 

Output.  0. 

DA ............. Output.  N normal pseudorandom numbers generated by each thread. 

Double precision two-dimensional array DA(K,NUMT),  where, NUMT is the 
number of threads. 

N pseudo random numbers generated by thread number p (which is from 0 to 
NUMT-1) are stored in DA(1:N,p+1). 

K ............... Input.  The size of the first dimension of the array DA ( N). 

N .............. Input.  Number of normally distributed pseudorandom numbers to be returned 
by each thread in DA. 

 (See note 2) in (3), "Comments on use.") 

DWORK ... Work area.  A double precision two-dimensional array of 
DWORK(NWORK,NUMT). 

When this subroutine is called repeatedly, the contents and NUMT must not be 
changed.  DWORK contains all the current information required to restart this 
subroutine from its current point. 

(See note 3) and 6) in (3), "Comments on use.") 

NWORK .... Input.  Size of array DWORK.  NWORK  1350. 

ICON ........ Output.  Condition codes. 

(See Table DM_VRANN4-1.) 
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Table DM_VRANN4-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 K < N or K < 1 Processing is discontinued. 

30001 The value of NWORK is too small. 

IX < 0, DSD  0 

 

30002 An internal error occurred.  

30003 to 
30008 

The value of DWORK was changed.  
Or, IX was set to 0 at the first call. 

 

30009 The value of IX is too large.  

40000 to 
40002 

The value of DWORK was changed. 
Or, IX was set to 0 at the first call. 

 

 

 (3) Comments on use 

a. Notes 

1) Starting point IX 
 When a sequence of pseudo random numbers is to be generated by a 
deterministic program, there must be some random input.  Thus, the user must 
give a starting point IX.  This is often called a "seed".  On the first call to this 
subroutine the seed IX should be a positive integer.  (For exception, See note 5) 
in (3), "Comments on use.")  On the subsequent call IX should be zero.  This 
indicates that more pseudo random numbers from the same sequence are to be 
generated.  To simplify programming, IX is returned as zero after the first call to 
this subroutine. 

2) Parameter N 
 This subroutine returns the next N pseudo random numbers from the infinite 
sequence defined by the initial seed IX.  If N  0, no pseudo random numbers are 
returned. 
 For efficiency, N should be large (for example, N = 100,000).  This reduces the 
overhead of subroutine calls.  N may be different on successive calls to this 
routine, provided that K (the size of the first dimension of the array DA) is larger 
than the maximum value of N. 

3) Work area DWORK 
When this subroutine is to be called two or more times, DWORK is used as the 
work area for storing the information for the next call.  While this subroutine is 
called, the contents of DWORK must not be changed by the called program. 

4) Parameter NWORK 
DWORK(1,:), ... and, DWORK(NWORK,:) are used by this subroutine.  The 
value of NWORK must not be changed at any call of this subroutine.  For 
efficient processing, NWORK must be set to 1,350 or higher.  When this 
subroutine is to be used on a vector processor, the value of NWORK must be 
500,000 or higher. 

5) Regeneration of the same random numbers 
When DWORK(1,:), ... and, DWORK(NWORK,:) are saved, the same random 
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number sequence as that used during the saving can be regenerated by reusing 
the DWORK and by calling this subroutine with condition IX=0. 

6) The number of the threads or NUMT, used with this subroutine can be assigned 
by user with an OpenMP environment variable "OMP_NUM_THREADS" or a 
run-time library routine "OMP_SET_NUM_THREADS( )".  In case of 
specifying the number of threads with run-time library 
OMP_SET_NUM_THREADS(),  assign the same number of threads as that of 
first calling immediately before the second or later calling also with 
OMP_SET_NUM_THREADS(). 

7) The implementation of Wallece’s method in this routine is about three times 
faster than the implementation of the Polar method in DM_VRANN3. 

 

b. Example 

 10,000,000  4 normal pseudorandom numbers are generated, and their mean and 
standard deviation are calculated. 

 
C     ** EXAMPLE ** 
      PARAMETER (NUMT=4) 
      PARAMETER (NRAN=10000000) 
      PARAMETER (NSEED=12345) 
      PARAMETER (NWMAX=100000) 
      PARAMETER (NBUF=120000,K=NBUF) 
      DOUBLE PRECISION DA(K,NUMT) 
      DOUBLE PRECISION DWORK(NWMAX,NUMT) 
      DOUBLE PRECISION DSUM,DSUM2,DSSUM,DSSUM2 
      DOUBLE PRECISION DMEAN,DSIG 
      DOUBLE PRECISION DAM,DSD 
      INTEGER NTOT 
C     Initialize ix,n and nwork 
      IX=NSEED 
      WRITE (*,*)' Seed ',IX 
      DAM=0.0D0 
      DSD=1.0D0 
      WRITE (*,*)' Mean ',DAM 
      WRITE (*,*)' Standard deviation ',DSD 
      N=NBUF 
      NWORK=NWMAX 
      DSUM=0.0D0 
      DSSUM=0.0D0 
C     ngen counts down to 0 
      NGEN=NRAN 
      NTOT=NRAN*NUMT 
C     Generate ngen numbers 
C     with maximum NBUF at a time. 
      KRPT=(NRAN+NBUF-1)/NBUF 
      WRITE (*,*)' Generating ',NTOT,' numbers' 
      WRITE (*,*)' with ',KRPT, 
     $   ' calls to dm-vrann3 on ',NUMT, 
     $   ' threads' 
      CALL OMP_SET_NUM_THREADS(NUMT) 
      DO 20 IZ=1,KRPT 
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      N=MIN0(NBUF,NGEN) 
      CALL DM_VRANN4(DAM,DSD,IX,DA,K,N,DWORK,NWORK,ICON) 
      IF (ICON.NE.0) WRITE (*,*)' ICON ',ICON 
C     Accumulate sum of numbers 
      DSUM2=0.0D0 
      DO 30 J=1,NUMT 
      DO 10 I=1,N 
      DSUM2=DSUM2+DA(I,J) 
  10  CONTINUE 
  30  CONTINUE 
C     Accumulate sum of numbers globally. 
      DSSUM2=0.0D0 
      DO 40 J=1,NUMT 
      DO 50 I=1,N 
       DSSUM2=DSSUM2+DA(I,J)*DA(I,J) 
 50   CONTINUE 
 40   CONTINUE 
      DSUM=DSUM+DSUM2 
      DSSUM=DSSUM+DSSUM2 
C Count down numbers still to generate 
C on each processor 
      NGEN=NGEN-N 
 20   CONTINUE 
C Compute overall mean. 
      DMEAN=DSUM/DFLOAT(NTOT) 
      WRITE (*,*) ' Sample mean ',DMEAN 
C Compute overall sample standard deviation. 
      DSIG=DSSUM/DFLOAT(NTOT) 
      WRITE (*,*)' Sample standard deviation ',DSIG 
      STOP 
      END 
 

 (4) Method 

 This routine uses a variant of Wallece’s method to generate normally distributed pseudo-
random numbers.  This method requires uniform pseudorandom numbers generated using 
the same technique as that of DVRAU4 (see SSL II Extended Capability User’s Guide II). 

 For Wallace’s method, see [78] in Appendix A, “References.”   

 For implementation details and comparisons with other methods, see [11] and [12] in 
Appendix A, “References.” 

 



DM_VRANU4 

II-226 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

DM_VRANU4 
 

Generation of uniform random numbers [0,1) 

CALL DM_VRANU4(IX,DA,K,N,DWORK,NWORK,ICON) 

 

(1) Function 

 This subroutine generates different sequences of pseudo random numbers from a uniform 
distribution on [0,1) on each thread. 

 (2) Parameters 

IX ............. Input.  Starting point. 

Output.  Zero. 

On the first call, IX should be positive.  IX is returned as zero and should 
remain zero for subsequent calls.  IX < 8000000 

(See note 1) in (3), "Comments on use.") 

DA ........... Output.  N uniform pseudo random numbers on [0,1) generated by each thread. 

Double precision two-dimensional array DA(K,NUMT),  where, NUMT is the 
number of threads. 

N pseudo random numbers generated by thread number p (which is from 0 to 
NUMT-1) are stored in DA(1:N,p+1). 

(See note 6) in (3), "Comments on use.") 

K ............... Input.  The size of the first dimension of the array DA ( N). 

N .............. Input.  The number of uniformly distributed pseudo random numbers on each 
processor to be returned in DA. 

(See note 2) in (3), "Comments on use.") 

DWORK ... Work area.  A double precision two-dimensional array of 
DWORK(NWORK,NUMT). 

When this subroutine is called repeatedly, the contents and NUMT must not be 
changed.  DWORK contains all the current information required to restart this 
subroutine from its current point. 

(See note 3) and 6) in (3), "Comments on use.") 

NWORK ... Input.  The size of array DWORK.  NWORK  388 

Refer to (4), "Method" for the relation between the size of work area and the 
period of the random number. 

ICON ........ Output.  Condition codes. 

(See Table DM_VRANU4-1.) 
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Table DM_VRANU4-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 K < N or K < 1 Processing is discontinued. 

30001 NWORK too small  

30002 The internal check failed  

30003 to 
30008 

DWORK overwritten or IX = 0 on first call  

30009 IX too large  

 

 (3) Comments on use 

a. Notes 

1) Starting value IX 
 When a sequence of pseudo random numbers is to be generated by a 
deterministic program, there must be some random input.  Thus, the user must 
give a starting point IX.  This is often called a "seed".  On the first call to this 
subroutine the seed IX should be a positive integer.  (For exception, See note 5) 
in (3), "Comments on use.")  On the subsequent call IX should be zero.  This 
indicates that more pseudo random numbers from the same sequence are to be 
generated.  To simplify programming, IX is returned as zero after the first call to 
this subroutine. 
 This subroutine appends the thread number +1, OMP_GET_THREAD_NUM() 
+1, to the seed, as in seed = seed * OMP_GET_NUM_THREADS() + 
OMP_GET_THREAD_NUM() +1.  Thus the seeds used on different threads are 
assured to be distinct, and hence subsequences of length less than 1018 will not 
overlap.  (See (4), "Method" below.) 

2) Parameter N 
 This subroutine returns the next N pseudo random numbers from the infinite 
sequence defined by the initial seed IX.  If N  0, no pseudo random numbers are 
returned. 
 For efficiency, N should be large (for example, N = 100,000).  This reduces the 
overhead of subroutine calls.  N may be different on successive calls to this 
routine, provided that K (the size of the first dimension of the array DA) is larger 
than the maximum value of N. 

3) Work area DWORK 
 DWORK is used as a work area to store state information between calls to this 
subroutine.  The calling program must not change the contents of the array 
DWORK between calls. 

4) Parameter NWORK 
 DWORK(1,:), ...., DWORK(NWORK,:) are used by this subroutine.  NWORK 
should be the same on each call to this subroutine.  NWORK should be at least 
388. 

5) Checkpointing 
 If DWORK(1,:), ..., DWORK(NWORK,:) are saved, the same sequence of 
random numbers can be generated again (from the point where DWORK was 
saved) by restoring DWORK(1), ..., DWORK(NWORK) and calling this 
subroutine with argument IX = 0. 
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6) The number of the threads or NUMT, used with this subroutine can be assigned 
by user with an OpenMP environment variable "OMP_NUM_THREADS" or a 
run-time library routine "OMP_SET_NUM_THREADS( )".  In case of 
specifying the number of threads with run-time library 
OMP_SET_NUM_THREADS(),  assign the same number of threads as that of 
first calling immediately before the second or later calling also with 
OMP_SET_NUM_THREADS(). 

 

b. Example 

 1,000,000  4 uniform pseudo random numbers are generated and their mean value is 
calculated.  The starting point is 123. 

 
C     **EXAMPLE** 
      PARAMETER(NUMT=4) 
      PARAMETER(NRAN=1000000) 
      PARAMETER(NSEED=123) 
      PARAMETER(NWMAX=5000) 
      PARAMETER(NBUF=25000) 
      DOUBLE PRECISION DA(NBUF,NUMT) 
      DOUBLE PRECISION DWORK(NWMAX,NUMT) 
      DOUBLE PRECISION DSUM,DSUM2 
      DOUBLE PRECISION DMEAN,DSIG 
      INTEGER TNO,NTOT 
 
C     Initialize ix, n and nwork 
      IX=NSEED 
      PRINT *,' Seed ',IX 
      N=NBUF 
      NWORK=NWMAX 
      DSUM=0.0D0 
C ngen counts down to 0  
      NGEN=NRAN 
      NTOT=NRAN*NUMT 
C Generate ngen numbers on each thread 
C with maximum NBUF at a time 
      KRPT=(NRAN+NBUF-1)/NBUF 
      PRINT *,' Generating ',NTOT, 
     $        ' numbers' 
      PRINT *,' with ',KRPT, 
     $        ' calls to dm_vranu4 on ',NUMT, 
     $        ' threads' 
      DO 20 J=1,KRPT 
      N=MIN0(NBUF,NGEN) 
      DSUM2=0.0D0 
      CALL OMP_SET_NUM_THREADS(NUMT) 
      CALL DM_VRANU4(IX,DA,NBUF,N,DWORK,NWORK,ICON) 
      IF(ICON.NE.0) PRINT *, 
     $        ' Error return,', 
     $        ' ICON ',ICON 
      DO 30 TNO=1,NUMT 
C Accumulate sum of numbers locally 
      DO 10 I=1,N 



 DM_VRANU4 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-229 

      DSUM2=DSUM2+DA(I,TNO) 
   10 CONTINUE 
   30 CONTINUE 
C Accumulate sum of numbers globally 
      DSUM=DSUM+DSUM2 
C Count down numbers still to generate 
C on each processor 
      NGEN=NGEN-N 
   20 CONTINUE 
C Compute overall mean 
      DMEAN=DSUM/DFLOAT(NTOT) 
      PRINT *,' Mean ',DMEAN 
C Compute deviation from 0.5 normalized 
C by expected value 1/sqrt(12*ntot). 
c This should be (approximately) normally 
C distributed with mean 0, variance 1. 
      DSIG=(DMEAN-0.5D0)*DSQRT(12.0D0*NTOT) 
      PRINT *,' Normalized deviation ',DSIG 
 
      STOP 
      END 
 

 (4) Method 

 This subroutine uses the generalized Fibonacci method.  If the sequence of pseudo 
random numbers is X(1), X(2), ..., then 

 X(J)=  * X(J-r) +  * X(J-s)        (modulo 1) 

 where J > r > s.  Here, r and s are fixed positive integers (called lags), and  and  are 
small odd integers.  

 On the first call (or any call with IX > 0) this subroutine selects a pair (r, s) defining a 
primitive trinomial (mod 2) and a corresponding linear recurrence.  There are 14 possible 
pairs (r, s), and the one with largest r is chosen, subject to the constraint that N and 
NWORK are large enough.  Thus, the user can select a suitable generator as shown below. 

- A good generator with a moderately long period, low initialization overhead and 
small storage requirements (e.g., by setting NWORK = 1000). 

- A very good generator with extremely long period, high initialization overhead 
and high storage requirement (e.g., by setting NWORK = 133000). 

- Some intermediate compromise, which does not require knowing the precise 
details of how to choose pairs (r, s).  The pairs (r, s) used by this subroutine are 
given in Table DM_VRANU4-2.  Tables of primitive trinomials may be found in 
[41] in Appendix A, "References." 
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Table DM_VRANU4-2   Pairs (r, s) 

r s r s 

127 

258 

521 

607 

1279 

2281 

3217 

97 

175 

353 

334 

861 

1252 

2641 

4423 

9689 

19937 

23209 

44497 

110503 

132049 

2325 

5502 

10095 

13470 

23463 

56784 

79500 

 

 This subroutine chooses the parameters (,) = (7, 9) if r  1000, and (,) = (1,15) if 
 r > 1000.  The rationale is that performance on statistical tests is likely to be improved if 
 > 1, but this improvements is only significant for the smaller values of r.  For the larger 
values of r the performance on statistical tests is very good even if  = 1, and this value 
increases the speed of random number generation. 

 The period of the random number sequence is W(2r -1) where r is in the range 127 (for 
small NWORK) to 132,049 (for N  264,098 and NWORK  132,056).  The factor W 
depends on the word length (W = 248 on the Fujitsu VPP series and PRIMEPOWER 
series (SPARC architecture), and the period is at least 1052 or more). 

 The initialization ensures that sequences of pseudo random numbers returned for 
different initial seeds IX are separated by a distance of at least 260 > 1018 in the full 
periodic sequence.  Thus, for all practical purposes, different initial seeds IX ensure 
different sequences of pseudo random numbers.  This subroutine appends the thread 
number+1 to the seed and thus assure different seeds are used on different threads. 

 The method and implementation details are described in more detail in [9] and [10] in 
Appendix A, "References."  For further information and comparisons with other methods, 
see [4], [24], [42], and [53] in Appendix A, "References." 

 

(5) Tests for uniform random numbers 

 Table DM_VRANU4-3 shows the results of testing of statistical hypotheses on the 
pseudo random numbers generated by DM_VRANU4 with NWORK = 44504 (r = 44497, 
s = 23463). 

 In this table the number of degrees of freedom, f, for the chi-squared tests is very large - 

in the millions.  In this case the expression 122 2  f   should be approximated 

extremely well as a normal deviate with unit variance. 
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Table DM_VRANU4-3   Chi-squared tests (Uniform distribution in the n- dimensional unit hypercube) 

dim(*1) Size(*2) resl
(*3) resv

(*4) dens(*5) thrd1(*6) thrd2(*6) thrd3(*6) thrd4(*6) 

1 

1 

2 

2 

3 

3 

4 

4 

109 

0.8  109 

109 

2  109  

2  109  

2  109  

2  109  

2  109  

5  107 

1.25  107 

7071 

3535 

368 

232 

84 

59 

50000000 

12500000 

49999041 

12496225 

49836032 

12487168 

49787136 

12117361 

20.00 

64.00 

10.00 

80.02 

13.38 

53.39 

10.04 

41.26 

 1.21 

-0.67 

-0.10 

-0.37 

 1.40 

-0.96 

 0.76 

-0.38 

 1.37 

 0.79 

 0.42 

-0.25 

-0.21 

-0.63 

 1.51 

 0.08 

-0.24 

 0.39 

 0.30 

 1.44 

-1.92 

 0.46 

 1.10 

 0.32 

 0.90 

-1.04 

-0.65 

-0.07 

-0.47 

-0.22 

-1.45 

 0.16 

*1  Dimension of unit hypercube 
*2  Number of pseudo randoms generated 
*3  Number of equal subintervals partitioning [0,1) in each dimension 
*4  Number of equal hypercubes partitioning the unit hypercube 
*5  Average number of random points per small hypercube 

*6  For each thread, the variable 122 2  f   
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DM_VRANU5 
 

Generation of uniform random numbers [0,1) (MRG8) 

CALL DM_VRANU5(IX,DA,N,J,DWORK,ICON) 

 

(1) Function 

This subroutine generates sequence of pseudo random numbers from a uniform 
distribution on [0,1) by Multiple Recursive Generator with 8th-order full primitive 
polynomials (MRG8). 

This subroutine generates same sequence of random number in any thread numbers. 
When the reproducibility is needed, use this subroutine instead of DM_VRANU4 . The 
interface of this subroutine is different from the interface of DM_VRANU4. 

This subroutine supports jumping-ahead method, which jumps J steps in a sequence of 
pseudo random numbers. This is useful to generate distinct sub sequence in parallel 
execution. 

The performance of DM_VRANU4 is better than this subroutine. 

Both this subroutine and DM_VRANU4 passed the bigCrush test of TESTU01 which is 
the statistical testing program of uniform random number generators. 

 

 (2) Parameters 

IX ............. Input.  Starting point. 

Output.  Zero. 

On the first call, IX should be positive.  IX is returned as zero and should 
remain zero for subsequent calls. 

(See note 1) in (3), "Comments on use.") 

DA ........... Output.  N uniform pseudo random numbers on [0,1). 

Double precision array DA(N). 

N .............. Input.  The number of uniformly distributed pseudo random numbers to be 
returned in DA. 

J .............. Input.  Number of jumping steps in the sequence of pseudo random numbers. 

8 byte integer. 

0_8 (zero of 8-byte integer type) is to be set to generate pseudo random 
numbers just after the sequence. 

(See note 2) in (3), "Comments on use.") 

DWORK ... Work area.  A double precision array of DWORK(8). 

When this subroutine is called repeatedly, the contents must not be changed.  
DWORK contains all the current information required to restart this subroutine 
from its current point. 

(See note 3) in (3), "Comments on use.") 

ICON ........ Output.  Condition codes. 
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(See Table DM_VRANU5-1.) 

 
Table DM_VRANU5-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 IX<0,  N<1 or J<0 Processing is discontinued. 

 

 (3) Comments on use 

a. Notes 

1) Starting value IX 
 When a sequence of pseudo random numbers is to be generated by a 
deterministic program, there must be some random input.  Thus, the user must 
give a starting point IX.  This is often called a "seed".  On the first call to this 
subroutine the seed IX should be a positive integer.  (For exception, See note 4) 
in (3), "Comments on use.")   
On the subsequent call IX should be zero.  This indicates that more pseudo 
random numbers from the same sequence are to be generated.  To simplify 
programming, IX is returned as zero after the first call to this subroutine. 

2) Parameter J 
 This subroutine supports jumping-ahead method, which jumps J steps in a 
sequence of pseudo random numbers by setting J0.  
This subroutine generates distinct sub sequence of pseudo random numbers in 
each process by setting same IX and different J in parallel execution. (See 
Example 2 and 3 in (3), "Comments on use") 

3) Work area DWORK 
 DWORK is used as a work area to store state information between calls to this 
subroutine.  The calling program must not change the contents of the array 
DWORK between calls. 

4) Checkpointing 
If DWORK are saved, the same sequence of random numbers can be generated 
again (from the point where DWORK was saved) by restoring DWORK and 
calling this subroutine with argument IX = 0. 

 

b. Example 

Example 1. 

 1,000,000 uniform pseudo random numbers are generated and their mean value is 
calculated.  The starting point is 123. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when this 
program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE 1** 
      INTEGER NRAN,NSEED,NBUF 
      PARAMETER(NRAN=10000000) 
      PARAMETER(NSEED=123) 
      PARAMETER(NBUF=25000) 
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      DOUBLE PRECISION DA(NBUF) 
      DOUBLE PRECISION DWORK(8) 
      DOUBLE PRECISION DSUM,DSUM2 
      DOUBLE PRECISION DMEAN 
      INTEGER IX,N,ICON 
      INTEGER I,J 
C 
C Generate NRAN numbers with maximum NBUF at a time 
      IX=NSEED 
      PRINT *,' Seed ',IX 
      PRINT *,' Generating ',NRAN,' numbers' 
C 
      DSUM=0.0D0 
      DO J=1,NRAN,NBUF 
        N=MIN0(NBUF,NRAN-J+1) 
        CALL DM_VRANU5(IX,DA,N,0_8,DWORK,ICON) 
        IF(ICON.NE.0) THEN 
          PRINT *,' Error return ICON ',ICON 
        END IF 
        DSUM2=0.0D0 
        DO I=1,N 
          DSUM2=DSUM2+DA(I) 
        END DO 
        DSUM=DSUM+DSUM2 
      END DO 
C Compute mean 
      DMEAN=DSUM/DFLOAT(NRAN) 
      PRINT *,' Mean ',DMEAN 
 
      STOP 
      END 
 

  

 

Example 2. 

 Distinct 100,000 uniform pseudo random numbers are generated in each MPI processes 
and their mean value is calculated.  The starting point is 123. 

In this program, J is set to 231-1. As far as the length of each sub sequences is smaller 
than 231-1 they are not overlapping. 

 
C     **EXAMPLE 2** 
      INTEGER,PARAMETER::N=10000 
      INTEGER(8),PARAMETER::JUMP=2147483647_8   ! =2**31-1 
      REAL(8)::X(N) 
      REAL(8)::DNALL 
      INTEGER::IRANK,NP,IERROR 
      INTEGER::IX,ICON  
      INTEGER::I 
      INTEGER(8)::J 
      REAL(8)::WORK(8) 
      REAL(8)::DSUM,DSUMALL,DMEAN 
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      INCLUDE 'mpif.h' 
C 
      CALL MPI_INIT(IERROR) 
      CALL MPI_COMM_RANK( MPI_COMM_WORLD, IRANK, IERROR ) 
      CALL MPI_COMM_SIZE( MPI_COMM_WORLD, NP, IERROR ) 
C 
      IX=123 
      J=IRANK*JUMP 
      CALL DM_VRANU5(IX,X,N,J,WORK,ICON) 
      IF(ICON.NE.0) THEN 
        WRITE(6,*) 'DM_VRANU5 ERROR ICON= ',ICON 
      END IF 
C 
      DSUM=0.0D0 
      DO I=1,N 
        DSUM=DSUM+X(I) 
      END DO 
      CALL MPI_REDUCE(DSUM,DSUMALL,1,MPI_REAL8,MPI_SUM,0, 
     -                MPI_COMM_WORLD,IERROR) 
C Compute overall mean 
      DNALL=DFLOAT(N)*DFLOAT(NP) 
      IF(IRANK.EQ.0) THEN 
        DMEAN=DSUMALL/DNALL 
        WRITE(6,*) 'Mean    ',DMEAN 
      END IF 
C 
      CALL MPI_FINALIZE(IERROR) 
      END 
 

  

 

Example 3. 

 Two uniform pseudo random number sequences X and Y are generated by four MPI 
process and their mean values are calculated. The total number of each vector is 
1,000,000 and the starting point is 123. 

In this program, 1,000,000 pseudo random numbers are split into NP blocks, where NP 
is the number of processes, and each of the sequences is generated by each of the 
processes.  Even if NP is changed, the whole sequence of pseudo random numbers is the 
same. 

 
C     **EXAMPLE 3** 
      INTEGER::NX,NY,NP 
      PARAMETER(NX=100000) 
      PARAMETER(NY=100000) 
      PARAMETER(NP=4)        ! NUMBER OF PROCESS 
      REAL(8)::X((NX+NP-1)/NP),Y((NY+NP-1)/NP) 
      INTEGER::IRANK,NSIZE,IERROR 
      INTEGER::IX,NL,ICON,JUMP 
      INTEGER::I 
      INTEGER(8)::J0,J 
      REAL(8)::WORK(8) 
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      REAL(8)::DSUM,DSUMALL,DMEAN 
      INCLUDE 'mpif.h' 
C 
      CALL MPI_INIT(IERROR) 
      CALL MPI_COMM_RANK( MPI_COMM_WORLD, IRANK, IERROR ) 
      CALL MPI_COMM_SIZE( MPI_COMM_WORLD, NSIZE, IERROR ) 
      IF(NP.NE.NSIZE) THEN 
        CALL MPI_FINALIZE(IERROR) 
        STOP 
      END IF 
C 
      IX=123 
      JUMP=(NX+NP-1)/NP 
      J=MIN(IRANK*JUMP,NX) 
      NL=MIN(JUMP,NX-J) 
      IF(NL.GE.1) THEN 
        CALL DM_VRANU5(IX,X,NL,J,WORK,ICON) 
        IF(ICON.NE.0) THEN 
          WRITE(6,*) 'DM_VRANU5 ERROR ICON= ',ICON 
        END IF 
        J0=NX-(J+NL) 
      ELSE 
        J0=NX 
      END IF 
C 
      DSUM=0.0D0 
      DO I=1,NL 
        DSUM=DSUM+X(I) 
      END DO 
      CALL MPI_REDUCE(DSUM,DSUMALL,1,MPI_REAL8,MPI_SUM,0, 
     *                MPI_COMM_WORLD,IERROR) 
C Compute overall mean of X 
      IF(IRANK.EQ.0) THEN 
        DMEAN=DSUMALL/DFLOAT(NX) 
        WRITE(6,*) 'Mean of X   ',DMEAN 
      END IF 
C 
      JUMP=(NY+NP-1)/NP 
      J=MIN(IRANK*JUMP,NY) 
      NL=MIN(JUMP,NY-J) 
      J=J+J0 
      IF(NL.GE.1) THEN 
        CALL DM_VRANU5(IX,Y,NL,J,WORK,ICON) 
        IF(ICON.NE.0) THEN 
          WRITE(6,*) 'DM_VRANU5 ERROR ICON= ',ICON 
        END IF 
      END IF 
C 
      DSUM=0.0D0 
      DO I=1,NL 
        DSUM=DSUM+Y(I) 
      END DO 
      CALL MPI_REDUCE(DSUM,DSUMALL,1,MPI_REAL8,MPI_SUM,0, 
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     *                MPI_COMM_WORLD,IERROR) 
C Compute overall mean of Y 
      IF(IRANK.EQ.0) THEN 
        DMEAN=DSUMALL/DFLOAT(NY) 
        WRITE(6,*) 'Mean of Y   ',DMEAN 
      END IF 
C 
      CALL MPI_FINALIZE(IERROR) 
      END 

 

 

 (4) Method 

 This subroutine uses the Multiple Recursive Generator with 8th-order full primitive 
polynomials (MRG8).  The sequence of pseudo random numbers x1, x2, ... is generated by 
the following formula. 

 xi =( a1xi-1 + a2xi-2 + a3xi-3 + a4xi-4 + a5xi-5 + a6xi-6 + a7xi-7 + a8xi-8) mod p 
   p=231-1, 
   a1= 1089656042,  a2= 1906537547,  a3= 1764115693,  a4= 1304127872, 
   a5= 189748160,  a6= 1984088114,  a7= 626062218,  a8= 1927846343. 
 DA(i)= xi*(1/p) 

 The period of the random number sequence is (232-1)8-1 (about 4.5*1074).  

 The method and implementation details are described in [82] in Appendix A, 
"References.". 

MRG8 give the good result in Monte Carlo Simulations, see [83] in Appendix A, 
"References." 

 

 (5) Tests for uniform random numbers 

 This subroutine passed bigCrush test of TESTU01 which is the statistical testing program 
of uniform random number generators.  See [84] for the details of TESU01. 
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DM_VSCHOL 
 

LDLT decomposition of a symmetric positive definite sparse matrix (Left-looking Cholesky 
decomposition method) 

CALL DM_VSCHOL(A, NZ, NROW, NFCNZ, N, IORDERING, NPERM, ISW, EPSZ, 
NASSIGN, NSUPNUM, NFCNZFACTOR, PANELFACTOR, 
NSIZEFACTOR, NFCNZINDEX, NPANELINDEX, NSIZEINDEX, 
NDIM, NPOSTO, W, IW1, IW2, IW3, ICON) 

 

(1) Function 

 This subroutine executes LDLT decomposition for an n × n symmetric positive definite 
sparse matrix using modified Cholesky decomposition method, so that 

QPAPTQT = LDLT, (1.1) 

 where P is a permutation matrix of ordering and Q is a permutation matrix of post 
ordering.  P and Q are orthogonal matrices, L is a unit lower triangular matrix, and D is a 
diagonal matrix. 

 (2) Parameter 

A ........................  Input.  The non-zero elements of the lower triangular part {aij | i  j} of a 
symmetric sparse matrix A are stored in A(1:NZ).  

One-dimensional array A(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). 

NZ ......................  Input.  The total number of the nonzero elements belong to the lower triangular 
part of a symmetric sparse matrix A. 

NROW ............... Input.  The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ .............. Input.  The position of the first nonzero element of each column stored in an 
array A in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N ......................... Input.  Order n of matrix A. 

IORDERING ...... Input.  Control information whether to decompose the reordered matrix PAPT 
permuted by the matrix P of ordering or to decompose the matrix A. 

Specify IORDERING=1 for the decomposition of the matrix PAPT. 

Specify the other value for the decomposition of the matrix A as it is. 

NPERM .............. Input.  The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 
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ISW..................... Input.  Control information . 

1) Specify ISW=1 for the first call. 

2) Specify ISW=2 for the subsequent call if the previous call has failed with 
ICON=31000, that means the size of PANELFACTOR or NPANELINDEX 
were not enough.  In this case, the PANELFACTOR or NPANELINDEX must 
be reallocated with the necessary sizes which are returned in the 
NSIZEFACTOR or NSIZEINDEX at the precedent call. 

Besides, the values of A, NZ, NROW, NFCNZ, N, IORDERING, NPERM, 
NASSIGN, NSUPNUM, NFCNZFACTOR, NFCNZINDEX, NPANELINDEX, 
NPOSTO, NDIM, W, IW1, IW2, and IW3 must be unchanged after the first call. 

3) Specify ISW=3 for the second and subsequent calls when solving another 
system of equations which have the same non-zero pattern of the matrix A but 
the values of its elements are different.  In this case, the information obtained in 
symbolic decomposition and the array PANELFACTOR and NPANELINDEX 
of the same size required in previous call can be reused.  Then numerical LDLT 
decomposition will proceed with that information and the new linear equations 
can be solved efficiently.  Store the values of the matrix elements in the array A, 
or store in another array B and let it be as the parameter A. 

Besides, the values of NZ, NROW, NFCNZ, N, IORDERING, NPERM, 
NASSIGN, NSUPNUM, NFCNZFACTOR, NSIZEFACTOR, NFCNZINDEX, 
NPANELINDEX, NSIZEINDEX, NPOSTO, NDIM, W, IW1, IW2, and IW3 
must be unchanged as the previous call. 

EPSZ .................. Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is assumed. 

(See note 2) in (3), "Comments on use.") 

NASSIGN .......... Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  The elements 
of this array indicate the position, where this panel is allocated as a part of the 
one-dimensional array PANELFACTOR.  When j=NASSIGN(i), the i-th 
supernode is allocated at j-th position. 

Input.  The values of the first call are reused when ISW  1 specified. 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOL-1. 

One-dimensional array NASSIGN(N). 

(See note 3) in (3), "Comments on use.") 

NSUPNUM ........ Output.  The total number of supernodes. 

Input.  The values of the first call are reused when ISW  1 specified. ( n) 

NFCNZFACTOR.. Output.  Each supernode consists of multiple column vectors, and the factorized 
matrix of supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  The elements 
of this array indicate the position of the first element panel(1,1) of the i-th panel, 
where this panel is allocated as a part of the one-dimensional array 
PANELFACTOR. 

One-dimensional 8-byte integer array NFCNZFACTOR(N+1). 
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For the storage method of the decomposed results, refer to Figure 
DM_VSCHOL-1. 

Input.  The values set by the first call are reused when ISW  1 specified. 

PANELFACTOR.. Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  These panels 
are stored in this matrix. 

The positions of the panel corresponding to the i-th supernode are indicated as 
j=NASSIGN(i).  The first position is stored in NFCNZFACTOR(j).  The 
decomposed result is stored in each panel. 

The size of the i-th panel can be considered to be two-dimensional array of 
DIM(1,i)  DIM(2,i).  The corresponding part where the lower triangular unit 
matrix except the diagonal part is stored in panel(s, t), s > t, s = 1,...,DIM(1, i), 
t=1,...,DIM(2,i) of the i-th panel.  The corresponding part of the diagonal matrix 
D is stored in panel(t, t). 

One-dimensional array PANELFACTOR(NSIZEFACTOR). 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOL-1. 

(See note 4) in (3), "Comments on use.") 

NSIZEFACTOR... Input.  The size of the array PANELFACTOR.  8-byte integer. 

Output.  The necessary size for the array PANELFACTOR is returned. 

(See note 4) in (3), "Comments on use.") 

NFCNZINDEX..... Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  The elements 
of this array indicate the position of the first element of the i-th row indices 
vector, where this panel is allocated as a part of the one-dimensional array 
NPANELINDEX. 

One-dimensional 8-byte integer array NFCNZINDEX(N+1). 

Input.  The values set by the first call are reused when ISW  1 specified. 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOL-1. 

NPANELINDEX.. Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector. These row 
indices vectors are stored in this matrix.  The positions of the row pointer vector 
corresponding to the i-th supernode are indicated as j=NASSIGN(i). The first 
position is stored in NFCNZINDEX(j).  The row indices vector is stored by 
each panel.  This row indices are the row indices of the matrix QAQT to which 
the matrix A is permuted by post ordering. 

One-dimensional array NPANELFACTOR(NSIZEINDEX). 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOL-1. 

(See note 4) in (3), "Comments on use.") 

NSIZEINDEX..... Input.  The size of the array PANELINDEX.  8-byte integer. 
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Output.  The necessary size is returned. 

(See note 4) in (3), "Comments on use.") 

NDIM .................. Output.  The size of first and second dimension of the i-th panel are stored in 
NDIM(1,i) and NDIM(2,i) respectively. 

Input.  The values set by the first call are reused when ISW  1 specified. 

Two-dimensional array NDIM(2,N). 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOL-1. 

NPOSTO ............. Output.  The one dimensional vector is stored which indicates what column 
index of A the i-th node in post ordering corresponds to. 

Input.  The values set by the first call are reused when ISW  1 specified. 

One-dimensional array NPOSTO(N). 

(See note 5) in (3), "Comments on use.") 

W ......................... Work area. 

Output/Input. 

When IORDERING=1, one-dimensional array of size NZ. 

When this subroutine is called repeatedly with ISW=1,2,3, This work area is 
used for preserving information among calls.  The contents must not be changed. 

When IORDERING1, one-dimensional array of size 1. 

IW1 ..................... Work area. 

Output/Input. 

When IORDERING=1, one-dimensional array of size NZ+N+1. 

When this subroutine is called repeatedly with ISW=1,2,3, This work area is 
used for preserving information among calls.  The contents must not be changed. 

When IORDERING1, one-dimensional array of size 1. 

IW2 ..................... Work area. 

Output/Input.  One-dimensional array of size NZ+N+1. 

When this subroutine is called repeatedly with ISW=1,2,3, This work area is 
used for preserving information among calls.  The contents must not be changed. 

IW3 ..................... Work area. 

Output/Input.  One-dimensional array of size N35+35. 

When this subroutine is called repeatedly with ISW=1,2,3, This work area is 
used for preserving information among calls. The contents must not be changed. 

ICON .................. Output.  Condition code. 

(See Table DM_VSCHOL-1.) 
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panel row pointer vector 

row indices of post ordering  ・ 

 
Figure DM_VSCHOL-1   concept of storing the data for decomposed result 

j = NASSIGN(i)               The i-th supernode is stored at the j-th position. 

p = NFCNZFACTOR(j)   The j-th panel occupies the area with a length DIM(1, j)DIM(2, 
j) from the p-th element of PANELFACTOR. 

q = NFCNZINDEX(j)      The row pointer vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of PANELINDEX. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

 

The lower triangular unit matrix L except the diagonal part is stored in 

           panel(s, t),     s > t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The corresponding part of the diagonal matrix D is stored in panel(t, t). 

The row pointers indicate the column indices of the matrix QAQT to which the node of the 
matrix A is permuted by post ordering. 

 
Table DM_VSCHOL-1   Condition codes 

Code Meaning Processing 

0 No error  

10000 The coefficient matrix is not positive definite. Processing is continued. 

20000 The pivot became relatively zero.  The 
coefficient matrix A may be singular. 

Processing is discontinued. 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTOR < 1, NSIZEINDEX < 1, 
EPSZ < 0.0, ISW < 1, or ISW  > 3. 
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Code Meaning Processing 

30100 The permutation matrix specified in NPREM is 
not correct. 

 

30200 The row pointer k stored in NROW(j) is k < i or 
k > N. 

Processing is discontinued. 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n - i+1. 

 

30400 There is a column without a diagonal element.  

31000 The value of NSIZEFACTOR is not enough as 
the size of PANELFACTOR, 

or the value of NSIZEINDEX is not enough as 
the size of NPANELINDEX. 

Reallocate the 
PANELFACTOR or 
NPANELINDEX with the 
necessary size which are 
returned in the 
NSIZEFACTOR or 
NSIZEINDEX, and call this 
subroutine again with 
ISW=2. 

 

(3) Comments on use 

a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
    DO i = 1,n 
    j = NPERM(i) 
    NPERMINV(j) = i 
    ENDDO 

Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LDLT decomposition.  In this case, processing is 
discontinued with ICON = 20000.  When unit round off is u, the standard value 
of EPSZ is 16  u.  When the computation is to be continued even if the pivot is 
small, assign the minimum value to EPSZ.  In this case, however, the result is 
not assured. 
 When the pivot becomes negative during the decomposition, the coefficient 
matrix is not a positive definite.  In this case, processing is continued as 
ICON=10000, but the numerical error may be large because of no pivoting. 

3)  The linear equations LDLTPQx = PQb which is a derived form from Ax = b can 
be solved by calling subroutine DM_VSCHOLX following this subroutine with 
the decomposed result data such as NASSIGN, NSUPNUM, NFCNZFACTOR, 
NSIZEFACTOR, NFCNZINDEX, NPANELINDEX, NSIZEINDEX, NPOSTO, 
NDIM, IW3 unchanged. 

4)  The necessary sizes for the array PANELFACTOR and NPANELINDEX that 
store the decomposed results can not be determined beforehand.  It is suggested 
to reallocate them by using the result of the symbolic decomposition analysis 
after the first call of this routine, or allocate large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first.  And 
call this routine with the small values such as one in the size specifying in 
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NSIZEFACTOR and NSIZEINDEX.  This routine ends with ICON=31000, and 
the necessary sizes for NSIZEFACTOR and NSIZEINDEX are returned.  Then 
the suspended process can be resumed by calling it with ISW=2 after 
reallocating the arrays with the necessary sizes. 

5)  Nodes corresponding to column number is considered.  The node number 
permuted in post order is stored in NPOSTO.  This array indicates what node 
number in original node number the i-th node in post order is corresponding.  It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
    DO i = 1,n 
    j = NPOSTO(i) 
    NPOSTOINV(j) = i 
    ENDDO 

 

b. Example 

  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2, 
a3 and c are zero constants, that means the operator is Laplacian.  The matrix A in 
Diagonal format is generated by the subroutine init_mat_diag, and transferred into 
compressed column storage format. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7,NDIAGH=4) 
 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG) 
      DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1), 
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION A(NDIAGH*N),NROW(K*NDIAG),NFCNZ(N+1), 
     $          NPERM(N),NASSIGN(N),W(NDIAGH*N), 
     $          NPOSTO(N),NDIM(2,N), 
     $          IW1(NDIAGH*N+N+1), 
     $          IW2(NDIAGH*N+N+1), 
     $          IW3(35*N+35) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTOR 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEX  
      REAL*8 DUMMYF 
      INTEGER*4 NDUMMYI 
      INTEGER*8 NSIZEFACTOR,NSIZEINDEX, 
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     $          NFCNZFACTOR(N+1), 
     $          NFCNZINDEX(N+1) 
      DIMENSION X(N),B(N),SOLEX(N) 
 
 
      PRINT *,'    LEFT-LOOKING MODIFIED CHOLESKY METHOD' 
      PRINT *,'    FOR SPARSE POSITIVE DEFINITE MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 0.0D0 
      VA2 = 0.0D0 
      VA3 = 0.0D0 
      VC =  0.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZC=1 
      NUMNZ=1 
      DO J=1,N 
      NTOPCFGC=1 
      NTOPCFG=1 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN 
C 
      NCOL=J-NOFST(I) 
      C(NUMNZC)=DIAG2(J,I) 
      NROWC(NUMNZC)=NCOL 
C 
      IF(NCOL.GE.J)THEN 
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      A(NUMNZ)=DIAG2(J,I) 
      NROW(NUMNZ)=NCOL 
      ENDIF 
 
C 
      IF(NTOPCFGC.EQ.1)THEN 
      NFCNZC(J)=NUMNZC 
      NTOPCFGC=0 
      ENDIF 
C 
      IF(NTOPCFG.EQ.1)THEN 
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF 
C 
      IF(NCOL.GE.J)THEN 
      NUMNZ=NUMNZ+1 
      ENDIF 
C 
      NUMNZC=NUMNZC+1 
      ENDIF 
C 
      ENDDO 
      ENDDO 
      NFCNZC(N+1)=NUMNZC 
      NNZC=NUMNZC-1 
      NFCNZ(N+1)=NUMNZ 
      NNZ=NUMNZ-1 
C 
 
      CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
      X=B 
      IORDERING=0 
      ISW=1 
      EPSZ=0.0D0 
      NSIZEFACTOR=1 
      NSIZEINDEX=1 
 
      CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING, 
     $              NPERM,ISW,EPSZ,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,DUMMYF, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NDUMMYI,NSIZEINDEX,NDIM,NPOSTO, 
     $              W,IW1,IW2,IW3,ICON) 
 
      PRINT * 
      PRINT *,'    ICON = ',ICON,' NSIZEFACTOR = ',NSIZEFACTOR, 
     $       'NSIZEINDEX = ',NSIZEINDEX 
      PRINT * 
C 
C     ALLOCATE STORAGES IN RETURNED SIZES  
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C 
      ALLOCATE( PANELFACTOR(NSIZEFACTOR) ) 
      ALLOCATE( NPANELINDEX(NSIZEINDEX) ) 
 
      ISW=2 
 
      CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING, 
     $              NPERM,ISW,EPSZ,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,PANELFACTOR, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO, 
     $              W,IW1,IW2,IW3,ICON) 
 
      CALL DM_VSCHOLX(N,IORDERING, 
     $              NPERM,X,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,PANELFACTOR, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO, 
     $              IW3,ICON) 
 
      ERR = ERRNRM(SOLEX,X,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'    ********** OK **********' 
      ELSE 
         WRITE(*,*)'    ********** NG **********' 
      ENDIF 
 
      DEALLOCATE( PANELFACTOR,NPANELINDEX )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
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      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
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      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
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!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 
 

(4) Method 

 Through the symbolic decomposition process, this routine analyze the data dependence 
among columns and the structure of the non-zero elements of matrix L which is a factor 
matrix of modified Cholesky LDLT decomposition.  Based on this analysis, the 
supernodes that bundles certain columns are detected.  The columns which have similar 
non-zero pattern are merged as a supernode together.  This means that some rows include 
additional zero elements and that the number of columns composing a supernode 
increases.  Then data during the numerical decomposition on cache is reused efficiently. 

 A union set of the row indices that indicate the row indices of the nonzero element of the 
result of the modified Cholesky decomposition is computed on the columns that compose 
a supernode.  The result of the modified Cholesky decomposition of supernodes is stored 
compressing it into the two-dimensional panel of which size of the first dimension 
becomes the number of elements of this set of row indices.  The set of row indices is 
represented as a vector. 

The left-looking modified Cholesky decomposition method is used. 

For general information on this topic, refer to [19] in Appendix A, “References.”. 
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DM_VSCHOLX 
 

A system of linear equations with LDLT-decomposed symmetric positive definite sparse 
matrices 

CALL DM_VSCHOLX(N, IORDERING, NPERM, B, NASSIGN, NSUPNUM, 
NFCNZFACTOR, PANELFACTOR, NSIZEFACTOR, NFCNZINDEX, 
NPANELINDEX, NSIZEINDEX, NDIM, NPOSTO, IW3, ICON) 

 

(1) Function 

 This subroutine solves a system of equations with a LDLT-decomposed symmetric 
positive definite sparse coefficient n  n matrix. 

LDLTQPx = QPb, (1.1) 

 where P is a permutation matrix of ordering and Q is a permutation matrix of post 
ordering.  P and Q are orthogonal matrices, L is a unit lower triangular matrix, D is a 
diagonal matrix, b is a constant vector, and x is a solution vector. 

(2) Parameter 

N ......................... Input.  Order n of matrix. 

IORDERING ...... Input.  Control information whether the coefficient matrix was permuted into 
PAPT by the permutation matrix P before decomposition. 

Specify IORDERING=1 for the LDLT decomposed from PAPT. 

Specify the other value for the LDLT decomposed matrix from A as it is. 

NPERM .............. Input.  The permutation matrix P is specified as a vector when IORDERING=1. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 

B ......................... Input.  The right-hand side constant vector b of a system of linear equations Ax 
= b. 

Output.  Solution vector x. 

One-dimensional array B(N). 

NASSIGN .......... Input.  Each supernode consists of multiple column vectors, and the supernodes 
are stored in two-dimensional panel by compressing rows containing nonzero 
elements with a common row indices vector.  The elements of this array 
indicate the position, where this panel is allocated as a part of the one-
dimensional array PANELFACTOR.  When j=NASSIGN(i), the i-th supernode 
is allocated at j-th position. 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOLX-1. 

One-dimensional array NASSIGN(N). 

NSUPNUM ........   Input.  The total number of supernodes. 

NFCNZFACTOR.. Input.  Each supernode consists of multiple column vectors, and the factorized 
matrix of supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  The elements 
of this array indicate the position of the first element panel(1,1) of the i-th panel, 
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where this panel is allocated as a part of the one-dimensional array 
PANELFACTOR. 

One-dimensional 8-byte integer array NFCNZFACTOR(N+1). 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOLX-1. 

(See note 3) in (3), "Comments on use.") 

PANELFACTOR.. Input.  Each supernode consists of multiple column vectors, and the supernodes 
are stored in two-dimensional panel by compressing rows containing nonzero 
elements with a common row indices vector.  These panels are stored in this 
matrix. 

The positions of the panel corresponding to the i-th supernode are indicated as 
j=NASSIGN(i).  The first position is stored in NFCNZFACTOR(j).  The 
decomposed result is stored in each panel. 

The size of the i-th panel can be considered to be two-dimensional array of 
DIM(1,i)  DIM(2,i).  The corresponding part where the lower triangular unit 
matrix except the diagonal part is stored in panel(s, t), s > t, s = 1,...,DIM(1, i), 
t=1,...,DIM(2,i) of the i-th panel.  The corresponding part of the diagonal matrix 
D is stored in panel(t, t). 

One-dimensional array PANELFACTOR(NSIZEFACTOR). 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOLX-1. 

NSIZEFACTOR.. Input.  The size of the array PANELFACTOR.  8-byte integer. 

NFCNZINDEX... Input.  Each supernode consists of multiple column vectors, and the supernodes 
are stored in two-dimensional panel by compressing rows containing nonzero 
elements with a common row indices vector.  The elements of this array 
indicate the position of the first element of the i-th row indices vector, where 
this panel is allocated as a part of the one-dimensional array NPANELINDEX. 

One-dimensional 8-byte integer array NFCNZINDEX(N+1). 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOLX-1. 

NPANELINDEX.. Input.  Each supernode consists of multiple column vectors, and the supernodes 
are stored in two-dimensional panel by compressing rows containing nonzero 
elements with a common row indices vector.  These row pointer vectors are 
stored in this matrix.  The positions of the row pointer vector corresponding to 
the i-th supernode are indicated as j=NASSIGN(i).  The first position is stored 
in NFCNZINDEX(j).  The row indices vector is stored by each panel.  This row 
indices are the row indices of the matrix QAQT to which the matrix A is 
permuted by post ordering. 

One-dimensional array NPANELFACTOR(NSIZEINDEX). 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOLX-1. 

NSIZEINDEX..... Input.  The size of the array PANELINDEX.  8-byte integer. 

NDIM .................. Input.  The size of first and second dimension of the i-th panel are stored in 
NDIM(1,i) and NDIM(2,i) respectively. 

Two-dimensional array NDIM(2,N). 



 DM_VSCHOLX 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-253 

For the storage method of the decomposed results, refer to Figure 
DM_VSCHOLX-1. 

NPOSTO ............. Input.  The one dimensional vector is stored which indicates what column index 
of A the i-th node in post ordering corresponds to. 

One-dimensional array NPOSTO(N). 

(See note 2) in (3), "Comments on use.") 

IW3 ..................... Input.  Specify the IW3 which is used by DM_VSCHOL before calling this 
routine.  The contents must not be changed. 

One-dimensional array IW3(N35+35). 

ICON .................. Output.  Condition code. 

(See Table DM_VSCHOLX-1.) 

 

panel row pointer vector 

row indices of post ordering  ・ 

 
Figure DM_VSCHOLX-1   concept of storing the data for decomposed result 

j = NASSIGN(i)               The i-th supernode is stored at the j-th position. 

p = NFCNZFACTOR(j)   The j-th panel occupies the area with a length DIM(1, j)DIM(2, 
j) from the p-th element of PANELFACTOR. 

q = NFCNZINDEX(j)      The row pointer vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of PANELINDEX. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

 

The lower triangular unit matrix L except the diagonal part is stored in 

           panel(s, t),     s > t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The corresponding part of the diagonal matrix D is stored in panel(t, t). 

The row pointers indicate the column indices of the matrix QAQT to which the node of the 
matrix A is permuted by post ordering. 
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Table DM_VSCHOLX-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N < 1, NSIZEFACTOR < 1, NSIZEINDEX < 
1, or NSUPNUM < 1. 

Processing is discontinued. 
30100 The permutation matrix specified in NPREM is 

not correct. 

 

(3) Comments on use 

a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
    DO i = 1,n 
    j = NPERM(i) 
    NPERMINV(j) = i 
    ENDDO 

2)  Nodes corresponding to column number is considered.  The node number 
permuted in post order is stored in NPOSTO.  This array indicates what node 
number in original node number the i-th node in post order is corresponding.  It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 1) above,  and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
    DO i = 1,n 
    j = NPOSTO(i) 
    NPOSTOINV(j) = i 
    ENDDO 

3)  The linear system of equations can be solved by calling this subroutine with 
specifying the LDLT-decomposed results which are calculated by DM_VSCHOL 
subroutine. 

 

b. Example 

  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2, 
a3 and c are zero constants, that means the operator is Laplacian.  The matrix A in 
Diagonal format is generated by the subroutine init_mat_diag, and transferred into 
compressed column storage format. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
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      PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7,NDIAGH=4) 
 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG) 
      DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1), 
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION A(NDIAGH*N),NROW(K*NDIAG),NFCNZ(N+1), 
     $          NPERM(N),NASSIGN(N),W(NDIAGH*N), 
     $          NPOSTO(N),NDIM(2,N), 
     $          IW1(NDIAGH*N+N+1), 
     $          IW2(NDIAGH*N+N+1), 
     $          IW3(35*N+35) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTOR 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEX  
      REAL*8 DUMMYF 
      INTEGER*4 NDUMMYI 
      INTEGER*8 NSIZEFACTOR,NSIZEINDEX, 
     $          NFCNZFACTOR(N+1), 
     $          NFCNZINDEX(N+1) 
      DIMENSION X(N),B(N),SOLEX(N) 
 
 
      PRINT *,'    LEFT-LOOKING MODIFIED CHOLESKY METHOD' 
      PRINT *,'    FOR SPARSE POSITIVE DEFINITE MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 0.0D0 
      VA2 = 0.0D0 
      VA3 = 0.0D0 
      VC =  0.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
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      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZC=1 
      NUMNZ=1 
      DO J=1,N 
      NTOPCFGC=1 
      NTOPCFG=1 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN 
C 
      NCOL=J-NOFST(I) 
      C(NUMNZC)=DIAG2(J,I) 
      NROWC(NUMNZC)=NCOL 
C 
      IF(NCOL.GE.J)THEN 
      A(NUMNZ)=DIAG2(J,I) 
      NROW(NUMNZ)=NCOL 
      ENDIF 
 
C 
      IF(NTOPCFGC.EQ.1)THEN 
      NFCNZC(J)=NUMNZC 
      NTOPCFGC=0 
      ENDIF 
C 
      IF(NTOPCFG.EQ.1)THEN 
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF 
C 
      IF(NCOL.GE.J)THEN 
      NUMNZ=NUMNZ+1 
      ENDIF 
C 
      NUMNZC=NUMNZC+1 
      ENDIF 
C 
      ENDDO 
      ENDDO 
      NFCNZC(N+1)=NUMNZC 
      NNZC=NUMNZC-1 
      NFCNZ(N+1)=NUMNZ 
      NNZ=NUMNZ-1 
C 
 
      CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
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      X=B 
      IORDERING=0 
      ISW=1 
      EPSZ=0.0D0 
      NSIZEFACTOR=1 
      NSIZEINDEX=1 
 
      CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING, 
     $              NPERM,ISW,EPSZ,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,DUMMYF, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NDUMMYI,NSIZEINDEX,NDIM,NPOSTO, 
     $              W,IW1,IW2,IW3,ICON) 
 
      PRINT * 
      PRINT *,'    ICON = ',ICON,' NSIZEFACTOR = ',NSIZEFACTOR, 
     $       'NSIZEINDEX = ',NSIZEINDEX 
      PRINT * 
C 
C     ALLOCATE STORAGES IN RETURNED SIZES  
C 
      ALLOCATE( PANELFACTOR(NSIZEFACTOR) ) 
      ALLOCATE( NPANELINDEX(NSIZEINDEX) ) 
 
      ISW=2 
 
      CALL DM_VSCHOL(A,NNZ,NROW,NFCNZ,N,IORDERING, 
     $              NPERM,ISW,EPSZ,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,PANELFACTOR, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO, 
     $              W,IW1,IW2,IW3,ICON) 
 
      CALL DM_VSCHOLX(N,IORDERING, 
     $              NPERM,X,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,PANELFACTOR, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO, 
     $              IW3,ICON) 
 
      ERR = ERRNRM(SOLEX,X,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT * 
      PRINT * 
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      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'    ********** OK **********' 
      ELSE 
         WRITE(*,*)'    ********** NG **********' 
      ENDIF 
 
      DEALLOCATE( PANELFACTOR,NPANELINDEX )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
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        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 



DM_VSCHOLX 

II-260 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
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DM_VSCLU 
 

LU decomposition of an unsymmetric complex sparse matrix  

CALL DM_VSCLU(ZA, NZ, NROW, NFCNZ, N,  
IPLEDSM, MZ, ISCLITERMAX,  
IORDERING, NPERM, ISW,  
NROWSYM, NFCNZSYM,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, ZPANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
SCLROW,SCLCOL, 
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, ZW, W, IW1, IW2, ICON) 

 

(1) Function 

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the 
diagonal and then it is scaled in order to equilibrate both rows and columns norms. And 
LU decomposition is performed, in which the pivot is taken as specified within the block 
diagonal portion belonging to each supernode. 

The absolute value of a complex number is approximated as a sum of the absolute value 
of both its real part ant its imaginary part for the permutation of elements, scaling and 
Pivot. 

The unsymmetric complex sparse matrix is transformed as below. 

A1=DrAPcDc  

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for 
scaling rows and Dc is also a diagonal matrix for scaling columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.  
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper 
triangular matrix. 
When in pivoting process a candidate matrix element whose absolute value is larger than 
or equal to the threshold specified in THEPSZ can not be found, the element with the 
largest absolute value which in the block diagonal portion of a supernode is regarded as a 
candidate.  
If the absolute value of the candidate element is too small, the matrix can be 
approximately decomposed into LU specifying an appropriate small value as a static pivot 
in place of the candidate sought. 
 

 (2) Parameter 

ZA......................... Input. The nonzero elements of an unsymmetric sparse matrix A are stored in 
ZA(1:NZ).  
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A double precision complex one-dimensional array ZA(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). For a complex matrix , a real array CC in this Figure 
is replaced with a complex array. 

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric 
complex sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array ZA. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an 
array ZA in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N......................... Input. Order n of matrix A. 

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal 
of a matrix A.  
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting 
large entries to the diagonal.  

Otherwise no permutation is performed. 

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns. 
MZ(i)=j indicates that the j-th column which the element of aij belongs to is 
permutated to i-th column. The element of aij is the large entry to be permuted 
to the diagonal. 
One-dimensional array MZ(N). 

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr 

and Dc to equilibrate both rows and columns of matrix A. 

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and 
Dc are assumed as unit matrices. 

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of 
iteration is considered as 10.  

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT 
permuted by the matrix P of ordering or to decompose the matrix A. 

When IORDERING=10 is specified, calling this routine with ISW=1 produces 
the informations which is needed to generate an ordering regarding A1 and they 
are set in NROWSYM and NFCNZSYM. 

When IORDERING 11 is specified, it is indicated that after an ordering is set in 
NPERM, the computation is resumed.  
Using the informations obtained in NROWSYM and NFCNZSYM after calling 
this routines with ISW=1 and IORDERING=10, an ordering is determined. 
After specifying this ordering in NPERM, this routine is called again with 
ISW=1and IORDERING=11 and the computation is resumed. 
LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is decomposed into LU. 
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Output. IORDERING is set to 11 after this routine is called with 
IORDERING=10 and ISW=1. Therefore after an ordering is set in NPERM the 
computation is resumed in the subsequent call without IORDERING=11 being 
specified explicitly.  

(See note 1) in (3), "Comments on use.") 

NPERM.............. Input. The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 

ISW..................... Input. Control information. 

1)When ISW=1 is specified. 
After symmetrization of a matrix and symbolic decomposition, checking 
whether the sufficient amount of memory for storing data are allocated the 
computation is performed. 
Call with IORDERING=10 produces the informations needed for seeking an 
ordering in NROWSYM and NFCNZSYN. Using these informations an 
ordering for SYM is determined. After an ordering is set in NPERM, calling this 
routine with IORDERING=11 and also ISW=1 again resumes the computation. 
When IORDERING is neither 10 nor 11, no ordering is specified. 

2) When ISW=2 specified. 
After the previous call ends with ICON=31000, that means that the sizes of 
ZPANELFACTORL or ZPANELFACTORU or NPANELINDEXL or 
NPANELINDEXU were not enough, the suspended computation is resumed.  
Before calling again with ISW=2, the ZPANELFACTORL or 
ZPANELFACTORU or NPANELINDEXL or NPANELINDEXU must be 
reallocated with the necessary sizes which are returned in the NSIZEFACTORL 
NSIZEFACTORU or NSIZEINDEXL or NSIZEINDEXU at the precedent call 
and specified in corresponding arguments. 
Besides, except these arguments and ISW as control information, the values in 
the other augments must not be changed between the previous and following 
calls. 

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero 
pattern of the lower triangular part of SYM=A1+A1

T in the compressed column 
storage method are generated. 

One-dimensional array NROWSYM(NZ+N). 

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row 
index of each column stored in array NROWSYM in the compressed column 
storage method which stores the nonzero pattern of the lower part of a matrix 
SYM column by column. 

NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements 
in the lower triangular part. 

One-dimensional array NFCNZ(N+1). 

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in 
ZPANELFACTORL and ZPANELFACTORU as one dimensional subarray 
consecutively and its block number is stored. The corresponding indices vectors 
are similarly stored NPANELINDEXL and NPANELINDEXU respectively. 
Data of the i-th supernode is stored into the j-th block of a subarray, where 
j=NASSIN(i). 
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Input. When ISW≠1, the values stored in the first call are reused. Regarding  
the storage methods of decomposed matrices, refer to Figure DM_VSCLU-1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Output. The total number of supernodes. 

Input. The values in the first call are reused when ISW  1 specified. ( n) 

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric complex sparse 
matrix are computed for each supernode respectively. The columns of L 
belonging to each supernode are compressed to have the common row indices 
vector and stored into a two dimensional panel with the corresponding parts of 
U in its block diagonal portion. The index number of the top array element of 
the one dimensional subarray where the i-th panel is mapped into 
ZPANELFACTORL consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

Input. The values set by the first call are reused when ISW  1 specified. 

ZPANELFACTORL..Output. The columns of the decomposed matrix L belonging to each 
supernode are compressed to have the common row indices vector and stored in 
a two dimensional panel with the corresponding parts of the decomposed matrix 
U in its block diagonal portion. The block number of the section where the 
panel corresponding to the i-th supernode is assigned is known from 
j=NASSIGN(i). The location of its top of subarray including the portion of 
decomposed matrices is stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular 
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). 
The corresponding block diagonal portion of the unit upper triangular matrix U 
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).  

A double precision complex one-dimensional array 
ZPANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORL..  Input. The size of the array ZPANELFACTORL. 8-byte integer. 

Output. The necessary size for the array ZPANELFACTORL is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 
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NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the 
row indices vector corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray is stored in 
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into 
which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEXL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is 
allocated in the i-th location. 
NDIM(3,i) indicates the total amount of the size of the first dimension of the 
panel where a matrix U is transposed and stored and the size of its block 
diagonal portion.  

Input. When ISW1, the values set by the first call are reused. 

Two-dimensional array NDIM(3,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an 
unsymmetric complex sparse matrix, the rows of U except the of block diagonal 
portion belonging to each supernode are compressed to have the common 
column indices vector and stored into a two dimensional panel. The index 
number of the top array element of the one dimensional subarray where the i-th 
panel is mapped into ZPANELFACTORU consecutively or the location of 
panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

Input. When ISW  1, the values set by the first call are reused. 

ZPANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode 
are compressed to have the common column indices vector, transposed and 
stored in a two dimensional panel without its block diagonal portion. The block 
number of the section where the panel corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray 
including the portion of decomposed matrices is stored in NFCNZFACTORU(j). 
The size of the panel in the i-th block can be considered to be two dimensional 
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular 
matrix U except the block diagonal portion are compressed, transposed and 
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).  
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A double precision complex one-dimensional array 
ZPANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORU.. Input. The size of the array ZPANELFACTORU. 8-byte integer. 

Output. The necessary size for the array ZPANELFACTORU is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The index 
number of the top array element of the one dimensional subarray where the i-th 
column indices vector including indices of the block diagonal portion is mapped 
into NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode 
are compressed, transposed and stored in a two dimensional panel without its 
block diagonal portion. The column indices vector including indices of the 
block diagonal portion is mapped into NPANELINDEXU consecutively. The 
block number of the section where the column indices vector corresponding to 
the i-th supernode is assigned is known from j=NASSIGN(i). The location of its 
top of subarray is stored in NFCNZINDEXU(j). These column indices are the 
column numbers of the matrix into which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEXU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NPOSTO............ Output. The information about what column number of A the i-th node in post 
order corresponds to is stored. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array NPOSTO(N). 

(See note 4) in (3), "Comments on use.") 

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array SCLROW (N). 
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SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns 
are stored in one dimensional array. 

Input. The values set by the first call are reused when ISW  1 specified. 

One-dimensional array SCLCOL(N). 

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0). 

Output. When EPSZ ≤ 0.0, it is set to the standard value. 

(See note 2) in (3), "Comments on use.") 

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in 
pivot search is considered to have the value greater than or equal to the 
threshold specified, it is accepted as a pivot and the search of a pivot is broken 
off. 
For example, 1.0D-2. 

Output. When THEPSZ≤0.0D0, 1.0D-2 is set. 
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ. 

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is 
searched and what kind of pivoting is chosen if any. 
For example, 40 for complete pivoting. 

                               IPIVOT<10 or IPIVOT≥ 50, no pivoting. 

                 10≤IPIVOT<20, partial pivoting 

                 20≤IPIVOT<30, diagonal pivoting 

             21 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. 

             22 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. If Rook pivoting fails, it is changed to complete pivoting. 

                 30≤IPIVOT<40, Rook pivoting  

             32 : When within a supernode Rook pivoting fails, it is changed to complete 
pivoting. 

                 40≤IPIVOT<50, complete pivoting  

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.  

1) When ISTATIC=1 is specified. 
When the pivot searched within a supernode is not greater than SPEPSZ, it is 
replaced with its approximate value of a complex number with the absolute 
value of SPEPSZ. 
If its value is 0.0D0, SPEPSZ is used as an approximation value. 

The following conditions must be satisfied. 
a) EPSZ must be less than or equal to the standard value of EPSZ. 
b) Scaling must be performed with ISCLITERMAX=10. 
c) THEPSZ≥SPEPSZ must hold.            

2) When ISTATIC≠1 is specified. 
No static pivot is performed. 

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is 
specified. 
The following conditions must hold. 
THEPSZ≥SPEPSZ≥EPSZ 
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                               Output. When SPEPSZ<EPSZ, it is set to 1.0D-10. 

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and 
column exchanges for pivoting within each supernode is stored.  

The block number of the section where the information on the i-th supernode is 
assigned is known by j=NASSIGN(i). The position of the first element of that 
section is stored in NFCNZPIVOT(j). The information of exchange rows and 
columns within the i-th supernode is stored in the elements of 
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and 
NPIVOTQ respectively. 

One-dimensional array NFCNZPIVOT(NSUPNUM+1). 

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored. 

One-dimensional array NPIVOTP(N). 

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is 
stored. 

One-dimensional array NPIVOTQ(N). 

ZW......................... Work area. 

Output/Input. 
A double precision complex one-dimensional array of size 2*NZ. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

W......................... Work area. 

Output/Input. 
One-dimensional array of size 4*NZ+6*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

IW1..................... Work area. 

Output/Input. 
One-dimensional array of size 2*NZ+2*(N+1)+16*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

IW2..................... Work area. 

Output/Input.  
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N). 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

ICON................... Output. Condition code. 

(See Table DM_VSCLU-1.) 

 
Figure DM_VSCLU-1  Conceptual scheme for storing decomposed results 
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j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, 
j) from the p-th element of ZPANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of 
decomposed results is stored in 

      panel(s, t),   s < t,  s = 1,...,DIM(2, j), 

 t = 1,...,DIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)- 
DIM(2,j))DIM(2, j) from the u-th element of 
ZPANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area 
with a length DIM(3,j) from the v-th element of 
NPANELINDEXU. 

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of 
decomposed results is stored in 

      panel(x, y),   x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix 
A is permuted in post ordering. 

 
Table DM_VSCLU-1  Condition codes 
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Code Meaning Processing 

0 No error  

10000 When ISTATIC=1 is specified, Static pivot  
which replaces the pivot candidate with too 
small value with SPEPSZ is made. 

 

20000 The pivot became relatively zero. The 
coefficient matrix A may be singular. 

 

20100 When IPLEDSM is specified, maximum 
matching with the length N is sought in order 
to permute large entries to the diagonal but can 
not be found. The coefficient matrix A may be 
singular. 

 

20200 When seeking diagonal matrices for 
equilibrating both rows and columns, there is a 
zero vector in either rows or columns of the 
matrix A. The coefficient matrix A may be 
singular. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEXL < 1,  
NSIZEFACTORU < 1, NSIZEINDEXU < 1, 
ISW < 1, or ISW > 2 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

Processing is discontinued. 

30200 The row index k stored in NROW(j) is k < 1 or 
k >n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

 

30500 When ISTATIC=1 is specified, the required 
conditions are not satisfied. 
EPSZ is greater than 16u of the standard value 
or ISCLITERMAX<10 
or SPEPSZ>THEPSZ 

 

31000 The value of NSIZEFACTORL is not enough 
as the size of ZPANELFACTORL, 
or the value of NSIZEINDEXL is not enough 
as the size of NPANELINDEXL, 
or the value of NSIZEFACTORU is not 
enough as the size of ZPANELFACTORU, 
 or the value of NSIZEINDEXU is not enough 
as the size of NPANELINDEXU. 

Reallocate the 
ZPANELFACTORL or 
NPANELINDEXL or 
ZPANELFACTORU or 
NPANELINDEXU  
with the necessary size which 
are returned in the 
NSIZEFACTORL or 
NSIZEINDEXL or 
NSIZEFACTORU or 
NSIZEINDEXU respectively 
and call this subroutine again 
with ISW=2 specified. 

 

(3) Comments on use 
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a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 
Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LU decomposition. In this case, processing is 
discontinued with ICON = 20000. When unit round off is u, the standard value 
of EPSZ is 16  u.  
The absolute value of a complex number is approximated as a sum of the 
absolute value of both its real part ant its imaginary part for Pivot. 
When the computation is to be continued even if the absolute value of diagonal 
element is small, assign the minimum value to EPSZ. In this case, however, the 
result is not assured. 
If Static pivot is specified to be performed, when the diagonal element is smaller 
than SPEPSZ, LU decomposition is approximately continued replacing it with a  
complex number with the absolute value of SPEPSZ. 

3)  The necessary sizes for the array ZPANELFACTORL, NPANELINDEXL, 
ZPANELFACTORU and NPANELINDEXU that store the decomposed results 
can not be determined beforehand. It is suggested to reallocate them by using the 
result of the symbolic decomposition analysis after the first call of this routine, 
or allocate large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first. And 
call this routine with the small values such as one in the size specifying in 
NSIZEFACTORL,  NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU 
with ISW=1. This routine ends with ICON=31000, and the necessary sizes for 
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are 
returned. Then the suspended process can be resumed by calling it with ISW=2 
after reallocating the arrays with the necessary sizes. 

4)  Nodes corresponding to column number is considered. The node number 
permuted in post order is stored in NPOSTO. This array indicates what node 
number in original node number the i-th node in post order is corresponding. It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

5)   A system of equations Ax=b can be solved by calling DM_VSCLUX 
subsequently in use of the results of LU decomposition obtained by this routine. 
The following arguments used in this routine are specified.  
See example in (3), "Comments on use.". 

ZA, NZ, NROW, NFCNZ, N,   
IPLEDSM, MZ, IORDERING, NPERM,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, ZPANELFACTORL, 
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NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
SCLROW,SCLCOL, 
NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, IW2 

b. Example 

The linear system of equations Ax=f is solved, where a matrix is built using results 
from the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag 
and the portion in only its six lower diagonals are converted in compressed column 
storage format. The linear system of equations with an unsymmetric real sparse 
matrix A built in this way is stored into a complex sparse array and is solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD, 
     $      N = KX*KY*KZ) 
      PARAMETER (NBORDER=N+1,NOFFDIAG=6) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      INTEGER*4 WL,ZWL 
      PARAMETER (NALL=NDIAG*N, 
C 
     $   ZWL =2*NALL, 
     $   WL  =4*NALL+6*N, 
     $   IW1L=2*NALL+2*(N+1)+16*N, 
     $   IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))   
C 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)  
      COMPLEX*16 ZA(K*NDIAG),ZWC(K*NDIAG), 
     $           ZW(ZWL),ZONE                   
      PARAMETER(ZONE=(1.0D0,0.0D0))            
      DIMENSION NROW(K*NDIAG),NFCNZ(N+1), 
     $          NROWSYM(K*NDIAG+N),NFCNZSYM(N+1), 
     $          IWC(2,K*NDIAG)                  
      DIMENSION NPERM(N),W(WL), 
     $          NPOSTO(N),NDIM(3,N), 
     $          NASSIGN(N),  
     $          MZ(N), 
     $          IW1(IW1L),IW2(IW2L) 
      COMPLEX*16, DIMENSION(:), ALLOCATABLE ::   
     $        ZPANELFACTORL,ZPANELFACTORU      
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU 
      COMPLEX*8 ZDUMMYFL,ZDUMMYFU 
      INTEGER*4 NDUMMYIL,       
     $          NDUMMYIU       
      INTEGER*8 NSIZEFACTORL, 
     $          NSIZEINDEXL,     
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     $          NSIZEINDEXU,    
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1)  
      COMPLEX*16 ZB(N),ZSOLEX(N) 
      REAL*8 THEPSZ,EPSZ,SPEPSZ, 
     $       SCLROW(N),SCLCOL(N)   
C 
      INTEGER*4     IPIVOT,ISTATIC,NFCNZPIVOT(N+1),   
     $              NPIVOTP(N),NPIVOTQ(N),     
     $              IREFINE,ITERMAX,ITER,IPLEDSM 
C 
      PRINT *,'    LU DECOMPOSITION METHOD' 
      PRINT *,'    FOR SPARSE UNSYMMETRIC COMPLEX MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
C 
      DO I=1,N 
      ZSOLEX(I)= ZONE        
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',ZSOLEX(1),' X(N) = ',ZSOLEX(N) 
      PRINT * 
C 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0         
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
C 
      DO J=1,N 
      NTOPCFG=1 
C 
      DO I=NDIAG,1,-1  
C 
      IF(NTOPCFG.EQ.1)THEN  
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF                
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C 
      IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN  
      CONTINUE 
      ELSE 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      ZA(NUMNZ)=DCMPLX(DIAG2(J,I),0.0D0)    
      NROW(NUMNZ)=NCOL 
C 
      NUMNZ=NUMNZ+1 
C 
      ENDIF  
      ENDIF    
      ENDDO 
      ENDDO 
C 
      NFCNZ(N+1)=NUMNZ 
      NZ=NUMNZ-1 
C 
      CALL DM_VMVSCCC(ZA,NZ,NROW,NFCNZ,N,ZSOLEX,      
     $             ZB,ZWC,IWC,ICON)                
C 
C     INITIAL CALL WITH IORDER=1 
C 
      IORDERING= 0           
      IPLEDSM=1 
      ISCLITERMAX=10 
      ISW=1 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEXL=1   
      NSIZEINDEXU=1   
      EPSZ=1.0D-16 
      THEPSZ=1.0D-2 
      SPEPSZ=0.0D0 
      IPIVOT=40 
      ISTATIC=0 
      IREFINE=1 
      EPSR=0.0D0 
      ITERMAX=10 
C 
      CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZDUMMYFL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NDUMMYIL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZDUMMYFU,         
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NDUMMYIU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
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     $              ZW,W,IW1,IW2,ICON) 
C 
      PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEXL=',NSIZEINDEXL,    
     $       'NSIZEINDEXU=',NSIZEINDEXU,   
     $       'NSUPNUM=',NSUPNUM 
C 
      ALLOCATE( ZPANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( ZPANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEXL) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEXU) ) 
C 
      ISW=2 
C 
      CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZPANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZPANELFACTORU,  
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              ZW,W,IW1,IW2,ICON) 
C 
      CALL DM_VSCLUX(N, 
     $              IORDERING, 
     $              NPERM, 
     $              ZB, 
     $              NASSIGN,       
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZPANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZPANELFACTORU,    
     $              NSIZEFACTORU,          
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              IPLEDSM,MZ, 
     $              SCLROW,SCLCOL,      
     $              NFCNZPIVOT,  
     $              NPIVOTP,NPIVOTQ,     
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              ZA,NZ,NROW,NFCNZ, 
     $              IW2,ICON) 
C 
      ERR = ERRNRM(ZSOLEX,ZB,N) 
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      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',ZB(1),' X(N) = ',ZB(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
C 
      DEALLOCATE( ZPANELFACTORL,ZPANELFACTORU, 
     $            NPANELINDEXL, 
     $            NPANELINDEXU )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
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C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
          PRINT*,'ERROR; K0.GH.NZ ' 
          GOTO 100 
        ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
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        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
C ======================================== 
* SOLUTE ERROR 
* | Z1 - Z2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(Z1,Z2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      COMPLEX*16 Z1(*),Z2(*),SS 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS  = Z1(I) - Z2(I)              
        S = S + DREAL(SS * DCONJG(SS))  
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 

(4) Method 

The permutation which moves large entries to the diagonal is performed. And the 
permutated matrix is scaled in order to equilibrate both rows and columns norms.  
The absolute value of a complex number is approximated as a sum of the absolute value 
of both its real part ant its imaginary part for the permutation of elements, scaling and 
Pivot. 
The LU decomposition of this matrix is made. Nonzero elements belonging to each 
supernode is stored in two-dimensional panel respectively. The pivot for numerical 
stabilization is sought with in its block diagonal portion. The threshold for pivot search 
can be specified so that immediately after a pivot candidate with the absolute value 
greater than it is encountered in pivot search it is accepted as a pivot. In addition the static 
pivoting can be specified so that even if the pivot obtained after pivot search is considered 
as too small, it is replaced with the value of SPEPSZ and LU decomposition can be 
approximately performed.  
Refer to references in Appendix A, “References.” in detail.  
Refer to [23], [57] on the method how the elements of large absolute value are permuted 
to diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps, 
to [19], [2], [22], [48], [68] on the base of the LU decomposition of unsymmetric complex 
sparse matrices and to [63], [69] on equilibration of matrices and pivoting. 
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DM_VSCLUX 
 

A system of linear equations with LU-decomposed unsymmetric complex sparse matrices  

CALL DM_VSCLUX(N, IORDERING, NPERM,  
ZB, NASSIGN, NSUPNUM,  
NFCNZFACTORL, ZPANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
IPLEDSM, MZ, 
SCLROW,SCLCOL, NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,  
ZA, NZ, NROW, NFCNZ, 
IW2, ICON) 

 

(1) Function 

An n × n unsymmetric complex sparse matrix A of which LU decomposition is made as 
below is given.  In this decomposition the large entries of an n × n unsymmetric complex 
sparse matrix A are permutated to the diagonal and then it is scaled in order to equilibrate 
both rows and columns norms. Subsequently LU decomposition in which the pivot is 
taken as specified within the block diagonal portion belonging to each supernode is 
performed and results in the following form. This routine solves the following linear 
equation in use of these results of LU decomposition.  
The absolute value of a complex number is approximated as a sum of the absolute value 
of both its real part ant its imaginary part for the permutation of elements, scaling and 
Pivot. 

                                Ax=b 

A matrix A is decomposed into as below. 

                               PrsQPDrAPcDcPTQTPcs=LU 

The unsymmetric complex sparse matrix A is transformed as below. 

A1=DrAPcDc  

 where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for 
scaling rows and Dc is also a diagonal matrix for scaling columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.  
The actual exchanges  are restricted to the reduced part of the matrix belonging to each 
supernode. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.  
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper 
triangular matrix. 
It can be specified to improve the precision of the solution by iterative refinement.  
 

(2) Parameter 
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N......................... Input. Order n of matrix A. 

IORDERING..... Input. When IORDERING 11 is specified, it is indicated that LU decomposition 
is performed with an ordering specified in NPERM.  
The matrix PA1PT is decomposed into LU decomposition. 

Otherwise. No ordering is specified. 

 (See note 1) in (3), "Comments on use.") 

NPERM.............. Input. When IORDEING=11 is specified, a vector presenting the permutation 
matrix P used is stored. 

One-dimensional array NPERM(N). 

(See note 2) in (3), "Comments on use.") 

ZB......................... Input. The right-hand side constant vector b of a system of linear equations Ax 
= b. 

Output. Solution vector x. 

A double precision complex one-dimensional array ZB(N). 

NASSIGN.......... Input. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in 
ZPANELFACTORL and ZPANELFACTORU as one dimensional subarray 
consecutively and its block number is stored. The corresponding indices vectors 
are similarly stored NPANELINDEXL and NPANELINDEXU respectively. 
Data of the i-th supernode is stored into the j-th block of a subarray, where 
j=NASSIN(i). 

Regarding the storage methods of decomposed matrices, refer to Figure 
DM_VSCLUX-1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Input. The total number of supernodes.( n) 

NFCNZFACTORL..Input. The decomposed matrices L and U of an unsymmetric complex sparse 
matrix are computed for each supernode respectively. The columns of L 
belonging to each supernode are compressed to have the common row indices 
vector and stored into a two dimensional panel with the corresponding parts of 
U in its block diagonal portion. The index number of the top array element of 
the one dimensional subarray where the i-th panel is mapped into 
ZPANELFACTORL consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

ZPANELFACTORL..Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). 
The location of its top of subarray including the portion of decomposed 
matrices is stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular 
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). 
The corresponding block diagonal portion of the unit upper triangular matrix U 
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).  
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A double precision complex one-dimensional array 
ZPANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

NSIZEFACTORL..  Input. The size of the array ZPANELFACTORL. 8-byte integer. 

NFCNZINDEXL... Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

NPANELINDEXL..Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the 
row indices vector corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray is stored in 
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into 
which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEXL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer. 

NDIM................. Input. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is 
allocated in the i-th location. 
NDIM(3,i) indicates the total amount of the size of the first dimension of the 
panel where a matrix U is transposed and stored and the size of its block 
diagonal portion.  

Two-dimensional array NDIM(3,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

NFCNZFACTORU..Input. Regarding a matrix U derived from LU decomposition of an 
unsymmetric complex sparse matrix, the rows of U except the of block diagonal 
portion belonging to each supernode are compressed to have the common 
column indices vector and stored into a two dimensional panel. The index 
number of the top array element of the one dimensional subarray where the i-th 
panel is mapped into ZPANELFACTORU consecutively or the location of 
panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 
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ZPANELFACTORU..Input. The rows of the decomposed matrix U belonging to each supernode 
are compressed to have the common column indices vector, transposed and 
stored in a two dimensional panel without its block diagonal portion. The block 
number of the section where the panel corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray 
including the portion of decomposed matrices is stored in NFCNZFACTORU(j). 
The size of the panel in the i-th block can be considered to be two dimensional 
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular 
matrix U except the block diagonal portion are compressed, transposed and 
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).  

A double precision complex one-dimensional array 
ZPANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

NSIZEFACTORU.. Input. The size of the array ZPANELFACTORU. 8-byte integer. 

 (See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The index 
number of the top array element of the one dimensional subarray where the i-th 
column indices vector including indices of the block diagonal portion is mapped 
into NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

NPANELINDEXU..Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed, transposed and stored in a two dimensional panel without its block 
diagonal portion. The column indices vector including indices of the block 
diagonal portion is mapped into NPANELINDEXU consecutively. The block 
number of the section where the column indices vector corresponding to the i-th 
supernode is assigned is known from j=NASSIGN(i). The location of its top of 
subarray is stored in NFCNZINDEXU(j). These column indices are the column 
numbers of the matrix into which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEXU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCLUX-1. 

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer. 

NPOSTO............ Input. The information about what column number of A the i-th node in post 
order corresponds to is stored. 

One-dimensional array NPOSTO(N). 

(See note 3) in (3), "Comments on use.") 

IPLEDSM............ Input. Information indicating whether for LU decomposition it is specified to 
permute the large entries to the diagonal of a matrix A.  
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting 
large entries to the diagonal.  

Otherwise no permutation is performed. 
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MZ....................... Input. When IPLEDSM=1 is specified, it indicates a permutation of columns. 
MZ(i)=j indicates that the j-th column which the element of aij belongs to is 
permutated to i-th column. The element of aij is the large entry to be permuted 
to the diagonal. 
One-dimensional array MZ(N). 

SCLROW............ Input. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

One-dimensional array SCLROW (N). 

SCLCOL............ Input. The diagonal elements of Dc or a diagonal matrix for scaling columns are 
stored in one dimensional array. 

One-dimensional array SCLCOL(N). 

NFCNZPIVOT.... Input. The location for the storage where the history of relative row and column 
exchanges for pivoting within each supernode is stored.  

The block number of the section where the information on the i-th supernode is 
assigned is known by j=NASSIGN(i). The position of the first element of that 
section is stored in NFCNZPIVOT(j). The information of exchange rows and 
columns within the i-th supernode is stored in the elements of 
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and 
NPIVOTQ respectively. 

One-dimensional array NFCNZPIVOT(NSUPNUM+1). 

 NPIVOTP.......... Input. The information on exchanges of rows within each supernode is stored. 

One-dimensional array NPIVOTP(N). 

NPIVORQ.......... Input. The information on exchanges of columns within each supernode is 
stored. 

One-dimensional array NPIVOTQ(N). 

IREFINE............ Input. Control information indicating whether iterative refinement is performed 
when the solution is computed in use of results of LU decomposition. A 
residual vector is computed in quadruple precision.  

When IREFINE=1 is specified. 
The iterative refinement is performed. It is iterated until in the sequences of the 
solutions obtained in refinement the difference of the absolute values of their 
corresponding residual vectors become larger than a fourth of that of 
immediately previous ones. 

When IREFINE≠1is specified. 
No iterative refinement is performed. 

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector  
b-Ax is sufficiently smaller compared with the absolute value of b.  

When EPSR ≤ 0.0, it is set to 1.0D-6. 

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1). 

ITER.................. Output. Actual iterative count for refinement. 

ZA......................... Input. The nonzero elements of an unsymmetric complex sparse matrix A are 
stored in ZA(1:NZ).  

A double precision complex one-dimensional array ZA(NZ). 
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For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). For a complex matrix , a real array CC in this Figure 
is replaced with a complex array. 

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric 
complex sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array ZA. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an 
array ZA in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

IW2..................... Work area. 

Input.  
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N). 

The data derived from calling DM_VSCLU of LU decomposition of an 
unsymmetric complex sparse matrix is transferred in this work area. The 
contents must not be changed among calls. 

ICON................... Output. Condition code. 

(See Table DM_VSCLUX-1.) 

 

                                       

 

             U 

              

 

 

 

 

             L                               UT 

panel row indices vector  
in postorder 

 ・  ・ 

panel 
column indices vector  
in postorder  

 

Figure DM_VSCLUX-1  Conceptual scheme for storing decomposed results 

j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, 
j) from the p-th element of ZPANELFACTORL. 
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q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of 
decomposed results is stored in 

      panel(s, t),   s < t,  s = 1,...,DIM(2, j), 

 t = 1,...,DIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)- 
DIM(2,j))DIM(2, j) from the u-th element of 
ZPANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area 
with a length DIM(3,j) from the v-th element of 
NPANELINDEXU. 

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of 
decomposed results is stored in 

      panel(x, y),   x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix 
A is permuted in post ordering. 

 
Table DM_VSCLUX-1  Condition codes 

Code Meaning Processing 

0 No error  

20400 There is a zero element in diagonal of resultant 
matrices of LU decomposition. 

 

20500 The norm of residual vector for the solution 
vector is greater than that of  b multiplied by 
EPSR, which is the right term constant vector 
in Ax=b.  The coefficient matrix A may be 
close to a singular matrix. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEXL < 1,  
NSIZEFACTORU < 1, NSIZEINDEXU < 1,  
ITERMAX<1 when IREFINE=1. 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

Processing is discontinued. 

30200 The row index k stored in NROW(j) is k < 1 or 
k > n. 
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Code Meaning Processing 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes  

1)     The results of LU decomposition obtained by DM_VSCLU is used. 
See  note 5) (3), "Comments on use."  of  DM_VSCLU and example in (3), 
"Comments on use." of  DM_VSCLUX. 

2)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 

3)  Nodes corresponding to column number is considered. The node number 
permuted in post order is stored in NPOSTO. This array indicates what node 
number in original node number the i-th node in post order is corresponding. It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 2) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

 

b. Example 

The linear system of equations Ax=f is solved, where a matrix is built using results 
from the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag 
and the portion in only its six lower diagonals are converted in compressed column 
storage format. The linear system of equations with an unsymmetric real sparse 
matrix A built in this way is stored into a complex sparse matrix and is solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD, 
     $      N = KX*KY*KZ) 
      PARAMETER (NBORDER=N+1,NOFFDIAG=6) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
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      INTEGER*4 WL,ZWL 
      PARAMETER (NALL=NDIAG*N, 
C 
     $   ZWL =2*NALL, 
     $   WL  =4*NALL+6*N, 
     $   IW1L=2*NALL+2*(N+1)+16*N, 
     $   IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))   
C 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)  
      COMPLEX*16 ZA(K*NDIAG),ZWC(K*NDIAG), 
     $           ZW(ZWL),ZONE                   
      PARAMETER(ZONE=(1.0D0,0.0D0))            
      DIMENSION NROW(K*NDIAG),NFCNZ(N+1), 
     $          NROWSYM(K*NDIAG+N),NFCNZSYM(N+1), 
     $          IWC(2,K*NDIAG)                  
      DIMENSION NPERM(N),W(WL), 
     $          NPOSTO(N),NDIM(3,N), 
     $          NASSIGN(N),  
     $          MZ(N), 
     $          IW1(IW1L),IW2(IW2L) 
      COMPLEX*16, DIMENSION(:), ALLOCATABLE ::   
     $        ZPANELFACTORL,ZPANELFACTORU      
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU 
      COMPLEX*8 ZDUMMYFL,ZDUMMYFU 
      INTEGER*4 NDUMMYIL,       
     $          NDUMMYIU       
      INTEGER*8 NSIZEFACTORL, 
     $          NSIZEINDEXL,     
     $          NSIZEINDEXU,    
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1)  
      COMPLEX*16 ZB(N),ZSOLEX(N) 
      REAL*8 THEPSZ,EPSZ,SPEPSZ, 
     $       SCLROW(N),SCLCOL(N)   
C 
      INTEGER*4     IPIVOT,ISTATIC,NFCNZPIVOT(N+1),   
     $              NPIVOTP(N),NPIVOTQ(N),     
     $              IREFINE,ITERMAX,ITER,IPLEDSM 
C 
      PRINT *,'    LU DECOMPOSITION METHOD' 
      PRINT *,'    FOR SPARSE UNSYMMETRIC COMPLEX MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
C 
      DO I=1,N 
      ZSOLEX(I)= ZONE        
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',ZSOLEX(1),' X(N) = ',ZSOLEX(N) 
      PRINT * 
C 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
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     &          ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0         
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
C 
      DO J=1,N 
      NTOPCFG=1 
C 
      DO I=NDIAG,1,-1  
C 
      IF(NTOPCFG.EQ.1)THEN  
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF                
C 
      IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN  
      CONTINUE 
      ELSE 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      ZA(NUMNZ)=DCMPLX(DIAG2(J,I),0.0D0)    
      NROW(NUMNZ)=NCOL 
C 
      NUMNZ=NUMNZ+1 
C 
      ENDIF  
      ENDIF    
      ENDDO 
      ENDDO 
C 
      NFCNZ(N+1)=NUMNZ 
      NZ=NUMNZ-1 
C 
      CALL DM_VMVSCCC(ZA,NZ,NROW,NFCNZ,N,ZSOLEX,      
     $             ZB,ZWC,IWC,ICON)                
C 
C     INITIAL CALL WITH IORDER=1 
C 
      IORDERING= 0           
      IPLEDSM=1 
      ISCLITERMAX=10 
      ISW=1 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEXL=1   
      NSIZEINDEXU=1   
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      EPSZ=1.0D-16 
      THEPSZ=1.0D-2 
      SPEPSZ=0.0D0 
      IPIVOT=40 
      ISTATIC=0 
      IREFINE=1 
      EPSR=0.0D0 
      ITERMAX=10 
C 
      CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZDUMMYFL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NDUMMYIL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZDUMMYFU,         
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NDUMMYIU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              ZW,W,IW1,IW2,ICON) 
C 
      PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEXL=',NSIZEINDEXL,    
     $       'NSIZEINDEXU=',NSIZEINDEXU,   
     $       'NSUPNUM=',NSUPNUM 
C 
      ALLOCATE( ZPANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( ZPANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEXL) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEXU) ) 
C 
      ISW=2 
C 
      CALL DM_VSCLU(ZA,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZPANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZPANELFACTORU,  
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
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     $              NPIVOTP,NPIVOTQ,   
     $              ZW,W,IW1,IW2,ICON) 
C 
      CALL DM_VSCLUX(N, 
     $              IORDERING, 
     $              NPERM, 
     $              ZB, 
     $              NASSIGN,       
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZPANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZPANELFACTORU,    
     $              NSIZEFACTORU,          
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              IPLEDSM,MZ, 
     $              SCLROW,SCLCOL,      
     $              NFCNZPIVOT,  
     $              NPIVOTP,NPIVOTQ,     
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              ZA,NZ,NROW,NFCNZ, 
     $              IW2,ICON) 
C 
      ERR = ERRNRM(ZSOLEX,ZB,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',ZB(1),' X(N) = ',ZB(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
C 
      DEALLOCATE( ZPANELFACTORL,ZPANELFACTORU, 
     $            NPANELINDEXL, 
     $            NPANELINDEXU )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
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      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
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C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
          PRINT*,'ERROR; K0.GH.NZ ' 
          GOTO 100 
        ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
C ======================================== 
* SOLUTE ERROR 
* | Z1 - Z2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(Z1,Z2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      COMPLEX*16 Z1(*),Z2(*),SS 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS  = Z1(I) - Z2(I)              
        S = S + DREAL(SS * DCONJG(SS))  
 100  CONTINUE 
C 
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      ERRNRM = SQRT( S ) 
      RETURN 
      END 
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DM_VSCS 
 

A system of linear equations with unsymmetric complex sparse matrices  (LU decomposition 
method) 

CALL DM_VSCS(ZA, NZ, NROW, NFCNZ, N, 
IPLEDSM, MZ, ISCLITERMAX,  
IORDERING, NPERM, ISW,  
NROWSYM, NFCNZSYM, ZB,   
NASSIGN, NSUPNUM,  
NFCNZFACTORL, ZPANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, ZPANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
SCLROW, SCLCOL, 
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,  
ZW, W, IW1, IW2, ICON) 

 

(1) Function 

The large entries of an n × n unsymmetric complex sparse matrix A are permutated to the 
diagonal and then it is scaled in order to equilibrate both rows and columns norms. 
Subsequently this subroutine solves a system of equations Ax=b in use of LU decomposition 
in which the pivot is taken as specified within the block diagonal portion belonging to each 
supernode.  
The absolute value of a complex number is approximated as a sum of the absolute value of 
both its real part ant its imaginary part for the permutation of elements, scaling and Pivot. 

                                Ax=b 

The unsymmetric complex sparse matrix is transformed as below. 

A1=DrAPcDc  

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling 
rows and Dc is also a diagonal matrix for scaling columns. 

A2=QPA1PTQT  

A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.  P 
and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular 
matrix. 
When in pivoting process a candidate matrix element whose absolute value is larger than or 
equal to the threshold specified in THEPSZ can not be found, the element with the largest 
absolute value which in the block diagonal portion of a supernode is regarded as a candidate.  
If the absolute value of the candidate element is too small, the matrix can be approximately 
decomposed into LU specifying an appropriate small value as a static pivot in place of the 
candidate sought. 
The solution is computed using LU decomposition. 
It can be specified to improve the precision of the solution by iterative refinement.  
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(2) Parameter 

ZA......................... Input. The nonzero elements of an unsymmetric complex sparse matrix A are stored 
in ZA(1:NZ).  

A double precision complex one-dimensional array ZA(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 in the 
description for DM_VMVSCC routine (multiplication of a real sparse matrix and a 
real vector). For a complex matrix, a real array CC in this Figure is replaced with a 
complex array. 

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric complex 
sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array ZA. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an array 
ZA in the compressed column storage method which stores the nonzero elements 
column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N......................... Input. Order n of matrix A. 

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal of a 
matrix A.  
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting 
large entries to the diagonal.  

Otherwise no permutation is performed. 

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns. 
MZ(i)=j indicates that the j-th column which the element of aij belongs to is 
permutated to i-th column. The element of aij is the large entry to be permuted to the 
diagonal. 
One-dimensional array MZ(N). 

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr and 
Dc to equilibrate both rows and columns of matrix A. 

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and Dc 
are assumed as unit matrices. 

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of iteration 
is considered as 10.  

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT 
permuted by the matrix P of ordering or to decompose the matrix A. 

When IORDERING=10 is specified, calling this routine with ISW=1 produces the 
informations which is needed to generate an ordering regarding A1 and they are set 
in NROWSYM and NFCNZSYM. 

When IORDERING 11 is specified, it is indicated that after an ordering is set in 
NPERM, the computation is resumed.  
Using the informations obtained in NROWSYM and NFCNZSYM after calling this 
routines with ISW=1 and IORDERING=10, an ordering is determined. After 
specifying this ordering in NPERM, this routine is called again with ISW=1and 
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IORDERING=11 and the computation is resumed. 
LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is decomposed into LU. 

Output. IORDERING is set to 11 after this routine is called with IORDERING=10 
and ISW=1. Therefore after an ordering is set in NPERM the computation is 
resumed in the subsequent call without IORDERING=11 being specified explicitly.  

(See note 1) in (3), "Comments on use.") 

NPERM.............. Input. The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 

ISW..................... Input. Control information. 

1)When ISW=1 is specified. 
After symmetrization of a matrix and symbolic decomposition, checking whether 
the sufficient amount of memory for storing data are allocated the computation is 
performed. 
Call with IORDERING=10 produces the informations needed for seeking an 
ordering in NROWSYM and NFCNZSYN. Using these informations an ordering 
for SYM is determined. After an ordering is set in NPERM, calling this routine with 
IORDERING=11 and also ISW=1 again resumes the computation. 
When IORDERING is neither 10 nor 11, no ordering is specified. 

2) When ISW=2 specified. 
After the previous call ends with ICON=31000, that means that the sizes of 
ZPANELFACTORL or ZPANELFACTORU or NPANELINDEXL or 
NPANELINDEXU were not enough, the suspended computation is resumed.  
Before calling again with ISW=2, the ZPANELFACTORL or ZPANELFACTORU 
or NPANELINDEXL or NPANELINDEXU must be reallocated with the necessary 
sizes which are returned in the NSIZEFACTORL NSIZEFACTORU or 
NSIZEINDEXL or NSIZEINDEXU at the precedent call and specified in 
corresponding arguments. 
Besides, except these arguments and ISW as control information, the values in the 
other augments must not be changed between the previous and following calls. 

3) When ISW=3 is specified. 
The subsequent call with ISW=3 solves another system of equations of which the 
coefficient matrix is as same as previous call but the right-hand side vector b is 
changed. In this case, the information obtained by the previous LU decomposition 
can be reused. 
Besides, except ISW as control information and B for storing the new right-hand 
side b, the values in the other arguments must not be changed between the previous 
and following calls. 

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero pattern 
of the lower triangular part of SYM=A1+A1

T in the compressed column storage 
method are generated. 

One-dimensional array NROWSYM(NZ+N). 

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row index 
of each column stored in array NROWSYM in the compressed column storage 
method which stores the nonzero pattern of the lower part of a matrix SYM column 
by column. 
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NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements in the 
lower triangular part. 

One-dimensional array NFCNZ(N+1). 

ZB......................... Input. The right-hand side constant vector b of a system of linear equations Ax = b. 

Output. Solution vector x. 

A double precision complex one-dimensional array ZB(N). 

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in ZPANELFACTORL 
and ZPANELFACTORU as one dimensional subarray consecutively and its block 
number is stored. The corresponding indices vectors are similarly stored 
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th supernode 
is stored into the j-th block of a subarray, where j=NASSIN(i). 

Input. When ISW≠1, the values stored in the first call are reused. Regarding  
the storage methods of decomposed matrices, refer to Figure DM_VSCS-1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Output. The total number of supernodes. 

Input. The values in the first call are reused when ISW  1 specified. (≤ n) 

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric complex sparse 
matrix are computed for each supernode respectively. The columns of L belonging 
to each supernode are compressed to have the common row indices vector and 
stored into a two dimensional panel with the corresponding parts of U in its block 
diagonal portion. The index number of the top array element of the one dimensional 
subarray where the i-th panel is mapped into ZPANELFACTORL consecutively or 
the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

Input. The values set by the first call are reused when ISW  1 specified. 

ZPANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). The 
location of its top of subarray including the portion of decomposed matrices is 
stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular 
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). The 
corresponding block diagonal portion of the unit upper triangular matrix U except 
its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).  

A double precision complex one-dimensional array 
ZPANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORL..  Input. The size of the array ZPANELFACTORL. 8-byte integer. 
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Output. The necessary size for the array ZPANELFACTORL is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the row 
indices vector corresponding to the i-th supernode is assigned is known from 
j=NASSIGN(i). The location of its top of subarray is stored in NFCNZINDEXL(j). 
This row indices are the row numbers of the matrix into which SYM is permuted in 
its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEXL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is allocated in 
the i-th location. 
NDIM(3,i) indicates the total amount of the size of the first dimension of the panel 
where a matrix U is transposed and stored and the size of its block diagonal portion.  

Input. When ISW1, the values set by the first call are reused. 

Two-dimensional array NDIM(3,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an unsymmetric 
complex sparse matrix, the rows of U except the of block diagonal portion 
belonging to each supernode are compressed to have the common column indices 
vector and stored into a two dimensional panel. The index number of the top array 
element of the one dimensional subarray where the i-th panel is mapped into 
ZPANELFACTORU consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 
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Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

Input. When ISW  1, the values set by the first call are reused. 

ZPANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored in a 
two dimensional panel without its block diagonal portion. The block number of the 
section where the panel corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray including the portion of 
decomposed matrices is stored in NFCNZFACTORU(j). The size of the panel in 
the i-th block can be considered to be two dimensional array of {DIM(3,i)-
DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular matrix U except the 
block diagonal portion are compressed, transposed and stored in this panel(s, t), s = 
1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).  

A double precision complex one-dimensional array 
ZPANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORU.. Input. The size of the array ZPANELFACTORU. 8-byte integer. 

Output. The necessary size for the array ZPANELFACTORU is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored in a 
two dimensional panel without its block diagonal portion. The index number of the 
top array element of the one dimensional subarray where the i-th column indices 
vector including indices of the block diagonal portion is mapped into 
NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSCS-1. 

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed, transposed and stored in a two dimensional panel without its block 
diagonal portion. The column indices vector including indices of the block diagonal 
portion is mapped into NPANELINDEXU consecutively. The block number of the 
section where the column indices vector corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray is stored 
in NFCNZINDEXU(j). These column indices are the column numbers of the matrix 
into which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEXU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer. 

Output. The necessary size is returned. 
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(See note 3) in (3), "Comments on use.") 

NPOSTO............ Output. The information about what column number of A the i-th node in post order 
corresponds to is stored. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array NPOSTO(N). 

(See note 4) in (3), "Comments on use.") 

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array SCLROW (N). 

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns are 
stored in one dimensional array. 

Input. The values set by the first call are reused when ISW  1 specified. 

One-dimensional array SCLCOL(N). 

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0). 

Output. When EPSZ ≤ 0.0, it is set to the standard value. 

(See note 2) in (3), "Comments on use.") 

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in 
pivot search is considered to have the value greater than or equal to the threshold 
specified, it is accepted as a pivot and the search of a pivot is broken off. 
For example, 1.0D-2. 

Output. When THEPSZ≤0.0D0, 1.0D-2 is set. 
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ. 

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is searched 
and what kind of pivoting is chosen if any. 
For example, 40 for complete pivoting. 

                               IPIVOT<10 or IPIVOT≥ 50, no pivoting. 

                 10≤IPIVOT<20, partial pivoting 

                 20≤IPIVOT<30, diagonal pivoting 

             21 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. 

             22 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. If Rook pivoting fails, it is changed to complete pivoting. 

                 30≤IPIVOT<40, Rook pivoting  

             32 : When within a supernode Rook pivoting fails, it is changed to complete 
pivoting. 

                 40≤IPIVOT<50, complete pivoting  

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.  

1) When ISTATIC=1 is specified. 
When the pivot searched within a supernode is not greater than SPEPSZ, it is 
replaced with its approximate value of a complex number with the absolute value of 



 DM_VSCS 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-301 

SPEPSZ. 
If its value is 0.0D0, SPEPSZ is used as an approximation value. 

The following conditions must be satisfied. 
a) EPSZ must be less than or equal to the standard value of EPSZ. 
b) Scaling must be performed with ISCLITERMAX=10. 
c) THEPSZ≥SPEPSZ must hold. 
d) IREFINE=1 must be specified for the iterative refinement of the solution.             

2) When ISTATIC≠1 is specified. 
No static pivot is performed. 

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is specified. 
The following conditions must hold. 
1.0D-8≥SPEPSZ≥EPSZ 

                               Output. When SPEPSZ<EPSZ, it is set to 1.0D-10. 

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and column 
exchanges for pivoting within each supernode is stored.  

The block number of the section where the information on the i-th supernode is 
assigned is known by j=NASSIGN(i). The position of the first element of that 
section is stored in NFCNZPIVOT(j). The information of exchange rows and 
columns within the i-th supernode is stored in the elements of 
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and 
NPIVOTQ respectively. 

One-dimensional array NFCNZPIVOT(NSUPNUM+1). 

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored. 

One-dimensional array NPIVOTP(N). 

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is stored. 

One-dimensional array NPIVOTQ(N). 

IREFINE............ Input. Control information indicating whether iterative refinement is performed 
when the solution is computed in use of results of LU decomposition. A residual 
vector is computed in quadruple precision.  

When IREFINE=1 is specified. 
The iterative refinement is performed. It is iterated until in the sequences of the 
solutions obtained in refinement the difference of the absolute values of their 
corresponding residual vectors become larger than a fourth of that of immediately 
previous ones. 

When IREFINE≠1is specified. 
No iterative refinement is performed. 

When ISTATIC=1 is specified, IREFINE=1 must be specified. 

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector  
b-Ax is sufficiently smaller compared with the absolute value of b.  

When EPSR ≤ 0.0, it is set to 1.0D-6. 

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1). 

ITER.................. Output. Actual iterative count for refinement. 

ZW......................... Work area. 
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Output/Input. 
A double precision complex one-dimensional array of size 2*NZ. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for 
preserving information among calls. The contents must not be changed. 

W......................... Work area. 

Output/Input. 
One-dimensional array of size 4*NZ+6*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for 
preserving information among calls. The contents must not be changed. 

IW1..................... Work area. 

Output/Input. 
One-dimensional array of size 2*NZ+2*(N+1)+16*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for 
preserving information among calls. The contents must not be changed. 

IW2..................... Work area. 

Output/Input.  
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N). 

When this subroutine is called repeatedly with ISW=1, 2, 3 this work area is used 
for preserving information among calls. The contents must not be changed. 

ICON................... Output. Condition code. 

(See Table DM_VSCS-1.) 

                                       

 

             U 

              

 

 

 

 

             L                               UT 

panel row indices vector  
in postorder 

 ・  ・ 

panel 
column indices vector  
in postorder 

 
Figure DM_VSCS-1  Conceptual scheme for storing decomposed results 

j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, j) 
from the p-th element of ZPANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of NPANELINDEXL. 
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A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed 
results is stored in 

      panel(s, t),   s < t,  s = 1,...,DIM(2, j), 

 t = 1,...,DIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of ZPANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area with a 
length DIM(3,j) from the v-th element of NPANELINDEXU. 

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed 
results is stored in 

      panel(x, y),   x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A 
is permuted in post ordering. 

 
 

Table DM_VSCS-1  Condition codes 

Code Meaning Processing 

0 No error  

20000 The pivot became relatively zero. The 
coefficient matrix A may be singular. 

 

20100 When IPLEDSM is specified, maximum 
matching with the length N is sought in order 
to permute large entries to the diagonal but can 
not be found. The coefficient matrix A may be 
singular. 

Processing is discontinued. 

20200 When seeking diagonal matrices for 
equilibrating both rows and columns, there is a 
zero vector in either rows or columns of the 
matrix A. The coefficient matrix A may be 
singular. 

 

20400 There is a zero element in diagonal of resultant 
matrices of LU decomposition. 

 

20500 The norm of residual vector for the solution 
vector is greater than that of  b multiplied by 
EPSR, which is the right term constant vector 
in Ax=b.  The coefficient matrix A may be 
close to a singular matrix. 
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Code Meaning Processing 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEXL < 1,  
NSIZEFACTORU < 1, NSIZEINDEXU < 1, 
ISW < 1, or ISW > 3, 
ITERMAX<1 when IREFINE=1. 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

Processing is discontinued. 

30200 The row index k stored in NROW(j) is k < 1 or 
k > n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

 

30500 When ISTATIC=1 is specified, the required 
conditions are not satisfied. 
EPSZ is greater than 16u of the standard value 
or ISCLITERMAX<10 
or IREFINE≠1 
or SPEPSZ>THEPSZ 
or SPEPSZ>1.0D-8   

 

31000 The value of NSIZEFACTORL is not enough 
as the size of ZPANELFACTORL, 
or the value of NSIZEINDEXL is not enough 
as the size of NPANELINDEXL, 
or the value of NSIZEFACTORU is not 
enough as the size of ZPANELFACTORU, 
 or the value of NSIZEINDEXU is not enough 
as the size of NPANELINDEXU. 

Reallocate the 
ZPANELFACTORL or 
NPANELINDEXL or 
ZPANELFACTORU or 
NPANELINDEXU  
with the necessary size which 
are returned in the 
NSIZEFACTORL or 
NSIZEINDEXL or 
NSIZEFACTORU or 
NSIZEINDEXU respectively 
and call this subroutine again 
with ISW=2 specified. 

 

(3) Comments on use 

a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 
Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than EPSZ 
in the process of LU decomposition. In this case, processing is discontinued with 
ICON = 20000. When unit round off is u, the standard value of EPSZ is 16  u.  
 The absolute value of a complex number is approximated as a sum of the absolute 
value of both its real part ant its imaginary part for Pivot. When the computation is 
to be continued even if the absolute value of diagonal element is small, assign the 
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minimum value to EPSZ. In this case, however, the result is not assured. 
 If Static pivot is specified to be performed, when the diagonal element is smaller 
than SPEPSZ, LU decomposition is approximately continued replacing it with 
SPEPSZ. It is required to specify to do iterative refinement. 

3)  The necessary sizes for the array ZPANELFACTORL, NPANELINDEXL, 
ZPANELFACTORU and NPANELINDEXU that store the decomposed results can 
not be determined beforehand. It is suggested to reallocate them by using the result 
of the symbolic decomposition analysis after the first call of this routine, or allocate 
large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first. And call 
this routine with the small values such as one in the size specifying in 
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU with 
ISW=1. This routine ends with ICON=31000, and the necessary sizes for 
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are 
returned. Then the suspended process can be resumed by calling it with ISW=2 after 
reallocating the arrays with the necessary sizes. 

4)  Nodes corresponding to column number is considered. The node number permuted 
in post order is stored in NPOSTO. This array indicates what node number in 
original node number the i-th node in post order is corresponding. It means j-th 
position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also as 
well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

5)  Instead of  this routine, a system of equations Ax=b can be solved by calling both 
DM_VSCLU to perform LU decomposition of an unsymmetric complex sparse 
matrix A and DM_VSCLUX to solve the linear equation in use of decomposed 
results. 

b. Example 

 The linear system of equations Ax=f is solved, where a matrix is built using results from 
the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag and 
the portion in only its six lower diagonals are converted in compressed column storage 
format. The linear system of equations with an unsymmetric real sparse matrix A built in 
this way is stored into a complex sparse matrix and is solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this 
program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD, 
     $      N = KX*KY*KZ) 
      PARAMETER (NBORDER=N+1,NOFFDIAG=6) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      INTEGER*4 WL,ZWL 
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      PARAMETER (NALL=NDIAG*N, 
C 
     $   ZWL =2*NALL,                               
     $   WL  =4*NALL+6*N, 
     $   IW1L=2*NALL+2*(N+1)+16*N, 
     $   IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))   
C 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)  
      COMPLEX*16 ZA(K*NDIAG),ZWC(K*NDIAG), 
     $           ZW(ZWL),ZONE                       
      PARAMETER(ZONE=(1.0D0,0.0D0))                
      DIMENSION NROW(K*NDIAG),NFCNZ(N+1), 
     $          NROWSYM(K*NDIAG+N),NFCNZSYM(N+1), 
     $          IWC(2,K*NDIAG)                      
      DIMENSION NPERM(N),W(WL), 
     $          NPOSTO(N),NDIM(3,N), 
     $          NASSIGN(N), 
     $          MZ(N), 
     $          IW1(IW1L),IW2(IW2L) 
      COMPLEX*16, DIMENSION(:), ALLOCATABLE ::  
     $        ZPANELFACTORL,ZPANELFACTORU       
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU 
      COMPLEX*16 ZDUMMYFL,ZDUMMYFU 
      INTEGER*4 NDUMMYIL,       
     $          NDUMMYIU        
      INTEGER*8 NSIZEFACTORL, 
     $          NSIZEINDEXL,      
     $          NSIZEINDEXU,     
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1)  
      COMPLEX*16 ZB(N),ZSOLEX(N)                       
      REAL*8 EPSZ,THEPSZ,SPEPSZ, 
     $       SCLROW(N),SCLCOL(N)   
C 
      INTEGER*4     IPIVOT,ISTATIC,NFCNZPIVOT(N+1),   
     $              NPIVOTP(N),NPIVOTQ(N),     
     $              IREFINE,ITERMAX,ITER,IPLEDSM 
C 
      PRINT *,'    LU DECOMPOSITION METHOD' 
      PRINT *,'    FOR SPARSE UNSYMMETRIC COMPLEX MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
C 
      DO I=1,N 
      ZSOLEX(I)=ZONE                        
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',ZSOLEX(1),' X(N) = ',ZSOLEX(N) 
      PRINT * 
C 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
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     &          ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0         
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
C 
      DO J=1,N 
      NTOPCFG=1 
C 
      DO I=NDIAG,1,-1  
C 
      IF(NTOPCFG.EQ.1)THEN  
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF                
C 
      IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN  
      CONTINUE 
      ELSE 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      ZA(NUMNZ)=DCMPLX(DIAG2(J,I),0.0D0)           
      NROW(NUMNZ)=NCOL 
C 
      NUMNZ=NUMNZ+1 
C 
      ENDIF  
      ENDIF    
      ENDDO 
      ENDDO 
C 
      NFCNZ(N+1)=NUMNZ 
      NZ=NUMNZ-1 
C 
      CALL DM_VMVSCCC(ZA,NZ,NROW,NFCNZ,N,ZSOLEX,        
     $             ZB,ZWC,IWC,ICON)                    
C 
C     INITIAL CALL WITH IORDER=1 
C 
      IORDERING= 0              
      IPLEDSM=1 
      ISCLITERMAX=10 
      ISW=1 
      EPSZ=1.0D-16 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEXL=1   
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      NSIZEINDEXU=1   
      THEPSZ=1.0D-2 
      SPEPSZ=0.0D0 
      IPIVOT=40 
      ISTATIC=0 
      IREFINE=1 
      EPSR=0.0D0 
      ITERMAX=10 
C 
      CALL DM_VSCS(ZA,NZ,NROW,NFCNZ,N,        
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              ZB, 
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZDUMMYFL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NDUMMYIL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZDUMMYFU,  
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NDUMMYIU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              ZW,W,IW1,IW2,ICON)            
C 
      PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEXL=',NSIZEINDEXL,    
     $       'NSIZEINDEXU=',NSIZEINDEXU,   
     $       'NSUPNUM=',NSUPNUM 
C 
      ALLOCATE( ZPANELFACTORL(NSIZEFACTORL) )       
      ALLOCATE( ZPANELFACTORU(NSIZEFACTORU) )       
      ALLOCATE( NPANELINDEXL(NSIZEINDEXL) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEXU) ) 
C 
      ISW=2 
C 
      CALL DM_VSCS(ZA,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,    
     $              ZB,                             
     $              NASSIGN,       
     $              NSUPNUM, 
     $              NFCNZFACTORL,ZPANELFACTORL,     
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,ZPANELFACTORU,     
     $              NSIZEFACTORU,          
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
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     $              SCLROW,SCLCOL,      
     $              EPSZ,THEPSZ,             
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,  
     $              NPIVOTP,NPIVOTQ,     
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              ZW,W,IW1,IW2,ICON)             
C 
      ERR = ERRNRM(ZSOLEX,ZB,N)                   
C 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',ZB(1),' X(N) = ',ZB(N)     
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
C 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
C 
      DEALLOCATE( ZPANELFACTORL,ZPANELFACTORU, 
     $            NPANELINDEXL, 
     $            NPANELINDEXU )      
C 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
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      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
          PRINT*,'ERROR; K0.GH.NZ ' 
          GOTO 100 
        ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
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          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | Z1 - Z2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(Z1,Z2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      COMPLEX*16 Z1(*),Z2(*),SS 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS  = Z1(I) - Z2(I)                
        S = S + DREAL(SS * DCONJG(SS))     
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 

(4) Method 

The permutation which moves large entries to the diagonal is performed. And the permutated 
matrix is scaled in order to equilibrate both rows and columns norms.  
The absolute value of a complex number is approximated as a sum of the absolute value of 
both its real part ant its imaginary part for the permutation of elements, scaling and Pivot. 
Subsequently the LU decomposition of this matrix is made. Nonzero elements belonging to 
each supernode is stored in two-dimensional panel respectively. The pivot for numerical 
stabilization is sought with in its block diagonal portion. The threshold for pivot search can be 
specified so that immediately after a pivot candidate with the absolute value greater than it is 
encountered in pivot search it is accepted as a pivot. In addition the static pivoting can be 
specified so that even if the pivot obtained after pivot search is considered as too small, it is 
replaced with the value of SPEPSZ and LU decomposition can be approximately performed.  
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Refer to references in Appendix A, “References.” in detail.  
Refer to [23], [57] on the method how the elements of large absolute value are permuted to 
diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps, to 
[19], [2], [22], [48], [68] on the base of the LU decomposition of unsymmetric complex parse 
matrices and to [63], [69] on equilibration of matrices and pivoting. 
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DM_VSEVPH 
 

Eigenvalues and eigenvectors of real symmetric matrices (tridiagonalization, multisection 
method, and inverse iteration) 

CALL DM_VSEVPH (A, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE,  
                                      M, EV, ICON) 

 

(1) Function 

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of n-
dimensional real symmetric matrix A. 

 First, the matrix is reduced to tridiagonal form using the Householder reductions.  Then, 
the specified eigenvalues are obtained by the multisection method.  The eigenvectors are 
obtained by the inverse iteration. 

Ax = x (1.1) 

 where, A is an n  n real symmetric matrix. 

(2) Parameters 

A ............... Input.  The lower triangular part {aij | i  j}of real symmetric matrix A is stored 
in the lower triangular part {A(i, j) | i  j} of A(1:N,1:N). 

After calculation, the value of A is not assured. 

Two-dimensional double-precision real array A(K,N). 

K.. ............. Input.  Size of first-dimension of array A.  (K  N). 

N ............... Input.  Order n of real symmetric matrix A 

NF ............. Input.  Number assigned to the first eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

NL ............. Input.  Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

IVEC ......... Input.  Control information. 

When the value of IVEC is 1, the eigenvalues and corresponding eigenvectors 
are calculated. 

When the value of IVEC is not 1, only the eigenvalues are calculated. 

ETOL ........ Input.  Criterion value for checking whether the eigenvalues are numerically 
different from each other or are multiple.  When ETOL is less than 3.0D-16, 
this value is used as the standard value. 

CTOL ........ Input.  Criterion value for checking whether the adjacent eigenvalues can be 
considered to be approximately equal to each other.  This check uses formula 
(3.1).  This value is used to assure the linear independence of the eigenvector 
corresponding to the eigenvalue belonging to approximately multiple 
eigenvalues (clusters). 

The value of CTOL should be generally 5.0D-12.  For a very large cluster, a 
large CTOL value is required. 
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1.0D-6  CTOL  ETOL 

When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6. 

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the 
standard value. 

(See 1) in a, “Notes,” in (3), “Comments on use.”) 

NEV ......... Output.  Number of eigenvalues calculated. 

One-dimensional array NEV(5). 

The detail information is as follows: 

NEV(1) indicates the number of different eigenvalues calculated. 

NEV(2) indicates the number of approximately multiple, different eigenvalues 
(clusters) calculated. 

NEV(3) indicates the total number of eigenvalues (including multiple 
eigenvalues) calculated. 

NEV(4) indicates the number representing the first of the eigenvalues calculated. 

NEV(5) indicates the number representing the last of the eigenvalues calculated. 

E ............... Output.  Eigenvalues are stored in E. 

The eigenvalues calculated are stored in E(1:NEV(3)). 

One-dimensional array E(MAXNE). 

MAXNE .... Input.  Maximum number of eigenvalues that can be calculated. 

When it can be considered that there are two or more eigenvalues with 
multiplicity m,  MAXNE must be set to a larger value than NLNF+1 + 2m 
that is bounded by n.  Size of the dimension of array E. 

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be 
calculated. 

(See 2) in a, “Notes,” in (3), “Comments on use.”) 

M ............. Output.  Information about multiplicity of eigenvalues calculated. 

M(i,l) indicates the multiplicity of the i-th eigenvalue i.  M(i,2) indicates the 
multiplicity of the i-th cluster when the adjacent eigenvalues are regarded as 
clusters. 

(See 1) in a, “Notes,” in (3), “Comments on use.”) 

Two-dimensional array M(MAXNE,2). 

EV ............ Output.  When IVEC = 1, the eigenvectors corresponding to the eigenvalues are 
stored in EV. 

The eigenvectors are stored in EV(1:N,1:NEV(3)). 

Two-dimensional array EV(K,MAXNE). 

ICON ......... Output.  Condition code. 

See Table DM_VSEVPH-1. 
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Table DM_VSEVPH-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 During calculation of clustered eigenvalues, the 
total number of eigenvalues exceeded the value 
of MAXNE. 

Processing is discontinued. 
The eigenvectors cannot be 
calculated, but the different 
eigenvalues themselves are 
already calculated. 
A suitable value for 
MAXNE to allow 
calculation to proceed is 
returned in NEV(3). 

(See 2) in a, “Notes,” in (3), 
“Comments on use.”) 

30000 NF < 1, NL > N, NL < NF, N < 1, K < N, or 
MAXNE < NL  NF + 1. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) This routine calculates eigenvalues independently from each other by dividing 
them into nonoverlapping, sequenced sets (parallel processing). 

When  = ETOL, the following condition is satisfied for consecutive eigenvalues 
j (j = s  1, s, ..., s + k (k  0)): 














),max(1 1

1

ii

ii  (3.1) 

If formula (3.1) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when 
i = s1 and i = s + k + 1, it is assumed that the eigenvalues j (j = s  1, s, ..., s + 
k) are numerically multiple. 

The standard value of ETOL is 3.0D-16 (about the unit round off).  With this 
value, the eigenvalues are refined up to the maximum machine precision. 

If formula (3.1) is not satisfied when  = ETOL, it can be considered that i-1 and 
i are distinct eigenvalues. 

When  = ETOL, assume that consecutive eigenvalues m (m = t - 1, t, ..., t + k (k 
 0)) are different eigenvalues.  Also, when  = CTOL, assume that formula (3.1) 
is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and i = t 
+ k + 1.  In this case, it is assumed that their different eigenvalues m (m = t - 1, 
t, ..., t + k) are approximately multiple (i.e. form a cluster).  In this case, 
independent starting vectors are generated for inverse iteration, and eigenvectors 
corresponding to m (m = t - 1, t, …, t + k) are reorthogonalized. 

2) The maximum number of eigenvalues that can be calculated is specified in 
MAXNE.  When the value of CTOL is increased, the cluster size also increases.  
Therefore, the total number of eigenvalues calculated might exceed the value of 
MAXNE.  In this case, decrease the value of CTOL or increase the value of 
MAXNE. 
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If the total number of eigenvalues calculated exceeds the value of MAXNE, 
ICON = 20000 is returned.  In this case, the eigenvectors cannot be calculated 
even if eigenvector calculation is specified.  Eigenvalues are calculated, but are 
not stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in E(1:NEV(1)).  The information 
about the multiplicity of the corresponding eigenvalues is stored in 
M(1:NEV(1),1). 

When all the eigenvalues are different from each other and there are no 
approximately multiple eigenvalues, MAXNE can be set to NT (NT=NL-NF+1). 
However, when there are multiple eigenvalues and the multiplicity can be 
assumed to be m, then MAXNE must be set to at least NT + 2  m. 

If the total number of eigenvalues to be calculated exceeds the value of MAXNE, 
the value required to continue the calculation is returned to NEV(3).  The 
calculation can be continued by allocating the area by using this returned value 
and by calling the routine again. 

b. Example 

 This example calculates the specified eigenvalues and eigenvectors of a real 
symmetric matrix whose eigenvalues and eigenvectors are known. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N=2000,K=N) 
      PARAMETER (NE=N,MAX_NEV=NE) 
      DIMENSION A(K,N),B(K,N),C(K,N),D(K,N),AC(K,N) 
      DIMENSION NEV(5),MULT(MAX_NEV,2) 
      DIMENSION EVAL(MAX_NEV),EVEC(K,MAX_NEV) 
CC 
      PAI=4.0D0*DATAN(1.0D0) 
      COEF=DSQRT(2.0D0/(N+1)) 
      DO J=1,N 
      DO I=1,N 
      D(I,J)=COEF*DSIN(PAI/(N+1)*I*J) 
      ENDDO 
      ENDDO 
CC 
      DO J=1,N 
      DO I=1,N 
      IF(I.EQ.J)THEN 
      C(I,J)=I 
      ELSE 
      C(I,J)=0.0D0 
      ENDIF 
      ENDDO 
      ENDDO 
CC 
CC    d x c -> b 
CC 
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      CALL DM_VMGGM(D,K,C,K,B,K,N,N,N,ICON) 
CC 
CC    b x d -> a 
CC 
      CALL DM_VMGGM(B,K,D,K,A,K,N,N,N,ICON) 
CC 
      DO I=1,N 
      DO J=I,N 
      AC(J,I)=A(J,I) 
      ENDDO 
      ENDDO 
      NF=1 
      NL=NE 
      IVEC=1 
      EVAL_TOL=1.0D-15 
      CLUS_TOL=1.0D-10 
      CALL DM_VSEVPH( AC,K,N,NF,NL,IVEC,EVAL_TOL,CLUS_TOL,NEV, 
     &                EVAL,MAX_NEV,MULT,EVEC,ICON ) 
      DO I=1,NE,N/20 
      PRINT*,'EIGEN VALUE IN EVAL(',I,') = ',EVAL(I) 
      ENDDO 
C 
      STOP 
      END 
 

(4) Method 

 This routine solves an eigenvalue problem of a tridiagonal matrix created from a real 
symmetric matrix.  The reduction to a tridiagonal form is a parallel version of the 
Householder reduction to tridiagonal form. (See [30] in Appendix A, “References.”) 

 The eigenvalue problem of a tridiagonal matrix is calculated using multisectioning to 
find the eigenvalues and inverse iteration for the eigenvectors.  For details, see 
“DM_VTDEVC” and see [61] in Appendix A, “References.” 

 The eigenvectors of the original matrix are found by multiplying the matrix of 
eigenvectors of the tridiagonal matrix by the matrix of transformations carried out in the 
reduction to the tridiagonal. 
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DM_VSLDL 
 

LDLT decomposition of a symmetric positive definite matrix (blocked modified Cholesky 
decomposition method) 

CALL DM_VSLDL(A,K,N,EPSZ,ICON) 

 

(1) Function 

 This subroutine executes LDLT decomposition for an n  n positive definite matrix A 
using the blocked modified Cholesky decomposition method of outer product type, so that 

 A = LDLT 

 where, L is a unit lower triangular matrix and D is a diagonal matrix. 

(2) Parameters 

A .............. Input.  The coefficient matrix A 

Output.  Matrices L and D-1. 

For input, the lower triangular part of A {aij | i  j} is stored in the lower 
triangular part {A(i, j) | i  j} of A(1:N,1:N). 

For output, the contents of A(i,j) is 

lij  (i > j), 

A reciprocal of dii  (i = j). 

altered   (i < j), 

 (See Figure DM_VSLDL-1.) 

This is a double precision real two-dimensional array A(K,N). 

K .............. Input.  The adjustable dimension of array A ( N). 

N .............. Input.  Order n of coefficient matrix A. 

EPSZ ........ Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is assumed. 

(See note 1) in (3), "Comments on use.") 

ICON ........ Output.  Condition code. 

(See Table DM_VSLDL-1.) 
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Figure DM_VSLDL-1   Storing data by Cholesky decomposition 

 The diagonal elements and lower triangular part aij of the positive definite matrix for 
which LDLT decomposition is performed is stored in array A(i, j), i = j,..., n, j =1,..., n. 

 After LDLT decomposition, the matrix D-1 is stored in diagonal elements and L (except 
the diagonal elements) are stored in the lower triangular part respectively. 

 
Table DM_VSLDL-1   Condition codes 

Code Meaning Processing 

0 No error  

10000 The pivot became negative.  The coefficient 
matrix is not positive definite. 

Processing is continued. 

20000 The pivot became relatively zero.  The 
coefficient matrix may be singular. 

Processing is discontinued. 

30000 N < 1, EPSZ < 0, K < N  

 

(3) Comments on use 

a. Notes 

1) If a value is set for EPSZ, the value has the following meaning:  if the absolute 
value of the selected pivot is less than the value for EPSZ during LDLT 
decomposition by the modified Cholesky decomposition, the value of the pivot 
is assumed to be relatively zero and processing is discontinued with ICON = 
20000.  When unit round off is u, the standard value of EPSZ is 16  u.  
 When the computation is to be continued even if the value of the pivot becomes 
small, assign the minimum value to EPSZ.  In this case, however the result is not 
assured. 

2) If the pivotal value becomes negative during decomposition, the coefficient 
matrix is no longer positive definite.  Processing continues with ICON = 10000.  
However, the accuracy of the result may not be maintained because no pivoting 
is performed. 
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3) After the calculation has been completed, the determinant of the coefficient 
matrix is computed by multiplying all the n diagonal elements of the array A and 
taking the reciprocal of the result. 

b. Example 

 LDLT decomposition is executed for a 4000  4000 matrix. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (K=4000,N=4000) 
      REAL*8    A(K,N) 
C 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)    
      DO J=1,N 
      DO I=J,N 
      A(I,J)=MIN(I,J) 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
      
      CALL DM_VSLDL(A,K,N,1.D-13,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
C 
      S=1.D0 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(A)  
!$OMP+         REDUCTION(*:S) 
      DO I=1,N 
      S=S*A(I,I) 
      ENDDO 
!$OMP END PARALLEL DO 
 
      DET=S 
      DET=1.D0/DET 
      WRITE(6,620) DET 
      WRITE(6,640) 
      DO J=1,5 
      WRITE(6,600) J,(A(I,J),I=J,5) 
      ENDDO 
      GO TO 10 
  600 FORMAT(1H,I5/(10X,3D23.16)) 
  610 FORMAT(/10X,5HICON=,I5) 
  620 FORMAT(//10X 
     *,22HDETERMINANT OF MATRIX=,D23.16) 
  640 FORMAT(/10X,17HDECOMPOSED MATRIX) 
  10  stop 
      END 
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 (4) Method 

 See [30], [54], and [70] in Appendix A, "References" for details of blocked modified 
Cholesky decomposition method of the outer product type. 
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DM_VSRLU 
 

LU decomposition of an unsymmetric real sparse matrix 

CALL DM_VSRLU(A, NZ, NROW, NFCNZ, N,  
IPLEDSM, MZ, ISCLITERMAX,  
IORDERING, NPERM, ISW,  
NROWSYM, NFCNZSYM,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
SCLROW,SCLCOL, 
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, W, IW1, IW2, ICON) 

 

(1) Function 

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the 
diagonal and then it is scaled in order to equilibrate both rows and columns norms. And 
LU decomposition is performed, in which the pivot is taken as specified within the block 
diagonal portion belonging to each supernode. 

The unsymmetric real sparse matrix is transformed as below. 

A1=DrAPcDc  

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for 
scaling rows and Dc is also a diagonal matrix for scaling columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.  
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper 
triangular matrix. 
When in pivoting process a candidate matrix element whose absolute value is larger than 
or equal to the threshold specified in THEPSZ can not be found, the element with the 
largest absolute value which in the block diagonal portion of a supernode is regarded as a 
candidate.  
If the absolute value of the candidate element is too small, the matrix can be 
approximately decomposed into LU specifying an appropriate small value as a static pivot 
in place of the candidate sought. 
 

 (2) Parameter 

A......................... Input. The nonzero elements of an unsymmetric real sparse matrix A are stored 
in A(1:NZ).  

One-dimensional array A(NZ). 
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For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). 

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric real 
sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an 
array A in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N......................... Input. Order n of matrix A. 

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal 
of a matrix A.  
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting 
large entries to the diagonal.  

Otherwise no permutation is performed. 

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns. 
MZ(i)=j indicates that the j-th column which the element of aij belongs to is 
permutated to i-th column. The element of aij is the large entry to be permuted 
to the diagonal. 
One-dimensional array MZ(N). 

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr 

and Dc to equilibrate both rows and columns of matrix A. 

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and 
Dc are assumed as unit matrices. 

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of 
iteration is considered as 10.  

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT 
permuted by the matrix P of ordering or to decompose the matrix A. 

When IORDERING=10 is specified, calling this routine with ISW=1 produces 
the informations which is needed to generate an ordering regarding A1 and they 
are set in NROWSYM and NFCNZSYM. 

When IORDERING 11 is specified, it is indicated that after an ordering is set in 
NPERM, the computation is resumed.  
Using the informations obtained in NROWSYM and NFCNZSYM after calling 
this routines with ISW=1 and IORDERING=10, an ordering is determined. 
After specifying this ordering in NPERM, this routine is called again with 
ISW=1and IORDERING=11 and the computation is resumed. 
LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is decomposed into LU. 

Output. IORDERING is set to 11 after this routine is called with 
IORDERING=10 and ISW=1. Therefore after an ordering is set in NPERM the 
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computation is resumed in the subsequent call without IORDERING=11 being 
specified explicitly.  

(See note 1) in (3), "Comments on use.") 

NPERM.............. Input. The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 

ISW..................... Input. Control information. 

1)When ISW=1 is specified. 
After symmetrization of a matrix and symbolic decomposition, checking 
whether the sufficient amount of memory for storing data are allocated the 
computation is performed. 
Call with IORDERING=10 produces the informations needed for seeking an 
ordering in NROWSYM and NFCNZSYN. Using these informations an 
ordering for SYM is determined. After an ordering is set in NPERM, calling this 
routine with IORDERING=11 and also ISW=1 again resumes the computation. 
When IORDERING is neither 10 nor 11, no ordering is specified. 

2) When ISW=2 specified. 
After the previous call ends with ICON=31000, that means that the sizes of 
PANELFACTORL or PANELFACTORU or NPANELINDEXL or 
NPANELINDEXU were not enough, the suspended computation is resumed.  
Before calling again with ISW=2, the PANELFACTORL or 
PANELFACTORU or NPANELINDEXL or NPANELINDEXU must be 
reallocated with the necessary sizes which are returned in the NSIZEFACTORL 
NSIZEFACTORU or NSIZEINDEXL or NSIZEINDEXU at the precedent call 
and specified in corresponding arguments. 
Besides, except these arguments and ISW as control information, the values in 
the other augments must not be changed between the previous and following 
calls. 

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero 
pattern of the lower triangular part of SYM=A1+A1

T in the compressed column 
storage method are generated. 

One-dimensional array NROWSYM(NZ+N). 

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row 
index of each column stored in array NROWSYM in the compressed column 
storage method which stores the nonzero pattern of the lower part of a matrix 
SYM column by column. 

NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements 
in the lower triangular part. 

One-dimensional array NFCNZ(N+1). 

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in PANELFACTORL 
and PANELFACTORU as one dimensional subarray consecutively and its 
block number is stored. The corresponding indices vectors are similarly stored 
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th 
supernode is stored into the j-th block of a subarray, where j=NASSIN(i). 

Input. When ISW≠1, the values stored in the first call are reused. Regarding  
the storage methods of decomposed matrices, refer to Figure DM_VSRLU-1. 
One-dimensional array NASSING(N). 
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NSUPNUM......... Output. The total number of supernodes. 

Input. The values in the first call are reused when ISW  1 specified. ( n) 

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric real sparse 
matrix are computed for each supernode respectively. The columns of L 
belonging to each supernode are compressed to have the common row indices 
vector and stored into a two dimensional panel with the corresponding parts of 
U in its block diagonal portion. The index number of the top array element of 
the one dimensional subarray where the i-th panel is mapped into 
PANELFACTORL consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

Input. The values set by the first call are reused when ISW  1 specified. 

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). 
The location of its top of subarray including the portion of decomposed 
matrices is stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular 
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). 
The corresponding block diagonal portion of the unit upper triangular matrix U 
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).  

One-dimensional array PANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORL..  Input. The size of the array PANELFACTORL. 8-byte integer. 

Output. The necessary size for the array PANELFACTORL is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. This column indices vector is mapped into 
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NPANELINDEXL consecutively. The block number of the section where the 
row indices vector corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray is stored in 
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into 
which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEXL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is 
allocated in the i-th location. 
NDIM(3,i) indicates the total amount of the size of the first dimension of the 
panel where a matrix U is transposed and stored and the size of its block 
diagonal portion.  

Input. When ISW1, the values set by the first call are reused. 

Two-dimensional array NDIM(3,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an 
unsymmetric real sparse matrix, the rows of U except the of block diagonal 
portion belonging to each supernode are compressed to have the common 
column indices vector and stored into a two dimensional panel. The index 
number of the top array element of the one dimensional subarray where the i-th 
panel is mapped into PANELFACTORU consecutively or the location of 
panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

Input. When ISW  1, the values set by the first call are reused. 

PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode 
are compressed to have the common column indices vector, transposed and 
stored in a two dimensional panel without its block diagonal portion. The block 
number of the section where the panel corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray 
including the portion of decomposed matrices is stored in NFCNZFACTORU(j). 
The size of the panel in the i-th block can be considered to be two dimensional 
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular 
matrix U except the block diagonal portion are compressed, transposed and 
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).  

One-dimensional array PANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 
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(See note 3) in (3), "Comments on use.") 

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer. 

Output. The necessary size for the array PANELFACTORU is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The index 
number of the top array element of the one dimensional subarray where the i-th 
column indices vector including indices of the block diagonal portion is mapped 
into NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode 
are compressed, transposed and stored in a two dimensional panel without its 
block diagonal portion. The column indices vector including indices of the 
block diagonal portion is mapped into NPANELINDEXU consecutively. The 
block number of the section where the column indices vector corresponding to 
the i-th supernode is assigned is known from j=NASSIGN(i). The location of its 
top of subarray is stored in NFCNZINDEXU(j). These column indices are the 
column numbers of the matrix into which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEXU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NPOSTO............ Output. The information about what column number of A the i-th node in post 
order corresponds to is stored. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array NPOSTO(N). 

(See note 4) in (3), "Comments on use.") 

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array SCLROW (N). 

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns 
are stored in one dimensional array. 

Input. The values set by the first call are reused when ISW  1 specified. 

One-dimensional array SCLCOL(N). 
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EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0). 

Output. When EPSZ ≤ 0.0, it is set to the standard value. 

(See note 2) in (3), "Comments on use.") 

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in 
pivot search is considered to have the value greater than or equal to the 
threshold specified, it is accepted as a pivot and the search of a pivot is broken 
off. 
For example, 1.0D-2. 

Output. When THEPSZ≤0.0D0, 1.0D-2 is set. 
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ. 

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is 
searched and what kind of pivoting is chosen if any. 
For example, 40 for complete pivoting. 

                               IPIVOT<10 or IPIVOT≥ 50, no pivoting. 

                 10≤IPIVOT<20, partial pivoting 

                 20≤IPIVOT<30, diagonal pivoting 

             21 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. 

             22 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. If Rook pivoting fails, it is changed to complete pivoting. 

                 30≤IPIVOT<40, Rook pivoting  

             32 : When within a supernode Rook pivoting fails, it is changed to complete 
pivoting. 

                 40≤IPIVOT<50, complete pivoting  

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.  

1) When ISTATIC=1 is specified. 
When the pivot searched within a supernode is not greater than SPEPSZ, it is 
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT). 
If its value is 0.0D0, SPEPSZ is used as an approximation value. 

The following conditions must be satisfied. 
a) EPSZ must be less than or equal to the standard value of EPSZ. 
b) Scaling must be performed with ISCLITERMAX=10. 
c) THEPSZ≥SPEPSZ must hold.            

2) When ISTATIC≠1 is specified. 
No static pivot is performed. 

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is 
specified. 
The following conditions must hold. 
THEPSZ≥SPEPSZ≥EPSZ 

                               Output. When SPEPSZ<EPSZ, it is set to 1.0D-10. 

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and 
column exchanges for pivoting within each supernode is stored.  

The block number of the section where the information on the i-th supernode is 
assigned is known by j=NASSIGN(i). The position of the first element of that 
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section is stored in NFCNZPIVOT(j). The information of exchange rows and 
columns within the i-th supernode is stored in the elements of 
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and 
NPIVOTQ respectively. 

One-dimensional array NFCNZPIVOT(NSUPNUM+1). 

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored. 

One-dimensional array NPIVOTP(N). 

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is 
stored. 

One-dimensional array NPIVOTQ(N). 

W......................... Work area. 

Output/Input. 
One-dimensional array of size 4*NZ+6*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

IW1..................... Work area. 

Output/Input. 
One-dimensional array of size 2*NZ+2*(N+1)+16*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

IW2..................... Work area. 

Output/Input.  
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N). 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

ICON................... Output. Condition code. 

(See Table DM_VSRLU-1.) 

 
Figure DM_VSRLU-1  Conceptual scheme for storing decomposed results 
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j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, 
j) from the p-th element of PANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of 
decomposed results is stored in 

      panel(s, t),   s < t,  s = 1,...,DIM(2, j), 

 t = 1,...,DIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of 
PANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area 
with a length DIM(3,j) from the v-th element of 
NPANELINDEXU. 

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of 
decomposed results is stored in 

      panel(x, y),   x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix 
A is permuted in post ordering. 

 
Table DM_VSRLU-1  Condition codes 
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Code Meaning Processing 

0 No error  

10000 When ISTATIC=1 is specified, Static pivot  
which replaces the pivot candidate with too 
small value with SPEPSZ is made. 

 

20000 The pivot became relatively zero. The 
coefficient matrix A may be singular. 

 

20100 When IPLEDSM is specified, maximum 
matching with the length N is sought in order 
to permute large entries to the diagonal but can 
not be found. The coefficient matrix A may be 
singular. 

 

20200 When seeking diagonal matrices for 
equilibrating both rows and columns, there is a 
zero vector in either rows or columns of the 
matrix A. The coefficient matrix A may be 
singular. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEXL < 1,  
NSIZEFACTORU < 1, NSIZEINDEXU < 1, 
ISW < 1, or ISW > 2 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

Processing is discontinued. 

30200 The row index k stored in NROW(j) is k < 1 or 
k >n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

 

30500 When ISTATIC=1 is specified, the required 
conditions are not satisfied. 
EPSZ is greater than 16u of the standard value 
or ISCLITERMAX<10 
or SPEPSZ>THEPSZ 

 

31000 The value of NSIZEFACTORL is not enough 
as the size of PANELFACTORL, 
or the value of NSIZEINDEXL is not enough 
as the size of NPANELINDEXL, 
or the value of NSIZEFACTORU is not 
enough as the size of PANELFACTORU, 
 or the value of NSIZEINDEXU is not enough 
as the size of NPANELINDEXU. 

Reallocate the 
PANELFACTORL or 
NPANELINDEXL or 
PANELFACTORU or 
NPANELINDEXU  
with the necessary size which 
are returned in the 
NSIZEFACTORL or 
NSIZEINDEXL or 
NSIZEFACTORU or 
NSIZEINDEXU respectively 
and call this subroutine again 
with ISW=2 specified. 

 

(3) Comments on use 
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a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 
Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LU decomposition. In this case, processing is 
discontinued with ICON = 20000. When unit round off is u, the standard value 
of EPSZ is 16  u. When the computation is to be continued even if the absolute 
value of diagonal element is small, assign the minimum value to EPSZ. In this 
case, however, the result is not assured. 
If Static pivot is specified to be performed, when the diagonal element is smaller 
than SPEPSZ, LU decomposition is approximately continued replacing it with 
SPEPSZ. 

3)  The necessary sizes for the array PANELFACTORL, NPANELINDEXL, 
PANELFACTORU and NPANELINDEXU that store the decomposed results 
can not be determined beforehand. It is suggested to reallocate them by using the 
result of the symbolic decomposition analysis after the first call of this routine, 
or allocate large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first. And 
call this routine with the small values such as one in the size specifying in 
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU 
with ISW=1. This routine ends with ICON=31000, and the necessary sizes for 
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are 
returned. Then the suspended process can be resumed by calling it with ISW=2 
after reallocating the arrays with the necessary sizes. 

4)  Nodes corresponding to column number is considered. The node number 
permuted in post order is stored in NPOSTO. This array indicates what node 
number in original node number the i-th node in post order is corresponding. It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

5)  A system of equations Ax=b can be solved by calling DM_VSRLUX 
subsequently in use of the results of LU decomposition obtained by this routine. 
The following arguments used in this routine are specified.  
See example in (3), "Comments on use.". 

A, NZ, NROW, NFCNZ, N,  
IPLEDSM, MZ, IORDERING, NPERM,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
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NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
SCLROW,SCLCOL, 
NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, IW2 

b. Example 

The linear system of equations Ax=f is solved, where a matrix is built using results 
from the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag 
and the portion in only its six lower diagonals are converted in compressed column 
storage format. The linear system of equations with an unsymmetric real sparse 
matrix A built in this way is solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD, 
     $      N = KX*KY*KZ) 
      PARAMETER (NBORDER=N+1,NOFFDIAG=6) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      INTEGER*4 WL 
      PARAMETER (NALL=NDIAG*N, 
C 
     $   WL  =4*NALL+6*N, 
     $   IW1L=2*NALL+2*(N+1)+16*N, 
     $   IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))   
C 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)  
      DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1), 
     $          NROWSYM(K*NDIAG+N),NFCNZSYM(N+1), 
     $        
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION NPERM(N),W(WL), 
     $          NPOSTO(N),NDIM(3,N), 
     $          NASSIGN(N),  
     $          MZ(N), 
     $          IW1(IW1L),IW2(IW2L) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTORL,PANELFACTORU 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU 
      REAL*8 DUMMYFL,DUMMYFU 
      INTEGER*4 NDUMMYIL,       
     $          NDUMMYIU       
      INTEGER*8 NSIZEFACTORL, 
     $          NSIZEINDEXL,     
     $          NSIZEINDEXU,    
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1)  
      DIMENSION B(N),SOLEX(N) 
      REAL*8 THEPSZ,EPSZ,SPEPSZ, 
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     $       SCLROW(N),SCLCOL(N)   
C 
      INTEGER*4     IPIVOT,ISTATIC,NFCNZPIVOT(N+1),   
     $              NPIVOTP(N),NPIVOTQ(N),     
     $              IREFINE,ITERMAX,ITER,IPLEDSM 
C 
      PRINT *,'    LU DECOMPOSITION METHOD' 
      PRINT *,'    FOR SPARSE UNSYMMETRIC REAL MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
C 
      DO I=1,N 
      SOLEX(I)=DBLE(1)  
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
C 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0         
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
C 
      DO J=1,N 
      NTOPCFG=1 
C 
      DO I=NDIAG,1,-1  
C 
      IF(NTOPCFG.EQ.1)THEN  
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF                
C 
      IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN  
      CONTINUE 
      ELSE 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
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      A(NUMNZ)=DIAG2(J,I) 
      NROW(NUMNZ)=NCOL 
C 
      NUMNZ=NUMNZ+1 
C 
      ENDIF  
      ENDIF    
      ENDDO 
      ENDDO 
C 
      NFCNZ(N+1)=NUMNZ 
      NZ=NUMNZ-1 
C 
      CALL DM_VMVSCC(A,NZ,NROW,NFCNZ,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
C     INITIAL CALL WITH IORDER=1 
C 
      IORDERING= 0            !  
      IPLEDSM=1 
      ISCLITERMAX=10 
      ISW=1 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEXL=1   
      NSIZEINDEXU=1   
      EPSZ=1.0D-16 
      THEPSZ=1.0D-2 
      SPEPSZ=0.0D0 
      IPIVOT=40 
      ISTATIC=0 
      IREFINE=1 
      EPSR=0.0D0 
      ITERMAX=10 
C 
      CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,DUMMYFL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NDUMMYIL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,DUMMYFU,  
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NDUMMYIU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              W,IW1,IW2,ICON) 
C 
      PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEXL=',NSIZEINDEXL,    
     $       'NSIZEINDEXU=',NSIZEINDEXU,   
     $       'NSUPNUM=',NSUPNUM 
C 
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      ALLOCATE( PANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( PANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEXL) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEXU) ) 
C 
      ISW=2 
C 
      CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,PANELFACTORU,  
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              W,IW1,IW2,ICON) 
C 
      CALL DM_VSRLUX(N, 
     $              IORDERING, 
     $              NPERM, 
     $              B, 
     $              NASSIGN,       
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,PANELFACTORU,    
     $              NSIZEFACTORU,          
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              IPLEDSM,MZ, 
     $              SCLROW,SCLCOL,      
     $              NFCNZPIVOT,  
     $              NPIVOTP,NPIVOTQ,     
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              A,NZ,NROW,NFCNZ, 
     $              IW2,ICON) 
C 
      ERR = ERRNRM(SOLEX,B,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',B(1),' X(N) = ',B(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
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      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
C 
 
      DEALLOCATE( PANELFACTORL,PANELFACTORU, 
     $            NPANELINDEXL, 
     $            NPANELINDEXU )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
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      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
          PRINT*,'ERROR; K0.GH.NZ ' 
          GOTO 100 
        ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
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          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 
 

(4) Method 

The permutation which moves large entries to the diagonal is performed. And the 
permutated matrix is scaled in order to equilibrate both rows and columns norms. The LU 
decomposition of this matrix is made. Nonzero elements belonging to each supernode is 
stored in two-dimensional panel respectively. The pivot for numerical stabilization is 
sought with in its block diagonal portion. The threshold for pivot search can be specified 
so that immediately after a pivot candidate with the absolute value greater than it is 
encountered in pivot search it is accepted as a pivot. In addition the static pivoting can be 
specified so that even if the pivot obtained after pivot search is considered as too small, it 
is replaced with the value of SPEPSZ and LU decomposition can be approximately 
performed.  
Refer to references in Appendix A, “References.” in detail.  
Refer to [23], [57] on the method how the elements of large absolute value are permuted 
to diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps, 
to [19], [2], [22], [48], [68] on the LU decomposition of unsymmetric real sparse matrices 
and to [63], [69] on equilibration of matrices and pivoting. 
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DM_VSRLUX 
 

A system of linear equations with LU-decomposed unsymmetric real sparse matrices 

CALL DM_VSRLUX(N, IORDERING, NPERM,  
B, NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
IPLEDSM, MZ, 
SCLROW,SCLCOL, NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,  
A, NZ, NROW, NFCNZ, 
IW2, ICON) 

 

(1) Function 

An n × n unsymmetric real sparse matrix A of which LU decomposition is made as below 
is given.  In this decomposition the large entries of an n × n unsymmetric real sparse 
matrix A are permutated to the diagonal and then it is scaled in order to equilibrate both 
rows and columns norms. Subsequently LU decomposition in which the pivot is taken as 
specified within the block diagonal portion belonging to each supernode is performed and 
results in the following form. This routine solves the following linear equation in use of 
these results of LU decomposition. 

                                Ax=b 

A matrix A is decomposed into as below. 

                               PrsQPDrAPcDcPTQTPcs=LU 

The unsymmetric real sparse matrix A is transformed as below. 

A1=DrAPcDc  

 where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for 
scaling rows and Dc is also a diagonal matrix for scaling columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.  
The actual exchanges  are restricted to the reduced part of the matrix belonging to each 
supernode. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.  
P and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper 
triangular matrix. 
It can be specified to improve the precision of the solution by iterative refinement.  
 

(2) Parameter 

N......................... Input. Order n of matrix A. 
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IORDERING..... Input. When IORDERING 11 is specified, it is indicated that LU decomposition 
is performed with an ordering specified in NPERM.  
The matrix PA1PT is decomposed into LU decomposition. 

Otherwise. No ordering is specified. 

 (See note 1) in (3), "Comments on use.") 

NPERM.............. Input. When IORDEING=11 is specified, a vector presenting the permutation 
matrix P used is stored. 

One-dimensional array NPERM(N). 

(See note 2) in (3), "Comments on use.") 

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax 
= b. 

Output. Solution vector x. 

One-dimensional array B(N). 

NASSIGN.......... Input. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in PANELFACTORL 
and PANELFACTORU as one dimensional subarray consecutively and its 
block number is stored. The corresponding indices vectors are similarly stored 
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th 
supernode is stored into the j-th block of a subarray, where j=NASSIN(i). 

Regarding the storage methods of decomposed matrices, refer to Figure 
DM_VSRLUX-1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Input. The total number of supernodes.( n) 

NFCNZFACTORL..Input. The decomposed matrices L and U of an unsymmetric real sparse matrix 
are computed for each supernode respectively. The columns of L belonging to 
each supernode are compressed to have the common row indices vector and 
stored into a two dimensional panel with the corresponding parts of U in its 
block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th panel is mapped into PANELFACTORL 
consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

PANELFACTORL..Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). 
The location of its top of subarray including the portion of decomposed 
matrices is stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular 
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). 
The corresponding block diagonal portion of the unit upper triangular matrix U 
except its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).  

One-dimensional array PANELFACTORL(NSIZEFACTORL). 
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Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

NSIZEFACTORL..  Input. The size of the array PANELFACTORL. 8-byte integer. 

NFCNZINDEXL... Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

NPANELINDEXL..Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the 
row indices vector corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray is stored in 
NFCNZINDEXL(j). This row indices are the row numbers of the matrix into 
which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEXL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer. 

NDIM................. Input. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is 
allocated in the i-th location. 
NDIM(3,i) indicates the total amount of the size of the first dimension of the 
panel where a matrix U is transposed and stored and the size of its block 
diagonal portion.  

Two-dimensional array NDIM(3,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

NFCNZFACTORU..Input. Regarding a matrix U derived from LU decomposition of an 
unsymmetric real sparse matrix, the rows of U except the of block diagonal 
portion belonging to each supernode are compressed to have the common 
column indices vector and stored into a two dimensional panel. The index 
number of the top array element of the one dimensional subarray where the i-th 
panel is mapped into PANELFACTORU consecutively or the location of 
panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

PANELFACTORU..Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The block 
number of the section where the panel corresponding to the i-th supernode is 



 DM_VSRLUX 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-343 

assigned is known from j=NASSIGN(i). The location of its top of subarray 
including the portion of decomposed matrices is stored in NFCNZFACTORU(j). 
The size of the panel in the i-th block can be considered to be two dimensional 
array of {DIM(3,i)-DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular 
matrix U except the block diagonal portion are compressed, transposed and 
stored in this panel(s, t), s = 1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).  

One-dimensional array PANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer. 

 (See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The index 
number of the top array element of the one dimensional subarray where the i-th 
column indices vector including indices of the block diagonal portion is mapped 
into NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

NPANELINDEXU..Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed, transposed and stored in a two dimensional panel without its block 
diagonal portion. The column indices vector including indices of the block 
diagonal portion is mapped into NPANELINDEXU consecutively. The block 
number of the section where the column indices vector corresponding to the i-th 
supernode is assigned is known from j=NASSIGN(i). The location of its top of 
subarray is stored in NFCNZINDEXU(j). These column indices are the column 
numbers of the matrix into which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEXU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRLUX-1. 

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer. 

NPOSTO............ Input. The information about what column number of A the i-th node in post 
order corresponds to is stored. 

One-dimensional array NPOSTO(N). 

(See note 3) in (3), "Comments on use.") 

IPLEDSM............ Input. Information indicating whether for LU decomposition it is specified to 
permute the large entries to the diagonal of a matrix A.  
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting 
large entries to the diagonal.  

Otherwise no permutation is performed. 

MZ....................... Input. When IPLEDSM=1 is specified, it indicates a permutation of columns. 
MZ(i)=j indicates that the j-th column which the element of aij belongs to is 
permutated to i-th column. The element of aij is the large entry to be permuted 
to the diagonal. 
One-dimensional array MZ(N). 
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SCLROW............ Input. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

One-dimensional array SCLROW (N). 

SCLCOL............ Input. The diagonal elements of Dc or a diagonal matrix for scaling columns are 
stored in one dimensional array. 

One-dimensional array SCLCOL(N). 

NFCNZPIVOT.... Input. The location for the storage where the history of relative row and column 
exchanges for pivoting within each supernode is stored.  

The block number of the section where the information on the i-th supernode is 
assigned is known by j=NASSIGN(i). The position of the first element of that 
section is stored in NFCNZPIVOT(j). The information of exchange rows and 
columns within the i-th supernode is stored in the elements of 
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and 
NPIVOTQ respectively. 

One-dimensional array NFCNZPIVOT(NSUPNUM+1). 

 NPIVOTP.......... Input. The information on exchanges of rows within each supernode is stored. 

One-dimensional array NPIVOTP(N). 

NPIVORQ.......... Input. The information on exchanges of columns within each supernode is 
stored. 

One-dimensional array NPIVOTQ(N). 

IREFINE............ Input. Control information indicating whether iterative refinement is performed 
when the solution is computed in use of results of LU decomposition. A 
residual vector is computed in quadruple precision.  

When IREFINE=1 is specified. 
The iterative refinement is performed. It is iterated until in the sequences of the 
solutions obtained in refinement the difference of the absolute values of their 
corresponding residual vectors become larger than a fourth of that of 
immediately previous ones. 

When IREFINE≠1is specified. 
No iterative refinement is performed. 

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector  
b-Ax is sufficiently smaller compared with the absolute value of b.  

When EPSR ≤ 0.0, it is set to 1.0D-6. 

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1). 

ITER.................. Output. Actual iterative count for refinement. 

A......................... Input. The nonzero elements of an unsymmetric real sparse matrix A are stored 
in A(1:NZ).  

One-dimensional array A(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). 

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric real 
sparse matrix A. 
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NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an 
array A in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

IW2..................... Work area. 

Input.  
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N). 

The data derived from calling DM_VSRLU of LU decomposition of an 
unsymmetric real sparse matrix is transferred in this work area. The contents 
must not be changed among calls. 

ICON................... Output. Condition code. 

(See Table DM_VSRLUX-1.) 

 

                                       

 

             U 

              

 

 

 

 

             L                               UT 

panel row indices vector  
in postorder 

 ・  ・ 

panel 
column indices vector  
in postorder  

 

Figure DM_VSRLUX-1  Conceptual scheme for storing decomposed results 

j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, 
j) from the p-th element of PANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 
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The block diagonal portion except diagonals of the unit upper triangular matrix U of 
decomposed results is stored in 

      panel(s, t),   s < t,  s = 1,...,DIM(2, j), 

 t = 1,...,DIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of 
PANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area 
with a length DIM(3,j) from the v-th element of 
NPANELINDEXU. 

A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of 
decomposed results is stored in 

      panel(x, y),   x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix 
A is permuted in post ordering. 

 
Table DM_VSRLUX-1  Condition codes 

Code Meaning Processing 

0 No error  

20400 There is a zero element in diagonal of resultant 
matrices of LU decomposition. 

 

20500 The norm of residual vector for the solution 
vector is greater than that of b multiplied by 
EPSR, which is the right term constant vector 
in Ax=b.  The coefficient matrix A may be 
close to a singular matrix. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEXL < 1,  
NSIZEFACTORU < 1, NSIZEINDEXU < 1,  
ITERMAX<1 when IREFINE=1. 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

Processing is discontinued. 

30200 The row index k stored in NROW(j) is k < 1 or 
k > n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

 

 

(3) Comments on use 

a. Notes  

1)     The results of LU decomposition obtained by DM_VSRLU is used. 
See  note 5) (3), "Comments on use."  of  DM_VSRLU and example in (3), 
"Comments on use." of  DM_VSRLUX. 
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2)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 

3)  Nodes corresponding to column number is considered. The node number 
permuted in post order is stored in NPOSTO. This array indicates what node 
number in original node number the i-th node in post order is corresponding. It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 2) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

 

b. Example 

The linear system of equations Ax=f is solved, where a matrix is built using results 
from the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag 
and the portion in only its six lower diagonals are converted in compressed column 
storage format. The linear system of equations with an unsymmetric real sparse 
matrix A built in this way is solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD, 
     $      N = KX*KY*KZ) 
      PARAMETER (NBORDER=N+1,NOFFDIAG=6) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      INTEGER*4 WL 
      PARAMETER (NALL=NDIAG*N, 
C 
     $   WL  =4*NALL+6*N, 
     $   IW1L=2*NALL+2*(N+1)+16*N, 
     $   IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))   
C 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)  
      DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1), 
     $          NROWSYM(K*NDIAG+N),NFCNZSYM(N+1), 
     $        
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION NPERM(N),W(WL), 
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     $          NPOSTO(N),NDIM(3,N), 
     $          NASSIGN(N),  
     $          MZ(N), 
     $          IW1(IW1L),IW2(IW2L) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTORL,PANELFACTORU 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU 
      REAL*8 DUMMYFL,DUMMYFU 
      INTEGER*4 NDUMMYIL,       
     $          NDUMMYIU       
      INTEGER*8 NSIZEFACTORL, 
     $          NSIZEINDEXL,     
     $          NSIZEINDEXU,    
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1)  
      DIMENSION B(N),SOLEX(N) 
      REAL*8 THEPSZ,EPSZ,SPEPSZ, 
     $       SCLROW(N),SCLCOL(N)   
C 
      INTEGER*4     IPIVOT,ISTATIC,NFCNZPIVOT(N+1),   
     $              NPIVOTP(N),NPIVOTQ(N),     
     $              IREFINE,ITERMAX,ITER,IPLEDSM 
C 
      PRINT *,'    LU DECOMPOSITION METHOD' 
      PRINT *,'    FOR SPARSE UNSYMMETRIC REAL MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
C 
      DO I=1,N 
      SOLEX(I)=DBLE(1)  
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
C 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0         
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
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      NUMNZ=1 
C 
      DO J=1,N 
      NTOPCFG=1 
C 
      DO I=NDIAG,1,-1  
C 
      IF(NTOPCFG.EQ.1)THEN  
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF                
C 
      IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN  
      CONTINUE 
      ELSE 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      A(NUMNZ)=DIAG2(J,I) 
      NROW(NUMNZ)=NCOL 
C 
      NUMNZ=NUMNZ+1 
C 
      ENDIF  
      ENDIF    
      ENDDO 
      ENDDO 
C 
      NFCNZ(N+1)=NUMNZ 
      NZ=NUMNZ-1 
C 
      CALL DM_VMVSCC(A,NZ,NROW,NFCNZ,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
C     INITIAL CALL WITH IORDER=1 
C 
      IORDERING= 0            !  
      IPLEDSM=1 
      ISCLITERMAX=10 
      ISW=1 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEXL=1   
      NSIZEINDEXU=1   
      EPSZ=1.0D-16 
      THEPSZ=1.0D-2 
      SPEPSZ=0.0D0 
      IPIVOT=40 
      ISTATIC=0 
      IREFINE=1 
      EPSR=0.0D0 
      ITERMAX=10 
C 
      CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,DUMMYFL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
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     $              NDUMMYIL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,DUMMYFU,  
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NDUMMYIU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              W,IW1,IW2,ICON) 
C 
      PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEXL=',NSIZEINDEXL,    
     $       'NSIZEINDEXU=',NSIZEINDEXU,   
     $       'NSUPNUM=',NSUPNUM 
C 
      ALLOCATE( PANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( PANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEXL) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEXU) ) 
C 
      ISW=2 
C 
      CALL DM_VSRLU(A,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,PANELFACTORU,  
     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              W,IW1,IW2,ICON) 
C 
      CALL DM_VSRLUX(N, 
     $              IORDERING, 
     $              NPERM, 
     $              B, 
     $              NASSIGN,       
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,PANELFACTORU,    
     $              NSIZEFACTORU,          
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
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     $              NPOSTO, 
     $              IPLEDSM,MZ, 
     $              SCLROW,SCLCOL,      
     $              NFCNZPIVOT,  
     $              NPIVOTP,NPIVOTQ,     
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              A,NZ,NROW,NFCNZ, 
     $              IW2,ICON) 
C 
      ERR = ERRNRM(SOLEX,B,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',B(1),' X(N) = ',B(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
C 
 
      DEALLOCATE( PANELFACTORL,PANELFACTORU, 
     $            NPANELINDEXL, 
     $            NPANELINDEXU )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
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      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
          PRINT*,'ERROR; K0.GH.NZ ' 
          GOTO 100 
        ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
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          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
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DM_VSRS 
 

A system of linear equations with unsymmetric real sparse matrices (LU decomposition 
method) 

CALL DM_VSRS(A, NZ, NROW, NFCNZ, N, 
IPLEDSM, MZ, ISCLITERMAX,  
IORDERING, NPERM, ISW,  
NROWSYM, NFCNZSYM, B,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEXL, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NSIZEINDEXU, NPOSTO, 
SCLROW, SCLCOL, 
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ, NFCNZPIVOT, 
NPIVOTP, NPIVOTQ, IREFINE, EPSR, ITERMAX, ITER,  
W, IW1, IW2, ICON) 

 

(1) Function 

The large entries of an n × n unsymmetric real sparse matrix A are permutated to the diagonal 
and then it is scaled in order to equilibrate both rows and columns norms. Subsequently this 
subroutine solves a system of equations Ax=b in use of LU decomposition in which the pivot 
is taken as specified within the block diagonal portion belonging to each supernode. 

                                Ax=b 

The unsymmetric real sparse matrix is transformed as below. 

A1=DrAPcDc  

where Pc is an orthogonal matrix for column permutation, Dr is a diagonal matrix for scaling 
rows and Dc is also a diagonal matrix for scaling columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
nonzero elements for SYM=A1+A1

T and Q is a permutation matrix of postorder for SYM.  P 
and Q are orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular 
matrix. 
When in pivoting process a candidate matrix element whose absolute value is larger than or 
equal to the threshold specified in THEPSZ can not be found, the element with the largest 
absolute value which in the block diagonal portion of a supernode is regarded as a candidate.  
If the absolute value of the candidate element is too small, the matrix can be approximately 
decomposed into LU specifying an appropriate small value as a static pivot in place of the 
candidate sought. 
The solution is computed using LU decomposition. 
It can be specified to improve the precision of the solution by iterative refinement.  
  

(2) Parameter 

A......................... Input. The nonzero elements of an unsymmetric real sparse matrix A are stored in 
A(1:NZ).  
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One-dimensional array A(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 in the 
description for DM_VMVSCC routine (multiplication of a real sparse matrix and a 
real vector). 

NZ...................... Input. The total number of the nonzero elements belong to an unsymmetric real 
sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an array A 
in the compressed column storage method which stores the nonzero elements 
column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N......................... Input. Order n of matrix A. 

IPLEDSM............ Input. Control information whether to permute the large entries to the diagonal of a 
matrix A.  
When IPLEDSM=1 is specified, a matrix A is transformed internally permuting 
large entries to the diagonal.  

Otherwise no permutation is performed. 

MZ....................... Output. When IPLEDSM=1 is specified, it indicates a permutation of columns. 
MZ(i)=j indicates that the j-th column which the element of aij belongs to is 
permutated to i-th column. The element of aij is the large entry to be permuted to the 
diagonal. 
One-dimensional array MZ(N). 

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr and 
Dc to equilibrate both rows and columns of matrix A. 

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and Dc 
are assumed as unit matrices. 

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of iteration 
is considered as 10.  

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT 
permuted by the matrix P of ordering or to decompose the matrix A. 

When IORDERING=10 is specified, calling this routine with ISW=1 produces the 
informations which is needed to generate an ordering regarding A1 and they are set 
in NROWSYM and NFCNZSYM. 

When IORDERING 11 is specified, it is indicated that after an ordering is set in 
NPERM, the computation is resumed.  
Using the informations obtained in NROWSYM and NFCNZSYM after calling this 
routines with ISW=1 and IORDERING=10, an ordering is determined. After 
specifying this ordering in NPERM, this routine is called again with ISW=1and 
IORDERING=11 and the computation is resumed. 
LU decomposition of the matrix PA1PT is continued. 

Otherwise. Without any ordering, the matrix A1 is decomposed into LU. 
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Output. IORDERING is set to 11 after this routine is called with IORDERING=10 
and ISW=1. Therefore after an ordering is set in NPERM the computation is 
resumed in the subsequent call without IORDERING=11 being specified explicitly.  

(See note 1) in (3), "Comments on use.") 

NPERM.............. Input. The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 

ISW..................... Input. Control information. 

1)When ISW=1 is specified. 
After symmetrization of a matrix and symbolic decomposition, checking whether 
the sufficient amount of memory for storing data are allocated the computation is 
performed. 
Call with IORDERING=10 produces the informations needed for seeking an 
ordering in NROWSYM and NFCNZSYN. Using these informations an ordering 
for SYM is determined. After an ordering is set in NPERM, calling this routine with 
IORDERING=11 and also ISW=1 again resumes the computation. 
When IORDERING is neither 10 nor 11, no ordering is specified. 

2) When ISW=2 specified. 
After the previous call ends with ICON=31000, that means that the sizes of 
PANELFACTORL or PANELFACTORU or NPANELINDEXL or 
NPANELINDEXU were not enough, the suspended computation is resumed.  
Before calling again with ISW=2, the PANELFACTORL or PANELFACTORU or 
NPANELINDEXL or NPANELINDEXU must be reallocated with the necessary 
sizes which are returned in the NSIZEFACTORL NSIZEFACTORU or 
NSIZEINDEXL or NSIZEINDEXU at the precedent call and specified in 
corresponding arguments. 
Besides, except these arguments and ISW as control information, the values in the 
other augments must not be changed between the previous and following calls. 

3) When ISW=3 is specified. 
The subsequent call with ISW=3 solves another system of equations of which the 
coefficient matrix is as same as previous call but the right-hand side vector b is 
changed. In this case, the information obtained by the previous LU decomposition 
can be reused. 
Besides, except ISW as control information and B for storing the new right-hand 
side b, the values in the other arguments must not be changed between the previous 
and following calls. 

NROWSYM........ Output. When it is called with IORDERING=10, the row indices of nonzero pattern 
of the lower triangular part of SYM=A1+A1

T in the compressed column storage 
method are generated. 

One-dimensional array NROWSYM(NZ+N). 

NFCNZSYM....... Output. When it is called with IORDERING=10, the position of the first row index 
of each column stored in array NROWSYM in the compressed column storage 
method which stores the nonzero pattern of the lower part of a matrix SYM column 
by column. 

NFCNZSYM(N+1)=NSYMZ+1 where NSYMZ is the total nonzero elements in the 
lower triangular part. 

One-dimensional array NFCNZ(N+1). 

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax = b. 
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Output. Solution vector x. 

One-dimensional array B(N). 

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in PANELFACTORL and 
PANELFACTORU as one dimensional subarray consecutively and its block 
number is stored. The corresponding indices vectors are similarly stored 
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th supernode 
is stored into the j-th block of a subarray, where j=NASSIN(i). 

Input. When ISW≠1, the values stored in the first call are reused. Regarding  
the storage methods of decomposed matrices, refer to Figure DM_VSRS-1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Output. The total number of supernodes. 

Input. The values in the first call are reused when ISW  1 specified. (≤ n) 

NFCNZFACTORL..Output. The decomposed matrices L and U of an unsymmetric real sparse matrix 
are computed for each supernode respectively. The columns of L belonging to each 
supernode are compressed to have the common row indices vector and stored into a 
two dimensional panel with the corresponding parts of U in its block diagonal 
portion. The index number of the top array element of the one dimensional subarray 
where the i-th panel is mapped into PANELFACTORL consecutively or the 
location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

Input. The values set by the first call are reused when ISW  1 specified. 

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). The 
location of its top of subarray including the portion of decomposed matrices is 
stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of DIM(1,i)  DIM(2,i). The corresponding parts of the lower triangular 
matrix L are store in this panel(s, t), s≥ t, s = 1,...,DIM(1, i), t=1,...,DIM(2,i). The 
corresponding block diagonal portion of the unit upper triangular matrix U except 
its diagonals is stored in the panel(s,t), s<t, t=1,...,DIM(2,i).  

One-dimensional array PANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORL..  Input. The size of the array PANELFACTORL. 8-byte integer. 

Output. The necessary size for the array PANELFACTORL is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
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block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the row 
indices vector corresponding to the i-th supernode is assigned is known from 
j=NASSIGN(i). The location of its top of subarray is stored in NFCNZINDEXL(j). 
This row indices are the row numbers of the matrix into which SYM is permuted in 
its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEXL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXL.... Input. The size of the array NPANELINDEXL. 8-byte integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is allocated in 
the i-th location. 
NDIM(3,i) indicates the total amount of the size of the first dimension of the panel 
where a matrix U is transposed and stored and the size of its block diagonal portion.  

Input. When ISW1, the values set by the first call are reused. 

Two-dimensional array NDIM(3,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of an unsymmetric 
real sparse matrix, the rows of U except the of block diagonal portion belonging to 
each supernode are compressed to have the common column indices vector and 
stored into a two dimensional panel. The index number of the top array element of 
the one dimensional subarray where the i-th panel is mapped into 
PANELFACTORU consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

Input. When ISW  1, the values set by the first call are reused. 

PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored in a 
two dimensional panel without its block diagonal portion. The block number of the 
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section where the panel corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray including the portion of 
decomposed matrices is stored in NFCNZFACTORU(j). The size of the panel in 
the i-th block can be considered to be two dimensional array of {DIM(3,i)-
DIM(2,i)}  DIM(2,i). The rows of the unit upper triangular matrix U except the 
block diagonal portion are compressed, transposed and stored in this panel(s, t), s = 
1,...,DIM(3, i)-DIM(2,i), t=1,...,DIM(2,i).  

One-dimensional array PANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer. 

Output. The necessary size for the array PANELFACTORU is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored in a 
two dimensional panel without its block diagonal portion. The index number of the 
top array element of the one dimensional subarray where the i-th column indices 
vector including indices of the block diagonal portion is mapped into 
NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed, transposed and stored in a two dimensional panel without its block 
diagonal portion. The column indices vector including indices of the block diagonal 
portion is mapped into NPANELINDEXU consecutively. The block number of the 
section where the column indices vector corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray is stored 
in NFCNZINDEXU(j). These column indices are the column numbers of the matrix 
into which SYM is permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEXU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSRS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEXU.... Input. The size of the array NPANELINDEXU. 8-byte integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NPOSTO............ Output. The information about what column number of A the i-th node in post order 
corresponds to is stored. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array NPOSTO(N). 

(See note 4) in (3), "Comments on use.") 
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SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array SCLROW (N). 

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns are 
stored in one dimensional array. 

Input. The values set by the first call are reused when ISW  1 specified. 

One-dimensional array SCLCOL(N). 

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0). 

Output. When EPSZ ≤ 0.0, it is set to the standard value. 

(See note 2) in (3), "Comments on use.") 

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in 
pivot search is considered to have the value greater than or equal to the threshold 
specified, it is accepted as a pivot and the search of a pivot is broken off. 
For example, 1.0D-2. 

Output. When THEPSZ≤0.0D0, 1.0D-2 is set. 
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ. 

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is searched 
and what kind of pivoting is chosen if any. 
For example, 40 for complete pivoting. 

                               IPIVOT<10 or IPIVOT≥ 50, no pivoting. 

                 10≤IPIVOT<20, partial pivoting 

                 20≤IPIVOT<30, diagonal pivoting 

             21 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. 

             22 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. If Rook pivoting fails, it is changed to complete pivoting. 

                 30≤IPIVOT<40, Rook pivoting  

             32 : When within a supernode Rook pivoting fails, it is changed to complete 
pivoting. 

                 40≤IPIVOT<50, complete pivoting  

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.  

1) When ISTATIC=1 is specified. 
When the pivot searched within a supernode is not greater than SPEPSZ, it is 
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT). 
If its value is 0.0D0, SPEPSZ is used as an approximation value. 

The following conditions must be satisfied. 
a) EPSZ must be less than or equal to the standard value of EPSZ. 
b) Scaling must be performed with ISCLITERMAX=10. 
c) THEPSZ≥SPEPSZ must hold. 
d) IREFINE=1 must be specified for the iterative refinement of the solution.             

2) When ISTATIC≠1 is specified. 
No static pivot is performed. 
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SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is specified. 
The following conditions must hold. 
1.0D-10≥SPEPSZ≥EPSZ 

                               Output. When SPEPSZ<EPSZ, it is set to 1.0D-10. 

NFCNZPIVOT.... Output. The location for the storage where the history of relative row and column 
exchanges for pivoting within each supernode is stored.  

The block number of the section where the information on the i-th supernode is 
assigned is known by j=NASSIGN(i). The position of the first element of that 
section is stored in NFCNZPIVOT(j). The information of exchange rows and 
columns within the i-th supernode is stored in the elements of 
is=NFCNZPIVOT(j),…, ie=NFCNZPIVOT(j)+NDIM(2,j)-1 in NPIVOTP and 
NPIVOTQ respectively. 

One-dimensional array NFCNZPIVOT(NSUPNUM+1). 

 NPIVOTP.......... Output. The information on exchanges of rows within each supernode is stored. 

One-dimensional array NPIVOTP(N). 

NPIVORQ.......... Output. The information on exchanges of columns within each supernode is stored. 

One-dimensional array NPIVOTQ(N). 

IREFINE............ Input. Control information indicating whether iterative refinement is performed 
when the solution is computed in use of results of LU decomposition. A residual 
vector is computed in quadruple precision.  

When IREFINE=1 is specified. 
The iterative refinement is performed. It is iterated until in the sequences of the 
solutions obtained in refinement the difference of the absolute values of their 
corresponding residual vectors become larger than a fourth of that of immediately 
previous ones. 

When IREFINE≠1is specified. 
No iterative refinement is performed. 

When ISTATIC=1 is specified, IREFINE=1 must be specified. 

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector  
b-Ax is sufficiently smaller compared with the absolute value of b.  

When EPSR ≤ 0.0, it is set to 1.0D-6. 

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1). 

ITER.................. Output. Actual iterative count for refinement. 

W......................... Work area. 

Output/Input. 
One-dimensional array of size 4*NZ+6*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for 
preserving information among calls. The contents must not be changed. 

IW1..................... Work area. 

Output/Input. 
One-dimensional array of size 2*NZ+2*(N+1)+16*N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for 
preserving information among calls. The contents must not be changed. 
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IW2..................... Work area. 

Output/Input.  
One-dimensional array of size 47*N+47+NZ+4*(N+1)+2*(NZ+N). 

When this subroutine is called repeatedly with ISW=1, 2, 3 this work area is used 
for preserving information among calls. The contents must not be changed. 

ICON................... Output. Condition code. 

(See Table DM_VSRS-1.) 

                                       

 

             U 

              

 

 

 

 

             L                               UT 

panel row indices vector  
in postorder 
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column indices vector  
in postorder 

 
Figure DM_VSRS-1  Conceptual scheme for storing decomposed results 

j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length DIM(1, j)DIM(2, j) 
from the p-th element of PANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed 
results is stored in 

      panel(s, t),   s < t,  s = 1,...,DIM(2, j), 

 t = 1,...,DIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (DIM(3, j)-
DIM(2,j))DIM(2, j) from the u-th element of PANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area with a 
length DIM(3,j) from the v-th element of NPANELINDEXU. 
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A panel is regarded as an array of the size (DIM(3, j)-DIM(2, j))DIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed 
results is stored in 

      panel(x, y),   x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A 
is permuted in post ordering. 

 
 

Table DM_VSRS-1  Condition codes 

Code Meaning Processing 

0 No error  

20000 The pivot became relatively zero. The 
coefficient matrix A may be singular. 

 

20100 When IPLEDSM is specified, maximum 
matching with the length N is sought in order 
to permute large entries to the diagonal but can 
not be found. The coefficient matrix A may be 
singular. 

Processing is discontinued. 

20200 When seeking diagonal matrices for 
equilibrating both rows and columns, there is a 
zero vector in either rows or columns of the 
matrix A. The coefficient matrix A may be 
singular. 

 

20400 There is a zero element in diagonal of resultant 
matrices of LU decomposition. 

 

20500 The norm of residual vector for the solution 
vector is greater than that of  b multiplied by 
EPSR, which is the right term constant vector 
in Ax=b.  The coefficient matrix A may be 
close to a singular matrix. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEXL < 1,  
NSIZEFACTORU < 1, NSIZEINDEXU < 1, 
ISW < 1, or ISW > 3, 
ITERMAX<1 when IREFINE=1. 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

 

30200 The row index k stored in NROW(j) is k < 1 or 
k > n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 
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Code Meaning Processing 

30500 When ISTATIC=1 is specified, the required 
conditions are not satisfied. 
EPSZ is greater than 16u of the standard value 
or ISCLITERMAX<10 
or IREFINE≠1 
or SPEPSZ>THEPSZ 
or SPEPSZ>1.0D-10   

Processing is discontinued. 

31000 The value of NSIZEFACTORL is not enough 
as the size of PANELFACTORL, 
or the value of NSIZEINDEXL is not enough 
as the size of NPANELINDEXL, 
or the value of NSIZEFACTORU is not 
enough as the size of PANELFACTORU, 
 or the value of NSIZEINDEXU is not enough 
as the size of NPANELINDEXU. 

Reallocate the 
PANELFACTORL or 
NPANELINDEXL or 
PANELFACTORU or 
NPANELINDEXU  
with the necessary size which 
are returned in the 
NSIZEFACTORL or 
NSIZEINDEXL or 
NSIZEFACTORU or 
NSIZEINDEXU respectively 
and call this subroutine again 
with ISW=2 specified. 

 

(3) Comments on use 

a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 
Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than EPSZ 
in the process of LU decomposition. In this case, processing is discontinued with 
ICON = 20000. When unit round off is u, the standard value of EPSZ is 16  u. 
When the computation is to be continued even if the absolute value of diagonal 
element is small, assign the minimum value to EPSZ. In this case, however, the 
result is not assured. 
 If Static pivot is specified to be performed, when the diagonal element is smaller 
than SPEPSZ, LU decomposition is approximately continued replacing it with 
SPEPSZ. It is required to specify to do iterative refinement. 

3)  The necessary sizes for the array PANELFACTORL, NPANELINDEXL, 
PANELFACTORU and NPANELINDEXU that store the decomposed results can 
not be determined beforehand. It is suggested to reallocate them by using the result 
of the symbolic decomposition analysis after the first call of this routine, or allocate 
large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first. And call 
this routine with the small values such as one in the size specifying in 
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and  NSIZEINDEXU with 
ISW=1. This routine ends with ICON=31000, and the necessary sizes for 
NSIZEFACTORL, NSIZEINDEXL, NSIZEFACTORU and NSIZEINDEXU are 
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returned. Then the suspended process can be resumed by calling it with ISW=2 after 
reallocating the arrays with the necessary sizes. 

4)  Nodes corresponding to column number is considered. The node number permuted 
in post order is stored in NPOSTO. This array indicates what node number in 
original node number the i-th node in post order is corresponding. It means j-th 
position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also as 
well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

5)  Instead of  this routine, a system of equations Ax=b can be solved by calling both 
DM_VSRLU to perform LU decomposition of an unsymmetric real sparse matrix A 
and DM_VSRLUX to solve the linear equation in use of decomposed results. 

b. Example 

 The linear system of equations Ax=f is solved, where a matrix is built using results from 
the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag and 
the portion in only its six lower diagonals are converted in compressed column storage 
format. The linear system of equations with an unsymmetric real sparse matrix A built in 
this way is solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this 
program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=40,KX = NORD,KY =NORD ,KZ = NORD, 
     $      N = KX*KY*KZ) 
      PARAMETER (NBORDER=N+1,NOFFDIAG=6) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      INTEGER*4 WL 
      PARAMETER (NALL=NDIAG*N, 
C 
     $   WL  =4*NALL+6*N, 
     $   IW1L=2*NALL+2*(N+1)+16*N, 
     $   IW2L=47*N+47+4*(N+1)+NALL+2*(NALL+N))   
C 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)  
      DIMENSION A(K*NDIAG),NROW(K*NDIAG),NFCNZ(N+1), 
     $          NROWSYM(K*NDIAG+N),NFCNZSYM(N+1), 
     $        
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION NPERM(N),W(WL), 
     $          NPOSTO(N),NDIM(3,N), 
     $          NASSIGN(N), 
     $          MZ(N), 
     $          IW1(IW1L),IW2(IW2L) 



DM_VSRS 

II-366 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTORL,PANELFACTORU 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL,NPANELINDEXU 
      REAL*8 DUMMYFL,DUMMYFU 
      INTEGER*4 NDUMMYIL,       
     $          NDUMMYIU        
      INTEGER*8 NSIZEFACTORL, 
     $          NSIZEINDEXL,      
     $          NSIZEINDEXU,     
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1)  
      DIMENSION B(N),SOLEX(N) 
      REAL*8 EPSZ,THEPSZ,SPEPSZ, 
     $       SCLROW(N),SCLCOL(N)   
C 
      INTEGER*4     IPIVOT,ISTATIC,NFCNZPIVOT(N+1),   
     $              NPIVOTP(N),NPIVOTQ(N),     
     $              IREFINE,ITERMAX,ITER,IPLEDSM 
C 
      PRINT *,'    LU DECOMPOSITION METHOD' 
      PRINT *,'    FOR SPARSE UNSYMMETRIC REAL MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
C 
      DO I=1,N 
      SOLEX(I)=DBLE(1)  
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
C 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,KX,KY,KZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0         
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZ=1 
C 
      DO J=1,N 
      NTOPCFG=1 
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C 
      DO I=NDIAG,1,-1  
C 
      IF(NTOPCFG.EQ.1)THEN  
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF                
C 
      IF(J.LT.NBORDER.AND.I.GT.NOFFDIAG)THEN  
      CONTINUE 
      ELSE 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      A(NUMNZ)=DIAG2(J,I) 
      NROW(NUMNZ)=NCOL 
C 
      NUMNZ=NUMNZ+1 
C 
      ENDIF  
      ENDIF    
      ENDDO 
      ENDDO 
C 
      NFCNZ(N+1)=NUMNZ 
      NZ=NUMNZ-1 
C 
      CALL DM_VMVSCC(A,NZ,NROW,NFCNZ,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
C     INITIAL CALL WITH IORDER=1 
C 
      IORDERING= 0            !  
      IPLEDSM=1 
      ISCLITERMAX=10 
      ISW=1 
      EPSZ=1.0D-16 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEXL=1   
      NSIZEINDEXU=1   
      THEPSZ=1.0D-2 
      SPEPSZ=0.0D0 
      IPIVOT=40 
      ISTATIC=0 
      IREFINE=1 
      EPSR=0.0D0 
      ITERMAX=10 
C 
      CALL DM_VSRS(A,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,  
     $              B, 
     $              NASSIGN,    
     $              NSUPNUM, 
     $              NFCNZFACTORL,DUMMYFL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NDUMMYIL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,DUMMYFU,  
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     $              NSIZEFACTORU,        
     $              NFCNZINDEXU, 
     $              NDUMMYIU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,  
     $              EPSZ,THEPSZ,    
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,   
     $              NPIVOTP,NPIVOTQ,   
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              W,IW1,IW2,ICON) 
C 
      PRINT*,'ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEXL=',NSIZEINDEXL,    
     $       'NSIZEINDEXU=',NSIZEINDEXU,   
     $       'NSUPNUM=',NSUPNUM 
C 
      ALLOCATE( PANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( PANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEXL) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEXU) ) 
C 
      ISW=2 
C 
      CALL DM_VSRS(A,NZ,NROW,NFCNZ,N, 
     $              IPLEDSM,MZ,ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NROWSYM,NFCNZSYM,    
     $              B, 
     $              NASSIGN,       
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL, 
     $              NFCNZINDEXL, 
     $              NPANELINDEXL,NSIZEINDEXL, 
     $              NDIM, 
     $              NFCNZFACTORU,PANELFACTORU,    
     $              NSIZEFACTORU,          
     $              NFCNZINDEXU, 
     $              NPANELINDEXU,NSIZEINDEXU, 
     $              NPOSTO, 
     $              SCLROW,SCLCOL,      
     $              EPSZ,THEPSZ,             
     $              IPIVOT,ISTATIC,SPEPSZ,NFCNZPIVOT,  
     $              NPIVOTP,NPIVOTQ,     
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              W,IW1,IW2,ICON) 
C 
      ERR = ERRNRM(SOLEX,B,N) 
C 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',B(1),' X(N) = ',B(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
C 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
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         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
C 
 
      DEALLOCATE( PANELFACTORL,PANELFACTORU, 
     $            NPANELINDEXL, 
     $            NPANELINDEXU )      
C 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
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        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
          PRINT*,'ERROR; K0.GH.NZ ' 
          GOTO 100 
        ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
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        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 
 

(4) Method 

The permutation which moves large entries to the diagonal is performed. And the permutated 
matrix is scaled in order to equilibrate both rows and columns norms. Subsequently the LU 
decomposition of this matrix is made. Nonzero elements belonging to each supernode is 
stored in two-dimensional panel respectively. The pivot for numerical stabilization is sought 
with in its block diagonal portion. The threshold for pivot search can be specified so that 
immediately after a pivot candidate with the absolute value greater than it is encountered in 
pivot search it is accepted as a pivot. In addition the static pivoting can be specified so that 
even if the pivot obtained after pivot search is considered as too small, it is replaced with the 
value of SPEPSZ and LU decomposition can be approximately performed.  
Refer to references in Appendix A, “References.” in detail.  
Refer to [23], [57] on the method how the elements of large absolute value are permuted to 
diagonal, to [13] on the application algorithms of matching, to [17] on Fibonacci Heaps, to 
[19], [2], [22], [48], [68] on the LU decomposition of unsymmetric real sparse matrices and to 
[63], [69] on equilibration of matrices and pivoting. 
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DM_VSSPS 
 

A system of linear equations with symmetric positive definite sparse matrices (Left-looking 
LDLT decomposition method) 

CALL DM_VSSPS(A, NZ, NROW, NFCNZ, N, IORDERING, NPERM, ISW, EPSZ, B, 
NASSIGN, NSUPNUM, NFCNZFACTOR, PANELFACTOR, 
NSIZEFACTOR, NFCNZINDEX, NPANELINDEX, NSIZEINDEX, 
NDIM, NPOSTO, W, IW1, IW2, IW3, ICON) 

 

(1) Function 

 This subroutine solves a system of equations Ax=b using modified Cholesky LDLT 
decomposition, where A is a symmetric positive definite sparse matrix (n × n). 

 The positive definite sparse matrix is decomposed as 

QPAPTQT = LDLT, (1.1) 

 where P is a permutation matrix of ordering and Q is a permutation matrix of post 
ordering.  P and Q are orthogonal matrices, L is a unit lower triangular matrix, and D is a 
diagonal matrix. 

(2) Parameter 

A ......................... Input.  The non-zero elements of the lower triangular part {aij | i  j} of a 
symmetric sparse matrix A are stored in A(1:NZ).  

One-dimensional array A(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). 

NZ ...................... Input.  The total number of the nonzero elements belong to the lower triangular 
part of a symmetric sparse matrix A. 

NROW ............... Input.  The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ .............. Input.  The position of the first nonzero element of each column stored in an 
array A in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N ......................... Input.  Order n of matrix A. 

IORDERING ..... Input.  Control information whether to decompose the reordered matrix PAPT 
permuted by the matrix P of ordering or to decompose the matrix A. 

Specify IORDERING=1 for the decomposition of the matrix PAPT. 

Specify the other value for the decomposition of the matrix A as it is. 

NPERM .............. Input.  The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 
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(See note 1) in (3), "Comments on use.") 

ISW ..................... Input.  Control information . 

1) Specify ISW=1 for the first call. 

2) Specify ISW=2 for the subsequent call if the previous call has failed with 
ICON=31000, that means the size of PANELFACTOR or NPANELINDEX 
were not enough.  In this case, the PANELFACTOR or NPANELINDEX must 
be reallocated with the necessary sizes which are returned in the 
NSIZEFACTOR or NSIZEINDEX at the precedent call. 

Besides, the values of A, NZ, NROW, NFCNZ, N, IORDERING, NPERM, 
NASSIGN, NSUPNUM, NFCNZFACTOR, NFCNZINDEX, NPANELINDEX, 
NPOSTO, NDIM, W, IW1, IW2, and IW3 must be unchanged after the first call. 

3) Specify ISW=3 for the second and subsequent calls when solving another 
system of equations which have the same non-zero pattern of the matrix A but 
the values of its elements are different.  In this case, the information obtained in 
symbolic decomposition and the array PANELFACTOR and NPANELINDEX 
of the same size required in previous call can be reused.  Then numerical LDLT 
decomposition will proceed with that information and the new linear equations 
can be solved efficiently.  Store the values of the matrix elements in the array A, 
or store in another array C and let it be as the parameter A.  The value of 
NROW must be unchanged in both cases. 

Besides, the values of NZ, NROW, NFCNZ, N, IORDERING, NPERM, 
NASSIGN, NSUPNUM, NFCNZFACTOR, NSIZEFACTOR, NFCNZINDEX, 
NPANELINDEX, NSIZEINDEX, NPOSTO, NDIM, W, IW1, IW2, and IW3 
must be unchanged also as the previous call. 

4) Specify ISW=4 for the second and subsequent calls when solving another 
system of equations of which the coefficient matrix is as same as previous call 
but the right-hand side vector b is changed.  In this case, the information 
obtained by the previous LDLT decomposition can be reused. 

Besides the values of N, IORDERING, NPERM, NASSIGN, NSUPNUM, 
NFCNZFACTOR, NSIZEFACTOR, NFCNZINDEX, NPANELINDEX, 
NSIZEINDEX, NPOSTO, NDIM, and IW3 must be unchanged as the previous 
call. 

EPSZ .................. Input.  Judgment of relative zero of the pivot ( 0.0). 

When EPSZ is 0.0, the standard value is assumed. 

(See note 2) in (3), "Comments on use.") 

B ......................... Input.  The right-hand side constant vector b of a system of linear equations Ax 
= b. 

Output.  Solution vector x. 

One-dimensional array B(N). 

NASSIGN .......... Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  The elements 
of this array indicate the position, where this panel is allocated as a part of the 
one-dimensional array PANELFACTOR.  When j=NASSIGN(i), the i-th 
supernode is allocated at j-th position. 

Input.  The values in the first call are reused when ISW  1 specified. 
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For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1. 

One-dimensional array NASSIGN(N). 

(See note 3) in (3), "Comments on use.") 

NSUPNUM ......... Output.  The total number of supernodes. 

Input.  The values in the first call are reused when ISW  1 specified. ( n) 

NFCNZFACTOR.. Output.  Each supernode consists of multiple column vectors, and the factorized 
matrix of supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  The elements 
of this array indicate the position of the first element panel(1,1) of the i-th panel, 
where this panel is allocated as a part of the one-dimensional array 
PANELFACTOR. 

One-dimensional 8-byte integer array NFCNZFACTOR(N+1). 

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1. 

Input.  The values set by the first call are reused when ISW  1 specified. 

PANELFACTOR.. Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  These panels 
are stored in this matrix. 

The positions of the panel corresponding to the i-th supernode are indicated as 
j=NASSIGN(i).  The first position is stored in NFCNZFACTOR(j).  The 
decomposed result is stored in each panel. 

The size of the i-th panel can be considered to be two-dimensional array of 
DIM(1,i)  DIM(2,i).  The corresponding part where the lower triangular unit 
matrix except the diagonal part is stored in panel(s, t), s > t, s = 1,...,DIM(1, i), 
t=1,...,DIM(2,i) of the i-th panel.  The corresponding part of the diagonal matrix 
D is stored in panel(t, t). 

One-dimensional array PANELFACTOR(NSIZEFACTOR). 

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTOR.. Input.  The size of the array PANELFACTOR.  8-byte integer. 

Output.  The necessary size for the array PANELFACTOR is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEX... Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  The elements 
of this array indicate the position of the first element of the i-th row indices 
vector, where this panel is allocated as a part of the one-dimensional array 
NPANELINDEX. 

One-dimensional 8-byte integer array NFCNZINDEX(N+1). 

Input.  The values set by the first call are reused when ISW  1 specified. 
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For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1. 

NPANELINDEX.. Output.  Each supernode consists of multiple column vectors, and the 
supernodes are stored in two-dimensional panel by compressing rows 
containing nonzero elements with a common row indices vector.  These row 
indices vectors are stored in this matrix.  The positions of the row pointer vector 
corresponding to the i-th supernode are indicated as j=NASSIGN(i).  The first 
position is stored in NFCNZINDEX(j).  The row indices vector is stored by 
each panel.  This row indices are the row indices of the matrix QAQT to which 
the matrix A is permuted by post ordering. 

One-dimensional array NPANELFACTOR(NSIZEINDEX). 

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEX..... Input.  The size of the array PANELINDEX.  8-byte integer. 

Output.  The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NDIM ................. Output.  The size of first and second dimension of the i-th panel are stored in 
NDIM(1,i) and NDIM(2,i) respectively. 

Input.  The values set by the first call are reused when ISW  1 specified. 

Two-dimensional array NDIM(2,N). 

For the storage method of the decomposed results, refer to Figure DM_VSSPS-
1. 

NPOSTO ............ Output.  The one dimensional vector is stored which indicates what column 
index of A the i-th node in post ordering corresponds to. 

Input.  The values set by the first call are reused when ISW  1 specified. 

One-dimensional array NPOSTO(N). 

(See note 4) in (3), "Comments on use.") 

W ......................... Work area. 

Output/Input. 

When IORDERING=1,  one-dimensional array of size NZ. 

When this subroutine is called repeatedly with ISW=1,2,3,  This work area is 
used for preserving information among calls.  The contents must not be changed. 

When IORDERING1,  one-dimensional array of size 1. 

IW1 ..................... Work area. 

Output/Input. 

When IORDERING=1,  one-dimensional array of size NZ+N+1. 

When this subroutine is called repeatedly with ISW=1,2,3, This work area is 
used for preserving information among calls.  The contents must not be changed. 

When IORDERING1,  one-dimensional array of size 1. 

IW2 ..................... Work area. 
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Output/Input.  One-dimensional array of size NZ+N+1. 

When this subroutine is called repeatedly with ISW=1,2,3, This work area is 
used for preserving information among calls.  The contents must not be changed. 

IW3 ............. Work area. 

Output/Input.  One-dimensional array of size N35+35. 

When this subroutine is called repeatedly with ISW=1,2,3,4, This work area is 
used for preserving information among calls.  The contents must not be changed. 

ICON ........ Output.  Condition code. 

(See Table DM_VSSPS-1.) 

 

panel row pointer vector 

row indices of post ordering  ・ 

 
Figure DM_VSSPS-1   concept of storing the data for decomposed result 

j = NASSIGN(i)               The i-th supernode is stored at the j-th position. 

p = NFCNZFACTOR(j)   The j-th panel occupies the area with a length DIM(1, j)DIM(2, 
j) from the p-th element of PANELFACTOR. 

q = NFCNZINDEX(j)      The row pointer vector of the j-th panel occupies the area with a 
length DIM(1,j) from the q-th element of PANELINDEX. 

A panel is regarded as an array of the size DIM(1, j)DIM(2, j). 

 

The lower triangular unit matrix L except the diagonal part is stored in 

           panel(s, t),     s > t,  s = 1,...,DIM(1, j), 

 t = 1,...,DIM(2, j). 

The corresponding part of the diagonal matrix D is stored in panel(t, t). 

The row pointers indicate the column indices of the matrix QAQT to which the node of the 
matrix A is permuted by post ordering. 
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Table DM_VSSPS-1   Condition codes 

Code Meaning Processing 

0 No error  

10000 The coefficient matrix is not positive definite. Processing is continued. 

20000 The pivot became relatively zero.  The 
coefficient matrix A may be singular. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTOR < 1, NSIZEINDEX < 1, 
EPSZ < 0, ISW < 1, or ISW  > 4. 

 

30100 The permutation matrix specified in NPREM is 
not correct. 

Processing is discontinued. 

30200 The row pointer k stored in NROW(j) is k < i or 
k > N. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n - i+1. 

 

30400 There is a column without a diagonal element.  

31000 The value of NSIZEFACTOR is not enough as 
the size of PANELFACTOR, 

or the value of NSIZEINDEX is not enough as 
the size of NPANELINDEX. 

Reallocate the 
PANELFACTOR or 
NPANELINDEX with the 
necessary size which are 
returned in the 
NSIZEFACTOR or 
NSIZEINDEX, and call this 
subroutine again. 

 

(3) Comments on use 

a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
    DO i = 1,n 
    j = NPERM(i) 
    NPERMINV(j) = i 
    ENDDO 

Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LDLT decomposition.  In this case, processing is 
discontinued with ICON = 20000.  When unit round off is u, the standard value 
of EPSZ is 16  u.  When the computation is to be continued even if the pivot is 
small, assign the minimum value to EPSZ.  In this case, however, the result is 
not assured. 
 When the pivot becomes negative during the decomposition, the coefficient 
matrix is not a positive definite.  In this case, processing is continued as 
ICON=10000, but the numerical error may be large because of no pivoting. 

3)  The necessary sizes for the array PANELFACTOR and NPANELINDEX that 
store the decomposed results can not be determined beforehand.  It is suggested 
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to reallocate them by using the result of the symbolic decomposition analysis 
after the first call of this routine, or allocate large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first.  And 
call this routine with the small values such as one in the size specifying in 
NSIZEFACTOR and NSIZEINDEX.  This routine ends with ICON=31000, and 
the necessary sizes for NSIZEFACTOR and NSIZEINDEX are returned.  Then 
the suspended process can be resumed by calling it with ISW=2 after 
reallocating the arrays with the necessary sizes. 

4)  Nodes corresponding to column number is considered.  The node number 
permuted in post order is stored in NPOSTO.  This array indicates what node 
number in original node number the i-th node in post order is corresponding.  It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
    DO i = 1,n 
    j = NPOSTO(i) 
    NPOSTOINV(j) = i 
    ENDDO 

 

b. Example 

  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2, 
a3 and c are zero constants, that means the operator is Laplacian.  The matrix A in 
Diagonal format is generated by the subroutine init_mat_diag, and transferred into 
compressed column storage format. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7,NDIAGH=4) 
 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG) 
      DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1), 
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION A(NDIAGH*N),NROW(K*NDIAG),NFCNZ(N+1), 
     $          NPERM(N),NASSIGN(N),W(NDIAGH*N), 
     $          NPOSTO(N),NDIM(2,N), 
     $          IW1(NDIAGH*N+N+1), 
     $          IW2(NDIAGH*N+N+1), 
     $          IW3(35*N+35) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTOR 
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      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEX  
      REAL*8 DUMMYF 
      INTEGER*4 NDUMMYI 
      INTEGER*8 NSIZEFACTOR,NSIZEINDEX, 
     $          NFCNZFACTOR(N+1), 
     $          NFCNZINDEX(N+1) 
      DIMENSION X(N),B(N),SOLEX(N) 
 
 
      PRINT *,'    LEFT-LOOKING MODIFIED CHOLESKY METHOD' 
      PRINT *,'    FOR SPARSE POSITIVE DEFINITE MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 0.0D0 
      VA2 = 0.0D0 
      VA3 = 0.0D0 
      VC =  0.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZC=1 
      NUMNZ=1 
      DO J=1,N 
      NTOPCFGC=1 
      NTOPCFG=1 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN 
C 
      NCOL=J-NOFST(I) 
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      C(NUMNZC)=DIAG2(J,I) 
      NROWC(NUMNZC)=NCOL 
C 
      IF(NCOL.GE.J)THEN 
      A(NUMNZ)=DIAG2(J,I) 
      NROW(NUMNZ)=NCOL 
      ENDIF 
 
C 
      IF(NTOPCFGC.EQ.1)THEN 
      NFCNZC(J)=NUMNZC 
      NTOPCFGC=0 
      ENDIF 
C 
      IF(NTOPCFG.EQ.1)THEN 
      NFCNZ(J)=NUMNZ 
      NTOPCFG=0 
      ENDIF 
C 
      IF(NCOL.GE.J)THEN 
      NUMNZ=NUMNZ+1 
      ENDIF 
C 
      NUMNZC=NUMNZC+1 
      ENDIF 
C 
      ENDDO 
      ENDDO 
      NFCNZC(N+1)=NUMNZC 
      NNZC=NUMNZC-1 
      NFCNZ(N+1)=NUMNZ 
      NNZ=NUMNZ-1 
C 
 
      CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
      X=B 
      IORDERING=0 
      ISW=1 
      EPSZ=0.0D0 
      NSIZEFACTOR=1 
      NSIZEINDEX=1 
 
      CALL DM_VSSPS(A,NNZ,NROW,NFCNZ,N,IORDERING, 
     $              NPERM,ISW,EPSZ,X,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,DUMMYF, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NDUMMYI,NSIZEINDEX,NDIM,NPOSTO, 
     $              W,IW1,IW2,IW3,ICON) 
 
      PRINT * 
      PRINT *,'    ICON = ',ICON,' NSIZEFACTOR = ',NSIZEFACTOR, 
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     $       'NSIZEINDEX = ',NSIZEINDEX 
      PRINT * 
C 
C     ALLOCATE STORAGES IN RETURNED SIZES 
C 
      ALLOCATE( PANELFACTOR(NSIZEFACTOR) ) 
      ALLOCATE( NPANELINDEX(NSIZEINDEX) ) 
 
      ISW=2 
 
      CALL DM_VSSPS(A,NNZ,NROW,NFCNZ,N,IORDERING, 
     $              NPERM,ISW,EPSZ,X,NASSIGN,NSUPNUM, 
     $              NFCNZFACTOR,PANELFACTOR, 
     $              NSIZEFACTOR,NFCNZINDEX, 
     $              NPANELINDEX,NSIZEINDEX,NDIM,NPOSTO, 
     $              W,IW1,IW2,IW3,ICON) 
 
      ERR = ERRNRM(SOLEX,X,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'    ********** OK **********' 
      ELSE 
         WRITE(*,*)'    ********** NG **********' 
      ENDIF 
 
      DEALLOCATE( PANELFACTOR,NPANELINDEX )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
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        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
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        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
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!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 
 

(4) Method 

 Through the symbolic decomposition process, this routine analyze the data dependence 
among columns and the structure of the non-zero elements of matrix L which is a factor 
matrix of modified Cholesky LDLT decomposition.  Based on this analysis, the 
supernodes that bundles certain columns are detected.  The columns which have similar 
non-zero pattern are merged as a supernode together.  This means that some rows include 
additional zero elements and that the number of columns composing a supernode 
increases.  Then data during the numerical decomposition on cache is reused efficiently. 

 A union set of the row indices that indicate the row indices of the nonzero element of the 
result of the modified Cholesky decomposition is computed on the columns that compose 
a supernode.  The result of the modified Cholesky decomposition of supernodes is stored 
compressing it into the two-dimensional panel of which size of the first dimension 
becomes the number of elements of this set of row indices.  The set of row indices is 
represented as a vector. 

The left-looking modified Cholesky decomposition method is used. 

For general information on this topic, refer to [19] in Appendix A, “References.”. 

 



 DM_VSSSLU 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-385 

DM_VSSSLU 
 

LU decomposition of a structurally symmetric real sparse matrix  

CALL DM_VSSSLU( A, NZ, NROW, NFCNZ, N,  
ISCLITERMAX,  
IORDERING, NPERM, ISW,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEX, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NPOSTO, 
SCLROW,SCLCOL, 
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ,  
W, IW, ICON) 

 

(1) Function 

An n × n structurally symmetric real sparse matrix A is scaled in order to equilibrate both 
rows and columns norms. And LU decomposition is performed, in which the pivot is 
taken as specified within the block diagonal portion belonging to each supernode.  
(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero 
elements in its symmetric position. But the values of elements in a symmetric position 
are not necessarily same. ) 

The structurally symmetric real sparse matrix is transformed as below. 

A1= DrADc  

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling 
columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
elements for A and Q is a permutation matrix of postorder.  P and Q are orthogonal 
matrices.  
Due to its structural symmetry each pattern of nonzero elements in the decomposed 
matrices L and U respectively is also symmetric to each other.  L is a lower triangular 
matrix and U is a unit upper triangular matrix. 
When in pivoting process a candidate matrix element whose absolute value is larger than 
or equal to the threshold specified in THEPSZ can not be found, the element with the 
largest absolute value which in the block diagonal portion of a supernode is regarded as a 
candidate.  
If the absolute value of the candidate element is too small, the matrix can be 
approximately decomposed into LU specifying an appropriate small value as a static pivot 
in place of the candidate sought. 
 

 (2) Parameter 

A......................... Input. The nonzero elements of a structurally symmetric real sparse matrix A 
are stored in A(1:NZ).  

One-dimensional array A(NZ). 
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For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). 

NZ...................... Input. The total number of the nonzero elements belong to a structurally 
symmetric real sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an 
array A in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N......................... Input. Order n of matrix A. 

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr 

and Dc to equilibrate both rows and columns of matrix A. 

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and 
Dc are assumed as unit matrices. 

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of 
iteration is considered as 10.  

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT 
permuted by the matrix P of ordering or to decompose the matrix A. 

When IORDERING 1 is specified, the matrix PA1PT is decomposed into LU. 

Otherwise. Without any ordering, the matrix A1 is decomposed into LU. 

(See note 1) in (3), "Comments on use.") 

NPERM.............. Input. The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 

ISW..................... Input. Control information. 

1)When ISW=1 is specified. 
A first call. After symbolic decomposition, checking whether the sufficient 
amount of memory for storing data are allocated the computation is performed. 

2) When ISW=2 specified. 
After the previous call ends with ICON=31000, that means that the sizes of 
PANELFACTORL or PANELFACTORU or NPANELINDEXL or 
NPANELINDEXU were not enough, the suspended computation is resumed.  
Before calling again with ISW=2, the PANELFACTORL or 
PANELFACTORU or NPANELINDEXL or NPANELINDEXU must be 
reallocated with the necessary sizes which are returned in the NSIZEFACTORL 
NSIZEFACTORU or NSIZEINDEX at the precedent call and specified in 
corresponding arguments. 
Besides, except these arguments and ISW as control information, the values in 
the other augments must not be changed between the previous and following 
calls. 



 DM_VSSSLU 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-387 

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in PANELFACTORL 
and PANELFACTORU as one dimensional subarray consecutively and its 
block number is stored. The corresponding indices vectors are similarly stored 
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th 
supernode is stored into the j-th block of a subarray, where j=NASSIN(i). 

Input. When ISW≠1, the values stored in the first call are reused. Regarding  
the storage methods of decomposed matrices, refer to Figure DM_VSSSLU -1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Output. The total number of supernodes. 

Input. The values in the first call are reused when ISW  1 specified. ( n) 

NFCNZFACTORL..Output. The decomposed matrices L and U of a structurally symmetric real 
sparse matrix are computed for each supernode respectively. The columns of L 
belonging to each supernode are compressed to have the common row indices 
vector and stored into a two dimensional panel with the corresponding parts of 
U in its block diagonal portion. The index number of the top array element of 
the one dimensional subarray where the i-th panel is mapped into 
PANELFACTORL consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU -1. 

Input. The values set by the first call are reused when ISW  1 specified. 

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). 
The location of its top of subarray including the portion of decomposed 
matrices is stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of NDIM(1,i)  NDIM(2,i). The corresponding parts of the lower 
triangular matrix L are store in this panel(s, t), s≥ t, s = 1,...,NDIM(1, i), 
t=1,...,NDIM(2,i). The corresponding block diagonal portion of the unit upper 
triangular matrix U except its diagonals is stored in the panel(s,t), s<t, 
t=1,...,NDIM(2,i). 

One-dimensional array PANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU -1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORL..  Input. The size of the array PANELFACTORL. 8-byte integer. 

Output. The necessary size for the array PANELFACTORL is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The index number of the top array element of the one 
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dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU-1. 

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the 
row indices vector corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray is stored in 
NFCNZINDEXL(j). This row indices are the row numbers of the matrix 
permuted in its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEX). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEX.... Input. The size of the arrays NPANELINDEXL and NPANELINDEXU. 8-byte 
integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is 
allocated in the i-th location. 
NDIM(1,i)-NDIM(2,i) and NDIM(2,i) indicates the total amount of the size of 
the first dimension and second dimension of the panel where a matrix U is 
transposed and stored.  

Input. When ISW1, the values set by the first call are reused. 

Two-dimensional array NDIM(2,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU-1. 

NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of a 
structurally symmetric real sparse matrix, the rows of U except the of block 
diagonal portion belonging to each supernode are compressed to have the 
common column indices vector and stored into a two dimensional panel. The 
index number of the top array element of the one dimensional subarray where 
the i-th panel is mapped into PANELFACTORU consecutively or the location 
of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU-1. 

Input. When ISW  1, the values set by the first call are reused. 
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PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode 
are compressed to have the common column indices vector, transposed and 
stored in a two dimensional panel without its block diagonal portion. The block 
number of the section where the panel corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray 
including the portion of decomposed matrices is stored in NFCNZFACTORU(j). 
The size of the panel in the i-th block can be considered to be two dimensional 
array of {NDIM(1,i)-NDIM(2,i)}  NDIM(2,i). The rows of the unit upper 
triangular matrix U except the block diagonal portion are compressed, 
transposed and stored in this panel(s, t), s = 1,...,NDIM(1, i)-NDIM(2,i), 
t=1,...,NDIM(2,i).   

One-dimensional array PANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer. 

Output. The necessary size for the array PANELFACTORU is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The index 
number of the top array element of the one dimensional subarray where the i-th 
column indices vector including indices of the block diagonal portion is mapped 
into NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU-1. 

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode 
are compressed, transposed and stored in a two dimensional panel without its 
block diagonal portion. The column indices vector including indices of the 
block diagonal portion is mapped into NPANELINDEXU consecutively. The 
block number of the section where the column indices vector corresponding to 
the i-th supernode is assigned is known from j=NASSIGN(i). The location of its 
top of subarray is stored in NFCNZINDEXU(j). These column indices are the 
column numbers of the matrix permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEX). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLU-1. 

(See note 3) in (3), "Comments on use.") 

NPOSTO............ Output. The information about what column number of A the i-th node in post 
order corresponds to is stored. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array NPOSTO(N). 

(See note 4) in (3), "Comments on use.") 
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SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array SCLROW (N). 

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns 
are stored in one dimensional array. 

Input. The values set by the first call are reused when ISW  1 specified. 

One-dimensional array SCLCOL(N). 

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0). 

Output. When EPSZ ≤ 0.0, it is set to the standard value. 

(See note 2) in (3), "Comments on use.") 

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in 
pivot search is considered to have the value greater than or equal to the 
threshold specified, it is accepted as a pivot and the search of a pivot is broken 
off. 
For example, 1.0D-2. 

Output. When THEPSZ≤0.0D0, 1.0D-2 is set. 
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ. 

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is 
searched and what kind of pivoting is chosen if any. 
For example, 40 for complete pivoting. 

                               IPIVOT<10 or IPIVOT≥ 50, no pivoting. 

                 10≤IPIVOT<20, partial pivoting 

                 20≤IPIVOT<30, diagonal pivoting 

             21 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. 

             22 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. If Rook pivoting fails, it is changed to complete pivoting. 

                 30≤IPIVOT<40, Rook pivoting  

             32 : When within a supernode Rook pivoting fails, it is changed to complete 
pivoting. 

                 40≤IPIVOT<50, complete pivoting  

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.  

1) When ISTATIC=1 is specified. 
When the pivot searched within a supernode is not greater than SPEPSZ, it is 
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT). 
If its value is 0.0D0, SPEPSZ is used as an approximation value. 

The following conditions must be satisfied. 
a) EPSZ must be less than or equal to the standard value of EPSZ. 
b) Scaling must be performed with ISCLITERMAX=10. 
c) THEPSZ≥SPEPSZ must hold.            

2) When ISTATIC≠1 is specified. 
No static pivot is performed. 
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SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is 
specified. 
The following conditions must hold. 
THEPSZ≥SPEPSZ≥EPSZ 

                               Output. When SPEPSZ<EPSZ, it is set to 1.0D-10. 

W......................... Work area. 

Output/Input. 
One-dimensional array of size NZ+N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

IW..................... Work area. 

Output/Input.  
One-dimensional array of size 36*N+36+2*NZ+3*(N+1). 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used 
for preserving information among calls. The contents must not be changed. 

ICON................... Output. Condition code. 

(See Table DM_VSSSLU-1.) 

 
Figure DM_VSSSLU-1  Conceptual scheme for storing decomposed results 
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j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length NDIM(1, 
j)NDIM(2, j) from the p-th element of PANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length NDIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size NDIM(1, j)NDIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,NDIM(1, j), 
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 t = 1,...,NDIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of 
decomposed results is stored in 

      panel(s, t),   s < t,  s = 1,...,NDIM(2, j), 

 t = 1,...,NDIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (NDIM(1, j)-
NDIM(2,j))NDIM(2, j) from the u-th element of 
PANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area 
with a length NDIM(1,j) from the v-th element of 
NPANELINDEXU. 

A panel is regarded as an array of the size (NDIM(1, j)-NDIM(2, j))NDIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of 
decomposed results is stored in 

      panel(x, y),   x = 1,..., NDIM(1, j)-NDIM(2, j), y = 1,...,NDIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix 
A is permuted in post ordering. 

 
Table DM_VSSSLU-1  Condition codes 

Code Meaning Processing 

0 No error  

10000 When ISTATIC=1 is specified, Static pivot  
which replaces the pivot candidate with too 
small value with SPEPSZ is made. 

 

20000 The pivot became relatively zero. The 
coefficient matrix A may be singular. 

 

20200 When seeking diagonal matrices for 
equilibrating both rows and columns, there is a 
zero vector in either rows or columns of the 
matrix A. The coefficient matrix A may be 
singular. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEX < 1,  
NSIZEFACTORU < 1, ISW < 1, or ISW > 2 

Processing is discontinued. 

30100 The permutation matrix specified in NPREM 
is not correct. 

 

30200 The row index k stored in NROW(j) is k < 1 or 
k >n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

 



 DM_VSSSLU 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) II-393 

Code Meaning Processing 

30500 When ISTATIC=1 is specified, the required 
conditions are not satisfied. 
EPSZ is greater than 16u of the standard value 
or ISCLITERMAX<10 
or SPEPSZ>THEPSZ 

Processing is discontinued. 

30700 The matrix A is not structurally symmetric.  

31000 The value of NSIZEFACTORL is not enough 
as the size of PANELFACTORL, 
or the value of NSIZEINDEX is not enough as 
the size of NPANELINDEXL and 
NPANELINDEXU, 
or the value of NSIZEFACTORU is not 
enough as the size of PANELFACTORU. 

Reallocate the 
PANELFACTORL or 
NPANELINDEXL and 
NPANELINDEXU or 
PANELFACTORU or  
with the necessary size which 
are returned in the 
NSIZEFACTORL or 
NSIZEINDEX or 
NSIZEFACTORU 
respectively 
and call this subroutine again 
with ISW=2 specified. 

 

(3) Comments on use 

a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 
Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than 
EPSZ in the process of LU decomposition. In this case, processing is 
discontinued with ICON = 20000. When unit round off is u, the standard value 
of EPSZ is 16  u. When the computation is to be continued even if the absolute 
value of diagonal element is small, assign the minimum value to EPSZ. In this 
case, however, the result is not assured. 
If Static pivot is specified to be performed, when the diagonal element is smaller 
than SPEPSZ, LU decomposition is approximately continued replacing it with 
SPEPSZ. 

3)  The necessary sizes for the array PANELFACTORL, NPANELINDEXL, 
PANELFACTORU and NPANELINDEXU that store the decomposed results 
can not be determined beforehand. It is suggested to reallocate them by using the 
result of the symbolic decomposition analysis after the first call of this routine, 
or allocate large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first. And 
call this routine with the small values such as one in the size specifying in 
NSIZEFACTORL, NSIZEINDEX and NSIZEFACTORU with ISW=1. This 
routine ends with ICON=31000, and the necessary sizes for NSIZEFACTORL, 
NSIZEINDEX and NSIZEFACTORU are returned. Then the suspended process 
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can be resumed by calling it with ISW=2 after reallocating the arrays with the 
necessary sizes. 

4)  Nodes corresponding to column number is considered. The node number 
permuted in post order is stored in NPOSTO. This array indicates what node 
number in original node number the i-th node in post order is corresponding. It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

5)  A system of equations Ax=b can be solved by calling DM_VSSSLUX 
subsequently in use of the results of LU decomposition obtained by this routine. 
The following arguments used in this routine are specified.  
See example in (3), "Comments on use.". 

A, NZ, NROW, NFCNZ, N,  
IORDERING, NPERM,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEX, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NPOSTO, 
SCLROW,SCLCOL, 
IW 

b. Example 

The linear system of equations Ax=f is solved, where a matrix is built using results 
from the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag 
and then it is converted in compressed column storage format. The linear system of 
equations with a structurally symmetric real sparse matrix A built in this way is 
solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ,NXY=NX*NY) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      PARAMETER (NALL=NDIAG*N, 
     $   IWL=36*N+36+2*NALL+3*(N+1)) 
      PARAMETER(IPRINT=0) 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)     
      DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1), 
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     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION A(NDIAG*N),NCOLUMN(K*NDIAG),NFCNZ(N+1), 
     $          NPERM(N),W(NDIAG*N+N), 
     $          NPOSTO(N),NDIM(2,N), 
     $          NASSIGN(N),  
     $          IW(IWL) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTORL,PANELFACTORU 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL, 
     $                                        NPANELINDEXU  
      REAL*8 DUMMYFL,DUMMYFU 
      INTEGER*4 NDUMMYIL,NDUMMYIU 
      INTEGER*8 NSIZEFACTORL,NSIZEINDEX, 
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1) 
      DIMENSION X(N),B(N),SOLEX(N),NPERM1(N) 
C 
      REAL*8 THEPSZ, 
     $       EPSR, 
     $       SEPSZ,                          
     $       SCLROW(N),SCLCOL(N)               
 
      INTEGER*4     IPIVOT,ISTATIC,          
     $              ISCLITERMAX, 
     $              IREFINE,ITERMAX,ITER   
 
 
 
      PRINT *,'    DIRECT METHOD' 
      PRINT *,'    FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
 
      DO I=1,N 
      SOLEX(I)=1.0D0 
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0          
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
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      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZC=1 
C 
      DO J=1,N 
      NTOPCFGC=1 
C 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      C(NUMNZC)=DIAG2(J,I) 
      NROWC(NUMNZC)=NCOL 
C 
      IF(NTOPCFGC.EQ.1)THEN   
      NFCNZC(J)=NUMNZC 
      NTOPCFGC=0 
      ENDIF                   
C 
      NUMNZC=NUMNZC+1 
C 
      ENDIF                  
      ENDDO 
      ENDDO 
C 
      NFCNZC(N+1)=NUMNZC 
      NNZC=NUMNZC-1 
C 
      CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
C 
      X=B 
      IORDERING=0 
      ISCLITERMAX=10 
      ISW=1 
      EPSZ=1.0D-16 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEX=1 
      THEPSZ=1.0D-2 
      EPSR=1.0D-8 
      SEPSZ=1.0D-10 
      IPIVOT=40 
      ISTATIC=1 
      IREFINE=1 
      ITERMAX=10 
 
      CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N, 
     $              ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NASSIGN,                      
     $              NSUPNUM, 
     $              NFCNZFACTORL,DUMMYFL, 
     $              NSIZEFACTORL,NFCNZINDEXL,     
     $              NDUMMYIL,NSIZEINDEX,NDIM,      
     $              NFCNZFACTORU,DUMMYFU,          
     $              NSIZEFACTORU,                  
     $              NFCNZINDEXU,NDUMMYIU,          
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     $              NPOSTO, 
     $              SCLROW,SCLCOL,               
     $              EPSZ, 
     $              THEPSZ,                     
     $              IPIVOT,ISTATIC,SEPSZ,           
     $              W,IW,ICON) 
      PRINT*,'    ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEX=',NSIZEINDEX 
      PRINT*,'    NSUPNUM=',NSUPNUM 
      PRINT * 
C 
      ALLOCATE( PANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( PANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEX) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEX) ) 
C 
      ISW=2 
      CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N, 
     $              ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NASSIGN,                   
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL,NFCNZINDEXL,           
     $              NPANELINDEXL,NSIZEINDEX,NDIM,  
     $              NFCNZFACTORU,PANELFACTORU,        
     $              NSIZEFACTORU,                 
     $              NFCNZINDEXU,NPANELINDEXU,       
     $              NPOSTO, 
     $              SCLROW,SCLCOL,               
     $              EPSZ, 
     $              THEPSZ,                      
     $              IPIVOT,ISTATIC,SEPSZ,          
     $              W,IW,ICON) 
      CALL GETTOD(T3) 
C 
      CALL DM_VSSSLUX(N, 
     $              IORDERING, 
     $              NPERM, 
     $              X, 
     $              NASSIGN,                      
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL,NFCNZINDEXL,           
     $              NPANELINDEXL,NSIZEINDEX,NDIM,       
     $              NFCNZFACTORU,PANELFACTORU,          
     $              NSIZEFACTORU,                  
     $              NFCNZINDEXU,NPANELINDEXU,       
     $              NPOSTO, 
     $              SCLROW,SCLCOL,             
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              C,NNZC,NROWC,NFCNZC, 
     $              IW, 
     $              ICON) 
 
C 
      ERR = ERRNRM(SOLEX,X,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
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      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'    ********** OK **********' 
      ELSE 
         WRITE(*,*)'    ********** NG **********' 
      ENDIF 
 
      DEALLOCATE( PANELFACTORL,PANELFACTORU,NPANELINDEXL, 
     $            NPANELINDEXU )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
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        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
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        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 
 
 

(4) Method 

The permutation which moves large entries to the diagonal is performed. And the 
permutated matrix is scaled in order to equilibrate both rows and columns norms. The LU 
decomposition of this matrix is made. Nonzero elements belonging to each supernode is 
stored in two-dimensional panel respectively. The pivot for numerical stabilization is 
sought with in its block diagonal portion. The threshold for pivot search can be specified 
so that immediately after a pivot candidate with the absolute value greater than it is 
encountered in pivot search it is accepted as a pivot. In addition the static pivoting can be 
specified so that even if the pivot obtained after pivot search is considered as too small, it 
is replaced with the value of SPEPSZ and LU decomposition can be approximately 
performed.  
Refer to references in Appendix A, “References.” in detail.  
Refer to [19], [2], [22], [48], [68] on the LU decomposition of real sparse matrices and to 
[63], [69] on equilibration of matrices and pivoting. 
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DM_VSSSLUX 
 

A system of linear equations with LU-decomposed structurally symmetric real sparse matrices  

CALL DM_VSSSLUX( N, IORDERING, NPERM, B,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEX, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NPOSTO, 
SCLROW,SCLCOL,  
IREFINE, EPSR, ITERMAX, ITER,  
A, NZ, NROW, NFCNZ, 
IW, ICON) 

 

(1) Function 

An n × n structurally symmetric real sparse matrix A of which LU decomposition is made 
as below is given.  In this decomposition an n × n structurally symmetric real sparse 
matrix A is scaled in order to equilibrate both rows and columns norms. Subsequently LU 
decomposition in which the pivot is taken as specified within the block diagonal portion 
belonging to each supernode is performed and results in the following form. This routine 
solves the following linear equation in use of these results of LU decomposition. 

                                Ax=b 

A matrix A is decomposed into as below. 

                               PrsQPDrADcPTQTPcs =LU 

The structurally symmetric real sparse matrix A is transformed as below. 

A1= DrADc  

Where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for 
scaling columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
Prs and Pcs represent row and column exchanges in orthogonal matrices respectively.  
The actual exchanges  are restricted to the reduced part of the matrix belonging to each 
supernode. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
nonzero elements for A and Q is a permutation matrix of postorder.  P and Q are 
orthogonal matrices. L is a lower triangular matrix and U is a unit upper triangular matrix. 
It can be specified to improve the precision of the solution by iterative refinement.  
 

(2) Parameter 

N......................... Input. Order n of matrix A. 

IORDERING..... Input. When IORDERING 1 is specified, it is indicated that LU decomposition 
is performed with an ordering specified in NPERM. 
The matrix PA1PT is decomposed into LU decomposition. 

Otherwise. No ordering is specified. 
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 (See note 1) in (3), "Comments on use.") 

NPERM.............. Input. When IORDEING=1 is specified, a vector presenting the permutation 
matrix P used is stored. 

One-dimensional array NPERM(N). 

(See note 2) in (3), "Comments on use.") 

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax 
= b. 

Output. Solution vector x. 

One-dimensional array B(N). 

NASSIGN.......... Input. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in PANELFACTORL 
and PANELFACTORU as one dimensional subarray consecutively and its 
block number is stored. The corresponding indices vectors are similarly stored 
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th 
supernode is stored into the j-th block of a subarray, where j=NASSIN(i). 

Regarding the storage methods of decomposed matrices, refer to Figure 
DM_VSSSLUX-1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Input. The total number of supernodes.( n) 

NFCNZFACTORL..Input. The decomposed matrices L and U of a structurally symmetric real 
sparse matrix are computed for each supernode respectively. The columns of L 
belonging to each supernode are compressed to have the common row indices 
vector and stored into a two dimensional panel with the corresponding parts of 
U in its block diagonal portion. The index number of the top array element of 
the one dimensional subarray where the i-th panel is mapped into 
PANELFACTORL consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

PANELFACTORL..Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). 
The location of its top of subarray including the portion of decomposed 
matrices is stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of NDIM(1,i)  NDIM(2,i). The corresponding parts of the lower 
triangular matrix L are store in this panel(s, t), s≥ t, s = 1,...,NDIM(1, i), 
t=1,...,NDIM(2,i). The corresponding block diagonal portion of the unit upper 
triangular matrix U except its diagonals is stored in the panel(s,t), s<t, 
t=1,...,NDIM(2,i). 

One-dimensional array PANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

NSIZEFACTORL..  Input. The size of the array PANELFACTORL. 8-byte integer. 
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NFCNZINDEXL... Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

NPANELINDEXL..Input. The columns of the decomposed matrix L belonging to each supernode 
are compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in 
its block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the 
row indices vector corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray is stored in 
NFCNZINDEXL(j). This row indices are the row numbers of the matrix 
permuted in its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEX). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

NSIZEINDEX.... Input. The size of the arrays NPANELINDEXL and NPANELINDEXU. 8-byte 
integer. 

NDIM................. Input. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is 
allocated in the i-th location. 
NDIM(1,i) -NDIM(2,i) and NDIM(2,i) indicates the total amount of the size of 
the first dimension and second dimension of the panel where a matrix U is 
transposed and stored.   

Two-dimensional array NDIM(2,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

NFCNZFACTORU..Input. Regarding a matrix U derived from LU decomposition of a structurally 
symmetric real sparse matrix, the rows of U except the of block diagonal 
portion belonging to each supernode are compressed to have the common 
column indices vector and stored into a two dimensional panel. The index 
number of the top array element of the one dimensional subarray where the i-th 
panel is mapped into PANELFACTORU consecutively or the location of 
panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

PANELFACTORU..Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The block 
number of the section where the panel corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray 
including the portion of decomposed matrices is stored in NFCNZFACTORU(j). 
The size of the panel in the i-th block can be considered to be two dimensional 
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array of {NDIM(1,i)-NDIM(2,i)}  NDIM(2,i). The rows of the unit upper 
triangular matrix U except the block diagonal portion are compressed, 
transposed and stored in this panel(s, t), s = 1,...,NDIM(1, i)-NDIM(2,i), 
t=1,...,NDIM(2,i).  

One-dimensional array PANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer. 

 (See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored 
in a two dimensional panel without its block diagonal portion. The index 
number of the top array element of the one dimensional subarray where the i-th 
column indices vector including indices of the block diagonal portion is mapped 
into NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

NPANELINDEXU..Input. The rows of the decomposed matrix U belonging to each supernode are 
compressed, transposed and stored in a two dimensional panel without its block 
diagonal portion. The column indices vector including indices of the block 
diagonal portion is mapped into NPANELINDEXU consecutively. The block 
number of the section where the column indices vector corresponding to the i-th 
supernode is assigned is known from j=NASSIGN(i). The location of its top of 
subarray is stored in NFCNZINDEXU(j). These column indices are the column 
numbers of the matrix permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEX). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSLUX-1. 

NPOSTO............ Input. The information about what column number of A the i-th node in post 
order corresponds to is stored. 

One-dimensional array NPOSTO(N). 

(See note 3) in (3), "Comments on use.") 

SCLROW............ Input. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

One-dimensional array SCLROW (N). 

SCLCOL............ Input. The diagonal elements of Dc or a diagonal matrix for scaling columns are 
stored in one dimensional array. 

One-dimensional array SCLCOL(N). 

IREFINE............ Input. Control information indicating whether iterative refinement is performed 
when the solution is computed in use of results of LU decomposition. A 
residual vector is computed in quadruple precision.  

When IREFINE=1 is specified. 
The iterative refinement is performed. It is iterated until in the sequences of the 
solutions obtained in refinement the difference of the absolute values of their 
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corresponding residual vectors become larger than a fourth of that of 
immediately previous ones. 

When IREFINE≠1is specified. 
No iterative refinement is performed. 

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector  
b-Ax is sufficiently smaller compared with the absolute value of b.  

When EPSR ≤ 0.0, it is set to 1.0D-6. 

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1). 

ITER.................. Output. Actual iterative count for refinement. 

A......................... Input. The nonzero elements of a structurally symmetric real sparse matrix A 
are stored in A(1:NZ).  

One-dimensional array A(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 
in the description for DM_VMVSCC routine (multiplication of a real sparse 
matrix and a real vector). 

NZ...................... Input. The total number of the nonzero elements to belong to a structurally 
symmetric real sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element to stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an 
array A in the compressed column storage method which stores the nonzero 
elements column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

IW..................... Work area. 

Input.  
One-dimensional array of size 36*N+36+2*NZ+3*(N+1). 

The data derived from calling DM_VSSSLU of LU decomposition of a 
structurally symmetric real sparse matrix is transferred in this work area. The 
contents must not be changed among calls. 

ICON................... Output. Condition code. 

(See Table DM_VSSSLUX-1.) 
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Figure DM_VSSSLUX-1  Conceptual scheme for storing decomposed results 

j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length NDIM(1, 
j)NDIM(2, j) from the p-th element of PANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length NDIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size NDIM(1, j)NDIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,..., NDIM(1, j), 

 t = 1,..., NDIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of 
decomposed results is stored in 

      panel(s, t),   s < t,  s = 1,..., NDIM(2, j), 

 t = 1,..., NDIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (NDIM(1, j)-
NDIM(2,j))NDIM(2, j) from the u-th element of 
PANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area 
with a length NDIM(1,j) from the v-th element of 
NPANELINDEXU. 

A panel is regarded as an array of the size (NDIM(1, j)-NDIM(2, j))NDIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of 
decomposed results is stored in 

      panel(x, y),   x = 1,..., NDIM(1, j)-NDIM(2, j), y = 1,...,NDIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix 
A is permuted in post ordering. 
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Table DM_VSSSLUX-1  Condition codes 

Code Meaning Processing 

0 No error  

20400 There is a zero element in diagonal of resultant 
matrices of LU decomposition. 

 

20500 The norm of residual vector for the solution 
vector is greater than that of  b multiplied by 
EPSR, which is the right term constant vector 
in Ax=b.  The coefficient matrix A may be 
close to a singular matrix. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEX < 1,  
NSIZEFACTORU < 1,  
ITERMAX<1 when IREFINE=1. 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

Processing is discontinued. 

30200 The row index k stored in NROW(j) is k < 1 or 
k > n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

 

 

(3) Comments on use 

a. Notes  

1)     The results of LU decomposition obtained by DM_VSSSLU is used. 
See  note 5) (3), "Comments on use."  of  DM_VSSSLU and example in (3), 
"Comments on use." of  DM_VSSSLUX. 

2)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 

3)  Nodes corresponding to column number is considered. The node number 
permuted in post order is stored in NPOSTO. This array indicates what node 
number in original node number the i-th node in post order is corresponding. It 
means j-th position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also 
as well as note 2) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

 

b. Example 
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The linear system of equations Ax=f is solved, where a matrix is built using results 
from the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag 
and then it is converted in compressed column storage format. The linear system of 
equations with a structurally symmetric real sparse matrix A built in this way is 
solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ,NXY=NX*NY) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      PARAMETER (NALL=NDIAG*N, 
     $   IWL=36*N+36+2*NALL+3*(N+1)) 
      PARAMETER(IPRINT=0) 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)     
      DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1), 
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION A(NDIAG*N),NCOLUMN(K*NDIAG),NFCNZ(N+1), 
     $          NPERM(N),W(NDIAG*N+N), 
     $          NPOSTO(N),NDIM(2,N), 
     $          NASSIGN(N),  
     $          IW(IWL) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTORL,PANELFACTORU 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL, 
     $                                        NPANELINDEXU  
      REAL*8 DUMMYFL,DUMMYFU 
      INTEGER*4 NDUMMYIL,NDUMMYIU 
      INTEGER*8 NSIZEFACTORL,NSIZEINDEX, 
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1) 
      DIMENSION X(N),B(N),SOLEX(N),NPERM1(N) 
C 
      REAL*8 THEPSZ, 
     $       EPSR, 
     $       SEPSZ,                          
     $       SCLROW(N),SCLCOL(N)               
 
      INTEGER*4     IPIVOT,ISTATIC,          
     $              ISCLITERMAX, 
     $              IREFINE,ITERMAX,ITER   
 
 
 
      PRINT *,'    DIRECT METHOD' 
      PRINT *,'    FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
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      PRINT * 
 
      DO I=1,N 
      SOLEX(I)=1.0D0 
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0          
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZC=1 
C 
      DO J=1,N 
      NTOPCFGC=1 
C 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      C(NUMNZC)=DIAG2(J,I) 
      NROWC(NUMNZC)=NCOL 
C 
      IF(NTOPCFGC.EQ.1)THEN   
      NFCNZC(J)=NUMNZC 
      NTOPCFGC=0 
      ENDIF                   
C 
      NUMNZC=NUMNZC+1 
C 
      ENDIF                  
      ENDDO 
      ENDDO 
C 
      NFCNZC(N+1)=NUMNZC 
      NNZC=NUMNZC-1 
C 
      CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX, 
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     $             B,WC,IWC,ICON) 
C 
C 
      X=B 
      IORDERING=0 
      ISCLITERMAX=10 
      ISW=1 
      EPSZ=1.0D-16 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEX=1 
      THEPSZ=1.0D-2 
      EPSR=1.0D-8 
      SEPSZ=1.0D-10 
      IPIVOT=40 
      ISTATIC=1 
      IREFINE=1 
      ITERMAX=10 
 
      CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N, 
     $              ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NASSIGN,                      
     $              NSUPNUM, 
     $              NFCNZFACTORL,DUMMYFL, 
     $              NSIZEFACTORL,NFCNZINDEXL,     
     $              NDUMMYIL,NSIZEINDEX,NDIM,      
     $              NFCNZFACTORU,DUMMYFU,          
     $              NSIZEFACTORU,                  
     $              NFCNZINDEXU,NDUMMYIU,          
     $              NPOSTO, 
     $              SCLROW,SCLCOL,               
     $              EPSZ, 
     $              THEPSZ,                     
     $              IPIVOT,ISTATIC,SEPSZ,           
     $              W,IW,ICON) 
      PRINT*,'    ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       ' NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEX=',NSIZEINDEX 
      PRINT*,'    NSUPNUM=',NSUPNUM 
      PRINT * 
C 
      ALLOCATE( PANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( PANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEX) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEX) ) 
C 
      ISW=2 
      CALL DM_VSSSLU(C,NNZC,NROWC,NFCNZC,N, 
     $              ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              NASSIGN,                   
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL,NFCNZINDEXL,           
     $              NPANELINDEXL,NSIZEINDEX,NDIM,  
     $              NFCNZFACTORU,PANELFACTORU,        
     $              NSIZEFACTORU,                 
     $              NFCNZINDEXU,NPANELINDEXU,       
     $              NPOSTO, 
     $              SCLROW,SCLCOL,               
     $              EPSZ, 
     $              THEPSZ,                      
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     $              IPIVOT,ISTATIC,SEPSZ,          
     $              W,IW,ICON) 
      CALL GETTOD(T3) 
C 
      CALL DM_VSSSLUX(N, 
     $              IORDERING, 
     $              NPERM, 
     $              X, 
     $              NASSIGN,                      
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL,NFCNZINDEXL,           
     $              NPANELINDEXL,NSIZEINDEX,NDIM,       
     $              NFCNZFACTORU,PANELFACTORU,          
     $              NSIZEFACTORU,                  
     $              NFCNZINDEXU,NPANELINDEXU,       
     $              NPOSTO, 
     $              SCLROW,SCLCOL,             
     $              IREFINE,EPSR,ITERMAX,ITER,  
     $              C,NNZC,NROWC,NFCNZC, 
     $              IW, 
     $              ICON) 
 
C 
      ERR = ERRNRM(SOLEX,X,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'    ********** OK **********' 
      ELSE 
         WRITE(*,*)'    ********** NG **********' 
      ENDIF 
 
      DEALLOCATE( PANELFACTORL,PANELFACTORU,NPANELINDEXL, 
     $            NPANELINDEXU )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
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      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
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 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
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DM_VSSSS 
 

A system of linear equations with structurally symmetric real sparse matrices  (LU 
decomposition method) 

CALL DM_VSSSS(A, NZ, NROW, NFCNZ, N, 
ISCLITERMAX,  
IORDERING, NPERM, ISW, B,  
NASSIGN, NSUPNUM,  
NFCNZFACTORL, PANELFACTORL, 
NSIZEFACTORL, NFCNZINDEXL, NPANELINDEXL, 
NSIZEINDEX, NDIM, 
NFCNZFACTORU, PANELFACTORU, NSIZEFACTORU, 
NFCNZINDEXU, NPANELINDEXU, NPOSTO, 
SCLROW, SCLCOL, 
EPSZ, THEPSZ, IPIVOT, ISTATIC, SPEPSZ,  
IREFINE, EPSR, ITERMAX, ITER,  
W, IW, ICON) 

 

(1) Function 

An n × n structurally symmetric real sparse matrix A  is scaled in order to equilibrate both 
rows and columns norms. Subsequently this subroutine solves a system of equations Ax=b in 
use of LU decomposition in which the pivot is taken as specified within the block diagonal 
portion belonging to each supernode. 
(Each nonzero element of a structurally symmetric real sparse matrix has the nonzero 
element in its symmetric position. But the values of elements in a symmetric position are not 
necessarily same.) 

                                Ax=b 

The structurally symmetric real sparse matrix is transformed as below. 

A1= DrADc  

where Dr is a diagonal matrix for scaling rows and Dc is also a diagonal matrix for scaling 
columns. 

A2=QPA1PTQT  
A2 is decomposed into LU decomposition permuting rows and columns within the block 
diagonal portion of each supernode according to specified pivoting. 
In the right term P is a permutation matrix of ordering which is sought for a pattern of 
elements for A and Q is a permutation matrix of postorder.  P and Q are orthogonal matrices. 
Due to its structural symmetry each pattern of nonzero elements in the decomposed matrices 
L and U respectively is also symmetric to each other. L is a lower triangular matrix and U is a 
unit upper triangular matrix. 
When in pivoting process a candidate matrix element whose absolute value is larger than or 
equal to the threshold specified in THEPSZ can not be found, the element with the largest 
absolute value which in the block diagonal portion of a supernode is regarded as a candidate.  
If the absolute value of the candidate element is too small, the matrix can be approximately 
decomposed into LU specifying an appropriate small value as a static pivot in place of the 
candidate sought. 
The solution is computed using LU decomposition. 
It can be specified to improve the precision of the solution by iterative refinement.  
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(2) Parameter 

A......................... Input. The nonzero elements of a structurally symmetric real sparse matrix A are 
stored in A(1:NZ).  

One-dimensional array A(NZ). 

For the compressed column storage method, refer to Figure DM_VMVSCC-1 in the 
description for DM_VMVSCC routine (multiplication of a real sparse matrix and a 
real vector). 

NZ...................... Input. The total number of the nonzero elements belong to a structurally symmetric 
real sparse matrix A. 

NROW............... Input. The row indices used in the compressed column storage method, which 
indicate the row number of each nonzero element stored in an array A. 

One-dimensional array NROW(NZ). 

NFCNZ.............. Input. The position of the first nonzero element of each column stored in an array A 
in the compressed column storage method which stores the nonzero elements 
column by column. 

NFCNZ(N+1)=NZ+1. 

One-dimensional array NFCNZ(N+1). 

N......................... Input. Order n of matrix A. 

ISCLITERMAX... Input. The upper limit for the number of iteration to seek scaling matrices of Dr and 
Dc to equilibrate both rows and columns of matrix A. 

When ISCLITERMAX ≤ 0 is specified no scaling is done. In this case Dr and Dc 
are assumed as unit matrices. 

When ISCLITERMAX ≥ 10 is specified, the upper limit for the number of iteration 
is considered as 10.  

IORDERING..... Input. Control information whether to decompose the reordered matrix PA1PT 
permuted by the matrix P of ordering or to decompose the matrix A. 

When IORDERING=1 is specified, the matrix PA1PT is decomposed into LU. 

Otherwise. Without any ordering, the matrix A1 is decomposed into LU. 

 (See note 1) in (3), "Comments on use.") 

NPERM.............. Input. The permutation matrix P is stored as a vector. 

One-dimensional array NPERM(N). 

(See note 1) in (3), "Comments on use.") 

ISW..................... Input. Control information. 

1)When ISW=1 is specified. 
A first call. Symbolic decomposition, checking whether the sufficient amount of 
memory for storing data are allocated the computation is performed. 

2) When ISW=2 specified. 
After the previous call ends with ICON=31000, that means that the sizes of 
PANELFACTORL or PANELFACTORU or NPANELINDEXL or 
NPANELINDEXU were not enough, the suspended computation is resumed.  
Before calling again with ISW=2, the PANELFACTORL or PANELFACTORU or 
NPANELINDEXL or NPANELINDEXU must be reallocated with the necessary 
sizes which are returned in the NSIZEFACTORL NSIZEFACTORU or 
NSIZEINDEX at the precedent call and specified in corresponding arguments. 
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Besides, except these arguments and ISW as control information, the values in the 
other augments must not be changed between the previous and following calls. 

3) When ISW=3 is specified. 
The subsequent call with ISW=3 solves another system of equations of which the 
coefficient matrix is as same as previous call but the right-hand side vector b is 
changed. In this case, the information obtained by the previous LU decomposition 
can be reused. 
Besides, except ISW as control information and B for storing the new right-hand 
side b, the values in the other arguments must not be changed between the previous 
and following calls. 

B......................... Input. The right-hand side constant vector b of a system of linear equations Ax = b. 

Output. Solution vector x. 

One-dimensional array B(N). 

NASSIGN.......... Output. L and U belonging to each supernode are compressed and stored in two 
dimensional panels respectively. These panels are stored in PANELFACTORL and 
PANELFACTORU as one dimensional subarray consecutively and its block 
number is stored. The corresponding indices vectors are similarly stored 
NPANELINDEXL and NPANELINDEXU respectively. Data of the i-th supernode 
is stored into the j-th block of a subarray, where j=NASSIN(i). 

Input. When ISW≠1, the values stored in the first call are reused. Regarding  
the storage methods of decomposed matrices, refer to Figure DM_VSSSS-1. 
One-dimensional array NASSING(N). 

NSUPNUM......... Output. The total number of supernodes. 

Input. The values in the first call are reused when ISW  1 specified. (≤ n) 

NFCNZFACTORL..Output. The decomposed matrices L and U of a structurally symmetric real sparse 
matrix are computed for each supernode respectively. The columns of L belonging 
to each supernode are compressed to have the common row indices vector and 
stored into a two dimensional panel with the corresponding parts of U in its block 
diagonal portion. The index number of the top array element of the one dimensional 
subarray where the i-th panel is mapped into PANELFACTORL consecutively or 
the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORL(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

Input. The values set by the first call are reused when ISW  1 specified. 

PANELFACTORL..Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. The block number of the section where the panel 
corresponding to the i-th supernode is assigned is known from j=NASSIGN(i). The 
location of its top of subarray including the portion of decomposed matrices is 
stored in NFCNZFACTORL(j).  

The size of the panel in the i-th block can be considered to be two dimensional 
array of NDIM(1,i)  NDIM(2,i). The corresponding parts of the lower triangular 
matrix L are store in this panel(s, t), s≥ t, s = 1,...,NDIM(1, i), t=1,...,NDIM(2,i). 
The corresponding block diagonal portion of the unit upper triangular matrix U 
except its diagonals is stored in the panel(s,t), s<t, t=1,...,NDIM(2,i). 
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One-dimensional array PANELFACTORL(NSIZEFACTORL). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORL..  Input. The size of the array PANELFACTORL. 8-byte integer. 

Output. The necessary size for the array PANELFACTORL is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXL... Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored in a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. The index number of the top array element of the one 
dimensional subarray where the i-th row indices vector is mapped into 
NPANELINDEXL consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXL(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

NPANELINDEXL..Output. The columns of the decomposed matrix L belonging to each supernode are 
compressed to have the common row indices vector and stored into a two 
dimensional panel with the corresponding parts of the decomposed matrix U in its 
block diagonal portion. This column indices vector is mapped into 
NPANELINDEXL consecutively. The block number of the section where the row 
indices vector corresponding to the i-th supernode is assigned is known from 
j=NASSIGN(i). The location of its top of subarray is stored in NFCNZINDEXL(j). 
This row indices are the row numbers of the matrix permuted in its post order. 

One-dimensional array NPANELINDEXL(NSIZEINDEX). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEINDEX.... Input. The size of the arrays NPANELINDEXL and NPANELINDEXU. 8-byte 
integer. 

Output. The necessary size is returned. 

(See note 3) in (3), "Comments on use.") 

NDIM................. Output. NDIM(1,i) and NDIM(2,i) indicate the sizes of the first dimension and 
second dimension of the panel to store a matrix L respectively, which is allocated in 
the i-th location. 
NDIM(1,i)-NDIM(2,i) and NDIM(2,i) indicates the total amount of the size of the 
first dimension and second dimension of the panel where a matrix U is transposed 
and stored.  

Input. When ISW1, the values set by the first call are reused. 

Two-dimensional array NDIM(2,N). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 
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NFCNZFACTORU..Output. Regarding a matrix U derived from LU decomposition of a structurally 
symmetric real sparse matrix, the rows of U except the of block diagonal portion 
belonging to each supernode are compressed to have the common column indices 
vector and stored into a two dimensional panel. The index number of the top array 
element of the one dimensional subarray where the i-th panel is mapped into 
PANELFACTORU consecutively or the location of panel(1,1) is stored. 

One-dimensional 8-byte integer array NFCNZFACTORU(N+1). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

Input. When ISW  1, the values set by the first call are reused. 

PANELFACTORU..Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored in a 
two dimensional panel without its block diagonal portion. The block number of the 
section where the panel corresponding to the i-th supernode is assigned is known 
from j=NASSIGN(i). The location of its top of subarray including the portion of 
decomposed matrices is stored in NFCNZFACTORU(j). The size of the panel in 
the i-th block can be considered to be two dimensional array of {NDIM(1,i)-
NDIM(2,i)}  NDIM(2,i). The rows of the unit upper triangular matrix U except the 
block diagonal portion are compressed, transposed and stored in this panel(s, t), s = 
1,...,NDIM(1, i)-NDIM(2,i), t=1,...,NDIM(2,i). 

One-dimensional array PANELFACTORU(NSIZEFACTORU). 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

(See note 3) in (3), "Comments on use.") 

NSIZEFACTORU.. Input. The size of the array PANELFACTORU. 8-byte integer. 

Output. The necessary size for the array PANELFACTORU is returned. 

(See note 3) in (3), "Comments on use.") 

NFCNZINDEXU... Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed to have the common column indices vector, transposed and stored in a 
two dimensional panel without its block diagonal portion. The index number of the 
top array element of the one dimensional subarray where the i-th column indices 
vector including indices of the block diagonal portion is mapped into 
NPANELINDEXU consecutively is stored. 

One-dimensional 8-byte integer array NFCNZINDEXU(N+1). 

Input. When ISW  1, the values set by the first call are reused. 

Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

NPANELINDEXU..Output. The rows of the decomposed matrix U belonging to each supernode are 
compressed, transposed and stored in a two dimensional panel without its block 
diagonal portion. The column indices vector including indices of the block diagonal 
portion is mapped into NPANELINDEXU consecutively. The block number of the 
section where the column indices vector corresponding to the i-th supernode is 
assigned is known from j=NASSIGN(i). The location of its top of subarray is stored 
in NFCNZINDEXU(j). These column indices are the column numbers of the matrix 
permuted in its post order. 

One-dimensional array NPANELINDEXU(NSIZEINDEX). 
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Regarding the storage method of the decomposed results, refer to Figure 
DM_VSSSS-1. 

(See note 3) in (3), "Comments on use.") 

NPOSTO............ Output. The information about what column number of A the i-th node in post order 
corresponds to is stored. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array NPOSTO(N). 

(See note 4) in (3), "Comments on use.") 

SCLROW............ Output. The diagonal elements of Dr or a diagonal matrix for scaling rows are 
stored in one dimensional array. 

Input. When ISW  1, the values set by the first call are reused. 

One-dimensional array SCLROW (N). 

SCLCOL............ Output. The diagonal elements of Dc or a diagonal matrix for scaling columns are 
stored in one dimensional array. 

Input. The values set by the first call are reused when ISW  1 specified. 

One-dimensional array SCLCOL(N). 

EPSZ.................. Input. Judgment of relative zero of the pivot ( 0.0). 

Output. When EPSZ ≤ 0.0, it is set to the standard value. 

(See note 2) in (3), "Comments on use.") 

THEPSZ.............. Input. Threshold used in judgement for a pivot. Immediately after a candidate in 
pivot search is considered to have the value greater than or equal to the threshold 
specified, it is accepted as a pivot and the search of a pivot is broken off. 
For example, 1.0D-2. 

Output. When THEPSZ≤0.0D0, 1.0D-2 is set. 
When EPSZ≥THEPSZ>0.0, it is set to the value of EPSZ. 

IPIVOT............... Input. Control information on pivoting which indicates whether a pivot is searched 
and what kind of pivoting is chosen if any. 
For example, 40 for complete pivoting. 

                               IPIVOT<10 or IPIVOT≥ 50, no pivoting. 

                 10≤IPIVOT<20, partial pivoting 

                 20≤IPIVOT<30, diagonal pivoting 

             21 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. 

             22 : When within a supernode diagonal pivoting fails, it is changed to Rook 
pivoting. If Rook pivoting fails, it is changed to complete pivoting. 

                 30≤IPIVOT<40, Rook pivoting  

             32 : When within a supernode Rook pivoting fails, it is changed to complete 
pivoting. 

                 40≤IPIVOT<50, complete pivoting  

ISTATIC............. Input. Control information indicating whether Static pivoting is taken.  
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1) When ISTATIC=1 is specified. 
When the pivot searched within a supernode is not greater than SPEPSZ, it is 
replaced with its approximate value of DSIGN(SPEPSZ,PIVOT). 
If its value is 0.0D0, SPEPSZ is used as an approximation value. 

The following conditions must be satisfied. 
a) EPSZ must be less than or equal to the standard value of EPSZ. 
b) Scaling must be performed with ISCLITERMAX=10. 
c) THEPSZ≥SPEPSZ must hold. 
d) IREFINE=1 must be specified for the iterative refinement of the solution.             

2) When ISTATIC≠1 is specified. 
No static pivot is performed. 

SPEPSZ............... Input. The approximate value used in Static pivoting when ISTATIC=1 is specified. 
The following conditions must hold. 
1.0D-10≥SPEPSZ≥EPSZ 

                               Output. When SPEPSZ<EPSZ, it is set to 1.0D-10. 

IREFINE............ Input. Control information indicating whether iterative refinement is performed 
when the solution is computed in use of results of LU decomposition. A residual 
vector is computed in quadruple precision.  

When IREFINE=1 is specified. 
The iterative refinement is performed. It is iterated until in the sequences of the 
solutions obtained in refinement the difference of the absolute values of their 
corresponding residual vectors become larger than a fourth of that of immediately 
previous ones. 

When IREFINE≠1is specified. 
No iterative refinement is performed. 

When ISTATIC=1 is specified, IREFINE=1 must be specified. 

EPSR.................. Input. Criterion value to judge if the absolute value of the residual vector  
b-Ax is sufficiently smaller compared with the absolute value of b.  

When EPSR ≤ 0.0, it is set to 1.0D-6. 

ITERMAX.......... Input. Upper limit of iterative count for refinement ( 1). 

ITER.................. Output. Actual iterative count for refinement. 

W......................... Work area. 

Output/Input. 
One-dimensional array of size NZ+N. 

When this subroutine is called repeatedly with ISW=1, 2 this work area is used for 
preserving information among calls. The contents must not be changed. 

IW..................... Work area. 

Output/Input.  
One-dimensional array of size 36*N+36+2*NZ+3*(N+1). 

When this subroutine is called repeatedly with ISW=1, 2, 3 this work area is used 
for preserving information among calls. The contents must not be changed. 

ICON................... Output. Condition code. 

(See Table DM_VSSSS-1.) 
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Figure DM_VSSSS-1  Conceptual scheme for storing decomposed results 

j = NASSIGN(i)                 The i-th supernode is stored at the j-th section. 

p = NFCNZFACTORL(j)  The j-th panel occupies the area with a length NDIM(1, j)NDIM(2, 
j) from the p-th element of PANELFACTORL. 

q = NFCNZINDEXL(j)     The row indices vector of the j-th panel occupies the area with a 
length NDIM(1,j) from the q-th element of NPANELINDEXL. 

A panel is regarded as an array of the size NDIM(1, j)NDIM(2, j). 

The lower triangular matrix L of decomposed results is stored in 

      panel(s, t),   s ≥ t,  s = 1,...,NDIM(1, j), 

 t = 1,...,NDIM(2, j). 

The block diagonal portion except diagonals of the unit upper triangular matrix U of decomposed 
results is stored in 

      panel(s, t),   s < t,  s = 1,...,NDIM(2, j), 

 t = 1,...,NDIM(2, j). 

u = NFCNZFACTORU(j)  The j-th panel occupies the area with a length (NDIM(1, j)-
NDIM(2,j))NDIM(2, j) from the u-th element of 
PANELFACTORU. 

v = NFCNZINDEXU(j)     The column indices vector of the j-th panel occupies the area with a 
length NDIM(1,j) from the v-th element of NPANELINDEXU. 

A panel is regarded as an array of the size (NDIM(1, j)-NDIM(2, j))NDIM(2, j). 

The transposed unit upper triangular matrix UT except its block diagonal portion of decomposed 
results is stored in 

      panel(x, y),   x = 1,..., DIM(3, j)-DIM(2, j), y = 1,...,DIM(2, j). 

The indices indicate the column numbers of the matrix QAQT to which the nodes of the matrix A 
is permuted in post ordering. 
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Table DM_VSSSS-1  Condition codes 

Code Meaning Processing 

0 No error  

20000 The pivot became relatively zero. The 
coefficient matrix A may be singular. 

 

20200 When seeking diagonal matrices for 
equilibrating both rows and columns, there is a 
zero vector in either rows or columns of the 
matrix A. The coefficient matrix A may be 
singular. 

Processing is discontinued. 

20400 There is a zero element in diagonal of resultant 
matrices of LU decomposition. 

 

20500 The norm of residual vector for the solution 
vector is greater than that of b multiplied by 
EPSR, which is the right term constant vector 
in Ax=b. The coefficient matrix A may be 
close to a singular matrix. 

 

30000 N < 1, NZ < 0, NFCNZ(N+1)  NZ+1, 
NSIZEFACTORL < 1, NSIZEINDEX < 1,  
NSIZEFACTORU < 1, ISW < 1, or ISW > 3, 
ITERMAX<1 when IREFINE=1. 

 

30100 The permutation matrix specified in NPREM 
is not correct. 

 

30200 The row index k stored in NROW(j) is k < 1 or 
k > n. 

 

30300 The number of row indices belong to i-th 
column is NFCNZ(i+1)-NFCNZ(i) > n. 

 

30500 When ISTATIC=1 is specified, the required 
conditions are not satisfied. 
EPSZ is greater than 16u of the standard value 
or ISCLITERMAX<10 
or IREFINE≠1 
or SPEPSZ>THEPSZ 
or SPEPSZ>1.0D-10   

 

30700 The matrix A is not structurally symmetric.  
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Code Meaning Processing 

31000 The value of NSIZEFACTORL is not enough 
as the size of PANELFACTORL, 
or the value of NSIZEINDEX is not enough as 
the size of NPANELINDEXL and 
NPANELINDEXU, 
or the value of NSIZEFACTORU is not 
enough as the size of PANELFACTORU. 

Reallocate the 
PANELFACTORL or 
NPANELINDEXL and 
NPANELINDEXU or 
PANELFACTORU or  
with the necessary size which 
are returned in the 
NSIZEFACTORL or 
NSIZEINDEX or 
NSIZEFACTORU 
respectively 
and call this subroutine again 
with ISW=2 specified. 

 

(3) Comments on use 

a. Notes  

1)  When the element pij=1 of the permutation matrix P, set NPERM(i)=j. 
The inverse of the matrix can be obtained as follows: 
  DO i = 1,n 
  j = NPERM(i) 
  NPERMINV(j) = i 
  ENDDO 
Fill-reduction Orderings are obtained in use of METIS and so on. 
Refer to [43], [44] in Appendix A, “References.” in detail. 

2)  If EPSZ is set, the pivot is assumed to be relatively zero when it is less than EPSZ 
in the process of LU decomposition. In this case, processing is discontinued with 
ICON = 20000. When unit round off is u, the standard value of EPSZ is 16  u. 
When the computation is to be continued even if the absolute value of diagonal 
element is small, assign the minimum value to EPSZ. In this case, however, the 
result is not assured. 
 If Static pivot is specified to be performed, when the diagonal element is smaller 
than SPEPSZ, LU decomposition is approximately continued replacing it with 
SPEPSZ. It is required to specify to do iterative refinement. 

3)  The necessary sizes for the array PANELFACTORL, NPANELINDEXL, 
PANELFACTORU and NPANELINDEXU that store the decomposed results can 
not be determined beforehand. It is suggested to reallocate them by using the result 
of the symbolic decomposition analysis after the first call of this routine, or allocate 
large enough arrays at first call. 
 For instance, allocate the small one-dimensional arrays of size one at first. And call 
this routine with the small values such as one in the size specifying in 
NSIZEFACTORL, NSIZEINDEX and NSIZEFACTORU with ISW=1. This routine 
ends with ICON=31000, and the necessary sizes for NSIZEFACTORL, 
NSIZEINDEX and NSIZEFACTORU are returned. Then the suspended process can 
be resumed by calling it with ISW=2 after reallocating the arrays with the necessary 
sizes. 

4)  Nodes corresponding to column number is considered. The node number permuted 
in post order is stored in NPOSTO. This array indicates what node number in 
original node number the i-th node in post order is corresponding. It means j-th 
position when j = NPOSTO(i). 
 This array represents a permutation matrix Q which is an orthogonal matrix also as 
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well as note 1) above, and corresponds to permute the matrix A into QAQT. 
 The inverse matrix QT can be obtained as follows: 
  DO i = 1,n 
  j = NPOSTO(i) 
  NPOSTOINV(j) = i 
  ENDDO 

5)  Instead of  this routine, a system of equations Ax=b can be solved by calling both 
DM_VSSSLU to perform LU decomposition of a structurally symmetric real sparse 
matrix A and DM_VSSSLUX to solve the linear equation in use of decomposed 
results. 

b. Example 

 The linear system of equations Ax=f is solved, where a matrix is built using results from 
the finite difference method applied to the elliptic equation  

fcuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3).  
The matrix in diagonal storage format is generated by the subroutine init_mat_diag and 
then it is converted in compressed column storage format. The linear system of equations 
with a structurally symmetric real sparse matrix A built in this way is solved. 

 The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS). For example, set OMP_NUM_THREADS to be 4 when this 
program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 

      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (NORD=39,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ,NXY=NX*NY) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      PARAMETER (NALL=NDIAG*N, 
     $   IWL=36*N+36+2*NALL+3*(N+1)) 
      PARAMETER(IPRINT=0) 
      DIMENSION NOFST(NDIAG) 
      DIMENSION DIAG(K,NDIAG),DIAG2(K,NDIAG)    
      DIMENSION C(K*NDIAG),NROWC(K*NDIAG),NFCNZC(N+1), 
     $          WC(K*NDIAG),IWC(2,K*NDIAG) 
      DIMENSION A(NDIAG*N),NCOLUMN(K*NDIAG),NFCNZ(N+1), 
     $          NPERM(N),W(NDIAG*N+N), 
     $          NPOSTO(N),NDIM(2,N), 
     $          NASSIGN(N),  
     $          IW(IWL) 
      REAL*8, DIMENSION(:), ALLOCATABLE ::  PANELFACTORL,PANELFACTORU 
      INTEGER*4, DIMENSION(:), ALLOCATABLE :: NPANELINDEXL, 
     $                                        NPANELINDEXU  
      REAL*8 DUMMYFL,DUMMYFU 
      INTEGER*4 NDUMMYIL,NDUMMYIU 
      INTEGER*8 NSIZEFACTORL,NSIZEINDEX, 
     $          NSIZEFACTORU, 
     $          NFCNZFACTORL(N+1), 
     $          NFCNZFACTORU(N+1), 
     $          NFCNZINDEXL(N+1), 
     $          NFCNZINDEXU(N+1) 
      DIMENSION X(N),B(N),SOLEX(N),NPERM1(N) 
C 
      REAL*8 THEPSZ, 
     $       EPSR, 
     $       SEPSZ,                            
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     $       SCLROW(N),SCLCOL(N)              
 
      INTEGER*4     IPIVOT,ISTATIC,             
     $              ISCLITERMAX, 
     $              IREFINE,ITERMAX,ITER   
 
 
 
      PRINT *,'    DIRECT METHOD' 
      PRINT *,'    FOR SPARSE STRUCTURALLY SYMMETRIC REAL MATRICES' 
      PRINT *,'    IN COMPRESSED COLUMN STORAGE' 
      PRINT * 
 
      DO I=1,N 
      SOLEX(I)=1.0D0 
      ENDDO 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 1.0D0 
      VA2 = 2.0D0 
      VA3 = 3.0D0 
      VC =  4.0D0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,DIAG,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
C 
      DIAG2=0           
C 
      DO I=1,NDIAG 
C 
      IF(NOFST(I).LT.0)THEN 
      NBASE=-NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(1:LENGTH,I)=DIAG(NBASE+1:N,I) 
      ELSE 
      NBASE=NOFST(I) 
      LENGTH=N-NBASE 
      DIAG2(NBASE+1:N,I)=DIAG(1:LENGTH,I) 
      ENDIF 
C 
      ENDDO 
C 
      NUMNZC=1 
C 
      DO J=1,N 
      NTOPCFGC=1 
C 
      DO I=NDIAG,1,-1 
C 
      IF(DIAG2(J,I).NE.0.0D0)THEN   
C 
      NCOL=J-NOFST(I) 
      C(NUMNZC)=DIAG2(J,I) 
      NROWC(NUMNZC)=NCOL 
C 
      IF(NTOPCFGC.EQ.1)THEN   
      NFCNZC(J)=NUMNZC 
      NTOPCFGC=0 
      ENDIF                    
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C 
      NUMNZC=NUMNZC+1 
C 
      ENDIF                    
      ENDDO 
      ENDDO 
C 
      NFCNZC(N+1)=NUMNZC 
      NNZC=NUMNZC-1 
C 
      CALL DM_VMVSCC(C,NNZC,NROWC,NFCNZC,N,SOLEX, 
     $             B,WC,IWC,ICON) 
C 
C 
      X=B 
      IORDERING=0 
      ISCLITERMAX=10 
      ISW=1 
      EPSZ=1.0D-16 
      NSIZEFACTORL=1 
      NSIZEFACTORU=1 
      NSIZEINDEX=1 
      THEPSZ=1.0D-2 
      EPSR=1.0D-8 
      SEPSZ=1.0D-10 
      IPIVOT=40 
      ISTATIC=1 
      IREFINE=1 
      ITERMAX=10 
C 
      CALL DM_VSSSS(C,NNZC,NROWC,NFCNZC,N, 
     $              ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              X, 
     $              NASSIGN,                    
     $              NSUPNUM, 
     $              NFCNZFACTORL,DUMMYFL, 
     $              NSIZEFACTORL,NFCNZINDEXL,    
     $              NDUMMYIL,NSIZEINDEX,NDIM,      
     $              NFCNZFACTORU,DUMMYFU,         
     $              NSIZEFACTORU,                 
     $              NFCNZINDEXU,NDUMMYIU,        
     $              NPOSTO, 
     $              SCLROW,SCLCOL,             
     $              EPSZ, 
     $              THEPSZ,                     
     $              IPIVOT,ISTATIC,SEPSZ,            
     $              IREFINE,EPSR,ITERMAX,ITER, 
     $              W,IW,ICON) 
C 
      PRINT*,'    ICON=',ICON,' NSIZEFACTORL=',NSIZEFACTORL, 
     $       'NSIZEFACTORU=',NSIZEFACTORU, 
     $       'NSIZEINDEX=',NSIZEINDEX 
      PRINT*,'    NSUPNUM=',NSUPNUM 
      PRINT * 
C 
      ALLOCATE( PANELFACTORL(NSIZEFACTORL) ) 
      ALLOCATE( PANELFACTORU(NSIZEFACTORU) ) 
      ALLOCATE( NPANELINDEXL(NSIZEINDEX) ) 
      ALLOCATE( NPANELINDEXU(NSIZEINDEX) ) 
C 
      ISW=2 
      CALL DM_VSSSS(C,NNZC,NROWC,NFCNZC,N, 
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     $              ISCLITERMAX,IORDERING, 
     $              NPERM,ISW, 
     $              X, 
     $              NASSIGN,                 
     $              NSUPNUM, 
     $              NFCNZFACTORL,PANELFACTORL, 
     $              NSIZEFACTORL,NFCNZINDEXL,      
     $              NPANELINDEXL,NSIZEINDEX,NDIM,  
     $              NFCNZFACTORU,PANELFACTORU,       
     $              NSIZEFACTORU,                  
     $              NFCNZINDEXU,NPANELINDEXU,       
     $              NPOSTO, 
     $              SCLROW,SCLCOL,              
     $              EPSZ, 
     $              THEPSZ,                     
     $              IPIVOT,ISTATIC,SEPSZ,      
     $              IREFINE,EPSR,ITERMAX,ITER, 
     $              W,IW,ICON) 
 
C 
      ERR = ERRNRM(SOLEX,X,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT * 
      PRINT *,'    ERROR = ',ERR 
      PRINT *,'    ITER=',ITER 
      PRINT * 
      PRINT * 
 
      IF(ERR.LT.1.0D-8.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'    ********** OK **********' 
      ELSE 
         WRITE(*,*)'    ********** NG **********' 
      ENDIF 
 
      DEALLOCATE( PANELFACTORL,PANELFACTORU,NPANELINDEXL, 
     $            NPANELINDEXU )      
 
      STOP 
      END 
 
C ======================================== 
C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
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!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 
      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
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        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* SOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
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(4) Method 

The matrix is scaled in order to equilibrate both rows and columns norms. Subsequently the 
LU decomposition of this matrix is made. Nonzero elements belonging to each supernode is 
stored in two-dimensional panel respectively. The pivot for numerical stabilization is sought 
with in its block diagonal portion. The threshold for pivot search can be specified so that 
immediately after a pivot candidate with the absolute value greater than it is encountered in 
pivot search it is accepted as a pivot. In addition the static pivoting can be specified so that 
even if the pivot obtained after pivot search is considered as too small, it is replaced with the 
value of SPEPSZ and LU decomposition can be approximately performed.  
Refer to references in Appendix A, “References.” in detail.  
Refer to [19], [2], [22], [48], [68] on the LU decomposition of real sparse matrices and to [63], 
[69] on equilibration of matrices and pivoting. 
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DM_VTDEVC 
 

Eigenvalues and eigenvectors of real tridiagonal matrices 

CALL DM_VTDEVC (D, SL, SU, N, NF, NL, IVEC, ETOL, CTOL, NEV, E,  
                                      MAXNE, EV, K, M, ICON) 

 

(1) Function 

 This subroutine calculates specified eigenvalues and, optionally, eigenvectors of a real 
tridiagonal matrix. 

Tx = x (1.1) 

where, T is an n-dimensional real tridiagonal matrix. 

 Tridiagonal matrix T must satisfy the following condition: 

li ui-1 > 0, where, i = 2, ..., n (1.2) 

 When the element of tridiagonal matrix T is tij, di indicates a tridiagonal element, and li = 
ti,i-1 and ui = ti,i+1 indicate subdiagonal elements, where, l1 = un = 0. 

(Tv)i = li vi-1 + di vi + ui vi+1,    i = 1,2,...,n (1.3) 

 (2) Parameters 

D ................ Input.  The diagonal elements di are stored in real double-precision one-
dimensional array D(N). 

SL .............. Input.  The subdiagonal elements li are stored in SL(2:N) of real double-
precision one-dimensional array SL(N). SL(1) = 0. 

SU .............. Input.  The super-diagonal elements ui are stored in SU(1:N-1) of real double-
precision one-dimensional array SU(N).  SU(N) = 0. 

N ................ Input.  Order n of tridiagonal matrix 

NF .............. Input.  Number assigned to the first eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

NL .............. Input.  Number assigned to the last eigenvalue to be acquired by numbering 
eigenvalues in ascending order.  (Multiple eigenvalues are numbered so that one 
number is assigned to one eigenvalue.) 

IVEC .......... Input.  Control information. 

When the IVEC value is 1, the eigenvalues and corresponding eigenvectors are 
calculated. 

When the IVEC value is not 1, only the eigenvalues are calculated. 

ETOL ......... Input.  Criterion value for checking whether the eigenvalues are numerically 
different from each other or are multiple.  This check uses formula (3.4).  When 
ETOL is less than 3.0D-16, this value is used as the standard value. 

(See 2) in a, “Notes,” in (3), “Comments on use.”) 

CTOL ......... Input.  The CTOL value is used to check whether the adjacent eigenvalues are 
approximately equal to each other.  This check uses formula (3.4). 

1.0D-6  CTOL  ETOL 
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When condition CTOL > 1.0D-6 occurs, CTOL is set to 1.0D-6. 

When condition CTOL < ETOL occurs, CTOL = 10  ETOL is set as the 
standard value. 

(See 2) in a, “Notes,” in (3), “Comments on use.”) 

NEV .......... Output.  Number of eigenvalues calculated. 

Details are given below. 

NEV(1) indicates the number of different eigenvalues calculated. 

NEV(2) indicates the number of approximately multiple, different eigenvalues 
(clusters) calculated. 

NEV(3) indicates the total number of eigenvalues (including multiple 
eigenvalues) calculated. 

NEV(4) indicates the number representing the first of the eigenvalues calculated. 

NEV(5) indicates the number representing the last of the eigenvalues calculated. 

One-dimensional array NEV(5). 

E ................ Output.  Eigenvalues are stored in E. 

The eigenvalues calculated are stored in E(1:NEVG(3)). 

One-dimensional array E(MAXNE). 

MAXNE ..... Input.  Maximum number of eigenvalues that can be calculated. 

When it can be considered that there are two or more eigenvalues with 
multiplicity m, MAXNE must be set to a larger value than NL - NF + 1 + 2  m 
that is bounded by n.  Size of the dimension of array E. 

When condition NEV(3) > MAXNE occurs, the eigenvectors cannot be 
calculated. 

(See 3) in a, “Notes,” in (3), “Comments on use.”) 

EV ............. Output.  When IVEC = 1, the eigenvectors that correspond to the eigenvalues 
are stored in EV. 

The eigenvectors calculated are stored in EV(1:N,1:NEV(3)). 

Two-dimensional array EV(K,MAXNE). 

K ................ Input.  Size of first-dimension of EV.  (K  N). 

M ............... Output.  Information about multiplicity of eigenvalues calculated. 

M(i,l) indicates the multiplicity of the i-th eigenvalue i.  M(i,2) indicates the 
multiplicity of the i-th cluster calculated when the adjacent eigenvalues are 
regarded as approximately multiple eigenvalues (clusters). 

(See 2) in a, “Notes,” in (3), “Comments on use.”) 

Two-dimensional array M(MAXNE,2). 

ICON ......... Output.  Condition code. 

See Table DM_VTDEVC-1. 
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Table DM_VTDEVC-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 During calculation of multiple eigenvalues, the 
total number of eigenvalues exceeded the 
MAXNE value. 

Processing is discontinued. 

The eigenvectors cannot be 
calculated, but the different 
eigenvalues themselves are 
already calculated. 

A suitable value for 
MAXNE to allow 
calculation to proceed is 
returned in NEV(3). 

(See 3) in a, “Notes,” in (3), 
“Comments on use.”) 

30000 N < 1, K < 1, NF < 1, NL > N, NL < NF, 
MAXNE < NL  NF + 1, or N > K. 

Processing is discontinued. 

30100 SL(i)  SU(i  1)  0. 

The matrix could not be converted into a 
symmetrical form. 

 

 

(3) Comments on use 

a. Notes 

1) Problems that can be solved using this function 

This routine requires only that liui-1 > 0, i=2,...,n.  Thus it will also solve the 
generalized eigenvalue problem 

Tx = Dx (3.1) 

where D > 0 (every diagonal element is positive) is diagonal by setting  
T  D1T.  Also, the eigenvalue problem for T can be reduced to a symmetric 
generalized problem 

 DTv = Dv (3.2) 

where d1 = 1, di = ui-1di-1/li,  i = 2, ..., n.   If di can cause scaling problems then it 
is preferable to consider the symmetric problem 

 D1/2 TD1/2 w =  w (3.3) 

where w = D1/2v. 

2) This routine calculates eigenvalues independently from each other by dividing 
them into nonoverlapping, sequenced sets (parallel processing). 

When  = ETOL, the following condition is satisfied for consecutive eigenvalues 
 j (j = s  1, s, ..., s + k (k  0)): 















),max(1 1

1

ii

ii
 (3.4) 
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 If formula (3.4) is satisfied for i when i = s, s + 1, ..., s + k but not satisfied when 
i = s  1 and i = s + k + 1, it is assumed that the eigenvalues  j (j = s  1, s, ..., s 
+ k) are numerically multiple. 

The standard value of ETOL is 3.0D-16 (about the unit round off).  In this case, 
the eigenvalues are refined up to the maximum machine precision. 

If formula (3.4) is not satisfied when  = ETOL, it can be considered that i-1 and 
i are distinct eigenvalues. 

When  = ETOL, assume that consecutive eigenvalues m (m = t  1, t, ..., t + k 
(k  0)) are different eigenvalues.  Also, when  = CTOL, assume that formula 
(3.4) is satisfied for i when i = t, t + 1, ..., t + k but not satisfied when i = t - 1 and 
i = t + k + 1.  In this case, it is assumed that the distinct eigenvalues m (m = t - 1, 
t, ..., t + k) are approximately multiple (i.e. form a cluster).  In this case, 
independent starting vectors are generated for inverse iteration, and eigenvectors 
corresponding to m (m = t  1, t, …, t + k) are reorthogonilized. 

3) The maximum number of eigenvalues that can be calculated is specified in 
MAXNE.  When the value of CTOL is increased, the cluster size also increases.  
Therefore, the total number of eigenvalues calculated might exceed the value of 
MAXNE.  In this case, decrease the value of CTOL or increase the value of 
MAXNE. 

If the total number of eigenvalues calculated exceeds the value of MAXNE, 
ICON = 20000 is returned.  In this case, the eigenvectors cannot be calculated 
even if eigenvector calculation is specified.  Eigenvalues are calculated, but are 
not stored repeatedly according to the multiplicity. 

The calculated different eigenvalues are stored in E(1:NEV(1)).  The multiplicity 
of the corresponding eigenvalues is stored in M(1:NEV(1),1). 

When all the eigenvalues are different from each other and there are no 
approximately multiple eigenvalues, MAXNE can be set to NT (=NLNF+1). 
However, when there are multiple eigenvalues and the multiplicity is m, 
MAXNE must be set to at least NT + 2  m. 

If the total number of eigenvalues to be calculated exceeds the value of MAXNE, 
the value required to continue the calculation is returned in NEV(3).  The 
calculation can be continued by allocating the area specified by this returned 
value and by calling the routine again. 

b. Example 

 This example calculates ne = nf  nl + 1 eigenvalues and corresponding 
eigenvectors of a model problem based on a modification to an example problem 
due to Wilkinson (see [81] in Appendix A, “References”).  (This problem is 
known to have numerically multiple eigenvalues.) 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
C 
      INTEGER K,N,N0,N1,NE,MAX_CLUS,MAX_NEV,NWR,P1,Q1,IVEC 
      REAL*8 EVAL_TOL,CLUS_TOL 
C 
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      PARAMETER (K=7001) 
      PARAMETER (P1=70,Q1=100,N=P1*Q1,N0=6001,N1=7000, 
     &           NE=N1-N0+1) 
      PARAMETER (MAX_CLUS=2*Q1,MAX_NEV=NE+MAX_CLUS) 
      PARAMETER (EVAL_TOL=3.D-16,CLUS_TOL=5.D-12) 
      PARAMETER (NWR=2*N+2) 
C 
C 
      REAL*8  A(N),B(N),C(N),EVAL(MAX_NEV), 
     &        EVEC(K,MAX_NEV),WR(NWR) 
      INTEGER MULT(MAX_NEV,2),NEV(3),ICON,I,J,II,L 
      INTEGER N0X,N1X  
C 
C     W^+_n (Wilkinson): Pathologically close eigenvalues 
C 
      J = ( P1 + 1 ) / 2 
      B(J) = 0.D0 
      DO 40 I=1,J-1 
         A(I+1) = 1.D0 
         C(I) = 1.D0 
         A(J+I) = 1.D0 
         C(J+I-1) = 1.D0 
         B(I) = DFLOAT( J - I ) 
   40    B(2*J-I) = B(I) 
      A(1) = 0.D0 
      C(P1) = 0.D0 
      DO 45 L=2,Q1 
         II = (L-1) * P1 
         DO 45 I=1,P1 
            A(II+I) = A(I) 
            C(II+I) = C(I) 
            B(II+I) = B(I) 
   45 CONTINUE 
C 
      A(1)=0.D0 
      C(N)=0.D0 
C 
      N0X=N0 
      N1X=N1 
      IVEC=1 
C 
      CALL DM_VTDEVC(B,A,C,N,N0X,N1X,IVEC,EVAL_TOL,CLUS_TOL,NEV, 
     &               EVAL,MAX_NEV,EVEC,K,MULT,ICON) 
C 
      CALL CHECK(A,B,C,N,EVEC,K,EVAL,NEV,WR,WR(N+3)) 
C 
      STOP 
      END 
 
      SUBROUTINE CHECK(SL,D,SU,N,EV,LD,E,NEV,W,W2) 
      IMPLICIT REAL*8(A-H,O-Z) 
      DIMENSION SU(*),D(*),SL(*),EV(LD,*),E(*),NEV(3), 
     &          W(N+2),W2(N)  
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C 
      TMP=0.0 
      DO I=1,NEV(3) 
C 
      DO J=1,N 
      W(J+1)=EV(J,I) 
      ENDDO 
      W(1)=0.0 
      W(N+2)=0.0 
      DO J=1,N 
      W2(J)=SL(J)*W(J)+D(J)*W(J+1)+SU(J)*W(J+2)-E(I)*W(J+1) 
      TMP=MAX(TMP,ABS(W2(J)/(ABS(E(I))+1))) 
      ENDDO 
      ENDDO 
C 
      PRINT*,'== maximum element error in ||T*x-eig*x||= ', 
     &       TMP,' ==' 
 
      RETURN 
      END 
 

(4) Method 

 When each processor calculates eigenvalues by interval refinement the section, the Sturm 
sequence is calculated at roughly npts/nev points.  (npts  4*MAXNE.)  nev indicates the 
number of eigenvalues to be calculated. 

 The value of npts is determined as explained in [71] in Appendix A, “References.” 

 A composite data structure is used.  An array structure is combined with a last-in first-out 
(LIFO) structure to maintain eigenvalue ordering and multisectioning.  This is explained 
in [61] in Appendix A, “References.”  This computation is carried out until the limit of 
section ETOL refinement is reached.  When the standard value is set (3.0d-16), the 
precision of the eigenvalues approaches machine precision relative to the scale of the 
matrix. 

 For an explanation of the Sturm count, see [80] in Appendix A, “References.” 

 It has the property that the sign count is a monotonic function of the eigenvalue 
parameter in IEEE floating-point arithmetic.  (See [20] in Appendix A, “References.”) 

 Eigenvectors are calculated by inverse iteration. 

 The initial vector is determined using the sign structure of the Sturm sequence, except 
when numerically multiple (or approximately multiple) eigenvalues have been detected. 

 When the eigenvalues are numerically or approximately multiple, random initial vectors 
are generated and orthogonalized with respect to other eigenvectors of the cluster.  
Usually, one step of inverse iteration suffices.  The eigenvectors corresponding to the 
clustered eigenvalues are also reorthogonalized after inverse iteration. 
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DM_VTFQD 
 

System of linear equations with unsymmetric or indefinite sparse matrices (TFQMR method, 
diagonal format storage method) 

CALL DM_VTFQD(A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, 
                                  X, ITER, ICON) 

 

(1) Function 

 This subroutine solves, using the transpose-free quasi minimal residual [TFQMR] 
method, a system of linear equations with unsymmetric or indefinite sparse matrices as 
coefficient matrices. 

 Ax = b 

 The n  n coefficient matrix is stored using the diagonal format storage method.  Vectors 
b and x are n-dimensional vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see 
Chapter 4 "Iterative linear equation solvers and Convergence," in Part I, "Outline," in the 
SSL II Extended Capability User’s Guide II. 

(2) Parameters 

A ............... Input.  The nonzero elements of a coefficient matrix are stored in A. 

The coefficient matrix is stored in A(1:N,1:NDIAG). 

Two-dimensional array A(K,NDIAG) 

For an explanation of the diagonal format storage method, see b, "Diagonal 
format storage method of general sparse matrices," in Section 3.2.1.1, "Storing 
the general sparse matrices," in Part I, "Outline," in the SSL II Extended 
Capability User's Guide II. 

K ................ Input.  Size of first-dimension of array A ( N). 

NDIAG ...... Input.  Number of columns in array A and size of array NOFST.  Must be 
greater than or equal to the number of nonzero diagonals in matrix A.  Size of 
second-dimension of array A. 

N ................ Input.  Order n of matrix A 

NOFST ....... Input.  Offsets of diagonals of A stored A.  Main diagonal has offset 0, 
subdiagonals have negative offsets, and superdiagonals have positive offsets.  

One-dimensional array NOFST(NDIAG) 

B ................ Input.  The right-side constant vectors of a system of linear equations are stored 
in B(1:N). 

One-dimensional array B(N). 

ITMAX ...... Input.  Upper limit of iterative count for TFQMR method.  The value of 
ITMAX should usually be set to about 2000. 

EPS ............ Input.  Criterion value for judgment of convergence. 

When the value of EPS is 0.0 or smaller, EPS is set to 10-6. 

(See 1) in a, "Notes," in (3), "Comments on use.") 
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IGUSS ........ Input.  Control information specifying whether iterative computation is to be 
performed using the approximate values of the solution vectors specified in 
array X. 

When the value of IGUSS is 0, the approximate values of the solution vectors 
are not specified and set to zero by DM_VTFQD. 

When the value of IGUSS is not 0, the iterative computation is performed using 
the approximate values of the solution vectors specified in array X. 

X ............... Input.  The approximate values of solution vectors can be specified in X(1:N). 

Output.  Solution vectors are stored in X. 

One-dimensional array X(N). 

ITER .......... Output.  Actual iterative count for TFQMR method. 

ICON ......... Output.  Condition code. 

See Table DM_VTFQD-1. 

 
Table DM_VTFQD-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 A breakdown state occurred. Processing is discontinued. 

20001 The iteration count reached the maximum limit. Processing is discontinued.  
The already calculated 
approximate value is output 
to array X, but its precision 
is not assured. 

30000 N < 1, N > K, NDIAG < 1, ITMAX  0. Processing is discontinued. 

32001 |NOFST(I)| > N – 1  

 

(3) Comments on use 

a. Notes 

1) When the residual Euclidean norm is equal to or smaller than the product of the 
first residual Euclidean norm and the value of EPS, it is assumed that the 
solution converged.  The error between the correct solution and the calculated 
approximate solution is roughly equal to the product of the matrix A condition 
number and the value of EPS. 

2) Conditions for using the diagonal format 

 The external diagonal vector element of coefficient matrix A must be set to 0. 
The order in which diagonal vectors (refer to Section 3.2.1.1, "Storage method 
for general sparse matrices" in the SSL II Extended Capabilities User’s Guide II) 
are stored into array A is not restricted. 

 The merit of this method is that a matrix vectors can be calculated without using 
an indirect index.  The demerit of this method is that a matrix without a diagonal 
structure cannot be stored efficiently. 
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b. Example 

  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

fuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 
and a3 are some constants.  The matrix A in Diagonal format is generated by the 
subroutine init_mat_diag. 

  The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (EPS = 1D-8) 
      PARAMETER (NORD=60,NX = NORD,NY =NORD ,NZ = NORD, 
     $      N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (NDIAG = 7) 
      PARAMETER(NVW=3*K) 
 
      DIMENSION NOFST(NDIAG) 
      DIMENSION A(K,NDIAG) 
      DIMENSION X(N),B(N),SOLEX(N),Y(N) 
      DIMENSION VW(NVW) 
 
      PRINT *,'    BICGSTAB(L) METHOD' 
      PRINT *,'    DIAGONAL FORMAT' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_DIAG(VA1,VA2,VA3,VC,A,NOFST 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,N,K) 
      NBANDL=0 
      NBANDR=0 
      DO I=1,NDIAG 
      IF(NOFST(I).LT.0)THEN 
      NBANDL=MAX(NBANDL,-NOFST(I)) 
      ELSE 
      NBANDR=MAX(NBANDR,NOFST(I)) 
      ENDIF 



DM_VTFQD 

II-440 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

      ENDDO 
 
      VW(1+NBANDL:N+NBANDL) = SOLEX(1:N) 
      CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,B,ICON2) 
 
      X(1:N)=0.0D0 
      ERR1 = ERRNRM(SOLEX,X,N) 
      VW(1+NBANDL:N+NBANDL) = X(1:N) 
      CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2) 
      ERR2 = ERRNRM(Y,B,N) 
 
      IGUSS = 0 
      ITMAX = 2000 
 
      CALL DM_VTFQD(A,K,NDIAG,N,NOFST,B,ITMAX 
     &          ,EPS,IGUSS,X,ITER,ICON) 
 
      ERR3 = ERRNRM(SOLEX,X,N) 
      VW(1+NBANDL:N+NBANDL) = X(1:N) 
      CALL DM_VMVSD(A,K,NDIAG,N,NOFST,NBANDL,VW,Y,ICON2) 
      ERR4 = ERRNRM(Y,B,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
      PRINT * 
      PRINT *,'    DM_VTFQD ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT *,'    NBANDL = ',NBANDL,', NBANDR = ',NBANDR 
      PRINT *,'    ITER MAX = ',ITMAX 
      PRINT *,'    ITER = ',ITER 
      PRINT * 
      PRINT *,'    EPS = ',EPS 
      PRINT * 
      PRINT *,'    INITIAL ERROR = ',ERR1 
      PRINT *,'    INITIAL RESIDUAL ERROR = ',ERR2 
      PRINT *,'    CRITERIA RESIDUAL ERROR = ',ERR2*EPS 
      PRINT * 
      PRINT *,'    ERROR = ',ERR3 
      PRINT *,'    RESIDUAL ERROR = ',ERR4 
      PRINT * 
      PRINT * 
 
      IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
 
      STOP 
      END 
 
C ======================================== 
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C     INITIALIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_DIAG(VA1,VA2,VA3,VC,D_L,OFFSET 
     &          ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION D_L(NDIVP,NDIAG) 
      INTEGER   OFFSET(NDIAG) 
C 
      IF (NDIAG .LT. 1) THEN 
        WRITE (*,*) 'SUBROUTINE INIT_MAT_DIAG:' 
        WRITE (*,*) ' NDIAG SHOULD BE GREATER THAN OR EQUAL TO 1' 
        RETURN 
      ENDIF 
 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+     SHARED(VA1,VA2,VA3,VC,D_L,OFFSET 
!$OMP+      ,NX,NY,NZ,XL,YL,ZL,NDIAG,LEN,NDIVP) 
 
C NDIAG CANNOT BE GREATER THAN 7 
      NDIAG_LOC = NDIAG 
      IF (NDIAG .GT. 7) NDIAG_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
 
!$OMP DO 
      DO I = 1,NDIVP      
      DO J = 1,NDIAG 
      D_L(I,J) = 0.0 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
      NXY = NX*NY 
 
C OFFSET SETTING 
!$OMP SINGLE 
      L = 1 
      IF (NDIAG_LOC .GE. 7) THEN 
        OFFSET(L) = -NXY 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 5) THEN 
        OFFSET(L) = -NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 3) THEN 
        OFFSET(L) = -1 
        L = L+1 
      ENDIF 
      OFFSET(L) = 0 



DM_VTFQD 

II-442 FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) 

      L = L+1 
      IF (NDIAG_LOC .GE. 2) THEN 
        OFFSET(L) = 1 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 4) THEN 
        OFFSET(L) = NX 
        L = L+1 
      ENDIF 
      IF (NDIAG_LOC .GE. 6) THEN 
        OFFSET(L) = NXY 
      ENDIF 
!$OMP END SINGLE 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN     
        JS = J 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NXY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,'ERROR; K0.GH.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NXY*(K0-1))/NX+1 
        I0 = JS - NXY*(K0-1) - NX*(J0-1) 
        L = 1 
 
        IF (NDIAG_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) D_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) D_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) D_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
          L = L+1 
        ENDIF 
        D_L(J,L) = 2.0/HX**2+VC 
        IF (NDIAG_LOC .GE. 5) THEN 
          D_L(J,L) = D_L(J,L) + 2.0/HY**2 
          IF (NDIAG_LOC .GE. 7) THEN 
            D_L(J,L) = D_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        L = L+1 
        IF (NDIAG_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) D_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
          L = L+1 
        ENDIF 
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        IF (NDIAG_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) D_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
          L = L+1 
        ENDIF 
        IF (NDIAG_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) D_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
 
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
* ABSOLUTE ERROR 
* | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 

(4) Method 

 For an explanation of the TFQMR method, see [26] in Appendix A, "References." 
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DM_VTFQE 
 

System of linear equations with unsymmetric or indefinite sparse matrices (TFQMR method, 
ELLPACK format storage method) 

CALL DM_VTFQE(A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS,  
                                  X, ITER, ICON) 

 

(1) Function 

 This subroutine solves, using the transpose-free quasi minimal residual [TFQMR] 
method, a system of linear equations with unsymmetric or indefinite sparse matrices as 
coefficient matrices. 

Ax = b 

 The n  n coefficient matrix is stored using the ELLPACK format storage method.  
Vectors b and x are n-dimensional vectors. 

Regarding the convergence and the guideline on the usage of iterative methods, see   
Chapter 4 "Iterative linear equation solvers and Convergence,"  in Part I, "Outline," in the 
SSL II Extended Capability User's Guide II. 

(2) Parameters 

A ............... Input.  The nonzero elements of a coefficient matrix are stored in 
A(1:N,1:IWIDT). 

Two-dimensional array A(K,IWIDT) 

For an explanation of the ELLPACK format storage method, see Section 3.2.1.1, 
"Storing the general sparse matrices," in Part I, "Outline," in the SSL II 
Extended Capability User's Guide II. 

K ................ Input.  Size of first-dimension of A and ICOL.  (K  n). 

IWIDT ....... Input.  Maximum number of row-vector-direction nonzero elements of 
coefficient matrix A.  Size of second-dimension of A and ICOL. 

N ................ Input.  Order n of matrix A. 

ICOL ......... Input.  Column index used in ELLPACK format.  Used to indicate to which 
column vector the corresponding element of A belongs. 

Two-dimensional array ICOL(K,IWIDT) 

B ............... Input.  The right-side constant vectors of a system of linear equations are stored 
in B(1:N). 

One-dimensional array B(N) 

ITMAX ...... Input.  Upper limit of iterative count for TFQMR method.  The value of 
ITMAX should usually be set to about 2000. 

EPS ............ Input.  Criterion value for judgment of convergence. 

When the value of EPS is 0.0 or smaller, EPS is set to 10-6. 

(See 1) in a, "Notes," in (3), "Comments on use.") 
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IGUSS ........ Input.  Control information specifying whether iterative computation is to be 
performed using the approximate values of the solution vectors specified in 
array X. 

When the value of IGUSS is 0, the approximate values of the solution vectors 
are not specified and set to zero by DM_VTFQE. 

When the value of IGUSS is not 0, the iterative computation is performed using 
the approximate values of the solution vectors specified in array X. 

X ............... Input.  The approximate values of solution vectors can be specified in X(1:N). 

Output.  Solution vectors are stored in X(1:N). 

One-dimensional array X(N) 

ITER .......... Output.  Iterative count for TFQMR method. 

ICON .......... Output.  Condition code. 

See Table DM_VTFQE-1. 

 
Table DM_VTFQE-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 A breakdown state occurred. Processing is discontinued. 

20001 The iteration count reached the maximum limit. Processing is discontinued.  
The already calculated 
approximate value is output 
to array X, but its precision 
is not assured. 

30000 K < 1, IWIDT < 1, N < 1, ITMAX  0, N > K. Processing is discontinued. 

30001 The band width is zero. 

 

(3) Comments on use 

a. Notes 

1) When the residual Euclidean norm is equal to or smaller than the product of the 
first residual Euclidean norm and the EPS, it is assumed that the solution 
converged. The error between the correct solution and the calculated 
approximate solution is roughly equal to the product of the matrix A condition 
number and the EPS. 

 

b. Example 

  The linear system of equations Ax=f is solved, where A results from the finite 
difference method applied to the elliptic equation  

 fuuau   

with zero boundary conditions on a cube and the coefficient a=(a1,a2,a3) where a1, a2 

and a3 are some constants.  The matrix A in Ellpack format is generated by the 
subroutine init_mat_ell. 
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The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      PARAMETER (EPS = 1D-8) 
      PARAMETER (NORD=60,NX =NORD ,NY = NORD,NZ = NORD, 
     &            N = NX*NY*NZ) 
      PARAMETER (K = N+1) 
      PARAMETER (IWIDT = 7) 
      DIMENSION ICOL(K,IWIDT) 
      DIMENSION A(K,IWIDT) 
      DIMENSION X(N),B(N),SOLEX(N),Y(N) 
 
      PRINT *,'    BICGSTAB(L) METHOD' 
      PRINT *,'    ELLPACK FORMAT' 
      PRINT * 
 
      SOLEX(1:N)=1.0D0 
      PRINT *,'    EXPECTED SOLUTIONS' 
      PRINT *,'    X(1) = ',SOLEX(1),' X(N) = ',SOLEX(N) 
      PRINT * 
 
      VA1 = 3D0 
      VA2 = 1D0/3D0 
      VA3 = 5D0 
      VC = 1.0 
      XL = 1.0 
      YL = 1.0 
      ZL = 1.0 
      CALL INIT_MAT_ELL(VA1,VA2,VA3,VC,A,ICOL 
     &          ,NX,NY,NZ,XL,YL,ZL,IWIDT,N,K) 
 
      CALL DM_VMVSE(A,K,IWIDT,N,ICOL,SOLEX,B,ICON2) 
 
      X(1:N)=0.0D0 
      ERR1 = ERRNRM(SOLEX,X,N) 
      CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2) 
      ERR2 = ERRNRM(Y,B,N) 
 
      IGUSS = 0 
      ITMAX = 2000 
 
      CALL DM_VTFQE(A,K,IWIDT,N,ICOL,B,ITMAX 
     &          ,EPS,IGUSS,X,ITER,ICON) 
 
      ERR3 = ERRNRM(SOLEX,X,N) 
      CALL DM_VMVSE(A,K,IWIDT,N,ICOL,X,Y,ICON2) 
      ERR4 = ERRNRM(Y,B,N) 
 
      PRINT *,'    COMPUTED VALUES' 
      PRINT *,'    X(1) = ',X(1),' X(N) = ',X(N) 
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      PRINT * 
      PRINT *,'    DM_VTFQE ICON = ',ICON 
      PRINT * 
      PRINT *,'    N = ',N,' :: NX = ',NX,' NY = ',NY,' NZ = ',NZ 
      PRINT *,'    ITER MAX = ',ITMAX 
      PRINT *,'    ITER = ',ITER 
      PRINT * 
      PRINT *,'    EPS = ',EPS 
      PRINT * 
      PRINT *,'    INITIAL ERROR = ',ERR1 
      PRINT *,'    INITIAL RESIDUAL ERROR = ',ERR2 
      PRINT *,'    CRITERIA RESIDUAL ERROR =',ERR2*EPS 
      PRINT * 
      PRINT *,'    ERROR = ',ERR3 
      PRINT *,'    RESIDUAL ERROR = ',ERR4 
      PRINT * 
      PRINT * 
 
      IF(ERR4.LE.ERR2*EPS*1.1.AND.ICON.EQ.0)THEN 
         WRITE(*,*)'********** OK **********' 
      ELSE 
         WRITE(*,*)'********** NG **********' 
      ENDIF 
 
      STOP 
      END 
 
C ======================================== 
C INITILIZE COEFFICIENT MATRIX 
C ======================================== 
      SUBROUTINE INIT_MAT_ELL(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ 
     &          ,XL,YL,ZL,IWIDTH,LEN,NDIVP) 
      IMPLICIT  REAL*8(A-H,O-Z) 
      DIMENSION A_L(NDIVP,IWIDTH) 
      DIMENSION ICOL_L(NDIVP,IWIDTH) 
C 
      IF (IWIDTH .LT. 1) THEN 
         WRITE (*,*) 'SUBROUTINE INIT_MAT_ELL:' 
         WRITE (*,*) ' IWIDTH SHOULD BE GREATER THAN OR EQUAL TO 1' 
         RETURN 
      ENDIF 
!$OMP PARALLEL DEFAULT(PRIVATE) 
!$OMP+  SHARED(VA1,VA2,VA3,VC,A_L,ICOL_L,NX,NY,NZ 
!$OMP+        ,XL,YL,ZL,IWIDTH,LEN,NDIVP) 
 
C IWIDTH CANNOT BE GREATER THAN 7 
      IWIDTH_LOC = IWIDTH 
      IF (IWIDTH .GT. 7) IWIDTH_LOC = 7 
 
C INITIAL SETTING 
      HX = XL/(NX+1) 
      HY = YL/(NY+1) 
      HZ = ZL/(NZ+1) 
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!$OMP DO 
      DO J = 1,IWIDTH 
      DO I = 1,NDIVP   
      A_L(I,J) = 0.0 
      ICOL_L(I,J) = I 
      ENDDO 
      ENDDO 
!$OMP ENDDO 
 
C MAIN LOOP 
!$OMP DO 
      DO 100 J = 1,LEN 
        JS = J 
        L = 1 
 
C DECOMPOSE JS-1 = (K0-1)*NX*NY+(J0-1)*NX+I0-1 
        K0 = (JS-1)/NX/NY+1 
        IF (K0 .GT. NZ) THEN 
 PRINT*,' ERROR; K0.GT.NZ ' 
 GOTO 100 
 ENDIF 
        J0 = (JS-1-NX*NY*(K0-1))/NX+1 
        I0 = JS - NX*NY*(K0-1) - NX*(J0-1) 
        IF (IWIDTH_LOC .GE. 7) THEN 
          IF (K0 .GT. 1) THEN 
            A_L(J,L) = -(1.0/HZ+0.5*VA3)/HZ 
            ICOL_L(J,L) = JS-NX*NY 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 5) THEN 
          IF (J0 .GT. 1) THEN 
            A_L(J,L) = -(1.0/HY+0.5*VA2)/HY 
            ICOL_L(J,L) = JS-NX 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 3) THEN 
          IF (I0 .GT. 1) THEN 
            A_L(J,L) = -(1.0/HX+0.5*VA1)/HX 
            ICOL_L(J,L) = JS-1 
            L = L+1 
          ENDIF 
        ENDIF 
        A_L(J,L) = 2.0/HX**2+VC 
        IF (IWIDTH_LOC .GE. 5) THEN 
          A_L(J,L) = A_L(J,L) + 2.0/HY**2 
          IF (IWIDTH_LOC .GE. 7) THEN 
            A_L(J,L) = A_L(J,L) + 2.0/HZ**2 
          ENDIF 
        ENDIF 
        ICOL_L(J,L) = JS 
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        L = L+1 
        IF (IWIDTH_LOC .GE. 2) THEN 
          IF (I0 .LT. NX) THEN 
            A_L(J,L) = -(1.0/HX-0.5*VA1)/HX 
            ICOL_L(J,L) = JS+1 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 4) THEN 
          IF (J0 .LT. NY) THEN 
            A_L(J,L) = -(1.0/HY-0.5*VA2)/HY 
            ICOL_L(J,L) = JS+NX 
            L = L+1 
          ENDIF 
        ENDIF 
        IF (IWIDTH_LOC .GE. 6) THEN 
          IF (K0 .LT. NZ) THEN 
            A_L(J,L) = -(1.0/HZ-0.5*VA3)/HZ 
            ICOL_L(J,L) = JS+NX*NY 
          ENDIF 
        ENDIF 
 100  CONTINUE 
!$OMP ENDDO 
  
!$OMP END PARALLEL 
 
      RETURN 
      END 
 
C ======================================== 
C ABSOLUTE ERROR 
C | X1 - X2 | 
C ======================================== 
      REAL*8 FUNCTION ERRNRM(X1,X2,LEN) 
      IMPLICIT  REAL*8 (A-H,O-Z) 
      DIMENSION X1(*),X2(*) 
C 
      S = 0D0 
      DO 100 I = 1,LEN 
        SS = X1(I) - X2(I) 
        S = S + SS * SS 
 100  CONTINUE 
C 
      ERRNRM = SQRT( S ) 
      RETURN 
      END 
 

 (4) Method 

 For an explanation of the TFQMR method, see [26] in Appendix A, "References." 
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DM_VTRID 
 

Tridiagonalization of real symmetric matrices. 

CALL DM_VTRID (A, K, N, D, SL, ICON) 

 

(1) Function 

 This subroutine reduces the real symmetric matrix A to tridiagonal form using the 
Housholder reductions. 

T = QTAQ 

 where A is an n  n real symmetric matrix, Q is an n  n othogonal matrix and T is a real 
tridiagonal matrix. 

(2) Parameters 

A ............... Input.  The lower triangular part {aij | i  j}of real symmetric matrix A is stored 
in the lower triangular part {A(i, j) | i  j} of A(1:N,1:N). 

Output.  The information on Householder transforms used for tridiagonalization 
in stored in the lower triangular part {A(i, j) | i  j} of A(1:N,1:N) 

After calculation, the values in the upper triangular part of A is not assured. 

(See 1) in a, “Notes,” in (3), “Comments on use.”) 

Two-dimensional double-precision real array A(K,N). 

K.. ............. Input.  Size of first-dimension of array A.  (K  N). 

N ............... Input.  Order n of real symmetric matrix A 

D ................ Input.  The diagonal elements of the reduced tridiagonal matrix are stored in 
real double-precision one-dimensional array D(N). 

SL .............. Input.  The subdiagonal elements of reduced tridiagonal matrix are stored in 
SL(2:N) of real double-precision one-dimensional array SL(N).  SL(1) = 0. 

ICON ......... Output.  Condition code. 

See Table DM_VTRID-1. 

 
Table DM_VTRID-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N < 2, K < N. Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) Tridiagonalization is performed by the reapeated transforms varying k = 1, ... , 
n-2. 

  AAQAQA   01T ,k
k

k
k
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Put  bT = (0, ... , 0, A k-1(k+1:n, k)T). 

bT = (0, ... , 0, bk+1, ... , bn) 

bT∙b = S2   and  put   wT = (0, ... , 0, bk+1+S, bk+2, ... , bn). 

The sign of S is chosen same as that of bk+1. 

Then the transform matrix is represented as follow. 

SbS ik
k




2
T 1

,I  wwQ

 

w(k+1:n) and  are stored in  A(k+1:n, k) and A(k, k) respectively. 

b. Example 

 This example calculates the tridiagonalization of a real symmetric matrix whose 
eigenvalues are known. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
c     **example** 
      implicit real*8(a-h,o-z) 
      parameter(n=2000,k=n) 
      parameter(ne=n,max_nev=ne) 
      dimension a(k,n),b(k,n),c(k,n),d(k,n),ac(k,n) 
      dimension dd(n),sld(n),sud(n) 
      dimension nev(5),mult(max_nev,2) 
      dimension eval(max_nev),evec(k,max_nev) 
cc 
      pai=4.0d0*datan(1.0d0) 
      coef=dsqrt(2.0d0/(n+1)) 
      do j=1,n 
      do i=1,n 
      d(i,j)=coef*dsin(pai/(n+1)*i*j) 
      enddo 
      enddo 
cc 
      do j=1,n 
      do i=1,n 
      if(i.eq.j)then 
      c(i,j)=i 
      else 
      c(i,j)=0.0d0 
      endif 
      enddo 
      enddo 
cc 
cc    d x c -> b 
cc 
      call dm_vmggm(d,k,c,k,b,k,n,n,n,icon) 
cc 
cc    b x d -> a 
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cc 
      call dm_vmggm(b,k,d,k,a,k,n,n,n,icon) 
cc 
      do i=1,n 
      do j=i,n 
      ac(j,i)=a(j,i) 
      enddo 
      enddo 
c 
      call dm_vtrid( ac,k,n,dd,sld,icon ) 
      if(icon.ne.0)then 
      print*,' icon of dm_vtrid =',icon 
      stop 
      endif 
c 
      do i=2,n 
      sud(i-1)=sld(i) 
      enddo 
      sud(n)=0.0d0 
c 
      nf=1 
      nl=n 
      ivec=0 
      eval_tol=1.0d-15 
      clus_tol=1.0d-10 
      call dm_vtdevc( dd,sld,sud,n,nf,nl,ivec, 
     &                eval_tol,clus_tol,nev, 
     &                eval,max_nev,evec,k,mult,icon ) 
      do i=1,ne,n/20 
      print*,'eigen value in eval(',i,') = ',eval(i) 
      enddo 
c 
      stop 
      end 
 

(4) Method 

 This routine reduces a tridiagonal matrix from a real symmetric matrix.  The reduction to 
a tridiagonal form is a parallel version of the Householder reduction to tridiagonal form. 
(See [30] in Appendix A, “References.”) 
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DM_V1DCFT 
 

One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7) 

CALL DM_V1DCFT(X,KX,Y,KY,N1,N2,ISN,ICON) 

 

(1) Function 

 The subroutine DM_V1DCFT performs a one-dimensional complex Fourier transform or 
its inverse transform using a mixed radix FFT. 

 The length of data transformed n(=n1  n2) is a product of the powers of 2, 3, 5 and 7. 

a. The one-dimensional Fourier transform 

 When {xj} is input, the transform defined by (1.1) below is calculated to obtain 
{nk}. 

)2(exp  ,                              

1,...,1,0 ,
1
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i/n  =

 n k = xn

n

jk
n

n

j
jk



  



  (1.1) 

b. The one-dimensional Fourier inverse transform 

 When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}. 

)2(exp ,                        

1,...,1,0,
1
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


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



 (1.2) 

It is recommended to use DVCFM1 in “SSL II Extended Capabilities User’s Guide II” 
when the length of data is not large enough. 

(2) Parameters 

X .............. Input.  The complex data.  The data is stored in X(1:N1,1:N2). 

See Figure DM_V1DCFT-1. 

This is a double precision complex two-dimensional array X(KX,N2). 

(See notes 1) in (3), "Comments on use.") 

KX ........... Input.  The size of the first dimension of array X ( N1). 

Y .............. Output.  The complex transformed data.  The data is stored in Y(1:N2,1:N1).  
See Figure DM_V1DCFT-1. 

This is a double precision complex two-dimensional array Y(KY,N1). 

(See notes 1) in (3), "Comments on use.") 

KY ............ Input.  The size of the first dimension of array Y ( N2). 

N1 ............. Input.  Assuming that the length of the data transformed (n=N1  N2) is two-
dimensional data, the size of first dimension N1 must be a product of the 
powers of 2, 3, 5 and 7. 

 (See note 1) in (3), "Comments on use.") 
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N2 ............. Input.  Assuming that the length of the data transformed (n=N1  N2) is two-
dimensional data, the size of the second dimension, N2 must be a product of the 
powers of 2, 3, 5 and 7. 

 (See note 1) in (3), "Comments on use.") 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform  

ISN = -1 for the inverse transform 

ICON ........ Output.  Condition code. 

See Table DM_V1DCFT-1. 

N2

N1
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Input Array X

X1

X0

Xn1-1

Xn1

X2n1-1

Xn1(n2-1)

Xn1n2-1
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*



N1

N2

KY

Output Array Y

Y1

Y0

Yn2-1

Yn2

Y2n2-1

Yn2(n1-1)

Yn2n1-1



*

 
Figure DM_V1DCFT-1   The input/Output data storage method 

 
Table DM_V1DCFT-1   Condition codes 

Code Meaning Processing 

0 No error  

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued 

30002 The leading dimensions are less than the actual 
dimensions. 

 

30008 The order of transform is not radix 2/3/5/7.  

30016 The invalid value for the parameter ISN  

 

(3) Comments on use 

a. Notes  

1) If the one-dimensional data of n = n1  n2 is numbered k = 0 , ..., n-1, 

  k = k1 + k2  n1 , k1 = 0, ..., n11 

    , k2 = 0, ..., n21 
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  i = i1 + i2   n2 , i1 = 0, ..., n21 

    , i2 = 0, ..., n11 

 The input and output data are regarded as two-dimensional arrays with 
subscripts of (k1, k2) and (i1, i2), respectively.  (See Figure DM_V1DCFT-1.) 

2) General definition of a Fourier transform 

 The one-dimensional discrete complex Fourier transform and its inverse 
transform is defined as in (3.1) and (3.2). 
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 where, n = exp(2 i/n)  

 This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1) 
or (3.2), respectively.  Normalization of the results may be required. 

b. Example 

 A one-dimensional FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N1=4000,N2=3000) 
      PARAMETER (KX=N1+1,KY=N2+1) 
      COMPLEX*16 X(KX,N2),Y(KY,N1) 
      INTEGER ISN 
* 
*     Set up the input data arrays 
* 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)    
      DO I=1,N2 
      DO J=1,N1 
      X(J,I)=DCMPLX(FLOAT(J)+FLOAT(N1)*(I-1),0.0) 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
* 
*     Do the forward transform 
* 
      ISN=1 
      CALL DM_V1DCFT(X,KX,Y,KY,N1,N2,ISN,ICON) 
      IF(ICON.NE.0) THEN 
        WRITE(*,*) 'error occurred : ',ICON 
      ENDIF 
* 
*     Do the reverse transform 
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* 
      ISN=-1 
      CALL DM_V1DCFT(Y,KY,X,KX,N2,N1,ISN,ICON) 
      IF(ICON.NE.0) THEN 
        WRITE(*,*) 'error occurred : ',ICON 
      ENDIF 
* 
*     Find the error after the forward and 
*     inverse transform. 
* 
      ERROR=0 
 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)  
!$OMP+         REDUCTION(MAX:ERROR) 
      DO I=1,N2 
      DO J=1,N1 
        ERROR=MAX(ABS(DBLE(X(J,I))/N2/N1)- 
     &  (FLOAT(J)+FLOAT(N1)*(I-1)),ERROR) 
        ERROR=MAX(ABS(DIMAG(X(J,I))/N2/N1), 
     &                             ERROR) 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
 
      WRITE(*,*) 'Error ', ERROR 
      STOP 
      END 
 

 (4) Method 

 DM_V1DCFT is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V1DCFT2 
 

One-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7) 

CALL DM_V1DCFT2(X,N,Y,ISN,ICON) 

 

(1) Function 

  The subroutine DM_V1DCFT performs a one-dimensional complex Fourier transform 
or its inverse transform using a mixed radix FFT. 

  The length of data transformed n is a product of the powers of 2, 3, 5 and 7. 

a. The one-dimensional Fourier transform 

 When {xj} is input, the transform defined by (1.1) below is calculated  
to obtain {nk}. 
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b. The one-dimensional Fourier inverse transform 

 When { k} is input, the transform defined by (1.2) below is calculated  
to obtain {xj}. 
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It is recommended to use DVCFM1 in “SSL II Extended Capabilities User’s Guide II” 
when the length of data is not large enough. 

(2) Parameters 

X................. Input.  Complex data is stored in X(1:N). 

This is a double precision complex one-dimensional array X(N). 

N ................ Input. The length of the data transformed. N must be a product of the powers of 
2, 3, 5 and 7. 

Integer (INTEGER*4) 

Y ............... Output.  Transformed complex data is stored in Y(1:N). 

This is a double precision complex one-dimensional array Y(N). 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform  

ISN = -1 for the inverse transform 

Integer (INTEGER*4) 

ICON ........ Output.  Condition code. 

See Table DM_V1DCFT2-1. 
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Table DM_V1DCFT2-1   Condition codes 

Code Meaning Processing 

0 No error  

30008 The order of transform is not radix 2/3/5/7. Processing is discontinued 

30016 The invalid notation parameter ISN  

 

(3) Comments on use 

a. Notes  

1) General definition of a Fourier transform 

The one-dimensional discrete complex Fourier transform and its inverse 
transform is defined as in (3.1) and (3.2). 
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where, n = exp(2 i/n)  

This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1) 
or (3.2), respectively.  Normalization of the results may be required. 

b. Example 

 A one-dimensional FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N1=1024,N2=N1,N=N1*N2) 
      COMPLEX*16 X(N),Y(N),XX(N) 
C 
      DO I=1,N 
      X(I)=DBLE(I) 
      XX(I)=X(I) 
      ENDDO 
C 
      CALL DM_V1DCFT2(X,N,Y,1,ICON) 
      PRINT*,'ICON =',ICON 
C 
      CALL DM_V1DCFT2(Y,N,X,-1,ICON) 
      PRINT*,'ICON =',ICON 
C 
      TMP=0.0D0 
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      DO I=1,N 
      TMP=MAX(ABS(X(I)/DBLE(N)-XX(I)),TMP) 
      ENDDO 
      PRINT*,' ERROR =',TMP 
C 
      STOP 
      END 
 

(4) Method 

 DM_V1DCFT2 is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V1DMCFT 
 

One-dimensional multiple discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 
7) 

CALL DM_V1DMCFT(X,KX,N,M,ISN,ICON) 

 

(1) Function 

 The subroutine DM_V1DMCFT performs multiple one-dimensional complex Fourier 
transforms or its inverse transforms using a mixed radix FFT. 

 The length of data transformed n is a product of the powers of 2, 3, 5 and 7. 

a. The one-dimensional Fourier transform 

 When {xj} is input, the transform defined by (1.1) below is calculated to obtain 
{nk}. 
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b. The one-dimensional Fourier inverse transform 

 When {k} is input, the transform defined by (1.2) below is calculated to obtain {xj}. 
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(2) Parameters 

X .............. Input.  The complex data.  Store the data in X(1:N,1:M). 

Output. The complex transformed data.  The data is stored in X(1:N,1:M). 

This is a double precision complex two-dimensional array X(KX,M). 

(See notes 1) in (3), "Comments on use.") 

KX ........... Input.  The size of the first dimension of array X ( N). 

N .............. Input.  The length of the data transformed must be a product of the powers of 2, 
3, 5 and 7. 

M ............. Input.  The multiplicity of the data transformed. 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform  

ISN = -1 for the inverse transform 

ICON ........ Output.  Condition code. 

See Table DM_V1DMCFT-1. 
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Table DM_V1DMCFT-1   Condition codes 

Code Meaning Processing 

0 No error  

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued 

30002 The leading dimensions are less than the actual 
dimensions. 

 

30008 The order of transform is not radix 2/3/5./7  

30016 The invalid value for the parameter ISN  

 

(3) Comments on use 

a. Notes  

1) General definition of a Fourier transform 

 The one-dimensional discrete complex Fourier transform and its inverse 
transform is defined as in (3.1) and (3.2). 
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 where, n = exp(2 i/n)  

 This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1) 
or (3.2), respectively.  Normalization of the results may be required. 

b. Example 

Multiple one-dimensional FFTs are computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N1=2048,M=256) 
      PARAMETER (KX=N1+1) 
      COMPLEX*16 X(KX,M) 
      INTEGER ISN 
 
* 
*     Set up the input data arrays 
* 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)    
      DO I=1,M 
      DO J=1,N1 
      X(J,I)=dcmplx(FLOAT(J)+FLOAT(N1)*(I-1),0.0) 
      ENDDO 
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      ENDDO 
!$OMP END PARALLEL DO 
 
* 
*     Do the forward transform 
* 
      ISN=1 
      CALL dm_v1dmcft(X,KX,N1,M,ISN,ICON) 
      IF(ICON.NE.0) THEN 
        WRITE(*,*) 'error occurred : ',ICON 
      ENDIF 
* 
*     Do the reverse transform 
* 
       ISN=-1 
       CALL dm_v1dmcft(X,KX,N1,M,ISN,ICON) 
       IF(ICON.NE.0) THEN 
         WRITE(*,*) 'error occurred : ',ICON 
       ENDIF 
* 
*     Find the error after the forward and 
*     inverse transform. 
* 
      ERROR=0 
 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X)  
!$OMP+         REDUCTION(MAX:ERROR) 
      DO I=1,M 
      DO J=1,N1 
      ERROR=MAX(ABS(dble(X(J,I))/N1- 
     &  (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR) 
      ERROR=MAX(ABS(dimag(X(J,I))/N1), 
     &                             ERROR) 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
 
      WRITE(*,*) 'Error ', ERROR 
      STOP 
      END 
 

 (4) Method 

DM_V1DMCFT is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V2DCFT 
 

Two-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7) 

CALL DM_V2DCFT(X,KX,N1,N2,ISN,ICON) 

 

(1) Function 

 The subroutine DM_V2DCFT performs a two-dimensional complex Fourier transform or 
its inverse Fourier transform using a mixed radix FFT. 

 The size of each dimension of two-dimensional data (n1, n2) is a product of the powers of 
2, 3, 5 and 7. 

a. The two-dimensional Fourier transform 

 When {xj1j2} is input, the transform defined by (1.1) below is calculated to obtain 
{n1n2k1k2}. 
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b. The two-dimensional Fourier inverse transform  

 When {k1k2} is input, the transform defined by (1.2) below is calculated to obtain 
{xj1j2}. 
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(2) Parameters 

X .............. Input.  The complex data. 

The data is stored in X(1:N1,1:N2). 

Output.  The transformed complex data. 

The results are stored in X(1:N1,1:N2).  

This is a double precision complex two-dimensional array X(KX,N2). 

(See note 1) in (3), "Comments on use.") 

KX ........... Input.  The size of the first dimension of input data array X. 

N1 ............. Input.  The size n1 of data in the first dimension of the two-dimensional array to 
be transformed. 
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n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

N2 ............. Input.  The size n2 of data in the second dimension of the two-dimensional array 
to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = -1 for the inverse transform. 

ICON ........ Output.  Condition code. 

See Table DM_V2DCFT-1.  

 
Table DM_V2DCFT-1   Condition codes 

Code Meaning Processing 

0 No error  

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued 

30002 The leading dimensions are less than the actual 
dimensions. 

 

30008 The order of transform is not radix 2/3/5/7.  

30016 The invalid value for the parameter ISN  

 

(3) Comments on use 

a.  Notes 

1) General definition of a Fourier transform 

 The two-dimensional discrete complex Fourier transform and its inverse 
transform can generally be defined as in (3.1) and (3.2). 
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 where, n1 = exp(2 i/n1),  n2 = exp(2 i/n2) 

 This subroutine calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of 
(3.1) or (3.2), respectively.  Normalization of the results may be required. 

b. Example 

 A two-dimensional FFT is computed. 
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The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N1=4000,N2=3000) 
      PARAMETER (KX=4400) 
      COMPLEX*16 X(KX,N2) 
      INTEGER ISN 
 
* 
*      Set up the input data arrays 
* 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X) 
       DO I=1,N2 
       DO J=1,N1 
       X(J,I)=DCMPLX(FLOAT(J)+FLOAT(N1)*(I-1),0.0) 
       ENDDO 
       ENDDO 
!$OMP END PARALLEL DO 
 
* 
*     Do the forward transform 
* 
       ISN=1 
       CALL DM_V2DCFT(X,KX,N1,N2,ISN,ICON) 
       IF(ICON.NE.0) THEN 
         WRITE(*,*) 'error occurred : ',ICON 
       ENDIF 
* 
*     Do the reverse transform 
* 
       ISN=-1 
       CALL DM_V2DCFT(X,KX,N1,N2,ISN,ICON) 
       IF(ICON.NE.0) THEN 
         WRITE(*,*) 'error occurred : ',ICON 
       ENDIF 
* 
*     Find the error after the forward and 
*     inverse transform. 
* 
      ERROR=0 
 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X) 
!$OMP+         REDUCTION(MAX:ERROR) 
      DO I=1,N2 
      DO J=1,N1 
        ERROR=MAX(ABS(DBLE(X(J,I))/(N2*N1)- 
     &  (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR) 
        ERROR=MAX(ABS(DIMAG(X(J,I))/(N2*N1)), 
     &                             ERROR) 
       ENDDO 
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       ENDDO 
!$OMP END PARALLEL DO 
 
      WRITE(*,*) 'Error ', ERROR 
      STOP 
      END 
 

 (4) Method 

 DM_V2DCFT is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V3DCFT 
 

Three-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7) 

CALL DM_V3DCFT(X,KX,N1,N2,N3,ISN,ICON) 

 

(1) Function 

 The subroutine DM_V3DCFT performs a three-dimensional complex Fourier transform 
or its inverse Fourier transform using a mixed radix FFT. 

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of 
the powers of 2, 3, 5 and 7. 

a. The three-dimensional Fourier transform 

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain 
{n1n2n3k1k2k3}. 
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b. The three-dimensional Fourier inverse transform 

 When {k1k2k3 } is input, the transform defined by (1.2) below is calculated to obtain 
{xj1j2j3}. 
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(2) Parameters 

X .............. Input.  The complex data. 

Data is stored in X(1:N1,1:N2,1:N3). 

Output.  The transformed complex data. 

The results are stored in X(1:N1,1:N2,1:N3). 

This is a double precision complex three-dimensional array X(KX,N2,N3). 

KX ............ Input.  The size of the first dimension of input data arrays X ( N1). 
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N1 ............ Input.  The length n1 of data in the first dimension of the three- dimensional 
array to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

N2 ........... Input.  The length n2 of data in the second dimension of the three- dimensional 
array to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

N3 ........... Input.  The length n3 of data in the third dimension of the three- dimensional 
array to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

ISN .......... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = -1 for the inverse transform. 

ICON ........ Output.  Condition code. 

See Table DM_V3DCFT-1. 

 
Table DM_V3DCFT-1   Condition codes 

Code Meaning Processing 

0 No error  

30001 The dimensions of arrays less than or equal to 0 Processing is discontinued 

30002 The leading dimensions are less than the actual 
dimensions. 

 

30008 The order of transform is not radix 2/3/5/7.  

30016 The invalid value for the parameter ISN  

 

(3) Comments on use 

a. Notes 

1) General definition of a Fourier transform 

  The three-dimensional discrete complex Fourier transform and its inverse 
transform can generally be defined as in (3.1) and (3.2). 
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 where, n1 = exp (2 i/n1), n2 = exp (2 i/n2), 

             n3= exp (2 i/n3) 

  This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively.  Normalization of the results may 
be required. 

b. Example 

 A three-dimensional FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8 (A-H,O-Z) 
      PARAMETER (N1=400,N2=100,N3=200) 
      PARAMETER (KX=440) 
      COMPLEX*16 X(KX,N2,N3) 
      INTEGER ISN 
* 
*     Set up the input data arrays 
* 
!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X) 
      DO K=1,N3 
      DO I=1,N2 
      DO J=1,N1 
      X(J,I,K)=DCMPLX(FLOAT(J)+FLOAT(N1)*(I-1),0.0) 
      ENDDO 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
 
* 
*     Do the forward transform 
* 
      ISN=1 
      CALL DM_V3DCFT(X,KX,N1,N2,N3,ISN,ICON) 
      IF(ICON.NE.0) THEN 
        WRITE(*,*) 'error occurred : ',ICON 
      ENDIF 
* 
*    Do the reverse transform 
* 
      ISN=-1 
      CALL DM_V3DCFT(X,KX,N1,N2,N3,ISN,ICON) 
      IF(ICON.NE.0) THEN 
        WRITE(*,*) 'error occurred : ',ICON 
      ENDIF 
* 
*    Find the error after the forward and 
*    inverse transform. 
* 
      ERROR=0 
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!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X) 
!$OMP+         REDUCTION(MAX:ERROR) 
 
      DO K=1,N3 
      DO I=1,N2 
      DO J=1,N1 
      ERROR=MAX(ABS(DBLE(X(J,I,K))/(N3*N2*N1)- 
     &      (FLOAT(J)+FLOAT(N1)*(I-1))),ERROR) 
      ERROR=MAX(ABS(DIMAG(X(J,I,K))/(N3*N2*N1)), 
     &                           ERROR) 
      ENDDO 
      ENDDO 
      ENDDO 
!$OMP END PARALLEL DO 
 
      WRITE(*,*) 'Error ', ERROR 
      STOP 
      END 
 

 (4) Method 

 DM_V3DCFT is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V3DCFT2 
 

Three-dimensional discrete complex Fourier transforms (mixed radices of 2, 3, 5 and 7) 

CALL DM_V3DCFT2(X,K1,K2,N1,N2,N3,ISN,ICON) 

 

(1) Function 

 The subroutine DM_V3DCFT2 performs a three-dimensional complex Fourier transform 
or its inverse Fourier transform using a mixed radix FFT. 

 The size of each dimension of three-dimensional arrays (n1, n2, n3) can be a product of 
the powers of 2, 3, 5 and 7. 

a. The three-dimensional Fourier transform 

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain 
{n1n2n3k1k2k3}. 
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b. The three-dimensional Fourier inverse transform 

 When {k1k2k3 } is input, the transform defined by (1.2) below is calculated to obtain 
{xj1j2j3}. 
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(2) Parameters 

X .............. Input.  The complex data. 

Data is stored in X(1:N1,1:N2,1:N3). 

Output.  The transformed complex data. 

The results are stored in X(1:N1,1:N2,1:N3). 

This is a double precision complex three-dimensional array X(K1,N2,N3). 

K1 ............ Input.  The size of the first dimension of input data arrays X ( N1). 
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K2 ............ Input.  The size of the second dimension of input data arrays X ( N2). 

N1 ............ Input.  The length n1 of data in the first dimension of the three- dimensional 
array to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

N2 ........... Input.  The length n2 of data in the second dimension of the three- dimensional 
array to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

N3 ........... Input.  The length n3 of data in the third dimension of the three- dimensional 
array to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

ISN .......... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = -1 for the inverse transform. 

ICON ........ Output.  Condition code. 

See Table DM_V3DCFT2-1. 

 
Table DM_V3DCFT2-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 n1, n2 or n3 less than or equal to 0, or K1<N1, 
or K2<N2, or invalid value for the parameter 
ISN. 

Processing is discontinued 

30008 The order of transform is not radix 2/3/5/7.  

 

(3) Comments on use 

a. Notes 

1) General definition of a Fourier transform 

  The three-dimensional discrete complex Fourier transform and its inverse 
transform can generally be defined as in (3.1) and (3.2). 
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 where, n1 = exp (2 i/n1), n2 = exp (2 i/n2), 

             n3= exp (2 i/n3) 

  This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively.  Normalization of the results may 
be required. 

b. Example 

 A three-dimensional FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
c     **example** 
      implicit real*8 (a-h,o-z) 
      parameter (n1=128,n2=128,n3=128) 
      parameter (k1=n1+1,k2=n2) 
      complex*16 x(k1,k2,n3) 
      integer isn 
* 
*     set up the input data arrays 
* 
!$omp parallel do default(private) shared(x) 
      do k=1,n3 
      do i=1,n2 
      do j=1,n1 
      x(j,i,k)=dcmplx(float(j)+float(n1)*(i-1),0.0) 
      enddo 
      enddo 
      enddo 
!$omp end parallel do 
 
* 
*     do the forward transform 
* 
      isn=1 
      call dm_v3dcft2(x,k1,k2,n1,n2,n3,isn,icon) 
      if(icon.ne.0) then 
        write(*,*) 'error occurred : ',icon 
      endif 
* 
*    do the reverse transform 
* 
      isn=-1 
      call dm_v3dcft2(x,k1,k2,n1,n2,n3,isn,icon) 
      if(icon.ne.0) then 
        write(*,*) 'error occurred : ',icon 
      endif 
* 
*    find the error after the forward and 
*    inverse transform. 
* 
      error=0 
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!$omp parallel do default(private) shared(x) 
!$omp+         reduction(max:error) 
 
      do k=1,n3 
      do i=1,n2 
      do j=1,n1 
      error=max(abs(dble(x(j,i,k))/(n3*n2*n1)- 
     &      (float(j)+float(n1)*(i-1))),error) 
      error=max(abs(dimag(x(j,i,k))/(n3*n2*n1)), 
     &                           error) 
      enddo 
      enddo 
      enddo 
!$omp end parallel do 
 
      write(*,*) 'error=', error 
      stop 
      end 
 

 (4) Method 

 DM_V3DCFT2 is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V1DRCF 
 

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7) 

CALL DM_V1DRCF(X,KX,Y,KY,N1,N2,ISIN,ISN,ICON) 

 

(1) Function 

  The subroutine DM_V1DRCF performs a one-dimensional real Fourier transform or its 
inverse transform using a mixed radix FFT. 

  The data count n (=n1  n2) is a product of the powers of 2, 3, 5 and 7. 

a. One-dimensional Fourier transform 

 When {xj} is input, the transform defined by (1.1) below is calculated 
 to obtain {n k}. 
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 r = 1 or r = 1 

b. One-dimensional Fourier inverse transform 

 When { k} is input, the transform defined by (1.2) below is calculated 
 to obtain {xj}. 
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 r = 1 or r = 1 

 This routine can perform about 30% faster than DM_V1DRCF2 or more, provided that 
the n is factorized into n1 and n2 appropriately. 

(2) Parameters 

X ............... Input/output.  Real data. is stored in X(1:N1,1:N2). 

For the real to complex transform (ISN = 1), data is input; for the complex to 
real transform (ISN = 1), data is output.  For ISN = 1, the input data is not 
saved. 

This is a double precision real two-dimensional array X(KX,N2). 

See Figure DM_V1DRCF-1. 

(See notes 1) in (3), “Comments on use.”) 

KX ............ Input.  The size of the first dimension of array X ( N1). 

Integer (INTEGER*4) 

Y ............... Output/input.  Transformed complex data. 

Data is stored in Y(1:N2/2 + 1,1:N1). 
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For the real to complex transform (ISN = 1), data is output; for the complex to 
real transform (ISN = 1), data is input. 

The input data is not guaranteed when ISN = 1. 

The complex data obtained from real data by Fourier transformation has the 
conjugate complex relation.  About half data is stored. 

This is a double precision complex two-dimensional array Y(KY,N1). 

 (See note 3), (3) “Comments on use” and Figure DM_V1DRCF-1.) 

KY ............ Input.  The size of the first dimension of arrays Y (KY  N2/2 + 1). 

Integer (INTEGER*4). 

N1 ............. Input.  The size of the first dimension assuming that the real data to be 
transformed (n = n1  n2) is two-dimensional data. 

N1 must be a product of the powers of 2, 3, 5 and 7. 

N1*N2 must be the length of the data sequence to be transformed. 

Integer (INTEGER*4).  

(See note 1),4) in (3), “Comments on use.”) 

N2 ............. Input.  The size of the second dimension assuming that the real data to be 
transformed (n = n1  n2) is two-dimensional data. 

N2 must be a product of the powers of 2, 3, 5 and 7. 

N1*N2 must be the length of the data sequence to be transformed. 

Integer (INTEGER*4). 

(See note 1),4) in (3), “Comments on use.”) 

ISIN .......... Input.  The direction of transformation. 

ISIN=1 for r = 1. 

ISIN=1 for r = 1. 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = 1 for the inverse transform.  

Integer (INTEGER*4). 

ICON ........ Output.  Condition code. 

See Table DM_V1DRCF-1. 
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Figure DM_V1DRCF-1   Input/Output data storage method 

 
Table DM_V1DRCF-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 KX < N1, KY < N2/2+1, N1 < 1, N2 < 1, ISIN 
 1,1, or ISN  1, 1. 

Processing is discontinued. 

30008 The order of the transform is not radix 2/3/5/7.  

 

(3) Comments on use 

a. Notes 

1) If one-dimensional data of n = n1  n2 is numbered k = 0 , ..., n1, 

k = k1 + k2  n1    ,  k1 = 0, ..., n11 

                          ,  k2 = 0, ..., n21 

k = i1 + i2  n2     ,  i1 = 0, ..., n21 

                          ,  i2 = 0, ..., n11 

Real data and complex data are regarded as two-dimensional data with subscripts 
of (k1, k2) and (i1, i2), respectively.  However, i1 = 0 , ..., n2/2 are stored in Y. 

(See Figure DM_V1DRCF-1.) 

2) General definition of a Fourier transform 

The one-dimensional discrete complex Fourier transform and its inverse 
transform can be defined as in (3.1) and (3.2). 
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where, n = exp(2 i/n) 

This subroutine calculates {nk} or {xj} corresponding to the left term of (3.1) or 
(3.2), respectively.  Normalization of the results may be required. 

3) The result of the one-dimensional real Fourier transform has the following 
complex conjugate relation (indicated by ¯ ). 

k = kn    k=1, ..., n1 

n = n1  n2 

i1 = 0, 1, ..., n21 

i2 = 0, 1, ..., n11 

If k = i1 + i2  n2 is assumed, 

n  k = n2  i1 + (n11i2)  n2 

The rest of data can be obtained from data numbered i1 = 1, ..., n2/2 (the first part 
excluding zeros). 

4) The performance of this routine will be the best when the n can be factorized 
into adequately large n1 and n2 which are about the same size. 

b. Example 

 A one-dimensional real FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N1=1024,N2=1024,KX=N1+1,KY=N2/2+1+1) 
      REAL*8     X(KX,N2), XX(N1,N2) 
      COMPLEX*16 Y(KY,N1) 
CC 
      DO I=1,N2 
      DO J=1,N1 
      X(J,I)=J+N1*(I-1) 
      XX(J,I)=X(J,I) 
      ENDDO 
      ENDDO 
      ISW=1 
      CALL DM_V1DRCF(X,KX,Y,KY,N1,N2,1,ISW,ICON) 
      PRINT*,' ICON =',ICON 
CC 
      ISW=-1 
      CALL DM_V1DRCF(X,KX,Y,KY,N1,N2,1,ISW,ICON) 
      PRINT*,' ICON =',ICON 
CC 
      TMP=0.0D0 
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      DO I=1,N2 
      DO J=1,N1 
      TMP=MAX(DABS(DBLE(X(J,I))/DBLE(N1)/DBLE(N2) 
     $        -DBLE(XX(J,I))),TMP) 
      ENDDO 
      ENDDO 
CC 
      PRINT*,' ERROR  =',TMP 
      STOP 
      END 
 

(4) Method 

 DM_V1DRCF is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V1DRCF2 
 

One-dimensional discrete real Fourier transform (mixed radix of 2, 3, 5 and 7) 

CALL DM_V1DRCF2(X,N,Y,ISIN,ISN,ICON) 

 

(1) Function 

 This subroutine performs a one-dimensional real Fourier transform or its inverse 
transform using a mixed radix FFT. 

 The data count n is a product of the powers of 2, 3, 5 and 7. 

a. One-dimensional Fourier transform 

When {xj} is input, the transform defined by (1.1) below is calculated 
 to obtain {n k}. 
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 r = 1 or r = 1 

b. One-dimensional Fourier inverse transform 

When { k} is input, the transform defined by (1.2) below is calculated 
 to obtain {xj}. 
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 r = 1 or r = 1 

 (2) Parameters 

X ............... Input/output.  Real data is stored in X(1:N). 

For the real to complex transform (ISN = 1), data is input; for the complex to 
real transform (ISN = 1), data is output. 

This is a double precision real One-dimensional array X(N). 

N ............... Input.  The size of the data to be transformed. 

N must be an even number and a product of the powers of 2, 3, 5 and 7. 

Y ............... Output/input.  About a half of the complex is stored in Y(1:N/2 + 1). 

For the real to complex transform (ISN = 1), data is output; for the complex to 
real transform (ISN = 1), data is input. 

 (See note 1), (3) “Comments on use.”) 

This is a double precision complex one-dimensional array Y(N/2+1). 

ISIN .......... Input.  The direction of transformation. 

ISIN=1 for r = 1. 
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ISIN=1 for r = 1. 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = 1 for the inverse transform.  

Integer (INTEGER*4). 

ICON ........ Output.  Condition code. 

See Table DM_V1DRCF2-1. 

 
Table DM_V1DRCF2-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 N is not a multiple of 2, or N is not a product of 
the powers of 2, 3, 5 and 7, or ISIN  1,-1, 
or ISN  1, -1. 

Processing is discontinued. 

 

(3) Comments on use 

a. Notes 

1) The result of the one-dimensional real Fourier transform has the following 
complex conjugate relation (indicated by ¯ ). 

k = kn    k=1, ..., n1    (excluding 0). 

2) General definition of a Fourier transform 

The one-dimensional discrete complex Fourier transform and its inverse 
transform can be defined as in (3.1) and (3.2). 
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This subroutine calculates {n k} or {xj} corresponding to the left term of (3.1) 
or (3.2), respectively.  Normalization of the results may be required. 

  

b. Example 

 A one-dimensional real FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 
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C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N1=1024,N2=N1,N=N1*N2) 
      REAL*8     X(N) 
      COMPLEX*16 Y(N/2+1),XX(N) 
C 
      DO I=1,N 
      X(I)=DBLE(I) 
      XX(I)=X(I) 
      ENDDO 
C 
      CALL DM_V1DRCF2(X,N,Y,1,1,ICON) 
      PRINT*,'ICON =',ICON 
C 
      CALL DM_V1DRCF2(X,N,Y,1,-1,ICON) 
      PRINT*,'ICON =',ICON 
C 
      TMP=0.0D0 
      DO I=1,N 
      TMP=MAX(ABS(X(I)/DBLE(N)-XX(I)),TMP) 
      ENDDO 
      PRINT*,' ERROR =',TMP 
C 
      STOP 
      END 
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DM_V2DRCF 
 

Two-dimensional discrete real Fourier transform (mixed radices of 2, 3, 5 and 7) 

CALL DM_V2DRCF(X,K,N1,N2,ISIN,ISN,ICON) 

 

(1) Function 

  The subroutine DM_V2DRCF performs a two-dimensional real Fourier transform or its 
inverse Fourier transform using a mixed radix FFT. 

  The size of each dimension of the two-dimensional data (n1, n2) can be a product of the 
powers of 2, 3, 5 and 7. 

a. The two-dimensional Fourier transform 

 When {xj1j2} is input, the transform defined by (1.1) below is calculated 
 to obtain {n1n2k1k2}. 
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b. The two-dimensional Fourier inverse transform 

 When {k1k2} is input, the transform defined by (1.2) below is calculated 
 to obtain {xj1j2}. 
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(2) Parameters 

X ............... Input/Output.  Two-dimensional real data is stored in X(1:N1,1:N2). 

For the real to complex transform (INS = 1), data is input; for the complex to 
real transform (INS = -1), data is output. 

Output/input.  The real and imaginary parts of the transformed complex data are 
stored as follows: 

The real and imaginary parts are stored in X(1,1:N1/2+1,1:N2) and 
X(2,1:N1/2+1,N2) respectively assuming that the array X was a three-
dimensional array X(2,K/2,N2). 
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For the real to complex transform (ISN = 1), data is output; for the complex to 
real transform (ISN = -1), data is input. 

The complex data transformed Fourier has the complex conjugate relation.  And 
about half data is stored. 

(See note 2) in (3), “Comments on use.”) 

This is a double precision real two-dimensional array X(K,N2).     

K ............... Input.  The size of the first dimension of array X ( 2(n1/2+1)). 

K must be an even number. 

Integer (INTEGER*4) 

N1 ............ Input.  The length n1 of data in the first dimension of the two- dimensional array 
to be transformed. 

n1 must be a value that can be a product of powers of 2, 3, 5 and 7. 

Integer (INTEGER*4) 

N2 ............ Input.  The length n2 of data in the second dimension of the two- dimensional 
array to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

Integer (INTEGER*4) 

ISIN ......... Input.  The direction of transformation. 

ISIN=1 for r = 1. 

ISIN=1 for r = 1. 

Integer (INTEGER*4) 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform.  

ISN = 1 for the inverse transform. 

Integer (INTEGER*4). 

ICON ........ Output.  Condition code. 

See Table DM_V2DRCF-1. 

 
Table DM_V2DRCF-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 K < 2(N1/2+1), K is not an even number, 
N1 < 1, N2 < 1, ISIN  1, 1,or ISN  1, 1. 

Processing is discontinued. 

30008 The order of the transform is not radix 2/3/5/7.  

 

(3) Comments on use 

a. Notes 

1) General definition of a Fourier transform 
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The two-dimensional discrete complex Fourier transform and its inverse 
transform can generally be defined as in (3,1) and (3,2). 
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where n1= exp (2 i/n1), n2 = exp (2 i/n2) 

This subroutine calculates {n1n2k1k2} or {xj1j2} corresponding to the left term of 
(3.1) or (3.2), respectively.  Normalization of the results is required, if necessary. 

2) The results of the two-dimensional real Fourier transform that has the following 
complex conjugate relation (indicated by – ). 

221121   -k  n-knkk    (3.3) 

The remainder of the data is obtained from the data in k1 = 0, ..., n1/2 and k2 = 
0, ..., n21. 

b. Example 

 A two-dimensional real FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 

 
C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N1=2048,N2=2048,K=(N1/2+1)*2) 
      REAL*8    X(K,N2), Y(N1,N2) 
CC 
      DO I=1,N2 
      DO J=1,N1 
      X(J,I)=J+N2*(I-1) 
      Y(J,I)=X(J,I) 
      ENDDO 
      ENDDO 
      ISW=1 
      CALL DM_V2DRCF(X,K,N1,N2,1,ISW,ICON) 
      PRINT*,' ICON =',ICON 
CC 
      ISW=-1 
      CALL DM_V2DRCF(X,K,N1,N2,1,ISW,ICON) 
      PRINT*,' ICON =',ICON 
CC 
      TMP=0.0D0 
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      DO I=1,N2 
      DO J=1,N1 
      TMP=MAX(DABS(DBLE(X(J,I))/DBLE(N1)/DBLE(N2) 
     $             -DBLE(Y(J,I))),TMP) 
      ENDDO 
      ENDDO 
CC 
      PRINT*,' ERROR  =',TMP 
      STOP 
      END 
 

(4) Method 

 DM_V2DRCF is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V3DRCF 
 

Three-dimensional discrete real Fourier transform (mixed radices of 2, 3, 5 and 7) 

CALL DM_V3DRCF(X,K,N1,N2,N3,ISIN,ISN,ICON) 

 

(1) Function 

  The subroutine DM_V3DRCF performs a three-dimensional real Fourier transform or its 
inverse Fourier transform using a mixed radix FFT. 

  The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of 
the powers of 2, 3, 5 and 7. 

a. The three-dimensional Fourier transform 

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated 
 to obtain {n1n2n3k1k2k3}. 
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b. The three-dimensional Fourier inverse transform 

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated 
 to obtain {xj1j2j3}. 
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(2) Parameters 

X ............... Input/Output.  Three-dimensional real data is stored in X(1:N1,1:N2,1:N3). 

For the real to complex transform (ISN = 1), data is input; for the complex to 
real transform (ISN = 1), data is output. 

Output/input.  The real and imaginary parts of the transformed complex data are 
stored as follows: 
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For the real to complex transform (ISN = 1), data is output; for the complex to 
real transform (ISN = 1), data is input. 

The complex data obtained from real data by Fourier transformation has the 
complex conjugate relation.  And about half data is stored. 

(See note 2) in (3), “Comments on use.”) 

The real and imaginary parts are stored in X(1,1:N1/2+1,1:N2,1:N3) and 
X(2,1:N1/2+1,1:N2,1:N3) respectively assuming that the array X was a four-
dimensional array X(2,K/2,N2,N3). 

This is a double precision real three-dimensional array X(K,N2,N3). 

K ................ Input.  The size of the first dimension of array X ( 2(n1/2+1)).  Even number. 

Integer (INTEGER*4) 

N1 ............. Input.  The length n1 of real data in the first dimension to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

Integer (INTEGER*4) 

N2 ............. Input.  The length n2 of real data in the second dimension to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.  

Integer (INTEGER*4) 

N3 ............ Input.  The length n3 of real data in the third dimension to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

Integer (INTEGER*4) 

ISIN ......... Input.  The direction of the transformation. 

ISIN=1 for r = 1. 

ISIN=1 for r = 1. 

Integer (INTEGER*4) 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = 1 for the inverse transform. 

Integer (INTEGER*4). 

ICON ........ Output.  Condition code. 

See Table DM_V3DRCF-1. 
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Table DM_V3DRCF-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 K < 2  (N1/2+1), K is not an even number, 
N1 < 1, N2 < 1, N3 < 1, ISIN  1, 1, 
 or ISN  1, 1. 

Processing is discontinued. 

30008 The order of the transform is not radix 2/3/5/7.  

 

(3) Comments on use 

a. Notes 

1) General definition of a Fourier transform 

The three-dimensional discrete complex Fourier transform and its inverse 
transform can generally be defined as in (3.1) and (3.2). 
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where, n1 = exp(2i/n1), n2 = exp(2i/n2), 

            n3= exp(2i/n3) 

This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left 
term of (3.1) or (3.2), respectively.  The normalization of the results may be 
required. 

2) The results of the three-dimensional real Fourier transform has the following 
complex conjugate relation (indicated by – ). 

332211321   -k  n-k  n-knkkk    (3.3) 

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2–1, 
and k3 = 0, ..., n31. 

b. Example  

 A three-dimensional real FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 
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C     **EXAMPLE** 
      IMPLICIT REAL*8(A-H,O-Z) 
      PARAMETER (N1=128,N2=128,N3=128,K=(N1/2+1)*2) 
      DIMENSION YY(K,N2,N3), YR(K,N2,N3) 
C 
      DO I3=1,N3 
      DO I2=1,N2 
      DO I1=1,N1 
      YY(I1,I2,I3)=DBLE(I1+N1*(I2-1)+N1*N2*(I3-1)) 
      YR(I1,I2,I3)=YY(I1,I2,I3) 
      ENDDO 
      ENDDO 
      ENDDO 
C 
      ISW=1 
      CALL DM_V3DRCF(YY,K,N1,N2,N3,1,ISW,ICON) 
      PRINT*,'ICON =',ICON 
C 
      ISW=-1 
      CALL DM_V3DRCF(YY,K,N1,N2,N3,1,ISW,ICON) 
      PRINT*,'ICON =',ICON 
C 
      TMP=0.0D0 
      DO I3=1,N3 
      DO I2=1,N2 
      DO I1=1,N1 
      TMP=MAX(DABS(YY(I1,I2,I3)/DBLE(N1)/DBLE(N2)/DBLE(N3) 
     $             -YR(I1,I2,I3)),TMP) 
      ENDDO 
      ENDDO 
      ENDDO 
      PRINT*,' ERROR =',TMP 
C 
      STOP 
      END 
 

(4) Method 

 DM_V3DRCF is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V3DRCF2 
 

Three-dimensional discrete real Fourier transform (mixed radices of 2, 3, 5 and 7) 

CALL DM_V3DRCF2(X,K1,K2,N1,N2,N3,ISIN,ISN,ICON) 

 

(1) Function 

  The subroutine DM_V3DRCF2 performs a three-dimensional real Fourier transform or 
its inverse Fourier transform using a mixed radix FFT. 

  The size of each dimension of the three-dimensional array (n1, n2, n3) can be a product of 
the powers of 2, 3, 5 and 7. 

a. The three-dimensional Fourier transform 

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated 
 to obtain {n1n2n3k1k2k3}. 
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b. The three-dimensional Fourier inverse transform 

 When {k1k2k3} is input, the transform defined by (1.2) below is calculated 
 to obtain {xj1j2j3}. 
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(2) Parameters 

X ............... Input/Output.  Three-dimensional real data is stored in X(1:N1,1:N2,1:N3). 

For the real to complex transform (ISN = 1), data is input; for the complex to 
real transform (ISN = 1), data is output. 

Output/input.  The real and imaginary parts of the transformed complex data are 
stored as follows: 
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For the real to complex transform (ISN = 1), data is output; for the complex to 
real transform (ISN = 1), data is input. 

The complex data obtained from real data by Fourier transformation has the 
complex conjugate relation.  And about half data is stored. 

(See note 2) in (3), “Comments on use.”) 

The real and imaginary parts are stored in X(1,1:N1/2+1,1:N2,1:N3) and 
X(2,1:N1/2+1,1:N2,1:N3) respectively assuming that the array X was a four-
dimensional array X(2,K1/2,K2,N3). 

This is a double precision real three-dimensional array X(K1,K2,N3). 

K1 ................ Input.  The size of the first dimension of array X ( 2(n1/2+1)).  Even number. 

Integer (INTEGER*4) 

K2 ................ Input.  The size of the second dimension of array X (n2). 

Integer (INTEGER*4) 

N1 ............. Input.  The length n1 of real data in the first dimension to be transformed. 

n1 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

Integer (INTEGER*4) 

N2 ............. Input.  The length n2 of real data in the second dimension to be transformed. 

n2 must be a value that can be a product of the powers of 2, 3, 5 and 7.  

Integer (INTEGER*4) 

N3 ............ Input.  The length n3 of real data in the third dimension to be transformed. 

n3 must be a value that can be a product of the powers of 2, 3, 5 and 7. 

Integer (INTEGER*4) 

ISIN ......... Input.  The direction of the transformation. 

ISIN=1 for r = 1. 

ISIN=1 for r = 1. 

Integer (INTEGER*4) 

ISN ........... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = 1 for the inverse transform. 

Integer (INTEGER*4). 

ICON ........ Output.  Condition code. 

See Table DM_V3DRCF2-1. 
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Table DM_V3DRCF2-1   Condition codes 

Code Meaning Processing 

0 No error  

30000 K1 < 2  (N1/2+1), K1 is not an even number, 
K2 < N2, N1 < 1, N2 < 1, N3 < 1, ISIN  1, 1, 
 or ISN  1, 1. 

Processing is discontinued. 

30008 The order of the transform is not radix 2/3/5/7.  

 

(3) Comments on use 

a. Notes 

1) General definition of a Fourier transform 

The three-dimensional discrete complex Fourier transform and its inverse 
transform can generally be defined as in (3.1) and (3.2). 
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 (3.2) 

where, n1 = exp(2i/n1), n2 = exp(2i/n2), 

            n3= exp(2i/n3) 

This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left 
term of (3.1) or (3.2), respectively.  The normalization of the results may be 
required. 

2) The results of the three-dimensional real Fourier transform has the following 
complex conjugate relation (indicated by – ). 

332211321   -k  n-k  n-knkkk    (3.3) 

The remainder of the data is obtained from data in k1 = 0, ..., n1/2, k1 = 0, ..., n2–1, 
and k3 = 0, ..., n31. 

b. Example  

 A three-dimensional real FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 
when this program is to be executed in parallel with 4 threads on the system of 4 
processors. 
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c     **example** 
      implicit real*8(a-h,o-z) 
      parameter(n1=128,n2=128,n3=128,k1=(n1/2+1)*2,k2=n2+1) 
      dimension yy(k1,k2,n3),yr(k1,k2,n3) 
c 
      do i3=1,n3 
      do i2=1,n2 
      do i1=1,n1 
      yy(i1,i2,i3)=dble(i1+n1*(i2-1)+n1*n2*(i3-1)) 
      yr(i1,i2,i3)=yy(i1,i2,i3) 
      enddo 
      enddo 
      enddo 
c 
      isw=1 
      call dm_v3drcf2(yy,k1,k2,n1,n2,n3,1,isw,icon) 
      print*,'icon =',icon 
c 
      isw=-1 
      call dm_v3drcf2(yy,k1,k2,n1,n2,n3,1,isw,icon) 
      print*,'icon =',icon 
c 
      tmp=0.0d0 
      do i3=1,n3 
      do i2=1,n2 
      do i1=1,n1 
      tmp=max(dabs(yy(i1,i2,i3) 
     $              /dble(n1)/dble(n2)/dble(n3) 
     $             -yr(i1,i2,i3)),tmp) 
      enddo 
      enddo 
      enddo 
      print*,' error =',tmp 
c 
      stop 
      end 
 

(4) Method 

 DM_V3DRCF2 is implemented using DVCFM1 which is the routine of one-dimensional 
complex Fourier transform highly adapted to a scalar computer. Refer to “SSL II 
Extended Capabilities User's Guide II” in detail. 
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DM_V3DCPF 
 

Three-dimensional prime factor discrete complex Fourier transforms 

CALL DM_V3DCPF(X,K1,K2,N1,N2,N3,ISN,ICON) 

 

(1) Function 

 The subroutine DM_V3DCPF performs a three-dimensional complex Fourier transform 
or its inverse Fourier transform. 

 The size of each dimension of three-dimensional data (n1, n2, n3) must satisfy the 
following condition. 

The size must be expressed by a product of a mutual prime factor p, selected from the 
following numbers: 

factor p (p  {2, 3, 4, 5, 7, 8, 9, 16, 25}) 

a. The three-dimensional Fourier transform 

 When {xj1j2j3} is input, the transform defined by (1.1) below is calculated to obtain 
{n1n2n3k1k2k3}. 
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b. The three-dimensional Fourier inverse transform 

 When {k1k2k3 } is input, the transform defined by (1.2) below is calculated to obtain 
{xj1j2j3}. 
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(2) Parameters 

X .............. Input.  The complex data. 

Data is stored in X(1:N1,1:N2,1:N3). 

Output.  The transformed complex data. 
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The results are stored in X(1:N1,1:N2,1:N3). 

This is a double precision complex three-dimensional array X(K1,K2,N3). 

K1 ............ Input.  The size of the first dimension of input data arrays X ( N1). 

K2 ............ Input.  The size of the second dimension of input data arrays X ( N2). 

N1 ............ Input.  The length n1 of data in the first dimension of the three- dimensional 
array to be transformed. 

N2 ........... Input.  The length n2 of data in the second dimension of the three- dimensional 
array to be transformed. 

N3 ........... Input.  The length n3 of data in the third dimension of the three- dimensional 
array to be transformed. 

ISN .......... Input.  Either the transform or the inverse transform is indicated. 

ISN = 1 for the transform. 

ISN = -1 for the inverse transform. 

ICON ........ Output.  Condition code. 

See Table DM_V3DCPF-1. 

 
Table DM_V3DCPF-1   Condition codes 

Code Meaning Processing 

0 No error  

20000 n1, n2 or n3 can not be factored into the product 
of the factors in 2, 3, 4, 5, 7, 8, 9, 16, 25. 

Processing is discontinued 

30000 n1, n2 or n3 less than or equal 0, or K1<N1, or 
K2<N2, or invalid value for the parameter ISN. 

 

 

(3) Comments on use 

a. Notes 

1) General definition of a Fourier transform 

  The three-dimensional discrete complex Fourier transform and its inverse 
transform can generally be defined as in (3.1) and (3.2). 
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 where, n1 = exp (2 i/n1), n2 = exp (2 i/n2), 

             n3= exp (2 i/n3) 

  This subroutine calculates {n1n2n3k1k2k3} or {xj1j2j3} corresponding to the left-
hand-side term of (3.1) or (3.2), respectively.  Normalization of the results may 
be required. 

b. Example 

 A three-dimensional FFT is computed. 

The number of the threads can be specified with an environment variable 
(OMP_NUM_THREADS).  For example, set OMP_NUM_THREADS to be 4 when 
this program is to be executed in parallel with 4 threads on the system of 4 processors. 

 
c     **example** 
      implicit real*8 (a-h,o-z) 
      parameter (n1=40,n2=240,n3=90) 
      parameter (k1=n1,k2=n2) 
      complex*16 x(k1,k2,n3) 
      integer isn 
* 
*     set up the input data arrays 
* 
!$omp parallel do default(private) shared(x) 
      do k=1,n3 
      do i=1,n2 
      do j=1,n1 
      x(j,i,k)=dcmplx(float(j)+float(n1)*(i-1),0.0) 
      enddo 
      enddo 
      enddo 
!$omp end parallel do 
 
* 
*     do the forward transform 
* 
      isn=1 
      call dm_v3dcpf(x,k1,k2,n1,n2,n3,isn,icon) 
      if(icon.ne.0) then 
        write(*,*) 'error occurred : ',icon 
      endif 
* 
*    do the reverse transform 
* 
      isn=-1 
      call dm_v3dcpf(x,k1,k2,n1,n2,n3,isn,icon) 
      if(icon.ne.0) then 
        write(*,*) 'error occurred : ',icon 
      endif 
* 
*    find the error after the forward and 
*    inverse transform. 
* 
      error=0 
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!$omp parallel do default(private) shared(x) 
!$omp+         reduction(max:error) 
 
      do k=1,n3 
      do i=1,n2 
      do j=1,n1 
      error=max(abs(dble(x(j,i,k))/(n3*n2*n1)- 
     &      (float(j)+float(n1)*(i-1))),error) 
      error=max(abs(dimag(x(j,i,k))/(n3*n2*n1)), 
     &                           error) 
      enddo 
      enddo 
      enddo 
!$omp end parallel do 
 
      write(*,*) 'error ', error 
      stop 
      end 
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Appendix B 
Contributors and Their Work 

The almost full or partial parts of the codes and algorithms developed for SSL II/VPP are used 
or tailored to implement the functions in SSL II Thread-Parallel Capabilities.  The following 
table shows the contributors for the SSL II/VPP subroutines used. 

 

Author Subroutine in 
SSLII/VPP 
(Subroutine in 
Thread-Parallel 
Capabilities) 

Item 

Richard Peirce Brent 
Peter Frederick Price 

DP_VRANU4 
(DM_VRANU4) 

Generation of uniform random numbers [0,1) 

Richard Peirce Brent 
Margaret Helen Kahn 

DP_VRANN3 
(DM_VRANN3) 

Generation of normal random numbers 

Richard Peirce Brent  DP_VRANN4 
(DM_VRANN4) 

Generation of normal random numbers 
(Wallace’s method) 

Murry Leslie Dow DP_VBCSD 
(DM_VBCSD) 

System of linear equations with unsymmetric or 
indefinite sparse matrices (BICGSTAB(l) 
method, diagonal format storage method) 

DP_VBCSE 
(DM_VBCSE) 

System of linear equations with unsymmetric or 
indefinite sparse matrices (BICGSTAB(l) 
method, ELLPACK format storage method) 

DP_VCGD 
(DM_VCGD) 

A system of linear equations with symmetric 
positive definite sparse matrices (preconditioned 
CG method, diagonal format storage method) 

DP_VCGE 
(DM_VCGE) 

A system of linear equations with symmetric 
positive definite sparse matrices (preconditioned 
CG method, ELLPACK format storage method) 

Lutz Grosz DP_VAMLID 
(DM_VAMLID) 

System of linear equations with sparse matrices 
of M-matrix (Algebraic multilevel iteration 
method [AMLI Method], diagonal format 
storage method) 

 

(DM_VMLBIFE) 

System of linear equations with sparse matrices 
(Multilevel iteration method based on 
incomplete block factorization, ELLPACK 
format storage method) 

DP_VPDE2D 
(DM_VPDE2D) 

Generation of System of linear equations with 
sparse matrices by the finite difference 
discretization of a two dimensional boundary 
value problem for second order partial 
differential equation 
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Author Subroutine in 
SSLII/VPP 
(Subroutine in 
Thread-Parallel 
Capabilities) 

Item 

Lutz Grosz DP_VPDE3D 
(DM_VPDE3D) 

Generation of System of linear equations with 
sparse matrices by the finite difference 
discretization of a three dimensional boundary 
value problem for second order partial 
differential equation 

Zbigniew Leyk DP_VMVSD 
(DM_VMVSD) 

Multiplication of real sparse matrices and real 
vectors (diagonal format storage method) 

DP_VMVSE 
(DM_VMVSE) 

Multiplication of real sparse matrices and real 
vectors (ELLPACK format storage method) 

DP_VTFQD 
(DM_VTFQD) 

System of linear equations with unsymmetric or 
indefinite sparse matrices (TFQMR method, 
diagonal format storage method) 

DP_VTFQE 
(DM_VTFQE) 

System of linear equations with unsymmetric or 
indefinite sparse matrices (TFQMR method, 
ELLPACK format storage method) 

Michael Robert Osborne 
David Lawrence Harrar II 

DP_VTDEVC 
(DM_VTDEVC) 

Eigenvalues and eigenvectors of real tridiagonal 
matrices 

 
 

Subroutine DM_VRADAU5 is based on the free software RADAU5 developed by Ernst 
Hairer and distributed under the following condition.  

----------------------------------------------------------------------------------------------------------- 
Copyright (c) 2004, Ernst Hairer 

 

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met: 

- Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer. 

 

- Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE 
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, 
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 



 References 

FUJITSU SSL II Thread-Parallel Capabilities User's Guide (Scientific Subroutine Library) B-3 

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE. 
----------------------------------------------------------------------------------------------------------- 
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