08
FUJITSU

FUJITSU Software
Technical Computing Suite V4.0L20

Job Operation Software
API| user's Guide for Command API

J2UL-2461-02ENZ0(00)
March 2020

Preface

Purpose of This Manual

This manual describes the command API of the job operation management function provided by the Job Operation Software of Technical
Computing Suite.

Intended Readers

This manual is intended for the administrators who operate and manage jobs using the Job Operation Software, and the end users who
actually perform operations with jobs.

The manual assumes readers have the following knowledge:
- Basic Linux knowledge
- Knowledge of job operations (submit a job, delete a job, etc.) described in "Job Operation Software End-user's Guide"

- Knowledge of job operation control described in "Job Operation Software Administrator's Guide for Job Management"

Organization of This Manual
This manual is organized as follows.
Chapter 1 Command API Overview
This chapter provides an overview of the command API.
Chapter 2 Using the Command API
This chapter describes how to use the command API.
Appendix A Command APl Common Reference
This appendix describes common command API operations and an API for referencing information.
Appendix B Job Operation API Reference
This appendix describes the API for job operations.
Appendix C Information Acquisition APl Reference
This appendix describes the API for getting job and resource information.
Appendix D Job Operation Control API Reference
This appendix describes the API for permitting job submission and job execution.
Appendix E Sample Programs

This appendix provides simple sample programs using the command API.

Notation Used in This Manual
Representation of units

The following table lists the prefixes used to represent units in this manual. Basically, disk size is represented as a power of 10, and
memory size is represented as a power of 2. Be careful about specifying them when displaying or entering commands.

Prefix Value Prefix Value
K (kilo) 10° Ki (kibi) 2w
M (mega) 10° Mi (mebi) 2%
G (giga) 10° Gi (gibi) 2%
T (tera) 10% Ti (tebi) 2%
P (peta) 10% Pi (pebi) 2%

Notation of model names

In this manual, the computer that based on Fujitsu A64FX CPU is abbreviated as "FX server"”, and FUJITSU server PRIMERGY as
"PRIMERGY server" (or simply "PRIMERGY").

Also, specifications of some of the functions described in the manual are different depending on the target model. In the description of
such a function, the target model is represented by its abbreviation as follows:

[FX]: The description applies to FX servers.

[PG]: The description applies to PRIMERGY servers.

Path names of the commands

In the examples of the operations, the path names of the commands in the directory /bin, /usr/bin, /shin or /usr/shin might not be
represented by absolute path.

Symbols in this manual

This manual uses the following symbols.

Qﬂ Note

The Note symbol indicates an item requiring special care. Be sure to read these items.

2 See

© 0000000000000 000000000000000000000000000000000O0CO0C0C0COCOCOCOCOCOCOCOCOCOCOC00C0C0C0000000000000000000000000000Ss

The See symbol indicates the written reference source of detailed information.

© 0 0000000000000 000000000000000000000000000000000000O0O0C0C0COCOCOCOCOCOCOCOCOC000C0C00C0C0C0000000000000000000000

;ﬂ Information

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.
Trademarks
- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
- Red Hat and Red Hat Enterprise Linux are registered trademarks of Red Hat, Inc. in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of publication and Version

Version Manual Code
March 2020, Second version J2UL-2461-02ENZ0(00)
January 2020, First version J2UL-2461-01ENZ0(00)

Copyright
Copyright FUJITSU LIMITED 2020

Update history

pjcmd_kill_put_param() function.

Changed the look according to product upgrades.

Changes Location Version
Added the PJICMD_SUBERR_REJECT_OPT error code to the pjcmd_error_get_info() function. | A.7.2 2
Added the PICMD_SUBMIT_NET_ROUTE parameter to the pjcmd_submit_put_param() B.1.8
function.
Added the PJCMD_KILL_NO_STATS and PICMD_KILL_NO_HISTORY parameters to the | B.2.2

All rights reserved.
The information in this manual is subject to change without notice.

Contents

Chapter 1 COMMANT AP OVEIVIEW. ... ueeieee ettt e e e ettt e e e e ettt eae e e aaeeeeea e s e tteeaaaaaasaseeeaeaaaneseeaaeaasaeeeaaeaansbeeeeeeansseeaaesansnnees 1
1.2 WhHat iS the COMMANG API?.....oiieiiietee ettt bbbt e bt b b s e bbb b b et b ekt b bbbttt e bt 1
A @ o T=T -1 To] T [0 OO OSSOSO 2
1.3 FUNCEION TYPBS . ttttettite ettt etttk b ettt b etk bbbtk b e bt e b e e e bt b e Rt eE e e eh £ e EeR £ e E e e e H £ e E e R e eb £ 8o E £ A b e R e e b€ AEeh £ e b e e e b e AE e s e e bt et e b e e b et e b e st e b e e b e e et nr e 3

Chapter 2 UsiNg the COMMEANT APL...... ottt e e e e ettt e e e e e ate et e e e aaateeeeaeeaamnsaeeaeaaamsbseeaeeaantaneeaesaanneneaaeaanns 5
2.1 HEAABE B, itk b b e b bt £ R b e R b e E R bR R R R AR R R e b bR R b et n s 5
2.2 Operations UsiNg the COMMEANT APL...........o ettt st s et e ebe s b e st et e e e b e e b eae e b e e ebe e e eneebensabeseeneabe e anesseneanenas 5

2.2.1 GENEratiNg @ HANGIE........coiviiiiicecteees ettt bbb b e b e e R e e b e b e b e st eseebe s e ke sb e e ebe st e ke ebe e ebe st ebeebe s ete et e e eterens 5
2.2.2 SELLING @ PAIAMETEetetetieiitetet ittt bttt b bbb b et e b bt e e b b e b b st e b b e £ E bRt e b bRt e b bt e bkt e b et ettt b e 5
2.2.3 Processing @ Command LiNE OPLION.c.cuiuiieirireiiiieseeesi ettt ekttt bbbt 6
2.2.3.1 Parameter Setting From a ComMmMAnd ATGUMENT.......c.ue ettt ettt et et be e b st e s e b e e et e b ebesbe e et e b ere st e e ebesbeneanan 6
2.2.3.2 COMMANG LLINE PAISEN ..ottt bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb bbb n s 7
2.2.3.3 OPLION ANAIYSIS. ...tttk bbb b bbbt e bbb bR £ bR R R bR E bR e h bR bRt bbbt et enenn 8
2.2.4 Requesting the Job Operation Management FUNCHION.ciiiiriiiieesee ettt sttt se et ss st see e b seene e 9
2.2.4.1 Operation ReqUESE FUNCLION Call.........ccoouiiiiiiiiie bbbt bbbttt b et ne b 9
2.2.4.2 JOD SUDMISSION OPEIATION.cuiieiiitisietisiereitii et st ettt sttt et st seste b e be s esesbe e ebe s ese e b e e ebe st e s e e b e e ebe s b e s e et et ebe et e e et et ereabensere e 9
2.2.4.3 30D OPBIALION. ...tttk b b st b b e E kbR R bR R e R R R R bR Rt 12
2.2.5 RETEIENCING RESUITS. ... etttk b et e st b e e e b e e b e s e b e £ e b2 b e s e e b e e e b e e b e ne e b e b eReebenteEeesene et ensabesseneaeeneanen 13
2.2.5.1 Referencing RESPONSE INFOMMALION.iuiuiiriiieiiirieie sttt ettt bttt eb et bt ne e 13
2.2.5.2 EITOF INFOIMALION. ...ttt bbbk bbb bbbt bbbt e bbbttt bbb 16
2.2.6 Releasing Handles, Command Line Parsers, and Response INfOrmation............cccooeereiiiinnieneiesenee e 19
2.2.7 Precaution When Using the COMMANGA APLL........c.oiieeeee ettt b et b et b ettt sa e be et ee 20
2.3 Creating @ COMMANG........ccvciiiieiitiitee ittt ettt te st e sttt et e s b e st et et et e s e st et e s s ebe s es s e b e s ehe st e s s eb e s ese s b e seebe s ebeebe e eb et et e e be s ebe st eseabensetenbeneatin 20
2.4 SEtting the COMMEANG AP ...ttt bbbt bbbt e b bt e b bR E b bbb bt bbbt e bbbt e e b s 20

Appendix A Command APl COMMON REFEIENCE........cuuiiiie ettt e ettt e e e e a e e e et e e e s st e e e e sabb e e e e e e e ssntaeeeesssatbeees 22

A.1 Handle Operations and ReSPONSE INTOIMALION.c.uiiiiiiiieeiee ettt b et eb et b et b e bbbt et e b e bt ee 22
A A o) ol g To B (- T AT LT | =T OSSPSR 22
A.L.2 PJCMA_CIONE_NANAIE(). ..ttt bbbt b b h bbb bbbt b e 23
F A o] (ol g To B =10 A 4 Vo | T OSSR 23
A.L1.4 pJemd_deStroy_NANAIE()......ceiririeiirieiee ittt bbb bR bbbt bbbt 24
ALLS PJCMA_AESEIOY_TESP()-rvtrererererrtesesirtetetesire ettt bbbttt ettt b st b bt e b bt b e b bt e b bt b b st e b b s bbb st e b bt b ettt ettt 24

A.2 Referencing 0f OPEration RESUILS.........cooiiriiiiieieie bbbttt ne bt n b eb e 24
YN o] [l g To B A =SV L T OO OSSO RURS U 25
A.2.2 PJCMA_gEt JOBIESUIL NUMI()..ictiieiiitiicest et b e b et b st s e e b e e e ke e b e s e b e b e be st ese et et ebe st eseebe s eresrensabensenen 26
A.2.3 pJCMA_get_JODIESUIT_INTO(). ... vttt bbb bbb bbb bbbt 26

A.3 Setting and ACQUISTEION OF JOD IDS.... ..ottt ettt sttt e et e s b e s e et et et e e b e st e Ee b e b e e beneebe e esesbensabeseeneaeeneanen 28
F e I o] (ol g To I o101 A o] o1 OO OSSO TR SO PO PP ROTORP 29
WA 2 o) (ol g o B o101 Al o) o o) V20K L OO OSSPSR 31
A.3.3 PJCMA_PUL_JODIESUIT_MOUE()....c.eivetieiiiteeeirist ettt b ket ne bt b ekt ne e 32
YA I o] ol g o B <3 STVl o] o] o] (o BTl {0 TSRS 32
F AN RN o] o000 I TU o [o] o (o R (0 TS TSSOSO 33

A.4 Analysis 0f COMMANG LiNE ATGUMENTS.etiiiiuiiriiteteiieset ettt es ettt b e bbbkttt b et b et e bbbt 34
N A o] T g To o T=1 oo | A (o]0 T T TP S PRSP USSP 34
YA o] [g o B (=1 (o] oA T o= VST) OO OO STV 35
A.4.3 PjCmMd_renameOPt_IN_PAISEI().....evereireeiresierestetetesterestetete st erestesetesbeseatesese st easesessesessessebe s ebea s e s s ebe st e R e et e e ebe st eReeb e e be st ereebe e ere e 36

A5 DISPIAY OF USAJE. ...ttt etttk b bbbk E bbb bbb E e b bR e R Rt b bRt Rt 36
YA A o] [od o I o L Y (o [0 o FRR T K=o =T OO OO STSO PR USTRR 37

ALB EITOr-TEIAIEO FUNCHIONS. ...ttt h bbbt e Rt b bRt b et n s 37
YA A o) [l g o IS =1 (1 (OSSPSR 38
B2 PJCIMA_PEITON() . tvveteueeeteteest ettt etttk e bbb bbb 08 b0 b b0 E bR e E et E bRt e bbbt e bt r bt n s 39
YR o] [g o BT g (o N (=T (o =T 101 (o] OO USSR 40
A.6.4 pjcmd_error_read_errinfo_BY STIU() .. .cu ettt 40
AL6.5 PJCMA_EITON _GEL INTO() ettt bbb bbb e bbb bbbttt b e ettt 40
A.6.6 pjemd_error_get_detail__INTO().......ooviriiereiriteiis bbb 42

A.6.7 pjemd_error_deStroy EITINTO().......eeiereerieiiteeiest ettt b et h bbbt e b bt e bt e e bt e bt e bttt b et bbb b et 42

ALB6.8 PJCMA_EITOr_ClEAI_BITINTO().. e viviieriitiietistee ittt ettt t e b b se st e e e b e st e s e e b et e b e st e s e eb et et e e b e s e e b e s et e s b e e e be b ere st eseete e 42
A.7 Error Codes, Global Variables, N0 CONSTANTS.c..ciieiiiiieie i cie sttt ete e steeete et e st e s stesatestaesaseebeesbeesbessteasbessessnsesresssseabessreenns 43
AT L RESUIT COUBS. ...ttt et b et bt h b £ b s e e b e e b e e e b e b e s £ 4o £ e b e b e R £ e b e b e b e b e Rt e b e b e bt eben e e b e b e bt et entabe et enenteneanen 43
ALT.2 DEAIIEA EFTON COUR......ueviiiiiiiiiiiiietei ettt s s b b s bbb s e b f bbb h s bbb bbb bbb 43
A.7.3 pjcmd_errcodejemd_errcode VariahIe....... ..ot 49
Y £ g T Vo] (=l o] [ola T [T o] Lo AT TSP T TSSO R PR 50
AL7.5Variable PJCMA_OPTING. ..ottt bt ekt b e b e eh b e £ bt s b e R e b e e e bt e b e R e b e e e b e bRt b et e b e b et et b enen 50
YA Y £ VAT Lol 3 o) ot oo o] o) oo | SO SRRSO 50
A.7.7 PICMD_UNLIMITED CONSLANT. ...ttt £ttt 50
A.7.8 PICMD_UNDEFINED CONSEANT.vttetetetiteteieteteteieteieseietstetetetesesesesssesesesesesssesesesesesebesesesesesesesesesesesesesesesesesesesssesesesesesesesennsas 50
A.7.9 PICMD_MAX_SUBJOBID_STR_LEN CONSIANL. ...ttt 50
Appendix B Job Operation AP REFEIENCE. i ettt e ettt e e e e et e e e e e snbe et e e e e ansaeeeaeeaanseeeeeeeannnes 51
B 1 JOD SUDIMISSION. ...tttk b bbbt e bbbt e E b8 e R b e h e b R e bbb e bbbt 51
B.1.1 pjcmd_SUbMIit_Parse_PJSUD _BITS(). . e uereeeruereeuirieeiterieieste et seeieste et e et e et e b et et e e e b et e st et e b e bt et e R ekt neent et et bt bRt e be e bt et ene et 52
B.1.2 pjcmd_submit_parse_pjSub_SCIIPLFITE().......iueuiiririiiirisieese bbbttt b e 53
B.1.3 pjcmd_submit_Create_pPjSUD_PAISEI()........eueeriruereuireiteteisistetet sttt sttt b et bbbttt bbb r s 54
B.1.4 pjcmd_submit_destroy_PjSUD_PAISEI().......eerrrireririrreriiiiseer ettt 54
B.1.5 pjcmd_submit_create_SCrPLFile_TEAUEI().... ... veireeitereeet ettt e ettt st b e et be e b e ene b 55
B.1.6 pjcmd_submit_destroy_SCriptfile_TEATEI()........cvveirieiiieieiiei ettt b et e st sete b e st nsere b neenin 55
B.1.7 pjcmd_submit_read_scriptfile_direCtivVe_IINE().......corireeririiieiiri e 56
eI oot o TV oo T o LU A o= V- U 1 OO S 57
B.1.9 PJCMA_SUDMIT_GEL PAIAMI(). ..t iteuieteteiieteieie ettt ettt b et b e e b et bt e e bt e b e bt e e b e b et ekt b e b e e b e e ek e e b e s e ek et e bt bt et e b nennan 61
B.1.10 pjecmd_SUbMIt_PUL_JOD_TESOUICE()..e.vivirieriiriieiiitetite et sttt sttt ettt b et sb b et stebe b e s e st e s s ebe e es s st e s ebessensabe s enenrenearen 62
B.1.11 pjecmd_SUDMIt_gEt_JOD_TESOUICE(). ... euereireriuiireiteiiristeiei stttk b et e bbbttt bbbt 65
B.1.12 pjemd_SUBMit_put_MPI_PEIAMI()......eivereiteieerieestesiee sttt ettt be e e s e s b e e e bt se e R e b e e bt eb e Rt bt b e b e b e b e b e eban 65
B.1.13 pjemd_submit_get. MPi_Parami().....ccecveeieriiiiieeiesiete ettt ettt ettt ettt b b e reat et e e be et st be e ae st e e be e erene 68
B.1.14 pjemd_submit_put_SCREO_PATAMI()....c.vivereiiiiieietiiisiet sttt e bbbttt 68
B.1.15 pjemd_submit_get_SCNEA_PATAMI().......vsveueirirreriireiieieisi ettt b et b ettt bbbt n s 70
B.1.16 pjemd_submit_put_fil€I0_PArM()......ccuierieiiieieieeieteiee ettt ettt bbbtk bbb e b bt b e ene 71
B.1.17 pjemd_submit_get fileio_Parami()......ccouierieiiiieriiiieiesiet ettt b et bttt e b e e be b e e bt re b e ern 72
B.1.18 pjemd_submit_create_scriptfile_from_StdiN()........cooireiririeiiii e 73
B.1.19 pjemd_submit_create_SCriptfile DY rgS().. ... oereereieeieire ettt 74
B.1.20 pjecmd_Submit_Set CAIIDACK()..... . iueeieirieiie bbb bbbttt ettt 74
B.1.21 PJCMA_SUBDMIT_EXECULE() . vevevirieterierisiiiete ittt ettt sttt b st e se e b e e e s e e b e s e b e b et e e b e se ek e b e be e b e se et e b ese et e st e besbese st et abe st ensntensanens 75
B.1.22 PJCMA_SUDMIT_EXECULEY()...vveverireteiesisestesecss etttk h et s bR e bRt e bt nn bt 76
L2 [o] o B L1 [=1 o OO OSSOSO PRRS 77
B.2.1 pjcmd_Kill_parse _PJAEL ArgS().....veevererreriiririeriiteistesiettstestete st esestesaete st e s te e bessese et e e ebe st e e e b e s ete e b et ebe et ete b et ete b ereebe s eresbe s erererea 78
B.2.2 PJCMU_KIT_PUL_PATAMI(). .tttk e bbb e bbb bbbttt b et e bt n e 79
B.2.3 PJCMA_KIll_GET PAIAM(). .. everiueiiieteisietet ettt bbb R Rt R Rt Rt n et n e 80
R o ol o I L |- D o T O OO ST UR P SOTRORPRPTRN 81
B3 IO HOIG. ..o 82
B.3.1 pjcmd_hold_parse_pJRoLa_BrgS().. ... e ereirereirriireinisteiei sttt 82
(2 2 o ol o I Yo Co I o1 UL A o= VL 1 PSSRSO 83
[SRCRCT o] (ot ol N aTo] (o o[- Al o T Vo 1) OSSR 84
B.3.4 pjcMd_hold_SEt_CAIIDACK().....cveveviieriiteictest ettt ettt e bbb s b e et e b e s e e b e e e ke st e s e e b et e te b s et neresrenennn 85
B.3.5 PJCMUA_NOIA_EXECULE(). .. vttt R et R ket b et e bttt 86
B.4 REIEASE OF @ JOD HOIG. ...ttt bbb bt a ke behe e oA e e b e b e Rt e b e s e b e neehe e b et e bt nb e bt e b et ebe e et e et e e enas 87
B.4.1 pjcmd_release_pParse _PJrIS_ArGS()....uieiueireieierierisieiestestetestee et te sttt ettt ettt a b et et b e bR e et e b e be st e Reeb et be st e e ebe e ere e 87
B.4.2 PJCMA_release_PUL_PATAIM() vivereririieeteriristetestsi sttt sttt ettt bbb b b se bbb b st b b bt e b b st b ekttt b et b bt e bt 88
B.4.3 PJCMA_release_get_PATAMI()... .. e euererrerereirreteiiresr ettt s et r bt r et e bbb b st e Rt R bR Rt Rt R R Rt 89
B.4.4 pjcmd_release_Set. CAIIDACK()..... ..o eeieiieiee ettt bbb e btk b e bt bbb bt b et nnan 90
B.4.5 PJCMA_TEIEASE_EXECULE() . vveuvireiririeresiesietestetestestete st ese st e tete st eseebe b etesbeseese s esesbessese s ese et es s e ke b ese et e s s ebe s es e et e s s ebensensabe e ebesaeseabeeeneee 90
B.5 SIgNal SENGING 10 JODS. . ..eeuiiititiiieit ettt bbb bt bbb e Rt e b b e bbb bbbttt 91
B.5.1 pjcmd_SigNal_Parse _PJSIG_arTS():« -« sesseueruerrererueerteneeuereeneatereaseseesesteseesestesessesseseaseseeseseeseaae s eteebe e ehe e eheeb et ebe b ereebe s ereebeneebeeeneas 92
(SRS I o] (ol o ST o Ta T LI oL A o= L= 0 o OSSPSR 93

B.5.3 PJCMA_SIGNAI_ gL PATAMI()...veueeteiteuieteteii ettt bbb bbbt bt ekt b e b R b b e ek R R bR e e R bbb e b bt et nene 94

B.5.4 pjcmd_Signal_SEt_CAIIDACK()... . cueiveeiitiiitiiiei ettt s et be b st bRt R et e bRt s et e e ne et e nenrene e 95
B.5.5 PJCMU_SIGNAI_EXECULE(). .. vveriereteiirest etttk bbb bbb bR bbbt e bt n bt r e 95
B.6 WaIting fOr JOD COMPIETION.cuiiitiieiee ettt b et b e e h bbb e bt e b et bt st e Rt e bt et e bt et e e b e e ebeebe e anas 96
B.6.1 pjCMd_Wait_Parse_PJWAIT AIGS().. vt errererererurrerirerteresererteseeststeseseressesetseesesesestebesessssesesesessebese st abebese st ebebe st aeabe b e st aeebe bt e bebene e nnne 97
B.6.2 PJCMU_WAIT_PUL_PATAMI()..+vettritetiitisieteseistet ettt ettt e bkt bk h e bk s bbb e b bt e bbb bbbt b bt s e b bttt 98
B.6.3 PJCMU_WAIT_GET PAIAM()...vveriereieiireer ettt ettt ekttt sk E et e bR e R bRt Rt n e 99
B.6.4 PJCMA_WAIT EXECULE().. . veueereremieteieterteseeieseete st ete sttt ste e ebese e st sbe e ebesees e ebe e ebe s e e b e b e e e b e e b e R e b e e e b e e b e Rt eb e s e b e e b e st ebe b ebenbentebe s eneneenene 100
B.7 JOD PArameter CRANQE........ccuiieiiiteiitiitee st s ettt e st ettt et et e st e be b e s e b e st e be s e se st e s s e b e s ese e b e e e be s b e s e ebe e e ke et e e e be b ebeabe e ebe st ereabe e etenrerea 101
B.7.1 pjecmd_alter_parse_PMAIET _BIGS().. .. et errrereireireriinisieseitsi sttt ettt b bbbt bbbttt b et n bRkt 101
S o ol o o I 1L G o 1WA o= Vi L 1 PO OSSOSO 102
B.7.3 PJCMA_AITEr _GEL PAIAM() .. vt iteeetiiteieite ettt ettt etttk e bbb bbbt e b e b e s £ e b e R bt e e Rt e bR £ e b bRt bR e bt e Rt b et b bbbt 103
B.7.4 pjcmd_alter_PUL_JOD_TESOUICE()..cuuiviieriiieriitiieesteee ettt sttt ettt bbb st e b e b et es e eae s e s e s b e e ebe b e s e et e e ebe st e se et et eteebeseern 104
B.7.5 pJCMA_alter_get_jOD_FESOUICE(). ... ivereriririeieiieit ettt bbbt b bbbt 105
B.7.6 pjecmd_alter_put_SCREA_PAramMI().... ... ueeiereeerieiete ettt ettt ettt b etttk e bbbt b e bbb e e bt bRt b e b e n e b e ns 106
B.7.7 pjcmd_alter_get SChEd_ PArAMI()......ciiuiiiiieiiii ettt sttt b et b e s e bt e b e st e s e et e s et e b ensete b ebesrens e b et nenrene e 107
B.7.8 PJCMA_alter_SEt CAIIDACK(). ... v vevereiiteiiiieitet et bbb bbbkttt 108
B.7.9 PJCMU_AITET _EXECULE(). .. evtrereremieeteteese ettt ettt h bt E bt e Rt R bt e Rt e bt s bt nn et n s 108
Appendix C Information ACQUISItION APT REFEIENCE.cuuiiiiiieeii e 110
C.1 Common Information of the Information ACQUISITION APLL..........coiiiiiiiieise et 110
C.1.1 pjemd_pjstat_parse_COMMANU_TYPE().. .. vivererirrerertirieteieri sttt ettt bbbt bbbt bbb bt b bt n b b 110
C.2 GettiNG JOD INFOIMELION.ui ettt h ettt e e et e b e e e Rt e b e Rt e b e e eRe e b e Rt ebeee e st ee e s e e bt eeenesbe e beseeneebeneanas 110
C.2.1 pjecmd_joDINTO_PArse_PJSTAL BITS(). . evererrerrrereruerteieierteutsteseeteseese st ettt be st et e sbe e et e st e b e e b et ek e b e st eb e b et e b e st eb et e bt bt b e bt nne e 112
(O o) (ol yaTo I To] o a1 {0 TN o LU L A STTo] o<1 () OSSPSR 113
C.2.3 PJCMA_JODINTO_GET_SCOPE(). - e-vuvrereererenirreteiereet et sttt ettt b bbbttt b et b bt e bbbkt e bbbt b bt e bt n et 114
(O o] TolaaTo I To o T a1 {0 TN oIV 1 A elo] g o 11 AT] o TR OO OO 115
C.2.5 pjecmd_jobinfo_get CONAITION()....c.eiveiieiieriiiee ittt sttt sttt b et ss et e b be s b e ss et e saeaesbeseebe e ebe st e e abesneteabeseas 118
C.2.6 pjcmd_JODINTO_PUE PATAMI()...veueretiiiirieteteiseet etttk e bbbt s bkt bbbt bbbt e bttt 119
C.2.7 pjemd_jODINTO_GET_PAIAM()....uererrereriireites sttt ettt h et b e e bt e bRt r Rt 122
C.2.8 pjemd_jobinfo_execute()
C.2.9 pjcmd_jobinfo_get ChOOSEN_ITEM()...c.iivirieiiiiieieiieis ettt ettt b e et et te s b et et e b et e s b e s e te st esesbensetesbensnsensaneas 124
C.2.10 pjemd_jobinfo_read_INFOGIP(). .. . e errerereiriireririsi etttk 125
(O b o] T g (o I Tl o LT a (o T L LA LA (] o1 (OSSR 125
C.2.12 pjcmd_jODINTO_get SUMMAIY()...c.eoeeeiirteieteieeete ettt bbbt b e bbbtk b et b ekt e bbb b e bt et bt st 127
C.2.13 pjcmd_johinfo_get iNfOGIP_SCOPE() ... uiivireirieriitiietisiet sttt ettt ettt b e et st e et bete b e s e et et ete st e s e e te b e s e sae st ete b eneesens e 128
C.2.14 pjemd_jobinfo_read_JODINTO().eeireireriiiisieers e 129
C.2.15 pjemd_jobinfo_get_jobiNfo_IEM_NUMI()....cioeiiiiie ettt sttt et e sb e s 130
C.2.16 pjcmd_johinfo_get _jobinfo_IteM_VAIUE().......ccceieiiieiiiiciestet ettt se bbbt re b e ans 130
C.2.17 pjemd_jobinfo_get_jobinfo_NOGE_NUM()......couiiuiiiieiiiie bbbttt s 131
C.2.18 pjemd_jobinfo_get_nodejobinfo_itemM_NUM()........ccovrrrireiiei e 132
C.2.19 pjemd_jobinfo_get_nodejobinfo_ItemM_VAIUE()........evierieereisieee ettt et 132
C.2.20 Item Names, Names, and Values 0f JOD INFOrMALION.ccciiiiiiiiiieeeee e 133
C.3 Getting Resource INFOrmation fOr JODS.........cviii bbbttt 134
C.3.1 pJcMA_rSCINTO_PArSE PJSTAL AIGS().-e veeererrereruereererteertereeresteeateseesesteseasessesesseseasessasesseneasessaneseeseasesseseasaseaseseesesbeeasessesesseseasan 135
(O A o] (o] a0 0 ST a1 (O o UL oo 1=) OSSR 136
(OFC T o] [odyaTo I 5101 0] {0 [o0 o LT OSSPSR 137
C.3.4 pJeMd_rSCINFO_PUL_PATAMI(). . .veueeeieererieteteeseet ettt s ettt b et s b e bt s e bbbt ne e n et b s 138
(ORC R o] [olaalo I Tod 1) {00 [= A o L Uy 4T OO OO OO SO 139
C.3.6 PJCMA_TSCINTO_BXECULE().vvvuviurerireriitiietistestete st et sttt e e et e st e e e te s e e seebe e e be st e e e b et ebeebe e et et et e e b e ss et et ese et e st etesbese et et ebesaensate s enenrens e 140
C.3.7 PJCMA_ISCINTO_PIINE_FESP() . v teveteuiiteteesi ettt bbbt b et b bbbt bbbttt nn bt e et 141
C.3.8 pjemd_rsCinfo_get_rSCINTO_NUM()....cvirireeiiriireiisr ettt ne bbbt b s 141
C.3.9 pjecmd_rsCiNfO_get_ rSCINTO_VAIUE().. . cververerteieierieietei ettt ettt b bbbt et b et b e bbbt eb e b e bt et b e aban 141
C.3.10 PjemMd_rSCINfO_gEt MAX_SIZE().rververereresriierestereitetetestesestest e e s eststestebe s eseste s ebesses e ebe e ebesbeseebe st ebe et e seebe st et e abeseebe st eresbensarensanea 143
C.4 Getting Limit Value Information When SUDMITEING @ JOD.......cooiiiiiiiiiicc s 144
C.4.1 pjemd_limitinfo_Parse_PJStAL AIGS(). ... veseererrereruereererterertererestesesseneeteseesesseseeseseeseesesseseseeseaaeseesesbeseeaesseseabeseenesbeseebeaeereaaeneanan 145
C.4.2 pJemd_IIMITINTO_PUL SCOPE()..rervuvrvrrererietereirietesireste et te ettt sesbe et et se et et ese e se e b e et b b e st e b e b et e et es et st be s et neebe s e e b ebene s 146

C.4.3 PJCMA_IIMITINTO_JEE SCOPE(). .+ evereeritenietert ettt ettt sttt b et b bbbtk b bbb ek e b e st ek e e e bt b e st e b et e bt b et et e e st e s 147

C.4.4 pjecmd_IIMiItinfo_PUL_PATAMI() .. c.eireeeirieesteiee st ettt ettt b bt st et et e be b s s e be e e b e s b e s e et et eseebe e ebene e s e eb et ebe st ereebe e erenrenea 148
C.4.5 pjemd_limitinfo_get_PArAMI().......eeivrireriiieieieesi ettt 149
C.4.6 PJCMA_IIMITINTO_EXECULE()...cveueiteeetirteeete ettt sttt ettt b etk b et e bbb e e e bt b e st e b e e e bt ebea e e bt e b e Rt e b e e b e et en e et e e bt nbeneebennens 150
C.4.7 pJemd_IIMITINTO_PIINT_TESP()..veuvvevereririetereiriete sttt ettt b ettt b ettt b et st b s e bbbt eb et b et e ettt b et s 151
C.4.8 pjemd_limitinfo_get_ TIMItINTO().....evivereriiieeei ettt bbbt 152
C.4.9 pjemd_limitinfo_get_limitinfo_VaAIUE()........courvireieirieeiss et 153
C.5 Getting Information on the JOB ACL FUNCHION SEHINGS.cviiiiiiiiee ettt ettt be s 154
(O30 I o] [od oo N 1= Vot o LTI o) - Lot I L 1) OO SRRSO PRRRST 155
C.5.2 PJCMA_JACI_PUL SCOPE()-+vtrervrerereretestrestetestst sttt sttt b bt s bbb st bbbt b bbbttt bt n bttt 156
(O o o] [ody oo I F-Uod I o T=2 Yoo o T OO UTRSRTRR 157
C.5.4 PJCMA_JACI_PUL PAFAMI().c.vcuevereetiiteieite ettt sttt ekttt b etk bbbt e e e bt b et e bt e e s £ e b e R e e b e e e Rt s b e R e eb e b e bt eb e s e e bt neeb e e b et e b e st et e ab e etn 158
(O N o] (ol yaTo I F- Vot I [= o L Ly o PO SO PRRRS 159
C.5.6 PJCMA_JACI_EXECULE(). 1. vvvereereteisteteitse sttt etttk b bt e bbbk e bbbt bbbt b et ettt 160
(O oA o] ol y oo I FoUod o [0 =] o OO OO OSSOSO 160
C.5.8 pjemd_jacl_get JACHNTO NUMI()....ccveiiiiiiiieiiiit ettt ettt e et s b e b e b et e s b e s e et e s et e b essete b ese s ensebe s enesreneans 161
C.5.9 pjemd_jacl_get_JACHINTO_VAIUE().... . viveriiieteiiiieie etttk b bbbttt bbbt 162
C.6 Getting the Status 0f JOD RESOUICE USAJE.........viveiiriiieiiiireetee sttt ettt 163
C.6.1 pjecmd_rscStat_parse_PJSNOWISC_BITS() ... eeververertereeterterertenieiestesestee et steseste et st esesbe e e bt seesesbe e beseeseebeseebesbeseabeneebesbeseabeneebennenea 166
C.6.2 PJCMA_TSCSLAL_PUL SCOPE()-rruvereririeriiterietisterestesteestesesteterestesestessesessessatessesessessebe s eseeseseesesseseebe s esesbeseebesseseabe e ebe st eseabesetenrereas 166
C.6.3 PJCMA_ISCSAL_GEL SCOPE(): .- rvererrerrererrererisireetes s eteit st bbb bt e b bt e bbbk h e h bt b bbbt bbbttt b et ettt s 168
(N S o] [ol a0 I 10y = L o UL o= U= o SOOI 169
C.6.5 PJCMA_TSCSLAL GET PATAMI()...veueevetererteietesteietert et sttt ettt b e e st st et b e s ehe e b e e e bt nees £ e b e se bt e b e R e e bt e e bt e b e s e eb et ebeab e e ek et et e s b et et e nbene 172
C.6.6 PJCMU_TSCSLAL EXECULE()...vveuvereririerestestetesterestestetestesestessesestessssesesessessatessesessessebe s essasessese s eseebe e es e st eseebe s eseabe e ebenseraabe s etenrereas 172
C.6.7 PJCMA_ISCSIAL_PIINT_TESP(). . rvrrerererereereesesiresrereiere st st st bt r bttt eb et b et b bbb st s e b bt ne et r bt e bt nn et 173
C.6.8 pjecmd_rscstat._get_INTOGIP_NUMI() .. c.eiueirieieiieteiee ettt bbbtk b et b et b e b et et e e bt et e st et e b e b e b en e et e e ene e neee 174
C.6.9 pjemd_rscstat_get iNfOgrP_SCOPE_TYPE()...veeireriereireiitiiereiteeeteste e st et et e s e bt e b e b e s et essebe st eaesaessebe e esesbeseebeseeseabe e ebessetesresearn 174
C.6.10 pjemd_rscstat_get_infogrp_SCOPE_VAIUE()......ceruireueuiririeieiniiieieit ettt bbbttt 175
C.6.11 pjemd_rscstat_get_rSCINTO_NUM(). .. veveerereieireir ettt b et b bbb s 176
C.6.12 pjemd_rscstat_get_iNfogrp_CUSTOMISC_NUMI()...uiveerteeeierieierteieie sttt sttt ettt se st st se st e e st st se e b e b esesbe e ebeseeneebeneenas 177
C.6.13 pjemd_rscstat_get_infogrp_CUSTOMISCINTO().....cveiiieiitiieesieise ettt ettt se e b e b e e ete st e e abe e eresbereas 178
C.6.14 PJCMA_rSCStAL_GEL ISCINTO(). v euvvrieeririetet ittt bbbt s bbbt bbb bbbt nn bbb 179
C.6.15 pjemd_rscstat_get_rSCINTO_SCOPE YPE()- . ueueeruereerertereeterteiestesiete st ettt e e ste et e et sesesbe e eseseeneebeseeneseeneebeseesesbe e eneseenesaeneanas 179
C.6.16 pjemd_rscstat_get rSCINTO_SCOPE_VAIUE(). ... vevererereererirerieieisieieiee sttt ettt ettt ettt e ettt ne bt et 180
C.6.17 pjemd_rscstat_get rSCINTO_INTO()...viiiirieiiiiiiiiei sttt ettt s bt et et et e s b et e te st esesbensetestesestennenea 181
C.6.18 pjemd_rscstat_read_JODINTO()........eururrereiririereiris ettt 181
C.6.19 pjemd_rscstat_get_rsCinfo_CUSTOMISC_NUMI()...c.eeuiitereiteieiesieesterie sttt e et e et se et b e e bt sa e ebe et e st e e sbe e ebenbeneas 182
C.6.20 pjecmd_rscstat_get rsCinfo_CUSTOMISCINTO()......ceiveiiriieiiieiciesieie ettt se st e b e et st e et st etesbe e ers 183
C.6.21 pjemd_rscstat_get_CUStOMISCINTO_VAIUE(). ... cueuverieeeriirieieiiesi ettt bbbt 183
C.6.22 pjemd_rscstat_get_customrscinfo_KiNA_ValUB()........cevrireeririieiineers e 184
Appendix D Job Operation Control API REFEIENCE.iii it e s niree s 186
D.1 Setting of Job Submission/Job EXECULION PEIMISSIONS........cviiiieiitiiiesiee ettt s st ssebe b se b e e be st esasreeens 186
D.1.1 pjcmd_pmpjmopt_get._ COMMANU_LYPE(). ... evererrreriiriireteirisieiese sttt s bt b bttt b e b bt nn bt 186
D.1.2 pjemd_setpjmstat_parse_PMPJMOPL_AIGS()..«ueveuerrererrererrerereaterteresteneesessesesseseasessasessesasessessssessssessessssessssessessssesessessesesseseases 187
D.1.3 pjemd_SEtpjMSLAL_PUL SCOPE().-rveuvreerererertereriresterereseetesesestetesesesestesesestesenesessesesesseseseseseeseseneseesese e bebesesessesesensaseseneneasesenensnsans 188
D.1.4 pjemd_SetpjMSLAt_ gL SCOPE()...rverrererreriiriieristesistetete et s te st ete st et ete e e te st e e ebe st esesbe e eb e st e seebe s ebe et e s e et e b et e ebe s e e be b ere et et ete et eneerenr e 189
D.1.5 pjemd_SetpjmStat_PUL PArAMI()......cveerirrererireireriirese ettt ettt e bbbt 189
D.1.6 pjemd_SetpjmSLAt_ gL PATAMI()....eveuereeeetereeueiteieete et et e eete st et st ete bt be st ebesb e st e be e e st eben e e b e eeeheeE e R e e bt nbeReeb e e bt e eR e e b e e bt et ne b nnenn 191
D.1.7 PJCMA_SEIPJMSTAL EXECULE()...veveveriiriiitiiiereite it ete st e e ete st e e st e et et e e st e e e te st ere s b e s ete st esesbe s s et e s b essabe s ebessensebe s ese s ensabe s enesae e abe s eneaee 191
D.2 Referencing of Job Submission and Execution Permission INfOrmation.............coeieeiiiiieiniicnee e 192
D.2.1 pjcmd_getpjmstat_parse_pPMPMOPL_AIrGS().. . e eererererrrrruereresrerierrareseresr s eres st r et r et 193
D.2.2 PJCMA_getpjMSLAL_PUL SCOPE()- . veuveuereemtrtereeuerteeetesteitsteseeteseeiestesesseseesesbe e ebeseeseebe e ebeabeseebe e ebeab e st eb e b ebesbent et et ebesbent et e e ebeneeneaee 194
D.2.3 pjCmMd_getpjmSLAt_gET SCOPE()..vereerereererreriiririerestestetestesestessetestesestesesessessssessesessessasassesessesseaesseseebe s esesseseabe e ene st e e ebe st ereebe e arn 195
D.2.4 pjcmd_getpjmStat. PUL_PAIAM(). . eveereireriiiieeterest ettt ettt bbb bt e bRkt h bR bt n et 196
D.2.5 pjcmd_getpjmStat_gET PATAMI().. .. ueeueuereeeeuerteeeteeieteeteeeteseeteeteseste e eaeste e eaeseeseebeseesesbeseeReeeeEeehe e eRe e eEeehe e eRe b eReebe s ereeteneereeerea 197
D.2.6 PJCMA_gEtPJMSLAL EXECULE()..v.vereureeererirerteteriririeseserestesesesesteses e tesesesesessesenessesese e sebese e esesese s esesene e b et eseabeteae e aeebebeneneebeseneasenne 198

- Vii -

D.2.7 pjCmMd_getpjmSLAt_PIINT_TESP(). . veverereeueeterteiirteeete sttt sttt sttt b e e s b e b s b e st b e e e b e e b e s e b e e e b e e b e st e b e b e bt b e st b b e bt b en e b n et e 199

D.2.8 pjcmd_getpjmstat_get_rSCUNIT_INTO(). . ..ciiiveiiiiiiiieiieee e sttt b ettt e b e ssete st e b e st ensebe s e nesrenn e 199
D.2.9 pjcmd_getpjmstat_get_rSCOrP_INTO(). .. uriereiririeteiiiree bbbt 200
APPENTIX E SAMPIE PrOGIaMIS.utiieiititeitiie ettt ettt ettt e e aa bt e sttt e sk bt e e aabe e e ek et e e 1abe e a4 kb e e e sbe e e nabe e e e bb e e e anbneennneeeneneeenn 202
E.L SUDMITEING @ JOD....ueitiiciiitcicte ettt ettt et et e st e b e b se b e a4 e s e s e o4 e e et e e b e s e e b et ebe e b e s e e b e b et e e bessebe b ese e b et ete st enenrenrane 202
E.2 GettiNg JOD INTOMMELION.......cuiiiiiietiii bbbt b e b bt e bbb bbb e bt nb et bbb s 203
E.3 DEIBTING @ JOD... .ttt E b e bR R R R R R R R R R R Rt n et 205

- viii -

IChapter 1 Command API Overview

This chapter provides an overview of the command API.

1.1 What is the Command API?

The user interface required for job operations varies depending on the operation system.
For example, some users may want to change or disable a command option name according to the job operation policy. Some users may
want to change the format of a command message and information output by a command to the original format.

To help create commands with the user interface preferred by the user, the job operation management function provides an interface to call
the same functions (job operation and information acquisition) as commands provided by the job operation management function. The
interface is called the command API (Application Programming Interface). The command API enables creating of commands with the user

interface preferred by the administrator or end user.

The command API consists of C language functions. They are provided as a library. This library can be used on the login node, compute

cluster management node, and system management node.

The command API supports the functions listed in the following table.

Table 1.1 Functions Supported by the Command API

Function

Command Equivalent to Function

Submitting a job

pjsub command

Deleting a job

pjdel command

Changing a job parameter

pjalter command, pmalter command

Sending a signal to a job

pjsig command

Holding a job and releasing a job hold

pjhold command, pjrls command

Waiting for a job to complete

pjwait command

Getting job information

pjstat command (-s and -S options)

Getting resource unit and resource group information

pjstat command (--rsc option)

Getting job limit value information

pjstat command (--limit option)

Getting job ACL function information

pjacl command

Getting the status of job resource usage

pjshowrsc command

Changing the job operation and getting the job operation status
(setting permissions for job submission or execution and getting the setting
status)

pmpjmopt command
(--set-rsc-ru option, --show-rsc-ug option)

Figure 1.1 Conceptual Diagram

Created by user

: e - ™ —
Source file Command API library
(C language)
@ Job
~ operation
Original - management
- d S -
r T r !
End user Commands |#{ CommandAPI library €%

\. vy ‘. A \ J
(provided by job operation
management function)

1.2 Operation Flow

The following figure shows the flow of operations using the command API. For details on how to use the command API, see "Chapter 2
Using the Command APL."

Figure 1.2 Flow of Operations Using the Command API

Handle type
r© y ™
HI' a"dﬁlf . 1. Request to create handle
2. Set a parameter in the handle \ope ffun v
Handle 'L Request the job operation
Parameter setting function Handle management function
J’ to perform an operation
" QOperation or 3. Job operation
Information acquisition management
. request function /€ 2 | function
4 Get operation results
Response
information
@ Command API function - ‘l' .
Information)
reference function 5. Reference operation results
Input/Qutput data of \ /
function L 4
Operation
results/information

1. Request generation of a handle

To use the command API, a handle is first generated using the handle operation function. The handle is information for holding a
parameter to make a request for job operation and information acquisition to the job operation management function. The handle type
to be generated is specified for the job operation management function based on the request type.

. Set a parameter in the handle

A parameter is set in the generated handle by the handle setting function. The parameter is information indicating the contents of a
request to the job operation management function, such as the amount of resources allocated to a job to be submitted or a job ID to
be deleted.

. Request the job operation management function to perform an operation

After the parameter is set in the handle, an operation request is made to the job operation management function by the request
function. The job operation management function processes the operation based on the handle contents.

. Get operation results

Response information about the results of the request to the job operation management function is returned as a return value for the
request function.

. Reference the operation results

The response information includes information regarding the success/failure of the operation and obtained information. The
information is referenced with the information reference function. When getting information, a structure with more detailed
information may also be obtained from the response information in order to reference it.

1.3 Function Types

The following table lists the names of the command API functions by operation type.

Table 1.2 Command API Functions

Operation

Function Name

Submitting a job

pjcmd_submit_action()

Deleting a job

picmd_kill_action()

Changing a job parameter

pjcmd_alter_action()

Sending a signal to a job

pjcmd_signal_action()

Holding a job

pjcmd_hold_action()

Releasing a job hold

pjcmd_release_action()

Waiting for a job to complete

picmd_wait_action()

Getting job information

pjcmd_jobinfo_action()

Getting resource unit and resource group information

pjcmd_rscinfo_action()

Getting limit value information when submitting a job

pjcmd_limitinfo_action()

Getting job ACL function information

pjcmd_jacl_action()

Getting the status of job resource usage

pjcmd_rscstat_action()

Changing the job operation and getting the job operation status
(setting permissions for job submission or execution and getting the setting status)

pjcmd_setpjmstat_actiorn()
pjcmd_getpjmstat_action()

Utility function
(supplementary function to use the command API, such as for a handle operation and
response information, and reference results)

picmd_action()

"action’" in a function name indicates the process type. The following table lists processes.

Table 1.3 Process Types of Command API Functions

Process Description Function Example
Handle Generates, initializes, replicates, or releases a handle. A specific pjcmd_create_handle()
operation function is prepared for each operation. pjcmd_reset_handle()

pjcmd_clone_handle()
pjcmd_destroy _handle()

Process Description Function Example

Parameter Sets a job operation, information acquisition, or other parameter in | pjcmd_submit_put_param()
setting and a handle, and references a setting value. pjcmd_submit_get_param()
reference A specific function is prepared for each function and parameter

type.
Argument Analyzes the provided command line argument based on the pjcmd_submit_parse_pjsub_args()
analysis command option specification of the job operation management pjcmd_getopt_long()

function, and sets a parameter in a handle. pjcmd_renameopt_in_parser()

These functions are used when command arguments are analyzed | pjcmd_delopt_in_parser()
by the command API based on the command option system of the
Job Operation Software rather than by the user.

An option that is equivalent to the pjsub command can be
customized (changing and disabling an option name) using a
function called parser.

Operation Makes a request for job operation and information acquisitionto the | pjemd_submit_execute()
request job operation management function based on the set information in
a handle. A specific function is provided for each function type.

Result reference | References the success/failure of a request and obtained information | pjcmd_get_jobresult_info()
(job ID, job information, etc.) from response information about
operation results and information acquisition results.

A specific function is provided for each operation type and
individual reference information.

Display Outputs the contents of response information based on the standard | pjemd_jobinfo_print_resp()
command display specifications.

This function can be used when there is no need to customize
information display.

Response Releases response information. pjcmd_destroy_resp()
information Response information is held in the command API. The user
operation releases the information when it becomes unnecessary.

2 See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

For details on the functions, see "Appendix A Command API Common Reference" to "Appendix D Job Operation Control API Reference."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

IChapter 2 Using the Command API

This chapter describes how to use the command API.

2.1 Header File

The header file of the command API is located at the following location on each login node, compute cluster management node, and system
management node.

/usr/include/FJSVtcs/pjm/pjcmd.h

This header file must be included in a source file that uses the command API.

#include <FJSVtcs/pjm/pjcmd._h>

mainQ
{

// Process using the command API

2.2 Operations Using the Command API

This section describes how to use typical functions based on the flow of operations using the command API.

2.2.1 Generating a Handle

The command API sets an operation-related parameter in a handle and makes a request to the job operation management function. For that
purpose, the handle needs to be created first.

A handle is created using the pjcmd_create_handle() function.

PjcmdHandle_t *handle_p;

handle_p = pjcmd_create_handle(PJCMD_SUBMIT); // Generate handle for job submission

The pjemd_create_handle() function creates a handle (PjcmdHandle_t). When the function succeeds, a pointer to the area is returned.

4}1 Note

A handle is prepared for each operation type. For example, a handle generated for job submission cannot be used for job deletion.

2.2.2 Setting a Parameter

A parameter indicating operation details is set in a handle. The parameter is equivalent to a command option (pjsub command, etc.) of the
job operation management function.

For example, when a bulk job is submitted, an argument is specified in the pjsub command as follows.

pjsub -L ""node=8x8" --bulk --sparam "1-10" ./job.sh

To realize this using the command API, parameters that are equivalent to these options are set in a handle as follows.

char *jobscript_p = "./job.sh"; // Job script ./job.sh

char *node_p = "'8x8"; // Node shape 8x8

pjcmd_jobmodel _t jobmodel = PJCMD_JOBMODEL_BULK; // Job model: Bulk job

uint32_t bulk_sno = 1, bulk_eno = 10; // Bulk start number 1, bulk end number 10

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &jobscript_p);

pjcmd_submit_put_job_resource(handle_p, *node', &node p);
pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_JOBMODEL, &jobmodel);
pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_BULK_STARTNO, &bulk_sno);
pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_BULK_ENDNO, &bulk_eno);

* Determination of the function return value is omitted.

Qn Note

- Note that, in the above example, instead of a parameter value, the address of the storage area of the parameter value is passed to a handle
when setting a parameter value (pointer or numerical value) in order to handle various data-type parameters using one function.
For example, the pjemd_submit_put_param() function specifies a parameter type in the second argument, and specifies the address of
the storage area of the parameter in the third argument (void * type). The function determines a parameter type based on the parameter
type indicated by the second argument.

Incorrect example:

char *jobscript_p = "./job.sh";

char *node_p = "'8x8";

pjcmd_jobmodel_t jobmodel = PJCMD_JOBMODEL_BULK;

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, jobscript p); // Pass value (pointer)

pjcmd_submit_put_job_resource(handle_p, "node',"8x8"); // Pass value (pointer)
pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_JOBMODEL, jobmodel); // Pass value (numerical
value)

- A parameter passed to a function is copied to a handle in the function. Therefore, if the function is successful, changing the original
parameter does not affect the handle contents.

Similar to when deleting a job, a job ID is set in a handle using the pjcmd_put_job() function in an operation to specify a target job.

In the following example, a normal job whose job ID is 10 is set in a handle.

inté4_t jobid[2] = {10, -1}; // Specify job ID as array that ends with -1

pjcmd_put_job(handle_p, jobid, 0, O, NULL, O, O, PJCMD_JOBMODEL_NORMAL);

A job ID can also be set in a handle by selecting from job IDs that are specified using a character string.

char *jobid_str_p = "10[1-5]"; // Bulk jobs 10[1] to 10[5]

pjcmd_put_job by str(handle_p, jobid_str_p);

Thus, by using this function, a job ID that is specified in a command line argument can be directly set in a handle without converting it to
a numerical value.

2.2.3 Processing a Command Line Option

The command API has a function to recognize the same options as acommand of the job operation management function and set parameters
in a handle.

2.2.3.1 Parameter Setting From a Command Argument

""2.2.2 Setting a Parameter" describes individual parameter settings made by the users. However, if a command that uses the same option
system as a command provided by job operation management function is created, the arguments of the command can be batch analyzed by
the command API and set in a handle.

For example, if the same specifications as the pjsub command are applied to the options of a command to be created, parameters can be set
in a handle by analyzing the arguments with the pjemd_submit_parse_pjsub_args() function.

main(int argc, char **argv_pp)

{

PjcmdHandle_t *handle_p;
char *jobscript_p;
pjcmd_submit_parse_pjsub_args(handle_p, argc, argv_pp);
if (pjcmd_optind >= argc) {
Error processing;
3
jobscript_p = argv_pp[pjcmd_optind];
pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &jobscript_p);

When the pjcmd_submit_parse_pjsub_args() function ends successfully, the pjcmd_optind global variable of the command API indicates
the first argument that is not an option of the argv_pp[] argument array. The caller needs to process the arguments that are not options.
In the following example, if there are any remaining arguments after setting the options in a handle with the
pjcmd_submit_parse_pjsub_args() function, argv_pp[pjcmd_optind] is regarded as a job script and set in the handle (the subsequent
arguments are ignored).

if (pjcmd_optind >= argc) { // No remaining argument
. // Error processing
¥
jobscript_p = argv_pp[pjcmd_optind];
pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &jobscript_p); // Set job script
// in handle

2.2.3.2 Command Line Parser

The names of the options that are recognized by the command API can be changed or disabled. By doing so, while inheriting the options
of a command of the job operation management function using a command to be created, an option name can be changed to another name
or unnecessary options can be disabled.

The command API treats option specifications (option name, meaning, and information on whether or not to have arguments) as information
called a command line parser. When an option name is changed or disabled, a command line parser is created first, and then the setting is
made into the parser.

& Note

- The command line parser is a function enabled in a program that uses the command API. The function does not operate the options of
a command of the job operation management function.

- Currently, the command line parser supports only the options equivalent to the pjsub command that is related to the job submission
operation.

The following example changes the -L option in the pjsub command, which is recognized by the command API, into the -R option, and
disables the --fs and --appname options.

PjcmdHandle_t *handle_p;
PjcmdParser_t *parser_p;

handle_p = pjcmd_create_handle(PJCMD_SUBMIT); // Generate handle for job submission
parser_p = pjcmd_submit_create_pjsub_parser(handle_p); // Generate command line parser related to job

submission

pjcmd_renameopt_in_parser(parser_p, "L", "R", NULL, NULL); // Change -L option into -R option

pjcmd_delopt_in_parser(parser_p, 0, "fs'); // Disable --fs option
pjcmd_delopt_in_parser(parser_p, 0, "appname'); // Disable --appname option
pjcmd_submit_parse_pjsub_args(handle_p, argc, argv_pp); // Analyze options using above settings

Qn Note

- A parser is associated with a handle. Do not release the handle corresponding to an option before analyzing the option. If the handle is

released first, operation is undetermined.

- When an option name is changed or disabled using a parser, it is also applied to analysis of arguments using the

pjcmd_submit_parse_pjsub_args() function that specifies the handle associated with the parser.

2.2.3.3 Option Analysis

When a command with original options needs to be created, in addition to the options of acommand provided by the Job Operation Software,

only analysis of the original options is required as the argument analysis process if the pjcmd_getopt_long() function is used.

The pjemd_getopt_long() function is similar to the C language library function getopt_long(). However, if the command options that are
recognized by the command API are detected, the pjcmd_getopt_long() function does not return but analyzes them internally. Then, the

function sets parameters in the handle associated with the command line parser.

If an option that cannot be recognized by the command API, such as an original option, is detected, the pjcmd_getopt_long() function

operates the same way as the pjcmd_getopt_long() function and returns.

In the following example, some of the options that are equivalent to the pjsub command of the job operation management function are

changed or disabled, and an original -Q option is processed during the job submission process.

main(int argc, char **argv_pp)
{
int c, Q flag = 0O;
char *myopts_p = "Q"; // Original -Q option
PjcmdHandle_t *handle_p;
PjcmdParser_t *parser_p;
handle_p = pjcmd_create_handle(PJCMD_SUBMIT); // Generate handle
parser_p = pjcmd_submit_create_pjsub_parser(handle_p); // Create command line parser
pjcmd_renameopt_in_parser(parser_p, “L", "R", NULL, NULL); // Change -L option into -R option
pjcmd_delopt_in_parser(parser_p, 0, "fs'); // Disable --fs option
pjcmd_delopt_in_parser(parser_p, 0, "appname'); // Disable --appname option
// Analyze argv command line argument and set it in handle
// Recognized options are same as pjsub command option (parser_p) and -Q (myopts_p) option
while ((c = pjcmd_getopt_long(parser_p, argc, argv_pp, myopts_p, NULL, NULL) != -1) {
// pjcmd_getopt_long() does not return upon detecting the options recognized
// by the command line parser.
if (c == -1)
break;
switch (c) {
case "Q": // Original -Q option
Q_flag = 1;
break;
default: // This is neither an option recognized by the command line parser
// nor an original option.
// Disabled options are treated as unknown options.
fprintf(stderr, "%c: Unknown option\n', c);
break;
3
if (Q_flag) {
// Process when specifying -Q option
}
3

Qn Note

Currently, the command line parser supports only the pjsub command options. Therefore, only the pjsub command options can be analyzed
by the pjemd_getopt_long() function that requires the command line parser.

2.2.4 Requesting the Job Operation Management Function

2.2.4.1 Operation Request Function Call
After setting parameters in a handle, an operation is requested of the job operation management function by the operation request function.

For example, job submission is requested as follows.

PjcmdHandle_t *handle_p
PjcmdResp_t *resp_p;

resp_p = pjcmd_submit_execute(handle_p);

Response information (PjcmdResp_t) indicating operation results is returned as the function return value.

QJT Note

- An operation must be requested after setting all necessary parameters in a handle. If the necessary parameters for the operation are not
set, an error occurs.
For example, if a bulk start number is not set when submitting a bulk job, or if a job ID is not set when deleting a job, an error occurs.

- Ifthe operation request function is called in a series, the requests to the job operation management function are held in the function until
a certain period of time has passed after the first call. During the period, the function does not return. The reason is to prevent increasing
the load of the job operation management function. The administrator can change the length of time. For details on how to set
parameters, see "Command API settings" in "Chapter 3 Job Operation Management Function Settings" in "Job Operation Software
Administrator's Guide for Job Management."

- The command APl communicates with the job operation management function every time an operation is requested. Therefore, a new
operation request cannot be accepted until the operation requests to the job operation management function are completed in one
program.

- While the operation request function is being processed in another thread, calling a new operation request function results in an
error, and PJCMD_ERROR_BUSY is set in pjcmd_errcode. In this case, a new operation request function needs to be called again
after the operation request function being processed is completed.

- When the operation request function returns, the command API may internally communicate with the job operation management
function regarding the operation contents until response information is released. For this reason, if the operation request function
is called another time after calling the operation request function, the response information must be released first.

- The operation request function operates as follows against some signals.

SIGHUP, SIGQUIT, SIGINT, SIGALRM, SIGTERM: Process is interrupted
SIGUSR1, SIGUSR2, SIGPOLL, SIGPROF, SIGVTALRM, SIGIO, SIGPWR: Ignore

If the operation request function process is interrupted by a signal, the pjcmd_errcode error code becomes PICMD_ERR_SIGNAL.
After the function returns, the signal setting returns back to the previous state that was used before the function was called.

2.2.4.2 Job Submission Operation

A job may be submitted by following a special procedure, which is not used for other operations, depending on the job model. This section
describes the precautions when submitting a job with the command API.

- Step jobs
When the sub jobs of a step job are submitted, one handle is prepared for each sub job to submit them.

When the same step job is submitted, all that needs to be done is to replicate the handle of the previous sub job and update only the
necessary parameters.

When multiple sub jobs of one step job are batch submitted, the pjemd_submit_executev() function can be used.
For example, when multiple sub jobs of a step job are batch submitted by the pjsub command, they are executed as follows.

$ pjsub --step -N myjob stepjobO.sh stepjobl.sh stepjob2.sh stepjob3.sh stepjob4.sh

The same can be performed using the command API as follows.

#define SUBJOB_NUM 5

PjcmdHandle_t *handle_p[SUBJOB_NUM];
PjcmdResp_t *resp_p;

int i;
pjcmd_jobmodel _t model = PJCMD_JOBMODEL_STEP;
char *jobname_p = "myjob";

char *jobscript_p[SUBJOB_NUM] = {''stepjobO.sh", "stepjobl.sh", "stepjob2.sh"™, 'stepjob3.sh",
""'stepjob4.sh™};

handle_p[0] = pjcmd_create_handle(PJCMD_SUBMIT);
pjcmd_submit_put_param(handle_p[0], PJCMD_SUBMIT_JOBMODEL, é&model);
pjcmd_submit_put_param(handle_p[0], PJCMD_SUBMIT_JOBNAME, &jobname_p);
pjcmd_submit_put_param(handle_p[0], PJCMD_SUBMIT_SCRIPTFILE, jobscript_p[0]);

for (i = 1; 1 < subjob_num; i++) {
handle_p[i] = pjcmd_clone_handle(&handle_p[0]); 7/ Replicate handle of first sub job
pjcmd_submit_put_param(handle_p[i], PJCMD_SUBMIT_SCRIPTFILE, jobscript_p[i]); // Job script
}

resp_p = pjcmd_submit_executev(handle_p, SUBJOB_NUM); // Batch specify and submit handles
// of sub jobs

Interactive jobs
When the submission of an interactive job is requested by the pjcmd_submit_execute() function, the function does not return until the
input of the interactive job is closed (until the interactive job is completed).

An interactive job is submitted through the following four steps.
1. Acceptance of an interactive job is completed.
2. The interactive job enters the wait state.
3. Execution of the interactive job begins.
4. The interactive job is completed.

The pjsub command of the job operation management function outputs a message indicating the processing progress in each step. The
command API provides a callback mechanism to call a function prepared by the user in each step. When the same message as when
using the pjsub command needs to be output by a command that uses the command API, a job submission operation must be requested
after registering a function to output the message using the pjcmd_submit_set_callback() function. A sub job ID structure
(PjcmdSubjobid_t) is passed to an argument of the callback function.

The following examples show the callback function used to output messages similar to the messages shown below (error processing
and other processes are omitted), displayed when submitting an interactive job with the pjsub command.

$ pjsub --interact

[INFO] PJM 0000 pjsub Job 405916 submitted. 1)
[INFO] PJM 0081 .connected. *2)
[INFO] PJM 0082 pjsub Interactive job 405916 started. *3)
$ 4
$ exit (*5)
[INFO] PJIM 0083 pjsub Interactive job 405916 completed. (*6)

-10 -

(*1) Message indicating submission of interactive job
(*2) Message indicating interactive job being prepared
(*3) Message indicating start of interactive job

(*4) shell prompt in interactive job

(*5) End of shell

(*6) Message indicating completion of interactive job

a. Message indicating the submission of an interactive job
A message is displayed by the callback function that is called when acceptance of an interactive job is completed. A job ID
consisting of a character string is created ("405916" in the above example) based on the sub job ID structure (PjcmdSubjobid_t)
that is provided as an argument of the callback function.

void interact_job_accept_msg(const PjcmdSubjobid_t *subjobid_p)
{
char buf[PJCMD_MAX_SUBJOBID_STR_LEN];
pjcmd_subjobid_to_str(subjobid_p, buf);
fprintf(stdout, "[INFO] PJM 0000 mypjsub Job %s submitted.\n", buf);
b

b. Message indicating an interactive job is being prepared
A message is displayed by the callback function that is called at a regular interval (every three seconds) while waiting for the
execution of an interactive job. In the following example, "." is displayed every time the callback function is called.

int interact_job_wait_msg_called = 0O;
void interact_job_wait_msg(const PjcmdSubjobid_t *subjobid_p)
{
iT (interact_job_wait_msg_called !'= 0) {
// Only beginning of message is displayed when called for first time
fprintf(stdout, "[INFO] PJM 0081 "™);
interact_job_wait_msg_called = 1;
3
fprintf(stdout, ".");
fflush(stdout);
¥

C. Message indicating the start of an interactive job
A message is displayed by the callback function that is called when an interactive job starts. A job ID consisting of a character
string is created ('405916" in the above example) based on the sub job ID structure (PjcmdSubjobid_t) that is provided as an
argument of the callback function.

void interact_job_start _msg(const PjcmdSubjobid_t *subjobid_p)
{
char buf[PJCMD_MAX_SUBJOBID_STR_LEN];
// Displayed to show end of message indicating job being prepared
fprintf(stdout, "connected\n');
pjcmd_subjobid_to_str(subjobid_p, buf);
fprintf(stdout, "[INFO] PJM 0082 mypjsub Interactive job %s started.\n", buf);
¥

d. Message indicating the end of an interactive job
A message is displayed by the callback function that is called when an interactive job is completed. A job ID consisting of a
character string is created ("405916" in the above example) based on the sub job ID structure (PjcmdSubjobid_t) that is provided
as an argument of the callback function.

void interact_job_end_msg(const PjcmdSubjobid_t *subjobid_p)
{
char buf[PJCMD_MAX_SUBJOBID_STR_LEN];

pjcmd_subjobid_to_str(subjobid_p, buf);

-11 -

fprintf(stdout, "[INFO] PJM 0082 mypjsub Interactive job %s completed.\n", buf);

}

The callback functions prepared above are registered as follows before requesting submission of an interactive job.

it (Jobtype == PJCMD_JOBTYPE_INTERACTIVE) { // When interactive job submitted
pjcmd_submit_set _callback(handle_p, // Handle
&interact_job_accept_msg, // When accepting job
&interact_job_wait_msg, // When waiting for job to start
&interact_job_start_msg, // When job starts
&interact_job_end_msQg); // When job ends
}

resp_p = pjcmd_submit_execute(handle_p);

By doing so, a callback function is called at each step of the internal processing of the pjcmd_submit_execute() request function.
- Job from the standard input

The pjsub command can provide job details from the standard input without specifying a job script. When providing job details in the
same way by using the command API, the contents of the standard input are saved in a temporary file in a program and set in a handle
as a job script.

The command API has the pjemd_submit_create_scriptfile_from_stdin() function that is used to create the contents of the standard
input as a temporary job script. The following example uses this function.

char *tmp_jobscript_p;

// Input stored in automatically generated file
tmp_jobscript_p = pjcmd_submit_create_scriptfile_from_stdin(NULL, NULL);
it (tmp_jobscript_p == NULL) {

// To error processing

}

// Set job script name
pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &tmp_jobscript_p);

pjcmd_submit_execute(handle_p);

// Delete temporarily created job script
unlink(tmp_jobscipt_p);

2.2.4.3 Job Operation

The following job operations may take a long time to receive a request for processing by the job operations management function and return
a response.

- Deleting a job

- Holding a job

Release job hold

- Sending a signal to a job

Changing job parameters

The job operation command of the job operation management function that corresponds to the job operation function above outputs a
message indicating the progress of processing when a request takes time to be accepted. The command API provides a callback mechanism
to call a user-provided function if the request takes a long time to be accepted.

If you want a command using the command API to process message output similar to various operation commands, register a function that
outputs messages with the pjemd_xxxx_set_callback() function and request a job operation.

-12 -

The following is an example of a callback function. It prints the following message, similar to the pjdel command (Error handling is
omitted).

$ pjdel 405916
[INFO] PJIM 0181 .. .done. (@)
[INFO] PJM 0100 pjdel Accepted job 405916.

*) "[INFO] PIM 0181 ..." : A message indicating that a request to delete a job is
waiting to be accepted.
"done." : A message indicating that the request to delete the job has been accepted.

a. A message indicating that a request to delete a job is waiting to be accepted.

A message is output in a callback function called periodically (Every 3 Seconds) while waiting for a delete job request to be accepted.

This example outputs "." each time it is called.

int kill_wait_msg_called = 0;
void kill_wait_msg(void)
{
if (kill_wait_msg_called == 0) {
fprintf(stdout, "[INFO] PJM 0181 *); // First call outputs the beginning of the message.
kill_wait_msg_called = 1;
¥
fprintf(stdout, ".");
fflush(stdout);
¥

b. A message indicating that the request to delete the job has been accepted.

A message is output in a callback function that is called when a request to delete a job has been accepted.

void kill_accept_msg(void)
{
fprintf(stdout, "done.\n"); // The end of a message waiting for a response to
// a request to delete a job.
¥

Register the prepared callback function as follows before requesting deletion of the job.

pjcmd_kill_set_callback(handle_p, // Handle
&kill_wait_msg, // Called at waiting acceptance of request
// for job deletion.
&kill_accept _msg); // Called when request for job deletion has been accepted.

}

resp_p = pjcmd_kill_execute(handle_p);

That way, the registered callback function will be called at each stage in the pjcmd_Kkill_execute() function.

2.2.5 Referencing Results

2.2.5.1 Referencing Response Information

Operation request results are found by referencing response information.

PjcmdHandle_t *handle_p;
PjcmdResp_t *resp_p;

int code, subcode;

char *detail_p;

resp_p = pjcmd_submit_execute(handle_p); // Request job submission operation
if (resp_p == NULL) {
// To error processing

}

-13-

pjcmd_get_result(resp_p, &code, &subcode, &detail_p); // Get operation request results
if (code = 0) {
//To error processing

}

a. When response information is NULL
If the response information returned as the return value of the operation request function is NULL, it indicates that a problem, such
as insufficient contents of a handle, was found by a check before requesting the operation.

b. When response information is not NULL
When response information is returned, whether or not an operation has been successfully requested is checked with the
pjcmd_get_result() function first. If O (success) is returned in the second argument (code), detailed results as explained later in this
document can be referenced.

The detailed information that can be obtained from response information is different from job operation contents and other operation
contents.

- Job operation
The following information can be obtained from response information about a job operation, such as submitting or deleting a job.
- Number of operated jobs

The total number of operation target jobs and the number of successful jobs are obtained by the pjecmd_get_jobresult_num()
function.

PjcmdHandle_t *handle_p;
PjcmdResp_t *resp_p;
inté4_t num[2]; // Array storing total number of jobs and number of successful jobs

resp_p = pjcmd_submit_execute(handle_p); // Request job submission operation
if (resp_p == NULL) {
// To error processing
¥
pjcmd_get_result(resp_p, &code, &subcode, &detail_p); // Get operation request results
if (code = 0) {
// To error processing

}
pjcmd_get_jobresult_num(resp_p, num); // Get number of successfully submitted jobs

Inthe above example, the total number of submitted jobs is stored in num[0], and the number of successfully submitted jobs is stored
in num[1].

- Results of individual jobs

The operation results of individual jobs are found by the pjcmd_get_jobresult_info() function.

int code, subcode;
char *detail_p;
PjcmdSubjobid_t *subjobid_p;

resp_p = pjcmd_submit_execute(handle_p); // Request job submission operation
if (resp == NULL) {
// To error processing
b
pjcmd_get_result(resp_p, &code, &subcode, &detail_p); // Obtain operation request results
if (code = 0) {
// To error processing
3
pjcmd_get_jobresult_num(resp_p, num); // Get total number of submitted jobs and
// number of successfully submitted jobs

for (i = 0; 1 < num[0]; i++) {
pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

-14-

i, PJCMD_JOBRESULT_CODE, &code);
pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

i, PJCMD_JOBRESULT_SUB_CODE, &subcode);
pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

i, PJCMD_JOBRESULT_DETAIL, &detail_p);
pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

i, PJCMD_JOBRESULT_SUBJOBID, &subjobid_p);

printf(*"....<Displaying obtained information and other operations> ...");

}

In the above example, the following information on all jobs to be operated are obtained sequentially from response information by
the pjemd_get_jobresult_info() function: result code (code), detailed result code (subcode), detailed result (character string)
(detail) and sub job ID (subjobid). Only jobs that were successfully submitted (PJCMD_JOBRESULT_OK) or only jobs that that
failed in submission (PJCMD_JOBRESULT_ERR) can also be specified in the second argument.

ﬂ Information

The pjemd_get_jobresult_info() function specifies a job index to reference results. Therefore, the number of jobs must be obtained
by the pjemd_get_jobresult_num() function beforehand. If an index that exceeds the number of target jobs is specified, an error
occeurs.

- Other than job operations

As for operations other than job operations (information acquisition and other operations), operation-specific information can be
referenced from response information. The reference method varies depending on the information type. The following example
references job information (equivalent to the pjstat command).

pjcmd_result_t ret;
PjcmdResp_t *resp_p;

resp_p = pjcmd_jobinfo_execute(handle_p); // Request job submission operation
iT (resp_p == NULL) {
// To error processing

}

pjcmd_get result(resp_p, &code, &subcode, &detail_p); // Acquire operation request results
if (code !'= 0) {
// To error processing

3
do (ret = pjcmd_jobinfo_read_infogrp(resp_p)) { // Move to one information group
if (ret == PJCMD_ERR) {
if (picmd_errcode == PJCMD_ERROR_NODATA) {
break;
}
fprintf(stderr, "%s: Cannot read infogrp\n', CMD_NAME);
pjcmd_destroy resp(resp_p);
pjcmd_destroy_handle(handle_p);
exit(EXIT_FAILURE);
}
pjcmd_jobinfo_print_resp(resp_p, PJCMD_JOBINFO_PRINT_JOBINFO); // Display information
// group contents
3

Multiple information groups are stored in response information. An information group is a unit for obtaining information. It is
equivalent to the display of information for each resource unit or resource group by using the --ru or -rg option, respectively, in the pjstat
command. The pointer pointing to the information group that is currently being referenced is included in response information. The
pjcmd_jobinfo_read_infogrp() function updates the pointer so that it points to the next information group every time the function is
called.

Then, the function displays the summary information and job information for the current information group by using the
pjcmd_jobinfo_print_resp() function.

-15 -

2.2.

;ﬂ Information

- The above example is equivalent to the information that is displayed when executing the pjstat command as follows.

$ pjstat --ru --rg

[RSCUNIT: unitl] (*) Display unit per resource unit

[RSCGRP: groupl] or resource group is equivalent to information group
JOB_ID JOB_NAME

2927 JObA

[RSCUNIT: unitl]
[RSCGRP: group2]
JOB_ID JOB_NAME
2928 jobB

- The pjemd_jobinfo_read_jobinfo() function is used to confirm job information one piece at a time. This function enables
information on jobs belonging to the current information group to be referenced one piece at a time.

5.2 Error Information

The following steps are used to detect a command API error.

Function return value (pjcmd_result_t type or pointer type)
Whether a function is successful or failed is found by referencing a function return value.

pjcmd_errcode error code
If a function fails, a code indicating the details is set.

Response information
Operation request results are found by referencing response information details (see "2.2.5.1 Referencing Response Information™).

Detailed error information
Error information that is more detailed than the above information is found.

;ﬂ Information

If information that is similar to the information included in a standard command message is required, it is not sufficient to reference only
a function return value and error code. Detailed error information also needs to be referenced.

This section describes detailed error information.

Detailed error information (PjcmdErrinfo_t) is accumulated when an error occurs in the command API. Multiple items of detailed error
information may be accumulated at one time depending on the error.

-16 -

Figure 2.1 Conceptual Diagram of Detailed Error Information

Detailed error

Accumulated
detailed error information

information PjcmdErrinfo_t
Processing of | : .
PjcmdErminfo t >
[GommandAF'lJ Ermor | | Add L:—"

L 4
Get detailed error information

y

PjcmdErminfo_t

The following information is included in detailed error information.

Table 2.1 Information Included in Detailed Error Information

Information

Description

Detailed error code

This code indicates an error type (pjcmd_suberrcode_t).

Detailed code 1 to 3

Error detailed code (numerical value). A maximum of 3 codes are set based on
the error type.

Detailed information (character string) 1 to 5

Detailed error information (character string). A maximum of 5 pieces of
information are set based on the error type.

Number of job script line where error occurred

A line number is displayed when an error occurs in a job script.

Sub job ID

If an error related to a specific job occurs, this sub job ID indicates the job ID,
bulk number, and step number of the job.

2, See

@000 0000000000000000000000000000000

© ©00

The obtained detailed code and detailed information (character string) are different for each detailed error code. For details, see "A.7.2
Detailed Error Code" in "Appendix A Command API Common Reference."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

When the user of the command API detects a function error, the user references the detailed error information and, if necessary, displays

it as a message.

The following table lists functions for referencing detailed error information.

Table 2.2 Functions for Referencing Detailed Error Information

Function

Description

pjcmd_error_read_errinfo()

This function retrieves a piece of detailed error information accumulated in the command
APL.

The function returns the next piece of detailed error information every time it is called.

pjcmd_error_read_errinfo_by_sjid()

If the detailed error information accumulated in the command API is contents
corresponding to a job, the detailed error information corresponding to the specified sub job
ID structure is returned.

pjcmd_error_get_info()

This function references information (other than detailed information (character string)) in
detailed error information.

pjcmd_error_get_detail_info()

This function references detailed information (character string) in detailed error
information.

-17 -

Function

Description

pjcmd_error_destroy_errinfo()

This function releases (deletes) some detailed error information.

pjcmd_error_clear_errinfo()

This function releases (deletes) all detailed error information accumulated in the command
API.

& Note

Detailed error information keeps accumulating in memory used by a process. Therefore, normally, detailed error information must be
released (deleted) after outputting error information or performing other operations by referencing the detailed error information when an

error occurs.

In many cases, a program is designed to terminate when an error occurs. In that case, the OS releases detailed error information when a
program ends without intentionally releasing detailed error information.

[Example of Referencing Detailed Error Information]

The following example shows code to reference detailed error information in cases where an error occurs in a function of the command API.

© 00O ~NOO U WNEPRE

A B WWWWWWWWWWNDNNNNNMNNNNNRPERPRPEPRPEPERPRRPREPR
PO OWO~NOOOMMWNPOOONOOOUDNMWNRPOOONOOUGDMAWDNLEO

N
N

main(int argc, char **argv)

{
PjcmdHandle_p *handle_p;
PjcmdResp_p *resp_p;
int code, subcode;
char *detail_p;
ret = pjcmd_submit_parse_pj
if (ret = PJCMD_OK) { // Parameter setting error
goto I_err;
}
resp_p = pjcmd_submit_execute(handle_p);
goto I_err;
3
goto I _err; // Failure in getting results
b
goto I_err;
}
1_err:
mycmd_print_error(); // Di
pjcmd_error_destroy_errinfo();
pijcmd_destroy_resp(resp_p);
pjcmd_destroy _handle(handle_p);
exit(l);
¥

if (resp_p == NULL) { // Submission request failure

if (pjcmd_get_result(resp_p, &code, &subcode, &detail_p) != PIJCMD_OK) {

if (code !'= 0) { // Requested operation does not end successfully

void mycmd_print_error(void)

{

PjcmdErrinfo_t *einfo_p;

int suberrcode, codel, code2, code3, line;

char *detail_p[5];

PjcmdSubjobid_t *subjobid_p;

sub_args(handle_p, argc, argv);

splay error message

-18 -

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

}

while ((errinfo_p = pjcmd_error_read_errinfo()) != NULL) {

pjcmd_error_get_info(einfo_p, PJCMD_ERRINFO_SUBERRCODE, &suberrcode);
switch (suberrcode) {
case PJCMD_SUBERR_UNKNOWN_OPT: // Detect unknown option
fprintf(stderr, "[ERR.] 0001 mycmd Unknown option "%s®"\n",
pjcmd_error_get_detail_info(einfo_p, 0)); // Unknown option
break;
case PJCMD_SUBERR_COMBINATION: // Incorrect option combination
detail_p[0] = pjcmd_error_get_detail_info(einfo_p, 0); // Option 1
detail_p[1l] = pjcmd_error_get_detail_info(einfo_p, 1); // Option 2
fprintf(stderr, "[ERR.] 0002 mycmd Invalid combination of options: "%s® and "%s"\n",
detail_p[0], detail_p[1l]);
break;

case PJCMD_SUBERR_UPPER_LIMIT: // Specified resource amount exceeds upper limit
pjcmd_error_get_info(einfo_p, PJCMD_ERRINFO_SJID, &subjobid_p);
detail_p[0] = pjcmd_error_get_detail_info(einfo_p, 0); // Resource name
detail_p[1] pjcmd_error_get _detail_info(einfo_p, 1); // Specified resource amount
detail_p[2] = pjcmd_error_get_detail_info(einfo_p, 2); // Upper limit value
fprintf(stderr, "[ERR.] 0057 mycmd %s=%s is greater than the upper limit (%s).\n",
detail_p[0], detail_p[1l], detail_p[2]);

break;

case PJCMD_SUBERR_DAEMON_ISNOT_PRESENT: // Job manager function
// not working/cannot communicate
fprintf(stderr, "[ERR.] 0090 mycmd Job manager does not work\n');
break;

- Lines 10, 15, 19, and 23
The occurrence of an error in a function of the command API causes a jump to an error process.

- Line 29

The error message display function is called based on detailed error information.

- Lines 30 to 34

Terminate once detailed error information, response information, and handles are released after displaying an error message.

- Lines 44 to 73

Detailed error information PjcmdErrinfo_t is read one piece at a time.

- Line 45

A detailed error code is obtained from detailed error information.

- Lines 46 to 72

Information related to all detailed error codes are obtained to display them as a message.
For details on detailed error code types and related information types, see "A.7.2 Detailed Error Codet" in "Appendix A Command API
Common Reference."

For example, in lines 58 to 65, an error is processed when the specified resource amount exceeds the upper limit defined by the job ACL
function. The resource name, specified resource amount, and upper limit value are obtained from detailed error information by the
pjcmd_error_get_detail_info() function and displayed by the fprintf() function.

2.2.6 Releasing Handles, Command Line Parsers, and Response
Information

Generated handles, command line parsers, and response information must be released when a program ends after processing is completed.

-19 -

PjcmdHandle_t *handle_p;
PjcmdResp_t *resp_p;
PjcmdParser_t *parser_p;

parser_p = pjcmd_submit_create_pjsub_parser(handle_p);
resp_p = pjcmd_submit_execute(handle_p);

pjcmd_submit_destroy pjsub_parser(parser_p);
pjcmd_destroy_resp(resp_p);
pjcmd_destroy_handle(handle_p);

L:n Note

When releasing handles, response information, and command line parsers, the handles must be released last. Response information and
command line parsers are associated with handles. Therefore, if response information and command line parsers are operated after the
release of the handles, operation is undetermined. Since these areas are part of the data area of a program, if the program ends without
releasing the areas, the areas are released by the OS.

2.2.7 Precaution When Using the Command API

- The command API can be used for multithread programs. However, a single handle must not be updated on multiple threads
simultaneously.

2.3 Creating a Command

The command API library is located at the following location on each login node, compute cluster management node, and system
management node.

/usr/l1ib64/libpjcmd.so

A link to the libpjemd library of the command API must be created when creating an executable file by compiling a created source file.

$ gcc -o mycmd mycmd.c -Ipjcmd ...

gn Note

The standard gcc available on the OS needs to be the compiler used. Other compilers are not supported.

2.4 Setting the Command API

The administrator can configure settings to change the operation of the command API.
To change a default setting value, the administrator must edit the pmpjcmd.conf file on the login node, compute cluster management node,
and system management node that can be used by the command API.

/etc/opt/FISVtcs/pjm/pmpjcmd.conf

The contents of the pmpjcmd.conf configuration file are updated to the latest contents every time that a command that uses a function of
the command API is executed. The command API reads this configuration file on the node from which it is called. If each node needs to
have the same setting values, the configuration file on each node must have the same contents.

The pmpjcmd.conf file permissions must be set as follows:
- Owner/Group: root/root

- File mode: 0644

-20 -

2 See

© © 0000000000000 00COCOCOCOCOCEOCEOCE

For details on the configuration file, see "Command API settings" in "Chapter 3 Job Operation Management Function Settings" in "Job
Operation Software Administrator's Guide for Job Management."

© ©000O00COCOCOCOCOCIOCIOCOCOCEOCOCOC0CI0C0C0C0CI0C0COC0CCCCCOCOCEOCEECEEETS

-21-

Appendix A Command APl Common Reference

A.1 Handle Operations and Response Information

This section describes the functions for handle operations and response information.
Figure A.1 Handle Operations and Response Information

_ Operation type |

i a1

Releass ‘—l picmd_destroy_handle() L‘ | picmd_create_handle()
\1 Generatel

\ Set/Reference Parameter
¥ setting/reference
Handle t\ ﬁ.lnctil:ln

Replicate LY
FjicmdHandle_t

'\ F

Handle . !

chdeandIE_t“_ |\ picmd_clone_handle()]‘ 7 . .
j s Target job

J,.f Set setfing function

Initialize ,)’; .

[picmd_reset_handle() r [pjcmd_xxxx_execute{j]

Generate

k J

Release 4—| pjcrnd_destroy_resp() |4— RESD;;;SE;EZOS;“EE'D”

¥
rRe-spu:un s inform atinn]

reference function

A.1.1 pjcmd _create _handle()

PjcmdHandle_t *pjcmd_create_handle(pjcmd_operation_t op)

This function generates a handle.

[ARGUMENTS]
op

Identifier indicating an operation type

Identifier Description
PJCMD_SUBMIT Submitting a job
PJCMD_KILL Delete a job

PJCMD_SIGNAL

Sending a signal

PJICMD_HOLD

Holding a job

PJICMD_RELEASE

Releasing a job hold

PIJCMD_ALTER

Changing a job parameter

PICMD_WAIT

Waiting for a job to complete

PJCMD_JOBINFO

Getting job information

PJICMD_RSCINFO

Getting resource information on a resource unit/resource group

PJICMD_LIMITINFO

Getting limit value information

-22-

Identifier Description

PJCMD_RSCSTAT Getting the resource status

PJCMD_JOBACL Getting job ACL information

PJCMD_SETPJMSTAT | Changing the job operation (setting job submission/execution permission)

PJCMD_GETPJMSTAT | Getting the job operation setting status (getting the status of job submission/execution
permission)

[RETURN VALUE]

The pointer to the generated handle is returned. If the function fails, NULL is returned, and the cause is set in pjcmd_errcode. The caller
must release the generated handle by using the pjcmd_destroy_handle() function.

[pjcmd_errcode]
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in gp.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

A.1.2 pjcmd_clone handle()

PjcmdHandle_t *pjcmd_clone_handle(const PjcmdHandle_t *handl e_p)

This function replicates the handfe_phandle. The function is used in situations such as submitting a job using the parameters of another job.
[ARGUMENTS]
handle_p
Pointer to the handle to be replicated
[RETURN VALUE]

The pointer to the replicated handle is returned. If the function fails, NULL is returned, and the cause is set in pjcmd_errcode. The caller
must release the replicated handle by using the pjcmd_destroy_handle() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
handle_pis invalid (NULL).
PJCMD_ERROR_NOMEM

Memory acquisition failed.

A.1.3 pjcmd reset handle()

pjcmd_result_t pjcmd_reset_handle(PjcmdHandle_t *handl e_p)

This function initializes the handle contents. The handle then has the same contents as in the initial state with contents generated by the
pjcmd_create_handle() function.

[ARGUMENTS]
handle_p
Pointer to the handle to be initialized
[RETURN VALUE]
PJCMD_OK

Success

-23-

PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
handle_pis invalid (NULL).

A.1.4 pjcmd_destroy handle()

pjcmd_result_t pjcmd_destroy_handle(PjcmdHandle_t *handl e_p)

This function releases a handle.
[ARGUMENTS]
handle_p
Pointer to the handle to be released
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
handle_pis invalid (NULL).

A.1.5 pjcmd destroy resp()

pjcmd_result_t pjcmd_destroy_resp(PjcmdResp_t *resp_p)

This function releases response information. Response information is result information returned by the pjemd_operation_execute()
function.

[ARGUMENTS]
resp_p
Pointer to the response information to be released
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
resp_pis invalid (NULL).

A.2 Referencing of Operation Results

This section describes the functions for referencing result information from response information about job operations and information
acquisition.

-24 -

Figure A.2 Referencing Operation and Information Acquisition Results

Response -
information - picmd_get_resulty]) }——+ Informaticn
PjcmdResp_t -
+ Only job operation API response information === sssssssasssssssisssasssisnnens
- 5 :] Total number of jobs :
——'|: pjcmd_get_jobresult_num() " yymber of e jobs } e
: r " .
—E—PL picmd_get_jobresult_info() J—I* Informaticn |
Response information image (1 line = 1 job)
Index | Result | Detailed |Detailed subJob [RIM Exit |Signal ([Job
: Code |Result |Information |ID f|Code |Code |Number |Status
: Code (string) -
: o WIOE | 00X N x::c(x;'.
1 |y | ww | vy (rvwy)
2 purrr prirra parsrird purrr

A.2.1 pjcmd get result()

pjcmd_result_t pjcmd_get_result(const PjcmdResp_t *resp_p, int *code_p, int *subcode_p, char
**detai |l _pp);

This function gets operation result codes and detailed information from response information.

The information that is obtained by this function is the results of operation requests and information acquisition requests. The
pjcmd_get_jobresult_info() function must be used to reference the individual results of job operations (submit a job, delete a job, hold a job,
release a job hold, send signals, wait for job completion, and change job parameters).

[ARGUMENTS]
resp_p
Pointer to response information

code_p

A result code is stored in *code_p. If *code _pis 0, it indicates that the operation completed successfully. If the result code is not 0,

it indicates that the operation did not complete successfully. In that case, detailed investigation data is stored in (int)*subcode_pand
(char *) *detail_pp.

subcode_p
A result code for detailed investigation data is stored in *subcode p.
detail_pp
A pointer (character string) to detailed investigation data is stored in *detail_pp.
[RETURN VALUE]
PJCMD_OK
Result information has been successfully obtained.
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
resp_pis invalid (NULL).

-25-

PJCMD_ERROR_INVALID_ARGUMENT
code_p, subcode_p, or detail_ppis invalid (NULL).

A.2.2 pjcmd _get jobresult num()

pjcmd_result_t pjcmd_get_jobresult _num(const PjcmdResp_t *resp_p, int64_t *num p)

This function gets the total number of target jobs and the number of successful jobs from response information about job operations (*).
(*) Job submission, job deletion, job hold, releasing job hold, signal transmission, changing parameters, and waiting for a job to complete
(see "Appendix B Job Operation API Reference.")

[ARGUMENTS]
resp_p
Pointer to response information
num_p

The total number of jobs and the number of operation-succeeded jobs are stored in the num_g[] array.
Num_p[0]10]: Total number of jobs
num_p[1]: Number of successful jobs

The caller needs to prepare these array areas.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- The response information is not response information for the job operation API.
PJCMD_ERROR_INVALID_ARGUMENT
num_pis invalid (NULL).

A.2.3 pjcmd get jobresult info()

pjcmd_result_t pjcmd_get_jobresult_info(const PjcmdResp_t *resp_p, pjcmd_jobresult_type_t result,
int64_t indx,
pjcmd_jobresult_info_t type, void *val _p)

This function gets result information of specific jobs from response information about job operations (*).
(*) Submit a job, delete a job, hold a job, release a job hold, send signals, change parameters, and wait for job completion (See "Appendix B
Job Operation API Reference.")

[ARGUMENTS]
resp_p
Pointer to response information
result

Conditions for target jobs whose results are obtained

-26 -

PJCMD_JOBRESULT_ANY
All jobs are targeted.
PJCMD_JOBRESULT_OK
Only successful jobs are targeted.
PJCMD_JOBRESULT_ERR
Only failed jobs are targeted.
indx

Index of jobs whose result information is obtained. The value must be in a range of 0 to a value that is calculated by subtracting 1
from the total number of jobs that meet the conditions indicated by the resu/targument.

type
Identifier of result information to be obtained (See the following table.)
val_p

Result information is stored in *va/_p. The caller needs to prepare an area of a sufficient size based on #ype. For example, if *val_ p
type is int, the caller needs to prepare an int type area and specify a pointer (int *) to the area in va/_p.

type *val_p Type of *val_p
PJCMD_JOBRESULT_SUBJOBID Sub job ID structure of a job PjcmdSubjobid_t *

If the obtained value is referenced after the release
of response information, operation is
undetermined.

PJCMD_JOBRESULT_CODE Job operation result code int

0: Success
Other than 0: Failure

PJCMD_JOBRESULT_SUB_CODE Detailed result code when a job operation fails int
This is investigation data from the error occurrence
time.

PJCMD_JOBRESULT_DETAIL Detailed information (character string) when a job | char *

operation fails

This is investigation data from the error occurrence
time.

PJCMD_JOBRESULT_PJM_CODE Job completion code (PJM code) int32_t

This identifier has meaning only when waiting for
a job to complete.

PJCMD_JOBRESULT_EXIT_CODE Job script exit code int32_t

This identifier has meaning only when waiting for
a job to complete.

PJCMD_JOBRESULT_SIGNAL_NUM Signal number when a job script ends with asignal | int32_t

This identifier has meaning only when waiting for
a job to complete.

PJCMD_JOBRESULT_JOB_STATUS Job status while waiting int32_t

0: Completed step job or bulk job

1: ACCEPT, QUEUED, READY, RUNNING-A,
RUNNING-P, RUNNING, or RUNNING-E state
2: HOLD state

3: ERROR state

-27 -

type

*val_p

This identifier has meaning only when waiting for
a job to complete.

PJCMD_JOBRESULT_ACCEPT_DATE

Job acceptance time

This identifier has meaning only when waiting for
a job to complete. If the job type is sub job, the time
when the summary job is accepted is returned.

Type of *val_p

strcut timespec

PJCMD_JOBRESULT_NODE_MODEL Compute node type uint32_t
0: FX server
1: PRIMERGY server
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- The response information is not response information for the job operation API.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in resultor type.
PJCMD_ERROR_NODATA
The /ndx value is out of range.
A.3 Setting and Acquisition of Job IDs
This section describes the functions for operating and referencing job IDs.
Figure A.3 Setting and Referencing Job IDs
‘SE'E A picmd_put_job() J‘—' Job ID |
chr:da;;rl-edle_t :__—L piemd_put_job_by_str() _J‘— [chara;ld?:;:[;h'ing]

5'“'“[picmd_put_jobresult_mode()]‘—

Job whose results
are obtained

Response
information

1 1oB U S
reference function PicmdSubjobid_t

Sub job ID structure L~

-

-~

r

v picmd_get_subjobid_info() |—+ P ID

information

-

[
" pjomd_subjobid_to_str(} Job ID ‘

{character string)

-28 -

A.3.1 pjcmd put job()

pjcmd_result_t pjcmd_put_job(PjcmdHandle_t *handl e_p, const int64_t *jobid_p, int64_t jobid_s,
inté4_t jobid_e,
const int64_t *no_p, int64_t no_s, int64_t no_e, pjcmd_jobmodel_t nodel)

This function sets a job, which is specified in an argument, in a handle. If the job is already set in the handle, an additional setting is made.
[ARGUMENTS]
handle_p
Pointer to a handle
jobid_p
Jobid_p[] is an array composed of one or more job IDs. The last element in the array must be -1. If the array does not end with -1,

operation is undetermined. If jobid_pis NULL and no job ID is specified in the array elements (jobid_p[0] is -1), this argument is
ignored.

jobid_s, jobid_e

This argument indicates the start (jobid_s) and end (jobid_e) of a job ID range.

If jobid_sis larger than jobid e, the function returns the PICMD_ERR error, and PICMD_ERROR_INVALID_PARAM is set in
pjcmd_errcode.

If a job ID is specified in jobid pand a value outside the range (0 to 2147483647; where a job ID can be specified), this argument
is ignored.

no_p

If the job model is a step job or bulk job, the step number or bulk number is specified as an array. The last element in the array must
be -1. If the array does not end with -1, operation is undetermined. If no_pis NULL, more than two job I1Ds are specified in jobid p,
or PICMD_JOBMODEL_NORMAL is specified in model, this argument is ignored.

If no step number or bulk number is specified in an array element (r70_p[0] is -1), the function returns the PJICMD_ERR error, and
PJCMD_ERROR_INVALID_PARAM is set in pjcmd_errcode.

no_s, no_e

If the job model is a step job or bulk job, the start (n0_s) and end (no_e) of the step number or bulk number is specified.

If no_s is larger than no_e, the function returns the PJCMD_ERR error, and PICMD_ERROR_INVALID_PARAM is set in
pjcmd_errcode.

If -1 is specified in no_sand no_eg, a step number or bulk number is indicated by no_p, two or more job I1Ds are specified in jobid p,
or PICMD_JOBMODEL_NORMAL is specified in model, this argument is ignored.

model

If the no_p, no_s, and no_e arguments are specified, modelis specified in order to differentiate that the argument is a step number
or bulk number.

PJCMD_JOBMODEL_STEP

Valid values that are specified in the no_p, no_s, and no_e arguments are regarded as step numbers.
PJCMD_JOBMODEL_BULK

Valid values that are specified in the no_p, no_s, and no_e arguments are regarded as bulk numbers.

If a job model other than the above (PJICMD_JOBMODEL_NORMAL) is specified in the mode/argument, or if invalid values are
setinthe no_p, no_s, and no_earguments, it is regarded that sub job IDs are not specified, and only the jobid p, jobid s, and jobid e
arguments that specify job IDs are valid.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

-29 -

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This handle type cannot specify a job ID.
PJCMD_ERROR_INVALID_PARAM
A parameter specified in an argument is invalid.
- jobid s> jobid e
- no_p[0]is -1.
- no s>no e
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified to the argument model.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL

Internal error

;ﬂ Information

The arguments shown below need to be set based on the job type to be set. Argument that are not shown below are ignored.

- Specifying one job 1D (100)

jobid_p[0]=100;
jobid_p[1]=-1;
no_p=NULL;
no_s=-1;

Specifying N job IDs (100,101, ...)

jobid_p[0]=100;
jobid_p[1]=101;

jobid_p[N-1]=100+N-1;
jobid_p[N]=-1;

Specifying a job ID range (100 to 110)

jJjobid_p=NULL;
jobid_s=100;
jobid_e=110;

Specifying one sub job ID (100_1 or 100[1]) of a step job or bulk job

jobid_p[0]=100;

jobid_p[1]=-1;

no_p[0]=1;

no_p[1]=-1;

mode 1=PJCMD_JOBMODEL_STEP or PJCMD_JOBMODEL_BULK

Specifying N sub job IDs of step jobs or bulk jobs (100_0,100_1,... or 100[0],100[1],...)

jobid_p[0]=100;
jobid_p[1]=-1;

-30-

no_p[0]=0;
no_p[1]=1;

no_p[N-1]=N-1;
no_p[N]=-1;
mode I=PJCMD_JOBMODEL_STEP or PJCMD_JOBMODEL_BULK

Specifying the sub job ID range of step jobs or bulk jobs (100_0 to 10 or 100 [0 to 10])

jobid_p[0]=100;

jobid_p[1]=-1;

no_p=NULL;

no_s=0;

no_e=10;

mode I=PJCMD_JOBMODEL_STEP or PJCMD_JOBMODEL_BULK

A.3.2 pjcmd put job by str()

pjcmd_result_t pjcmd_put_job_by str(PjcmdHandle_t *handl e_p, const char *str_p)

This function sets a job ID, which is specified using a character string, in a handle. If a job is already set in the handle, the job ID is added
to it.

[ARGUMENTS]
handle_p
Pointer to a handle
str_p

Job ID or sub job ID (represented by a character string) to be set
A job ID can be specified in the following character string formats;

Single job ID (Example: "100")
- Single sub job ID (Example: "200_1" or "300[5]")

Specifying a job ID range (Example: "10 to 50")
- Specifying a sub job ID range (Example: "200_1 to 200_5" or "300 [5 to 10]")
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This handle type cannot specify a job ID.
PJCMD_ERROR_INVALID_ARGUMENT
str_pis NULL.
PJCMD_ERROR_INVALID_PARAM

The format of a job ID specified in str_pis invalid.

-31-

PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL

Internal error

A.3.3 pjcmd_put jobresult mode()

pjcmd_result_t pjcmd_put_jobresult_mode(PjcmdHandle_t *handl e_p, pjcmd_jobresult_mode_t node)

This function sets a target job range for getting operation results from the job operation management function in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
mode
Mode to get job operation results
PJCMD_JOBRESULT_MODE_ALL
If job IDs are specified as a range, jobs that do not exist are also included in the results to obtain.
PJCMD_JOBRESULT_MODE_BASIC

If job I1Ds are specified as a range, jobs that do not exist, jobs without the operation privilege, and jobs that cannot be operated
are not included.

If this function is not called, PJCMD_JOBRESULT_MODE_ALL is applied as the mode to get job operation results.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job operations.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is set in mode.
PJCMD_ERROR_INTERNAL

Internal error

A.3.4 pjcmd get subjobid info()

pjcmd_result_t pjcmd_get_subjobid_info(const PjcmdSubjobid_t *subjobid_p, pjcmd_subjobid_info_t
info, void *val _p)

This function obtains the job ID, step number, and bulk number of a sub job ID structure.

-32-

[ARGUMENTS]
subjobid_p
Pointer to a sub job ID structure
info
Identifier indicating the information to be obtained (See the following table.)
val_p

The obtained values are stored in *val_p. The caller needs to prepare an area of a sufficient size based on /nfo. For example, if *val_p
type is int64_t, the caller needs to prepare an int64_t type area and specify a pointer (int64_t *) to the area in va/_p.

info *val_p Type of *val_p
PJCMD_SUBJOBID_JOBID Job ID int64_t
PJCMD_SUBJOBID_STEPNO Step number inté4_t

If the job is not a step job, -1 is stored.
PJCMD_SUBJOBID_BULKNO Bulk number int64_t

If the job is not a bulk job, -1 is stored.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
subjobid _por val_pis NULL.
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in info.

A.3.5 pjcmd_subjobid to_ str()

pjcmd_result_t pjcmd_subjobid_to_str(const PjcmdSubjobid_t *subjobi d_p, char *str_p)

This function converts a sub job 1D structure to a character string for display.
[ARGUMENTS]
subjobid_p
Pointer to a sub job ID structure
str_p

A converted character string is stored in the area indicated by str_p. The caller needs to reserve the area. The maximum length for
a stored character string is PICMD_MAX_SUBJOBID_STR_LEN bytes including the NULL character at the end.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

-33-

[picmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

subjobid _por str_pis NULL.

[EXAMPLES]

A sub job ID structure is converted as follows based on the job model:

- Normal job: "<Job/D>" (Example: "123")

- Step job: "<JoblD>_<Step Number>" (Example: "123_5")

- Bulk job: "<JoblD>] <Bulk Number>]" (Example: "123[5]")

A.4 Analysis of Command Line Arguments

This section describes the functions for analyzing command line arguments.

Figure A.4 Analysis of Command Line Arguments

Name of option N
to disable

New option name

Cption recognized User's original
by parser opftion

\ ./ _Return value

picmd_getopt_long() |

F Y

| _A-Et

picmd_delopt_in_parser()
* Command line parser

PjcmdParser_t

- h -
Sl s —I{ picmd_renameopt_in_parser() |

-~

Fy
| Generate

User's
original option

Option

recognized by

parser

! {Associate with handle)

4
[pjomd_submit_create_pjsub_parser() J

&

- i Set
Handle -
PjcmdHandle_t

A.4.1 pjcmd getopt long()

int pjcmd_getopt_long(const PjcmdParser_t *parser_p,
*optstring_p, const struct option *l ongopts_p,

int *l ongi ndex_p)

int argc, char *const argv[],

const char

This function analyzes command line arguments based on the command line parser.
The operation of this function is the same as for the getopt_long() function, except for the following.

- This function recognizes the following options:

- optstring_p (short option) and /ongopts_p (long option) that are specified by the caller

- Options recognized by the command line parser parser_p

- The function returns every time that one option (gptstring_por longopt_p) specified by the caller is detected. When detecting an option

that is recognized by the command line parser parser_p, the function does not return. However, a parameter is internally set in the handle
(the handle specified when generating the command line parser) corresponding to the command line parser.

If NULL is specified in parser_p, the operation is the same as for the getopt_long() function.

[ARGUMENTS]

parser_p

Pointer to a command line parser

-34-

argc
Number of arguments to be analyzed
argv
Array of arguments to be analyzed
optstring_p
Short option character string (see getopt_long(3))
longopts_p
Long option to accept (see getopt_long(3))
longindex_p
Index to a recognized long option (see getopt_long(3))
[RETURN VALUE]
- If a short option is detected, a character is returned.

- If a long option is detected, a value is returned based on the corresponding member flag in /ongopts p.

When analysis of a command line option is completed, -1 is returned.

If an unidentified option is detected, "?" is returned.

A.4.2 pjcmd delopt in parser()

pjcmd_result_t pjcmd_delopt_in_parser(PjcmdParser_t *parser_p, char opt, const char *l ongopt_p)

This function disables the specified options among the options that are recognized by a command line parser. Calling this function once can
disable either the short or long option. The caller needs to call this function multiple times to disable multiple options.

[ARGUMENTS]
parser_p
Pointer to a command line parser
opt

Short option to be disabled (character string excluding "-" in the option). If the NULL character "\0" is specified, it is regarded that
a disabling short option is not specified.

longopt_p

Name of the long option to be disabled (option name excluding "--"). If NULL is specified, it is regarded that a disabling long option
is not specified.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
parser_pis NULL.
PJCMD_ERROR_UNKNOWN_OPTION

A specified option does not exist in the command line parser.

-35-

A.4.3 pjcmd renameopt in_parser()

pjcmd_result_t pjcmd_renameopt_in_parser(PjcmdParser_t *parser_p, char ol d_opt, char new opt, const
char *ol d_| ongopt _p, const char *new_| ongopt _p)

This function changes option names that are recognized by a command line parser.
[ARGUMENTS]
parser_p
Pointer to a command line parser
old_opt

Short option before the change (character string excluding "-" in the option). If a short option is not changed, the NULL character
"\0" must be specified.

new_opt
Short option after the change (character string excluding "-" in the option). If o/d_optis a NULL character, it is ignored.
old_longopt_p
Long option after the change (option name excluding "--"). If a long option is not changed, NULL must be specified.
new_longopt_p
Long option after the change (option name excluding "--"). If o/d_longopt_pis NULL, it is ignored.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
parser_pis NULL.
PJCMD_ERROR_UNKNOWN_OPTION
A specified option does not exist in the command line parser.
PJCMD_ERROR_INVALID_OPTION
The specification of the changed option is invalid.

- It duplicates other options that are not changed.

- When specifying the option o/d_optor old_longopt_p hefore the change, a NULL character is specified in the changed option
new_opt, or NULL is specified in new_longopt _p.

& Note

- This function just changes an option name. The function cannot change the specification that defines whether an argument is necessary
or not for an option. To disable the function, the pjcmd_delopt_in_parser() function must be used.

- A short option cannot be changed to a long option, and vice versa.

A.5 Display of Usage

This section describes the functions for displaying usage of a command provided by the job operation management function.

-36 -

Figure A.5 Displaying Usage of a Command Provided by the Job Operation Management Function

Command .) b - ™
type { pjomd_print_stdcrnd_usage()) —H\IE)_Il_,pIa‘,r_. U_.:EIQE__" _/I

A.5.1 pjcmd print stdcmd usage()

pjcmd_result_t pjcmd_print_stdcmd_usage(pjcmd_stdcmd_t cnd, const char *cnmdnane_p)

This function outputs usage of a command provided by the job operation management function.

[ARGUMENTS]

cmd

Identifier of a command provided by the job operation management function

Identifier

Descripton

PJCMD_STDCMD_PJSUB

pjsub command

PJCMD_STDCMD_PJDEL

pjdel command

PJICMD_STDCMD_PJHOLD

pjhold command

PJICMD_STDCMD_PJRLS

pjrls command

PIJICMD_STDCMD_PJSIG

pjsig command

PJICMD_STDCMD_PJWAIT

pjwait command

PJICMD_STDCMD_PJALTER

pjalter command

PIJICMD_STDCMD_PMALTER

pmalter command

PJICMD_STDCMD_PJSTAT

pjstat command

PJCMD_STDCMD_PJACL

pjacl command

PJICMD_STDCMD_PMPJMOPT

pmpjmopt command

PJICMD_STDCMD_PJSHOWRSC

pjshowrsc command

cmdname_p

Command name displayed in usage. If NULL is specified, the name of a command provided by the job operation management

function is displayed.
[RETURN VALUE]
PJCMD_OK
Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in cmd.

A.6 Error-related Functions

This section describes the functions for handling error information from the command API.

-37-

Figure A.6 Referencing Error Information

& ™y
Code l "'_ pjcmd_strermor()

. ’ .
Farameter ll-k picmd_permor)
-

4—[picmd_error_get_info() |4—
Detailed infc:nrmatl'on|4—[picmd_error_get_detail_infol) |*l—
e

* Message siring |

L

-\\.

ra
»{ Display |
\ Display

Information

Detailed
ermror information

-
/[picmid_ermor_read_errinfo() |-_
y
Retrieve

Detailed
ermor information
PjcmdErrInfo_t

Accumulated in pjcmd_error_read_errinfo_by_sjid{) },

command AP

k4 v

) o
| picmd_error_clear_errinfol) | picmd_error_destroy_errinfol)]

' '

Release all Release

A.6.1 pjcmd_strerror()

char *pjcmd_strerror(pjcmd_error_t code)

This function returns a standard error message of the command API corresponding to the error code specified in an argument.
[ARGUMENTS]
code
Error code. For details on the values that can be specified, see "A.7.3 pjcmd_errcodejcmd_errcode Variable."
[RETURN VALUE]

The pointer to one of the following fixed character strings is returned based on code.

Error code Message
PJCMD_SUCCESS Succeeded
PJICMD_ERROR_INVALID_HANDLE Invalid handle

PJCMD_ERROR_INVALID_RESP

Invalid response data

PJCMD_ERROR_INVALID_ARGUMENT

Invalid argument

PJCMD_ERROR_UNKNOWN_OPTION

Unknown option

PJCMD_ERROR_INVALID_OPTION

Invalid option

PJICMD_ERROR_UNKNOWN_PARAM

Unknown parameter

PJCMD_ERROR_INVALID_PARAM

Invalid parameter

PJCMD_ERROR_NODATA No data
PJCMD_ERROR_OPEN Open failed
PJICMD_ERROR_INVALID_NODE Invalid node

PJCMD_ERROR_NOPERM

No permission

PJCMD_ERROR_CONNECT

Connection failed

PJCMD_ERROR_NOMEM

Not enough memory

-38-

Error code

Message

PJCMD_ERROR_BUSY

Operation is busy

PJCMD_ERROR_TOO_LONG

Too long

PJCMD_ERROR_NOENT

No such file or directory

PJCMD_ERROR_ACCESS

Permission denied

PJCMD_ERROR_SIGNAL

Interrupted system call

PJCMD_ERROR_INTERNAL

Internal error occurred

Other value n

Unknown code 7

A.6.2 pjcmd_perror()

void pjcmd_perror(pjcmd_msg_level_t | evel , const char *conpo_p, int id, const char *cndnanme_p, const
char *addnsg_p)

This function displays a message at the standard error output in the following format in response to the pjcmd_errcode error code value.

[l evel] conpo_p id cndnane_p nessage addmsg_p

"message” in the above character string is the character string corresponding to the pjcmd_errcode error code (see "A.6.1
pjcmd_strerror().")

[ARGUMENTS]
level

Message level. One of the following character strings corresponding to a level is output in a message.

level Corresponding Character String
PJCMD_MSG_INFO INFO
PJCMD_MSG_NOTICE NOTE
PJICMD_MSG_WARN WARN

PJCMD_MSG_ERROR ERR. (A dot is added to the end.)
PJICMD_MSG_EMERG EMRG

compo_p

Component name. The name must be five characters or less excluding the NULL character at the end. Any character string can be
specified for a function name, etc.

id
Message ID. Any four-digit decimal number can be specified. If the number has fewer than four digits, the high-order digits are
padded with zeros.

cmdname_p

Command name displayed in a message. Any character string, such as a program name that is used to call the command API, can
be specified.

addmsg_p
Additional message. If NULL is specified, this argument is ignored.

[EXAMPLE]

pjcmd_perror(PJCMD_MSG_ERROR, "MYCMD™, 1, "mycommand", "(-x)');

When pjemd_errcode is PICMD_ERROR_UNKNOWN_OPTION, the following message is output.

[ERR.] MYCMD 0001 mycommand Unknown option (-x)

-39-

A.6.3 pjcmd error read errinfo()

PjcmdErrinfo_t *pjcmd_error_read_errinfo(void)

This function retrieves the following detailed error information from the list of detailed error information accumulated in the command API.
The following detailed error information is returned every time the function is called.

[ARGUMENTS]
None
[RETURN VALUE]

Detailed error information.
When there is no detailed error information to be retrieved, NULL is returned, and the PJCMD_ERROR_NODATA error code is set
in pjcmd_errcode.

[picmd_errcode]
PJCMD_ERROR_NODATA

There is no next piece of detailed error information.

A.6.4 pjcmd_error _read errinfo_by sjid()

PjcmdErrinfo_t *pjcmd_error_read_errinfo_by sjid(const PjcmdSubjobid_t *sjid_p)

This function retrieves detailed error information on the job corresponding to the specified sub job ID structure from the list of detailed error
information accumulated in the command API. The function returns the next piece of applicable detailed error information every time it is
called.

[ARGUMENTS]
sjid_p
Pointer to a sub job ID structure. This argument specifies a sub job ID structure that is obtained by the pjcmd_get_jobresult_info()
function when an error occurs during the job operation.
[RETURN VALUE]

Detailed error information.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_NODATA
There is no next detailed error information. There is no detailed error information corresponding to sjid_p.
PJCMD_ERROR_INVALID_ARGUMENT
sfid_pisinvalid (NULL).

A.6.5 pjcmd error_get info()

pjcmd_result_t pjcmd_error_get_info(const PjcmdErrinfo_t *errinfo_p, pjcmd_errinfo_type_t type, void
*val _p)

This function references a specified information item value from detailed error information.
[ARGUMENTS]
errinfo_p

Pointer to detailed error information. This argument specifies information that is obtained by the pjcmd_error_read_errinfo()
function.

type
Identifier of an information item to be referenced (See the following table.)

- 40 -

val_p

A value is stored in *val_p. The caller needs to prepare an area of a sufficient size based on #ype. For example, if *val_ptypeis int,
the caller needs to prepare an int type area and specify a pointer (int *) to the area in va/_p.

type *val_p Type of *val_p

PJCMD_ERRINFO_SUBERRCODE Detailed error code int

This error code indicates an error type provided by
detailed error information. For details on a value
(PJICMD_SUBERR_xxxx) to be stored and its
meaning, see "A.7.2 Detailed Error Code."

PJCMD_ERRINFO_CODE1 Detailed error information (numerical value) int
PJCMD_ERRINFO_CODE?2

PJCMD_ERRINFO_CODE3 The detailed error code (PICMD_SUBERR_xxxx) that

is obtained by specifying
PJCMD_ERRINFO_SUBERRCODE in type may
include up to 3 additional pieces of detailed information
(numerical values) ("[CODE n]" shown in "A.7.2
Detailed Error Code™). PICMD_ERRINFO_CODEnis
specified in fype when referencing the detailed
information.

If detailed information (numerical value) is not
included in the detailed error code, the value to be
obtained does not have any meaning.

PJCMD_ERRINFO_SCRIPTNAME Name of the job script where an error occurred ina job | char *
script

If the error was not caused by the job script, NULL is set
in *val p.

If the obtained value is referenced after the release of

detailed error information, operation is undetermined.

PJCMD_ERRINFO_SCRIPTLINE Line number of the job script where an error occurred | int

If the error was not caused by the job script, 0 is
specified in *val_p.

PJCMD_ERRINFO_SJID Sub job ID structure of a job with an error PjcmdSubjobid_t *

Thejob ID, bulk number, and step number of the job can
be known. If the error is not related to the sub job ID,

NULL is specified in *va/_p.

If the obtained value is referenced after the release of

detailed error information, operation is undetermined.

PJCMD_ERRINFO_PLACEID Location where an error occurred (for troubleshooting) | uint64_t

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
errinfo_p or val_p is NULL.

-41-

PJCMD_ERROR_UNKNOWN_PARAM
typeis invalid.

A.6.6 pjcmd_error_get detail info()

const char *pjcmd_error_get detail_info(const PjcmdErrinfo_t *errinfo_p, int indx)

This function returns detailed information on the specified index among multiple pieces of detailed information (character strings) included
in one piece of detailed error information.

[ARGUMENTS]
errinfo_p
Pointer to detailed error information
indx
Index of detailed information (character strings) included in detailed error information. A maximum of five pieces of detailed

information are included depending on the detailed error code. A value from 0 to 4 is specified. For detailed information
corresponding to a detailed error code, see "A.7.2 Detailed Error Code."

[RETURN VALUE]

Detailed information (character string).

If detailed information corresponding to /nadx does not exist or if the function fails, this function returns NULL. pjcmd_errcode is used
to distinguish between them.

[pjcmd_errcode]
PJCMD_SUCCESS (or RETURN VALUE is NULL)
Detailed information corresponding to /ndx is not included in this detailed error information.
PJCMD_ERROR_UNKNOWN_PARAM
indx exceeds the range that can be specified.
PJCMD_ERROR_INVALID_ARGUMENT
errinfo_pis NULL.

A.6.7 pjcmd_error_destroy_errinfo()

void pjcmd_error_destroy_errinfo(PjcmdErrinfo_t *errinfo_p)

This function releases specified detailed error information.
[ARGUMENTS]
errinfo_p
Pointer to detailed error information
[RETURN VALUE]

None

A.6.8 pjcmd_error_clear_errinfo()

void pjcmd_error_clear_errinfo(void)

This function releases all detailed error information accumulated in the command API.
[ARGUMENTS]

None

-42 -

[RETURN VALUE]

None

A.7 Error Codes, Global Variables, and Constants

This section describes the error codes, global variables, and constants (macro) of the command API.

A.7.1 Result Codes

A result code is the result of calling a command API function.

Value

Description

PJCMD_OK Succeeded

PJCMD_ERR Failed

A.7.2 Detailed Error Code

A detailed error code is a value indicating a detailed error information type that is obtained by the pjcmd_error_read_errinfo() function.

ﬂ Information

Any information accompanying a detailed error code is listed in the following table using the following symbols:

[CODE n] Detailed codes 1 to 3 can be obtained by the pjcmd_error_get_info() function.
[DETAIL] Detailed information (character string) 0 to 4 can be obtained by the pjcmd_error_get_detail_info() function.
[JOBID] A job ID (sub job ID structure) can be obtained by the pjcmd_error_get_info() function.

Detailed error code.

Description

PJCMD_SUBERR_UNKNOWN_OPT

An unknown option is detected.
[DETAIL 0] Unknown option name

PJCMD_SUBERR_COMBINATION

The combination of options is invalid.
[DETAIL 0] Option name 1
[DETAIL 1] Option name 2

PJCMD_SUBERR_UNKNOWN_OPTARG

An option argument is an unknown value.
[DETAIL 0] Option name
[DETAIL 1] Argument with unknown value

PJCMD_SUBERR_INVALID_OPTARG

A value that cannot be specified in an option argument is specified.
[DETAIL 0] Option name
[DETAIL 1] Argument or argument = value

PJCMD_SUBERR_NO_PARAM

A parameter is not specified.

PJCMD_SUBERR_ARG_FORMAT_QUOTA

A double quotation mark (*') or single quotation mark (') does not match.

PJCMD_SUBERR_INVALID_ARG

An invalid argument is specified.
[DETAIL 0] Argument

PJCMD_SUBERR_NO_JOBID

A job ID is not specified.

PJCMD_SUBERR_JOBID_SYNTAX_ERROR

The format of a job ID is invalid.
[DETAIL 0] Invalid job ID

PJCMD_SUBERR_JOBID_NOT_EXIST

The job corresponding to the specified job ID does not exist.
[JOBID]

PJCMD_SUBERR_JOB_STATE_ERROR

A command cannot be executed in the specified job state.
[JOBID]

-43-

Detailed error code.

Description

PJCMD_SUBERR_JOB_TYPE_ERROR

There was an attempt to change a job parameter for an interactive job.
[JOBID]

PJCMD_SUBERR_JOB_MODEL_ERROR

A sub job ID is specified in a step job when changing a resource unit
name.

PJCMD_SUBERR_JOBNAME_MISMATCH

Job names do not match when the sub jobs of a step job are batch
submitted.
[DETAIL 0] Job script name

PJCMD_SUBERR_DUP_REQUEST

All operation requests have been accepted.
[JoBID]

PJCMD_SUBERR_FILE_OPEN

A file failed to open.
[CODE 1] errno when file failed to open
[DETAIL 0] File name

PJCMD_SUBERR_FILE_NAME_TOO_LONG

A file name is too long.
[DETAIL 0] File name

PJCMD_SUBERR_FILE_FORMAT

The format of a file is invalid.
[CODE 1] Line number
[DETAIL 0] File name

PJCMD_SUBERR_MULTIPLE_SCRIPT

Multiple job scripts are specified.

PJCMD_SUBERR_TOO_MANY_ARG_SCRIPT

Too many options are written in a job script.
[DETAIL 0] Names of the options that could not be analyzed

PJCMD_SUBERR_LINE_LENGTH

The number of words exceeds the maximum number of words that can
be written in one job script line.

PJCMD_SUBERR_CURRENT_ACCESS

Information on the current directory cannot be obtained.

PJCMD_SUBERR_CURRENT_PATH

The current directory name is invalid. Alternatively, a linefeed code is
included in the directory name.

PJCMD_SUBERR_FILE_CREAT_FAIL

The specified file cannot be created.
[CODE 1] errno when file could not be created
[DETAIL 0] File name

PJCMD_SUBERR_NOT_FOUND_UNAME

The specified user name does not exist.
[DETAIL 0] User name

PJCMD_SUBERR_GID_FAILED

A group name cannot be obtained from the specified group ID.
[DETAIL 0] Group ID (character string)

PJCMD_SUBERR_CANNOT_USED_OPT

An option that cannot be used is specified.
[DETAIL 0] Option name

PJCMD_SUBERR_RESOURCE_ERROR

The specified resource is invalid for the target job.

[JOBID]

[DETAIL 0] Resource information specified during job parameter
change operation

PJCMD_SUBERR_OPERATION_BUSY

A request cannot be executed because another request is being
processed.
[JoBID]

PJCMD_SUBERR_LOWER_LIMIT

The specified resource amount is below the lower limit.
[JOBID] (Information may not exist)

[DETAIL 0] Specified resource name

[DETAIL 1] Specified resource amount

[DETAIL 2] Lower limit resource amount that can be specified

PJCMD_SUBERR_TIME_ERROR

The scheduled time to start executing the specified job is earlier than the
current time.

-44 -

Detailed error code.

Description

[DETAIL 0] Time (" YYYYMMDDhhmm'")
YYYY: Year, MM: Month, DD: Day, hh: Hour, mm. Minute

PJCMD_SUBERR_UPPER_LIMIT

The specified resource amount exceeds the upper limit.
[JOBID] (Information may not exist)

[DETAIL 0] Specified resource name

[DETAIL 1] Specified resource amount

[DETAIL 2] Upper limit resource amount that can be specified

PJCMD_SUBERR_RSC_DOES_NOT_EXIST

The specified resource does not exist.
[DETAIL 0] Specified resource name
[DETAIL 1] Specified resource amount

PJCMD_SUBERR_RSC_IS_DISABLED

The specified resource cannot be used.
[DETAIL 0] Specified resource name
[DETAIL 1] Specified resource amount

PJCMD_SUBERR_STEPNO_OVERFLOWED

The specified step number exceeds the defined range.

PJCMD_SUBERR_ARCH_ERROR

There was an attempt to change the resource unit to which a job was
submitted, to a resource unit of a different model.

PJCMD_SUBERR_POLICY_M
[PC]

When specifying a virtual node placement policy, the value m specified
in the gpt1 option must be a multiple of the value nspecified in the gpt2
option.

[DETAIL 0] Option name opt!

[DETAIL 1] Value m

[DETAIL 2] Option name ogpt2

[DETAIL 3] Value n

This is an error when specifying a value that is equivalent to -L vnode in
the pjsub command = mand -P vn-policy = unpack/abs-unpack = n.

PJCMD_SUBERR_SYSTEM_CONF_CHANGED

The system configuration changed while processing job acceptance.

PJCMD_SUBERR_RSCNAME_NOT_SPECIFIED

A resource name is not specified.

PJCMD_SUBERR_NO_EXECUTE_PERMISSION

There is no authority to operate.

PJICMD_SUBERR_NO_JOBID_PERMISSION

Operating the specified job is not permitted.
[JOBID]

PJCMD_SUBERR_ACCEPT_LIMIT

The number of accepted jobs exceeds the upper limit.

[JOBID] (Information may not exist)

[DETAIL 0] Name of item that exceeds upper limit

"ru-accept™: Number of simultaneously accepted batch jobs in resource
unit

"ru-accept-allsubjob™: Number of simultaneously accepted sub jobs of
bulk jobs and step jobs in resource unit

"ru-accept-bulksubjob™: Number of simultaneously accepted sub jobs of
bulk jobs in resource unit

"ru-accept-stepsubjob”: Number of simultaneously accepted sub jobs of
step jobs in resource unit

"ru-interact-accept": Number of simultaneously accepted interactive
jobs in resource unit

"rg-accept” : Number of simultaneously accepted batch jobs in resource
group

"rg-accept-allsubjob™: Number of simultaneously accepted sub jobs of
bulk jobs and step jobs in resource group

"rg-accept-bulksubjob™: Number of simultaneously accepted sub jobs of
bulk jobs in resource group

"rg-accept-stepsubjob™: Number of simultaneously accepted sub jobs of
step jobs in resource group

-45-

Detailed error code.

Description

"rg-interact-accept™: Number of simultaneously accepted interactive
jobs in resource group

PJCMD_SUBERR_OUT_OF RANGE

The specified value exceeds the range defined by the job ACL function.
[JOBID] (Information may not exist)
[DETAIL 0] Option name

PJCMD_SUBERR_RSCNAME_ILLEGAL

A combination with the default value defined by the job ACL function
for the resources that can be specified when submitting a job is invalid.
[DETAIL 0] Specified resource name

[DETAIL 1] Detailed message

PJCMD_SUBERR_RSC_CANNOT_BE_SPECIFIED

The specified custom resource value is not included in the custom
resource types that can be specified.

[JOBID] (Information may not exist)

[DETAIL 0] Specified custom resource name

[DETAIL 1] Specified value

[DETAIL 2] Value that can be specified

PJCMD_SUBERR_TOO_MANY_CUSTOMRSC

The number of specified custom resources is excessive.

PJICMD_SUBERR_NOT_FOUND_CSTMRSC

A custom resource corresponding to the specified resource value is not
defined.

[DETAIL 0] Specified resource name

[DETAIL 1] Specified value

PJCMD_SUBERR_GATE_CHECK_ERROR

Job acceptance is denied by the exit function configured by the
administrator.

[CODE 1] Message ID set at job manager exit (Information may not
exist)

[DETAIL 0] Message set at job manager exit (Information may not
exist)

PJCMD_SUBERR_JOB_TIMEOUT

A job was canceled because a compute resource allocated to a job could
not be determined within the specified time in an interactive job.
[JOBID]

PJCMD_SUBERR_NOT_LOGIN_NODE

An interactive job was executed on a node other than the login node.

PJCMD_SUBERR_JOB_FAIL

Execution of an interactive job has failed.
[JOBID]

PJCMD_SUBERR_JOB_CANCEL

Execution of an interactive job has been canceled.
[JoBID]

PJCMD_SUBERR_NOT_SUPPORTED

The specified functions or acombination of the functions is not currently
supported.
[DETAIL 0] Detailed message

PJICMD_SUBERR_DAEMON_ISNOT_PRESENT

The job operation management function is not operating, or
communication with the job operation management function cannot be
established.

PJCMD_SUBERR_INTERNAL_ERROR

Internal error
[CODE 1 to 3] Investigation data
[DETAIL 0 to 4] Investigation data

PJICMD_SUBERR_PERMIT

There is no authority to operate.

PJCMD_SUBERR_NODE_ERROR

The operation is not possible on this node.

PJCMD_SUBERR_SYSFUNC_STOP

The system management function is not operating, or information
cannot be obtained from the system management function.

PJCMD_SUBERR_NO_CLSTNAME

A cluster name is not specified.

- 46 -

Detailed error code.

Description

PJCMD_SUBERR_REJECT_OPT

The operation for the specified job has been rejected.
[JOBID]

[DETAIL 0] Option name

[DETAIL 1] Detail message

PJICMD_SUBERR_NOT_EXIST_RSCUNIT

The specified resource unit or the default resource unit defined by the job
ACL function does not exist.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_NOT_EXIST_RSCGRP

The specified resource group or the default resource group defined by
the job ACL function does not exist.
[DETAIL 0] Resource group name

PJCMD_SUBERR_NO_SIGNO

A signal is not specified by the signal transmission operation.

PJCMD_SUBERR_NOT_FOUND_GROUP

The specified group does not exist in the job ACL information
acquisition operation.
[DETAIL 0] Group name

PJICMD_SUBERR_NO_USER_PERMISSION

Displaying information for the specified user or group is not permitted
by the job ACL information acquisition API.

[DETAIL 0] User name

[DETAIL 1] Group name

PJCMD_SUBERR_GROUP_NOT_AUTHORIZED

The job submission API does not permit job submission using the
privileges of this group.
[DETAIL 0] Group name

PJCMD_SUBERR_NO_EXEC_PERM_OPT

Specifying an option is not permitted.

[DETAIL 0] Option name

This error occurs when performing an operation that is equivalent to the
indicated option name.

PJCMD_SUBERR_NO_EXEC_PERM_JIDOPT

Operating a job or specifying an option is not permitted.

[JOBID]

[DETAIL 0] Option name

This error occurs when performing an operation that is equivalent to the
indicated option name.

PJCMD_SUBERR_NO_EXEC_PERM JID

Operating a job is not permitted.
[JOBID]

PJCMD_SUBERR_DAEMON_INTERNAL

Daemon internal error of the job operation management function
[CODE 1] Investigation data 1
[CODE 2] Investigation data 2

PJICMD_SUBERR_DAEMON_INTERNAL_RETVAL

Daemon internal error of the job operation management function
[CODE 1] Investigation data

PJCMD_SUBERR_SIGNAL

A signal has been received.

PJICMD_SUBERR_CMD_UNAVAILABLE

The requested operation cannot be performed.

PJICMD_SUBERR_NODATA

There is no applicable information.
[DETAIL 0] Character string indicating specified information item and
other information

PJCMD_SUBERR_DUP_OPT

The same option is specified multiple times.
[DETAIL 0] Option name

PJCMD_SUBERR_FEW_OPTION

An option that should be specified at the same time is not set.
[DETAIL 0] Option name 1
[DETAIL 1] Option name 2

This error occurs when an operation that is equivalent to the two
indicated option names is not performed.

-47 -

Detailed error code.

Description

PJCMD_SUBERR_CONFLICT

An option that cannot be specified at the same time is specified.

PJCMD_SUBERR_INVAL_RUNITNAME

The specified resource unit name is invalid.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_INVAL_ID

The specified node group 1D, boot group ID, or node ID is invalid.
[DETAIL 0] Specified ID

PJCMD_SUBERR_INVAL_RANGE

The specified parameter range is invalid.
[DETAIL 0] Specified parameter range

PJCMD_SUBERR_INVAL_RGRPNAME

The specified resource group name is invalid.
[DETAIL 0] Resource group name

PJCMD_SUBERR_SAME._ID

The specified node group ID, boot group ID, or node 1D already exists.
[DETAIL 0] Specified ID

PJCMD_SUBERR_SAME_RUNAME

The specified resource unit name already exists.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_SAME_RGNAME

The specified resource group name already exists.
[DETAIL 0] Resource group name

PJCMD_SUBERR_NOT_FOUND_ID

A specified node group ID, boot group ID, or node ID does not exist.
[DETALIL 0] Specified ID

PJCMD_SUBERR_NOT_FOUND_RUNAME

The specified resource unit does not exist.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_PERM

There is no authority to get the specified node state.
[DETAIL 0] Node ID

PJCMD_SUBERR_PERM_RUNIT

There is no authority to get information on the specified resource unit.
[DETAIL 0] Resource unit name

PJICMD_SUBERR_NOINFO_NODE

The specified node information does not exist.
[DETAIL 0] Node ID

PJCMD_SUBERR_NOINFO_RUNIT

The specified resource unit information does not exist.
[DETAIL 0] Resource unit name

PJICMD_SUBERR_NOINFO_RGRP

The specified resource group information does not exist.
[DETAIL 0] Resource group name

PJCMD_SUBERR_CONNECT

Communication with the compute cluster management node has failed.
[DETAIL 0] Cluster name

PJCMD_SUBERR_STANDBYNODE

This request cannot be made on a standby node.

PJICMD_SUBERR_WARN_CONNECT

Communication with a specific compute cluster management node has
failed.

However, communication with the other cluster management nodes was
successful.

[DETAIL 0] Cluster name

PJCMD_SUBERR_MEMORY

Acquisition of memory has failed.
[CODE 1] errno at failure
[CODE 2] Acquisition size

PJCMD_SUBERR_PSM_ERROR

Internal error
[CODE 1] Investigation data
[DETAIL 0] Investigation data

PJCMD_SUBERR_TRN_ERROR

Internal error
[CODE 1] Investigation data
[DETAIL 0] Investigation data

PJCMD_SUBERR_API_ERROR

Internal error

- 48 -

Detailed error code.

Description

PJCMD_SUBERR_SYSCALL_ERROR

Internal error
[CODE 1] Investigation data
[DETAIL 0] Investigation data

PJCMD_SUBERR_JACCTDB_ERROR

Internal error

[CODE 1] Investigation data
[CODE 2] Investigation data
[DETAIL 0] Investigation data

A.7.3 pjcmd_errcodejcmd_errcode Variable

extern __thread pjcmd_error_t pjcmd_errcode

This is a global variable in which an error code of the command API is stored. The error of a command API function that is called at the
end is set. The following table lists the meanings of the error codes.

Error Code

Main Meaning

PJCMD_SUCCESS

Success

PJCMD_ERROR_INVALID_HANDLE

The specified handle is invalid.
A pointer to the handle is NULL.

A handle whose operation type is different.

PJCMD_ERROR_INVALID_RESP

The specified response information is invalid.
The pointer to response information is NULL.

The response information differs in operation type.

PJICMD_ERROR_INVALID_ARGUMENT

An argument of the function is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option was specified. Mainly, this is an error in an argument analysis
function.

PJICMD_ERROR_INVALID_OPTION

A method to specify an option is invalid. Mainly, this is an error in an argument
analysis function.

PJICMD_ERROR_UNKNOWN_PARAM

An unknown parameter was specified.

PICMD_ERROR_INVALID_PARAM

A parameter value is invalid.
A specification method is incorrect.

A required parameter is not set.

PJCMD_ERROR_NODATA

There is no applicable data.
This error occurs when a specified index is out of range and there is no more data to
be obtained.

PJCMD_ERROR_OPEN

The file has failed to open.

PJCMD_ERROR_INVALID_NODE

A node that is used to call a function is inappropriate.
This error occurs when a node that is used to call the operation request function,
picmd_gperation_execute(), is inappropriate.

PJCMD_ERROR_NOPERM

There is no authority to call the function.
The operator is not the administrator.

The job ALC function limits calling the function.

PJCMD_ERROR_CONNECT

Communication with the job operation management function failed.

PJCMD_ERROR_NOMEM

The memory does not have enough space.

-49-

Error Code Main Meaning

PJCMD_ERROR_BUSY Itis in busy state.
For example, busy state occurs when another operation request function is called
while the operation request function, pjcmd_operation_execute(), is being processed.

PJCMD_ERROR_TOO_LONG The data size is too long.

PJCMD_ERROR_NOENT The file or directory does not exist.
PJCMD_ERROR_ACCESS There is no authority to access files or directories.
PJCMD_ERROR_SIGNAL The process is interrupted by an interrupt, such as signal.
PJCMD_ERROR_INTERNAL An internal error has occurred.

A.7.4 Variable pjcmd_optarg

extern __thread char *pjcmd_optarg

Pointer to an argument (argvelement) that is being analyzed with the pjemd_getopt_long() function
* |t is equivalent to optarg of the getopt_long(3) function.

A.7.5 Variable pjcmd_ optind

extern __thread int pjcmd_optind

An argument index that is processed next by the pjcmd_getopt() function
* It is equivalent to optind of the getopt_long(3) function.

A.7.6 Variable pjcmd_optopt

extern __thread int pjcmd_optopt

When an option that cannot be recognized by the pjcmd_getopt_long() function is detected, the option is stored.
* It is equivalent to optopt of the getopt_long(3) function.

A.7.7 PJCMD_UNLIMITED Constant

#define PJCMD_UNLIMITED (~OUL)

This function specifies a limit value. This value indicates that it is limitless (not limited).

A.7.8 PJCMD UNDEFINED Constant

#define PJCMD_UNDEFINED (~1UL)

This function specifies a limit value or a function to get the setting information of the job ACL function. This value indicates that it is an
invalid value (not specified).

A.7.9 PICMD MAX SUBJOBID STR _LEN Constant

#define PJCMD_MAX_SUBJOBID_STR_LEN 32

This is anecessary area size to store a sub job ID structure after converting it to a character string with the pjcmd_subjobid_to_str() function.
It includes the NULL character at the end.

-50 -

Appendix B Job Operation API Reference

B.1 Job Submission

This section describes the functions for submitting jobs.
Figure B.1 Requesting Job Submission

s Callback function
Command line - . ; — when submitting interactive job
arguments }—0{ pjcmd_submit_parse_pjsub_args() J h

¥

- P %
Job script name ¥ pjcmd_submit_parse_pjsub_scriptfile() 1 —f pjcmd_submit_set_callback()
L. - L -

- -
| pjcr'nd_suhmil:_pul:_]'nh_pamm(}J

"

h
picmd_submit_put_job_reso urce(]J

Y

h
jormnd_submit_put sched_param ™,
£] \picmd_ _put_sched_p (]4| | set
[pjcrnd_submit_put_rnpi_palam(] | \\
i s
! 3 ~
[pjcmd_submit_put_ﬂleiu_pamm(} | \\ (2R T
[L J_J v T 5
H} Handle i
Parﬁmet&rL / PjcmdHandle_t '
\ oy \- S/ ;
L pjcmd_submit_get_job_param() J ri '
? s !
pjcmd_submit_get job_resource() i
\ L_ _J / Reference :
e | jcmd_submit_get_sched_param(]J ¥ :
-~ -~ '
pjcmd_submit_get mpi_parami) : "_ Al ; i
[p]cmd_submlt_exemte(ﬂ H [p]cmd_submlt_executev(]_]
pjcmd_suhmil:_get_ﬁlein_pararn{jx . i _’_,.,-"
- Lo : ------ g"_'.___ o o o o
.f-*"f,

h

Response information Result information
PjcmdResp_t reference function

-51-

Figure B.2 Operation of the Parser and Reader Related to Job Submission

Handle
FjcmdHandle_t

e T

= i a1
Jnﬁaﬁgpt —"| pjcmd_submit_create_scriptfile_reader()] [pjcm d_submit_create_pjsub_parser(:'_,
LS s
Generate Generatel
k4

) Job 5:::_ript reader cum;;z::lr Tz . _|Parser u:up_emt'u:unl
PicmdscriptfileReader_t PicmdParser_t function
I]

i~ i
| picmd_submit_destroy_scriptfile_reader()] pjcmd_submit_destroy_pjsu b_pars:er(]]
., 4 ,

I .

Releass Release

—h|' picmd_submit_read_scriptfile_directive_line()]—> Cnmrgr?r:j?rggggﬁ;;nents

Standard input |—|-| pjcmd_submit_create_scriptfile_from_stdin()]— — _,,. Job script

- - file
Command line . - . - P
arguments | ’L picmd_submit_create_scriptfile_by_args() _J— |

B.1.1 pjcmd submit parse pjsub_args()

pjcmd_result_t pjcmd_submit_parse_pjsub_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjsub command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for job submission.

-52-

PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
- An exclusive option is specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves an option and an argument that is not the parameter of the option, namely the job script name, to the end of the
argv_pp] array.

When the operation is successfully completed, the pjcmd_optind variable specifies the job script (the first argument other than the option).
The caller needs to set the job script in a handle separately. If the job is a step job and if two or more job scripts are specified, the caller needs
to replicate a handle or create a new handle for each job script.

If an unknown option and parameter have been detected, or if an incorrect method to specify an option and parameter has been detected,
the analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.1.2 pjcmd submit parse pjsub_scriptfile()

pjcmd_result_t pjcmd_submit_parse_pjsub_scriptfile(PjcmdHandle_t *handl e_p, const char *fil enane_p,
const char *directive_prefix_p, int32_t *lineno_p, char **detail _pp)

This function analyzes the instruction lines in a job script file based on the specification of a pjsub command option while reading the job
script file, and sets the specified details in a handle.

[ARGUMENTS]
handle_p
Pointer to a handle
filename_p
Path to a job script
directive_prefix_p
Character string recognized as an instruction line
lineno_p
The line number where an error was detected is stored in */ineno_p.
detail_pp

*detail_ppindicates an option or an option argument where an error was detected. The area indicated by *detail_ppis areserved area
in a handle. The caller must not directly release it. The area is retained until the handle is released or this function is called again.

[RETURN VALUE]
PJCMD_OK

Success

-53-

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.
The line number where an error was detected is stored in /ineno_p. *detail_pp indicates the option or the argument where the error
was detected.

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_INVALID_ARGUMENT
There is an invalid argument (NULL) other than a handle.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected in an instruction line.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option that appears in an instruction line is invalid.
- A method to specify an option argument is invalid.

- A required argument for the option are not specified.

B.1.3 pjcmd submit create pjsub parser()

PjcmdParser_t *pjcmd_submit_create pjsub_parser(PjcmdHandle_t *handl e_p)

This function generates a command line parser for job submission operations.

The command line parser retains the same option specification information as the pjsub command option. The parser uses the specifications
when uniquely analyzing options with the pjcmd_getopt_long() function. The original option specifications can be customized by changing
the information in the command line parser.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

The command line parser is returned. The caller needs to release the returned command line parser by using the
pjcmd_submit_destroy_pjsub_parser() function.
If an error occurs, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.4 pjcmd submit destroy pjsub parser()

pjcmd_result_t pjcmd_submit_destroy pjsub_parser(PjcmdParser_t *parser_p)

This function releases a command line parser for job submission operations.

-54 -

[ARGUMENTS]
parser_p
Pointer to the command line parser to be released
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
parser_pis invalid (NULL).

B.1.5 pjcmd submit create scriptfile reader()

PjcmdScriptfileReader_t *pjcmd_submit_create_scriptfile_reader(const PjcmdHandle_t *handl e_p, const
char *fil ename_p, const char *directive_prefix_p)

This function generates data (reader) to read a job script file.
[ARGUMENTS]
handle_p
Pointer to a handle
filename_p
Path of the job script
directive_prefix_p
Character string recognized as an instruction line

[RETURN VALUE]

The reader of the job script file is returned. The caller needs to release the generated reader by using the

pjcmd_submit_destroy_scriptfile_reader() function.
If an error occurs, NULL is returned, and the cause is set in pjcmd_errcode.

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_INVALID_ARGUMENT
There is an invalid argument (NULL) other than a handle.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.6 pjcmd submit destroy scriptfile reader()

pjcmd_result_t pjcmd_submit_destroy_scriptfile_reader(PjcmdScriptfileReader_t *reader _p)

This function releases the reader of a job script file.

-55-

[ARGUMENTS]
reader_p
Pointer to the reader of a job script file
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
reader_pis invalid (NULL).

B.1.7 pjcmd submit read scriptfile directive line()

pjcmd_result_t pjcmd_submit_read_scriptfile_directive_line(PjcmdScriptfileReader_t *reader_p, iInt
*argc_p, char ***argv_ppp)

This function uses the reader of a job script file to read one instruction line in the job script file and returns a command line argument that
can be obtained.

This function expands a variable (variable specified in the pjcmd_submit_put_param() function) that is set in the handle corresponding to
a reader and analyzes a special character, such as a double quotation mark. If a read line is other than a comment line (a line that does not
begin with "#"), the subsequent instruction lines are regarded as comment lines. If the length of a line containing the linefeed character is
greater than 4,096 words, or if the number of command line arguments written on an instruction line is more than 64, an error occurs.
This function only reads the instruction lines in a job script file and does not set the contents of the instruction lines in a handle. The caller
uniquely analyzes arguments and uses them when values need to be set in a handle.

[ARGUMENTS]
reader_p
Pointer to the reader of a job script file
argc_p
The number of read arguments is stored in *argc_p.

argv_ppp

The read arguments are stored as an array (*argv_ppop)[].
The first element in the array *(*argv_ppp)[0] indicates a character string (example: "#PJM") indicating an instruction line. The
contents of an array that is indicated by *argv_ppp are undetermined after reading the next instruction line.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
reader_p, argc_p, or argv_ppp is invalid (NULL).
PJCMD_ERROR_TOO_LONG

The length of a read line is over 4,096 words. Alternatively, the number of arguments in a line is more than 64.

-56 -

PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_NODATA
An instruction line to be read does not exist. Alternatively, all command lines have been read.
PJCMD_ERROR_INVALID_PARAM
A script file description is invalid.
PJCMD_ERROR_OPEN
Script file reading failed.
PJCMD_ERROR_INTERNAL

Internal error

B.1.8 pjcmd submit put param()

pjcmd_result_t pjcmd_submit_put_param(PjcmdHandle_t *handl e_p, pjcmd_submit_param_t param, const
void *val _p)

This function sets parameters for job submission operations in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_SUBMIT_SCRIPTFILE Path to a job script (one file) char *

If this parameter is not set, the job details are read from
the standard input.

PJCMD_SUBMIT_JOBNAME Job name (equivalent to pjsub -N) char *

If this parameter is not set, a job name is used as a job
script name. The job name is "STDIN" when a job script
is the standard input.

PJCMD_SUBMIT_COMMENT Comment character string (equivalent to pjsub -- char *
comment)
PJICMD_SUBMIT_JOBMODEL Job model int

PJCMD_JOBMODEL_NORMAL: Normal job
(Default)

PJCMD_JOBMODEL_BULK: Bulk job
PJCMD_JOBMODEL_STEP: Step job
PIJCMD_SUBMIT_JOBTYPE Job type int

PJCMD_JOBTYPE_BATCH: Batch job (Default)
PJCMD_JOBTYPE_INTERACTIVE: Interactive job

-57 -

param

*val_p

Type of *val_p

PJCMD_SUBMIT_GNAME

Group name when executing a job (equivalent to pjsub --
gname)

The PJICMD_SUBMIT_GNAME parameter or
PJCMD_SUBMIT_GID parameter, whichever is
specified last, is valid.

If this parameter is not set, the current group name is
applied.

char *

PJCMD_SUBMIT_GID

Group 1D when executing a job (equivalent to pjsub --
gid)

The PICMD_SUBMIT_GNAME parameter or
PJCMD_SUBMIT_GID parameter, whichever is
specified last, is valid.

If this parameter is not set, the current group ID is
applied.

gid_t

PJICMD_SUBMIT_MAILOPT

E-mail send time of a report regarding information such
as job status and notification contents (equivalent to
pjsub -m)

b: When starting job execution (beginning)

e: When job completed (end)

r: When re-executing job (restart)

s: Job statistical information is reported (without
information for each node) Job statistical information is
reported (with information for each node)

If this parameter is not set, no report is sent by e-mail.

char *

PJICMD_SUBMIT_MAILLIST

Destination e-mail address to report a job by e-mail
(equivalent to pjsub --mail-list)

Multiple e-mail addresses can be specified by separating
them with a comma (,).
If this parameter is not set, an e-mail is sent to the user
who submitted the job.

char *

PJCMD_SUBMIT_WAITMODE

Wait mode when submitting a job (equivalent to pjsub -
w)

- PJICMD_SUBMIT_WAITMODE_WAIT
Wait until job submission is completed (equivalent
to no specification of the pjsub -w option). (Default)

- PJICMD_SUBMIT_WAITMODE_JOBCHK
Wait until job acceptance and job check are
completed, but do not wait until job submission is
completed (equivalent to pjsub -w jobchk).

- PICMD_SUBMIT_WAITMODE_NOWAIT
Wait until job acceptance is completed, but do not
wait for job check and job submission (equivalent to
pjsub -w nowait).

int

PJICMD_SUBMIT_ENV_INHERIT

Specification of whether or not to send all environment
variables to compute nodes (equivalent to pjsub -X)

0: Do not transfer (Default)
1: Transfer

int

PJCMD_SUBMIT_BULK_STARTNO

Bulk start number of a bulk job (equivalent to pjsub --
bulk --sparam 1)

-58 -

uint32_t

param

*val_p

Type of *val_p

This setting is required when submitting a bulk job. The
specifiable value ranges from 0 to 999999.

PJCMD_SUBMIT_BULK_ENDNO

Bulk end number of a bulk job (equivalent to (pjsub --
bulk --sparam m-n)

This setting is required when submitting a bulk job. The
specifiable value ranges from 0 to 999999.

uint32_t

PJCMD_SUBMIT_STEP_DEPEND

Step job relational expression (equivalent to pjsub --step
--sparam sd=form)

The parameter has the same format as the pjsub
command (see pjsub(1).)

char *

PJCMD_SUBMIT_STEP_NO

Step number of a step job (equivalent to pjsub --step --
sparam sn=1)

The specifiable value ranges from 0 to 65534.

uintl6_t

PJCMD_SUBMIT_STEP_JOBNAME

Job name of an existing step job (equivalent to pjsub --
step --sparam jnam=name)

The PJICMD_SUBMIT_STEP_JID parameter setting is
exclusive. If PICMD_SUBMIT_STEP_JID is set first,
an error occurs.

char *

PJCMD_SUBMIT_STEP_JID

Job ID of an existing step job (equivalent to pjsub --step
--sparam jid=/obid)

The PJICMD_SUBMIT_STEP_JOBNAME parameter
setting is exclusive. If
PJCMD_SUBMIT_STEP_JOBNAME is set first, an
error occurs.

The specifiable value ranges from 0 to 2147483647.

uint32_t

PJICMD_SUBMIT_INTERACT_WAITTIME

Time to wait (in seconds) until the resource for an
interactive job is allocated
(equivalent to pjsub --interact --sparam wait-time=time)

Values ranging from 0 to 36000 and
PJCMD_UNLIMITED can be specified. If this
parameter is not set, 0 is applied.

If a value in a batch job is set, an error occurs in the
pjcmd_submit_execute() function.

uint64_t

PJCMD_SUBMIT_FSNAME

Any character string, such as a file system name
(equivalent to pjsub --fs)

If a character string is not set and the environment
variable PIM_FSNAME is set, its value is used.

char *

PJICMD_SUBMIT_APPNAME

Any character string, such as an application name
(equivalent to pjsub --appname)

If a character string is not set and the environment
variable PIM_APPNAME is set, its value is used.

char *

PJCMD_SUBMIT_ENV

Environment variable that is set when executing a job
(equivalent to pjsub -x)

Each element must be a character string of "variable
name = value™ and the last element must be NULL.

char **

PJCMD_SUBMIT_VAR

Variable that is used when analyzing the instruction lines
in a script file (equivalent to pjsub --vset)

-59-

char **

param

*val_p

Type of *val_p

Each element must be a character string of "variable
name = value" and the last element must be NULL.

PJCMD_SUBMIT_PREFIX

Directive prefix in a job script (equivalent to pjsub -C)

It is a character string such as "#PJM" indicating an
instruction line. If no character string is set, "#PJM" is
applied.

char *

PJCMD_SUBMIT_SCRIPT_DELIMITER

Character that separates multiple job scripts of a step job
(equivalent to pjsub --script-delimiter)

If this parameter is not set, acomma (,) is used to separate
multiple job scripts. This parameter does not affect job
submission operations.

char *

PJCMD_SUBMIT_VERBOSE

Equivalent to the specification of the --verbose option in
the pjsub command

0: Not specified (Default)
1: Specified

This parameter does not affect job submission
operations.

int

PIJCMD_SUBMIT Z

Equivalent to the specification of the -z option in the
pjsub command

A value to be specified is equivalent to the following for
the pjsub command:

"Jid": Specification of -z jid option

Other character string: Specification of only -z option
This parameter does not affect job submission
operations.

char *

PJCMD_SUBMIT_NET_ROUTE
[FX]

Specification of whether or not to continue executing a
job when a Tofu interconnect link goes down for an FX
server (equivalent to the pjsub --net-route option)

- PICMD_SUBMIT_NET_ROUTE_DYNAMIC

Change the Tofu interconnect communication path
(equivalent to pjsub --net-route dynamic). Job
execution continues.

- PJCMD_SUBMIT_NET_ROUTE_STATIC

Do not change the Tofu interconnect
communication path (equivalent to pjsub --net-route
static). The job ends abnormally.

If this parameter is not set, the setting is based on the job
ACL function settings.

int

PJICMD_SUBMIT_HELP

Equivalent to the specification of the --help option in the
pjsub command

0: Not specified (Default)
1: Specified

This parameter does not affect job submission
operations.

int

-60 -

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.9 pjcmd submit _get param()

pjcmd_result_t pjcmd_submit_get param(const PjcmdHandle_t *handl e_p, pjcmd_submit_param_t param,
void *val _p)

This function references the parameter that is set in a handle to submit the job.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_pis NULL.

-61-

- This is not a handle for job submission.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.10 pjcmd _submit put job resource()

pjcmd_result_t pjcmd_submit_put_job_resource(PjcmdHandle_t *handl e_p, const char *rscname_p, const
void *val _p)

This function sets a resource that is allocated to a job.
[ARGUMENTS]
handle_p
Pointer to a handle
rscname_p
Resource name to be set (See the table below.)
val_p

Pointer to the storage area for a resource amount to be set. For example, if resource is "node," the pointer (char *)shape_p that
indicates the storage area for the character string "Xx YxZ" indicating a node shape must be prepared, and the pointer (char
**)&shape_p to this pointer is specified in va/_p. If NULL is specified, the parameter value is initialized (not set).

rscname_p *val_p Type of *val_p

"node” Number of nodes or node shape (equivalent to pjsub -L node) char *

- One-dimensional shape
" M:torus|:mesh|:noncont]"

- Two-dimensional shape
" Xx Y[:torus|:mesh|:noncont]"

- Three-dimensional shape
" XX YxZ]strict|:strict-io] [:torus|:mesh|:noncont]"

* The item has the same format as the pjsub command.

"vnode" Number of virtual nodes (equivalent to pjsub -L vnode) uint64_t

The specifiable value ranges from 1 to 2147483647.

"node-mem" Upper limit on the memory amount per node when specifying a node size_t
(equivalent to pjsub -L node-mem)

The specifiable value ranges from 1048576 (1 Mi) to 2251799812636672
(2147483647 Mi) bytes. If the upper limit is not set, PICMD_UNLIMITED
must be specified.

"elapse™ Elapsed time limit value (equivalent to pjsub -L elapse=/imit) time_t

The specifiable value ranges from 1 to 2147483647 seconds. If the limit value
is not specified, PJCMD_UNLIMITED must be specified.

"adaptive-elapse" Minimum and maximum values of the elapsed job time (equivalent to pjsub - | time_t*
L elapse=min-max)

-62 -

rscname_p *val_p Type of *val_p

The values are specified as an array, e/apse[], with two time_t type elements.
(Time_t)elapse[0]: Minimum value for elapsed time
(time_t)e/apse[1]: Maximum value for elapsed time
The specifiable value ranges from 1 to 2147483647 seconds. However,
elapse[0] must be smaller than e/apse[1].
If the job executable time is not limited when the elapsed job time exceeds
elapse[0] (equivalent to pjsub -L elapse=min-unlimited),
PJCMD_UNLIMITED must be specified in elapse[1]. If
PJCMD_UNDEFINED is specified in elapse[1] (equivalent to pjsub -L
elapse=min-), the maximum value that is set by the job ACL function is
applied.
If PICMD_UNLIMITED or PICMD_UNDEFINED is specified in e/apse[0],
an error occurs.
Either the resource name "elapse" or "adaptive-elapse", whichever is specified
last, is valid.

"vnode-core" Number of CPU cores per virtual node when specifying "vnode" (equivalentto | unit64_t
pjsub -L vnode-core)
The specifiable value ranges from 1 to 2147483647.

"core-mem" Upper limit on the amount of memory usage per CPU core when specifying | size_t
"vnode" (equivalent to pjsub -L core-mem)
The specifiable value ranges from 1048576 (1 Mi) to 2251799812636672
(2147483647 Mi) bytes. If the upper limit is not set, PICMD_UNLIMITED
must be specified.

"vnode-mem" Upper limit on the amount of memaory usage per virtual node when specifying | size_t
"vnode" (equivalent to pjsub -L vnode-mem)
The specifiable value ranges from 1048576 (1 Mi) to 2251799812636672
(2147483647 Mi) bytes. If the upper limit is not set, PICMD_UNLIMITED
must be specified.

"rscunit" Name of the resource unit to which a job is submitted (equivalent to pjsub -L | char *
rscunit, -L ru)

"rscgrp™ Name of the resource group to which a job is submitted (equivalent to pjsub - | char *
L rscgrp, -L rg)

""proc-core" Core file size limit in a process unit (equivalent to pjsub -L proc-core) size_t
The specifiable value ranges from 0 to 2147483647 bytes (2 GiB-1). If the size
is not limited, PJCMD_UNLIMITED must be specified.

"proc-cpu” CPU time limit in a process unit (equivalent to pjsub -L proc-cpu) uint64_t
The specifiable value ranges from 1t0 2147483647. If the upper limit is not set,
PIJCMD_UNLIMITED must be specified.

"proc-crproc” Limit on the number of generating processes in a process unit (equivalent to | uint64_t
pjsub -L proc-crproc)
The specifiable value ranges from 0 to 2147483647. If the number is not
limited, PICMD_UNLIMITED must be specified.

"proc-data” Limit on the data segment size in a process unit (equivalent to pjsub -L proc- | size_t
data)
The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

"proc-lockm" Limit on the lock memory size in a process unit (equivalent to pjsub -L proc- | size_t

lockm)

-63-

rscname_p

*val_p

Type of *val_p

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

"proc-msgq"

Limit on the message queue size in a process unit (equivalent to pjsub -L proc-
msga)

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PYCMD_UNLIMITED must be specified.

size_t

"proc-openfd"

Limit on the number of file descriptors in a process unit (equivalent to pjsub -
L proc-openfd)

The specifiable value ranges from 0 to 1048576.

uint64_t

"proc-psig"

Limit on the number of pending signals in a process unit (equivalent to pjsub
-L proc-psig)

The specifiable value ranges from 0 to 2147483647. If the number is not
limited, PJCMD_UNLIMITED must be specified.

uint64_t

"proc-filesz"

Limit on the file size in a process unit (equivalent to pjsub -L proc-filesz)

The specifiable value ranges from 2048 to 2147483647000000 (2147483647
M) bytes. If the size is not limited, PICMD_UNLIMITED must be specified.

size t

"proc-stack"

Limit on the stack size in a process unit (equivalent to pjsub -L proc-stack)

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PICMD_UNLIMITED must be specified.

size_t

"proc-vmem"

Limit on the virtual memory size in a process unit (equivalent to pjsub -L proc-
vmem)

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

size_t

String other than the above

Amount of a custom resource whose name is indicated by the rscname_p
argument (equivalent to pjsub -L CustomResourceName)

char *

[RETURN VALUE]
PJCMD_OK
Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[picmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_pis NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

rscname_pis invalid (NULL).

PJCMD_ERROR_INVALID_PARAM

The value of resource amount is invalid.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

-64-

B.1.11 pjcmd submit get job resource()

pjcmd_result_t pjcmd_submit_get_ job_resource(const PjcmdHandle_t *handl e_p, const char *rscnane_p,
void *val _p)

This function references the resource amount that is set in a handle and to be allocated to a job.
[ARGUMENTS]
handle_p
Pointer to a handle
rscname_p

Name of the resource whose value is referenced. The resource names that can be specified are the same as those for the
pjcmd_submit_put_job_resource() function.

val_p

Avalue is stored in *val_pbased onthe racname_ptype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_INVALID_ARGUMENT
rscname_por val_pis invalid (NULL).
PJCMD_ERROR_NODATA

No resource amount is set for the specified resource.

B.1.12 pjcmd_submit_put _mpi_param()

pjcmd_result_t pjcmd_submit_put_mpi_param(PjcmdHandle_t *handl e_p, pjcmd_submit _mpi_param_t param,
const void *val _p)

This function sets parameters in a handle that are related to MPI job execution.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is specified, the parameter value
is initialized (not set).

-65-

param

*val_p

Type of *val_p

PIJCMD_SUBMIT_MPI_SHAPE

Shape of a process that is generated when
starting a program (equivalent to pjsub --mpi
shape)

- If compute node is FX server
- One-dimensional shape: " X"
- Two-dimensional shape: " Xx Y"
- Three-dimensional shape: " XX YxZ"

Only "1" can be specified when the
resource name "vnode" is set in a handle.
An error occurs in other cases.

- If compute node is PRIMERGY server

Ignored

char *

PJCMD_SUBMIT_MPI_PROC

Maximum number of processes generated
when starting a program (equivalent to pjsub
--mpi proc)

The specifiable value ranges from 1 to
2147483647.

If a value larger than the value that is
calculated using the following calculation
method is specified, job submission results in
an error: number of nodes that is indicated by
the shape specified with the resource name
"shape" x number of CPU cores in 1 node.

int

PJCMD_SUBMIT_MPI_MAX_PROC_PER_NODE

Maximum number of processes generated in
one node by a program (equivalent to pjsub --
mpi max-proc-per-node)

The specifiable value ranges from 1 to
2147483647,

If the specified value is larger than the number
of CPU cores in 1 node, or if the value
obtained by converting the value specified by
PJCMD_SUBMIT_MPI_PROC into the
number of processes to be generated in 1 node
is larger, job submission results in an error.
If this parameter is specified when the
resource name “vnode" is set in a handle, job
submission results in an error.

int

PJCMD_SUBMIT_MPI_RANK_MAP_BYNODE

Rank allocation rule (equivalent to pjsub --
mpi rank-map-bynode)

- If compute node is FX server
XY, UYX XY Z TXZY T Y XZ
"YZX," "ZXY," or "ZYX" can be
specified in *val_p.
Their meanings are the same as pjsub --
mpi rank-map-bynode=rankmap.
When an empty string (") is specified in
*val_p, it has the same meaning as pjsub
--mpi rank-map-bynode.

- 66 -

char *

param

*val_p

Type of *val_p

- If compute node is PRIMERGY server
An empty string must be specified in
*val_p. In this case, it has the same
meaning as pjsub --mpi rank-map-
bynode.

PJCMD_SUBMIT_MPI_RANK_MAP_BYCHIP

Rank allocation rule (equivalent to pjsub --
mpi rank-map-bychip)

- If compute node is FX server
XY, YX XY Z TXZY N MY XZ
"YZX," "ZXY," or "ZYX" can be
specified in *val_p.
Their meanings are the same as pjsub --
mpi rank-map-bychip:rankmap.
When an empty string (""') is specified in
*val_p, it has the same meaning as pjsub
--mpi rank-map-bychip.

- If compute node is PRIMERGY server
An integer number n must be specified in
*val_p as a character string. The meaning
is the same as pjsub --mpi rank-map-
bychip=n.

char *

PJCMD_SUBMIT_MPI_RANK_MAP_HOSTFILE

Rank map host file name (equivalent to pjsub
--mpi rank-map-hostfile)

char *

PJCMD_SUBMIT_MPI_ASSIGN_ONLINE_NODE

This parameter specifies whether or not to
guarantee that a failure node is not included in
a node to be assigned (equivalent to pjsub --
mpi assign-online-node).

0: Not guaranteed (Default)
1: Guaranteed

int

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.

- A value is incorrect.

-67 -

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.13 pjcmd submit get mpi param()

pjcmd_result_t pjcmd_submit_get_mpi_param(const PjcmdHandle_t *handl e_p, pjcmd_submit _mpi_param_t
param, void *val _p)

This function references the set parameter values in a handle that are related to MPI job execution.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_mpi_param() function.

val_p

A value is stored in *val_pbased on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.14 pjcmd_submit _put sched param()

pjcmd_result_t pjcmd_submit_put_sched_param(PjcmdHandle_t *handl e_p, pjcmd_submit_sched_param_t
param, const void *val _p)

This function sets parameters in the sandle_p handle that are related to scheduling of a job to be submitted.
[ARGUMENTS]
handle_p

Pointer to a handle

-68 -

param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_SUBMIT_SCHED_PRIORITY Job priority (job priority for the same user, int
equivalent to pjsub -p)

The specified value can be an integer from 0 to 255.
If this parameter is not set, the setting is based on
the job ACL function settings.

PJCMD_SUBMIT_SCHED _AUTORESTART This parameter specifies whether or not to enable | int
automatic job re-execution.

0: Disable
1: Enable

If this parameter is not set, the setting is based on
the job operation management settings specified
by the administrator (papjm.conf and pmpjm.conf

files).
PJCMD_SUBMIT_SCHED_STARTDATE Scheduled time to start executing a job time_t
PJCMD_SUBMIT_SCHED_VN_POLICY Virtual node placement policy int

[PCI - PJCMD_SUBMIT_VN_POLICY_ABSPAC

K
abs-pack (equivalent to pjsub -P vn-
policy=abs-pack)

- PICMD_SUBMIT_VN_POLICY_PACK
pack (equivalent to pjsub -P vn-policy=pack)

- PJCMD_SUBMIT_VN_POLICY_UNPACK
unpack (equivalent to pjsub -P vn-
policy=unpack)

- PJICMD_SUBMIT_VN_POLICY_ABSUNP
ACK
abs-unpack (equivalent to pjsub -P wvn-
policy=abs-unpack)

If this parameter is not set, the setting is based on
the job ACL function settings.

PJCMD_SUBMIT_SCHED_VN_POLICY_N When the virtual node placement policy is unpack | int
[PG] or abs-unpack, the number of virtual nodes placed
on a physical node is specified.

The specifiable value ranges from 1 to
2147483647.

PJCMD_SUBMIT_SCHED_EXEC_POLICY Execution mode policy int

[PCI - PJCMD_SUBMIT_EXEC_POLICY_SIMPL

EX
simplex (equivalent to pjsub -P exec-
policy=simplex)

-69 -

param *val_p Type of *val_p

- PJCMD_SUBMIT_EXEC_POLICY_SHAR
E

share (equivalent to pjsub -P exec-
policy=share)

If this parameter is not set, the setting is based on
the job ACL function settings.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.15 pjcmd _submit get sched param()

pjcmd_result_t pjcmd_submit_get_sched_param(const PjcmdHandle_t *handl e_p,
pjcmd_submit_sched_param_t param, void *val _p)

This function references the set parameter values in a handle that are related to scheduling.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_sched_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK

Success

-70 -

PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.16 pjcmd submit put fileio param()

pjcmd_result_t pjcmd_submit_put_fileio_param(PjcmdHandle_t *handl e_p, pjcmd_submit_fileio_param_ t
param, const void *val _p)

This function sets parameters that are related to file input/output at job execution.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_SUBMIT_FILEIO_OFILE Output destination path to the standard output for jobs char *
(equivalent to pjsub -o|--out)

If this parameter is not set, the file job-name. job-ID.out is
used as the path.

PJCMD_SUBMIT_FILEIO_EFILE Path to the standard error output for jobs (equivalentto pjsub | char *
-e|--err)

If this parameter is not set, the file job-name.job-ID.err is
used as the path.

PJCMD_SUBMIT_FILEIO_SFILE Path to output a job statistical information file (equivalentto | char *
pjsub --spath)

If this parameter is not set, job-name job-/D.stats is used as
the path.

PJCMD_SUBMIT_FILEIO_SFILE_MODE Method to output a job statistical information file int

PJCMD_SUBMIT_SFILE_MODE_DISABLE
A job statistical information file is not output. (Default)

-71-

param *val_p Type of *val_p

PJCMD_SUBMIT_SFILE_MODE_JOB
Only job information is output to a job statistical
information file (equivalent to pjsub -s|--stats).

PJCMD_SUBMIT_SFILE_MODE_JOB_AND_NODE
Both job information and node information are output to a
job statistical information file (equivalent to pjsub -S|--
STATS).

PJCMD_SUBMIT_FILEIO_MERGE This parameter specifies whether or not the standard error | int
output for jobs is the same file as the standard output.

0: Do not output to same file (Default)
1: Output to same file

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.17 pjcmd _submit _get fileio param()

pjcmd_result_t pjcmd_submit_get fileio_param(const PjcmdHandle_t *handl e_p,
pjcmd_submit_fileio_param_t param, void *val _p)

This function references the set parameters in a handle that are related to file input/output at job execution.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_fileio_param() function.

-72-

val_p
A value is stored in *va/_p based on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.18 pjcmd _submit create scriptfile from_stdin()

char *pjcmd_submit_create_scriptfile_from _stdin(const char *basedir_p, const char *fil enane_p)

This function creates standard input contents as a job script. If a job script is not specified in a command line argument, job details are
obtained from the standard input and used to specify a job script with the pjcmd_submit_put_param() function.

[ARGUMENTS]
basedir_p

Path to a directory to create a job script.
Access privilege for the user who calls the function is required. If NULL is specified, the current directory that is used to call the
function is used.

filename_p

File name for the job script that is created in the basedir_p directory. If NULL is specified, a file name that does not duplicate that
of an existing file is automatically determined.

[RETURN VALUE]

Path name of a job script where standard input contents are stored. The caller needs to release the area. If the function fails, NULL is
returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_OPEN
A job script could not be created (no privilege, existing file with the same name, or inappropriate path name), or input is interrupted.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
[Note]

- The user is responsible for deleting the created job script file after submitting a job.

-73-

- This function does not return until the standard input is closed.

B.1.19 pjcmd_submit create_scriptfile by args()

char *pjcmd_submit_create_scriptfile_by_args(const char *basedir_p, const char *fil ename_p, int argc,
const char *argv_p[])

This function creates a job script whose contents are command line arguments.
[ARGUMENTS]
basedir_p

Directory for creating a job script.
Access privilege for the user who calls the function is required. If NULL is specified, the current directory that is used to call the

function is used.

filename_p

File name for the job script that is created in the basedlir_p directory. If NULL is specified, a file name that does not duplicate that
of an existing file is automatically determined.

argc
Number of command line arguments
argv_pl[l
Array of command line arguments
[RETURN VALUE]

Path to a job script where the contents of a command line argument are stored. If the function fails, NULL is returned, and the cause is
set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
argcis 0 or argv_pis NULL.
PJCMD_ERROR_OPEN
A job script could not be created (no privilege, existing file with the same name, or inappropriate path name).
PJCMD_ERROR_NOMEM
Memory acquisition failed.
[Note]

The user is responsible for deleting the created job script file.

B.1.20 pjcmd submit set callback()

pjcmd_result_t pjcmd_submit_set callback(
PjcmdHandle_t *handl e_p,
void (*job_accept_call back_func_p)(const PjcmdSubjobid_t *),
int (*start_wait_call back_func_p)(const PjcmdSubjobid_t *),
void (*job_start_cal | back_func_p)(const PjcmdSubjobid_t *),
void (*job_end_cal | back_func_p)(const PjcmdSubjobid_t *))

This function registers a callback function that is called at a specific time according to the progress of interactive job processing. This
function is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message
that indicates the progress of interactive job processing.

If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

-74 -

[ARGUMENTS]
handle_p
Pointer to a handle
job_accept_callback_func_p
Pointer to the function that is called when an interactive job is accepted
start_wait_callback_func_p

Pointer to the function that is called when an interactive job is waiting to be executed. When this function is registered, it is called
every three minutes until job execution begins.

job_start_callback_func_p
Pointer to the function that is called when interactive job execution begins
job_end_callback_func_p
Pointer to the function that is called when an interactive job is completed.
The job ID of the interactive job executed when the function is called is passed to the callback function as a sub job 1D structure.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for job submission.

B.1.21 pjcmd_submit_execute()

PjcmdResp_t *pjcmd_submit_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to submit a job based on a handle. This function can be called from the login
node and compute cluster management node.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about a job submission request.

The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job submission request fails,
NULL is returned, and the cause is set in pjcmd_errcode.

The response information indicates whether the request succeeded or failed. Whether or not job submission has been accepted by the
job operation management function needs to be checked with a result code in the response information by using the
pjcmd_get_jobresult_info() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.

- handle_pis NULL.

-75-

- This is not a handle for job submission.
PJCMD_ERROR_INVALID _NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_NOENT

A file or directory that is set in the handle does not exist.
PJCMD_ERROR_ACCESS

There is no privilege to access a file that is set in the handle.
PJCMD_ERROR_OPEN

A file that is set in the handle failed to open.
PJCMD_ERROR_INTERNAL

Internal error

B.1.22 pjcmd_submit_executev()

PjcmdResp_t *pjcmd_submit_executev(const PjcmdHandle_t **handl e_pp, int n)

This function is the same as the pjcmd_submit_execute() function except for specifying a handle as an array. However, if two or more
handles are specified, a handle that is related to submission of the sub jobs of all step jobs must be specified. This function can be called from
the login node and compute cluster management node.

[ARGUMENTS]
handle_pp

Array of pointers to a handle

Number of handles
[RETURN VALUE]

Response information about a job submission request.

The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job submission request fails,
NULL is returned, and the cause is set in pjcmd_errcode.

The response information indicates whether the request succeeded or failed. Whether or not job submission has been accepted by the
job operation management function needs to be checked with a result code in the response information by using the
pjcmd_get_jobresult_info() function.

-76 -

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job submission.
- If multiple handles are specified, the handles for jobs other than step jobs are included.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_NOENT

A file or directory that is set in the handle does not exist.
PJCMD_ERROR_ACCESS

There is no privilege to access a file that is set in the handle.
PJCMD_ERROR_OPEN

A file that is set in the handle failed to open.
PJCMD_ERROR_INTERNAL

Internal error

B.2 Job Deletion

This section describes the functions for deleting (canceling) jobs.

-77-

Figure B.3 Requesting Job Deletion

Command line

arguments
Callback function
[picrnd_kill_parse_pjdel_args() J when deleting job
Set
. 3 Set ¥
_v[picmd_kill_put_param() 1———; Set ¥

. Handle == : m—_
Parameter‘___ — - | PjcrndHandie_t !—[picmd_kill_set_callback()]
"L pjcmd_kill_get_param()

Reference

Fa %

| picma_kin_execute() |

Response information
PicmdResp_t

!

Result information
reference function

B.2.1 pjcmd Kill parse pjdel args()

pjcmd_result_t pjcmd_kill_parse_pjdel_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjdel command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job deletion.
PJCMD_ERROR_INVALID_ARGUMENT

argcor argv_ppis invalid.

-78 -

PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

2.2 pjcmd_kill put param()

pjcmd_result_t pjcmd_kill_put_param(PjcmdHandle_t *handl e_p, pjcmd_kill_param_t param, const void
*val _p)

This function sets the parameters in a handle that are related to job deletion.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PIJICMD_KILL_ENFORCE This parameter specifies whether or not to interrupt execution of | int
a prologue or epilogue script if one is being executed (equivalent
to pjdel --enforce).

0: Do not interrupt (Default)
1: Forcibly interrupt. Job will be deleted

PJCMD_KILL_REASON Message that is output to job statistical information as a deletion | char *
reason (equivalent to pjdel --reason).

This character string must be within 64 bytes including the NULL
character at the end. The available characters are single-byte
alphanumeric characters and symbols that can be displayed.

PJCMD_KILL_NO_STATS If the job being deleted is in the QUEUED state, suppress the int
output of the job statistical information file (.stats file) for that job
(equivalent to pjdel --no-stats).

0: Do not suppress (Default)
1: Suppress

-79-

param *val_p Type of *val_p

PJCMD_KILL_NO_HISTORY If the job being deleted is in the QUEUED state, suppress the int
output of that job to the job history information that is output by
the -H option of the pjstat command (equivalent to pjdel --no-
history).

0: Do not suppress (Default)
1: Suppress

PJCMD_KILL_HELP Equivalent to the --help option in the pjdel command int

0: Not specified (Default)
1: Specified

This parameter does not affect job deletion operations.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job deletion.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.2.3 pjcmd_Kkill get param()

pjcmd_result_t pjcmd_kill_get_param(const PjcmdHandle_t *handl e_p, pjcmd_kill_param_t param, void
*val _p)

This function references the parameters that are set in a handle for job deletion.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_Kkill_put_param()
function.

-80 -

val_p
A value is stored in *va/_p based on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job deletion.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.2.4 pjcmd Kill execute()

PjcmdResp_t *pjcmd_kill_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to delete a job based on a handle. This function can be called from the login
node and compute cluster management node.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about job deletion.

The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job deletion request fails,
NULL is returned, and the cause is set in pjcmd_errcode.

The response information indicates whether or not the request was successful. Whether or not job deletion has been accepted needs to
be checked with a result code in the response information by using the pjemd_get_jobresult_info() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job deletion.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

-81-

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

B.3 Job Hold

This section describes the functions for holding jobs.

Figure B.4 Requesting Job Hold

Command line
arguments

. callback function |
pjcmd_hold_parse_pjhold_args() ,.l when holding job

Set

i’

%

Set

L J

- b=
- jemd_hold_put_param() [2

[picmd_hold_put_param() }] Hande Set
Parameter pijcmd_hold_set_callback()

e [| PicrndHandle_t
* "'ijcmd_hnld_get_pamm(}]" FicmdHandie_

Reference

Fa .

ijcmd_hold_execute(}_]

Response inforrmation
PicmdResp_t

!

Result information
reference function

B.3.1 pjcmd hold parse pjhold args()

pjcmd_result_t pjcmd_hold_parse_pjhold_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjhold command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p

Pointer to a handle

-82-

argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job hold.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.3.2 pjcmd_hold put param()

pjcmd_result_t pjcmd_hold_put_param(PjcmdHandle_t *handl e_p, pjcmd_hold_param_t param, const void
*val _p)

This function sets parameters in a handle that are related to job hold.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be set (See the table below.)

-83-

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p
PJCMD_HOLD_ENFORCE This parameter specifies whether or not to interrupt the int
execution of a prologue or epilogue script if one is being
executed.

0: Do not interrupt (Default)
1: Forcibly interrupt. Job will be held

PJCMD_HOLD_REASON Message that is output to job statistical information as a char *
reason to hold the job (equivalent to pjhold --reason)

This character string must be within 64 bytes including the
NULL character at the end. The available characters are
single-byte alphanumeric characters and symbols that can
be displayed.

PJCMD_HOLD_HELP Equivalent to the --help option in the pjhold command int

0: Not specified (Default)
1: Specified

This parameter does not affect job hold operations.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job hold.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.3.3 pjcmd hold get param()

pjcmd_result_t pjcmd_hold_get _param(const PjcmdHandle_t *handl e_p, pjcmd_hold_param_t param, void
*val _p)

-84 -

This function references the parameters that are set in a handle for job hold.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_hold_put_param()
function.

val_p

A value is stored in *val_pbased on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job hold.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.3.4 pjcmd hold set callback()

pjcmd_result_t pjcmd_hold_set_callback(
PjcmdHandle_t *handl e_p,
void (*hol d_wai t _cal | back_func_p)(void),
void (*hol d_accept _cal | back_f unc_p)(void))

This function registers a callback function that is called at a specific time according to the progress of request to job hold. This function is
used when a user needs to call their own process at a specific time. For example, this function can be used to output a message indicating
that a job is waiting for a hold request to be accepted.

If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]
handle_p
Pointer to a handle
hold_wait_callback_func_p

Pointer to the function that is called when the request to hold a job is pending acceptance. When this function is registered, it is called
every three minutes until the request has been accepted.

-85 -

hold_accept_callback_func_p
Poniter to the function that is called when the job hold request has been accepted.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for job hold.

B.3.5 pjcmd hold execute()

PjcmdResp_t *pjcmd_hold_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to hold a job based on a handle. This function can be called from the login
node and compute cluster management node.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about a job hold.

The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job hold request fails, NULL
is returned, and the cause is set in pjcmd_errcode.

The response information indicates whether or not the request was successful. Whether or not the job hold request has been accepted
needs to be checked with a result code in the response information by using the pjcmd_get_jobresult_info() function.

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job hold.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM
A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT
Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

-86 -

PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

B.4 Release of a Job Hold

This section describes the functions for releasing a job hold.

Figure B.5 Requesting the Release of a Job Hold

Command line
arguments

| picmd_release_parse_pjris_args() |

when releasing a job hold
| Set | et |
___--v[-pjcmd_release_put_pamm(}J— —

Callback function ‘

Set r
chr:dal-rr:rls:lle ¢ e | pjcmd_release_set_callback{j_J

Parameter
L

- '[pjcrnd_relea se_get param())"" -
Reference

[pj-:md_release_execute[]]

Response information
PjcmdResp_t

|

Result information
reference function

B.4.1 pjcmd release parse pjrls_args()

pjcmd_result_t pjcmd_release_parse_pjrls_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjrls command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK

Success

-87 -

PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for releasing a job hold.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.4.2 pjcmd release put param()

pjcmd_result_t pjcmd_release_put_param(PjcmdHandle_t *handl e_p, pjcmd_release_param_t param, const
void *val _p)

This function sets parameters in a handle that are related to releasing job hold.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_RELEASE_HELP Equivalent to the --help option in the pjrls command int

0: Not specified (Default)
1: Specified

This parameter does not affect the operation of releasing a job
hold.

[RETURN VALUE]
PJCMD_OK

Success

-88 -

PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for releasing a job hold.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.4.3 pjcmd release get param()

pjcmd_result_t pjcmd_release_get_param(const PjcmdHandle_t *handl e_p, pjcmd_release_param_t param,
void *val _p)

This function references the parameters that are set in a handle for releasing job hold.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_release_put_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for releasing a job hold.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).

-89 -

PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.4.4 pjcmd release set callback()

pjcmd_result_t pjcmd_release_set_callback(
PjcmdHandle_t *handl e_p,
void (*rel ease_wait_cal | back_func_p)(void),
void (*rel ease_accept _cal | back_func_p)(void))

This function registers a callback function that is called at a specific time according to the progress of request to release the job hold. This
function is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message
indicating that a job is waiting for a job release request to be accepted.

If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]
handle_p
Pointer to a handle
release_wait_callback_func_p

Pointer to the function that is called when the request to release hold job is pending acceptance. When this function is registered, it
is called every three minutes until the request has been accepted.

release_accept_callback_func_p
Poniter to the function that is called when the job release request has been accepted.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for releasing a job hold.

B.4.5 pjcmd release execute()

PjcmdResp_t *pjcmd_release_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to release a job hold based on a handle. This function can be called from the
login node and compute cluster management node.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about releasing a job hold.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a request to release a job hold

-90 -

fails, NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether or not the request was successful. Whether or not the request to release a job hold has been
accepted needs to be checked with a result code in the response information by using the pjemd_get_jobresult_info() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for releasing a job hold.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

B.5 Signal Sending to Jobs

This section describes the functions for sending signals to jobs.

-01-

Figure B.6 Requesting the Sending of Signals to a Job

Command line
arguments

i’

. . .) Callback function
pjcmd_signal_parse_pjsig_args() ,l when sendig a signal to the job

Set

%

Set

~ - L J

l-[picmd_signal_put_parami) _;———

Handle ‘i[. .
. - . pjcmd_signal_set_callback()
- \ dHandle_t
o L pjomd_signal_get_parami) ;"_ FicmdHandie_

Reference

Farameter

[picmd_signal_execute()]

Response information
PicrndResp_t

|

Result information
reference function

B.5.1 pjcmd_signal parse pjsig _args()

pjcmd_result_t pjcmd_signal_parse_pjsig_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjsig command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for sending a signal.
PJCMD_ERROR_INVALID_ARGUMENT

argcor argv_ppis invalid.

-902-

B

PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

5.2 pjcmd_signal put_param()

pjcmd_result_t pjcmd_signal_put_param(PjcmdHandle_t *handl e_p, pjcmd_signal_param_t param, const
void *val _p)

This function sets parameters in a handle that are related to sending signals to a job.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_SIGNAL_SIGNUM Number of signals to be sent int

The specified value can be an integer from 1 to 64.

PJCMD_SIGNAL_SIGNAME Name for the signals to be sent char *

The signal name (*) must be recognizable by the destination
compute node and within 15 characters (excluding the NULL
character at the end).

(*) Specifically, the signal name is a name such as "SIGHUP"
or "SIGKILL" indicated in the header file signal.h and the
man page signal(7).

PJCMD_SIGNAL_HELP Equivalent to the --help option in the pjsig command int

0: Not specified (Default)
1: Specified

This parameter does not affect signal sending operations.

-03-

Either the PICMD_SIGNAL_SIGNUM or PJCMD_SIGNAL_SIGNAME parameter, whichever is set last, is valid. If neither
parameter is set in a handle, an error occurs when the pjcmd_signal_execute() function is called.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for sending a signal.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
[Note]

A signal number must be used based on the specifications of the OS on the destination node (compute node executing a job).

B.5.3 pjcmd_signal get param()

pjcmd_result_t pjcmd_signal_get_param(const PjcmdHandle_t *handl e_p, pjcmd_signal_param_t param,
void *val _p)

This function references the parameter values that are set in a handle for sending signals.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_signal_put_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

-94 -

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for sending a signal.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.5.4 pjcmd signal set callback()

pjcmd_result_t pjcmd_signal_set_callback(
PjcmdHandle_t *handl e_p,
void (*signal _wait_cal | back_func_p)(void),
void (*signal _accept_cal | back_func_p)(void))

This function registers a callback function that is called at a specific time according to the progress of sending signal to the job. This function
is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message indicating
that a request to send a signal to a job is pending acceptance.

If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]
handle_p
Pointer to a handle
signal_wait_callback_func_p

Pointer to the function that is called when the request to send a signal to the job is pending acceptance. When this function is
registered, it is called every three minutes until the request has been accepted.

signal_accept_callback_func_p
Poniter to the function that is called when the request to send a signal to the job has been accepted.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for sending a signal.

B.5.5 pjcmd signal execute()

PjcmdResp_t *pjcmd_signal_execute(const PjcmdHandle_t *handl e_p)

-05-

This function requests the job operation management function to send signals to a job based on a handle. This function can be called from
the login node and compute cluster management node.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about signal transmission.

The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a request to send signals to
a job fails, NULL is returned, and the cause is set in pjcmd_errcode.

The response information indicates whether the request succeeded or failed. Whether or not the request to send signals to the job has
been accepted by the job operation management function needs to be checked with a result code in the response information by using
the pjcmd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for sending a signal.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM
A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT
Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_BUSY
An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM
Calling the function is not permitted.
PJCMD_ERROR_SIGNAL
The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL
Internal error
[Note]

Since the signal transmission request function can only make requests to send signals, an error does not occur even if the specified signal
number cannot be recognized by the destination node. The user needs to check whether or not the request has been sent successfully.

B.6 Waiting for Job Completion

This section describes the functions for waiting for a job to complete.

-06 -

Figure B.7 Request to Wait for a Job to Complete

Command line
argurments

i’ S

pjcrnd_wait_parse_pjwait_args())

Set

b

- Set
_r[pjcmd_wa'rtjut_pamm(}]— ——

L4

Handle
PjcrmdHandle_t

Parameter

b L pjcrnd_wait_get_param[}]" -
Reference

-~ =

ijcmd_wa'rt_execute[}_]

l

Response information
PicmdResp_t

I

Result information
reference function

B.6.1 pjcmd wait parse pjwait_args()

pjcmd_result_t pjcmd_wait_parse_pjwait_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjwait command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for waiting for job completion.
PJCMD_ERROR_INVALID_ARGUMENT

argcor argv_ppis invalid.

-97 -

B

PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

.6.2 pjcmd_wait put _param()

pjcmd_result_t pjcmd_wait_put_param(PjcmdHandle_t *handl e_p, pjcmd_wait_param_t param, const void
*val _p)

This function sets parameters in a handle that are related to waiting for job completion.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of
*val_p

PICMD_WAIT_MODE This parameter specifies a mode for waiting for job completion, int
namely the return condition of the pjecmd_wait_execute() function
(equivalent to pjwait -w).

- PICMD_WAIT_ALL
The function returns when all jobs are completed. (Default)

- PICMD_WAIT_ANY
The function returns when at least one job is completed.

- PJCMD_WAIT_NONE
The function returns immediately without waiting for a job to
complete.

PJICMD_WAIT_Z Equivalent to the -z option in the pjwait command int

0: Not specified (Default)
1: Specified

-08 -

param *val_p Type of
*val_p

This parameter does not affect the operation of waiting for job
completion.

PJCMD_WAIT_HELP Equivalent to the --help option in the pjwait command int

0: Not specified (Default)
1: Specified

This parameter does not affect the operation of waiting for job
completion.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for waiting for job completion.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.6.3 pjcmd wait get param()

pjcmd_result_t pjcmd_wait_get param(const PjcmdHandle_t *handl e_p, pjcmd_wait _param_t param, void
*val _p)

This function references the parameters that are set in a handle for waiting for job completion.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_wait_put_param()
function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

-99-

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for waiting for job completion.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.6.4 pjcmd wait _execute()

PjcmdResp_t *pjcmd_wait_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to wait for job completion based on a handle. This function can be called from
the login node and compute cluster management node.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about waiting for job completion.

The caller must release the obtained response information by using the pjemd_destroy_resp() function. If a request to wait for job
completion fails, NULL is returned, and the cause is set in pjcmd_errcode.

The response information indicates whether the request succeeded or failed. The results of waiting for job completion need to be checked
with a result code in the response information by using the pjcmd_get_jobresult_info() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for waiting for job completion.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM
A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

-100 -

PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_BUSY
An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM
Calling the function is not permitted.
PJCMD_ERROR_SIGNAL
The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

B.7 Job Parameter Change

This section describes the functions for changing job parameters.

Figure B.8 Request to Change a Job Parameter

Command line
arguments

’
kpjcrnd_alter _parse_pmalter_args.[]}

cCallback function

Ir picmd_alter_put parami()] et et ;I‘:;n l:_h.;nge the parameter
5 e jol

/4-4 picmd_alter_put_job_resource() | .

¥

Handle " Set
PjcmdHandle_t

*
picmd_alter_put_sched parami())

/ _[
Pararneter_»\ _ [-

[pjcmd_alter_set callback()]

kY pjomnd_alter_get_parami()
Y
= pjcmd_alter_clet_]'ob_re:«:uurce[]]

Reference

picmd_alter_get sched_param() |

¥
[picmd_alter_execute()]

l

Response information
PjcmdResp_t

k4

Result information
reference function

B.7.1 pjcmd alter parse pmalter _args()

pjcmd_result_t pjcmd_alter_parse_pmalter_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specifications of pjalter and pmalter command options and sets the specified
details in a handle.

[ARGUMENTS]
handle_p

Pointer to a handle

-101-

argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

[Note]

This function can set a handle for both the pjalter and pmalter command options. However, if the -P option, which can be specified only
in the pmalter command for the administrators, is set in a handle, administrator privileges are required for requesting the job operation
management function to change a job parameter (the pmcmd_alter_execute() function).

B.7.2 pjcmd_alter _put param()

pjcmd_result_t pjcmd_alter_put_param(PjcmdHandle_t *handl e_p, pjcmd_alter_param_t param, const void
*val _p)

This function sets the job parameter to be changed in a handle.
[ARGUMENTS]
handle_p

Pointer to a handle

-102 -

param
Identifier of a parameter to be set (See the table below.)
val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_ALTER_CLUSTER Cluster name (only one name, equivalent to pmalter -c) char *

If this parameter is not set, the value of the environment variable
PXMYCLST is applied. If the variable also does not have a set
value, an error occurs in the pjcmd_alter_execute() function.
This parameter is valid only when called from the system
management node. If this parameter is called from a node other
than the system management node, the setting is ignored and the
name of the cluster to which the node belongs is applied.

PJCMD_ALTER_HELP Equivalent to the specifications of the --help option in the pjalter | int
or pmalter command

0: Not specified (Default)
1: Specified

This parameter does not affect job parameter changes.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.7.3 pjcmd_alter_get param()

pjcmd_result_t pjcmd_alter_get_param(const PjcmdHandle_t *handl e_p, pjcmd_alter_param_t param, void
*val _p)

-103 -

This function references the set details in a handle for changing job parameters.
[ARGUMENTS]
handle_p
Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_alter_put_param()
function.

val_p
A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.7.4 pjcmd alter put job resource()

pjcmd_result_t pjcmd_alter_put_job_resource(PjcmdHandle_t *handl e_p, char *rscname_p, const void
*val _p)

This function sets the job resource name to be changed and the value after the change in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
rscname_p
Name of the resource whose value needs to be changed (See the table below.)

val_p

Pointer to the storage area of the resource value to be changed. For example, if the resource to be changed is "elapse," the caller needs
to prepare a variable where the value after the change (time_t type) is stored, and specify a pointer to the variable (time_t *) in
val_p. If NULL is specified, the parameter value is initialized (not set).

-104 -

rscname_p *val_p Type of *val_p

"elapse" Limit value of job executable time time_t

The specifiable value ranges from 1 to 2147483647 seconds. If
the time is not limited, PICMD_UNLIMITED is specified.

"rscunit" Name of the resource unit to which a job is submitted char *

"rscgrp" Name of the resource group to which a job is submitted char *

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_INVALID_ARGUMENT
rscname_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
*val_pis invalid.
- A specification method is incorrect.
- The value (character string) that is specified as the "rscunit™ or "rscgrp" parameter is NULL.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.7.5 pjcmd alter get job resource()

pjcmd_result_t pjcmd_alter_get_job_resource(const PjcmdHandle_t *handl e_p, char *rscnanme_p, void
*val _p)

This function references the job resource amount that is set to be changed in a handle for changing job parameters.
[ARGUMENTS]
handle_p
Pointer to a handle
rscname_p

The name of resource to be referenced. The value that can be specified are the same as those for the pjcmd_alter_put_job_resource)
function.

val_p

A value is stored in *val_pbased on the racuname_ptype. The caller needs to prepare an area of a sufficient size according to the
value type.

-105 -

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_INVALID_ARGUMENT
rscname_por val_pis invalid (NULL).
PJCMD_ERROR_NODATA

A specified resource is not set in a handle.

B.7.6 pjcmd_alter put sched param()

pjcmd_result_t pjcmd_alter_put_sched_param(PjcmdHandle_t *handl e_p, pjcmd_alter_sched_param_t param,
const void *val _p)

This function sets parameters in a handle that are used to change job scheduling.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter to be changed (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is

initialized (not set).

param *val_p Type of *val_p

PJCMD_ALTER_SCHED_PRIORITY Priority after changing jobs for the same users int

The specified value can be an integer from 0 to 255.

PICMD_ALTER_SCHED_APRIORITY Priority after changing jobs in a resource unit int

The specified value can be an integer from 0 to 255.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 106 -

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.7.7 pjcmd alter get sched param|()

pjcmd_result_t pjcmd_alter_get_sched_param(const PjcmdHandle_t *handl e_p, pjcmd_alter_sched_param_t
param, void *val _p)

This function references scheduling-related parameter values that are set in a handle for changing job parameters.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_alter_put_sched_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

-107 -

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.7.8 pjcmd_alter_set callback()

pjcmd_result_t pjcmd_alter_set_callback(
PjcmdHandle_t *handl e_p,
void (*alter_wait_call back_func_p)(void),
void (*al ter_accept_cal |l back_func_p)(void))

This function registers a callback function that is called at a specific time according to the progress of request to change the job paramter.
This function is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message
indicating that a request to change the parameter of the parameter is pending acceptance.

If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]
handle_p
Pointer to a handle
alter_wait_callback_func_p

Pointer to the function that is called when the request to change the job parameter is pending acceptance. When this function is
registered, it is called every three minutes until the request has been accepted.

alter_accept_callback_func_p
Poniter to the function that is called when the request to change the job parameter has been accepted.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for changing a job parameter.

B.7.9 pjcmd alter execute()

PjcmdResp_t *pjcmd_alter_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management to change a job parameter based on a handle. This function can be called from the login
node, system management node, and computer cluster management node.
If the priority of jobs in the resource unit is set in the handle as the parameter to be changed, administrator (root) privileges are required.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about changing a job parameter.

The caller must release the obtained response information by using the pjemd_destroy_resp() function. If a request to change a job
parameter fails, NULL is returned, and the cause is set in pjcmd_errcode.

The response information indicates whether the request succeeded or failed. Whether or not the request to change a job parameter has

-108 -

been accepted by the job operation management function needs to be checked with a result code in the response information by using
the pjcmd_get_jobresult_info() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for changing a job parameter.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, system management node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted. Alternatively, an attempt to change the job priority in a resource unit was made with privileges
other than administrator privileges.

PJCMD_ERROR_SIGNAL
The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

-109 -

Appendix C Information Acquisition APl Reference

C.1 Common Information of the Information Acquisition API

This section describes utility functions for getting job information and resource information.

Figure C.1 Detecting pjstat Command Arguments

Command line

: '_, Ry _ _
arguments ’[picmd_pjstat_parse_command_type() J Option detection

C.1.1 pjcmd pjstat parse command_type()

pjcmd_pjstat_command_type t pjcmd_pjstat parse_command_type(int argc, const char * const *argv_pp)

This function analyzes command line arguments as pjstat command arguments and determines whether or not the --rsc option, --limit
option, and --help option exist.

The function is used to individually call a job information acquisition API, resource information acquisition API, resource status acquisition
API or display the method of use, based on the pjstat command option specified in a command line argument.

[ARGUMENTS]
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_PJSTAT_SHOW_JOB
The command argument corresponds to displaying job information (pjstat).
PJCMD_PJSTAT _SHOW_RESOURCE
The command argument corresponds to displaying job resource information (pjstat --rsc).
PJCMD_PJSTAT _SHOW_LIMIT
The command argument corresponds to displaying a limit value when submitting a job (pjstat --limit).
PJCMD_PJSTAT _SHOW_HELP
The command argument corresponds to displaying the method of use (pjstat --help).
PJCMD_PJSTAT _UNKNOWN_COMMAND_TYPE
Nothing could be determined from the command argument.
[picmd_errcode]
PJCMD_SUCCESS

Success. This code is set when the return value is PICMD_PJSTAT_SHOW_JOB, PJCMD_PJSTAT_SHOW_RESOURCE,
PJICMD_PJSTAT_SHOW_LIMIT, or PJCMD_PJSTAT_SHOW_HELP.

PJCMD_ERROR_UNKNOWN_OPTION

Nothing could be determined from the command argument. This code is set when the return value is
PJCMD_PJSTAT_UNKNOWN_COMMAND_TYPE.

C.2 Getting Job Information

This section describes the functions for getting job information (job statistical information).

-110-

Figure C.2 Requesting Job Information Acquisition

Command line

r B
—'l pjcmd_jobinfo_parse_pjstat_args()]

pjomd_jobinfo_get_condition()

Reference

arguments
| picmd_jobinfo_put_scope(y | |
- [picmd_jobinfo_put_condition()] ' Set
P Ty
L L pjcmd_jobinfo_put_param() J
Paramete Handle
. PjomdHandle_t
pjcmd_jobinfo_get scope() 1
<

P e U

picmd_jobinfo_get _parami}

|

[pjcrnd_jobinfo_execute()]

Displays
summary fv._ " :
information < “;{ e e T REPG_::dEZmEtmn
Displays Fi mEsP
job b
information / L J

Result information
reference function

Figure C.3 Referencing an Information Group and Getting Job Information

Item name
information
A

[pjcmid_jobinfo_read_infogrp()

L picmd_jobinfo_get_chodsen_items()]
& .

Response information R‘“'-R Move reference position :
. A1 direction) H
PjcmdResp_t .
' T =
Job information | N —> Item name list in job information
- 1 -
Information | | Information | Information - MNode:
Group 0 Group1l !| Group2 v | |Job Statistical| o
- Information Information
0 Job info. 0-0 :Jl:lb info. 1-0 H Job info. 2-0
Job info. 0-1| &b info. 1-Di| Jobinfo. 2-1 | --- ftem A ltem An
2 |30b info. 0-2| ob info. 1-2 1| Jobimfg, 22 | - ftem & ftem Bn
Summary | Sumrmary 0 :_SGE‘_I_FHE_I'_:{') i Summary 2 e e ‘
Ta x : Mg of items j | No. of items n
9| scope 0|l GopeD | scope2
Scope e : : =P
\, ;i WL L LT L] S _ _ it J
- o A—— 3 ¥ ___________L“——__ _

i - & Bl
L picmd _ju:rl:u'lnfo_get_s_ah mmary() J

Summary

[pjcrrn:lz-iobinfc-_get_infogrp_sccpe(]}

s - -
L pjomd_jobinfo_read_jobinfof) J

-

j: ¥

Job information
Pjomdlobinfo_t

1':]_ |
| Target scope information

-111-

Figure C.4 Referencing Job Information

|M. - Name | Value
.“I} pamaanTERTTI ' T

[chmd_]qblnfo_get_]oblnI’o itern num{l

Job mfcxrm ation Pj cde obififo; ft]

Job statistical |nrormat|on Mode statistical information- = Cﬂ:umber E@)
Marme ‘lﬁME Mame Value [j y
: "Ttem A" "‘_-H'élue AF "Item An" | "Value An" H |
@ ["item B | "Value B7" | ["Ii:em En" | "Walue Ein"_l"‘_
oi's -
- | [] -
[I H
N - : o
L picmd_jobinfo_ get_]c:blnl'o node_num()] [picmd_jobinfo_get_ mde_]oblnfo fem _numi()]

[Number of nodes |‘L EI -

(.
ra] et
L pjcnnd _]'obinfo_get';‘_mdejobinfo_'ltem_uaIuE{] J

C.2.1 pjcmd jobinfo parse pjstat args()

pjcmd_result_t pjcmd_jobinfo_parse pjstat_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjstat command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

-112 -

- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

This function treats the --rsc option and --limit option in the pjstat command as well as other options that can be specified only with these
options as invalid options.

C.2.2 pjcmd jobinfo put scope()

pjcmd_result_t pjcmd_jobinfo_put_scope(PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, const void
*val _p, uint32_t n)

This function sets the target range for getting job information in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
scope
Identifier indicating the type of target range for getting information (See the following table.)
val_p

Pointer to the storage area for the value indicating the target to get job information. For example, if the value type to be set is char
* type, the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL
is specified, the parameter value is initialized (not set).

n
Number of elements of val_p
scope *val_p Type of *val_p
PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c) char *

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_jobinfo_execute() function.

This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the

-113 -

scope *val_p Type of *val_p

calling node belongs is applied.
1 must be specified in n for the parameter.

PJCMD_SCOPE_RSCUNIT This parameter gets information on each resource unit and char **
specifies resource unit names as an array (number of elements is
n, equivalent to pjstat --rscunit).

If "*" is specified as a resource unit name, all resource units are
targeted.

PJCMD_SCOPE_RSCGRP This parameter gets information on each resource group and char **
specifies resource group names as an array (number of elements
is n, equivalent to pjstat --rscgrp).

If "*" is set as a resource group name, all resource groups are
targeted.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_INVALID_PARAM

val_por nis invalid.

C.2.3 pjcmd jobinfo get scope()

pjcmd_result_t pjcmd_jobinfo_get scope(const PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void
*val _p, uint32_t *n_p)

This function references the target range for getting the information that is set in a handle for job information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jobinfo_put_scope() function.

val_p
A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

n_p
The number of elements of val_pis stored in *17_p. The caller needs to prepare the area.

-114 -

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_INVALID_ARGUMENT
val_por n_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in scope.
PJCMD_ERROR_NODATA

A specified scopeis not set in a handle.

C.2.4 pjcmd jobinfo put condition()

pjcmd_result_t pjcmd_jobinfo_put _condition(PjcmdHandle_t *handl e_p, pjcmd_jobinfo_condition_type t
type, const char **itempp, int n)

This function sets conditions for the job information to be obtained in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
type
Type of condition to get job information (See the following table.)
item_pp

Array of an acquisition condition item (character string). The value to be specified varies depending on the fypeargument. (See the
following table.)
If NULL is specified, a parameter value is initialized (not set).

n
Number of elements in the ifem_pp[] array
type item_ppl]
PJCMD_JOBINFO_GROUPING This parameter specifies a unit to group information (unit to obtain).

"usr": Information is grouped by user.

"grp": Information is grouped by group.

"rscu": Information is grouped by resource unit.
"rscg": Information is grouped by resource group.

Multiple units can be specified as the item_pp[] array.

Example:
Specifying "usr' and "rscg" indicates that information is grouped by the same user
and resource group.

-115-

type item_pp(]

If this parameter is not specified, information is not grouped by a specific unit. If
a resource unit or resource group is specified in the pjcmd_jobinfo_put_scope()
function, it is regarded that "rscu” or "rscg" is specified.

PJCMD_JOBINFO_CHOOSE The information to be obtained is selected out of job information (*).
PJCMD_JOBINFO_NOT_CHOOSE (*) Information that can be obtained by the command API is the same as the
information that can be output by the pjstat command (see pjstatsinfo(7).)

The PICMD_JOBINFO_CHOOSE parameter specifies the information to be
obtained (equivalent to pjstat --choose). The
PJCMD_JOBINFO_NOT_CHOOSE parameter specifies information that is not
obtained. Either parameter can be specified. If neither parameter is specified, all
information is obtained.

The item name of the information to be obtained is specified in the item_pp{]
array. Only the job information items that are listed in the Table C.1 Items That
Can be Specified as Conditions to Get Job Information can be specified. Multiple
item names can be specified.

PJCMD_JOBINFO_FILTER Only the job information for the specified items with specific values is obtained
(equivalent to pjstat --filter).

Multiple conditions can be specified using the /item_pp[] array. The condition is
specified in one array element in the "/tem = value" format. An item name listed
inthe Table C.1 Items That Can be Specified as Conditions to Get Job Information
can be specified in item.

A wild card and an expression to specify a range can be used for va/ue (based on
the --filter option format of the pjstat command).

If a resource unit and resource group are specified in the
pjemd_jobinfo_put_scope() function, it is regarded that a corresponding item
(rscu or rscg) is specified.

PJCMD_JOBINFO_SORT This parameter specifies conditions to sort the information to be obtained
(equivalent to pjstat --sort).

Multiple conditions can be specified using the /item_pp[] array. The conditions are
specified in one array element in the " jten. order" format. An item name listed in
the Table C.1 Items That Can be Specified as Conditions to Get Job Information
can be specified in /tem. "A" (ascending order) or "B" (descending order) can be
specified in order. If specification of the job information order is omitted, it is
sorted in job 1D order.

The following table lists the item names that can be specified as conditions to get job information (PJCMD_JOBINFO_CHOOSE,
PJCMD_JOBINFO_NOT_CHOOSE, PICMD_JOBINFO_FILTER, and PJCMD_JOBINFO_SORT).

Table C.1 Items That Can be Specified as Conditions to Get Job Information

Item Description
jid Job ID or sub job ID
snum Number of sub jobs of a bulk job or step job
jnam Job name
jtyp Job type
jmdl Job model
usr Name of user executing job
grp Name of group executing job
rscu Resource unit
rscg Resource group

-116 -

ltem Description
pri Job priority
sh Shell path name
mail E-mail send flag
adr E-mail send destination address
sde Step job dependency relational expression
mask umask value of user submitting job
std Standard output file name
stde Standard error output file path
infop Statistical information file path
pcl CPU usage time limit by process
pcfl Core file limit by process
pepl Max user process count limit by process
pdi Data segment limit by process
prml Lock memory size limit by process
pmal POSIX message queue size limit by process
pofl File descriptor limit by process
ppsl Signal count limit by process
ppl File size limit by process
psl Stack segment limit by process
pvml Virtual memory size limit by process
cmt Comment of job
rnum Retry count of job
Ist Previous state of job
st Current state of job
adt Job submission time
qdt Last queuing time
sdt Job execution start time
edt Job execution end time
exc EXIT/CANCEL state transition time
thldtm Accumulated hold time of job
Ihusr Last hold user name
holnm Hold count of job
prmdt Time when the job resource manager function collects data from each node
ec End code of shell script
sn Signal number
pc PJM code
ermsg Error message (REASON)
elpl Elapsed time limit of job (Executable time)
elp Execution elapsed time

-117 -

ltem Description
uctmut Total user CPU time of job
sctmut Total system CPU time of job
usctmut Total user CPU time and total of system CPU time
mszI Physical memory amount limit by node
msza Physical memory amount allocated to a node
mmszu Total max physical memory usage of nodes
cnumr Requested number of CPUs
cnumat Total number of CPUs allocated to job
cnumut Total number of CPUs used in job
nnumr Number of nodes and its shape requested by job
nnuma Number of nodes and its shape allocated to job
nnumu Number of nodes used by job
nnumv Number of unavailable nodes within the allocated nodes
nidlu Node ID list of the nodes used by job
tofulu Tofu coordinate list of the nodes used by job

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in fype.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.2.5 pjcmd jobinfo _get condition()

pjcmd_result_t pjcmd_jobinfo_get condition(const PjcmdHandle_t *handl e_p,
pjcmd_jobinfo_condition_type_t type, char ***item ppp, int *n_p)

This function references the contents of information acquisition conditions that are set in a handle for job information acquisition.
[ARGUMENTS]
handle_p

Pointer to a handle

-118 -

type
Identifier indicating the conditions to get job information to be referenced. The identifiers that can be specified are the same as those
of the pjemd_jobinfo_put_condition() function.

item_ppp
The item names specified in #ype for information acquisition conditions are stored in the character string array (*/item_ppp)[].
(*item_ppp)[] indicates an area that is set in a handle.

n_p
The number of elements in the character string array (*/tem_ppp)[] is stored in *n7_p.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_INVALID_ARGUMENT
ftem_pppor n_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in fype.
PJCMD_ERROR_NODATA

The acquisition conditions specified in #ype are not set.

C.2.6 pjcmd jobinfo put param()

pjcmd_result_t pjcmd_jobinfo_put_param(PjcmdHandle_t *handl e_p, pjcmd_jobinfo_param_t param, void
*val _p)

This function sets parameters related to job information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifiers of a parameter to be set that is related to job information acquisition (See the following table.)

val_p

Pointer to the storage area for the parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value is

initialized (not set).

param *val_p Type of *val_p

PJCMD_JOBINFO_USER_ID This parameter specifies the array of the target user ID | uid_t*
whose information is obtained. The last element in the
array must be -1.

-119-

param

*val_p

Type of *val_p

PJCMD_JOBINFO_USER_NAME

This parameter specifies the target user name whose
information is obtained. The last element in the array
must be NULL.

char **

PJCMD_JOBINFO_GROUP_ID

This parameter specifies the target group ID whose
information is obtained. The last element in the array
must be -1.

gid_t*

PJCMD_JOBINFO_GROUP_NAME

This parameter specifies the target group name whose
information is obtained. The last element in the array
must be NULL.

char **

PJCMD_JOBINFO_HISTORY_DAY

This parameter specifies information on a job that has
completed within the specified number of days
(equivalent to pjstat -H and -H day=n).

An integer value from 1 to 365 can be specified. If -1 is
specified, this parameter gets information on jobs that
were completed within the past 3 days (equivalent to a
case where the pjstat command does not have the -H
option argument).

int

PJCMD_JOBINFO_HISTORY_START

This parameter specifies the start date of a period to get
information on completed jobs (equivalent to pjstat -H
start=qate).

time

PJCMD_JOBINFO_HISTORY_END

This parameter specifies the end date of a period to get
information on completed jobs (equivalent to pjstat -H
end=aate).

time

PJCMD_JOBINFO_HISTORY_PERIOD

This parameter specifies jobs that were completed within
the specified number of days after the first day specified
in the PICMD_JOBINFO_HISTORY_START
parameter (equivalent to pjstat -H period=aays).

The value range that can be specified is from 1 to
2147483647 days.

int

PJCMD_JOBINFO_VERBOSITY

This parameter specifies the granularity of the
information to be obtained.

- PJCMD_JOBINFO_VERBOSITY_JOB
This gets only job information. (Default)

- PICMD_JOBINFO_VERBOSITY_SUBJOB
This gets job information and sub job information
(equivalent to pjstat -E).

int

PJCMD_JOBINFO_SUMMARY

This parameter specifies whether or not to get summary
information when getting job information.

- PICMD_JOBINFO_NO_SUMMARY
Summary information is not obtained. (Default)

- PICMD_JOBINFO_WITH_SUMMARY
Both summary information and job information are
obtained (equivalent to pjstat --with-summary).

- PJCMD_JOBINFO_ONLY_SUMMARY
Only summary information is obtained (equivalent
to pjstat --summary).

int

PJCMD_JOBINFO_LEVEL

Level of information to be obtained

-120 -

int

param

*val_p

Type of *val_p

- PJCMD_JOBINFO_LEVEL_0
Only basic information is obtained (equivalent to
pjstat, default).

- PJCMD_JOBINFO_LEVEL 1
Basic information and additional information are
obtained (equivalent to pjstat -v).

- PJCMD_JOBINFO_LEVEL 2
Job statistical information is obtained (equivalent to
pjstat -s).

- PJCMD_JOBINFO_LEVEL_3
Job statistical information and node statistical
information are obtained (equivalent to pjstat -S).

PJCMD_JOBINFO_LEVEL_PATTERN

If the level of information to be obtained is
PJCMD_JOBINFO_LEVEL _1, this parameter specifies
additional information to be obtained (equivalent to
pjstat -v pattern=r).

Currently, only 1 can be specified.

uint32_t

PJCMD_JOBINFO_OTHERSJOB

This parameter specifies whether or not to get job
information submitted by other users (users other than
the user who called this function) (equivalent to pjstat -
A).

- PJCMD_JOBINFO_OTHERSJOB_NONE
Job information submitted by other users is not
obtained. (Default)

- PJCMD_JOBINFO_OTHERSJOB_ALL
Job information submitted by other users is also
obtained.
However, without privileges, some information
cannot be referenced.

int

PJCMD_JOBINFO_DATA

Equivalent to the specification of the --data option in the
pjstat command

0: Not specified (Default)
1: Specified

This parameter does not affect the job information to be
obtained.

int

PJCMD_JOBINFO_DELIMITER

Equivalent to the specification of the --delimiter option
in the pjstat command

If the PICMD_JOBINFO_DATA parameter is
specified, this parameter specifies a character for
separating job information displayed by the
pjcmd_jobinfo_print_resp() function. If this parameter
is not set, acomma (,) is used as the character separating
job information.

This parameter does not affect the job information to be
obtained.

char *

PJCMD_JOBINFO_HELP

Equivalent to the specification of the --help option in the
pjstat command

0: Not specified (Default)
1: Specified

-121-

int

param *val_p Type of *val_p

This parameter does not affect the job information to be
obtained.

As for the PICMD_JOBINFO_USER_ID or PICMD_JOBINFO_USER_NAME parameter and the PJCMD_JOBINFO_GROUP_ID
or PJICMD_JOBINFO_GROUP_NAME parameter, the parameter specified last in the respective pairs is valid. If it is not specified, the
user or group that calls the function is applied.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.2.7 pjcmd_jobinfo_get param()

pjcmd_result_t pjcmd_jobinfo_get param(const PjcmdHandle_t *handl e_p, pjcmd_jobinfo_param_t param,
void *val _p)

This function references information acquisition-related parameters that are set in a handle for job information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jobinfo_put_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK

Success

-122 -

PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.2.8 pjcmd jobinfo execute()

PjcmdResp_t *pjcmd_jobinfo_execute(PjcmdHandle_t *handl e_p)

This function requests the job operation management function to get job information based on a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about acquiring job information.

The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.

The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjemd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for job information acquisition.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

-123 -

PJCMD_ERROR_BUSY
An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM
Calling the function is not permitted.
PJCMD_ERROR_SIGNAL
The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

C.2.9 pjcmd jobinfo _get choosen item()

pjcmd_result_t pjcmd_jobinfo_get choosen_item(const PjcmdResp_t *resp_p, char ***jobinfo_item ppp,
int *jobinfo_itemn_p, char ***nodei nfo_item ppp, int *nodeinfo_itemn_p)

This function gets the information item name list included in job information acquisition results.
[ARGUMENTS]
resp_p
Pointer to a response information
jobinfo_item_ppp

The list of job information item names is stored in the character string array (*jobinfo_item_ppp)[]. For details on the item names
to be stored, see "Table C.2 Item Names, Names, and Values of Job Information (1)."

jobinfo_item_n_p

The number of elements in the (*jobinfo_item_ppp)[] array, in which the list of job information item names is stored, is stored in
*fobinfo_item_n_p.

nodeinfo_item_ppp

The list of job information item names for each node is stored in the character string array (*nodeinfo_item_ppp)[]. For details on
the item names to be stored, see "Table C.3 Item Names, Names, and Values of Job Information (2)."

nodeinfo_item_n_p

The number of elements in the array (*nodeinfo_iterm_ppp)[], in which the list of job information item names for each node is stored,
is stored in *nodeinfo_item_n_p.

The areas that are specified by jobinfo_item_ppp and nodeinfo_item_ppp are reserved areas in response information. The caller must
not directly release them. These areas are reserved until response information is released.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job information.
PJCMD_ERROR_INVALID_ARGUMENT

Jobinfo_item_ppp, nodeinfo_item_ppp, or nodeinfo_item_n_pis invalid (NULL).

-124-

C.2.10 pjcmd_jobinfo_read_infogrp()

pjcmd_result_t pjcmd_jobinfo_read_infogrp(PjcmdResp_t *resp_p)

This function moves a reference position from the information group that is an acquisition unit of information stored in response information
to the next information group.

[ARGUMENTS]
resp_p
Pointer to a response information
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job information.
PJCMD_ERROR_NODATA
There is no next information group (all information was referenced).
PJCMD_ERROR_INVALID_PARAM
A parameter in response information is invalid.
PJCMD_ERROR_CONNECT
Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_SIGNAL
The process is interrupted because a signal has been received.
PJCMD_ERROR_NOPERM
Calling the function is not permitted.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL

Internal error

C.2.11 pjcmd_jobinfo_print_resp()

pjcmd_result_t pjcmd_jobinfo_print_resp(PjcmdResp_t *resp_p, pjcmd_jobinfo_print_type_ t type)

This function outputs job information included in the reference target information group to the standard output based on the specification
in the pjstat command.

If the following operation is performed for the target information group, an error occurs.
- This function is called twice or more.

- The information group is referenced with the pjcmd_jobinfo_read_jobinfo() function before calling this function.

-125-

The job information in the target information group is referenced at the end after calling this function. Therefore, if the
pjcmd_jobinfo_read_jobinfo() function is called for the same information group after calling this function, job information cannot be
obtained.

[ARGUMENTS]
resp_p
Pointer to a response information
type
Output detail type
PJCMD_JOBINFO_PRINT_SUMMARY
Job summary information is displayed.
PJCMD_JOBINFO_PRINT_JOBINFO
Detailed job information is displayed.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in #ype.
PJCMD_ERROR_INVALID_PARAM

Information could not be obtained because the information acquisition range and the conditions specified in the
pjcmd_jobinfo_put_scope() function and pjcmd_jobinfo_put_param() function are invalid.

Alternatively the job information in an information group is referenced by the pjcmd_jobinfo_read_jobinfo() function before calling
this function.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_INTERNAL

Internal error

-126 -

C.2.12 pjcmd jobinfo get summary()

pjcmd_result_t pjcmd_jobinfo_get _summary(const PjcmdResp_t *resp_p, pjcmd_job_status_t status,
int6é4_t *num p)

This function references the number of jobs and the number of sub jobs that are in a specific state out of the jobs included in an information
group.

If PICMD_JOBINFO_VERBOSITY_SUBJOB is not specified as the granularity of information (PJCMD_JOBINFO_VERBOSITY) in
the pjcmd_jobinfo_put_param() function, the number of sub jobs is 0. Alternatively, if PJCMD_JOBINFO_HISTORY is not specified in
the pjemd_jobinfo_put_param() function, the number of completed jobs cannot be obtained. In this case, an error occurs.

[ARGUMENTS]
resp_p
Pointer to a response information
status

Identifier indicating the status of jobs to be referenced (See the following table.)

status Description

PJCMD_JOB_STATUS_ACCEPT Job in the submission accept state (ACCEPT state)

PJCMD_JOB_STATUS_QUEUED Job waiting to be executed (QUEUED state)

PJCMD_JOB_STATUS_RUNNING_A Job whose execution is being requested (RUNNING-A state)

PJCMD_JOB_STATUS_RUNNING_P Job in the prologue process (RUNNING-P state)

PJCMD_JOB_STATUS_RUNNING Job that is being executed (RUNNING state)

PJCMD_JOB_STATUS_RUNNING_E Job in the epilogue process (RUNNING-E state)

PJCMD_JOB_STATUS_RUNOUT Job waiting for the completion process to complete (RUNOUT state)

PJCMD_JOB_STATUS_HOLD Job that is held by a user (HOLD state)

PJCMD_JOB_STATUS_ERROR Job that is held due to an error (ERROR state)

PJCMD_JOB_STATUS_REJECT Job whose submission was not accepted (REJECT state)

PJCMD_JOB_STATUS_EXIT Completed job (EXIT state)

PJCMD_JOB_STATUS_CANCEL Job whose execution was canceled (CANCEL state)

PJICMD_JOB_STATUS_ALL All jobs that have not completed (ACCEPT, QUEUED, RUNNING_A,
RUNNING_P, RUNNING, RUNNING_E, RUNOUT, HOLD, and ERROR
states)

PJCMD_JOB_STATUS_END Completed jobs (REJECT, EXIT, and CANCEL states)

PJICMD_JOB_STATUS_TOTAL All jobs (ACCEPT, QUEUED, RUNNING_A, RUNNING_P, RUNNING,
RUNNING_E, RUNOUT, HOLD, ERROR, REJECT, EXIT, and CANCEL
states)

num_p

The number of jobs and number of sub jobs are stored in the num_pg[] array. The caller needs to prepare an array area where two
int64_t type values can be stored.

[RETURN VALUE]
PJCMD_OK
Success. The number of jobs is stored in the num_p[0] argument and the number of sub jobs are stored in the num_p[1] argument.
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

-127 -

[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_ARGUMENT
num_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in status.

PJCMD_ERROR_NODATA

There was an attempt to obtain the number of completed jobs when the completed job information was not included in response

information.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INVALID_PARAM

Information could not be obtained because the information acquisition range and the conditions specified in the

pjcmd_jobinfo_put_scope() function and pjcmd_jobinfo_put_param() function are invalid.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_INTERNAL

Internal error

C.2.13 pjcmd _jobinfo _get infogrp scope()

pjcmd_result_t pjcmd_jobinfo_get_infogrp_scope(const PjcmdResp_t *resp_p, char **rscunit_pp, char
**rscgrp_pp, char **unane_pp, char **gname_pp)

This function gets the resource unit name, resource group name, user name, and group name of the information group that is being referenced

now.
[ARGUMENTS]
resp_p
Pointer to a response information
rscunit_pp
The pointer to a resource unit name is stored in *rscunit_pp.
rscgrp_pp
The pointer to a resource group name is stored in *rscgrp_pp.
uname_pp

The pointer to a user name is stored in *uname_pp.

-128 -

gname_pp
The pointer to a group name is stored in *gname_pp.

The areas specified by rscunit_pp, rscgrp_pp, uname_pp, and gname_pp are reserved areas in response information. The caller must not
directly release them. These areas are reserved until the response information is released or the next information group is read.

[RETURN VALUE]
PJCMD_OK

Success. A value that can be obtained is information in the acquisition target unit (resource unit, resource group, user, or group)
specified in the pjcmd_jobinfo_put_scope() function and the pjcmd_jobinfo_put_condition() function. Therefore, the names of
unspecified targets cannot be obtained. In this case, (char *) NULL is stored.

PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_ARGUMENT
rscunit_pp, rscgrp_pp, uname_pp, or gname_pp is invalid (NULL).

C.2.14 pjcmd_jobinfo_read jobinfo()

PjcmdJobinfo_t *pjcmd_jobinfo_read_jobinfo(PjcmdResp_t *resp_p)

This function gets the information on the next job that is included in an information group that is being referenced.

However, if the granularity of information (PJCMD_JOBINFO_VERBOSITY) that is specified in the pjemd_jobinfo_put_param()
function is limited to summary information (PJCMD_JOBINFO_VERBOSITY_SUMMARY), the information on the next job cannot be
obtained.

[ARGUMENTS]
resp_p
Pointer to a response information
[RETURN VALUE]

Job information.
If the function fails, NULL is returned and the cause is set in pjcmd_errcode. The contents of the job information to be returned are
undetermined after the next job information is read.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_NODATA

The next job information is not included in the current information group. Alternatively, only summary information is obtained.
Therefore, there is no job information.

-129 -

PJCMD_ERROR_CONNECT
Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_SIGNAL
The process is interrupted because a signal has been received.
PJCMD_ERROR_INVALID_PARAM

Information could not be obtained because the information acquisition range and the conditions specified in the
pjcmd_jobinfo_put_scope() function and pjcmd_jobinfo_put_param() function are invalid.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_INTERNAL

Internal error

C.2.15 pjcmd _jobinfo_get jobinfo_item num()

int pjcmd_jobinfo_get jobinfo_item_num(const PjcmdJobinfo_t *jobinfo_p)

This function returns the number of information items included in job information.
[ARGUMENTS]
jobinfo_p
Pointer to a job information
[RETURN VALUE]

Number of information items included in job information.
This value indicates the total number of items that can be obtained as job information. Items that are not obtained are also included.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
Jobinfo_pis invalid (NULL).

C.2.16 pjcmd_jobinfo_get jobinfo_item_ value()

pjcmd_result_t pjcmd_jobinfo_get_ jobinfo_item_value(PjcmdJobinfo_t *jobinfo_p, int indx, char
**name_pp, char **val _pp)

This function gets the name and value of each information item contained in job information.
[ARGUMENTS]
jobinfo_p
Pointer to a job information
indx

Index of information that needs to be obtained. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from
a value that is obtained by the pjcmd_jobinfo_get_jobinfo_item_num() function.

name_pp

The pointer to the name of information specified in /ndxis stored in *name_pp. For details on the names to be stored, see "Table C.
2 Item Names, Names, and Values of Job Information (1)."

-130 -

val_pp

The pointer to an information value (character string) specified by /ndxis stored in *va/l_pp. For details on the values to be stored,
see "Table C.2 Item Names, Names, and Values of Job Information (1)."

The areas specified by name_ppand val_ppare reserved areas in response information. The caller must not directly release them. The
area specified by name_pp is retained until response information is released. The area specified by val_ppis retained until response
information is released or until the next time this function is called.

[RETURN VALUE]
PJCMD_OK

Success. If information about specified items is not obtained, NULL is stored in (char *)*va/_pp.

The PJCMD_JOBINFO_OTHERSJOB parameter (job information for other wusers is obtained) is set in
PJCMD_JOBINFO_OTHERSJOB_ALL (all job information is obtained) when job information is obtained, and the job information
for all users can be obtained. However, the character string that is specified by (char *) * va/l_ppbecomes "?" for information without
the reference privilege.

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

Jobinfo_p, name_pp, or val_ppis invalid (NULL).
PJCMD_ERROR_NODATA

The value of /ndx s out of range.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_INTERNAL

Internal error

C.2.17 pjcmd jobinfo _get jobinfo node num()

pjcmd_result_t pjcmd_jobinfo_get jobinfo_node_num(const PjcmdJobinfo_t *jobinfo_p, uint32_t *num p)

This function obtains the amount of information in a node unit (number of nodes) that is included in job information.
[ARGUMENTS]
jobinfo_p
Pointer to a job information
num_p

The amount of information (number of nodes) in a node unit is stored in *num_p.
If the target jobs are step jobs, summary jobs of bulk jobs, or jobs before execution, there is no node information. In this case, 0 is
stored in *num_p.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
Job information is invalid. Jobinfo_pis NULL, or the level of job information acquisition is not PICMD_JOBINFO_LEVEL_3.

-131-

C.2.18 pjcmd jobinfo get nodejobinfo item num()

int pjcmd_jobinfo_get_nodejobinfo_item_num(const PjcmdJobinfo_t *j obi nfo_p)

This function returns the number of information items included in job information in a node unit.
[ARGUMENTS]
jobinfo_p
Pointer to a job information
[RETURN VALUE]

Number of information items included in job information in a node unit.

This value indicates the total number of items that can be obtained as job information. Items that are not obtained are also included.
However, if job information in a node unit is not obtained, an error occurs.

If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
Jobinfo_pis invalid (NULL).
PJCMD_ERROR_NODATA

There is no job information in a node unit in job information.

C.2.19 pjcmd_jobinfo get nodejobinfo_item value()

pjcmd_result_t pjcmd_jobinfo_get nodejobinfo_item_value(PjcmdJobinfo_t *jobinfo_p, uint32_t
node_i ndx, int item.indx, char **name_pp, char **val _pp)

This function obtains the name and value of each information item contained in job information in a node unit.
[ARGUMENTS]
jobinfo_p
Pointer to a job information
node_indx

Node index in job information. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that
can be obtained by the pjcmd_jobinfo_get_jobinfo_node_num() function.

item_indx

Index of information that needs to be obtained. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from
a value that is obtained by the pjcmd_jobinfo_get_nodejobinfo_item_num() function.

name_pp

The pointer to the name of information specified by /item_indx is stored in *name_pp. For details on the names to be stored, see
"Table C.3 Item Names, Names, and Values of Job Information (2)."

val_pp

The pointer to an information value (character string) specified by ifem_indx s stored in *val_pp. For details on the values to be
stored, see "Table C.3 Item Names, Names, and Values of Job Information (2)."

The areas specified by name_ppand val_pp are reserved areas in response information. The caller must not directly release them. The
area specified by name_pp is retained until response information is released. The area specified by val_ppis retained until response
information is released or until the next time this function is called.

[RETURN VALUE]
PJCMD_OK

Success. If information is not obtained, NULL is stored in *va/_pp.

-132 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[picmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

nodejobinfo_p, name_pp, or val_ppis invalid (NULL).

PJCMD_ERROR_NODATA

The node_inax or item_indx value is out of the specified range.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

C.2.20 Item Names, Names, and Values of Job Information

"Table C.2 Item Names, Names, and Values of Job Information (1)" lists information obtained by the following functions.

- Item names of information that are stored in the jobinfo_item_ppp argument of the pjcmd_jobinfo_get_choosen_item() function

- Information names that are stored in the name_pp argument of the pjcmd_jobinfo_get_jobinfo_item_value() function

- Values of information that are stored in the va/_pp argument of the pjcmd_jobinfo_get_jobinfo_item_value() function

Table C.2 Iltem Names, Names, and Values of Job Information (1)

Item Name Value
(jobinfo_item_ppp) (name_pp) (val_pp)

jid JOB ID Job ID or sub job ID
The item has the same format as the job statistical information JOB ID
displayed by the pjstat command (see pjstatsinfo(7).)

snum SUB JOB NUM Number of sub jobs of a bulk job or step job
The format is the same format as the job statistical information SUB JOB
NUM displayed by the pjstat command (see pjstatsinfo(7).)

nnumr NODE NUM (REQUIRE) Number of nodes and shape that are requested by a job
The format is the same format as the job statistical information NODE NUM
(REQUIRE) displayed by the pjstat command (see pjstatsinfo(7).)

nnuma NODE NUM (ALLOC) Number of nodes and shape that are assigned to a job

The format is the same format as the job statistical information NODE NUM
(ALLOC) displayed by the pjstat command (see pjstatsinfo(7).)

Other than above

Same as the items that are output by the pjstat command, among the job statistical information provided in

apjstatsinfo(7)

Example: If an item name is "jnam", the name is "JOB NAME" and the value is the job name.

"Table C.3 Item Names, Names, and Values of Job Information (2)" lists information obtained by the following functions.

- Item names of information that are stored in the nodeinfo_item_ppp argument of the pjcmd_jobinfo_get_choosen_item() function

- Information names that are stored in the name_pp argument of the pjcmd_jobinfo_get_nodejobinfo_item_value() function

- Values of information that are stored in the va/_pp argument of the pjcmd_jobinfo_get_nodejobinfo_item_value() function

-133-

Table C.3 Item Names, Names, and Values of Job Information (2)

Item

(nodeinfo_item_ppp)

Name
(name_pp)

Value
(val_pp)

ntofu TOFU COORDINATE Tofu coordinates of a node
The item has the same format as the node/virtual node statistical information
TOFU COORDINATE displayed by the pjstat command (see
pjstatsinfo(7).)

node NODE COORDINATE Coordinates of a node to be used

The item has the same format as the node/virtual node statistical information
NODE COORDINATE displayed by the pjstat command (see
pjstatsinfo(7).)

Other than above

Same as the items that are output by the pjstat command, among the node/virtual node statistical
information provided in pjstatsinfo(7)

Example: If an item name is "vnid", the name is "VNODE ID" and the value is the virtual node ID.

C.3 Getting Resource Information for Jobs

This section describes the functions for getting information on the system resources used to execute jobs.

Figure C.5 Requesting Resource Information Acquisition

Command line

Parameter

-\-\'u
{ Display
A

al

oy

arguments —'[pjcrnd_rs-:lnfo_pa rse_p]mt_argsijn}.ax.

!

picmd_rscinfo_put_scope()

b

pjcmd_rscinfo_put parami)

picmd_rscinfo_get_scope()

Handle
FicrdHandle_t

Reference

pjcrnd_rscinfo_get parami)

[picmd_rscinfo_execute(} |

h l

picmd_rscinfo_print_resp()

“ Response information
/ PjcmdResp_t

I

Result information
reference function

-134-

Figure C.6 Referencing Resource Information

Response information PjcmdResp_t
B

Item A | ItemB | -« | Item X | Maximum Shape
Shape 0
Resource Info. 0
. g
m - -
. iﬂ'} Resource Info. 1 : H
Resource Info. N-1

—— % ¥ ¥ —

P C I = "
[pjcmd_rscmro_n:jet_rs{lnfo_num(}J [pjcrnd_’-;:scinl’o_qet_rsc'lnl'o_?aIuE{]] [pjcned_rscinfo_get_max_size() J

| Information value | | Maxirmum shape |

C.3.1 pjcmd rscinfo _parse pjstat_args()

pjcmd_result_t pjcmd_rscinfo_parse_pjstat _args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification used when specifying the --rsc option in the pjstat command and
sets them in a handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for resource information acquisition.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

-135-

PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.
This function recognizes only the --rsc option in the pjstat command and other options that can be specified with the --rsc option.

C.3.2 pjcmd _rscinfo_put scope()

pjcmd_result_t pjcmd_rscinfo_put_scope(PjcmdHandle_t *handl e_p,pjcmd_scope_t scope, void *val _p,
uint32_t n)

This function sets the target range for getting resource information.
[ARGUMENTS]
handle_p
Pointer to a handle
scope
Identifier indicating the type of target range for getting information (See the following table.)
val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is
specified, the parameter value is initialized (not set).

Number of elements of val_p

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c) char *

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_rscinfo_execute() function.

This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.

1 must be specified in 72 for the parameter.

PJCMD_SCOPE_RSCUNIT Array of a resource unit name (number of elements is », char **
equivalent to --rscunit of the pjstat command)

If this parameter is not set, all the resource units in a cluster are
the target.

PJCMD_SCOPE_RSCGRP Avrray of a resource group name (number of elements is 7, char **
equivalent to the --rscgrp of the pjstat command).

-136 -

scope *val_p Type of *val_p
If this parameter is not set, all the resource units in a cluster are
the target.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for resource information acquisition.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_INVALID_PARAM
val_por nis invalid.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.3.3 pjcmd rscinfo _get scope()

pjcmd_result_t pjcmd_rscinfo_get _scope(const PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void
*val _p, uint32_t *n_p)

This function references the resource information acquisition range that is set in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscinfo_put_scope() function.

val_p
A value is stored in *val_pbased on the scopetype. The caller needs to prepare an area of a sufficient size according to the value
type.

n_p
The number of elements of va/_pis stored in *n7_p. The caller needs to prepare the area.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

-137 -

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for resource information acquisition.
PJCMD_ERROR_INVALID_ARGUMENT
val_por nis invalid.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in scope.
PJCMD_ERROR_NODATA

A specified scopeis not set in a handle.

C.3.4 pjcmd rscinfo _put param()

pjcmd_result_t pjcmd_rscinfo_put_param(PjcmdHandle_t *handl e_p, pjcmd_rscinfo_param_t param, const
void *val _p)

This function sets parameters in a handle that are related to resource information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifiers of the parameters to be set that are related to resource information acquisition (See the following table.)
val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_RSCINFO_SHAPE Equivalent to the specification of the --shape option in the pjstat | int
command

0: Do not display maximum shape information for resource
group (Default)
1: Display maximum shape information for resource group

This parameter does not affect the contents of the information to
be obtained but does affect the contents displayed by the
pjcmd_rscinfo_print_resp() function.

PJCMD_RSCINFO_HELP Equivalent to the specification of the --help option in the pjstat | int
command

0: Not specified (Default)
1: Specified

This parameter does not affect the job information to be
obtained.

[RETURN VALUE]
PJCMD_OK

Success

-138 -

PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for resource information acquisition.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.3.5 pjcmd_rscinfo_get param()

pjcmd_result_t pjcmd_rscinfo_get_param(const PjcmdHandle_t *handl e_p, pjcmd_rscinfo_param_t param,
void *val _p)

This function references information acquisition-related parameters that are set in a handle for resource information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscinfo_put_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for resource information acquisition.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).

-139 -

PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.3.6 pjcmd rscinfo_execute()

PjcmdResp_t* pjcmd_rscinfo_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to get resource information based on a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about getting resource information for a resource unit/resource group.

The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.

The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjcmd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for resource information acquisition.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

- 140 -

C.3.7 pjcmd rscinfo_print _resp()

pjcmd_result_t pjcmd_rscinfo_print_resp(const PjcmdResp_t *resp_p)

This function outputs resource information acquisition results to the standard output based on the specification used when specifying the
--rsc option in the pjstat command.

[ARGUMENTS]

resp_p

Pointer to a response information
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource information.

- This is not response information that was successfully obtained.

C.3.8 pjcmd rscinfo_get rscinfo_num()

int pjcmd_rscinfo_get _rscinfo_num(const PjcmdResp_t *resp_p)

This function gets the amount of resource information contained in response information about acquiring resource information.
[ARGUMENTS]

resp_p

Pointer to a response information
[RETURN VALUE]

Amount of resource information.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource information.

- This is not response information that was successfully obtained.

C.3.9 pjcmd rscinfo _get rscinfo value()

pjcmd_result_t pjcmd_rscinfo_get_rscinfo_value(const PjcmdResp_t *resp_p, int indx,
pjcmd_rscinfo_item_t item, void *val _p)

This function gets values related to specific resource information from multiple pieces of resource information included in response
information about acquiring resource information.

- 141 -

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of resource information that needs to be referenced in response information. The specifiable value ranges from 0 to a value

that is calculated by subtracting 1 from a value that is returned by the pjemd_rscinfo_get_rscinfo_num() function.

item

Identifier of an item that needs to be referenced in resource information (See the following table.)

val_p

Avalue is stored in *val_phased on the itemtype. The caller needs to prepare an area of a sufficient size according to the value type.

item

*val_p

Type of
*val_p

PJCMD_RSCINFO_ITEM_RU_NAME

Resource unit name

The area specified by *va/l_pis undetermined after
the release of response information.

char *

PJCMD_RSCINFO_ITEM_RU_JOB_SUBMIT

Whether or not jobs can be submitted to a resource
unit

0: New jobs cannot be submitted.
1: New jobs can be submitted.

int

PJCMD_RSCINFO_ITEM_RU_JOB_EXECUTE

Whether or not jobs can be executed in a resource
unit

0: New jobs cannot be executed.
1: New jobs can be executed.

int

PJCMD_RSCINFO_ITEM_RU_SIZE

Resource unit size

- If compute node is FX server: Tofu shape
(unsigned int)va/_p[Q]: Size in X direction
(unsigned int)val_p[1]: Size in Y direction
(unsigned int)val_p[2]: Size in Z direction

- If compute node is PRIMERGY server:
Number of nodes
(unsigned int)va/_p[0]: Number of nodes
(unsigned int)va/_p[1]: Not used
(unsigned int)va/_p[2]: Not used

Avrray of
unsigned int
(Three
elements)

™)

PJCMD_RSCINFO_ITEM_RG_NAME

Resource group name

The area specified by *va/_pis undetermined after
the release of response information.

char *

PJCMD_RSCINFO_ITEM_RG_JOB_SUBMIT

Whether or not jobs can be submitted to a resource
group

0: New jobs cannot be submitted.
1: New jobs can be submitted.

int

PJCMD_RSCINFO_ITEM_RG_JOB_EXECUTE

Whether or not jobs can be executed in a resource
group

0: New jobs cannot be executed.
1: New jobs can be executed.

int

-142 -

item *val_p Type of

*val_p
PJCMD_RSCINFO_ITEM_RG_SIZE Resource group size Array of
. igned int
- If compute node is FX server: Node shape l(?ﬁlrzze "
(unsigned int)val_p[0]: Size in X direction elements)
(unsigned int)val_p[1]: Size in Y direction *)

(unsigned int)val_p[2]: Size in Z direction

- If compute node is PRIMERGY server:
Number of nodes
(unsigned int)val_p[0]: Number of nodes
(unsigned int)va/_p[1]: Not used
(unsigned int)va/_p[2]: Not used

PJCMD_RSCINFO_ITEM_MAX_SIZE_NUM Number of variations of the maximum node shape | unsigned int
that can be assigned to a job

This is used to get the maximum node shape by
using the pjemd_rscinfo_get_max_size() function.

(*) If the compute node is the PRIMERGY server, only the first element in an array is used. However, the areas must be prepared for
three elements.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in item.
PJCMD_ERROR_NODATA

The value of /indxis out of range.

C.3.10 pjcmd rscinfo_get max_size()

pjcmd_result_t pjcmd_rscinfo_get max_size(PjcmdResp_t *resp_p, int indx1l, int indx2, unsigned int
*val _p)

This function gets the maximum node shape that can be assigned to a job for one piece of resource information contained in response
information.

-143-

[ARGUMENTS]
resp_p
Pointer to a response information
indx1

Index of resource information, which needs to be referenced, in response information. The specifiable value ranges from 0 to a value
that is calculated by subtracting 1 from a value that is obtained by the pjecmd_rscinfo_get_rscinfo_num() function.

indx2

Index that indicates one of the variations of the maximum node shape in resource information. The specifiable value ranges from
0 to a wvalue that is calculated by subtracting 1 from a value that is obtained by the parameter
PJICMD_RSCINFO_ITEM_MAX_SIZE_NUM of the pjemd_rscinfo_get_info() function.

val_p

The maximum node shape is stored in the va/_g[] array. The caller needs to reserve the storage area for an unsigned int-type array
(number of elements is 3).

- If the compute node is the FX server: Node shape
val_p[0]: Size in X direction
val_p[1]: Size in' Y direction
val_p[2]: Size in Z direction

- If the compute node is the PRIMERGY server: Number of nodes
val_p[0]: Number of nodes
val_p[1]: Not used
Val_p[2]: Not used

If the compute node is the PRIMERGY server, only the first element in an array is used. However, the areas must be prepared for
three elements.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in 7tem.
PJCMD_ERROR_NODATA

The value of /indxI or indx2is out of range.

C.4 Getting Limit Value Information When Submitting a Job

This section describes the functions for getting information on limit values when submitting a job.

- 144 -

Figure C.7 Getting Limit Value Information

Command line

—P[pjcmd_l'lm'ltinro _parse _|:|jm_arg|s(j}kN
e

arguments
™. Set
- - ""\-\.R
pjcmd_limitinfo_put_scope() | l - S
.\ ¢ o
pjomd_limitinfo_put_parami() | J,_\“M -
e b . Handle
Parameter PicmdHandle_t

N om
[pjcrmd_limitinfo_get_scope() Reference

f
oy
L

| |

picmd_limitinfo_get_param()

[picmd_limitinfo_execute() |
Y - -
{ B \ (. N . 1 Response information
= = + - !
Display J | piomd_limitinfo_print_resp() | PicmdResp_t

I

Result information
reference function

Figure C.8 Referencing Limit Value Information

Response information PjcmdResp_t

4 A
Item Value ALL Limit Value Information
v n n I 1 1
e ol GROUP Limit Value Information i
Resource group name l(ﬂé’n-frrn.:?" L L L
T USER Limit Value Information -y
User name "usert
. Limit Value| Limit | Allocated | —
Group name groyp Mame | Value | Value
Amount of limit value NI G Limit Value B
information for USER : Info. O 1
Amount of limit value N2 G — ||
: Limit Wal
information for GROUP . o 1 Galud)
Amount of limit value N3 o =l
information for ALL ' ——
H Limit Walue &
; Info. M1 |
\. - - : J
-~ "__-_--,3 g ",:_-__"-L
| pjomd_limitinfo_get_frmitinfo) J ||:ujcrnd_|iml“hipfo_get_liml’ﬁnfo_value(ﬂ
i | l
L J h

Value | Information value

C.4.1 pjcmd limitinfo_parse pjstat_args()

pjcmd_result_t pjcmd_limitinfo_parse_pjstat_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification used when specifying the --limit option in the pjstat command
and sets the specified details in a handle.

[ARGUMENTS]
handle_p

Pointer to a handle

- 145 -

argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for acquiring limit value information.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

This function recognizes only the --limit option in the pjstat command and other options that can be specified with the --limit option at the
same time.

C.4.2 pjcmd_limitinfo_put _scope()

pjcmd_result_t pjcmd_limitinfo_put scope(PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void *val _p)

This function sets the target range for getting the limit value information in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier indicating the type of target range for getting information (See the following table.)

- 146 -

val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is
specified, the parameter value is initialized (not set).

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c) char *

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_limitinfo_execute() function.

This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.

PJCMD_SCOPE_RSCUNIT Resource unit name (only one name, equivalent to pjstat -- char *
rscunit)

If this parameter is not set, the default resource unit of the
execution user is applied.

PJCMD_SCOPE_RSCGRP Resource group name (only one name, equivalent to pjstat -- char *
rscgrp)

If this parameter is not set, resource unit information is obtained.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for acquiring limit value information.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_INVALID_PARAM
val_pis invalid.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.4.3 pjcmd limitinfo_get scope()

pjcmd_result_t pjcmd_limitinfo_get scope(const PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void
*val _p)

This function references a range for getting the limit value information that is set in a handle.

- 147 -

[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier of the target range to get information to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_limitinfo_put_scope() function.

val_p
A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for acquiring limit value information.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in scope.
PJCMD_ERROR_NODATA

A specified scopeis not set in a handle.

C.4.4 pjcmd_limitinfo_put _param()

pjcmd_result_t pjcmd_limitinfo_put param(PjcmdHandle_t *handl e_p, pjcmd_limitinfo_param_t param,
const void *val _p)

This function sets parameters in a handle that are related to limit value information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of the parameters related to the limit value information to be obtained (See the following table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is uid_t type, the caller must
prepare a storage area for the uid_t type value and specify a pointer (uid_t *) to the area in va/_p. If NULL is specified, the parameter
value is initialized (not set).

param *val_p Type of *val_p

PJICMD_LIMITINFO_USER_ID Target user ID for which limit value information is obtained | uid_t

- 148 -

param *val_p Type of *val_p

PJICMD_LIMITINFO_USER_NAME Target user name for which limit value information is char *
obtained

PJCMD_LIMITINFO_GROUP_ID Target group ID for which limit value information is obtained | gid_t

PJCMD_LIMITINFO_GROUP_NAME | Target group name for which limit value information is char *
obtained

PJCMD_LIMITINFO_HELP Equivalentto the specification of the --help option in the pjstat | int
command

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained.

As for the PJCMD_LIMITINFO_USER_ID or PJCMD_LIMITINFO_USER_NAME parameter, and the
PJICMD_LIMITINFO_GROUP_ID or PICMD_LIMITINFO_GROUP_NAME parameter, the one specified last is valid, respectively.
If it is not specified, the user or group that calls the function is applied.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for acquiring limit value information.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.4.5 pjcmd limitinfo_get param()

pjcmd_result_t pjcmd_limitinfo_get param(PjcmdHandle_t *handl e_p, pjcmd_limitinfo_param_t param,
void *val _p)

This function references information acquisition-related parameters that are set in a handle for acquisition of limit value information.
[ARGUMENTS]
handle_p

Pointer to a handle

- 149 -

param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_limitinfo_put_param() function.

val_p
A value is stored in *va/_p based on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for acquiring limit value information.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.4.6 pjcmd limitinfo_execute()

PjcmdResp_t *pjcmd_limitinfo_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to get limit value information based on a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about acquiring limit value information.

The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.

The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjecmd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for acquiring limit value information.

-150 -

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

C.4.7 pjcmd limitinfo_print_resp()

pjcmd_result_t pjcmd_limitinfo_print_resp(const PjcmdResp_t *resp_p)

This function outputs restriction information acquisition results to the standard output based on the specification used when specifying the
--limit option in the pjstat command.

[ARGUMENTS]

resp_p

Pointer to a response information
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring restriction information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.

- This is not response information about acquiring restriction information.

-151-

- This is not response information that was successfully obtained.

C.4.8 pjcmd_limitinfo_get limitinfo()

pjcmd_result_t pjcmd_limitinfo_get limitinfo(const PjcmdResp_t *resp_p, pjcmd_limitinfo_item t item,
void *val _p)

This function gets specific item information from the results of limit value information acquisition.
[ARGUMENTS]
resp_p
Pointer to a response information
item
Identifier indicating an information item to be obtained (See the following table.)
val_p

Avalue is stored in *val_pbased on the j/femtype. The caller needs to prepare an area of a sufficient size according to the value type.

item *val_p Type of *val_p
PJICMD_LIMITINFO_ITEM_RSCUNIT Resource unit name char *
PJCMD_LIMITINFO_ITEM_RSCGRP Resource group name char *
PJICMD_LIMITINFO_ITEM_USER Target user name char *
PJICMD_LIMITINFO_ITEM_GROUP Target group name char *
PIJCMD_LIMITINFO_ITEM_USER_INFO_NUM Amount of limit value information for user uint32_t
PJCMD_LIMITINFO_ITEM_GROUP_INFO_NUM | Amount of limit value information for group uint32_t
PJCMD_LIMITINFO_ITEM_ALL_INFO_NUM Amount of limit value information for total value | uint32_t
of all users

The resource unit name, resource group name, target user name, and target group name are pointers to character strings that are stored
in response information. Therefore, operation is undetermined when these character strings are referenced after the release of response
information.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring restriction information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in 7item.

-152 -

C.4.9 pjcmd limitinfo_get limitinfo value()

pjcmd_result_t pjcmd_limitinfo_get limitinfo_value(const PjcmdResp_t *resp_p,
pjcmd_limitinfo_class_t class, int indx, pjcmd_limitinfo_value_t item, void *val _p)

This function gets user restriction information, group restriction information, or specific information values in all restriction information
from response information about acquiring limit value information.

[ARGUMENTS]

resp_p
Pointer to a response information
class

Identifier indicating the layer of limit value information to be referenced (user restriction information, group restriction information,
or all restriction information)

class Description

PJCMD_LIMITINFO_CLASS_USER Limit value information for user

PJCMD_LIMITINFO_CLASS_GROUP | Limit value information for group

PJICMD_LIMITINFO_CLASS_ALL Limit value information for total value of all users

indx
Index of reference information in the limit value information layer indicated by c/ass. The specifiable value ranges from 0 to a value
that is calculated by subtracting 1 from the amount of limit value information in each layer that is obtained by the

pjcmd_limitinfo_get_limitinfo() function.
item
Identifier indicating a limit value information item to be referenced (See the following table.)

val_p
Avalue is stored in *val_pbased on the jfemtype. The caller needs to prepare an area of a sufficient size according to the value type.

item *val_p Type of *val_p
PJICMD_LIMITINFO_VALUE_NAME Name of limit value char *
PJCMD_LIMITINFO_VALUE_UPPER Upper limit value uinté4 t
PJCMD_LIMITINFO_VALUE_ALLOC Amount to be allocated uint64_t

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring restriction information.

- This is not response information that was successfully obtained.

- 153 -

PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in 7tem.

PJCMD_ERROR_NODATA

The value of /indx is out of range.

C.5 Getting Information on the Job ACL Function Settings

This section describes the functions for referencing information on the job ACL function settings.

Figure C.9 Requesting to Get Information on the Job ACL Function Settings

Command line [.) . v
arguments picmd_jacl_parse_pjacl_args() /|~.HH

¥ h? e
| pijcmd_jacl_put_scope() J l Set -

pjcmd_jacl_put_parami) J,-\“‘
b &
Handle
FicmdHandle_t

Reference

Parameter

picmd_jacl_get scope()

oy
o
4

picmd_jacl_get parami)

[picmd_jacl_execute() |

Y = =
- \ | . . B 1 | Response information
{ Display j— pjemd_jacl_print_resp() PjcmdResp_t

I

Result information
reference function

- 154 -

Figure C.10 Referencing Information on the Job ACL Function Settings
Response information PjcmdResp_t

ff Itemn type define Ttem type execute Item type permit Item type limit Item type select 1‘\'

Item Value | Item Walue | Item Walue 1 | Item Valus [T Itemn Value | Default [

E Name Name Mame Name MName Valus B

= H H H H g

\E I I g l volug) N N W

S 5 || | N

= M H | h - H H | H |
n T T - L L '_r.ll L [[]

: | I |
L Definitionfarget: USER/GROUP/ALL

Item type joblimit

Itern Name | Lower Upper Default
Lirnit Walue | Limit Value | Value

. - . - &
| picmd_jacl_get_jobaclinfe_num() J L picmd_jacl_get_jobaclinfo_value()

ey 4 vy
Information value

C.5.1 pjcmd jacl parse pjacl args()

pjcmd_result_t pjcmd_jacl_parse_pjacl_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

-

This function analyzes command line arguments based on the specification of a pjacl command option and sets the specified details in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for getting job ACL information.

-155-

PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

C.5.2 pjcmd _jacl put _scope()

pjcmd_result_t pjcmd_jacl_put_scope(PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void *val _p)

This function sets a range to get the job ACL information in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
scope
Identifier indicating the type of target range for getting information (See the following table.)
val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is
specified, the parameter value is initialized (not set).

scope *val_p Type of *val_p

PJCMD_SCOPE_RSCUNIT Resource unit name (only one. equivalent to pjacl --rscunit) char *

If this parameter is not set, the default resource unit of the
execution user is applied.

PJCMD_SCOPE_RSCGRP Resource group name (only one. equivalent to pjacl --rscgrp) char *

If this parameter is not set, resource unit information is obtained.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 156 -

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting job ACL information.
PJCMD_ERROR_INVALID_PARAM
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.5.3 pjcmd jacl get scope()

pjcmd_result_t pjcmd_jacl_get _scope(const PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void *val _p)

This function references the name of the target range (resource unit or resource group) for getting job ACL information that is set in ahandle.
[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier of the target range to get information to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jacl_put_scope() function.

val_p

A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting job ACL information.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in scope.
PJCMD_ERROR_NODATA

A specified scopeis not set in a handle.

- 157 -

C.5.4 pjcmd jacl put param()

pjcmd_result_t pjcmd_jacl_put_param(PjcmdHandle_t *handl e_p, pjcmd_jacl_param_t param, void *val _p)

This function sets parameters in a handle that are related to job ACL information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter related to the job ACL information to be obtained (See the following table.)
val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is uid_t type, the caller must
prepare a storage area for the uid_t type value and specify a pointer (uid_t *) to the area in va/_p. If NULL is specified, the parameter
value is initialized (not set).

param *val_p Type of *val_p
PJCMD_JACL_USER_ID Target user ID for which limit value information is obtained uid_t
PJCMD_JACL_USER_NAME Target user name for which limit value information is obtained | char *
PJCMD_JACL_GROUP_ID Target group ID for which limit value information is obtained | gid_t
PJICMD_JACL_GROUP_NAME Target group name for which limit value information is obtained | char *
PJCMD_JACL_DATA Equivalent to the --data option in the pjacl command int

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained but
does affect the results output by the pjemd_jacl_print_resp()
function.

PJCMD_JACL_DELIMITER Equivalent to the specification of a character that is used to char *
separate the information displayed using the --delimiter option
in the pjacl command.

This parameter does not affect the information to be obtained but
does affect the results output by the pjemd_jacl_print_resp()
function. If this parameter is not specified, a comma (,) is used.

PJCMD_JACL_HELP Equivalent to the specification of the --help option in the pjacl | int
command

0: Not specified (Default)
1: Specified

This parameter does not affect the job information to be
obtained.

As for the PJICMD_JACL_USER_ID or PJCMD_JACL_USER_NAME parameter, and the PJCMD_JACL_GROUP_ID or
PJCMD_JACL_GROUP_NAME parameter, the one specified last is valid, respectively. If it is not specified, the user or group that calls
the function is applied.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 158 -

[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting job ACL information.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
val_pisinvalid.
- A specification method is incorrect.
- Avalue is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.5.5 pjcmd_jacl get param()

pjcmd_result_t pjcmd_jacl_get_param(const PjcmdHandle_t *handl e_p, pjcmd_jacl_param_t param, void
*val _p)

This function references the set parameters in a handle that are related to job ACL information acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle

param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jacl_put_param() function.

val_p
A value is stored in *va/_pbased on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting job ACL information.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

-159 -

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.5.6 pjcmd jacl execute()

PjcmdResp_t *pjcmd_jacl_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to get job ACL information based on a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about acquiring job ACL information.

The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.

The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjecmd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting job ACL information.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

Information acquisition cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

C.5.7 pjecmd_jacl print resp()

pjcmd_result_t pjcmd_jacl_print_resp(const PjcmdResp_t *resp_p)

This function outputs the results of job ACL information acquisition to the standard output based on the specification in the pjacl command.

- 160 -

[ARGUMENTS]

resp_p

Pointer to a response information
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job ACL information.

- This is not response information that was successfully obtained.

C.5.8 pjcmd jacl get jaclinfo_num()

int pjcmd_jacl_get_jaclinfo_num(const PjcmdResp_t *resp_p, pjcmd_jacl_class_t cl ass,
pjcmd_jacl_type_t type)

This function gets the total number of job ACL definition items for specific definition targets and specific types of job ACL definitions from
response information about acquiring job ACL information.

[ARGUMENTS]
resp_p

Pointer to a response information
class

Identifier indicating the definition targets (USER, GROUP, or ALL definitions) of the job ACL definition items to be obtained

class Description
PJICMD_JACL_CLASS_USER USER definitions
PJCMD_JACL_CLASS GROUP GROUP definitions
PJCMD_JACL_CLASS_ALL ALL definitions
type
Identifier indicating the definition types (define, joblimit, execute, permit, limit, or select) of the job ACL definition items to be
obtained
type Description

PIJICMD_JACL_TYPE_DEFINE

Definition type define

PJCMD_JACL_TYPE_JOBLIMIT

Definition type joblimit

PJICMD_JACL_TYPE_EXECUTE

Definition type execute

PJCMD_JACL_TYPE_PERMIT

Definition type permit

PJICMD_JACL_TYPE_LIMIT

Definition type limit

PJICMD_JACL_TYPE_SELECT

Definition type select

-161 -

[RETURN VALUE]

Total number of job ACL definition items.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job ACL information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in c/assor type.
PJCMD_ERROR_INVALID_PARAM

There is no definition item indicated by the combination of c/assand #ype.

C.5.9 pjcmd jacl get jaclinfo_value()

pjcmd_result_t pjcmd_jacl_get_jaclinfo_value(const PjcmdResp_t *resp_p, pjcmd_jacl_class_t cl ass,
pjcmd_jacl_type_t type, int indx, pjcmd_jacl_info_t info, void *val _p)

This function references values of job ACL definition information.
[ARGUMENTS]

resp_p

Pointer to a response information

class

Identifier indicating the definition target (USER, GROUP, or ALL definitions) of a job ACL definition item. The values that can be

specified are the same as those of the pjcmd_jacl_get_jaclinfo_num() function.

type

Identifier indicating the definition type (define, joblimit, execute, permit, limit, or select) of a job ACL definition item. The values

that can be specified are the same as those of the pjcmd_jacl_get_jaclinfo_num() function.

indx

Index of definition items that needs to be referenced among the job ACL definition items of the definition target c/ass and the
definition type fype. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is obtained

by the pjemd_jacl_get_jaclinfo_num() function.
info
Identifier of a value to be referenced (See the following table.)

val_p

A value is stored in *va/_pbased on the /nfotype. The caller needs to prepare an area of a sufficient size according to the value type.

info *val_p Type of *val_p

PJCMD_JACL_INFO_NAME Name of a job ACL definition item char *

The name is the same as the definition item name
that is described when setting the job ACL
definition.

PJCMD_JACL_INFO_DEFINE_VALUE Value of a job ACL definition item whose char *
definition type is define

-162 -

info *val_p Type of *val_p
PJICMD_JACL_INFO_JOBLIMIT_LOWER Lower limit value of a job ACL definition item uinté4_t
whose definition type is joblimit
PJCMD_JACL_INFO_JOBLIMIT_UPPER Upper limit value of a job ACL definition item uinté4 t
whose definition type is joblimit
PJICMD_JACL_INFO_JOBLIMIT_DEFAULT Initial value of a job ACL definition item whose uinté4_t
definition type is joblimit
PJCMD_JACL_INFO_EXECUTE_VALUE Value of a job ACL definition item whose char *
definition type is execute
PJCMD_JACL_INFO_PERMIT_VALUE Value of a job ACL definition item whose char *
definition type is permit
PJCMD_JACL_INFO_LIMIT_VALUE Value of a job ACL definition item whose uint64_t
definition type is limit
PJCMD_JACL_INFO_SELECT_VALUE Value of a job ACL definition item whose char *
definition type is select
PICMD_JACL_INFO_SELECT_DEFAULT Initial value of a job ACL definition item whose char *
definition type is select

If the value type is char * type (a pointer to a character string), the character string is in an area in response information. Therefore,
operation is undetermined when the character string is referenced after the release of response information.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring job ACL information.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in class, type, or info.
PJCMD_ERROR_INVALID_PARAM
The specified parameter is invalid.
- The information /nfo cannot be specified in the job ACL definition item #ype.
- There is no definition item indicated by the combination of c/assand #ype.

- The indxvalue is out of range.

C.6 Getting the Status of Job Resource Usage

This section describes the functions for getting the status of job resource usage.

- 163 -

Figure C.11 Requesting to Get the Status of Job Resource Usage

argurment

Command line

—P[-pjund_rsmmt_pa rse_pjshowrsc_argsi()]\

Parameter

picrnd_rscstat_put scope()] l
pjcmd_rscstat_put_param() J J’\H

T

picmd_rscsiat_get scope()]]

L

picmd_rscstat_get paramd() J |

Reference

Handle
PicmdHandle_t

[_ picmd_rscstat_execute() J

(D’l_'r.plawg.r __,-'H 1 pjcmd_rscstat_print_resp() J"‘

| Response information
PjcmdResp_t

I

Result information
reference function

Figure C.12 Referencing Information Group (Information Acquisition Unit)

Target scope

type

.
""[pjomd_rscstat_get_infogrp_scope_type() #+—
&

MName/ID of
target scope

ol -
‘_.f{.p]'cmd_rscstat_get_lnl’ogrp_scope_ua lue() J"—

Response 'Thfc[mati:::n PjcmdResp_t

4 "*'\-.r
Resource T,

usage status ¢ s

Information
Group X-1

source info.

Custom resource
information

L

vy

—

[pjcmd_rsc‘;bgt_qet_rscinm_numﬂ]

e

(picmd_rgcstat_get_rscinfo())

ol

3 i
M Custom resource

reference function

Resource information
_ FicmdRscsiatRscinfo_t

- 164 -

Figure C.13 Referencing Resource Information

| Target scope type | | Name/ID of target scope
f
h 4
| piemd_rscstat _|:|et_r5c:'|n1’t_:_5cope_t_.rpe{} | | |:|jcmd_rsm_‘élt_get_rr_.cinfo_smpe_vaIue{}_]
L. .Li Y . +_,_ ry
Resource information =,
PjcmdRscstatRscinfo_t ™.,
' e * ™
| Acquisition Scope | G_ccp% |
Total Amount | Amount Used Unusaed Amount
Number of Nodes
Number of CPU Cores o (‘u’alua
Memory amount +
| Iob Information | o | . _1:‘,-‘ | @ | St |
| Custom resource Irrfnrmah;pf; | Informatl'ont'-.r]
= . J
S T
i — 0 - ™ i .“‘.. o
| picmd_rscstat _get_rscififo_info() | | pjernd_rscstat_read _jc:l:.inro{}]
"
alu Cu"tc:r'n resource Sub job ID structure
reference function PjcrndSubjobid_t

Figure C.14 Referencing Custom Resource Information
Response information PjcmdResp_t or Resource information PjcmdRscstatRscinfo_t

T e O e

Custom resource information allocated ’__,"-- 3 \

i Per resource unit/resource group ~ Mumeric-type custom resource information
o | 1| 2 || 22 @'\ | @D | no.r | o |]

. g;ﬁmﬁﬁ ::ig:fﬂum ?'++"-, ‘ K'lr'u.gl::wpe custom resource information

il o 1 |- i (G, | wifo. A |Q"f°@ e

e -

[picmd_ rscstat_qet |nfo-grp,_customrscmro{}] (p]-:rr}ﬂ_rsr_’-lmt get.lnfogrp_customrsc num{}]
i
L pjcmd rsismt_get rscml'o;_customrscmfo{]l J I\plcmd rs:slaf'__get -rscmfc- customrsc num{}]

| Custom resource information

PicmdRscstatCustomRscinfo_t

——at ;
AN E
l I‘+ -"

rul " r > r
[pjcmd_rscstat_get_customrscinfo_walue()] ijcmd_rscsbart_qet_mstomrgf'lnfo_kind_value{jJ

-

& [
Information Information

- 165 -

C.6.1 pjcmd rscstat parse pjshowrsc args()

pjcmd_result_t pjcmd_rscstat_parse_pjshowrsc_args(PjcmdHandle_t *handl e_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjshowrsc command option and sets the specified details
in a handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting the resource usage status.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_INTERNAL
Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

C.6.2 pjcmd rscstat put scope()

pjcmd_result_t pjcmd_rscstat_put_scope(PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, const void
*val _p, uint32_t n)

This function sets a range to get the resource usage status in a handle.

- 166 -

[ARGUMENTS]
handle_p
Pointer to a handle
scope
Identifier indicating the type of target range for getting information (See the following table.)
val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is
specified, the parameter value is initialized (not set).

Number of elements of val p

scope *val_p Type of *val_p
PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c) char *

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, all authorized clusters are applied.

This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which
the calling node belongs is applied.

1 must be specified in 7 for the parameter.

PJCMD_SCOPE_NODEGRP Array of a node group ID (number of elements is 7, equivalent | uint32_t *
to pjshowrsc --nodegrp)

If this parameter is set in a handle, administrator privileges are
required for calling the pjcmd_rscstat_execute() function.

PJCMD_SCOPE_NODEGRP_STR Array of a node group ID (character string) (number of char **
elements is 7, equivalent to pjshowrsc --nodegrp)

Node group IDs can also be used to express a range ("'/D1-
1D2").

If this parameter is set in a handle, administrator privileges are
required for calling the pjemd_rscstat_execute() function.

PJICMD_SCOPE_BOOTGRP Array of a boot group ID (number of elements is 7, equivalent | uint32_t *
to pjshowrsc --bootgr)

If this parameter is set in a handle, administrator privileges are
required for calling the pjemd_rscstat_execute() function.

PJCMD_SCOPE_BOOTGRP_STR Array of aboot group ID (character string) (number of elements | char **
is n, equivalent to pjshowrsc --bootgr)

Boot group IDs can also be used to express a range (' /D1-
1D2").

If this parameter is set in a handle, administrator privileges are
required for calling the pjcmd_rscstat_execute() function.

PJCMD_SCOPE_RSCUNIT Array of a resource unit name (number of elements is 7, char **
equivalent to pjshowrsc --rscunit)

If "*" is specified as a resource unit name, all resource units are
targeted.

PJCMD_SCOPE_RSCGRP Aurray of a resource group name (number of elements is 7, char **
equivalent to pjshowrsc --rscgrp)

- 167 -

*val_p Type of *val_p

If "*" is specified as a resource group name, all resource groups
are targeted.

scope

PJCMD_SCOPE_NODE Array of a node ID (number of elements is 7, equivalent to uint32_t *
pjshowrsc -n)

PJCMD_SCOPE_NODE_STR Array of a node ID (character string) (number of elementsis n, | char **
equivalent to pjshowrsc -n).

Node IDs can also be used to express a range ("/D1-1D2").

scope, the identifiers other than PICMD_SCOPE_CLUSTER are exclusive of each other.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting the resource usage status.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in scope.
PJCMD_ERROR_INVALID_PARAM
val_por nis invalid.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.6.3 pjcmd rscstat get scope()

pjcmd_result_t pjcmd_rscstat_get _scope(const PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void
*val _p, uint32_t *n_p)

This function references the target range for getting the resource status that is set in a handle.

[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier of the target range to get information to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscstat_put_scope() function.

val_p
A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value

type.

n_p
The number of elements of va/_pis stored in *17_p. The caller needs to prepare the area.

- 168 -

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting the resource usage status.
PJCMD_ERROR_INVALID_ARGUMENT
val_por nisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in scope.
PJCMD_ERROR_NODATA

A specified scopeis not set in a handle.

C.6.4 pjcmd rscstat put param()

pjcmd_result_t pjcmd_rscstat_put_param(PjcmdHandle_t *handl e_p, pjcmd_rscstat_param_t param, const
void *val _p)

This function sets parameters in a handle that are related to the resource status acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of parameters related to the resource usage status to be obtained (See the following table.)
val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the area in va/_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_RSCSTAT_VERBOSITY Granularity of the resource status information to be obtained | int

- PICMD_RSCSTAT_VERBOSITY_SELF
The information in the specified scope layer is obtained.
(Default)

- PICMD_RSCSTAT_VERBOSITY_CHILD
Information in the layers under the specified scopeis also
obtained.

- PJCMD_RSCSTAT_VERBOSITY_NODE
Even the node resource status is obtained.

PJICMD_RSCSTAT_INFO_LEVEL Level of information to be obtained when acquisition of int
information in a node unit

- 169 -

param

*val_p

Type of *val_p

(PICMD_RSCSTAT_VERBOSITY_NODE) is specified in
the PICMD_RSCSTAT_VERBOSITY parameter
(equivalent to pjshowrsc -v)

0: Obtain compute resource amount (number of nodes,
number of CPU cores, memory amount, local file system size)
(Default)

1: Also obtain job IDs of running jobs in addition to above
information

2: Also obtain custom resource information in addition to
above information

3: Also obtain job IDs that use nodes as communication
routes, in addition to above information

PJCMD_RSCSTAT_EXCLUSIVE Whether or not to exclude jobs in other resource groups that | int
share resources, from the resource usage amount of a resource
group to be obtained (equivalent to pjshowrsc --exclusive)

0: Include resources of other resource groups (Default)
1: Exclude resources of other resource groups

PJCMD_RSCSTAT_CUSTOMRSC Whether or not to get custom resource information is specified | int
when a resource unit or resource group is the target
(equivalent to pjshowrsc --custom-resource).

0: Do not obtain custom resource information (Default)
1: Obtain custom resource information

PJCMD_RSCSTAT_STATUS Whether or not to get information for all nodes is specified int
when nodes are targeted.

0: Obtain only information for available nodes (Default)
1: Obtain information for all nodes

PJCMD_RSCSTAT_RAW Equivalent to the specification of the --raw option in the int
pjshowrsc command
0: Not specified (Default)

1: Specified

This parameter does not affect the information to be obtained
but does affect the results output by the
pjcmd_rscstat_print_resp() function.

PJCMD_RSCSTAT_DATA Equivalent to the specification of the --data option in the int
pjshowrsc command
0: Not specified (Default)

1: Specified

This parameter does not affect the information to be obtained
but does affect the results output by the
pjcmd_rscstat_print_resp() function.

PJCMD_RSCSTAT_DELIMITER Equivalent to the specification of a character that is used to | char *
separate the information displayed using the --delimiter
option in the pjshowrsc command
This parameter does not affect the information to be obtained
but does affect the results output by the
pjecmd_rscstat_print_resp() function. If this parameter is not
specified, a comma (,) is used.

PJICMD_RSCSTAT_HELP Equivalent to the specification of the --help option in the int

pjshowrsc command

-170 -

param *val_p Type of *val_p

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained.

Information on job resource usage is obtained in the following units based on scopespecified in the pjcmd_rscstat_put_scope() function
and the granularity of information specified in the PICMD_RSCSTAT_VERBOSITY parameter of the pjcmd_rscstat_put_param()
function.

scope Granularity (*) Unit of Information to be Obtained
Cluster SELF Cluster unit
CHILD In system with compute cluster sub management node:
Node group
In system without compute cluster sub management node:
Boot group
NODE Node
Node group SELF Node group
CHILD Boot group
NODE Node
Boot group SELF Boot group
CHILD Node
NODE Node
Resource unit SELF Resource unit
CHILD Node
NODE Node
Resource group SELF Resource group
CHILD Node
NODE Node
Node Any Node

(*) "SELF" refers to PICMD_RSCSTAT_VERBOSITY_SELF, "CHILD" refers to PICMD_RSCSTAT_VERBOSITY_CHILD, and
"NODE" refers to PICMD_RSCSTAT_VERBOSITY_NODE.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting the resource usage status.
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

-171-

PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.6.5 pjcmd rscstat get param()

pjcmd_result_t pjcmd_rscstat_get _param(const PjcmdHandle_t *handl e_p, pjcmd_rscstat _param_t param,
void *val _p)

This function references the set parameters in a handle that are related to resource status acquisition.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscstat_put_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting the resource usage status.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.6.6 pjcmd rscstat _execute()

PjcmdResp_t *pjcmd_rscstat_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to get the resource usage status based on a handle.

-172 -

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about acquiring the resource usage status.

The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.

The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjemd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting the resource usage status.
PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.
PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.
PJCMD_ERROR_NOMEM

Memory acquisition failed.
PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.
PJCMD_ERROR_NOPERM

Calling the function is not permitted.
PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.
PJCMD_ERROR_INTERNAL

Internal error

C.6.7 pjcmd rscstat _print resp()

pjcmd_result_t pjcmd_rscstat_print_resp(const PjcmdResp_t *resp_p)

This function outputs the results of resource usage status acquisition to the standard output based on the specification of the pjshowrsc
command.

[ARGUMENTS]
resp_p
Pointer to a response information
[RETURN VALUE]
PJCMD_OK

Success

-173 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

C.6.8 pjcmd rscstat get infogrp_num()

int pjcmd_rscstat_get_infogrp_num(const PjcmdResp_t *resp_p)

This function gets the number of information groups included in response information about acquiring the resource usage status.
An information group is information obtained in the information acquisition unit (cluster, node group, boot group, etc.) that is specified by

the pjemd_rscstat_put_scope() function when getting information.
[ARGUMENTS]

resp_p

Pointer to a response information
[RETURN VALUE]

Number of information groups.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

C.6.9 pjcmd rscstat get infogrp _scope type()

pjcmd_scope_t pjcmd_rscstat_get_infogrp_scope_type(const PjcmdResp_t *resp_p, int indx)

This function returns the type of information acquisition unit for a specific information group that is included in response information about
acquiring the resource usage status.

[ARGUMENTS]
resp_p

Pointer to a response information

indx
Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjemd_rscstat_get_infogrp_num() function.

[RETURN VALUE]

Identifier indicating a unit for getting information on an information group.

Identifier Meaning

PJCMD_SCOPE_CLUSTER Cluster unit

-174 -

Identifier

Meaning

PJCMD_SCOPE_NODEGRP

Node group unit

PJCMD_SCOPE_BOOTGRP

Boot group unit

PJCMD_SCOPE_RSCUNIT

Resource unit unit

PJCMD_SCOPE_RSCGRP

Resource group unit

PJCMD_SCOPE_NODE

Node unit

If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[picmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_pis NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_PARAM

The /ndx value is out of range.

C.6.10 pjcmd rscstat get infogrp scope value()

pjcmd_result_t pjcmd_rscstat_get_infogrp_scope_value(const PjcmdResp_t *resp_p,
pjcmd_scope_t scope, void *val _p)

int i ndx,

This function gets the name (cluster name, resource unit name, or resource group name) or ID (node group ID, boot group ID, or node ID)
of an information acquisition unit for a specific information group that is included in response information about acquiring the resource

usage status.
[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is

obtained by the pjemd_rscstat_get_infogrp_num() function.

scope

Type of information acquisition unit to get names or IDs. (See the following table.)
If the scope argument is different from the type of unit to get information groups, an error occurs.

val_p

A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value

type.
scope *val_p Type of *val_p
PJCMD_SCOPE_CLUSTER Cluster name char *
The area specified by *va/l_pis undetermined after the release of
response information.
PJCMD_SCOPE_NODEGRP Node group ID uint32_t
PJCMD_SCOPE_BOOTGRP Boot group ID uint32_t

-175-

scope *val_p Type of *val_p
PJCMD_SCOPE_RSCUNIT Resource unit name char *
The area specified by *va/l_pis undetermined after the release of
response information.
PJCMD_SCOPE_RSCGRP Resource group name char *
The area specified by *va/_pis undetermined after the release of
response information.
PJCMD_SCOPE_NODE Node 1D uint32_t

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource usage status.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in scope.
PJCMD_ERROR_INVALID_PARAM

- Scope does not match the information group acquisition unit.

- The indxvalue is out of range.

C.6.11 pjcmd rscstat get rscinfo_num()

int pjcmd_rscstat_get_rscinfo_num(const PjcmdResp_t *resp_p, int indx)

This function gets the amount of resource information included in a specific information group in response information about acquiring the
resource usage status.

[ARGUMENTS]

resp_p
Pointer to a response information

indx
Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjemd_rscstat_get_infogrp_num() function.

[RETURN VALUE]

Amount of resource information.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

-176 -

[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource usage status.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_PARAM

The /ndx value is out of range.

C.6.12 pjcmd rscstat _get infogrp customrsc_num()

pjcmd_result_t pjcmd_rscstat_get_infogrp_customrsc_num(const PjcmdResp_t *resp_p, int indx,
pjcmd_rscstat_customrsc_alloc_t type, uint32_t *num p)

This function gets the number of custom resources for a specific information group.
[ARGUMENTS]
resp_p
Pointer to a response information
indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjemd_rscstat_get_infogrp_num() function.

type

Custom resource allocation type

Identifier Meaning

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC RU RG Custom resources that are allocated to each resource
unit or resource group

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_NODE Custom resources that are allocated to each node

num_p
The number of custom resources is stored in *num_p. The caller needs to prepare the area.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource usage status.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_PARAM

The /ndx value is out of range.

-177 -

PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in fype.

C.6.13 pjcmd rscstat _get infogrp customrscinfo()

PjcmdRscstatCustomRscinfo_t * pjcmd_rscstat_get_infogrp_customrscinfo(const PjcmdResp_t *resp_p, int
i ndx, pjcmd_rscstat_customrsc_alloc_t type, uint32_t cs_i ndx)

This function gets custom resource information for a specific information group.
[ARGUMENTS]
resp_p
Pointer to a response information
indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjemd_rscstat_get_infogrp_num() function.

type

Custom resource allocation type

Identifier Meaning

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_RU_RG Custom resources that are allocated to each resource
unit or resource group

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_NODE Custom resources that are allocated to each node

cs_indx

Index of custom resources. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjemd_rscstat_get_infogrp_customrsc_num() function.

[RETURN VALUE]

Pointer to custom resource information. If information that can be obtained is referenced after the release of response information,
operation is undetermined.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource usage status.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_PARAM
The /ndx value is out of range.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in fype.
PJCMD_ERROR_NODATA

The value of ¢s_indxis out of range.

-178 -

C.6.14 pjcmd rscstat get rscinfo()

PjcmdRscstatRscinfo_t *pjcmd_rscstat _get rscinfo(const PjcmdResp_t *resp_p, int infogrp_indx, int
rsci nfo_i ndx)

This function gets one piece of resource information in a specific information group.
[ARGUMENTS]
resp_p
Pointer to a response information
infogrp_indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjemd_rscstat_get_infogrp_num() function.

rscinfo_indx

Index of resource information to be referenced in an information group. The specifiable value ranges from 0 to a value that is
calculated by subtracting 1 from a value that is obtained by the pjcmd_rscstat_get_rscinfo_num() function.

[RETURN VALUE]

Pointer to a resource information.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not response information about acquiring resource usage status.
- This is not response information that was successfully obtained.
PJCMD_ERROR_INVALID_PARAM

The infogrp_indx or rscinfo_indx value is out of range.

C.6.15 pjcmd rscstat get rscinfo _scope type()

pjcmd_scope_t pjcmd_rscstat_get_rscinfo_scope_type(const PjcmdRscstatRscinfo_t *rscinfo_p)

This function gets the type of information acquisition unit for resource information.
[ARGUMENTS]
rscinfo_p
Pointer to resource information. This is a value returned by the pjcmd_rscstat_get_rscinfo() function.
[RETURN VALUE]

Identifier indicating a unit for getting information of resource.

Identifier Meaning
PJCMD_SCOPE_CLUSTER Cluster unit
PJCMD_SCOPE_NODEGRP Node group unit
PJCMD_SCOPE_BOOTGRP Boot group unit
PJCMD_SCOPE_RSCUNIT Resource unit unit
PJCMD_SCOPE_RSCGRP Resource group unit
PICMD_SCOPE_NODE Node unit

-179 -

If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT

Resource information rscinfo_pis invalid (NULL).

C.6.16 pjcmd rscstat get rscinfo_scope value()

pjcmd_result_t pjcmd_rscstat_get rscinfo_scope_value(const PjcmdRscstatRscinfo_t *rscinfo_p,
pjcmd_scope_t scope, void *val _p)

This function gets the name (cluster name, resource unit name, or resource group name) or ID (node group ID, boot group 1D, or node ID)
of a unit to get resource information.

[ARGUMENTS]
rscinfo_p
Pointer to resource information. This is a value returned by the pjcmd_rscstat_get_rscinfo() function.
scope

Type of information acquisition unit. (See the following table.)
If scopeis different from the type of unit to get resource information, an error occurs.

val_p

A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value

type.
scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name char *
The area specified by *val_p is undetermined after the release of
response information.

PJCMD_SCOPE_NODEGRP Node group 1D uint32_t

PJCMD_SCOPE_BOOTGRP Boot group ID uint32_t

PJCMD_SCOPE_RSCUNIT Resource unit name char *
The area specified by *val_p is undetermined after the release of
response information.

PJCMD_SCOPE_RSCGRP Resource group name char *
The area specified by *val_p is undetermined after the release of
response information.

PJCMD_SCOPE_NODE Node ID uint32_t

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
rscinfo_por val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

-180 -

PJCMD_ERROR_INVALID_PARAM

scope does not match the resource information acquisition unit.

C.6.17 pjcmd rscstat get rscinfo_info()

pjcmd_result_t pjcmd_rscstat_get rscinfo_info(const PjcmdRscstatRscinfo_t *rscinfo_p,
pjcmd_rscstat_rsc_name_t rscnane, pjcmd_rscstat _rsc_value_t type, void *val _p)

This function references the total amount of specific resources, usage amount, or available amount from resource information.
[ARGUMENTS]
rscinfo_p
Pointer to a resource information
rscname
Identifier of a resource name to be referenced (See the following table.)
type
Identifier of a resource amount to be referenced (See the following table.)
val_p

A value is stored in *val_pbased on the rscnametype. The caller needs to prepare an area of a sufficient size according to the value

type.
rscname *val_p Type of *val_p
PJCMD_RSCSTAT_RSC_NODE Number of compute nodes uint32_t
PJCMD_RSCSTAT_RSC_CPU Number of CPU cores of compute node uint32_t
PJCMD_RSCSTAT_RSC_MEM Memory amount of compute node uint64_t
type Description
PJCMD_RSCSTAT_RSC_TOTAL Total amount of rscname resource
PJCMD_RSCSTAT_RSC_ALLOC Usage amount of rscname resource
PJCMD_RSCSTAT_RSC_FREE Unused amount of rscname resource

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
rscinfo_por val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in rscname or type.

C.6.18 pjcmd rscstat read jobinfo()

PjcmdSubjobid_t *pjcmd_rscstat_read_jobinfo(PjcmdRscstatRscinfo_t *rscinfo_p,
pjcmd_rscstat_jobtype_t type)

-181-

If resource information is the information in a node unit, this function returns one sub job 1D structure of a job that is being executed using
the node resource, or one sub job ID structure of a job that uses the node as a communication route. The next relevant job is returned every

time this function is called.
[ARGUMENTS]
rscinfo_p
Pointer to a resource information
type
Type of job to be referenced

Identifier Meaning

PJCMD_RSCSTAT_RUNNING_JOBS Job that is being executed using a node resource

PJCMD_RSCSTAT _JOBS USING_ROUTE Job that uses a node as a communication route

[RETURN VALUE]

Pointer to a sub job ID structure.
The contents of the area specified by the obtained pointer are undetermined after calling this function next time.

If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
rscinfo_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in #ype.
PJCMD_ERROR_NODATA

There is no next job.

C.6.19 pjcmd rscstat _get rscinfo_customrsc_num()

pjcmd_result_t pjcmd_rscstat_get_rscinfo_customrsc_num(const PjcmdRscstatRscinfo_t *rscinfo_p,
pjcmd_rscstat_customrsc_alloc_t type, uint32_t *num p)

This function gets the number of custom resources included in resource information.

[ARGUMENTS]
rscinfo_p
Pointer to a resource information
type
Custom resource allocation type

Identifier Meaning

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC RU RG Custom resources that are allocated to each resource
unit or resource group

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_NODE Custom resources that are allocated to each node

num_p

The number of custom resources is stored in *num_p. The caller needs to reserve the area.

-182 -

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
rscinfo_por val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in #ype.

C.6.20 pjcmd rscstat _get rscinfo_customrscinfo()

PjcmdRscstatCustomRscinfo_t *pjcmd_rscstat_get rscinfo_customrscinfo(const PjcmdRscstatRscinfo_t
*rscinfo_p, pjcmd_rscstat_customrsc_alloc_t type, uint32_t i ndx)

This function gets information on a specific custom resource that is included in resource information.
[ARGUMENTS]
rscinfo_p
Pointer to a resource information
type
Custom resource allocation type
indx

Index of custom resources. The specifiable value ranges from 0 to a value that is obtained by subtracting 1 from a value that is
obtained by the pjemd_rscstat_get_rscinfo_customrsc_num() function.

[RETURN VALUE]

Custom resource information.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[picmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
rscinfo_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in ype.
PJCMD_ERROR_NODATA

The value of /indxis out of range.

C.6.21 pjcmd rscstat get customrscinfo_value()

pjcmd_result_t pjcmd_rscstat_get customrscinfo_value(const PjcmdRscstatCustomRscinfo_t *rscinfo_p,
pjcmd_rscstat_customrsc_value_t type, void *val _p)

This function references custom resource information individually.
[ARGUMENTS]
rscinfo_p

Pointer to custom resource information. This is the information obtained by the pjcmd_rscstat_get_rscinfo_customrscinfo()
function.

-183 -

type
Identifier of information to be referenced (See the following table.)
val_p

A value is stored in *va/_pbased on the #ypetype. The caller needs to prepare an area of a sufficient size according to the value type.

type *val_p Type of *val_p
PJCMD_RSCSTAT_CUSTOMRSC_NAME Custom resource name char *

Operation is undetermined when the obtained
value is referenced after the release of response
information.

PJCMD_RSCSTAT_CUSTOMRSC_TYPE Custom resource amount type int

PJCMD_RSCSTAT_CUSTOMRSC_NUM
Custom resources are of the numerical value

type.

PJICMD_RSCSTAT_CUSTOMRSC_KIND
Custom resources are of the kind type.

PJCMD_RSCSTAT_CUSTOMRSC_TOTAL Total amount of custom resources inté4 _t
(for custom resources of numerical value type)

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC Amount of custom resources in use inté4_t
(for custom resources of numerical value type)

PJCMD_RSCSTAT_CUSTOMRSC_FREE Amount of unused custom resources int64_t
(for custom resources of numerical value type)

PJCMD_RSCSTAT_CUSTOMRSC_KIND_NUM Number of custom resources int
(for custom resources of kind type)

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
rscinfo_por val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in fype.

C.6.22 pjcmd rscstat _get customrscinfo_kind value()

pjcmd_result_t pjcmd_rscstat_get customrscinfo_kind_value(const PjcmdRscstatCustomRscinfo_t
*rscinfo_p, int indx, pjcmd_rscstat_customrsc_kind_value_t type, void *val _p)

This function references the resource information when the type of custom resource information is the kind type.
[ARGUMENTS]
info_p

Pointer to custom resource information (kind type)

-184 -

indx

Index of custom resource information (kind type) to be referenced. The specifiable value ranges from 0 to a value that is calculated
by subtracting 1 from a value that is obtained by the pjemd_rscstat_get_customrscinfo_value() function.

type
Identifier of information to be referenced (See the following table.)
val_p

A value is stored in *va/_pbased on the #ypetype. The caller needs to prepare an area of a sufficient size according to the value type.

type *val_p Type of *val_p
PJCMD_RSCSTAT_CUSTOMRSC_KIND_ NAME Name of custom resource type char *
PJCMD_RSCSTAT_CUSTOMRSC_KIND_TOTAL Total amount of custom resources inté4_t
PJCMD_RSCSTAT_CUSTOMRSC_KIND_ALLOC Amount of custom resources in use inté4_t
PJCMD_RSCSTAT_CUSTOMRSC_KIND_FREE Amount of unused custom resources inté4_t

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_ARGUMENT
- rscinfo_por val_pisinvalid (NULL).
- rscinfo_pis not a custom resource of the kind type.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in fype.
PJCMD_ERROR_NODATA

The value of /indxis out of range.

-185-

Appendix D Job Operation Control APl Reference

D.1 Setting of Job Submission/Job Execution Permissions

This section describes the functions for setting permissions for job submission and job execution in job operations.

Figure D.1 Requesting to Set Permissions for Job Submission and Job Execution

Command line (. -)y 5
arguments "‘I picrmid_pmpjmopt_get_command_type() J| '| Optlion type

pijcmd_setpjmsiat_parse_pmpjmopt_args() |\ e
Se

l | picmd_setpimstat_put_scope () L \
7 % Set

_picmd_setpimstat_put_param() | | "

Hamdle

Parameter PicrdHandle_t

-

picrd_setpjmstat_get scope()

Reference

I)
L r picmd_setpjmstat_get_param() |

4o

h J

[picmd_setpimstat_execute() _.l

h

Response information
PjcmdResp_t

I

Result information
reference function

D.1.1 pjcmd pmpjmopt get command type()

pjcmd_pmpjmopt_command_type_t pjcmd_pmpjmopt_get command_type(int argc, char **argv_pp)

This function analyzes command line arguments as arguments of the pmpjmopt command to determine whether --show-rsc-ug or --set-rsc-
ug option is specified.

[ARGUMENTS]
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
Operation type of the pmpjmopt command
PJCMD_PMPJMOPT_SET_RSC_UG
The --set-rsc-ug option is specified.
PJCMD_PMPJMOPT_SHOW_RSC_UG
The --show-rsc-ug option is specified.
PCMD_PMPJMOPT_UNKNOWN_COMMAND_TYPE

Nothing could be determined (both options are specified, or either option is not specified).

- 186 -

[picmd_errcode]
PJCMD_SUCCESS

Success. This code is set when the return values are PJCMD_PMPJMOPT_SET_RSC_UG and
PJICMD_PMPJMOPT_SHOW_RSC_UG.

PJCMD_ERROR_UNKNOWN_OPTION
Nothing could be determined. This code is set when the return value is PCMD_PMPJMOPT_UNKNOWN_COMMAND_TYPE.

D.1.2 pjcmd_setpjmstat parse pmpjmopt_args()

pjcmd_result_t pjcmd_setpjmstat_parse_pmpjmopt_args(PjcmdHandle_t *handl e_p, int argc, char
**ar gv_pp)

This function analyzes command line arguments based on the specification used when the --set-rsc-ug option in the pmpjmopt command
is specified, and sets the specified details in a handle.

[ARGUMENTS]
handle_p
Pointer to a handle
argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for setting permissions for job submission and execution.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- A required argument for the option is not specified.
- An exclusive option is specified.

Calling this function moves arguments other than options to the end of the argv_pp[] array.

If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

This function recognizes only the --set-rsc-ug option in the pmpjmopt command and the options that can be specified with this option at the
same time.

- 187 -

D.1.3 pjcmd_setpjmstat put scope()

pjcmd_result_t pjcmd_setpjmstat put_scope(PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void *val _p)

This function sets the target range for job submission/execution permission in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
scope
Identifier indicating the target range (See the following table.)
val_p

Pointer to the storage area for the value indicating the target range. For example, if the value type to be set is char * type, the caller
must prepare a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is specified, the
parameter value is initialized (not set).

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pmpjmopt -c) char *

If this parameter is not set, the PXMYCLST environment
variable value is applied.

If the parameter and the environment variable are not set, an
error occurs in the pjcmd_setpjmstat_execute() function.

This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.

PJCMD_SCOPE_RSCUNIT Resource unit name (only one name; equivalent to pmpjmopt -- | char *
rscunit)

Specification of a resource unit name is required. If a resource
unit name is not specified, an error occurs in the
pjcmd_setpjmstat_execute() function.

PJCMD_SCOPE_RSCGRP Resource group name array (equivalent to pmpjmopt --rscgrp) | char **

The last element must be (char *)NULL. "*" in a resource group
name indicates all resource groups (equivalent to pmpjmopt --
all-rsc-groups).

If a resource group is not specified, the setting of each resource
group is based on the resource unit setting.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.

- This is not a handle for setting permissions for job submission and execution.

-188 -

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_INVALID_PARAM

val_pis invalid (NULL).
PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.1.4 pjcmd_setpjmstat get scope()

pjcmd_result_t pjcmd_setpjmstat_get scope(const PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void
*val _p)

This function references the target range (cluster, resource unit, or resource group) of the set job submission/execution permission in a
handle.

[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_setpjmstat_put_scope() function.

val_p

A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for setting permissions for job submission and execution.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_NODATA

A specified scopeis not set in a handle.

D.1.5 pjcmd_setpjmstat put param()

pjcmd_result_t pjcmd_setpjmstat_put_param(PjcmdHandle_t *handl e_p, pjcmd_setpjmstat_param_t param,
const void *val _p)

-189 -

This function sets parameters in a handle that are related to job submission/execution permission.
[ARGUMENTS]
handle_p
Pointer to a handle
param
Identifier of a parameter related to job submission or execution permissions (See the following table.)
val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the areain va/_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJICMD_SETPJMSTAT_JOB_SUBMIT Job submission permission int

0: Do not permit submission of new job
1: Permit submission of new job

If this parameter is not set, the job submission
permission does not change.

PJCMD_SETPJMSTAT_JOB_EXECUTE Job execution permission int

0: Do not permit execution of new job
1: Permit execution of new job

If this parameter is not set, the job execution permission
does not change.

PJCMD_SETPJMSTAT_HELP Equivalent to the specification of the --help optionin | int
the pmpjmopt command

0: Not specified (Default)
1: Specified

This parameter does not affect permissions for job
submission and execution.

If neither the PJCMD_SETPJMSTAT _JOB_SUBMIT parameter nor PJCMD_SETPJMSTAT _JOB_EXECUTE parameter is set, an
error occurs when the pjemd_setpjmstat_execute() function is called.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for setting permissions for job submission and execution.
PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

-190 -

PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.1.6 pjcmd _setpjmstat get param()

pjcmd_result_t pjcmd_setpjmstat _get param(const PjcmdHandle_t *handl e_p, pjcmd_setpjmstat param_t
param, void *val _p)

This function references the set parameters in a handle that are related to permissions for job submission and execution.
[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_setpjmstat_put_param() function.

val_p

A value is stored in *val_pbased on the paramtype. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for setting permissions for job submission and execution.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

D.1.7 pjcmd_setpjmstat execute()

PjcmdResp_t *pjcmd_setpjmstat_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to permit job submission and execution based on a handle. Root privileges
are required for calling the function.

-191-

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about permissions for job submission and execution.

The caller must release the obtained response information by using pjcmd_destroy_resp(). If the request to permit job submission or
execution fails, NULL is returned and pjcmd_errcode is set.

The response information indicates whether the request has succeeded or failed. The determination of whether the request to permit job
submission or execution has been accepted successfully needs to be checked with a result code based on the response information by
using the pjemd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for setting permissions for job submission and execution.
PJCMD_ERROR_INVALID_NODE
This function cannot be called from this node. The function can only be called from the system management node.
PJCMD_ERROR_INVALID_PARAM
A parameter in a handle is invalid.
PJCMD_ERROR_NOMEM
Memory acquisition failed.
PJCMD_ERROR_NOPERM
Calling the function is not permitted.
PJCMD_ERROR_INTERNAL

Internal error

D.2 Referencing of Job Submission and Execution Permission
Information

This section describes the functions for referencing job submission and execution permission information for job operations.

-192 -

Figure D.2 Requesting to Get Job Submission and Execution Permission Information

Command line . S) o |
E}—% pjomd_getpjmstat_parse_pmpjmopt_args()

l Y =
4

| pjcrmd_getpjmstat_put_scope ()

l Set
. Piemd_getpjmstat_put_param() | J’\“

Handle
Parameter PicmdHandle_t

Reference

-

f picmd_getpjmstat_get_scope() |
L [picmd_getpimstat_get_param() J| |

[pjcrnd_getpjmstat_execute() |

l

| Response information
PjcmdResp_t

I

Result information
reference function

Display :H' 1
i J \

picrnd_getpjmistat_print_resp() J"‘

Figure D.3 Referencing Job Submission and Execution Permission Information
Response information PjcmdResp_t

- ™
Resource Unit Name Job Submission Job Execution
RUMAME Possible (Fossibley
Respurce Group Name | Job Submission +-_'|+ub Execution
RGNAMED Possible | Possible

@AM L), Possible -
RGNAME2 % - Possible
RGMNAME3 Irnp-:;G's:ibIe Impossible
3 -_.:-"‘
. _ Y,
——
|: pjcmd_getpjms'at:g;et_rscqﬁft.._info{] :|:: pjcmd_getpjmst;jet_rscgrp_info(} :
T |

D.2.1 pjcmd getpjmstat parse pmpjmopt args()

pjcmd_result_t pjcmd_getpjmstat_parse_pmpjmopt_args(PjcmdHandle_t *handl e_p,
**argv_pp)

int argc, char

This function analyzes command line arguments based on the specification used when the --show-rsc-ug option in the pmpjmopt command
is specified, and sets the specified details in a handle.

[ARGUMENTS]
handle_p

Pointer to a handle

-193 -

argc
Number of arguments
argv_pp
Array of an argument
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting information on permissions for job submission and execution.
PJCMD_ERROR_INVALID_ARGUMENT
argcor argv_ppis invalid.
PJCMD_ERROR_UNKNOWN_OPTION
An unknown option has been detected.
PJCMD_ERROR_INVALID_OPTION
A method to specify an option is invalid.
- A method to specify an option argument is invalid.
- Arrequired argument for the option is not specified.
- An exclusive option is specified.

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.
This function recognizes only the --show-rsc-ug option in the pmpjmopt command and the options that can be specified with this option at

the same time.

D.2.2 pjcmd _getpjmstat put scope()

pjcmd_result_t pjcmd_getpjmstat put_scope(PjcmdHandle_t *handle_p, pjcmd_scope_t scope, const void
*val_p)

This function sets a target range to get the information on permissions for job submission and execution in a handle.
[ARGUMENTS]
handle_p
Pointer to a handle
scope
Identifier indicating the target range (See the following table.)

val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in va/_p. If NULL is
specified, the parameter value is initialized (not set).

-194 -

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pmpjmopt -c) char *

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_getpjmstat_execute() function.

This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.

PJCMD_SCOPE_RSCUNIT Resource unit name (only one name, equivalent to pmpjmopt -- | char *
rscunit)

Specification of a resource unit name is required. If a resource
unit name is not specified, an error occurs in the
pjcmd_getpjmstat_execute() function.

PJCMD_SCOPE_RSCGRP Array of a resource group name (equivalent to pmpjmopt -- char **
rscgrp)

The last element in the array must be (char *)NULL. "*" in a
resource group name indicates all resource groups.

If the resource group is not set, information on each resource unit
is obtained.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting information on permissions for job submission and execution.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_INVALID_PARAM
val_pisinvalid (NULL).
PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.2.3 pjcmd_getpjmstat _get scope()

pjcmd_result_t pjcmd_getpjmstat _get scope(const PjcmdHandle_t *handl e_p, pjcmd_scope_t scope, void
*val _p)

This function references a target (cluster, resource unit, or resource group) that is set in a handle in order to get information on permissions
for job submission and execution.

-195-

[ARGUMENTS]
handle_p
Pointer to a handle
scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_getpjmstat_put_scope() function.

val_p
A value is stored in *val_pbased on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting information on permissions for job submission and execution.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown or unspecifiable value is specified in scope.
PJCMD_ERROR_NODATA

A specified scopeis not set in a handle.

D.2.4 pjcmd_getpjmstat_put param()

pjcmd_result_t pjcmd_getpjmstat_put param(PjcmdHandle_t *handl e_p, pjcmd_getpjmstat_param_t param,
const void *val _p)

This function sets parameters in a handle that are related to acquisition of information on permissions for job submission and execution.

[ARGUMENTS]
handle_p
Pointer to a handle

param
Identifier of a parameter related to acquisition of information on permissions for job submission and execution (See the following
table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the areain va/_p. If NULL is specified, the parameter value
is initialized (not set).

-196 -

param *val_p Type of *val_p

PJCMD_GETPJMSTAT_HELP Equivalent to the --help option in the pmpjmopt command. int

0: Not specified (Default)
1: Specified

This parameter does not affect acquisition of information on
permissions for job submission and execution.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting information on permissions for job submission and execution.
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_INVALID_PARAM
A parameter value is invalid.
- A specification method is incorrect.
- A value is incorrect.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.2.5 pjcmd_getpjmstat_get param()

pjcmd_result_t pjcmd_getpjmstat_get param(const PjcmdHandle_t *handl e_p, pjcmd_getpjmstat_param_t
param, void *val _p)

This function references the set parameters in a handle that are related to acquisition of information on permissions for job submission and
execution.

[ARGUMENTS]
handle_p
Pointer to a handle
param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_getpjmstat_put_param() function.

val_p
A value is stored in *val_pbased on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

-197 -

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting information on permissions for job submission and execution.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in param.
PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

D.2.6 pjcmd _getpjmstat_execute()

PjcmdResp_t *pjcmd_getpjmstat_execute(const PjcmdHandle_t *handl e_p)

This function requests the job operation management function to get the status of permissions for job submission and execution based on
a handle. Root privileges are required for calling this function.

[ARGUMENTS]
handle_p
Pointer to a handle
[RETURN VALUE]

Response information about getting information on permissions for job submission and execution.

The caller must release the obtained response information by using pjcmd_destroy_resp(). If the request to permit job submission or
execution fails, NULL is returned and pjcmd_errcode is set.

The response information indicates whether the request has succeeded or failed. The determination of whether the request to permit job
submission or execution has been accepted successfully needs to be checked with a result code based on the response information by
using the pjemd_get_result() function.

[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Handle is invalid.
- handle_pis NULL.
- This is not a handle for getting information on permissions for job submission and execution.
PJCMD_ERROR_INVALID_NODE
This function cannot be called from this node. The function can only be called from the system management node.
PJCMD_ERROR_INVALID_PARAM
A parameter in a handle is invalid.
PJCMD_ERROR_NOMEM

Memory acquisition failed.

-198 -

PJCMD_ERROR_NOPERM
Calling the function is not permitted.
PJCMD_ERROR_INTERNAL

Internal error

D.2.7 pjcmd_getpjmstat_print_resp()

pjcmd_result_t pjcmd_getpjmstat_print_resp(const PjcmdResp_t *resp_p)

This function outputs the results of getting job submission and execution permission information to the standard output based on the
pmpjmopt command specifications.

[ARGUMENTS]
resp_p
Pointer to a response information
[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response information is invalid.
- resp_pis NULL.
- This is not a response information for getting information on permissions for job submission and execution.

- This is not response information that was successfully obtained.

D.2.8 pjcmd_getpjmstat_get _rscunit_info()

pjcmd_result_t pjcmd_getpjmstat_get_rscunit_info(const PjcmdResp_t *resp_p, pjcmd_getpjmstat_info_t
type, void *val _p)

This function references information on a resource unit from the response information about getting job submission and execution
permission information.

[ARGUMENTS]
resp_p
Pointer to a response information
type
Identifier of an information type to be referenced (See the following table.)
val_p

A value is stored in *va/l_pbased on the #ypetype. The caller needs to prepare an area of a sufficient size according to the value type.

type *val_p Type of *val_p

PJICMD_GETPJMSTAT _INFO_RSCUNIT Resource unit name char *

The area specified by *val_pis is undetermined
after releasing response information.

-199 -

type *val_p Type of *val_p
PICMD_GETPIMSTAT_INFO_JOB_SUBMIT Job submission permission int

0: Not permitted to submit new job
1: Permitted to submit new job
-1: Unknown

PJCMD_GETPJMSTAT_INFO_JOB_EXECUTE Job execution permission int

0: Not permitted to execute new job
1: Permitted to execute new job
-1: Unknown

PJICMD_GETPJMSTAT_INFO_RSCGRP_NUM Number of resource groups in a resource unit int

If the target for getting information is a resource
unit, 0 is set.

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[pjcmd_errcode]
PJCMD_ERROR_INVALID_HANDLE
Response information is invalid.
- resp_pis NULL.
- This is not a response information for getting information on permissions for job submission and execution.
- The response information is not a result related to a resource unit but rather a result related to a resource group.
PJCMD_ERROR_INVALID_ARGUMENT
val_pis invalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in fype.
PJCMD_ERROR_INVALID_PARAM

The value of #ype cannot be specified in this function.

D.2.9 pjcmd getpjmstat_get rscgrp_info()

pjcmd_result_t pjcmd_getpjmstat_get_rscgrp_info(const PjcmdResp_t *resp_p, int indx,
pjcmd_getpjmstat_info_t i nfo, void *val _p)

This function references specific resource group information from response information about getting job submission and execution
permission information.

[ARGUMENTS]
resp_p
Pointer to a response information
indx

Index of the resource group to be obtained.
The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from the number of resource groups that is obtained
by the pjemd_getpjmstat_get_rscunit_info() function.

- 200 -

info
Identifier of information to be referenced (See the following table.)
val_p

A value is stored in *va/_pbased on the /nfotype. The caller needs to prepare an area of a sufficient size according to the value type.

info *val_p Type of *val_p
PJCMD_GETPJMSTAT _INFO_RSCGRP Resource group name char *
PJCMD_GETPJMSTAT_INFO_JOB_SUBMIT Job submission permission int

0: Not permitted to submit new job
1: Permitted to submit new job
-1: Unknown

PIJICMD_GETPIMSTAT_INFO_JOB_EXECUTE Job execution permission int

0: Not permitted to execute new job
1: Permitted to execute new job
-1: Unknown

[RETURN VALUE]
PJCMD_OK
Success
PJCMD_ERR
Failure. The cause is set in pjcmd_errcode.
[picmd_errcode]
PJCMD_ERROR_INVALID_RESP
Response inforamtion is invalid.
- resp_pis NULL.
- This is not a response information for getting information on permissions for job submission and execution.
- This result is not from getting the resource group status but rather from getting the resource unit status.
PJCMD_ERROR_INVALID_ARGUMENT
val_pisinvalid (NULL).
PJCMD_ERROR_UNKNOWN_PARAM
An unknown value is specified in info.
PJCMD_ERROR_INVALID_PARAM
The value of /nfo cannot be specified in this function.
PJCMD_ERROR_NODATA

The value of /indxis out of range.

-201 -

Appendix E Sample Programs

This appendix provides sample programs that call the command API.

The source files of the sample programs are in the following installation directory of the login node, compute cluster management node, and
system management node.

/usr/src/FJSVtcs/pjm/pjcmd/

For details on how to compile a sample program, see documents in the above directory.

E.1 Submitting a Job

/usr/src/FJISVtcs/pjm/pjcmd/c/submit/pjcmd_submit.c

/*
* Submit job
*/

#include <stdio.h>
#include <stdlib._h>
#include <FJSVtcs/pjm/pjcmd.h>

#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1

const char *CMD_NAME = "pjsub_custom";

int main(int argc, char **argv)
{
PjcmdHandle_t *handle_p;
PjcmdResp_t *resp_p;
char *script_p;
int i, code;
int32_t line;
char *detail_p;
PjcmdSubjobid_t *subjobid_p;
char subjobid_str[PJCMD_MAX_ SUBJOBID_STR_LEN];

/* Create handle to submit job */
handle_p = pjcmd_create_handle(PJCMD_SUBMIT);
if (handle_p == NULL) {
fprintf(stderr,
"%s: Failed in create_handle : %s\n", CMD_NAME, pjcmd_strerror(pjcmd_errcode));
exit(EXIT_FAILURE);
3

/* Analyze command line arguments and set them in handle */

if (pjcmd_submit_parse_pjsub_args(handle_p, argc, argv) == PJCMD_ERR) {
/* Terminate after displaying arguments that failed to be analyzed */
fprintf(stderr, "%s: Failed in parse_args : %s\n", CMD_NAME, argv[pjcmd_optind - 1]);
exit(EXIT_FAILURE);

}

/* Analyze instruction lines in job script and set them in handle
* pjcmd_optind indicates remaining arguments = scripts
* (For simplicity, only 1 script used)
*/
if (pjcmd_optind == argc) {
fprintf(stderr, "%s: job script does not specified\n', CMD_NAME);
pjcmd_destroy _handle(handle_p);
exit(EXIT_FAILURE);

-202 -

}

script_p = argv[pjcmd_optind];
if (pjcmd_submit_parse_pjsub_scriptfile(handle_p, script_p, "#PJM", &line, &detail_p)
== PJCMD_ERR) {
fprintf(stderr, "%s: Failed to parse script %s (line=%d, arg=%s)\n",
CMD_NAME, script_p, line, detail_p);
pjcmd_destroy _handle(handle_p);
exit(EXIT_FAILURE);
}

/* Set script file name in handle */

it (pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &script_p) == PJCMD_ERR) {
fprintf(stderr, "%s: Failed in setting script name : %s\n", CMD_NAME, script_p);
pjcmd_destroy _handle(handle_p);
exit(EXIT_FAILURE);

}

/* Use set information in handle and submit job */

resp_p = pjcmd_submit_execute(handle_p);

if (resp_p == NULL) { /7* ITf job submission failed */
fprintf(stderr, "%s: Failed in submitting a job : %s\n", CMD_NAME, script_p);
pjcmd_destroy_handle(handle_p);
exit(EXIT_FAILURE);

3

/* Display submission results */

int64_t jobnum[2];

pjcmd_get_jobresult_num(resp_p, jobnum);

for (i = 0; 1 < jobnum[0]; i++) {
/* Obtain sub job ID structure and convert it to character string */
pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

i, PJCMD_JOBRESULT_SUBJOBID, &subjobid_p);
pjcmd_subjobid_to_str(subjobid_p, subjobid_str);
/* Obtain result code */
pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY, i, PJCMD_JOBRESULT_CODE, &code);
/* Display result */
printf(*"Job %s : %s\n', subjobid_str, (code == 0) ? "submitted" : "submit failed");

3

/* Release response information */

pjcmd_destroy_resp(resp_p);

/* Release handle */

pjcmd_destroy_handle(handle_p);

exit(EXIT_SUCCESS);

E.2 Getting Job Information

/usr/src/FJSVtcs/pjm/pjcmd/c/jobinfo/pjcmd_jobinfo.c

/*
* Display job status
*/
#include <stdio.h>
#include <stdlib.h>
#include <FJSVtcs/pjm/pjcmd._h>

#define EXIT_SUCCESS 0O
#define EXIT_FAILURE 1

const char *CMD_NAME = '"pjstat_custom';

- 203 -

int main(void)

{
PjcmdHandle_t *handle_p;
PjcmdResp_t *resp_p;

/* Create handle for getting job information */
handle_p = pjcmd_create_handle(PJCMD_JOBINFO);
if (handle_p == NULL) {
fprintf(stderr,
"%s: Failed to create handle : %s\n", CMD_NAME, pjcmd_strerror(pjcmd_errcode));
exit(EXIT_FAILURE);

}

/* Get information calculated in source unit or resource group unit */
const char *grouping_items_p[2] = { "rscu", "rscg" };
pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_GROUPING, grouping_items_p, 2);

/* Set conditions as follows for job to be obtained:
* - Status is RUN (pjstat --filter st=RUN)

* - Job name begins with foo (pjstat --filter "jname=foo*'")

* - Job ID is 10 characters or less (pjstat --filter jid=-10)
* - Priority is 5 or higher (pjstat --filter prio=5-)

* - elapse limit is 1 to 2 hours

* (pjstat --filter elpl=1:00:00-2:00:00)

*/

const char *filter_exprs_p[5] = { "st=RUN", "jnam=foo*", "jid=-10", "prio=5-",
"elpl=1:00:00-2:00:00" };
pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_FILTER, filter_exprs_p, 5);

/* Set job ID, job name, and job status as items to be obtained

* (pjstat --choose jid,jnam,st)

*/

const char *choose_items_p[3] = { "jid", "jnam"™, "st" };
pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_CHOOSE, choose_items_p, 3);

/* Sort jobs in ascending order of job submission time */
const char *sort_items_p[] = { "adt:A" };
pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_SORT, sort_items_p, 1);

/* Get history (completed jobs)
* information for past 5 days (pjstat -H=day)
*/
int hist = 5;
pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_HISTORY_DAY, &hist);

/* Get summary information altogether (equivalent to pjstat --with-summary) */
int summary = PJCMD_JOBINFO_WITH_SUMMARY ;
pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_SUMMARY, &summary);

/* Get sub job information altogether (equivalent to pjstat -E) */
int verbose = PJCMD_JOBINFO_VERBOSITY_SUBJOB;
pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_VERBOSITY, &verbose);

/* Get other users”™ job information altogether (equivalent to pjstat -A)
* (If command is called with general user privileges,
* items that cannot be referenced due to ACL settings are masked)
*/
int othersjob = PJCMD_JOBINFO_OTHERSJOB_ALL;
pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_OTHERSJOB, &othersjob);

/* Request acquisition of job information based on contents of handle */
resp_p = pjcmd_jobinfo_execute(handle_p);

-204 -

it (resp_p == NULL) {
fprintf(stderr, "%s: Request failed\n", CMD_NAME);
pjcmd_destroy _handle(handle_p);
exit(EXIT_FAILURE);

¥

int code;

int subcode;

char *detail_p;

pjcmd_get_result(resp_p, &code, &subcode, &detail_p);

if (code 1= 0) {
fprintf(stderr, "%s: Request failed (code=%d)\n", CMD_NAME, code);
pjcmd_destroy_handle(handle_p);
exit(EXIT_FAILURE);

3

/* Read information groups one by one from resp_p response information
* (Job information group is read in unit of resource unit/resource group
* based on acquisition conditions)

*/
pjcmd_result_t ret;
while (1) {
ret = pjcmd_jobinfo_read_infogrp(resp_p);
if (ret == PJCMD_ERR) {
it (pjcmd_errcode == PJCMD_ERROR_NODATA) {
break; /* All information groups are read */
}
fprintf(stderr, "%s: Cannot read infogrp\n", CMD_NAME);
pjcmd_destroy_resp(resp_p);
pjcmd_destroy_handle(handle_p);
exit(EXIT_FAILURE);
}

/* Display summary line of information group */

pjcmd_jobinfo_print_resp(resp_p, PJCMD_JOBINFO_PRINT_SUMMARY) ;

/* Display job information in information group */

pjcmd_jobinfo_print_resp(resp_p, PJCMD_JOBINFO_PRINT_JOBINFO);
}

pjcmd_destroy resp(resp_p);
pjcmd_destroy_handle(handle_p);
exit(EXIT_SUCCESS);

E.3 Deleting a Job

/usr/src/FJIsVtcs/pjm/pjemd/c/kill/pjemd_kill.c

/*
* Delete job
*/

#include <stdio.h>
#include <stdlib.h>
#include <FJSVtcs/pjm/pjcmd.h>

#define EXIT_SUCCESS
#define EXIT_FAILURE

= O

const char *CMD_NAME = "pjdel_custom";

int main(int argc, char **argv)

- 205 -

PjcmdHandle_t *handle_p;

PjcmdResp_t *resp_p;

PjcmdSubjobid_t *subjobid_p;

char subjobid_str_p[PJCMD_MAX_SUBJOBID_STR_LEN];
int i;

inté4_t num[2], total_num, ok _num, err_num, cnt;
int help_flag;

/* Create handle to delete job */

handle_p = pjcmd_create_handle(PJCMD_KILL);

if (handle_p == NULL) {
fprintf(stderr, "Failed in create_handle : %s\n', pjcmd_strerror(pjcmd_errcode));
exit(EXIT_FAILURE);

}

/* Analyze command line arguments */

if (pjcmd_kill_parse_pjdel_args(handle_p, argc, argv) == PJCMD_ERR) {
fprintf(stderr, "Failed in parse_args : %s : arg=%s\n",

pjcmd_strerror(pjcmd_errcode), argv[pjcmd_optind - 1]);

/* Display the usage of pjdel */
pjcmd_print_stdcmd_usage(PJCMD_STDCMD_PJDEL, CMD_NAME);
pjcmd_destroy_handle(handle_p);
exit(EXIT_FAILURE);

}

/* If —-help option specified, exit after displaying method of use */
pjcmd_kill_get param(handle_p, PJCMD_KILL_HELP, &help_flag);
if (help_flag '= 0) {
/* Display method of using pjdel */
pjcmd_print_stdcmd_usage(PJCMD_STDCMD_PJDEL, CMD_NAME);
pjcmd_destroy_handle(handle_p);
exit(EXIT_SUCCESS);
}

/* Treat remaining arguments as job IDs of jobs to be deleted and set them in handle */
it (pjcmd_optind == argc) { /* No job ID */

fprintf(stderr, "Job id is not spesified.\n");

pjcmd_destroy_handle(handle_p);

exit(EXIT_FAILURE);

3
for (i = pjcmd_optind; 1 < argc; i++) {
if (pjcmd_put_job_by str(handle_p, argv[i]) == PJCMD_ERR) {
fprintf(stderr, "Failed in put_job_by str : %s\n", argv[i]);
pjcmd_destroy _handle(handle_p);
exit(EXIT_FAILURE);
3
}

/* Request job deletion */

resp_p = pjcmd_kill_execute(handle_p);

if (resp_p == NULL) { /* If request fails */
fprintf(stderr, "Failed in kill_execute : %s\n", pjcmd_strerror(pjcmd_errcode));
pjcmd_destroy_handle(handle_p);
exit(EXIT_FAILURE);

}

/* Display deletion result */
pjcmd_get_jobresult_num(resp_p, num);
total_num = num[0];

ok_num = num[1];

err_num = total_num - ok_num;

if (err_num) { /7* For error jobs */

- 206 -

fprintf(stderr, "Operation failed for %ld jobs.\n", err_num);
3
/* Display only job IDs (sub job IDs) of failed jobs, one item per line */
for (cnt = 0; cnt < err_num; cnt++) {
pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ERR,
cnt, PJCMD_JOBRESULT_SUBJOBID, &subjobid_p);
pjcmd_subjobid_to_str(subjobid_p, subjobid_str_p);
fprintf(stderr, "Failed for the job %s\n", subjobid_str_p);
3

pjcmd_destroy_resp(resp_p);
pjcmd_destroy_handle(handle_p);
exit((err_num == 0) ? EXIT_SUCCESS : EXIT_FAILURE);

- 207 -

	Title Page
	Preface
	Update history
	Contents
	Chapter 1 Command API Overview
	1.1 What is the Command API?
	1.2 Operation Flow
	1.3 Function Types

	Chapter 2 Using the Command API
	2.1 Header File
	2.2 Operations Using the Command API
	2.2.1 Generating a Handle
	2.2.2 Setting a Parameter
	2.2.3 Processing a Command Line Option
	2.2.3.1 Parameter Setting From a Command Argument
	2.2.3.2 Command Line Parser
	2.2.3.3 Option Analysis

	2.2.4 Requesting the Job Operation Management Function
	2.2.4.1 Operation Request Function Call
	2.2.4.2 Job Submission Operation
	2.2.4.3 Job Operation

	2.2.5 Referencing Results
	2.2.5.1 Referencing Response Information
	2.2.5.2 Error Information

	2.2.6 Releasing Handles, Command Line Parsers, and Response Information
	2.2.7 Precaution When Using the Command API

	2.3 Creating a Command
	2.4 Setting the Command API

	Appendix A Command API Common Reference
	A.1 Handle Operations and Response Information
	A.1.1 pjcmd_create_handle()
	A.1.2 pjcmd_clone_handle()
	A.1.3 pjcmd_reset_handle()
	A.1.4 pjcmd_destroy_handle()
	A.1.5 pjcmd_destroy_resp()

	A.2 Referencing of Operation Results
	A.2.1 pjcmd_get_result()
	A.2.2 pjcmd_get_jobresult_num()
	A.2.3 pjcmd_get_jobresult_info()

	A.3 Setting and Acquisition of Job IDs
	A.3.1 pjcmd_put_job()
	A.3.2 pjcmd_put_job_by_str()
	A.3.3 pjcmd_put_jobresult_mode()
	A.3.4 pjcmd_get_subjobid_info()
	A.3.5 pjcmd_subjobid_to_str()

	A.4 Analysis of Command Line Arguments
	A.4.1 pjcmd_getopt_long()
	A.4.2 pjcmd_delopt_in_parser()
	A.4.3 pjcmd_renameopt_in_parser()

	A.5 Display of Usage
	A.5.1 pjcmd_print_stdcmd_usage()

	A.6 Error-related Functions
	A.6.1 pjcmd_strerror()
	A.6.2 pjcmd_perror()
	A.6.3 pjcmd_error_read_errinfo()
	A.6.4 pjcmd_error_read_errinfo_by_sjid()
	A.6.5 pjcmd_error_get_info()
	A.6.6 pjcmd_error_get_detail_info()
	A.6.7 pjcmd_error_destroy_errinfo()
	A.6.8 pjcmd_error_clear_errinfo()

	A.7 Error Codes, Global Variables, and Constants
	A.7.1 Result Codes
	A.7.2 Detailed Error Code
	A.7.3 pjcmd_errcodejcmd_errcode Variable
	A.7.4 Variable pjcmd_optarg
	A.7.5 Variable pjcmd_optind
	A.7.6 Variable pjcmd_optopt
	A.7.7 PJCMD_UNLIMITED Constant
	A.7.8 PJCMD_UNDEFINED Constant
	A.7.9 PJCMD_MAX_SUBJOBID_STR_LEN Constant

	Appendix B Job Operation API Reference
	B.1 Job Submission
	B.1.1 pjcmd_submit_parse_pjsub_args()
	B.1.2 pjcmd_submit_parse_pjsub_scriptfile()
	B.1.3 pjcmd_submit_create_pjsub_parser()
	B.1.4 pjcmd_submit_destroy_pjsub_parser()
	B.1.5 pjcmd_submit_create_scriptfile_reader()
	B.1.6 pjcmd_submit_destroy_scriptfile_reader()
	B.1.7 pjcmd_submit_read_scriptfile_directive_line()
	B.1.8 pjcmd_submit_put_param()
	B.1.9 pjcmd_submit_get_param()
	B.1.10 pjcmd_submit_put_job_resource()
	B.1.11 pjcmd_submit_get_job_resource()
	B.1.12 pjcmd_submit_put_mpi_param()
	B.1.13 pjcmd_submit_get_mpi_param()
	B.1.14 pjcmd_submit_put_sched_param()
	B.1.15 pjcmd_submit_get_sched_param()
	B.1.16 pjcmd_submit_put_fileio_param()
	B.1.17 pjcmd_submit_get_fileio_param()
	B.1.18 pjcmd_submit_create_scriptfile_from_stdin()
	B.1.19 pjcmd_submit_create_scriptfile_by_args()
	B.1.20 pjcmd_submit_set_callback()
	B.1.21 pjcmd_submit_execute()
	B.1.22 pjcmd_submit_executev()

	B.2 Job Deletion
	B.2.1 pjcmd_kill_parse_pjdel_args()
	B.2.2 pjcmd_kill_put_param()
	B.2.3 pjcmd_kill_get_param()
	B.2.4 pjcmd_kill_execute()

	B.3 Job Hold
	B.3.1 pjcmd_hold_parse_pjhold_args()
	B.3.2 pjcmd_hold_put_param()
	B.3.3 pjcmd_hold_get_param()
	B.3.4 pjcmd_hold_set_callback()
	B.3.5 pjcmd_hold_execute()

	B.4 Release of a Job Hold
	B.4.1 pjcmd_release_parse_pjrls_args()
	B.4.2 pjcmd_release_put_param()
	B.4.3 pjcmd_release_get_param()
	B.4.4 pjcmd_release_set_callback()
	B.4.5 pjcmd_release_execute()

	B.5 Signal Sending to Jobs
	B.5.1 pjcmd_signal_parse_pjsig_args()
	B.5.2 pjcmd_signal_put_param()
	B.5.3 pjcmd_signal_get_param()
	B.5.4 pjcmd_signal_set_callback()
	B.5.5 pjcmd_signal_execute()

	B.6 Waiting for Job Completion
	B.6.1 pjcmd_wait_parse_pjwait_args()
	B.6.2 pjcmd_wait_put_param()
	B.6.3 pjcmd_wait_get_param()
	B.6.4 pjcmd_wait_execute()

	B.7 Job Parameter Change
	B.7.1 pjcmd_alter_parse_pmalter_args()
	B.7.2 pjcmd_alter_put_param()
	B.7.3 pjcmd_alter_get_param()
	B.7.4 pjcmd_alter_put_job_resource()
	B.7.5 pjcmd_alter_get_job_resource()
	B.7.6 pjcmd_alter_put_sched_param()
	B.7.7 pjcmd_alter_get_sched_param()
	B.7.8 pjcmd_alter_set_callback()
	B.7.9 pjcmd_alter_execute()

	Appendix C Information Acquisition API Reference
	C.1 Common Information of the Information Acquisition API
	C.1.1 pjcmd_pjstat_parse_command_type()

	C.2 Getting Job Information
	C.2.1 pjcmd_jobinfo_parse_pjstat_args()
	C.2.2 pjcmd_jobinfo_put_scope()
	C.2.3 pjcmd_jobinfo_get_scope()
	C.2.4 pjcmd_jobinfo_put_condition()
	C.2.5 pjcmd_jobinfo_get_condition()
	C.2.6 pjcmd_jobinfo_put_param()
	C.2.7 pjcmd_jobinfo_get_param()
	C.2.8 pjcmd_jobinfo_execute()
	C.2.9 pjcmd_jobinfo_get_choosen_item()
	C.2.10 pjcmd_jobinfo_read_infogrp()
	C.2.11 pjcmd_jobinfo_print_resp()
	C.2.12 pjcmd_jobinfo_get_summary()
	C.2.13 pjcmd_jobinfo_get_infogrp_scope()
	C.2.14 pjcmd_jobinfo_read_jobinfo()
	C.2.15 pjcmd_jobinfo_get_jobinfo_item_num()
	C.2.16 pjcmd_jobinfo_get_jobinfo_item_value()
	C.2.17 pjcmd_jobinfo_get_jobinfo_node_num()
	C.2.18 pjcmd_jobinfo_get_nodejobinfo_item_num()
	C.2.19 pjcmd_jobinfo_get_nodejobinfo_item_value()
	C.2.20 Item Names, Names, and Values of Job Information

	C.3 Getting Resource Information for Jobs
	C.3.1 pjcmd_rscinfo_parse_pjstat_args()
	C.3.2 pjcmd_rscinfo_put_scope()
	C.3.3 pjcmd_rscinfo_get_scope()
	C.3.4 pjcmd_rscinfo_put_param()
	C.3.5 pjcmd_rscinfo_get_param()
	C.3.6 pjcmd_rscinfo_execute()
	C.3.7 pjcmd_rscinfo_print_resp()
	C.3.8 pjcmd_rscinfo_get_rscinfo_num()
	C.3.9 pjcmd_rscinfo_get_rscinfo_value()
	C.3.10 pjcmd_rscinfo_get_max_size()

	C.4 Getting Limit Value Information When Submitting a Job
	C.4.1 pjcmd_limitinfo_parse_pjstat_args()
	C.4.2 pjcmd_limitinfo_put_scope()
	C.4.3 pjcmd_limitinfo_get_scope()
	C.4.4 pjcmd_limitinfo_put_param()
	C.4.5 pjcmd_limitinfo_get_param()
	C.4.6 pjcmd_limitinfo_execute()
	C.4.7 pjcmd_limitinfo_print_resp()
	C.4.8 pjcmd_limitinfo_get_limitinfo()
	C.4.9 pjcmd_limitinfo_get_limitinfo_value()

	C.5 Getting Information on the Job ACL Function Settings
	C.5.1 pjcmd_jacl_parse_pjacl_args()
	C.5.2 pjcmd_jacl_put_scope()
	C.5.3 pjcmd_jacl_get_scope()
	C.5.4 pjcmd_jacl_put_param()
	C.5.5 pjcmd_jacl_get_param()
	C.5.6 pjcmd_jacl_execute()
	C.5.7 pjcmd_jacl_print_resp()
	C.5.8 pjcmd_jacl_get_jaclinfo_num()
	C.5.9 pjcmd_jacl_get_jaclinfo_value()

	C.6 Getting the Status of Job Resource Usage
	C.6.1 pjcmd_rscstat_parse_pjshowrsc_args()
	C.6.2 pjcmd_rscstat_put_scope()
	C.6.3 pjcmd_rscstat_get_scope()
	C.6.4 pjcmd_rscstat_put_param()
	C.6.5 pjcmd_rscstat_get_param()
	C.6.6 pjcmd_rscstat_execute()
	C.6.7 pjcmd_rscstat_print_resp()
	C.6.8 pjcmd_rscstat_get_infogrp_num()
	C.6.9 pjcmd_rscstat_get_infogrp_scope_type()
	C.6.10 pjcmd_rscstat_get_infogrp_scope_value()
	C.6.11 pjcmd_rscstat_get_rscinfo_num()
	C.6.12 pjcmd_rscstat_get_infogrp_customrsc_num()
	C.6.13 pjcmd_rscstat_get_infogrp_customrscinfo()
	C.6.14 pjcmd_rscstat_get_rscinfo()
	C.6.15 pjcmd_rscstat_get_rscinfo_scope_type()
	C.6.16 pjcmd_rscstat_get_rscinfo_scope_value()
	C.6.17 pjcmd_rscstat_get_rscinfo_info()
	C.6.18 pjcmd_rscstat_read_jobinfo()
	C.6.19 pjcmd_rscstat_get_rscinfo_customrsc_num()
	C.6.20 pjcmd_rscstat_get_rscinfo_customrscinfo()
	C.6.21 pjcmd_rscstat_get_customrscinfo_value()
	C.6.22 pjcmd_rscstat_get_customrscinfo_kind_value()

	Appendix D Job Operation Control API Reference
	D.1 Setting of Job Submission/Job Execution Permissions
	D.1.1 pjcmd_pmpjmopt_get_command_type()
	D.1.2 pjcmd_setpjmstat_parse_pmpjmopt_args()
	D.1.3 pjcmd_setpjmstat_put_scope()
	D.1.4 pjcmd_setpjmstat_get_scope()
	D.1.5 pjcmd_setpjmstat_put_param()
	D.1.6 pjcmd_setpjmstat_get_param()
	D.1.7 pjcmd_setpjmstat_execute()

	D.2 Referencing of Job Submission and Execution Permission Information
	D.2.1 pjcmd_getpjmstat_parse_pmpjmopt_args()
	D.2.2 pjcmd_getpjmstat_put_scope()
	D.2.3 pjcmd_getpjmstat_get_scope()
	D.2.4 pjcmd_getpjmstat_put_param()
	D.2.5 pjcmd_getpjmstat_get_param()
	D.2.6 pjcmd_getpjmstat_execute()
	D.2.7 pjcmd_getpjmstat_print_resp()
	D.2.8 pjcmd_getpjmstat_get_rscunit_info()
	D.2.9 pjcmd_getpjmstat_get_rscgrp_info()

	Appendix E Sample Programs
	E.1 Submitting a Job
	E.2 Getting Job Information
	E.3 Deleting a Job

