
J2UL-2461-02ENZ0(00)
March 2020

FUJITSU Software
Technical Computing Suite V4.0L20

Job Operation Software
API user's Guide for Command API

Preface

Purpose of This Manual

This manual describes the command API of the job operation management function provided by the Job Operation Software of Technical
Computing Suite.

Intended Readers

This manual is intended for the administrators who operate and manage jobs using the Job Operation Software, and the end users who
actually perform operations with jobs.

The manual assumes readers have the following knowledge:

- Basic Linux knowledge

- Knowledge of job operations (submit a job, delete a job, etc.) described in "Job Operation Software End-user's Guide"

- Knowledge of job operation control described in "Job Operation Software Administrator's Guide for Job Management"

Organization of This Manual

This manual is organized as follows.

Chapter 1 Command API Overview

This chapter provides an overview of the command API.

Chapter 2 Using the Command API

This chapter describes how to use the command API.

Appendix A Command API Common Reference

This appendix describes common command API operations and an API for referencing information.

Appendix B Job Operation API Reference

This appendix describes the API for job operations.

Appendix C Information Acquisition API Reference

This appendix describes the API for getting job and resource information.

Appendix D Job Operation Control API Reference

This appendix describes the API for permitting job submission and job execution.

Appendix E Sample Programs

This appendix provides simple sample programs using the command API.

Notation Used in This Manual

Representation of units

The following table lists the prefixes used to represent units in this manual. Basically, disk size is represented as a power of 10, and
memory size is represented as a power of 2. Be careful about specifying them when displaying or entering commands.

Prefix Value Prefix Value

K (kilo) 103 Ki (kibi) 210

M (mega) 106 Mi (mebi) 220

G (giga) 109 Gi (gibi) 230

T (tera) 1012 Ti (tebi) 240

P (peta) 1015 Pi (pebi) 250

- i -

Notation of model names

In this manual, the computer that based on Fujitsu A64FX CPU is abbreviated as "FX server", and FUJITSU server PRIMERGY as
"PRIMERGY server" (or simply "PRIMERGY").
Also, specifications of some of the functions described in the manual are different depending on the target model. In the description of
such a function, the target model is represented by its abbreviation as follows:
[FX]: The description applies to FX servers.
[PG]: The description applies to PRIMERGY servers.

Path names of the commands

In the examples of the operations, the path names of the commands in the directory /bin, /usr/bin, /sbin or /usr/sbin might not be
represented by absolute path.

Symbols in this manual

This manual uses the following symbols.

 Note

The Note symbol indicates an item requiring special care. Be sure to read these items.

 See

The See symbol indicates the written reference source of detailed information.

 Information

The Information symbol indicates a reference note related to Job Operation Software.

Export Controls

Exportation/release of this document may require necessary procedures in accordance with the regulations of your resident country and/or
US export control laws.

Trademarks

- Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

- Red Hat and Red Hat Enterprise Linux are registered trademarks of Red Hat, Inc. in the U.S. and other countries.

- All other trademarks are the property of their respective owners.

Date of publication and Version

Version Manual Code

March 2020, Second version J2UL-2461-02ENZ0(00)

January 2020, First version J2UL-2461-01ENZ0(00)

Copyright

Copyright FUJITSU LIMITED 2020

- ii -

Update history

Changes Location Version

Added the PJCMD_SUBERR_REJECT_OPT error code to the pjcmd_error_get_info() function. A.7.2 2

Added the PJCMD_SUBMIT_NET_ROUTE parameter to the pjcmd_submit_put_param()
function.

B.1.8

Added the PJCMD_KILL_NO_STATS and PJCMD_KILL_NO_HISTORY parameters to the
pjcmd_kill_put_param() function.

B.2.2

Changed the look according to product upgrades. -

All rights reserved.

The information in this manual is subject to change without notice.

- iii -

Contents
Chapter 1 Command API Overview... 1

1.1 What is the Command API?.. 1
1.2 Operation Flow.. 2
1.3 Function Types.. 3

Chapter 2 Using the Command API... 5
2.1 Header File...5
2.2 Operations Using the Command API.. 5

2.2.1 Generating a Handle... 5
2.2.2 Setting a Parameter... 5
2.2.3 Processing a Command Line Option.. 6

2.2.3.1 Parameter Setting From a Command Argument..6
2.2.3.2 Command Line Parser... 7
2.2.3.3 Option Analysis... 8

2.2.4 Requesting the Job Operation Management Function..9
2.2.4.1 Operation Request Function Call...9
2.2.4.2 Job Submission Operation... 9
2.2.4.3 Job Operation...12

2.2.5 Referencing Results.. 13
2.2.5.1 Referencing Response Information... 13
2.2.5.2 Error Information...16

2.2.6 Releasing Handles, Command Line Parsers, and Response Information...19
2.2.7 Precaution When Using the Command API... 20

2.3 Creating a Command... 20
2.4 Setting the Command API... 20

Appendix A Command API Common Reference..22
A.1 Handle Operations and Response Information... 22

A.1.1 pjcmd_create_handle()...22
A.1.2 pjcmd_clone_handle()..23
A.1.3 pjcmd_reset_handle()...23
A.1.4 pjcmd_destroy_handle().. 24
A.1.5 pjcmd_destroy_resp().. 24

A.2 Referencing of Operation Results...24
A.2.1 pjcmd_get_result()... 25
A.2.2 pjcmd_get_jobresult_num()...26
A.2.3 pjcmd_get_jobresult_info()..26

A.3 Setting and Acquisition of Job IDs... 28
A.3.1 pjcmd_put_job()...29
A.3.2 pjcmd_put_job_by_str()...31
A.3.3 pjcmd_put_jobresult_mode()...32
A.3.4 pjcmd_get_subjobid_info()..32
A.3.5 pjcmd_subjobid_to_str().. 33

A.4 Analysis of Command Line Arguments... 34
A.4.1 pjcmd_getopt_long()..34
A.4.2 pjcmd_delopt_in_parser().. 35
A.4.3 pjcmd_renameopt_in_parser()... 36

A.5 Display of Usage...36
A.5.1 pjcmd_print_stdcmd_usage()...37

A.6 Error-related Functions... 37
A.6.1 pjcmd_strerror()... 38
A.6.2 pjcmd_perror()... 39
A.6.3 pjcmd_error_read_errinfo()... 40
A.6.4 pjcmd_error_read_errinfo_by_sjid()..40
A.6.5 pjcmd_error_get_info()..40
A.6.6 pjcmd_error_get_detail_info()...42

- iv -

A.6.7 pjcmd_error_destroy_errinfo().. 42
A.6.8 pjcmd_error_clear_errinfo().. 42

A.7 Error Codes, Global Variables, and Constants... 43
A.7.1 Result Codes.. 43
A.7.2 Detailed Error Code... 43
A.7.3 pjcmd_errcodejcmd_errcode Variable...49
A.7.4 Variable pjcmd_optarg...50
A.7.5 Variable pjcmd_optind...50
A.7.6 Variable pjcmd_optopt...50
A.7.7 PJCMD_UNLIMITED Constant... 50
A.7.8 PJCMD_UNDEFINED Constant...50
A.7.9 PJCMD_MAX_SUBJOBID_STR_LEN Constant..50

Appendix B Job Operation API Reference... 51
B.1 Job Submission..51

B.1.1 pjcmd_submit_parse_pjsub_args().. 52
B.1.2 pjcmd_submit_parse_pjsub_scriptfile()...53
B.1.3 pjcmd_submit_create_pjsub_parser().. 54
B.1.4 pjcmd_submit_destroy_pjsub_parser().. 54
B.1.5 pjcmd_submit_create_scriptfile_reader().. 55
B.1.6 pjcmd_submit_destroy_scriptfile_reader().. 55
B.1.7 pjcmd_submit_read_scriptfile_directive_line()... 56
B.1.8 pjcmd_submit_put_param()... 57
B.1.9 pjcmd_submit_get_param()... 61
B.1.10 pjcmd_submit_put_job_resource().. 62
B.1.11 pjcmd_submit_get_job_resource()...65
B.1.12 pjcmd_submit_put_mpi_param()...65
B.1.13 pjcmd_submit_get_mpi_param()... 68
B.1.14 pjcmd_submit_put_sched_param().. 68
B.1.15 pjcmd_submit_get_sched_param().. 70
B.1.16 pjcmd_submit_put_fileio_param()...71
B.1.17 pjcmd_submit_get_fileio_param()...72
B.1.18 pjcmd_submit_create_scriptfile_from_stdin()...73
B.1.19 pjcmd_submit_create_scriptfile_by_args()..74
B.1.20 pjcmd_submit_set_callback().. 74
B.1.21 pjcmd_submit_execute().. 75
B.1.22 pjcmd_submit_executev().. 76

B.2 Job Deletion.. 77
B.2.1 pjcmd_kill_parse_pjdel_args()...78
B.2.2 pjcmd_kill_put_param()...79
B.2.3 pjcmd_kill_get_param()...80
B.2.4 pjcmd_kill_execute()..81

B.3 Job Hold.. 82
B.3.1 pjcmd_hold_parse_pjhold_args()...82
B.3.2 pjcmd_hold_put_param()...83
B.3.3 pjcmd_hold_get_param()... 84
B.3.4 pjcmd_hold_set_callback().. 85
B.3.5 pjcmd_hold_execute()..86

B.4 Release of a Job Hold..87
B.4.1 pjcmd_release_parse_pjrls_args()..87
B.4.2 pjcmd_release_put_param()...88
B.4.3 pjcmd_release_get_param()... 89
B.4.4 pjcmd_release_set_callback().. 90
B.4.5 pjcmd_release_execute()..90

B.5 Signal Sending to Jobs.. 91
B.5.1 pjcmd_signal_parse_pjsig_args()...92
B.5.2 pjcmd_signal_put_param().. 93

- v -

B.5.3 pjcmd_signal_get_param()...94
B.5.4 pjcmd_signal_set_callback()..95
B.5.5 pjcmd_signal_execute()... 95

B.6 Waiting for Job Completion..96
B.6.1 pjcmd_wait_parse_pjwait_args()... 97
B.6.2 pjcmd_wait_put_param()... 98
B.6.3 pjcmd_wait_get_param()... 99
B.6.4 pjcmd_wait_execute().. 100

B.7 Job Parameter Change...101
B.7.1 pjcmd_alter_parse_pmalter_args()...101
B.7.2 pjcmd_alter_put_param()...102
B.7.3 pjcmd_alter_get_param()... 103
B.7.4 pjcmd_alter_put_job_resource().. 104
B.7.5 pjcmd_alter_get_job_resource().. 105
B.7.6 pjcmd_alter_put_sched_param()..106
B.7.7 pjcmd_alter_get_sched_param().. 107
B.7.8 pjcmd_alter_set_callback().. 108
B.7.9 pjcmd_alter_execute()..108

Appendix C Information Acquisition API Reference... 110
C.1 Common Information of the Information Acquisition API.. 110

C.1.1 pjcmd_pjstat_parse_command_type()... 110
C.2 Getting Job Information.. 110

C.2.1 pjcmd_jobinfo_parse_pjstat_args()..112
C.2.2 pjcmd_jobinfo_put_scope()... 113
C.2.3 pjcmd_jobinfo_get_scope()..114
C.2.4 pjcmd_jobinfo_put_condition()... 115
C.2.5 pjcmd_jobinfo_get_condition()..118
C.2.6 pjcmd_jobinfo_put_param().. 119
C.2.7 pjcmd_jobinfo_get_param()...122
C.2.8 pjcmd_jobinfo_execute()... 123
C.2.9 pjcmd_jobinfo_get_choosen_item().. 124
C.2.10 pjcmd_jobinfo_read_infogrp()...125
C.2.11 pjcmd_jobinfo_print_resp()... 125
C.2.12 pjcmd_jobinfo_get_summary()..127
C.2.13 pjcmd_jobinfo_get_infogrp_scope()..128
C.2.14 pjcmd_jobinfo_read_jobinfo()... 129
C.2.15 pjcmd_jobinfo_get_jobinfo_item_num()...130
C.2.16 pjcmd_jobinfo_get_jobinfo_item_value()... 130
C.2.17 pjcmd_jobinfo_get_jobinfo_node_num().. 131
C.2.18 pjcmd_jobinfo_get_nodejobinfo_item_num()... 132
C.2.19 pjcmd_jobinfo_get_nodejobinfo_item_value()..132
C.2.20 Item Names, Names, and Values of Job Information.. 133

C.3 Getting Resource Information for Jobs... 134
C.3.1 pjcmd_rscinfo_parse_pjstat_args().. 135
C.3.2 pjcmd_rscinfo_put_scope()..136
C.3.3 pjcmd_rscinfo_get_scope().. 137
C.3.4 pjcmd_rscinfo_put_param()...138
C.3.5 pjcmd_rscinfo_get_param()... 139
C.3.6 pjcmd_rscinfo_execute()..140
C.3.7 pjcmd_rscinfo_print_resp()..141
C.3.8 pjcmd_rscinfo_get_rscinfo_num()...141
C.3.9 pjcmd_rscinfo_get_rscinfo_value()... 141
C.3.10 pjcmd_rscinfo_get_max_size().. 143

C.4 Getting Limit Value Information When Submitting a Job..144
C.4.1 pjcmd_limitinfo_parse_pjstat_args()... 145
C.4.2 pjcmd_limitinfo_put_scope()...146

- vi -

C.4.3 pjcmd_limitinfo_get_scope()... 147
C.4.4 pjcmd_limitinfo_put_param().. 148
C.4.5 pjcmd_limitinfo_get_param().. 149
C.4.6 pjcmd_limitinfo_execute()...150
C.4.7 pjcmd_limitinfo_print_resp()...151
C.4.8 pjcmd_limitinfo_get_limitinfo().. 152
C.4.9 pjcmd_limitinfo_get_limitinfo_value()..153

C.5 Getting Information on the Job ACL Function Settings... 154
C.5.1 pjcmd_jacl_parse_pjacl_args().. 155
C.5.2 pjcmd_jacl_put_scope()... 156
C.5.3 pjcmd_jacl_get_scope()... 157
C.5.4 pjcmd_jacl_put_param().. 158
C.5.5 pjcmd_jacl_get_param().. 159
C.5.6 pjcmd_jacl_execute()... 160
C.5.7 pjcmd_jacl_print_resp()... 160
C.5.8 pjcmd_jacl_get_jaclinfo_num()... 161
C.5.9 pjcmd_jacl_get_jaclinfo_value()..162

C.6 Getting the Status of Job Resource Usage.. 163
C.6.1 pjcmd_rscstat_parse_pjshowrsc_args()..166
C.6.2 pjcmd_rscstat_put_scope()...166
C.6.3 pjcmd_rscstat_get_scope()...168
C.6.4 pjcmd_rscstat_put_param()..169
C.6.5 pjcmd_rscstat_get_param().. 172
C.6.6 pjcmd_rscstat_execute()...172
C.6.7 pjcmd_rscstat_print_resp()...173
C.6.8 pjcmd_rscstat_get_infogrp_num()... 174
C.6.9 pjcmd_rscstat_get_infogrp_scope_type().. 174
C.6.10 pjcmd_rscstat_get_infogrp_scope_value().. 175
C.6.11 pjcmd_rscstat_get_rscinfo_num()..176
C.6.12 pjcmd_rscstat_get_infogrp_customrsc_num()...177
C.6.13 pjcmd_rscstat_get_infogrp_customrscinfo()..178
C.6.14 pjcmd_rscstat_get_rscinfo()...179
C.6.15 pjcmd_rscstat_get_rscinfo_scope_type()...179
C.6.16 pjcmd_rscstat_get_rscinfo_scope_value()... 180
C.6.17 pjcmd_rscstat_get_rscinfo_info().. 181
C.6.18 pjcmd_rscstat_read_jobinfo().. 181
C.6.19 pjcmd_rscstat_get_rscinfo_customrsc_num()..182
C.6.20 pjcmd_rscstat_get_rscinfo_customrscinfo().. 183
C.6.21 pjcmd_rscstat_get_customrscinfo_value()...183
C.6.22 pjcmd_rscstat_get_customrscinfo_kind_value()..184

Appendix D Job Operation Control API Reference.. 186
D.1 Setting of Job Submission/Job Execution Permissions.. 186

D.1.1 pjcmd_pmpjmopt_get_command_type()...186
D.1.2 pjcmd_setpjmstat_parse_pmpjmopt_args()... 187
D.1.3 pjcmd_setpjmstat_put_scope().. 188
D.1.4 pjcmd_setpjmstat_get_scope()...189
D.1.5 pjcmd_setpjmstat_put_param()..189
D.1.6 pjcmd_setpjmstat_get_param()..191
D.1.7 pjcmd_setpjmstat_execute().. 191

D.2 Referencing of Job Submission and Execution Permission Information..192
D.2.1 pjcmd_getpjmstat_parse_pmpjmopt_args()...193
D.2.2 pjcmd_getpjmstat_put_scope().. 194
D.2.3 pjcmd_getpjmstat_get_scope().. 195
D.2.4 pjcmd_getpjmstat_put_param()... 196
D.2.5 pjcmd_getpjmstat_get_param()... 197
D.2.6 pjcmd_getpjmstat_execute().. 198

- vii -

D.2.7 pjcmd_getpjmstat_print_resp().. 199
D.2.8 pjcmd_getpjmstat_get_rscunit_info().. 199
D.2.9 pjcmd_getpjmstat_get_rscgrp_info()...200

Appendix E Sample Programs... 202
E.1 Submitting a Job..202
E.2 Getting Job Information.. 203
E.3 Deleting a Job..205

- viii -

Chapter 1 Command API Overview
This chapter provides an overview of the command API.

1.1 What is the Command API?
The user interface required for job operations varies depending on the operation system.
For example, some users may want to change or disable a command option name according to the job operation policy. Some users may
want to change the format of a command message and information output by a command to the original format.

To help create commands with the user interface preferred by the user, the job operation management function provides an interface to call
the same functions (job operation and information acquisition) as commands provided by the job operation management function. The
interface is called the command API (Application Programming Interface). The command API enables creating of commands with the user
interface preferred by the administrator or end user.

The command API consists of C language functions. They are provided as a library. This library can be used on the login node, compute
cluster management node, and system management node.

The command API supports the functions listed in the following table.

Table 1.1 Functions Supported by the Command API

Function Command Equivalent to Function

Submitting a job pjsub command

Deleting a job pjdel command

Changing a job parameter pjalter command, pmalter command

Sending a signal to a job pjsig command

Holding a job and releasing a job hold pjhold command, pjrls command

Waiting for a job to complete pjwait command

Getting job information pjstat command (-s and -S options)

Getting resource unit and resource group information pjstat command (--rsc option)

Getting job limit value information pjstat command (--limit option)

Getting job ACL function information pjacl command

Getting the status of job resource usage pjshowrsc command

Changing the job operation and getting the job operation status
(setting permissions for job submission or execution and getting the setting
status)

pmpjmopt command
(--set-rsc-ru option, --show-rsc-ug option)

- 1 -

Figure 1.1 Conceptual Diagram

1.2 Operation Flow
The following figure shows the flow of operations using the command API. For details on how to use the command API, see "Chapter 2
Using the Command API."

Figure 1.2 Flow of Operations Using the Command API

1. Request generation of a handle

To use the command API, a handle is first generated using the handle operation function. The handle is information for holding a
parameter to make a request for job operation and information acquisition to the job operation management function. The handle type
to be generated is specified for the job operation management function based on the request type.

- 2 -

2. Set a parameter in the handle

A parameter is set in the generated handle by the handle setting function. The parameter is information indicating the contents of a
request to the job operation management function, such as the amount of resources allocated to a job to be submitted or a job ID to
be deleted.

3. Request the job operation management function to perform an operation

After the parameter is set in the handle, an operation request is made to the job operation management function by the request
function. The job operation management function processes the operation based on the handle contents.

4. Get operation results

Response information about the results of the request to the job operation management function is returned as a return value for the
request function.

5. Reference the operation results

The response information includes information regarding the success/failure of the operation and obtained information. The
information is referenced with the information reference function. When getting information, a structure with more detailed
information may also be obtained from the response information in order to reference it.

1.3 Function Types
The following table lists the names of the command API functions by operation type.

Table 1.2 Command API Functions

Operation Function Name

Submitting a job pjcmd_submit_action()

Deleting a job pjcmd_kill_action()

Changing a job parameter pjcmd_alter_action()

Sending a signal to a job pjcmd_signal_action()

Holding a job pjcmd_hold_action()

Releasing a job hold pjcmd_release_action()

Waiting for a job to complete pjcmd_wait_action()

Getting job information pjcmd_jobinfo_action()

Getting resource unit and resource group information pjcmd_rscinfo_action()

Getting limit value information when submitting a job pjcmd_limitinfo_action()

Getting job ACL function information pjcmd_jacl_action()

Getting the status of job resource usage pjcmd_rscstat_action()

Changing the job operation and getting the job operation status
(setting permissions for job submission or execution and getting the setting status)

pjcmd_setpjmstat_action()
pjcmd_getpjmstat_action()

Utility function
(supplementary function to use the command API, such as for a handle operation and
response information, and reference results)

pjcmd_action()

"action" in a function name indicates the process type. The following table lists processes.

Table 1.3 Process Types of Command API Functions

Process Description Function Example

Handle
operation

Generates, initializes, replicates, or releases a handle. A specific
function is prepared for each operation.

pjcmd_create_handle()
pjcmd_reset_handle()
pjcmd_clone_handle()
pjcmd_destroy_handle()

- 3 -

Process Description Function Example

Parameter
setting and
reference

Sets a job operation, information acquisition, or other parameter in
a handle, and references a setting value.
A specific function is prepared for each function and parameter
type.

pjcmd_submit_put_param()
pjcmd_submit_get_param()

Argument
analysis

Analyzes the provided command line argument based on the
command option specification of the job operation management
function, and sets a parameter in a handle.
These functions are used when command arguments are analyzed
by the command API based on the command option system of the
Job Operation Software rather than by the user.
An option that is equivalent to the pjsub command can be
customized (changing and disabling an option name) using a
function called parser.

pjcmd_submit_parse_pjsub_args()
pjcmd_getopt_long()
pjcmd_renameopt_in_parser()
pjcmd_delopt_in_parser()

Operation
request

Makes a request for job operation and information acquisition to the
job operation management function based on the set information in
a handle. A specific function is provided for each function type.

pjcmd_submit_execute()

Result reference References the success/failure of a request and obtained information
(job ID, job information, etc.) from response information about
operation results and information acquisition results.
A specific function is provided for each operation type and
individual reference information.

pjcmd_get_jobresult_info()

Display Outputs the contents of response information based on the standard
command display specifications.
This function can be used when there is no need to customize
information display.

pjcmd_jobinfo_print_resp()

Response
information
operation

Releases response information.
Response information is held in the command API. The user
releases the information when it becomes unnecessary.

pjcmd_destroy_resp()

 See

For details on the functions, see "Appendix A Command API Common Reference" to "Appendix D Job Operation Control API Reference."

- 4 -

Chapter 2 Using the Command API
This chapter describes how to use the command API.

2.1 Header File
The header file of the command API is located at the following location on each login node, compute cluster management node, and system
management node.

/usr/include/FJSVtcs/pjm/pjcmd.h

This header file must be included in a source file that uses the command API.

#include <FJSVtcs/pjm/pjcmd.h>

...

main()

{

 // Process using the command API

 ...

}

2.2 Operations Using the Command API
This section describes how to use typical functions based on the flow of operations using the command API.

2.2.1 Generating a Handle
The command API sets an operation-related parameter in a handle and makes a request to the job operation management function. For that
purpose, the handle needs to be created first.

A handle is created using the pjcmd_create_handle() function.

PjcmdHandle_t *handle_p;

handle_p = pjcmd_create_handle(PJCMD_SUBMIT); // Generate handle for job submission

The pjcmd_create_handle() function creates a handle (PjcmdHandle_t). When the function succeeds, a pointer to the area is returned.

 Note

A handle is prepared for each operation type. For example, a handle generated for job submission cannot be used for job deletion.

2.2.2 Setting a Parameter
A parameter indicating operation details is set in a handle. The parameter is equivalent to a command option (pjsub command, etc.) of the
job operation management function.

For example, when a bulk job is submitted, an argument is specified in the pjsub command as follows.

pjsub -L "node=8x8" --bulk --sparam "1-10" ./job.sh

To realize this using the command API, parameters that are equivalent to these options are set in a handle as follows.

char *jobscript_p = "./job.sh"; // Job script ./job.sh

char *node_p = "8x8"; // Node shape 8x8

pjcmd_jobmodel_t jobmodel = PJCMD_JOBMODEL_BULK; // Job model: Bulk job

uint32_t bulk_sno = 1, bulk_eno = 10; // Bulk start number 1, bulk end number 10

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &jobscript_p);

- 5 -

pjcmd_submit_put_job_resource(handle_p, "node", &node_p);

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_JOBMODEL, &jobmodel);

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_BULK_STARTNO, &bulk_sno);

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_BULK_ENDNO, &bulk_eno);

* Determination of the function return value is omitted.

 Note

- Note that, in the above example, instead of a parameter value, the address of the storage area of the parameter value is passed to a handle
when setting a parameter value (pointer or numerical value) in order to handle various data-type parameters using one function.
For example, the pjcmd_submit_put_param() function specifies a parameter type in the second argument, and specifies the address of
the storage area of the parameter in the third argument (void * type). The function determines a parameter type based on the parameter
type indicated by the second argument.

Incorrect example:

char *jobscript_p = "./job.sh";

char *node_p = "8x8";

pjcmd_jobmodel_t jobmodel = PJCMD_JOBMODEL_BULK;

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, jobscript_p); // Pass value (pointer)

pjcmd_submit_put_job_resource(handle_p, "node","8x8"); // Pass value (pointer)

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_JOBMODEL, jobmodel); // Pass value (numerical

value)

- A parameter passed to a function is copied to a handle in the function. Therefore, if the function is successful, changing the original
parameter does not affect the handle contents.

Similar to when deleting a job, a job ID is set in a handle using the pjcmd_put_job() function in an operation to specify a target job.

In the following example, a normal job whose job ID is 10 is set in a handle.

int64_t jobid[2] = {10, -1}; // Specify job ID as array that ends with -1

pjcmd_put_job(handle_p, jobid, 0, 0, NULL, 0, 0, PJCMD_JOBMODEL_NORMAL);

A job ID can also be set in a handle by selecting from job IDs that are specified using a character string.

char *jobid_str_p = "10[1-5]"; // Bulk jobs 10[1] to 10[5]

pjcmd_put_job_by_str(handle_p, jobid_str_p);

Thus, by using this function, a job ID that is specified in a command line argument can be directly set in a handle without converting it to
a numerical value.

2.2.3 Processing a Command Line Option
The command API has a function to recognize the same options as a command of the job operation management function and set parameters
in a handle.

2.2.3.1 Parameter Setting From a Command Argument
"2.2.2 Setting a Parameter" describes individual parameter settings made by the users. However, if a command that uses the same option
system as a command provided by job operation management function is created, the arguments of the command can be batch analyzed by
the command API and set in a handle.

For example, if the same specifications as the pjsub command are applied to the options of a command to be created, parameters can be set
in a handle by analyzing the arguments with the pjcmd_submit_parse_pjsub_args() function.

main(int argc, char **argv_pp)

{

- 6 -

 PjcmdHandle_t *handle_p;

 char *jobscript_p;

 ...

 pjcmd_submit_parse_pjsub_args(handle_p, argc, argv_pp);

 if (pjcmd_optind >= argc) {

 Error processing;

 }

 jobscript_p = argv_pp[pjcmd_optind];

 pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &jobscript_p);

 ...

When the pjcmd_submit_parse_pjsub_args() function ends successfully, the pjcmd_optind global variable of the command API indicates
the first argument that is not an option of the argv_pp[] argument array. The caller needs to process the arguments that are not options.
In the following example, if there are any remaining arguments after setting the options in a handle with the
pjcmd_submit_parse_pjsub_args() function, argv_pp[pjcmd_optind] is regarded as a job script and set in the handle (the subsequent
arguments are ignored).

 ...

 if (pjcmd_optind >= argc) { // No remaining argument

 ... // Error processing

 }

 jobscript_p = argv_pp[pjcmd_optind];

 pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &jobscript_p); // Set job script

 // in handle

 ...

2.2.3.2 Command Line Parser
The names of the options that are recognized by the command API can be changed or disabled. By doing so, while inheriting the options
of a command of the job operation management function using a command to be created, an option name can be changed to another name
or unnecessary options can be disabled.

The command API treats option specifications (option name, meaning, and information on whether or not to have arguments) as information
called a command line parser. When an option name is changed or disabled, a command line parser is created first, and then the setting is
made into the parser.

 Note

- The command line parser is a function enabled in a program that uses the command API. The function does not operate the options of
a command of the job operation management function.

- Currently, the command line parser supports only the options equivalent to the pjsub command that is related to the job submission
operation.

The following example changes the -L option in the pjsub command, which is recognized by the command API, into the -R option, and
disables the --fs and --appname options.

PjcmdHandle_t *handle_p;

PjcmdParser_t *parser_p;

handle_p = pjcmd_create_handle(PJCMD_SUBMIT); // Generate handle for job submission

parser_p = pjcmd_submit_create_pjsub_parser(handle_p); // Generate command line parser related to job

submission

pjcmd_renameopt_in_parser(parser_p, 'L', 'R', NULL, NULL); // Change -L option into -R option

pjcmd_delopt_in_parser(parser_p, 0, "fs"); // Disable --fs option

pjcmd_delopt_in_parser(parser_p, 0, "appname"); // Disable --appname option

pjcmd_submit_parse_pjsub_args(handle_p, argc, argv_pp); // Analyze options using above settings

- 7 -

 Note

- A parser is associated with a handle. Do not release the handle corresponding to an option before analyzing the option. If the handle is
released first, operation is undetermined.

- When an option name is changed or disabled using a parser, it is also applied to analysis of arguments using the
pjcmd_submit_parse_pjsub_args() function that specifies the handle associated with the parser.

2.2.3.3 Option Analysis
When a command with original options needs to be created, in addition to the options of a command provided by the Job Operation Software,
only analysis of the original options is required as the argument analysis process if the pjcmd_getopt_long() function is used.
The pjcmd_getopt_long() function is similar to the C language library function getopt_long(). However, if the command options that are
recognized by the command API are detected, the pjcmd_getopt_long() function does not return but analyzes them internally. Then, the
function sets parameters in the handle associated with the command line parser.
If an option that cannot be recognized by the command API, such as an original option, is detected, the pjcmd_getopt_long() function
operates the same way as the pjcmd_getopt_long() function and returns.

In the following example, some of the options that are equivalent to the pjsub command of the job operation management function are
changed or disabled, and an original -Q option is processed during the job submission process.

main(int argc, char **argv_pp)

{

 int c, Q_flag = 0;

 char *myopts_p = "Q"; // Original -Q option

 PjcmdHandle_t *handle_p;

 PjcmdParser_t *parser_p;

 ...

 handle_p = pjcmd_create_handle(PJCMD_SUBMIT); // Generate handle

 parser_p = pjcmd_submit_create_pjsub_parser(handle_p); // Create command line parser

 pjcmd_renameopt_in_parser(parser_p, 'L', 'R', NULL, NULL); // Change -L option into -R option

 pjcmd_delopt_in_parser(parser_p, 0, "fs"); // Disable --fs option

 pjcmd_delopt_in_parser(parser_p, 0, "appname"); // Disable --appname option

 // Analyze argv command line argument and set it in handle

 // Recognized options are same as pjsub command option (parser_p) and -Q (myopts_p) option

 while ((c = pjcmd_getopt_long(parser_p, argc, argv_pp, myopts_p, NULL, NULL) != -1) {

 // pjcmd_getopt_long() does not return upon detecting the options recognized

 // by the command line parser.

 if (c == -1)

 break;

 switch (c) {

 case 'Q': // Original -Q option

 Q_flag = 1;

 break;

 default: // This is neither an option recognized by the command line parser

 // nor an original option.

 // Disabled options are treated as unknown options.

 fprintf(stderr, "%c: Unknown option\n", c);

 break;

 }

 ...

 if (Q_flag) {

 // Process when specifying -Q option

 }

 ...

}

- 8 -

 Note

Currently, the command line parser supports only the pjsub command options. Therefore, only the pjsub command options can be analyzed
by the pjcmd_getopt_long() function that requires the command line parser.

2.2.4 Requesting the Job Operation Management Function

2.2.4.1 Operation Request Function Call
After setting parameters in a handle, an operation is requested of the job operation management function by the operation request function.

For example, job submission is requested as follows.

PjcmdHandle_t *handle_p

PjcmdResp_t *resp_p;

...

resp_p = pjcmd_submit_execute(handle_p);

Response information (PjcmdResp_t) indicating operation results is returned as the function return value.

 Note

- An operation must be requested after setting all necessary parameters in a handle. If the necessary parameters for the operation are not
set, an error occurs.
For example, if a bulk start number is not set when submitting a bulk job, or if a job ID is not set when deleting a job, an error occurs.

- If the operation request function is called in a series, the requests to the job operation management function are held in the function until
a certain period of time has passed after the first call. During the period, the function does not return. The reason is to prevent increasing
the load of the job operation management function. The administrator can change the length of time. For details on how to set
parameters, see "Command API settings" in "Chapter 3 Job Operation Management Function Settings" in "Job Operation Software
Administrator's Guide for Job Management."

- The command API communicates with the job operation management function every time an operation is requested. Therefore, a new
operation request cannot be accepted until the operation requests to the job operation management function are completed in one
program.

- While the operation request function is being processed in another thread, calling a new operation request function results in an
error, and PJCMD_ERROR_BUSY is set in pjcmd_errcode. In this case, a new operation request function needs to be called again
after the operation request function being processed is completed.

- When the operation request function returns, the command API may internally communicate with the job operation management
function regarding the operation contents until response information is released. For this reason, if the operation request function
is called another time after calling the operation request function, the response information must be released first.

- The operation request function operates as follows against some signals.

SIGHUP, SIGQUIT, SIGINT, SIGALRM, SIGTERM: Process is interrupted

SIGUSR1, SIGUSR2, SIGPOLL, SIGPROF, SIGVTALRM, SIGIO, SIGPWR: Ignore

If the operation request function process is interrupted by a signal, the pjcmd_errcode error code becomes PJCMD_ERR_SIGNAL.
After the function returns, the signal setting returns back to the previous state that was used before the function was called.

2.2.4.2 Job Submission Operation
A job may be submitted by following a special procedure, which is not used for other operations, depending on the job model. This section
describes the precautions when submitting a job with the command API.

- Step jobs
When the sub jobs of a step job are submitted, one handle is prepared for each sub job to submit them.

- 9 -

When the same step job is submitted, all that needs to be done is to replicate the handle of the previous sub job and update only the
necessary parameters.

When multiple sub jobs of one step job are batch submitted, the pjcmd_submit_executev() function can be used.
For example, when multiple sub jobs of a step job are batch submitted by the pjsub command, they are executed as follows.

$ pjsub --step -N myjob stepjob0.sh stepjob1.sh stepjob2.sh stepjob3.sh stepjob4.sh

The same can be performed using the command API as follows.

#define SUBJOB_NUM 5

PjcmdHandle_t *handle_p[SUBJOB_NUM];

PjcmdResp_t *resp_p;

int i;

pjcmd_jobmodel_t model = PJCMD_JOBMODEL_STEP;

char *jobname_p = "myjob";

char *jobscript_p[SUBJOB_NUM] = {"stepjob0.sh", "stepjob1.sh", "stepjob2.sh", "stepjob3.sh",

"stepjob4.sh"};

handle_p[0] = pjcmd_create_handle(PJCMD_SUBMIT);

pjcmd_submit_put_param(handle_p[0], PJCMD_SUBMIT_JOBMODEL, &model);

pjcmd_submit_put_param(handle_p[0], PJCMD_SUBMIT_JOBNAME, &jobname_p);

pjcmd_submit_put_param(handle_p[0], PJCMD_SUBMIT_SCRIPTFILE, jobscript_p[0]);

...

for (i = 1; i < subjob_num; i++) {

 handle_p[i] = pjcmd_clone_handle(&handle_p[0]); // Replicate handle of first sub job

 pjcmd_submit_put_param(handle_p[i], PJCMD_SUBMIT_SCRIPTFILE, jobscript_p[i]); // Job script

}

resp_p = pjcmd_submit_executev(handle_p, SUBJOB_NUM); // Batch specify and submit handles

 // of sub jobs

- Interactive jobs
When the submission of an interactive job is requested by the pjcmd_submit_execute() function, the function does not return until the
input of the interactive job is closed (until the interactive job is completed).

An interactive job is submitted through the following four steps.

1. Acceptance of an interactive job is completed.

2. The interactive job enters the wait state.

3. Execution of the interactive job begins.

4. The interactive job is completed.

The pjsub command of the job operation management function outputs a message indicating the processing progress in each step. The
command API provides a callback mechanism to call a function prepared by the user in each step. When the same message as when
using the pjsub command needs to be output by a command that uses the command API, a job submission operation must be requested
after registering a function to output the message using the pjcmd_submit_set_callback() function. A sub job ID structure
(PjcmdSubjobid_t) is passed to an argument of the callback function.

The following examples show the callback function used to output messages similar to the messages shown below (error processing
and other processes are omitted), displayed when submitting an interactive job with the pjsub command.

$ pjsub --interact

[INFO] PJM 0000 pjsub Job 405916 submitted. (*1)

[INFO] PJM 0081 .connected. (*2)

[INFO] PJM 0082 pjsub Interactive job 405916 started. (*3)

$ (*4)

...

$ exit (*5)

[INFO] PJM 0083 pjsub Interactive job 405916 completed. (*6)

- 10 -

(*1) Message indicating submission of interactive job

(*2) Message indicating interactive job being prepared

(*3) Message indicating start of interactive job

(*4) Shell prompt in interactive job

(*5) End of shell

(*6) Message indicating completion of interactive job

a. Message indicating the submission of an interactive job
A message is displayed by the callback function that is called when acceptance of an interactive job is completed. A job ID
consisting of a character string is created ("405916" in the above example) based on the sub job ID structure (PjcmdSubjobid_t)
that is provided as an argument of the callback function.

void interact_job_accept_msg(const PjcmdSubjobid_t *subjobid_p)

{

 char buf[PJCMD_MAX_SUBJOBID_STR_LEN];

 pjcmd_subjobid_to_str(subjobid_p, buf);

 fprintf(stdout, "[INFO] PJM 0000 mypjsub Job %s submitted.\n", buf);

}

b. Message indicating an interactive job is being prepared
A message is displayed by the callback function that is called at a regular interval (every three seconds) while waiting for the
execution of an interactive job. In the following example, "." is displayed every time the callback function is called.

int interact_job_wait_msg_called = 0;

void interact_job_wait_msg(const PjcmdSubjobid_t *subjobid_p)

{

 if (interact_job_wait_msg_called != 0) {

 // Only beginning of message is displayed when called for first time

 fprintf(stdout, "[INFO] PJM 0081 ");

 interact_job_wait_msg_called = 1;

 }

 fprintf(stdout, ".");

 fflush(stdout);

}

c. Message indicating the start of an interactive job
A message is displayed by the callback function that is called when an interactive job starts. A job ID consisting of a character
string is created ("405916" in the above example) based on the sub job ID structure (PjcmdSubjobid_t) that is provided as an
argument of the callback function.

void interact_job_start_msg(const PjcmdSubjobid_t *subjobid_p)

{

 char buf[PJCMD_MAX_SUBJOBID_STR_LEN];

 // Displayed to show end of message indicating job being prepared

 fprintf(stdout, "connected\n");

 pjcmd_subjobid_to_str(subjobid_p, buf);

 fprintf(stdout, "[INFO] PJM 0082 mypjsub Interactive job %s started.\n", buf);

}

d. Message indicating the end of an interactive job
A message is displayed by the callback function that is called when an interactive job is completed. A job ID consisting of a
character string is created ("405916" in the above example) based on the sub job ID structure (PjcmdSubjobid_t) that is provided
as an argument of the callback function.

void interact_job_end_msg(const PjcmdSubjobid_t *subjobid_p)

{

 char buf[PJCMD_MAX_SUBJOBID_STR_LEN];

 pjcmd_subjobid_to_str(subjobid_p, buf);

- 11 -

 fprintf(stdout, "[INFO] PJM 0082 mypjsub Interactive job %s completed.\n", buf);

}

The callback functions prepared above are registered as follows before requesting submission of an interactive job.

if (jobtype == PJCMD_JOBTYPE_INTERACTIVE) { // When interactive job submitted

 pjcmd_submit_set_callback(handle_p, // Handle

 &interact_job_accept_msg, // When accepting job

 &interact_job_wait_msg, // When waiting for job to start

 &interact_job_start_msg, // When job starts

 &interact_job_end_msg); // When job ends

}

...

resp_p = pjcmd_submit_execute(handle_p);

...

By doing so, a callback function is called at each step of the internal processing of the pjcmd_submit_execute() request function.

- Job from the standard input

The pjsub command can provide job details from the standard input without specifying a job script. When providing job details in the
same way by using the command API, the contents of the standard input are saved in a temporary file in a program and set in a handle
as a job script.

The command API has the pjcmd_submit_create_scriptfile_from_stdin() function that is used to create the contents of the standard
input as a temporary job script. The following example uses this function.

char *tmp_jobscript_p;

// Input stored in automatically generated file

tmp_jobscript_p = pjcmd_submit_create_scriptfile_from_stdin(NULL, NULL);

if (tmp_jobscript_p == NULL) {

 // To error processing

}

// Set job script name

pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &tmp_jobscript_p);

...

pjcmd_submit_execute(handle_p);

...

// Delete temporarily created job script

unlink(tmp_jobscipt_p);

2.2.4.3 Job Operation
The following job operations may take a long time to receive a request for processing by the job operations management function and return
a response.

- Deleting a job

- Holding a job

- Release job hold

- Sending a signal to a job

- Changing job parameters

The job operation command of the job operation management function that corresponds to the job operation function above outputs a
message indicating the progress of processing when a request takes time to be accepted. The command API provides a callback mechanism
to call a user-provided function if the request takes a long time to be accepted.

If you want a command using the command API to process message output similar to various operation commands, register a function that
outputs messages with the pjcmd_xxxx_set_callback() function and request a job operation.

- 12 -

The following is an example of a callback function. It prints the following message, similar to the pjdel command (Error handling is
omitted).

$ pjdel 405916

[INFO] PJM 0181 ...done. (*)

[INFO] PJM 0100 pjdel Accepted job 405916.

(*) "[INFO] PJM 0181 ..." : A message indicating that a request to delete a job is

 waiting to be accepted.

 "done." : A message indicating that the request to delete the job has been accepted.

a. A message indicating that a request to delete a job is waiting to be accepted.

A message is output in a callback function called periodically (Every 3 Seconds) while waiting for a delete job request to be accepted.
This example outputs "." each time it is called.

int kill_wait_msg_called = 0;

void kill_wait_msg(void)

{

 if (kill_wait_msg_called == 0) {

 fprintf(stdout, "[INFO] PJM 0181 "); // First call outputs the beginning of the message.

 kill_wait_msg_called = 1;

 }

 fprintf(stdout, ".");

 fflush(stdout);

}

b. A message indicating that the request to delete the job has been accepted.

A message is output in a callback function that is called when a request to delete a job has been accepted.

void kill_accept_msg(void)

{

 fprintf(stdout, "done.\n"); // The end of a message waiting for a response to

 // a request to delete a job.

}

Register the prepared callback function as follows before requesting deletion of the job.

pjcmd_kill_set_callback(handle_p, // Handle

 &kill_wait_msg, // Called at waiting acceptance of request

 // for job deletion.

 &kill_accept_msg); // Called when request for job deletion has been accepted.

}

...

resp_p = pjcmd_kill_execute(handle_p);

That way, the registered callback function will be called at each stage in the pjcmd_kill_execute() function.

2.2.5 Referencing Results

2.2.5.1 Referencing Response Information
Operation request results are found by referencing response information.

PjcmdHandle_t *handle_p;

PjcmdResp_t *resp_p;

int code, subcode;

char *detail_p;

...

resp_p = pjcmd_submit_execute(handle_p); // Request job submission operation

if (resp_p == NULL) {

 // To error processing

}

- 13 -

pjcmd_get_result(resp_p, &code, &subcode, &detail_p); // Get operation request results

if (code != 0) {

 //To error processing

}

...

a. When response information is NULL
If the response information returned as the return value of the operation request function is NULL, it indicates that a problem, such
as insufficient contents of a handle, was found by a check before requesting the operation.

b. When response information is not NULL
When response information is returned, whether or not an operation has been successfully requested is checked with the
pjcmd_get_result() function first. If 0 (success) is returned in the second argument (code), detailed results as explained later in this
document can be referenced.

The detailed information that can be obtained from response information is different from job operation contents and other operation
contents.

- Job operation

The following information can be obtained from response information about a job operation, such as submitting or deleting a job.

- Number of operated jobs

The total number of operation target jobs and the number of successful jobs are obtained by the pjcmd_get_jobresult_num()
function.

PjcmdHandle_t *handle_p;

PjcmdResp_t *resp_p;

int64_t num[2]; // Array storing total number of jobs and number of successful jobs

...

resp_p = pjcmd_submit_execute(handle_p); // Request job submission operation

if (resp_p == NULL) {

 // To error processing

}

pjcmd_get_result(resp_p, &code, &subcode, &detail_p); // Get operation request results

if (code != 0) {

 // To error processing

}

pjcmd_get_jobresult_num(resp_p, num); // Get number of successfully submitted jobs

In the above example, the total number of submitted jobs is stored in num[0], and the number of successfully submitted jobs is stored
in num[1].

- Results of individual jobs

The operation results of individual jobs are found by the pjcmd_get_jobresult_info() function.

int code, subcode;

char *detail_p;

PjcmdSubjobid_t *subjobid_p;

...

resp_p = pjcmd_submit_execute(handle_p); // Request job submission operation

if (resp == NULL) {

 // To error processing

}

pjcmd_get_result(resp_p, &code, &subcode, &detail_p); // Obtain operation request results

if (code != 0) {

 // To error processing

}

pjcmd_get_jobresult_num(resp_p, num); // Get total number of submitted jobs and

 // number of successfully submitted jobs

for (i = 0; i < num[0]; i++) {

 pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

- 14 -

 i, PJCMD_JOBRESULT_CODE, &code);

 pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

 i, PJCMD_JOBRESULT_SUB_CODE, &subcode);

 pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

 i, PJCMD_JOBRESULT_DETAIL, &detail_p);

 pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

 i, PJCMD_JOBRESULT_SUBJOBID, &subjobid_p);

 printf("....<Displaying obtained information and other operations> ...");

}

In the above example, the following information on all jobs to be operated are obtained sequentially from response information by
the pjcmd_get_jobresult_info() function: result code (code), detailed result code (subcode), detailed result (character string)
(detail) and sub job ID (subjobid). Only jobs that were successfully submitted (PJCMD_JOBRESULT_OK) or only jobs that that
failed in submission (PJCMD_JOBRESULT_ERR) can also be specified in the second argument.

 Information

The pjcmd_get_jobresult_info() function specifies a job index to reference results. Therefore, the number of jobs must be obtained
by the pjcmd_get_jobresult_num() function beforehand. If an index that exceeds the number of target jobs is specified, an error
occurs.

- Other than job operations

As for operations other than job operations (information acquisition and other operations), operation-specific information can be
referenced from response information. The reference method varies depending on the information type. The following example
references job information (equivalent to the pjstat command).

pjcmd_result_t ret;

PjcmdResp_t *resp_p;

...

resp_p = pjcmd_jobinfo_execute(handle_p); // Request job submission operation

if (resp_p == NULL) {

 // To error processing

}

pjcmd_get_result(resp_p, &code, &subcode, &detail_p); // Acquire operation request results

if (code != 0) {

 // To error processing

}

do (ret = pjcmd_jobinfo_read_infogrp(resp_p)) { // Move to one information group

 if (ret == PJCMD_ERR) {

 if (pjcmd_errcode == PJCMD_ERROR_NODATA) {

 break;

 }

 fprintf(stderr, "%s: Cannot read infogrp\n", CMD_NAME);

 pjcmd_destroy_resp(resp_p);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 pjcmd_jobinfo_print_resp(resp_p, PJCMD_JOBINFO_PRINT_JOBINFO); // Display information

 // group contents

}

Multiple information groups are stored in response information. An information group is a unit for obtaining information. It is
equivalent to the display of information for each resource unit or resource group by using the --ru or -rg option, respectively, in the pjstat
command. The pointer pointing to the information group that is currently being referenced is included in response information. The
pjcmd_jobinfo_read_infogrp() function updates the pointer so that it points to the next information group every time the function is
called.
Then, the function displays the summary information and job information for the current information group by using the
pjcmd_jobinfo_print_resp() function.

- 15 -

 Information

- The above example is equivalent to the information that is displayed when executing the pjstat command as follows.

$ pjstat --ru --rg

[RSCUNIT: unit1] (*) Display unit per resource unit

[RSCGRP: group1] or resource group is equivalent to information group

JOB_ID JOB_NAME ...

2927 jobA ...

[RSCUNIT: unit1]

[RSCGRP: group2]

JOB_ID JOB_NAME ...

2928 jobB ...

...

- The pjcmd_jobinfo_read_jobinfo() function is used to confirm job information one piece at a time. This function enables
information on jobs belonging to the current information group to be referenced one piece at a time.

2.2.5.2 Error Information
The following steps are used to detect a command API error.

- Function return value (pjcmd_result_t type or pointer type)
Whether a function is successful or failed is found by referencing a function return value.

- pjcmd_errcode error code
If a function fails, a code indicating the details is set.

- Response information
Operation request results are found by referencing response information details (see "2.2.5.1 Referencing Response Information").

- Detailed error information
Error information that is more detailed than the above information is found.

 Information

If information that is similar to the information included in a standard command message is required, it is not sufficient to reference only
a function return value and error code. Detailed error information also needs to be referenced.

This section describes detailed error information.

Detailed error information (PjcmdErrInfo_t) is accumulated when an error occurs in the command API. Multiple items of detailed error
information may be accumulated at one time depending on the error.

- 16 -

Figure 2.1 Conceptual Diagram of Detailed Error Information

The following information is included in detailed error information.

Table 2.1 Information Included in Detailed Error Information

Information Description

Detailed error code This code indicates an error type (pjcmd_suberrcode_t).

Detailed code 1 to 3 Error detailed code (numerical value). A maximum of 3 codes are set based on
the error type.

Detailed information (character string) 1 to 5 Detailed error information (character string). A maximum of 5 pieces of
information are set based on the error type.

Number of job script line where error occurred A line number is displayed when an error occurs in a job script.

Sub job ID If an error related to a specific job occurs, this sub job ID indicates the job ID,
bulk number, and step number of the job.

 See

The obtained detailed code and detailed information (character string) are different for each detailed error code. For details, see "A.7.2
Detailed Error Code" in "Appendix A Command API Common Reference."

When the user of the command API detects a function error, the user references the detailed error information and, if necessary, displays
it as a message.

The following table lists functions for referencing detailed error information.

Table 2.2 Functions for Referencing Detailed Error Information

Function Description

pjcmd_error_read_errinfo() This function retrieves a piece of detailed error information accumulated in the command
API.
The function returns the next piece of detailed error information every time it is called.

pjcmd_error_read_errinfo_by_sjid() If the detailed error information accumulated in the command API is contents
corresponding to a job, the detailed error information corresponding to the specified sub job
ID structure is returned.

pjcmd_error_get_info() This function references information (other than detailed information (character string)) in
detailed error information.

pjcmd_error_get_detail_info() This function references detailed information (character string) in detailed error
information.

- 17 -

Function Description

pjcmd_error_destroy_errinfo() This function releases (deletes) some detailed error information.

pjcmd_error_clear_errinfo() This function releases (deletes) all detailed error information accumulated in the command
API.

 Note

Detailed error information keeps accumulating in memory used by a process. Therefore, normally, detailed error information must be
released (deleted) after outputting error information or performing other operations by referencing the detailed error information when an
error occurs.
In many cases, a program is designed to terminate when an error occurs. In that case, the OS releases detailed error information when a
program ends without intentionally releasing detailed error information.

[Example of Referencing Detailed Error Information]

The following example shows code to reference detailed error information in cases where an error occurs in a function of the command API.

 1 main(int argc, char **argv)

 2 {

 3 PjcmdHandle_p *handle_p;

 4 PjcmdResp_p *resp_p;

 5 int code, subcode;

 6 char *detail_p;

 7 ...

 8 ret = pjcmd_submit_parse_pjsub_args(handle_p, argc, argv);

 9 if (ret != PJCMD_OK) { // Parameter setting error

 10 goto l_err;

 11 }

 12 ...

 13 resp_p = pjcmd_submit_execute(handle_p);

 14 if (resp_p == NULL) { // Submission request failure

 15 goto l_err;

 16 }

 17

 18 if (pjcmd_get_result(resp_p, &code, &subcode, &detail_p) != PJCMD_OK) {

 19 goto l_err; // Failure in getting results

 20 }

 21

 22 if (code != 0) { // Requested operation does not end successfully

 23 goto l_err;

 24 }

 25

 26 ...

 27

 28 l_err:

 29 mycmd_print_error(); // Display error message

 30 pjcmd_error_destroy_errinfo();

 31 pjcmd_destroy_resp(resp_p);

 32 pjcmd_destroy_handle(handle_p);

 33 ...

 34 exit(1);

 35 }

 36

 37 void mycmd_print_error(void)

 38 {

 39 PjcmdErrInfo_t *einfo_p;

 40 int suberrcode, code1, code2, code3, line;

 41 char *detail_p[5];

 42 PjcmdSubjobid_t *subjobid_p;

- 18 -

 43

 44 while ((errinfo_p = pjcmd_error_read_errinfo()) != NULL) {

 45 pjcmd_error_get_info(einfo_p, PJCMD_ERRINFO_SUBERRCODE, &suberrcode);

 46 switch (suberrcode) {

 47 case PJCMD_SUBERR_UNKNOWN_OPT: // Detect unknown option

 48 fprintf(stderr, "[ERR.] 0001 mycmd Unknown option '%s'\n",

 49 pjcmd_error_get_detail_info(einfo_p, 0)); // Unknown option

 50 break;

 51 case PJCMD_SUBERR_COMBINATION: // Incorrect option combination

 52 detail_p[0] = pjcmd_error_get_detail_info(einfo_p, 0); // Option 1

 53 detail_p[1] = pjcmd_error_get_detail_info(einfo_p, 1); // Option 2

 54 fprintf(stderr, "[ERR.] 0002 mycmd Invalid combination of options: '%s' and '%s'\n",

 55 detail_p[0], detail_p[1]);

 56 break;

 57 ...

 58 case PJCMD_SUBERR_UPPER_LIMIT: // Specified resource amount exceeds upper limit

 59 pjcmd_error_get_info(einfo_p, PJCMD_ERRINFO_SJID, &subjobid_p);

 60 detail_p[0] = pjcmd_error_get_detail_info(einfo_p, 0); // Resource name

 61 detail_p[1] = pjcmd_error_get_detail_info(einfo_p, 1); // Specified resource amount

 62 detail_p[2] = pjcmd_error_get_detail_info(einfo_p, 2); // Upper limit value

 63 fprintf(stderr, "[ERR.] 0057 mycmd %s=%s is greater than the upper limit (%s).\n",

 64 detail_p[0], detail_p[1], detail_p[2]);

 65 break;

 66 ...

 67 case PJCMD_SUBERR_DAEMON_ISNOT_PRESENT: // Job manager function

 68 // not working/cannot communicate

 69 fprintf(stderr, "[ERR.] 0090 mycmd Job manager does not work\n");

 70 break;

 71 ...

 72 }

 73 }

 74 }

- Lines 10, 15, 19, and 23
The occurrence of an error in a function of the command API causes a jump to an error process.

- Line 29
The error message display function is called based on detailed error information.

- Lines 30 to 34
Terminate once detailed error information, response information, and handles are released after displaying an error message.

- Lines 44 to 73
Detailed error information PjcmdErrInfo_t is read one piece at a time.

- Line 45
A detailed error code is obtained from detailed error information.

- Lines 46 to 72
Information related to all detailed error codes are obtained to display them as a message.
For details on detailed error code types and related information types, see "A.7.2 Detailed Error Codet" in "Appendix A Command API
Common Reference."

For example, in lines 58 to 65, an error is processed when the specified resource amount exceeds the upper limit defined by the job ACL
function. The resource name, specified resource amount, and upper limit value are obtained from detailed error information by the
pjcmd_error_get_detail_info() function and displayed by the fprintf() function.

2.2.6 Releasing Handles, Command Line Parsers, and Response
Information

Generated handles, command line parsers, and response information must be released when a program ends after processing is completed.

- 19 -

PjcmdHandle_t *handle_p;

PjcmdResp_t *resp_p;

PjcmdParser_t *parser_p;

...

parser_p = pjcmd_submit_create_pjsub_parser(handle_p);

...

resp_p = pjcmd_submit_execute(handle_p);

...

pjcmd_submit_destroy_pjsub_parser(parser_p);

pjcmd_destroy_resp(resp_p);

pjcmd_destroy_handle(handle_p);

 Note

When releasing handles, response information, and command line parsers, the handles must be released last. Response information and
command line parsers are associated with handles. Therefore, if response information and command line parsers are operated after the
release of the handles, operation is undetermined. Since these areas are part of the data area of a program, if the program ends without
releasing the areas, the areas are released by the OS.

2.2.7 Precaution When Using the Command API
- The command API can be used for multithread programs. However, a single handle must not be updated on multiple threads

simultaneously.

2.3 Creating a Command
The command API library is located at the following location on each login node, compute cluster management node, and system
management node.

/usr/lib64/libpjcmd.so

A link to the libpjcmd library of the command API must be created when creating an executable file by compiling a created source file.

$ gcc -o mycmd mycmd.c -lpjcmd ...

 Note

The standard gcc available on the OS needs to be the compiler used. Other compilers are not supported.

2.4 Setting the Command API
The administrator can configure settings to change the operation of the command API.
To change a default setting value, the administrator must edit the pmpjcmd.conf file on the login node, compute cluster management node,
and system management node that can be used by the command API.

/etc/opt/FJSVtcs/pjm/pmpjcmd.conf

The contents of the pmpjcmd.conf configuration file are updated to the latest contents every time that a command that uses a function of
the command API is executed. The command API reads this configuration file on the node from which it is called. If each node needs to
have the same setting values, the configuration file on each node must have the same contents.

The pmpjcmd.conf file permissions must be set as follows:

- Owner/Group: root/root

- File mode: 0644

- 20 -

 See

For details on the configuration file, see "Command API settings" in "Chapter 3 Job Operation Management Function Settings" in "Job
Operation Software Administrator's Guide for Job Management."

- 21 -

Appendix A Command API Common Reference

A.1 Handle Operations and Response Information
This section describes the functions for handle operations and response information.

Figure A.1 Handle Operations and Response Information

A.1.1 pjcmd_create_handle()
PjcmdHandle_t *pjcmd_create_handle(pjcmd_operation_t op)

This function generates a handle.

[ARGUMENTS]

op

Identifier indicating an operation type

Identifier Description

PJCMD_SUBMIT Submitting a job

PJCMD_KILL Delete a job

PJCMD_SIGNAL Sending a signal

PJCMD_HOLD Holding a job

PJCMD_RELEASE Releasing a job hold

PJCMD_ALTER Changing a job parameter

PJCMD_WAIT Waiting for a job to complete

PJCMD_JOBINFO Getting job information

PJCMD_RSCINFO Getting resource information on a resource unit/resource group

PJCMD_LIMITINFO Getting limit value information

- 22 -

Identifier Description

PJCMD_RSCSTAT Getting the resource status

PJCMD_JOBACL Getting job ACL information

PJCMD_SETPJMSTAT Changing the job operation (setting job submission/execution permission)

PJCMD_GETPJMSTAT Getting the job operation setting status (getting the status of job submission/execution
permission)

[RETURN VALUE]

The pointer to the generated handle is returned. If the function fails, NULL is returned, and the cause is set in pjcmd_errcode. The caller
must release the generated handle by using the pjcmd_destroy_handle() function.

[pjcmd_errcode]

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in op.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

A.1.2 pjcmd_clone_handle()
PjcmdHandle_t *pjcmd_clone_handle(const PjcmdHandle_t *handle_p)

This function replicates the handle_p handle. The function is used in situations such as submitting a job using the parameters of another job.

[ARGUMENTS]

handle_p

Pointer to the handle to be replicated

[RETURN VALUE]

The pointer to the replicated handle is returned. If the function fails, NULL is returned, and the cause is set in pjcmd_errcode. The caller
must release the replicated handle by using the pjcmd_destroy_handle() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

handle_p is invalid (NULL).

PJCMD_ERROR_NOMEM

Memory acquisition failed.

A.1.3 pjcmd_reset_handle()
pjcmd_result_t pjcmd_reset_handle(PjcmdHandle_t *handle_p)

This function initializes the handle contents. The handle then has the same contents as in the initial state with contents generated by the
pjcmd_create_handle() function.

[ARGUMENTS]

handle_p

Pointer to the handle to be initialized

[RETURN VALUE]

PJCMD_OK

Success

- 23 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

handle_p is invalid (NULL).

A.1.4 pjcmd_destroy_handle()
pjcmd_result_t pjcmd_destroy_handle(PjcmdHandle_t *handle_p)

This function releases a handle.

[ARGUMENTS]

handle_p

Pointer to the handle to be released

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

handle_p is invalid (NULL).

A.1.5 pjcmd_destroy_resp()
pjcmd_result_t pjcmd_destroy_resp(PjcmdResp_t *resp_p)

This function releases response information. Response information is result information returned by the pjcmd_operation_execute()
function.

[ARGUMENTS]

resp_p

Pointer to the response information to be released

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

resp_p is invalid (NULL).

A.2 Referencing of Operation Results
This section describes the functions for referencing result information from response information about job operations and information
acquisition.

- 24 -

Figure A.2 Referencing Operation and Information Acquisition Results

A.2.1 pjcmd_get_result()
pjcmd_result_t pjcmd_get_result(const PjcmdResp_t *resp_p, int *code_p, int *subcode_p, char

**detail_pp);

This function gets operation result codes and detailed information from response information.
The information that is obtained by this function is the results of operation requests and information acquisition requests. The
pjcmd_get_jobresult_info() function must be used to reference the individual results of job operations (submit a job, delete a job, hold a job,
release a job hold, send signals, wait for job completion, and change job parameters).

[ARGUMENTS]

resp_p

Pointer to response information

code_p

A result code is stored in *code_p. If *code_p is 0, it indicates that the operation completed successfully. If the result code is not 0,
it indicates that the operation did not complete successfully. In that case, detailed investigation data is stored in (int)*subcode_p and
(char *) *detail_pp.

subcode_p

A result code for detailed investigation data is stored in *subcode_p.

detail_pp

A pointer (character string) to detailed investigation data is stored in *detail_pp.

[RETURN VALUE]

PJCMD_OK

Result information has been successfully obtained.

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

resp_p is invalid (NULL).

- 25 -

PJCMD_ERROR_INVALID_ARGUMENT

code_p, subcode_p, or detail_pp is invalid (NULL).

A.2.2 pjcmd_get_jobresult_num()
pjcmd_result_t pjcmd_get_jobresult_num(const PjcmdResp_t *resp_p, int64_t *num_p)

This function gets the total number of target jobs and the number of successful jobs from response information about job operations (*).
(*) Job submission, job deletion, job hold, releasing job hold, signal transmission, changing parameters, and waiting for a job to complete
(see "Appendix B Job Operation API Reference.")

[ARGUMENTS]

resp_p

Pointer to response information

num_p

The total number of jobs and the number of operation-succeeded jobs are stored in the num_p[] array.
Num_p[0]:[0]: Total number of jobs
num_p[1]: Number of successful jobs

The caller needs to prepare these array areas.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- The response information is not response information for the job operation API.

PJCMD_ERROR_INVALID_ARGUMENT

num_p is invalid (NULL).

A.2.3 pjcmd_get_jobresult_info()
pjcmd_result_t pjcmd_get_jobresult_info(const PjcmdResp_t *resp_p, pjcmd_jobresult_type_t result,

int64_t indx,

 pjcmd_jobresult_info_t type, void *val_p)

This function gets result information of specific jobs from response information about job operations (*).
(*) Submit a job, delete a job, hold a job, release a job hold, send signals, change parameters, and wait for job completion (See "Appendix B
Job Operation API Reference.")

[ARGUMENTS]

resp_p

Pointer to response information

result

Conditions for target jobs whose results are obtained

- 26 -

PJCMD_JOBRESULT_ANY

All jobs are targeted.

PJCMD_JOBRESULT_OK

Only successful jobs are targeted.

PJCMD_JOBRESULT_ERR

Only failed jobs are targeted.

indx

Index of jobs whose result information is obtained. The value must be in a range of 0 to a value that is calculated by subtracting 1
from the total number of jobs that meet the conditions indicated by the result argument.

type

Identifier of result information to be obtained (See the following table.)

val_p

Result information is stored in *val_p. The caller needs to prepare an area of a sufficient size based on type. For example, if *val_p
type is int, the caller needs to prepare an int type area and specify a pointer (int *) to the area in val_p.

type *val_p Type of *val_p

PJCMD_JOBRESULT_SUBJOBID Sub job ID structure of a job

If the obtained value is referenced after the release
of response information, operation is
undetermined.

PjcmdSubjobid_t *

PJCMD_JOBRESULT_CODE Job operation result code

0: Success
Other than 0: Failure

int

PJCMD_JOBRESULT_SUB_CODE Detailed result code when a job operation fails

This is investigation data from the error occurrence
time.

int

PJCMD_JOBRESULT_DETAIL Detailed information (character string) when a job
operation fails

This is investigation data from the error occurrence
time.

char *

PJCMD_JOBRESULT_PJM_CODE Job completion code (PJM code)

This identifier has meaning only when waiting for
a job to complete.

int32_t

PJCMD_JOBRESULT_EXIT_CODE Job script exit code

This identifier has meaning only when waiting for
a job to complete.

int32_t

PJCMD_JOBRESULT_SIGNAL_NUM Signal number when a job script ends with a signal

This identifier has meaning only when waiting for
a job to complete.

int32_t

PJCMD_JOBRESULT_JOB_STATUS Job status while waiting

0: Completed step job or bulk job
1: ACCEPT, QUEUED, READY, RUNNING-A,
RUNNING-P, RUNNING, or RUNNING-E state
2: HOLD state
3: ERROR state

int32_t

- 27 -

type *val_p Type of *val_p

This identifier has meaning only when waiting for
a job to complete.

PJCMD_JOBRESULT_ACCEPT_DATE Job acceptance time

This identifier has meaning only when waiting for
a job to complete. If the job type is sub job, the time
when the summary job is accepted is returned.

strcut timespec

PJCMD_JOBRESULT_NODE_MODEL Compute node type

0: FX server
1: PRIMERGY server

uint32_t

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- The response information is not response information for the job operation API.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in result or type.

PJCMD_ERROR_NODATA

The indx value is out of range.

A.3 Setting and Acquisition of Job IDs
This section describes the functions for operating and referencing job IDs.

Figure A.3 Setting and Referencing Job IDs

- 28 -

A.3.1 pjcmd_put_job()
pjcmd_result_t pjcmd_put_job(PjcmdHandle_t *handle_p, const int64_t *jobid_p, int64_t jobid_s,

int64_t jobid_e,

 const int64_t *no_p, int64_t no_s, int64_t no_e, pjcmd_jobmodel_t model)

This function sets a job, which is specified in an argument, in a handle. If the job is already set in the handle, an additional setting is made.

[ARGUMENTS]

handle_p

Pointer to a handle

jobid_p

Jobid_p[] is an array composed of one or more job IDs. The last element in the array must be -1. If the array does not end with -1,
operation is undetermined. If jobid_p is NULL and no job ID is specified in the array elements (jobid_p[0] is -1), this argument is
ignored.

jobid_s, jobid_e

This argument indicates the start (jobid_s) and end (jobid_e) of a job ID range.
If jobid_s is larger than jobid_e, the function returns the PJCMD_ERR error, and PJCMD_ERROR_INVALID_PARAM is set in
pjcmd_errcode.
If a job ID is specified in jobid_p and a value outside the range (0 to 2147483647; where a job ID can be specified), this argument
is ignored.

no_p

If the job model is a step job or bulk job, the step number or bulk number is specified as an array. The last element in the array must
be -1. If the array does not end with -1, operation is undetermined. If no_p is NULL, more than two job IDs are specified in jobid_p,
or PJCMD_JOBMODEL_NORMAL is specified in model, this argument is ignored.
If no step number or bulk number is specified in an array element (no_p[0] is -1), the function returns the PJCMD_ERR error, and
PJCMD_ERROR_INVALID_PARAM is set in pjcmd_errcode.

no_s, no_e

If the job model is a step job or bulk job, the start (no_s) and end (no_e) of the step number or bulk number is specified.
If no_s is larger than no_e, the function returns the PJCMD_ERR error, and PJCMD_ERROR_INVALID_PARAM is set in
pjcmd_errcode.
If -1 is specified in no_s and no_e, a step number or bulk number is indicated by no_p, two or more job IDs are specified in jobid_p,
or PJCMD_JOBMODEL_NORMAL is specified in model, this argument is ignored.

model

If the no_p, no_s, and no_e arguments are specified, model is specified in order to differentiate that the argument is a step number
or bulk number.

PJCMD_JOBMODEL_STEP

Valid values that are specified in the no_p, no_s, and no_e arguments are regarded as step numbers.

PJCMD_JOBMODEL_BULK

Valid values that are specified in the no_p, no_s, and no_e arguments are regarded as bulk numbers.

If a job model other than the above (PJCMD_JOBMODEL_NORMAL) is specified in the model argument, or if invalid values are
set in the no_p, no_s, and no_e arguments, it is regarded that sub job IDs are not specified, and only the jobid_p, jobid_s, and jobid_e
arguments that specify job IDs are valid.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 29 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This handle type cannot specify a job ID.

PJCMD_ERROR_INVALID_PARAM

A parameter specified in an argument is invalid.

- jobid_s > jobid_e

- no_p[0] is -1.

- no_s > no_e

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified to the argument model.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

 Information

The arguments shown below need to be set based on the job type to be set. Argument that are not shown below are ignored.

- Specifying one job ID (100)

jobid_p[0]=100;

jobid_p[1]=-1;

no_p=NULL;

no_s=-1;

- Specifying N job IDs (100,101, ...)

jobid_p[0]=100;

jobid_p[1]=101;

...

jobid_p[N-1]=100+N-1;

jobid_p[N]=-1;

- Specifying a job ID range (100 to 110)

jobid_p=NULL;

jobid_s=100;

jobid_e=110;

- Specifying one sub job ID (100_1 or 100[1]) of a step job or bulk job

jobid_p[0]=100;

jobid_p[1]=-1;

no_p[0]=1;

no_p[1]=-1;

model=PJCMD_JOBMODEL_STEP or PJCMD_JOBMODEL_BULK

- Specifying N sub job IDs of step jobs or bulk jobs (100_0,100_1,... or 100[0],100[1],...)

jobid_p[0]=100;

jobid_p[1]=-1;

- 30 -

no_p[0]=0;

no_p[1]=1;

...

no_p[N-1]=N-1;

no_p[N]=-1;

model=PJCMD_JOBMODEL_STEP or PJCMD_JOBMODEL_BULK

- Specifying the sub job ID range of step jobs or bulk jobs (100_0 to 10 or 100 [0 to 10])

jobid_p[0]=100;

jobid_p[1]=-1;

no_p=NULL;

no_s=0;

no_e=10;

model=PJCMD_JOBMODEL_STEP or PJCMD_JOBMODEL_BULK

A.3.2 pjcmd_put_job_by_str()
pjcmd_result_t pjcmd_put_job_by_str(PjcmdHandle_t *handle_p, const char *str_p)

This function sets a job ID, which is specified using a character string, in a handle. If a job is already set in the handle, the job ID is added
to it.

[ARGUMENTS]

handle_p

Pointer to a handle

str_p

Job ID or sub job ID (represented by a character string) to be set
A job ID can be specified in the following character string formats;

- Single job ID (Example: "100")

- Single sub job ID (Example: "200_1" or "300[5]")

- Specifying a job ID range (Example: "10 to 50")

- Specifying a sub job ID range (Example: "200_1 to 200_5" or "300 [5 to 10]")

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This handle type cannot specify a job ID.

PJCMD_ERROR_INVALID_ARGUMENT

str_p is NULL.

PJCMD_ERROR_INVALID_PARAM

The format of a job ID specified in str_p is invalid.

- 31 -

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

A.3.3 pjcmd_put_jobresult_mode()
pjcmd_result_t pjcmd_put_jobresult_mode(PjcmdHandle_t *handle_p, pjcmd_jobresult_mode_t mode)

This function sets a target job range for getting operation results from the job operation management function in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

mode

Mode to get job operation results

PJCMD_JOBRESULT_MODE_ALL

If job IDs are specified as a range, jobs that do not exist are also included in the results to obtain.

PJCMD_JOBRESULT_MODE_BASIC

If job IDs are specified as a range, jobs that do not exist, jobs without the operation privilege, and jobs that cannot be operated
are not included.

If this function is not called, PJCMD_JOBRESULT_MODE_ALL is applied as the mode to get job operation results.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job operations.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is set in mode.

PJCMD_ERROR_INTERNAL

Internal error

A.3.4 pjcmd_get_subjobid_info()
pjcmd_result_t pjcmd_get_subjobid_info(const PjcmdSubjobid_t *subjobid_p, pjcmd_subjobid_info_t

info, void *val_p)

This function obtains the job ID, step number, and bulk number of a sub job ID structure.

- 32 -

[ARGUMENTS]

subjobid_p

Pointer to a sub job ID structure

info

Identifier indicating the information to be obtained (See the following table.)

val_p

The obtained values are stored in *val_p. The caller needs to prepare an area of a sufficient size based on info. For example, if *val_p
type is int64_t, the caller needs to prepare an int64_t type area and specify a pointer (int64_t *) to the area in val_p.

info *val_p Type of *val_p

PJCMD_SUBJOBID_JOBID Job ID int64_t

PJCMD_SUBJOBID_STEPNO Step number

If the job is not a step job, -1 is stored.

int64_t

PJCMD_SUBJOBID_BULKNO Bulk number

If the job is not a bulk job, -1 is stored.

int64_t

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

subjobid_p or val_p is NULL.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in info.

A.3.5 pjcmd_subjobid_to_str()
pjcmd_result_t pjcmd_subjobid_to_str(const PjcmdSubjobid_t *subjobid_p, char *str_p)

This function converts a sub job ID structure to a character string for display.

[ARGUMENTS]

subjobid_p

Pointer to a sub job ID structure

str_p

A converted character string is stored in the area indicated by str_p. The caller needs to reserve the area. The maximum length for
a stored character string is PJCMD_MAX_SUBJOBID_STR_LEN bytes including the NULL character at the end.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 33 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

subjobid_p or str_p is NULL.

[EXAMPLES]

A sub job ID structure is converted as follows based on the job model:

- Normal job: "<JobID>" (Example: "123")

- Step job: "<JobID>_<Step Number>" (Example: "123_5")

- Bulk job: "<JobID>[<Bulk Number>]" (Example: "123[5]")

A.4 Analysis of Command Line Arguments
This section describes the functions for analyzing command line arguments.

Figure A.4 Analysis of Command Line Arguments

A.4.1 pjcmd_getopt_long()
int pjcmd_getopt_long(const PjcmdParser_t *parser_p, int argc, char *const argv[], const char

*optstring_p, const struct option *longopts_p, int *longindex_p)

This function analyzes command line arguments based on the command line parser.
The operation of this function is the same as for the getopt_long() function, except for the following.

- This function recognizes the following options:

- optstring_p (short option) and longopts_p (long option) that are specified by the caller

- Options recognized by the command line parser parser_p

- The function returns every time that one option (optstring_p or longopt_p) specified by the caller is detected. When detecting an option
that is recognized by the command line parser parser_p, the function does not return. However, a parameter is internally set in the handle
(the handle specified when generating the command line parser) corresponding to the command line parser.

If NULL is specified in parser_p, the operation is the same as for the getopt_long() function.

[ARGUMENTS]

parser_p

Pointer to a command line parser

- 34 -

argc

Number of arguments to be analyzed

argv

Array of arguments to be analyzed

optstring_p

Short option character string (see getopt_long(3))

longopts_p

Long option to accept (see getopt_long(3))

longindex_p

Index to a recognized long option (see getopt_long(3))

[RETURN VALUE]

- If a short option is detected, a character is returned.

- If a long option is detected, a value is returned based on the corresponding member flag in longopts_p.

- When analysis of a command line option is completed, -1 is returned.

- If an unidentified option is detected, "?" is returned.

A.4.2 pjcmd_delopt_in_parser()
pjcmd_result_t pjcmd_delopt_in_parser(PjcmdParser_t *parser_p, char opt, const char *longopt_p)

This function disables the specified options among the options that are recognized by a command line parser. Calling this function once can
disable either the short or long option. The caller needs to call this function multiple times to disable multiple options.

[ARGUMENTS]

parser_p

Pointer to a command line parser

opt

Short option to be disabled (character string excluding "-" in the option). If the NULL character "\0" is specified, it is regarded that
a disabling short option is not specified.

longopt_p

Name of the long option to be disabled (option name excluding "--"). If NULL is specified, it is regarded that a disabling long option
is not specified.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

parser_p is NULL.

PJCMD_ERROR_UNKNOWN_OPTION

A specified option does not exist in the command line parser.

- 35 -

A.4.3 pjcmd_renameopt_in_parser()
pjcmd_result_t pjcmd_renameopt_in_parser(PjcmdParser_t *parser_p, char old_opt, char new_opt, const

char *old_longopt_p, const char *new_longopt_p)

This function changes option names that are recognized by a command line parser.

[ARGUMENTS]

parser_p

Pointer to a command line parser

old_opt

Short option before the change (character string excluding "-" in the option). If a short option is not changed, the NULL character
"\0" must be specified.

new_opt

Short option after the change (character string excluding "-" in the option). If old_opt is a NULL character, it is ignored.

old_longopt_p

Long option after the change (option name excluding "--"). If a long option is not changed, NULL must be specified.

new_longopt_p

Long option after the change (option name excluding "--"). If old_longopt_p is NULL, it is ignored.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

parser_p is NULL.

PJCMD_ERROR_UNKNOWN_OPTION

A specified option does not exist in the command line parser.

PJCMD_ERROR_INVALID_OPTION

The specification of the changed option is invalid.

- It duplicates other options that are not changed.

- When specifying the option old_opt or old_longopt_p before the change, a NULL character is specified in the changed option
new_opt, or NULL is specified in new_longopt_p.

 Note

- This function just changes an option name. The function cannot change the specification that defines whether an argument is necessary
or not for an option. To disable the function, the pjcmd_delopt_in_parser() function must be used.

- A short option cannot be changed to a long option, and vice versa.

A.5 Display of Usage
This section describes the functions for displaying usage of a command provided by the job operation management function.

- 36 -

Figure A.5 Displaying Usage of a Command Provided by the Job Operation Management Function

A.5.1 pjcmd_print_stdcmd_usage()
pjcmd_result_t pjcmd_print_stdcmd_usage(pjcmd_stdcmd_t cmd, const char *cmdname_p)

This function outputs usage of a command provided by the job operation management function.

[ARGUMENTS]

cmd

Identifier of a command provided by the job operation management function

Identifier Descripton

PJCMD_STDCMD_PJSUB pjsub command

PJCMD_STDCMD_PJDEL pjdel command

PJCMD_STDCMD_PJHOLD pjhold command

PJCMD_STDCMD_PJRLS pjrls command

PJCMD_STDCMD_PJSIG pjsig command

PJCMD_STDCMD_PJWAIT pjwait command

PJCMD_STDCMD_PJALTER pjalter command

PJCMD_STDCMD_PMALTER pmalter command

PJCMD_STDCMD_PJSTAT pjstat command

PJCMD_STDCMD_PJACL pjacl command

PJCMD_STDCMD_PMPJMOPT pmpjmopt command

PJCMD_STDCMD_PJSHOWRSC pjshowrsc command

cmdname_p

Command name displayed in usage. If NULL is specified, the name of a command provided by the job operation management
function is displayed.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in cmd.

A.6 Error-related Functions
This section describes the functions for handling error information from the command API.

- 37 -

Figure A.6 Referencing Error Information

A.6.1 pjcmd_strerror()
char *pjcmd_strerror(pjcmd_error_t code)

This function returns a standard error message of the command API corresponding to the error code specified in an argument.

[ARGUMENTS]

code

Error code. For details on the values that can be specified, see "A.7.3 pjcmd_errcodejcmd_errcode Variable."

[RETURN VALUE]

The pointer to one of the following fixed character strings is returned based on code.

Error code Message

PJCMD_SUCCESS Succeeded

PJCMD_ERROR_INVALID_HANDLE Invalid handle

PJCMD_ERROR_INVALID_RESP Invalid response data

PJCMD_ERROR_INVALID_ARGUMENT Invalid argument

PJCMD_ERROR_UNKNOWN_OPTION Unknown option

PJCMD_ERROR_INVALID_OPTION Invalid option

PJCMD_ERROR_UNKNOWN_PARAM Unknown parameter

PJCMD_ERROR_INVALID_PARAM Invalid parameter

PJCMD_ERROR_NODATA No data

PJCMD_ERROR_OPEN Open failed

PJCMD_ERROR_INVALID_NODE Invalid node

PJCMD_ERROR_NOPERM No permission

PJCMD_ERROR_CONNECT Connection failed

PJCMD_ERROR_NOMEM Not enough memory

- 38 -

Error code Message

PJCMD_ERROR_BUSY Operation is busy

PJCMD_ERROR_TOO_LONG Too long

PJCMD_ERROR_NOENT No such file or directory

PJCMD_ERROR_ACCESS Permission denied

PJCMD_ERROR_SIGNAL Interrupted system call

PJCMD_ERROR_INTERNAL Internal error occurred

Other value n Unknown code n

A.6.2 pjcmd_perror()
void pjcmd_perror(pjcmd_msg_level_t level, const char *compo_p, int id, const char *cmdname_p, const

char *addmsg_p)

This function displays a message at the standard error output in the following format in response to the pjcmd_errcode error code value.

[level] compo_p id cmdname_p message addmsg_p

"message" in the above character string is the character string corresponding to the pjcmd_errcode error code (see "A.6.1
pjcmd_strerror().")

[ARGUMENTS]

level

Message level. One of the following character strings corresponding to a level is output in a message.

level Corresponding Character String

PJCMD_MSG_INFO INFO

PJCMD_MSG_NOTICE NOTE

PJCMD_MSG_WARN WARN

PJCMD_MSG_ERROR ERR. (A dot is added to the end.)

PJCMD_MSG_EMERG EMRG

compo_p

Component name. The name must be five characters or less excluding the NULL character at the end. Any character string can be
specified for a function name, etc.

id

Message ID. Any four-digit decimal number can be specified. If the number has fewer than four digits, the high-order digits are
padded with zeros.

cmdname_p

Command name displayed in a message. Any character string, such as a program name that is used to call the command API, can
be specified.

addmsg_p

Additional message. If NULL is specified, this argument is ignored.

[EXAMPLE]

pjcmd_perror(PJCMD_MSG_ERROR, "MYCMD", 1, "mycommand", "(-x)");

When pjcmd_errcode is PJCMD_ERROR_UNKNOWN_OPTION, the following message is output.

[ERR.] MYCMD 0001 mycommand Unknown option (-x)

- 39 -

A.6.3 pjcmd_error_read_errinfo()
PjcmdErrInfo_t *pjcmd_error_read_errinfo(void)

This function retrieves the following detailed error information from the list of detailed error information accumulated in the command API.
The following detailed error information is returned every time the function is called.

[ARGUMENTS]

None

[RETURN VALUE]

Detailed error information.
When there is no detailed error information to be retrieved, NULL is returned, and the PJCMD_ERROR_NODATA error code is set
in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_NODATA

There is no next piece of detailed error information.

A.6.4 pjcmd_error_read_errinfo_by_sjid()
PjcmdErrInfo_t *pjcmd_error_read_errinfo_by_sjid(const PjcmdSubjobid_t *sjid_p)

This function retrieves detailed error information on the job corresponding to the specified sub job ID structure from the list of detailed error
information accumulated in the command API. The function returns the next piece of applicable detailed error information every time it is
called.

[ARGUMENTS]

sjid_p

Pointer to a sub job ID structure. This argument specifies a sub job ID structure that is obtained by the pjcmd_get_jobresult_info()
function when an error occurs during the job operation.

[RETURN VALUE]

Detailed error information.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_NODATA

There is no next detailed error information. There is no detailed error information corresponding to sjid_p.

PJCMD_ERROR_INVALID_ARGUMENT

sjid_p is invalid (NULL).

A.6.5 pjcmd_error_get_info()
pjcmd_result_t pjcmd_error_get_info(const PjcmdErrInfo_t *errinfo_p, pjcmd_errinfo_type_t type, void

*val_p)

This function references a specified information item value from detailed error information.

[ARGUMENTS]

errinfo_p

Pointer to detailed error information. This argument specifies information that is obtained by the pjcmd_error_read_errinfo()
function.

type

Identifier of an information item to be referenced (See the following table.)

- 40 -

val_p

A value is stored in *val_p. The caller needs to prepare an area of a sufficient size based on type. For example, if *val_p type is int,
the caller needs to prepare an int type area and specify a pointer (int *) to the area in val_p.

type *val_p Type of *val_p

PJCMD_ERRINFO_SUBERRCODE Detailed error code

This error code indicates an error type provided by
detailed error information. For details on a value
(PJCMD_SUBERR_xxxx) to be stored and its
meaning, see "A.7.2 Detailed Error Code."

int

PJCMD_ERRINFO_CODE1
PJCMD_ERRINFO_CODE2
PJCMD_ERRINFO_CODE3

Detailed error information (numerical value)

The detailed error code (PJCMD_SUBERR_xxxx) that
is obtained by specifying
PJCMD_ERRINFO_SUBERRCODE in type may
include up to 3 additional pieces of detailed information
(numerical values) ("[CODE n]" shown in "A.7.2
Detailed Error Code"). PJCMD_ERRINFO_CODEn is
specified in type when referencing the detailed
information.

If detailed information (numerical value) is not
included in the detailed error code, the value to be
obtained does not have any meaning.

int

PJCMD_ERRINFO_SCRIPTNAME Name of the job script where an error occurred in a job
script

If the error was not caused by the job script, NULL is set
in *val_p.
If the obtained value is referenced after the release of
detailed error information, operation is undetermined.

char *

PJCMD_ERRINFO_SCRIPTLINE Line number of the job script where an error occurred

If the error was not caused by the job script, 0 is
specified in *val_p.

int

PJCMD_ERRINFO_SJID Sub job ID structure of a job with an error

The job ID, bulk number, and step number of the job can
be known. If the error is not related to the sub job ID,
NULL is specified in *val_p.
If the obtained value is referenced after the release of
detailed error information, operation is undetermined.

PjcmdSubjobid_t *

PJCMD_ERRINFO_PLACEID Location where an error occurred (for troubleshooting) uint64_t

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

errinfo_p or val_p is NULL.

- 41 -

PJCMD_ERROR_UNKNOWN_PARAM

type is invalid.

A.6.6 pjcmd_error_get_detail_info()
const char *pjcmd_error_get_detail_info(const PjcmdErrInfo_t *errinfo_p, int indx)

This function returns detailed information on the specified index among multiple pieces of detailed information (character strings) included
in one piece of detailed error information.

[ARGUMENTS]

errinfo_p

Pointer to detailed error information

indx

Index of detailed information (character strings) included in detailed error information. A maximum of five pieces of detailed
information are included depending on the detailed error code. A value from 0 to 4 is specified. For detailed information
corresponding to a detailed error code, see "A.7.2 Detailed Error Code."

[RETURN VALUE]

Detailed information (character string).
If detailed information corresponding to indx does not exist or if the function fails, this function returns NULL. pjcmd_errcode is used
to distinguish between them.

[pjcmd_errcode]

PJCMD_SUCCESS (or RETURN VALUE is NULL)

Detailed information corresponding to indx is not included in this detailed error information.

PJCMD_ERROR_UNKNOWN_PARAM

indx exceeds the range that can be specified.

PJCMD_ERROR_INVALID_ARGUMENT

errinfo_p is NULL.

A.6.7 pjcmd_error_destroy_errinfo()
void pjcmd_error_destroy_errinfo(PjcmdErrInfo_t *errinfo_p)

This function releases specified detailed error information.

[ARGUMENTS]

errinfo_p

Pointer to detailed error information

[RETURN VALUE]

None

A.6.8 pjcmd_error_clear_errinfo()
void pjcmd_error_clear_errinfo(void)

This function releases all detailed error information accumulated in the command API.

[ARGUMENTS]

None

- 42 -

[RETURN VALUE]

None

A.7 Error Codes, Global Variables, and Constants
This section describes the error codes, global variables, and constants (macro) of the command API.

A.7.1 Result Codes
A result code is the result of calling a command API function.

Value Description

PJCMD_OK Succeeded

PJCMD_ERR Failed

A.7.2 Detailed Error Code
A detailed error code is a value indicating a detailed error information type that is obtained by the pjcmd_error_read_errinfo() function.

 Information

Any information accompanying a detailed error code is listed in the following table using the following symbols:

[CODE n] Detailed codes 1 to 3 can be obtained by the pjcmd_error_get_info() function.
[DETAIL n] Detailed information (character string) 0 to 4 can be obtained by the pjcmd_error_get_detail_info() function.
[JOBID] A job ID (sub job ID structure) can be obtained by the pjcmd_error_get_info() function.

Detailed error code. Description

PJCMD_SUBERR_UNKNOWN_OPT An unknown option is detected.
[DETAIL 0] Unknown option name

PJCMD_SUBERR_COMBINATION The combination of options is invalid.
[DETAIL 0] Option name 1
[DETAIL 1] Option name 2

PJCMD_SUBERR_UNKNOWN_OPTARG An option argument is an unknown value.
[DETAIL 0] Option name
[DETAIL 1] Argument with unknown value

PJCMD_SUBERR_INVALID_OPTARG A value that cannot be specified in an option argument is specified.
[DETAIL 0] Option name
[DETAIL 1] Argument or argument = value

PJCMD_SUBERR_NO_PARAM A parameter is not specified.

PJCMD_SUBERR_ARG_FORMAT_QUOTA A double quotation mark (") or single quotation mark (') does not match.

PJCMD_SUBERR_INVALID_ARG An invalid argument is specified.
[DETAIL 0] Argument

PJCMD_SUBERR_NO_JOBID A job ID is not specified.

PJCMD_SUBERR_JOBID_SYNTAX_ERROR The format of a job ID is invalid.
[DETAIL 0] Invalid job ID

PJCMD_SUBERR_JOBID_NOT_EXIST The job corresponding to the specified job ID does not exist.
[JOBID]

PJCMD_SUBERR_JOB_STATE_ERROR A command cannot be executed in the specified job state.
[JOBID]

- 43 -

Detailed error code. Description

PJCMD_SUBERR_JOB_TYPE_ERROR There was an attempt to change a job parameter for an interactive job.
[JOBID]

PJCMD_SUBERR_JOB_MODEL_ERROR A sub job ID is specified in a step job when changing a resource unit
name.

PJCMD_SUBERR_JOBNAME_MISMATCH Job names do not match when the sub jobs of a step job are batch
submitted.
[DETAIL 0] Job script name

PJCMD_SUBERR_DUP_REQUEST All operation requests have been accepted.
[JOBID]

PJCMD_SUBERR_FILE_OPEN A file failed to open.
[CODE 1] errno when file failed to open
[DETAIL 0] File name

PJCMD_SUBERR_FILE_NAME_TOO_LONG A file name is too long.
[DETAIL 0] File name

PJCMD_SUBERR_FILE_FORMAT The format of a file is invalid.
[CODE 1] Line number
[DETAIL 0] File name

PJCMD_SUBERR_MULTIPLE_SCRIPT Multiple job scripts are specified.

PJCMD_SUBERR_TOO_MANY_ARG_SCRIPT Too many options are written in a job script.
[DETAIL 0] Names of the options that could not be analyzed

PJCMD_SUBERR_LINE_LENGTH The number of words exceeds the maximum number of words that can
be written in one job script line.

PJCMD_SUBERR_CURRENT_ACCESS Information on the current directory cannot be obtained.

PJCMD_SUBERR_CURRENT_PATH The current directory name is invalid. Alternatively, a linefeed code is
included in the directory name.

PJCMD_SUBERR_FILE_CREAT_FAIL The specified file cannot be created.
[CODE 1] errno when file could not be created
[DETAIL 0] File name

PJCMD_SUBERR_NOT_FOUND_UNAME The specified user name does not exist.
[DETAIL 0] User name

PJCMD_SUBERR_GID_FAILED A group name cannot be obtained from the specified group ID.
[DETAIL 0] Group ID (character string)

PJCMD_SUBERR_CANNOT_USED_OPT An option that cannot be used is specified.
[DETAIL 0] Option name

PJCMD_SUBERR_RESOURCE_ERROR The specified resource is invalid for the target job.
[JOBID]
[DETAIL 0] Resource information specified during job parameter
change operation

PJCMD_SUBERR_OPERATION_BUSY A request cannot be executed because another request is being
processed.
[JOBID]

PJCMD_SUBERR_LOWER_LIMIT The specified resource amount is below the lower limit.
[JOBID] (Information may not exist)
[DETAIL 0] Specified resource name
[DETAIL 1] Specified resource amount
[DETAIL 2] Lower limit resource amount that can be specified

PJCMD_SUBERR_TIME_ERROR The scheduled time to start executing the specified job is earlier than the
current time.

- 44 -

Detailed error code. Description

[DETAIL 0] Time ("YYYYMMDDhhmm")
YYYY: Year, MM: Month, DD: Day, hh: Hour, mm: Minute

PJCMD_SUBERR_UPPER_LIMIT The specified resource amount exceeds the upper limit.
[JOBID] (Information may not exist)
[DETAIL 0] Specified resource name
[DETAIL 1] Specified resource amount
[DETAIL 2] Upper limit resource amount that can be specified

PJCMD_SUBERR_RSC_DOES_NOT_EXIST The specified resource does not exist.
[DETAIL 0] Specified resource name
[DETAIL 1] Specified resource amount

PJCMD_SUBERR_RSC_IS_DISABLED The specified resource cannot be used.
[DETAIL 0] Specified resource name
[DETAIL 1] Specified resource amount

PJCMD_SUBERR_STEPNO_OVERFLOWED The specified step number exceeds the defined range.

PJCMD_SUBERR_ARCH_ERROR There was an attempt to change the resource unit to which a job was
submitted, to a resource unit of a different model.

PJCMD_SUBERR_POLICY_M
[PG]

When specifying a virtual node placement policy, the value m specified
in the opt1 option must be a multiple of the value n specified in the opt2
option.
[DETAIL 0] Option name opt1
[DETAIL 1] Value m
[DETAIL 2] Option name opt2
[DETAIL 3] Value n

This is an error when specifying a value that is equivalent to -L vnode in
the pjsub command = m and -P vn-policy = unpack/abs-unpack = n.

PJCMD_SUBERR_SYSTEM_CONF_CHANGED The system configuration changed while processing job acceptance.

PJCMD_SUBERR_RSCNAME_NOT_SPECIFIED A resource name is not specified.

PJCMD_SUBERR_NO_EXECUTE_PERMISSION There is no authority to operate.

PJCMD_SUBERR_NO_JOBID_PERMISSION Operating the specified job is not permitted.
[JOBID]

PJCMD_SUBERR_ACCEPT_LIMIT The number of accepted jobs exceeds the upper limit.
[JOBID] (Information may not exist)
[DETAIL 0] Name of item that exceeds upper limit
"ru-accept": Number of simultaneously accepted batch jobs in resource
unit
"ru-accept-allsubjob": Number of simultaneously accepted sub jobs of
bulk jobs and step jobs in resource unit
"ru-accept-bulksubjob": Number of simultaneously accepted sub jobs of
bulk jobs in resource unit
"ru-accept-stepsubjob": Number of simultaneously accepted sub jobs of
step jobs in resource unit
"ru-interact-accept": Number of simultaneously accepted interactive
jobs in resource unit
"rg-accept" : Number of simultaneously accepted batch jobs in resource
group
"rg-accept-allsubjob": Number of simultaneously accepted sub jobs of
bulk jobs and step jobs in resource group
"rg-accept-bulksubjob": Number of simultaneously accepted sub jobs of
bulk jobs in resource group
"rg-accept-stepsubjob": Number of simultaneously accepted sub jobs of
step jobs in resource group

- 45 -

Detailed error code. Description

"rg-interact-accept": Number of simultaneously accepted interactive
jobs in resource group

PJCMD_SUBERR_OUT_OF_RANGE The specified value exceeds the range defined by the job ACL function.
[JOBID] (Information may not exist)
[DETAIL 0] Option name

PJCMD_SUBERR_RSCNAME_ILLEGAL A combination with the default value defined by the job ACL function
for the resources that can be specified when submitting a job is invalid.
[DETAIL 0] Specified resource name
[DETAIL 1] Detailed message

PJCMD_SUBERR_RSC_CANNOT_BE_SPECIFIED The specified custom resource value is not included in the custom
resource types that can be specified.
[JOBID] (Information may not exist)
[DETAIL 0] Specified custom resource name
[DETAIL 1] Specified value
[DETAIL 2] Value that can be specified

PJCMD_SUBERR_TOO_MANY_CUSTOMRSC The number of specified custom resources is excessive.

PJCMD_SUBERR_NOT_FOUND_CSTMRSC A custom resource corresponding to the specified resource value is not
defined.
[DETAIL 0] Specified resource name
[DETAIL 1] Specified value

PJCMD_SUBERR_GATE_CHECK_ERROR Job acceptance is denied by the exit function configured by the
administrator.
[CODE 1] Message ID set at job manager exit (Information may not
exist)
[DETAIL 0] Message set at job manager exit (Information may not
exist)

PJCMD_SUBERR_JOB_TIMEOUT A job was canceled because a compute resource allocated to a job could
not be determined within the specified time in an interactive job.
[JOBID]

PJCMD_SUBERR_NOT_LOGIN_NODE An interactive job was executed on a node other than the login node.

PJCMD_SUBERR_JOB_FAIL Execution of an interactive job has failed.
[JOBID]

PJCMD_SUBERR_JOB_CANCEL Execution of an interactive job has been canceled.
[JOBID]

PJCMD_SUBERR_NOT_SUPPORTED The specified functions or a combination of the functions is not currently
supported.
[DETAIL 0] Detailed message

PJCMD_SUBERR_DAEMON_ISNOT_PRESENT The job operation management function is not operating, or
communication with the job operation management function cannot be
established.

PJCMD_SUBERR_INTERNAL_ERROR Internal error
[CODE 1 to 3] Investigation data
[DETAIL 0 to 4] Investigation data

PJCMD_SUBERR_PERMIT There is no authority to operate.

PJCMD_SUBERR_NODE_ERROR The operation is not possible on this node.

PJCMD_SUBERR_SYSFUNC_STOP The system management function is not operating, or information
cannot be obtained from the system management function.

PJCMD_SUBERR_NO_CLSTNAME A cluster name is not specified.

- 46 -

Detailed error code. Description

PJCMD_SUBERR_REJECT_OPT The operation for the specified job has been rejected.
[JOBID]
[DETAIL 0] Option name
[DETAIL 1] Detail message

PJCMD_SUBERR_NOT_EXIST_RSCUNIT The specified resource unit or the default resource unit defined by the job
ACL function does not exist.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_NOT_EXIST_RSCGRP The specified resource group or the default resource group defined by
the job ACL function does not exist.
[DETAIL 0] Resource group name

PJCMD_SUBERR_NO_SIGNO A signal is not specified by the signal transmission operation.

PJCMD_SUBERR_NOT_FOUND_GROUP The specified group does not exist in the job ACL information
acquisition operation.
[DETAIL 0] Group name

PJCMD_SUBERR_NO_USER_PERMISSION Displaying information for the specified user or group is not permitted
by the job ACL information acquisition API.
[DETAIL 0] User name
[DETAIL 1] Group name

PJCMD_SUBERR_GROUP_NOT_AUTHORIZED The job submission API does not permit job submission using the
privileges of this group.
[DETAIL 0] Group name

PJCMD_SUBERR_NO_EXEC_PERM_OPT Specifying an option is not permitted.
[DETAIL 0] Option name
This error occurs when performing an operation that is equivalent to the
indicated option name.

PJCMD_SUBERR_NO_EXEC_PERM_JIDOPT Operating a job or specifying an option is not permitted.
[JOBID]
[DETAIL 0] Option name
This error occurs when performing an operation that is equivalent to the
indicated option name.

PJCMD_SUBERR_NO_EXEC_PERM_JID Operating a job is not permitted.
[JOBID]

PJCMD_SUBERR_DAEMON_INTERNAL Daemon internal error of the job operation management function
[CODE 1] Investigation data 1
[CODE 2] Investigation data 2

PJCMD_SUBERR_DAEMON_INTERNAL_RETVAL Daemon internal error of the job operation management function
[CODE 1] Investigation data

PJCMD_SUBERR_SIGNAL A signal has been received.

PJCMD_SUBERR_CMD_UNAVAILABLE The requested operation cannot be performed.

PJCMD_SUBERR_NODATA There is no applicable information.
[DETAIL 0] Character string indicating specified information item and
other information

PJCMD_SUBERR_DUP_OPT The same option is specified multiple times.
[DETAIL 0] Option name

PJCMD_SUBERR_FEW_OPTION An option that should be specified at the same time is not set.
[DETAIL 0] Option name 1
[DETAIL 1] Option name 2

This error occurs when an operation that is equivalent to the two
indicated option names is not performed.

- 47 -

Detailed error code. Description

PJCMD_SUBERR_CONFLICT An option that cannot be specified at the same time is specified.

PJCMD_SUBERR_INVAL_RUNITNAME The specified resource unit name is invalid.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_INVAL_ID The specified node group ID, boot group ID, or node ID is invalid.
[DETAIL 0] Specified ID

PJCMD_SUBERR_INVAL_RANGE The specified parameter range is invalid.
[DETAIL 0] Specified parameter range

PJCMD_SUBERR_INVAL_RGRPNAME The specified resource group name is invalid.
[DETAIL 0] Resource group name

PJCMD_SUBERR_SAME_ID The specified node group ID, boot group ID, or node ID already exists.
[DETAIL 0] Specified ID

PJCMD_SUBERR_SAME_RUNAME The specified resource unit name already exists.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_SAME_RGNAME The specified resource group name already exists.
[DETAIL 0] Resource group name

PJCMD_SUBERR_NOT_FOUND_ID A specified node group ID, boot group ID, or node ID does not exist.
[DETAIL 0] Specified ID

PJCMD_SUBERR_NOT_FOUND_RUNAME The specified resource unit does not exist.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_PERM There is no authority to get the specified node state.
[DETAIL 0] Node ID

PJCMD_SUBERR_PERM_RUNIT There is no authority to get information on the specified resource unit.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_NOINFO_NODE The specified node information does not exist.
[DETAIL 0] Node ID

PJCMD_SUBERR_NOINFO_RUNIT The specified resource unit information does not exist.
[DETAIL 0] Resource unit name

PJCMD_SUBERR_NOINFO_RGRP The specified resource group information does not exist.
[DETAIL 0] Resource group name

PJCMD_SUBERR_CONNECT Communication with the compute cluster management node has failed.
[DETAIL 0] Cluster name

PJCMD_SUBERR_STANDBYNODE This request cannot be made on a standby node.

PJCMD_SUBERR_WARN_CONNECT Communication with a specific compute cluster management node has
failed.
However, communication with the other cluster management nodes was
successful.
[DETAIL 0] Cluster name

PJCMD_SUBERR_MEMORY Acquisition of memory has failed.
[CODE 1] errno at failure
[CODE 2] Acquisition size

PJCMD_SUBERR_PSM_ERROR Internal error
[CODE 1] Investigation data
[DETAIL 0] Investigation data

PJCMD_SUBERR_TRN_ERROR Internal error
[CODE 1] Investigation data
[DETAIL 0] Investigation data

PJCMD_SUBERR_API_ERROR Internal error

- 48 -

Detailed error code. Description

PJCMD_SUBERR_SYSCALL_ERROR Internal error
[CODE 1] Investigation data
[DETAIL 0] Investigation data

PJCMD_SUBERR_JACCTDB_ERROR Internal error
[CODE 1] Investigation data
[CODE 2] Investigation data
[DETAIL 0] Investigation data

A.7.3 pjcmd_errcodejcmd_errcode Variable
extern __thread pjcmd_error_t pjcmd_errcode

This is a global variable in which an error code of the command API is stored. The error of a command API function that is called at the
end is set. The following table lists the meanings of the error codes.

Error Code Main Meaning

PJCMD_SUCCESS Success

PJCMD_ERROR_INVALID_HANDLE The specified handle is invalid.

A pointer to the handle is NULL.

A handle whose operation type is different.

PJCMD_ERROR_INVALID_RESP The specified response information is invalid.

The pointer to response information is NULL.

The response information differs in operation type.

PJCMD_ERROR_INVALID_ARGUMENT An argument of the function is invalid.

PJCMD_ERROR_UNKNOWN_OPTION An unknown option was specified. Mainly, this is an error in an argument analysis
function.

PJCMD_ERROR_INVALID_OPTION A method to specify an option is invalid. Mainly, this is an error in an argument
analysis function.

PJCMD_ERROR_UNKNOWN_PARAM An unknown parameter was specified.

PJCMD_ERROR_INVALID_PARAM A parameter value is invalid.

A specification method is incorrect.

A required parameter is not set.

PJCMD_ERROR_NODATA There is no applicable data.
This error occurs when a specified index is out of range and there is no more data to
be obtained.

PJCMD_ERROR_OPEN The file has failed to open.

PJCMD_ERROR_INVALID_NODE A node that is used to call a function is inappropriate.
This error occurs when a node that is used to call the operation request function,
pjcmd_operation_execute(), is inappropriate.

PJCMD_ERROR_NOPERM There is no authority to call the function.

The operator is not the administrator.

The job ALC function limits calling the function.

PJCMD_ERROR_CONNECT Communication with the job operation management function failed.

PJCMD_ERROR_NOMEM The memory does not have enough space.

- 49 -

Error Code Main Meaning

PJCMD_ERROR_BUSY It is in busy state.
For example, busy state occurs when another operation request function is called
while the operation request function, pjcmd_operation_execute(), is being processed.

PJCMD_ERROR_TOO_LONG The data size is too long.

PJCMD_ERROR_NOENT The file or directory does not exist.

PJCMD_ERROR_ACCESS There is no authority to access files or directories.

PJCMD_ERROR_SIGNAL The process is interrupted by an interrupt, such as signal.

PJCMD_ERROR_INTERNAL An internal error has occurred.

A.7.4 Variable pjcmd_optarg
extern __thread char *pjcmd_optarg

Pointer to an argument (argv element) that is being analyzed with the pjcmd_getopt_long() function
* It is equivalent to optarg of the getopt_long(3) function.

A.7.5 Variable pjcmd_optind
extern __thread int pjcmd_optind

An argument index that is processed next by the pjcmd_getopt() function
* It is equivalent to optind of the getopt_long(3) function.

A.7.6 Variable pjcmd_optopt
extern __thread int pjcmd_optopt

When an option that cannot be recognized by the pjcmd_getopt_long() function is detected, the option is stored.
* It is equivalent to optopt of the getopt_long(3) function.

A.7.7 PJCMD_UNLIMITED Constant
#define PJCMD_UNLIMITED (~0UL)

This function specifies a limit value. This value indicates that it is limitless (not limited).

A.7.8 PJCMD_UNDEFINED Constant
#define PJCMD_UNDEFINED (~1UL)

This function specifies a limit value or a function to get the setting information of the job ACL function. This value indicates that it is an
invalid value (not specified).

A.7.9 PJCMD_MAX_SUBJOBID_STR_LEN Constant
#define PJCMD_MAX_SUBJOBID_STR_LEN 32

This is a necessary area size to store a sub job ID structure after converting it to a character string with the pjcmd_subjobid_to_str() function.
It includes the NULL character at the end.

- 50 -

Appendix B Job Operation API Reference

B.1 Job Submission
This section describes the functions for submitting jobs.

Figure B.1 Requesting Job Submission

- 51 -

Figure B.2 Operation of the Parser and Reader Related to Job Submission

B.1.1 pjcmd_submit_parse_pjsub_args()
pjcmd_result_t pjcmd_submit_parse_pjsub_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjsub command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

- 52 -

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

- An exclusive option is specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves an option and an argument that is not the parameter of the option, namely the job script name, to the end of the
argv_pp[] array.
When the operation is successfully completed, the pjcmd_optind variable specifies the job script (the first argument other than the option).
The caller needs to set the job script in a handle separately. If the job is a step job and if two or more job scripts are specified, the caller needs
to replicate a handle or create a new handle for each job script.
If an unknown option and parameter have been detected, or if an incorrect method to specify an option and parameter has been detected,
the analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.1.2 pjcmd_submit_parse_pjsub_scriptfile()
pjcmd_result_t pjcmd_submit_parse_pjsub_scriptfile(PjcmdHandle_t *handle_p, const char *filename_p,

const char *directive_prefix_p, int32_t *lineno_p, char **detail_pp)

This function analyzes the instruction lines in a job script file based on the specification of a pjsub command option while reading the job
script file, and sets the specified details in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

filename_p

Path to a job script

directive_prefix_p

Character string recognized as an instruction line

lineno_p

The line number where an error was detected is stored in *lineno_p.

detail_pp

*detail_pp indicates an option or an option argument where an error was detected. The area indicated by *detail_pp is a reserved area
in a handle. The caller must not directly release it. The area is retained until the handle is released or this function is called again.

[RETURN VALUE]

PJCMD_OK

Success

- 53 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.
The line number where an error was detected is stored in lineno_p. *detail_pp indicates the option or the argument where the error
was detected.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

There is an invalid argument (NULL) other than a handle.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected in an instruction line.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option that appears in an instruction line is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option are not specified.

B.1.3 pjcmd_submit_create_pjsub_parser()
PjcmdParser_t *pjcmd_submit_create_pjsub_parser(PjcmdHandle_t *handle_p)

This function generates a command line parser for job submission operations.
The command line parser retains the same option specification information as the pjsub command option. The parser uses the specifications
when uniquely analyzing options with the pjcmd_getopt_long() function. The original option specifications can be customized by changing
the information in the command line parser.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

The command line parser is returned. The caller needs to release the returned command line parser by using the
pjcmd_submit_destroy_pjsub_parser() function.
If an error occurs, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.4 pjcmd_submit_destroy_pjsub_parser()
pjcmd_result_t pjcmd_submit_destroy_pjsub_parser(PjcmdParser_t *parser_p)

This function releases a command line parser for job submission operations.

- 54 -

[ARGUMENTS]

parser_p

Pointer to the command line parser to be released

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

parser_p is invalid (NULL).

B.1.5 pjcmd_submit_create_scriptfile_reader()
PjcmdScriptfileReader_t *pjcmd_submit_create_scriptfile_reader(const PjcmdHandle_t *handle_p, const

char *filename_p, const char *directive_prefix_p)

This function generates data (reader) to read a job script file.

[ARGUMENTS]

handle_p

Pointer to a handle

filename_p

Path of the job script

directive_prefix_p

Character string recognized as an instruction line

[RETURN VALUE]

The reader of the job script file is returned. The caller needs to release the generated reader by using the
pjcmd_submit_destroy_scriptfile_reader() function.
If an error occurs, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

There is an invalid argument (NULL) other than a handle.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.6 pjcmd_submit_destroy_scriptfile_reader()
pjcmd_result_t pjcmd_submit_destroy_scriptfile_reader(PjcmdScriptfileReader_t *reader_p)

This function releases the reader of a job script file.

- 55 -

[ARGUMENTS]

reader_p

Pointer to the reader of a job script file

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

reader_p is invalid (NULL).

B.1.7 pjcmd_submit_read_scriptfile_directive_line()
pjcmd_result_t pjcmd_submit_read_scriptfile_directive_line(PjcmdScriptfileReader_t *reader_p, int

*argc_p, char ***argv_ppp)

This function uses the reader of a job script file to read one instruction line in the job script file and returns a command line argument that
can be obtained.
This function expands a variable (variable specified in the pjcmd_submit_put_param() function) that is set in the handle corresponding to
a reader and analyzes a special character, such as a double quotation mark. If a read line is other than a comment line (a line that does not
begin with "#"), the subsequent instruction lines are regarded as comment lines. If the length of a line containing the linefeed character is
greater than 4,096 words, or if the number of command line arguments written on an instruction line is more than 64, an error occurs.
This function only reads the instruction lines in a job script file and does not set the contents of the instruction lines in a handle. The caller
uniquely analyzes arguments and uses them when values need to be set in a handle.

[ARGUMENTS]

reader_p

Pointer to the reader of a job script file

argc_p

The number of read arguments is stored in *argc_p.

argv_ppp

The read arguments are stored as an array (*argv_ppp)[].
The first element in the array *(*argv_ppp)[0] indicates a character string (example: "#PJM") indicating an instruction line. The
contents of an array that is indicated by *argv_ppp are undetermined after reading the next instruction line.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

reader_p, argc_p, or argv_ppp is invalid (NULL).

PJCMD_ERROR_TOO_LONG

The length of a read line is over 4,096 words. Alternatively, the number of arguments in a line is more than 64.

- 56 -

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_NODATA

An instruction line to be read does not exist. Alternatively, all command lines have been read.

PJCMD_ERROR_INVALID_PARAM

A script file description is invalid.

PJCMD_ERROR_OPEN

Script file reading failed.

PJCMD_ERROR_INTERNAL

Internal error

B.1.8 pjcmd_submit_put_param()
pjcmd_result_t pjcmd_submit_put_param(PjcmdHandle_t *handle_p, pjcmd_submit_param_t param, const

void *val_p)

This function sets parameters for job submission operations in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_SUBMIT_SCRIPTFILE Path to a job script (one file)

If this parameter is not set, the job details are read from
the standard input.

char *

PJCMD_SUBMIT_JOBNAME Job name (equivalent to pjsub -N)

If this parameter is not set, a job name is used as a job
script name. The job name is "STDIN" when a job script
is the standard input.

char *

PJCMD_SUBMIT_COMMENT Comment character string (equivalent to pjsub --
comment)

char *

PJCMD_SUBMIT_JOBMODEL Job model

PJCMD_JOBMODEL_NORMAL: Normal job
(Default)

PJCMD_JOBMODEL_BULK: Bulk job

PJCMD_JOBMODEL_STEP: Step job

int

PJCMD_SUBMIT_JOBTYPE Job type

PJCMD_JOBTYPE_BATCH: Batch job (Default)

PJCMD_JOBTYPE_INTERACTIVE: Interactive job

int

- 57 -

param *val_p Type of *val_p

PJCMD_SUBMIT_GNAME Group name when executing a job (equivalent to pjsub --
gname)

The PJCMD_SUBMIT_GNAME parameter or
PJCMD_SUBMIT_GID parameter, whichever is
specified last, is valid.
If this parameter is not set, the current group name is
applied.

char *

PJCMD_SUBMIT_GID Group ID when executing a job (equivalent to pjsub --
gid)

The PJCMD_SUBMIT_GNAME parameter or
PJCMD_SUBMIT_GID parameter, whichever is
specified last, is valid.
If this parameter is not set, the current group ID is
applied.

gid_t

PJCMD_SUBMIT_MAILOPT E-mail send time of a report regarding information such
as job status and notification contents (equivalent to
pjsub -m)

b: When starting job execution (beginning)
e: When job completed (end)
r: When re-executing job (restart)
s: Job statistical information is reported (without
information for each node) Job statistical information is
reported (with information for each node)

If this parameter is not set, no report is sent by e-mail.

char *

PJCMD_SUBMIT_MAILLIST Destination e-mail address to report a job by e-mail
(equivalent to pjsub --mail-list)

Multiple e-mail addresses can be specified by separating
them with a comma (,).
If this parameter is not set, an e-mail is sent to the user
who submitted the job.

char *

PJCMD_SUBMIT_WAITMODE Wait mode when submitting a job (equivalent to pjsub -
w)

- PJCMD_SUBMIT_WAITMODE_WAIT
Wait until job submission is completed (equivalent
to no specification of the pjsub -w option). (Default)

- PJCMD_SUBMIT_WAITMODE_JOBCHK
Wait until job acceptance and job check are
completed, but do not wait until job submission is
completed (equivalent to pjsub -w jobchk).

- PJCMD_SUBMIT_WAITMODE_NOWAIT
Wait until job acceptance is completed, but do not
wait for job check and job submission (equivalent to
pjsub -w nowait).

int

PJCMD_SUBMIT_ENV_INHERIT Specification of whether or not to send all environment
variables to compute nodes (equivalent to pjsub -X)

0: Do not transfer (Default)
1: Transfer

int

PJCMD_SUBMIT_BULK_STARTNO Bulk start number of a bulk job (equivalent to pjsub --
bulk --sparam m-n)

uint32_t

- 58 -

param *val_p Type of *val_p

This setting is required when submitting a bulk job. The
specifiable value ranges from 0 to 999999.

PJCMD_SUBMIT_BULK_ENDNO Bulk end number of a bulk job (equivalent to (pjsub --
bulk --sparam m-n)

This setting is required when submitting a bulk job. The
specifiable value ranges from 0 to 999999.

uint32_t

PJCMD_SUBMIT_STEP_DEPEND Step job relational expression (equivalent to pjsub --step
--sparam sd=form)

The parameter has the same format as the pjsub
command (see pjsub(1).)

char *

PJCMD_SUBMIT_STEP_NO Step number of a step job (equivalent to pjsub --step --
sparam sn=n)

The specifiable value ranges from 0 to 65534.

uint16_t

PJCMD_SUBMIT_STEP_JOBNAME Job name of an existing step job (equivalent to pjsub --
step --sparam jnam=name)

The PJCMD_SUBMIT_STEP_JID parameter setting is
exclusive. If PJCMD_SUBMIT_STEP_JID is set first,
an error occurs.

char *

PJCMD_SUBMIT_STEP_JID Job ID of an existing step job (equivalent to pjsub --step
--sparam jid=jobid)

The PJCMD_SUBMIT_STEP_JOBNAME parameter
setting is exclusive. If
PJCMD_SUBMIT_STEP_JOBNAME is set first, an
error occurs.
The specifiable value ranges from 0 to 2147483647.

uint32_t

PJCMD_SUBMIT_INTERACT_WAITTIME Time to wait (in seconds) until the resource for an
interactive job is allocated
(equivalent to pjsub --interact --sparam wait-time=time)

Values ranging from 0 to 36000 and
PJCMD_UNLIMITED can be specified. If this
parameter is not set, 0 is applied.
If a value in a batch job is set, an error occurs in the
pjcmd_submit_execute() function.

uint64_t

PJCMD_SUBMIT_FSNAME Any character string, such as a file system name
(equivalent to pjsub --fs)

If a character string is not set and the environment
variable PJM_FSNAME is set, its value is used.

char *

PJCMD_SUBMIT_APPNAME Any character string, such as an application name
(equivalent to pjsub --appname)

If a character string is not set and the environment
variable PJM_APPNAME is set, its value is used.

char *

PJCMD_SUBMIT_ENV Environment variable that is set when executing a job
(equivalent to pjsub -x)

Each element must be a character string of "variable
name = value" and the last element must be NULL.

char **

PJCMD_SUBMIT_VAR Variable that is used when analyzing the instruction lines
in a script file (equivalent to pjsub --vset)

char **

- 59 -

param *val_p Type of *val_p

Each element must be a character string of "variable
name = value" and the last element must be NULL.

PJCMD_SUBMIT_PREFIX Directive prefix in a job script (equivalent to pjsub -C)

It is a character string such as "#PJM" indicating an
instruction line. If no character string is set, "#PJM" is
applied.

char *

PJCMD_SUBMIT_SCRIPT_DELIMITER Character that separates multiple job scripts of a step job
(equivalent to pjsub --script-delimiter)

If this parameter is not set, a comma (,) is used to separate
multiple job scripts. This parameter does not affect job
submission operations.

char *

PJCMD_SUBMIT_VERBOSE Equivalent to the specification of the --verbose option in
the pjsub command

0: Not specified (Default)
1: Specified

This parameter does not affect job submission
operations.

int

PJCMD_SUBMIT_Z Equivalent to the specification of the -z option in the
pjsub command

A value to be specified is equivalent to the following for
the pjsub command:
"Jid": Specification of -z jid option
Other character string: Specification of only -z option
This parameter does not affect job submission
operations.

char *

PJCMD_SUBMIT_NET_ROUTE
[FX]

Specification of whether or not to continue executing a
job when a Tofu interconnect link goes down for an FX
server (equivalent to the pjsub --net-route option)

- PJCMD_SUBMIT_NET_ROUTE_DYNAMIC

Change the Tofu interconnect communication path
(equivalent to pjsub --net-route dynamic). Job
execution continues.

- PJCMD_SUBMIT_NET_ROUTE_STATIC

Do not change the Tofu interconnect
communication path (equivalent to pjsub --net-route
static). The job ends abnormally.

If this parameter is not set, the setting is based on the job
ACL function settings.

int

PJCMD_SUBMIT_HELP Equivalent to the specification of the --help option in the
pjsub command

0: Not specified (Default)
1: Specified

This parameter does not affect job submission
operations.

int

- 60 -

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.9 pjcmd_submit_get_param()
pjcmd_result_t pjcmd_submit_get_param(const PjcmdHandle_t *handle_p, pjcmd_submit_param_t param,

void *val_p)

This function references the parameter that is set in a handle to submit the job.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- 61 -

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.10 pjcmd_submit_put_job_resource()
pjcmd_result_t pjcmd_submit_put_job_resource(PjcmdHandle_t *handle_p, const char *rscname_p, const

void *val_p)

This function sets a resource that is allocated to a job.

[ARGUMENTS]

handle_p

Pointer to a handle

rscname_p

Resource name to be set (See the table below.)

val_p

Pointer to the storage area for a resource amount to be set. For example, if resource is "node," the pointer (char *)shape_p that
indicates the storage area for the character string "XxYxZ" indicating a node shape must be prepared, and the pointer (char
**)&shape_p to this pointer is specified in val_p. If NULL is specified, the parameter value is initialized (not set).

rscname_p *val_p Type of *val_p

"node" Number of nodes or node shape (equivalent to pjsub -L node)

- One-dimensional shape
"N[:torus|:mesh|:noncont]"

- Two-dimensional shape
"XxY[:torus|:mesh|:noncont]"

- Three-dimensional shape
"XxYxZ[:strict|:strict-io][:torus|:mesh|:noncont]"

* The item has the same format as the pjsub command.

char *

"vnode" Number of virtual nodes (equivalent to pjsub -L vnode)

The specifiable value ranges from 1 to 2147483647.

uint64_t

"node-mem" Upper limit on the memory amount per node when specifying a node
(equivalent to pjsub -L node-mem)

The specifiable value ranges from 1048576 (1 Mi) to 2251799812636672
(2147483647 Mi) bytes. If the upper limit is not set, PJCMD_UNLIMITED
must be specified.

size_t

"elapse" Elapsed time limit value (equivalent to pjsub -L elapse=limit)

The specifiable value ranges from 1 to 2147483647 seconds. If the limit value
is not specified, PJCMD_UNLIMITED must be specified.

time_t

"adaptive-elapse" Minimum and maximum values of the elapsed job time (equivalent to pjsub -
L elapse=min-max)

time_t *

- 62 -

rscname_p *val_p Type of *val_p

The values are specified as an array, elapse[], with two time_t type elements.
(Time_t)elapse[0]: Minimum value for elapsed time
(time_t)elapse[1]: Maximum value for elapsed time

The specifiable value ranges from 1 to 2147483647 seconds. However,
elapse[0] must be smaller than elapse[1].
If the job executable time is not limited when the elapsed job time exceeds
elapse[0] (equivalent to pjsub -L elapse=min-unlimited),
PJCMD_UNLIMITED must be specified in elapse[1]. If
PJCMD_UNDEFINED is specified in elapse[1] (equivalent to pjsub -L
elapse=min-), the maximum value that is set by the job ACL function is
applied.
If PJCMD_UNLIMITED or PJCMD_UNDEFINED is specified in elapse[0],
an error occurs.

Either the resource name "elapse" or "adaptive-elapse", whichever is specified
last, is valid.

"vnode-core" Number of CPU cores per virtual node when specifying "vnode" (equivalent to
pjsub -L vnode-core)

The specifiable value ranges from 1 to 2147483647.

unit64_t

"core-mem" Upper limit on the amount of memory usage per CPU core when specifying
"vnode" (equivalent to pjsub -L core-mem)

The specifiable value ranges from 1048576 (1 Mi) to 2251799812636672
(2147483647 Mi) bytes. If the upper limit is not set, PJCMD_UNLIMITED
must be specified.

size_t

"vnode-mem" Upper limit on the amount of memory usage per virtual node when specifying
"vnode" (equivalent to pjsub -L vnode-mem)

The specifiable value ranges from 1048576 (1 Mi) to 2251799812636672
(2147483647 Mi) bytes. If the upper limit is not set, PJCMD_UNLIMITED
must be specified.

size_t

"rscunit" Name of the resource unit to which a job is submitted (equivalent to pjsub -L
rscunit, -L ru)

char *

"rscgrp" Name of the resource group to which a job is submitted (equivalent to pjsub -
L rscgrp, -L rg)

char *

"proc-core" Core file size limit in a process unit (equivalent to pjsub -L proc-core)

The specifiable value ranges from 0 to 2147483647 bytes (2 GiB-1). If the size
is not limited, PJCMD_UNLIMITED must be specified.

size_t

"proc-cpu" CPU time limit in a process unit (equivalent to pjsub -L proc-cpu)

The specifiable value ranges from 1 to 2147483647. If the upper limit is not set,
PJCMD_UNLIMITED must be specified.

uint64_t

"proc-crproc" Limit on the number of generating processes in a process unit (equivalent to
pjsub -L proc-crproc)

The specifiable value ranges from 0 to 2147483647. If the number is not
limited, PJCMD_UNLIMITED must be specified.

uint64_t

"proc-data" Limit on the data segment size in a process unit (equivalent to pjsub -L proc-
data)

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

size_t

"proc-lockm" Limit on the lock memory size in a process unit (equivalent to pjsub -L proc-
lockm)

size_t

- 63 -

rscname_p *val_p Type of *val_p

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

"proc-msgq" Limit on the message queue size in a process unit (equivalent to pjsub -L proc-
msgq)

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

size_t

"proc-openfd" Limit on the number of file descriptors in a process unit (equivalent to pjsub -
L proc-openfd)

The specifiable value ranges from 0 to 1048576.

uint64_t

"proc-psig" Limit on the number of pending signals in a process unit (equivalent to pjsub
-L proc-psig)

The specifiable value ranges from 0 to 2147483647. If the number is not
limited, PJCMD_UNLIMITED must be specified.

uint64_t

"proc-filesz" Limit on the file size in a process unit (equivalent to pjsub -L proc-filesz)

The specifiable value ranges from 2048 to 2147483647000000 (2147483647
M) bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

size_t

"proc-stack" Limit on the stack size in a process unit (equivalent to pjsub -L proc-stack)

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

size_t

"proc-vmem" Limit on the virtual memory size in a process unit (equivalent to pjsub -L proc-
vmem)

The specifiable value ranges from 0 to 2251799812636672 (2147483647 Mi)
bytes. If the size is not limited, PJCMD_UNLIMITED must be specified.

size_t

String other than the above Amount of a custom resource whose name is indicated by the rscname_p
argument (equivalent to pjsub -L CustomResourceName)

char *

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

rscname_p is invalid (NULL).

PJCMD_ERROR_INVALID_PARAM

The value of resource amount is invalid.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

- 64 -

B.1.11 pjcmd_submit_get_job_resource()
pjcmd_result_t pjcmd_submit_get_job_resource(const PjcmdHandle_t *handle_p, const char *rscname_p,

void *val_p)

This function references the resource amount that is set in a handle and to be allocated to a job.

[ARGUMENTS]

handle_p

Pointer to a handle

rscname_p

Name of the resource whose value is referenced. The resource names that can be specified are the same as those for the
pjcmd_submit_put_job_resource() function.

val_p

A value is stored in *val_p based on the racname_p type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

rscname_p or val_p is invalid (NULL).

PJCMD_ERROR_NODATA

No resource amount is set for the specified resource.

B.1.12 pjcmd_submit_put_mpi_param()
pjcmd_result_t pjcmd_submit_put_mpi_param(PjcmdHandle_t *handle_p, pjcmd_submit_mpi_param_t param,

const void *val_p)

This function sets parameters in a handle that are related to MPI job execution.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

- 65 -

param *val_p Type of *val_p

PJCMD_SUBMIT_MPI_SHAPE Shape of a process that is generated when
starting a program (equivalent to pjsub --mpi
shape)

- If compute node is FX server

- One-dimensional shape: "X"

- Two-dimensional shape: "XxY"

- Three-dimensional shape: "XxYxZ"

Only "1" can be specified when the
resource name "vnode" is set in a handle.
An error occurs in other cases.

- If compute node is PRIMERGY server

Ignored

char *

PJCMD_SUBMIT_MPI_PROC Maximum number of processes generated
when starting a program (equivalent to pjsub
--mpi proc)

The specifiable value ranges from 1 to
2147483647.
If a value larger than the value that is
calculated using the following calculation
method is specified, job submission results in
an error: number of nodes that is indicated by
the shape specified with the resource name
"shape" x number of CPU cores in 1 node.

int

PJCMD_SUBMIT_MPI_MAX_PROC_PER_NODE Maximum number of processes generated in
one node by a program (equivalent to pjsub --
mpi max-proc-per-node)

The specifiable value ranges from 1 to
2147483647.
If the specified value is larger than the number
of CPU cores in 1 node, or if the value
obtained by converting the value specified by
PJCMD_SUBMIT_MPI_PROC into the
number of processes to be generated in 1 node
is larger, job submission results in an error.
If this parameter is specified when the
resource name "vnode" is set in a handle, job
submission results in an error.

int

PJCMD_SUBMIT_MPI_RANK_MAP_BYNODE Rank allocation rule (equivalent to pjsub --
mpi rank-map-bynode)

- If compute node is FX server
"XY," "YX," "XYZ," "XZY," "YXZ,"
"YZX," "ZXY," or "ZYX" can be
specified in *val_p.
Their meanings are the same as pjsub --
mpi rank-map-bynode=rankmap.
When an empty string ("") is specified in
*val_p, it has the same meaning as pjsub
--mpi rank-map-bynode.

char *

- 66 -

param *val_p Type of *val_p

- If compute node is PRIMERGY server
An empty string must be specified in
*val_p. In this case, it has the same
meaning as pjsub --mpi rank-map-
bynode.

PJCMD_SUBMIT_MPI_RANK_MAP_BYCHIP Rank allocation rule (equivalent to pjsub --
mpi rank-map-bychip)

- If compute node is FX server
"XY," "YX," "XYZ," "XZY," "YXZ,"
"YZX," "ZXY," or "ZYX" can be
specified in *val_p.
Their meanings are the same as pjsub --
mpi rank-map-bychip:rankmap.
When an empty string ("") is specified in
*val_p, it has the same meaning as pjsub
--mpi rank-map-bychip.

- If compute node is PRIMERGY server
An integer number n must be specified in
*val_p as a character string. The meaning
is the same as pjsub --mpi rank-map-
bychip=n.

char *

PJCMD_SUBMIT_MPI_RANK_MAP_HOSTFILE Rank map host file name (equivalent to pjsub
--mpi rank-map-hostfile)

char *

PJCMD_SUBMIT_MPI_ASSIGN_ONLINE_NODE This parameter specifies whether or not to
guarantee that a failure node is not included in
a node to be assigned (equivalent to pjsub --
mpi assign-online-node).

0: Not guaranteed (Default)
1: Guaranteed

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

- 67 -

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.13 pjcmd_submit_get_mpi_param()
pjcmd_result_t pjcmd_submit_get_mpi_param(const PjcmdHandle_t *handle_p, pjcmd_submit_mpi_param_t

param, void *val_p)

This function references the set parameter values in a handle that are related to MPI job execution.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_mpi_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.14 pjcmd_submit_put_sched_param()
pjcmd_result_t pjcmd_submit_put_sched_param(PjcmdHandle_t *handle_p, pjcmd_submit_sched_param_t

param, const void *val_p)

This function sets parameters in the handle_p handle that are related to scheduling of a job to be submitted.

[ARGUMENTS]

handle_p

Pointer to a handle

- 68 -

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_SUBMIT_SCHED_PRIORITY Job priority (job priority for the same user,
equivalent to pjsub -p)

The specified value can be an integer from 0 to 255.
If this parameter is not set, the setting is based on
the job ACL function settings.

int

PJCMD_SUBMIT_SCHED_AUTORESTART This parameter specifies whether or not to enable
automatic job re-execution.

0: Disable
1: Enable

If this parameter is not set, the setting is based on
the job operation management settings specified
by the administrator (papjm.conf and pmpjm.conf
files).

int

PJCMD_SUBMIT_SCHED_STARTDATE Scheduled time to start executing a job time_t

PJCMD_SUBMIT_SCHED_VN_POLICY
[PG]

Virtual node placement policy

- PJCMD_SUBMIT_VN_POLICY_ABSPAC
K
abs-pack (equivalent to pjsub -P vn-
policy=abs-pack)

- PJCMD_SUBMIT_VN_POLICY_PACK
pack (equivalent to pjsub -P vn-policy=pack)

- PJCMD_SUBMIT_VN_POLICY_UNPACK
unpack (equivalent to pjsub -P vn-
policy=unpack)

- PJCMD_SUBMIT_VN_POLICY_ABSUNP
ACK
abs-unpack (equivalent to pjsub -P vn-
policy=abs-unpack)

If this parameter is not set, the setting is based on
the job ACL function settings.

int

PJCMD_SUBMIT_SCHED_VN_POLICY_N
[PG]

When the virtual node placement policy is unpack
or abs-unpack, the number of virtual nodes placed
on a physical node is specified.

The specifiable value ranges from 1 to
2147483647.

int

PJCMD_SUBMIT_SCHED_EXEC_POLICY
[PG]

Execution mode policy

- PJCMD_SUBMIT_EXEC_POLICY_SIMPL
EX
simplex (equivalent to pjsub -P exec-
policy=simplex)

int

- 69 -

param *val_p Type of *val_p

- PJCMD_SUBMIT_EXEC_POLICY_SHAR
E
share (equivalent to pjsub -P exec-
policy=share)

If this parameter is not set, the setting is based on
the job ACL function settings.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.15 pjcmd_submit_get_sched_param()
pjcmd_result_t pjcmd_submit_get_sched_param(const PjcmdHandle_t *handle_p,

pjcmd_submit_sched_param_t param, void *val_p)

This function references the set parameter values in a handle that are related to scheduling.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_sched_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

- 70 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.16 pjcmd_submit_put_fileio_param()
pjcmd_result_t pjcmd_submit_put_fileio_param(PjcmdHandle_t *handle_p, pjcmd_submit_fileio_param_t

param, const void *val_p)

This function sets parameters that are related to file input/output at job execution.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_SUBMIT_FILEIO_OFILE Output destination path to the standard output for jobs
(equivalent to pjsub -o|--out)

If this parameter is not set, the file job-name.job-ID.out is
used as the path.

char *

PJCMD_SUBMIT_FILEIO_EFILE Path to the standard error output for jobs (equivalent to pjsub
-e|--err)

If this parameter is not set, the file job-name.job-ID.err is
used as the path.

char *

PJCMD_SUBMIT_FILEIO_SFILE Path to output a job statistical information file (equivalent to
pjsub --spath)

If this parameter is not set, job-name job-ID.stats is used as
the path.

char *

PJCMD_SUBMIT_FILEIO_SFILE_MODE Method to output a job statistical information file

PJCMD_SUBMIT_SFILE_MODE_DISABLE
A job statistical information file is not output. (Default)

int

- 71 -

param *val_p Type of *val_p

PJCMD_SUBMIT_SFILE_MODE_JOB
Only job information is output to a job statistical
information file (equivalent to pjsub -s|--stats).

PJCMD_SUBMIT_SFILE_MODE_JOB_AND_NODE
Both job information and node information are output to a
job statistical information file (equivalent to pjsub -S|--
STATS).

PJCMD_SUBMIT_FILEIO_MERGE This parameter specifies whether or not the standard error
output for jobs is the same file as the standard output.

0: Do not output to same file (Default)
1: Output to same file

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.1.17 pjcmd_submit_get_fileio_param()
pjcmd_result_t pjcmd_submit_get_fileio_param(const PjcmdHandle_t *handle_p,

pjcmd_submit_fileio_param_t param, void *val_p)

This function references the set parameters in a handle that are related to file input/output at job execution.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_submit_put_fileio_param() function.

- 72 -

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.1.18 pjcmd_submit_create_scriptfile_from_stdin()
char *pjcmd_submit_create_scriptfile_from_stdin(const char *basedir_p, const char *filename_p)

This function creates standard input contents as a job script. If a job script is not specified in a command line argument, job details are
obtained from the standard input and used to specify a job script with the pjcmd_submit_put_param() function.

[ARGUMENTS]

basedir_p

Path to a directory to create a job script.
Access privilege for the user who calls the function is required. If NULL is specified, the current directory that is used to call the
function is used.

filename_p

File name for the job script that is created in the basedir_p directory. If NULL is specified, a file name that does not duplicate that
of an existing file is automatically determined.

[RETURN VALUE]

Path name of a job script where standard input contents are stored. The caller needs to release the area. If the function fails, NULL is
returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_OPEN

A job script could not be created (no privilege, existing file with the same name, or inappropriate path name), or input is interrupted.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

[Note]

- The user is responsible for deleting the created job script file after submitting a job.

- 73 -

- This function does not return until the standard input is closed.

B.1.19 pjcmd_submit_create_scriptfile_by_args()
char *pjcmd_submit_create_scriptfile_by_args(const char *basedir_p, const char *filename_p, int argc,

const char *argv_p[])

This function creates a job script whose contents are command line arguments.

[ARGUMENTS]

basedir_p

Directory for creating a job script.
Access privilege for the user who calls the function is required. If NULL is specified, the current directory that is used to call the
function is used.

filename_p

File name for the job script that is created in the basedir_p directory. If NULL is specified, a file name that does not duplicate that
of an existing file is automatically determined.

argc

Number of command line arguments

argv_p[]

Array of command line arguments

[RETURN VALUE]

Path to a job script where the contents of a command line argument are stored. If the function fails, NULL is returned, and the cause is
set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

argc is 0 or argv_p is NULL.

PJCMD_ERROR_OPEN

A job script could not be created (no privilege, existing file with the same name, or inappropriate path name).

PJCMD_ERROR_NOMEM

Memory acquisition failed.

[Note]

The user is responsible for deleting the created job script file.

B.1.20 pjcmd_submit_set_callback()
pjcmd_result_t pjcmd_submit_set_callback(

 PjcmdHandle_t *handle_p,

 void (*job_accept_callback_func_p)(const PjcmdSubjobid_t *),

 int (*start_wait_callback_func_p)(const PjcmdSubjobid_t *),

 void (*job_start_callback_func_p)(const PjcmdSubjobid_t *),

 void (*job_end_callback_func_p)(const PjcmdSubjobid_t *))

This function registers a callback function that is called at a specific time according to the progress of interactive job processing. This
function is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message
that indicates the progress of interactive job processing.
If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

- 74 -

[ARGUMENTS]

handle_p

Pointer to a handle

job_accept_callback_func_p

Pointer to the function that is called when an interactive job is accepted

start_wait_callback_func_p

Pointer to the function that is called when an interactive job is waiting to be executed. When this function is registered, it is called
every three minutes until job execution begins.

job_start_callback_func_p

Pointer to the function that is called when interactive job execution begins

job_end_callback_func_p

Pointer to the function that is called when an interactive job is completed.

The job ID of the interactive job executed when the function is called is passed to the callback function as a sub job ID structure.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

B.1.21 pjcmd_submit_execute()
PjcmdResp_t *pjcmd_submit_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to submit a job based on a handle. This function can be called from the login
node and compute cluster management node.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about a job submission request.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job submission request fails,
NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether the request succeeded or failed. Whether or not job submission has been accepted by the
job operation management function needs to be checked with a result code in the response information by using the
pjcmd_get_jobresult_info() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- 75 -

- This is not a handle for job submission.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_NOENT

A file or directory that is set in the handle does not exist.

PJCMD_ERROR_ACCESS

There is no privilege to access a file that is set in the handle.

PJCMD_ERROR_OPEN

A file that is set in the handle failed to open.

PJCMD_ERROR_INTERNAL

Internal error

B.1.22 pjcmd_submit_executev()
PjcmdResp_t *pjcmd_submit_executev(const PjcmdHandle_t **handle_pp, int n)

This function is the same as the pjcmd_submit_execute() function except for specifying a handle as an array. However, if two or more
handles are specified, a handle that is related to submission of the sub jobs of all step jobs must be specified. This function can be called from
the login node and compute cluster management node.

[ARGUMENTS]

handle_pp

Array of pointers to a handle

n

Number of handles

[RETURN VALUE]

Response information about a job submission request.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job submission request fails,
NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether the request succeeded or failed. Whether or not job submission has been accepted by the
job operation management function needs to be checked with a result code in the response information by using the
pjcmd_get_jobresult_info() function.

- 76 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job submission.

- If multiple handles are specified, the handles for jobs other than step jobs are included.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_NOENT

A file or directory that is set in the handle does not exist.

PJCMD_ERROR_ACCESS

There is no privilege to access a file that is set in the handle.

PJCMD_ERROR_OPEN

A file that is set in the handle failed to open.

PJCMD_ERROR_INTERNAL

Internal error

B.2 Job Deletion
This section describes the functions for deleting (canceling) jobs.

- 77 -

Figure B.3 Requesting Job Deletion

B.2.1 pjcmd_kill_parse_pjdel_args()
pjcmd_result_t pjcmd_kill_parse_pjdel_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjdel command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job deletion.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

- 78 -

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.2.2 pjcmd_kill_put_param()
pjcmd_result_t pjcmd_kill_put_param(PjcmdHandle_t *handle_p, pjcmd_kill_param_t param, const void

*val_p)

This function sets the parameters in a handle that are related to job deletion.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_KILL_ENFORCE This parameter specifies whether or not to interrupt execution of
a prologue or epilogue script if one is being executed (equivalent
to pjdel --enforce).

0: Do not interrupt (Default)
1: Forcibly interrupt. Job will be deleted

int

PJCMD_KILL_REASON Message that is output to job statistical information as a deletion
reason (equivalent to pjdel --reason).

This character string must be within 64 bytes including the NULL
character at the end. The available characters are single-byte
alphanumeric characters and symbols that can be displayed.

char *

PJCMD_KILL_NO_STATS If the job being deleted is in the QUEUED state, suppress the
output of the job statistical information file (.stats file) for that job
(equivalent to pjdel --no-stats).

0: Do not suppress (Default)
1: Suppress

int

- 79 -

param *val_p Type of *val_p

PJCMD_KILL_NO_HISTORY If the job being deleted is in the QUEUED state, suppress the
output of that job to the job history information that is output by
the -H option of the pjstat command (equivalent to pjdel --no-
history).

0: Do not suppress (Default)
1: Suppress

int

PJCMD_KILL_HELP Equivalent to the --help option in the pjdel command

0: Not specified (Default)
1: Specified

This parameter does not affect job deletion operations.

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job deletion.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.2.3 pjcmd_kill_get_param()
pjcmd_result_t pjcmd_kill_get_param(const PjcmdHandle_t *handle_p, pjcmd_kill_param_t param, void

*val_p)

This function references the parameters that are set in a handle for job deletion.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_kill_put_param()
function.

- 80 -

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job deletion.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.2.4 pjcmd_kill_execute()
PjcmdResp_t *pjcmd_kill_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to delete a job based on a handle. This function can be called from the login
node and compute cluster management node.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about job deletion.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job deletion request fails,
NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether or not the request was successful. Whether or not job deletion has been accepted needs to
be checked with a result code in the response information by using the pjcmd_get_jobresult_info() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job deletion.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

- 81 -

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

B.3 Job Hold
This section describes the functions for holding jobs.

Figure B.4 Requesting Job Hold

B.3.1 pjcmd_hold_parse_pjhold_args()
pjcmd_result_t pjcmd_hold_parse_pjhold_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjhold command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

- 82 -

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job hold.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.3.2 pjcmd_hold_put_param()
pjcmd_result_t pjcmd_hold_put_param(PjcmdHandle_t *handle_p, pjcmd_hold_param_t param, const void

*val_p)

This function sets parameters in a handle that are related to job hold.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

- 83 -

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_HOLD_ENFORCE This parameter specifies whether or not to interrupt the
execution of a prologue or epilogue script if one is being
executed.

0: Do not interrupt (Default)
1: Forcibly interrupt. Job will be held

int

PJCMD_HOLD_REASON Message that is output to job statistical information as a
reason to hold the job (equivalent to pjhold --reason)

This character string must be within 64 bytes including the
NULL character at the end. The available characters are
single-byte alphanumeric characters and symbols that can
be displayed.

char *

PJCMD_HOLD_HELP Equivalent to the --help option in the pjhold command

0: Not specified (Default)
1: Specified

This parameter does not affect job hold operations.

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job hold.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.3.3 pjcmd_hold_get_param()
pjcmd_result_t pjcmd_hold_get_param(const PjcmdHandle_t *handle_p, pjcmd_hold_param_t param, void

*val_p)

- 84 -

This function references the parameters that are set in a handle for job hold.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_hold_put_param()
function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job hold.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.3.4 pjcmd_hold_set_callback()
pjcmd_result_t pjcmd_hold_set_callback(

 PjcmdHandle_t *handle_p,

 void (*hold_wait_callback_func_p)(void),

 void (*hold_accept_callback_func_p)(void))

This function registers a callback function that is called at a specific time according to the progress of request to job hold. This function is
used when a user needs to call their own process at a specific time. For example, this function can be used to output a message indicating
that a job is waiting for a hold request to be accepted.
If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]

handle_p

Pointer to a handle

hold_wait_callback_func_p

Pointer to the function that is called when the request to hold a job is pending acceptance. When this function is registered, it is called
every three minutes until the request has been accepted.

- 85 -

hold_accept_callback_func_p

Poniter to the function that is called when the job hold request has been accepted.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job hold.

B.3.5 pjcmd_hold_execute()
PjcmdResp_t *pjcmd_hold_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to hold a job based on a handle. This function can be called from the login
node and compute cluster management node.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about a job hold.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a job hold request fails, NULL
is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether or not the request was successful. Whether or not the job hold request has been accepted
needs to be checked with a result code in the response information by using the pjcmd_get_jobresult_info() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job hold.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

- 86 -

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

B.4 Release of a Job Hold
This section describes the functions for releasing a job hold.

Figure B.5 Requesting the Release of a Job Hold

B.4.1 pjcmd_release_parse_pjrls_args()
pjcmd_result_t pjcmd_release_parse_pjrls_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjrls command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

- 87 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for releasing a job hold.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.4.2 pjcmd_release_put_param()
pjcmd_result_t pjcmd_release_put_param(PjcmdHandle_t *handle_p, pjcmd_release_param_t param, const

void *val_p)

This function sets parameters in a handle that are related to releasing job hold.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_RELEASE_HELP Equivalent to the --help option in the pjrls command

0: Not specified (Default)
1: Specified

This parameter does not affect the operation of releasing a job
hold.

int

[RETURN VALUE]

PJCMD_OK

Success

- 88 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for releasing a job hold.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.4.3 pjcmd_release_get_param()
pjcmd_result_t pjcmd_release_get_param(const PjcmdHandle_t *handle_p, pjcmd_release_param_t param,

void *val_p)

This function references the parameters that are set in a handle for releasing job hold.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_release_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for releasing a job hold.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

- 89 -

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.4.4 pjcmd_release_set_callback()
pjcmd_result_t pjcmd_release_set_callback(

 PjcmdHandle_t *handle_p,

 void (*release_wait_callback_func_p)(void),

 void (*release_accept_callback_func_p)(void))

This function registers a callback function that is called at a specific time according to the progress of request to release the job hold. This
function is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message
indicating that a job is waiting for a job release request to be accepted.
If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]

handle_p

Pointer to a handle

release_wait_callback_func_p

Pointer to the function that is called when the request to release hold job is pending acceptance. When this function is registered, it
is called every three minutes until the request has been accepted.

release_accept_callback_func_p

Poniter to the function that is called when the job release request has been accepted.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for releasing a job hold.

B.4.5 pjcmd_release_execute()
PjcmdResp_t *pjcmd_release_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to release a job hold based on a handle. This function can be called from the
login node and compute cluster management node.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about releasing a job hold.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a request to release a job hold

- 90 -

fails, NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether or not the request was successful. Whether or not the request to release a job hold has been
accepted needs to be checked with a result code in the response information by using the pjcmd_get_jobresult_info() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for releasing a job hold.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

B.5 Signal Sending to Jobs
This section describes the functions for sending signals to jobs.

- 91 -

Figure B.6 Requesting the Sending of Signals to a Job

B.5.1 pjcmd_signal_parse_pjsig_args()
pjcmd_result_t pjcmd_signal_parse_pjsig_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjsig command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for sending a signal.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

- 92 -

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.5.2 pjcmd_signal_put_param()
pjcmd_result_t pjcmd_signal_put_param(PjcmdHandle_t *handle_p, pjcmd_signal_param_t param, const

void *val_p)

This function sets parameters in a handle that are related to sending signals to a job.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_SIGNAL_SIGNUM Number of signals to be sent

The specified value can be an integer from 1 to 64.

int

PJCMD_SIGNAL_SIGNAME Name for the signals to be sent

The signal name (*) must be recognizable by the destination
compute node and within 15 characters (excluding the NULL
character at the end).
(*) Specifically, the signal name is a name such as "SIGHUP"
or "SIGKILL" indicated in the header file signal.h and the
man page signal(7).

char *

PJCMD_SIGNAL_HELP Equivalent to the --help option in the pjsig command

0: Not specified (Default)
1: Specified

This parameter does not affect signal sending operations.

int

- 93 -

Either the PJCMD_SIGNAL_SIGNUM or PJCMD_SIGNAL_SIGNAME parameter, whichever is set last, is valid. If neither
parameter is set in a handle, an error occurs when the pjcmd_signal_execute() function is called.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for sending a signal.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

[Note]

A signal number must be used based on the specifications of the OS on the destination node (compute node executing a job).

B.5.3 pjcmd_signal_get_param()
pjcmd_result_t pjcmd_signal_get_param(const PjcmdHandle_t *handle_p, pjcmd_signal_param_t param,

void *val_p)

This function references the parameter values that are set in a handle for sending signals.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_signal_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 94 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for sending a signal.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.5.4 pjcmd_signal_set_callback()
pjcmd_result_t pjcmd_signal_set_callback(

 PjcmdHandle_t *handle_p,

 void (*signal_wait_callback_func_p)(void),

 void (*signal_accept_callback_func_p)(void))

This function registers a callback function that is called at a specific time according to the progress of sending signal to the job. This function
is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message indicating
that a request to send a signal to a job is pending acceptance.
If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]

handle_p

Pointer to a handle

signal_wait_callback_func_p

Pointer to the function that is called when the request to send a signal to the job is pending acceptance. When this function is
registered, it is called every three minutes until the request has been accepted.

signal_accept_callback_func_p

Poniter to the function that is called when the request to send a signal to the job has been accepted.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for sending a signal.

B.5.5 pjcmd_signal_execute()
PjcmdResp_t *pjcmd_signal_execute(const PjcmdHandle_t *handle_p)

- 95 -

This function requests the job operation management function to send signals to a job based on a handle. This function can be called from
the login node and compute cluster management node.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about signal transmission.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a request to send signals to
a job fails, NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether the request succeeded or failed. Whether or not the request to send signals to the job has
been accepted by the job operation management function needs to be checked with a result code in the response information by using
the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for sending a signal.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

[Note]

Since the signal transmission request function can only make requests to send signals, an error does not occur even if the specified signal
number cannot be recognized by the destination node. The user needs to check whether or not the request has been sent successfully.

B.6 Waiting for Job Completion
This section describes the functions for waiting for a job to complete.

- 96 -

Figure B.7 Request to Wait for a Job to Complete

B.6.1 pjcmd_wait_parse_pjwait_args()
pjcmd_result_t pjcmd_wait_parse_pjwait_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjwait command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for waiting for job completion.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

- 97 -

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

B.6.2 pjcmd_wait_put_param()
pjcmd_result_t pjcmd_wait_put_param(PjcmdHandle_t *handle_p, pjcmd_wait_param_t param, const void

*val_p)

This function sets parameters in a handle that are related to waiting for job completion.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of

*val_p

PJCMD_WAIT_MODE This parameter specifies a mode for waiting for job completion,
namely the return condition of the pjcmd_wait_execute() function
(equivalent to pjwait -w).

- PJCMD_WAIT_ALL
The function returns when all jobs are completed. (Default)

- PJCMD_WAIT_ANY
The function returns when at least one job is completed.

- PJCMD_WAIT_NONE
The function returns immediately without waiting for a job to
complete.

int

PJCMD_WAIT_Z Equivalent to the -z option in the pjwait command

0: Not specified (Default)
1: Specified

int

- 98 -

param *val_p Type of
*val_p

This parameter does not affect the operation of waiting for job
completion.

PJCMD_WAIT_HELP Equivalent to the --help option in the pjwait command

0: Not specified (Default)
1: Specified

This parameter does not affect the operation of waiting for job
completion.

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for waiting for job completion.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.6.3 pjcmd_wait_get_param()
pjcmd_result_t pjcmd_wait_get_param(const PjcmdHandle_t *handle_p, pjcmd_wait_param_t param, void

*val_p)

This function references the parameters that are set in a handle for waiting for job completion.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_wait_put_param()
function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

- 99 -

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for waiting for job completion.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.6.4 pjcmd_wait_execute()
PjcmdResp_t *pjcmd_wait_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to wait for job completion based on a handle. This function can be called from
the login node and compute cluster management node.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about waiting for job completion.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a request to wait for job
completion fails, NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether the request succeeded or failed. The results of waiting for job completion need to be checked
with a result code in the response information by using the pjcmd_get_jobresult_info() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for waiting for job completion.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

- 100 -

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

B.7 Job Parameter Change
This section describes the functions for changing job parameters.

Figure B.8 Request to Change a Job Parameter

B.7.1 pjcmd_alter_parse_pmalter_args()
pjcmd_result_t pjcmd_alter_parse_pmalter_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specifications of pjalter and pmalter command options and sets the specified
details in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

- 101 -

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
When the operation is successfully completed, the pjcmd_optind variable indicates a job ID (the first argument other than options). The
caller needs to set the job ID in a handle.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

[Note]

This function can set a handle for both the pjalter and pmalter command options. However, if the -P option, which can be specified only
in the pmalter command for the administrators, is set in a handle, administrator privileges are required for requesting the job operation
management function to change a job parameter (the pmcmd_alter_execute() function).

B.7.2 pjcmd_alter_put_param()
pjcmd_result_t pjcmd_alter_put_param(PjcmdHandle_t *handle_p, pjcmd_alter_param_t param, const void

*val_p)

This function sets the job parameter to be changed in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

- 102 -

param

Identifier of a parameter to be set (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is char * type, the caller must prepare
a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_ALTER_CLUSTER Cluster name (only one name, equivalent to pmalter -c)

If this parameter is not set, the value of the environment variable
PXMYCLST is applied. If the variable also does not have a set
value, an error occurs in the pjcmd_alter_execute() function.
This parameter is valid only when called from the system
management node. If this parameter is called from a node other
than the system management node, the setting is ignored and the
name of the cluster to which the node belongs is applied.

char *

PJCMD_ALTER_HELP Equivalent to the specifications of the --help option in the pjalter
or pmalter command

0: Not specified (Default)
1: Specified

This parameter does not affect job parameter changes.

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.7.3 pjcmd_alter_get_param()
pjcmd_result_t pjcmd_alter_get_param(const PjcmdHandle_t *handle_p, pjcmd_alter_param_t param, void

*val_p)

- 103 -

This function references the set details in a handle for changing job parameters.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the pjcmd_alter_put_param()
function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.7.4 pjcmd_alter_put_job_resource()
pjcmd_result_t pjcmd_alter_put_job_resource(PjcmdHandle_t *handle_p, char *rscname_p, const void

*val_p)

This function sets the job resource name to be changed and the value after the change in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

rscname_p

Name of the resource whose value needs to be changed (See the table below.)

val_p

Pointer to the storage area of the resource value to be changed. For example, if the resource to be changed is "elapse," the caller needs
to prepare a variable where the value after the change (time_t type) is stored, and specify a pointer to the variable (time_t *) in
val_p. If NULL is specified, the parameter value is initialized (not set).

- 104 -

rscname_p *val_p Type of *val_p

"elapse" Limit value of job executable time

The specifiable value ranges from 1 to 2147483647 seconds. If
the time is not limited, PJCMD_UNLIMITED is specified.

time_t

"rscunit" Name of the resource unit to which a job is submitted char *

"rscgrp" Name of the resource group to which a job is submitted char *

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_INVALID_ARGUMENT

rscname_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

*val_p is invalid.

- A specification method is incorrect.

- The value (character string) that is specified as the "rscunit" or "rscgrp" parameter is NULL.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.7.5 pjcmd_alter_get_job_resource()
pjcmd_result_t pjcmd_alter_get_job_resource(const PjcmdHandle_t *handle_p, char *rscname_p, void

*val_p)

This function references the job resource amount that is set to be changed in a handle for changing job parameters.

[ARGUMENTS]

handle_p

Pointer to a handle

rscname_p

The name of resource to be referenced. The value that can be specified are the same as those for the pjcmd_alter_put_job_resource)
function.

val_p

A value is stored in *val_p based on the racuname_p type. The caller needs to prepare an area of a sufficient size according to the
value type.

- 105 -

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_INVALID_ARGUMENT

rscname_p or val_p is invalid (NULL).

PJCMD_ERROR_NODATA

A specified resource is not set in a handle.

B.7.6 pjcmd_alter_put_sched_param()
pjcmd_result_t pjcmd_alter_put_sched_param(PjcmdHandle_t *handle_p, pjcmd_alter_sched_param_t param,

const void *val_p)

This function sets parameters in a handle that are used to change job scheduling.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be changed (See the table below.)

val_p

Pointer to the storage area for a parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_ALTER_SCHED_PRIORITY Priority after changing jobs for the same users

The specified value can be an integer from 0 to 255.

int

PJCMD_ALTER_SCHED_APRIORITY Priority after changing jobs in a resource unit

The specified value can be an integer from 0 to 255.

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 106 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

B.7.7 pjcmd_alter_get_sched_param()
pjcmd_result_t pjcmd_alter_get_sched_param(const PjcmdHandle_t *handle_p, pjcmd_alter_sched_param_t

param, void *val_p)

This function references scheduling-related parameter values that are set in a handle for changing job parameters.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_alter_put_sched_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

- 107 -

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

B.7.8 pjcmd_alter_set_callback()
pjcmd_result_t pjcmd_alter_set_callback(

 PjcmdHandle_t *handle_p,

 void (*alter_wait_callback_func_p)(void),

 void (*alter_accept_callback_func_p)(void))

This function registers a callback function that is called at a specific time according to the progress of request to change the job paramter.
This function is used when a user needs to call their own process at a specific time. For example, this function can be used to output a message
indicating that a request to change the parameter of the parameter is pending acceptance.
If a NULL pointer is specified as a callback function, it is regarded that the callback function is not set.

[ARGUMENTS]

handle_p

Pointer to a handle

alter_wait_callback_func_p

Pointer to the function that is called when the request to change the job parameter is pending acceptance. When this function is
registered, it is called every three minutes until the request has been accepted.

alter_accept_callback_func_p

Poniter to the function that is called when the request to change the job parameter has been accepted.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

B.7.9 pjcmd_alter_execute()
PjcmdResp_t *pjcmd_alter_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management to change a job parameter based on a handle. This function can be called from the login
node, system management node, and computer cluster management node.
If the priority of jobs in the resource unit is set in the handle as the parameter to be changed, administrator (root) privileges are required.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about changing a job parameter.
The caller must release the obtained response information by using the pjcmd_destroy_resp() function. If a request to change a job
parameter fails, NULL is returned, and the cause is set in pjcmd_errcode.
The response information indicates whether the request succeeded or failed. Whether or not the request to change a job parameter has

- 108 -

been accepted by the job operation management function needs to be checked with a result code in the response information by using
the pjcmd_get_jobresult_info() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for changing a job parameter.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, system management node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted. Alternatively, an attempt to change the job priority in a resource unit was made with privileges
other than administrator privileges.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

- 109 -

Appendix C Information Acquisition API Reference

C.1 Common Information of the Information Acquisition API
This section describes utility functions for getting job information and resource information.

Figure C.1 Detecting pjstat Command Arguments

C.1.1 pjcmd_pjstat_parse_command_type()
pjcmd_pjstat_command_type_t pjcmd_pjstat_parse_command_type(int argc, const char * const *argv_pp)

This function analyzes command line arguments as pjstat command arguments and determines whether or not the --rsc option, --limit
option, and --help option exist.
The function is used to individually call a job information acquisition API, resource information acquisition API, resource status acquisition
API or display the method of use, based on the pjstat command option specified in a command line argument.

[ARGUMENTS]

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_PJSTAT_SHOW_JOB

The command argument corresponds to displaying job information (pjstat).

PJCMD_PJSTAT_SHOW_RESOURCE

The command argument corresponds to displaying job resource information (pjstat --rsc).

PJCMD_PJSTAT_SHOW_LIMIT

The command argument corresponds to displaying a limit value when submitting a job (pjstat --limit).

PJCMD_PJSTAT_SHOW_HELP

The command argument corresponds to displaying the method of use (pjstat --help).

PJCMD_PJSTAT_UNKNOWN_COMMAND_TYPE

Nothing could be determined from the command argument.

[pjcmd_errcode]

PJCMD_SUCCESS

Success. This code is set when the return value is PJCMD_PJSTAT_SHOW_JOB, PJCMD_PJSTAT_SHOW_RESOURCE,
PJCMD_PJSTAT_SHOW_LIMIT, or PJCMD_PJSTAT_SHOW_HELP.

PJCMD_ERROR_UNKNOWN_OPTION

Nothing could be determined from the command argument. This code is set when the return value is
PJCMD_PJSTAT_UNKNOWN_COMMAND_TYPE.

C.2 Getting Job Information
This section describes the functions for getting job information (job statistical information).

- 110 -

Figure C.2 Requesting Job Information Acquisition

Figure C.3 Referencing an Information Group and Getting Job Information

- 111 -

Figure C.4 Referencing Job Information

C.2.1 pjcmd_jobinfo_parse_pjstat_args()
pjcmd_result_t pjcmd_jobinfo_parse_pjstat_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjstat command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- 112 -

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.
This function treats the --rsc option and --limit option in the pjstat command as well as other options that can be specified only with these
options as invalid options.

C.2.2 pjcmd_jobinfo_put_scope()
pjcmd_result_t pjcmd_jobinfo_put_scope(PjcmdHandle_t *handle_p, pjcmd_scope_t scope, const void

*val_p, uint32_t n)

This function sets the target range for getting job information in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier indicating the type of target range for getting information (See the following table.)

val_p

Pointer to the storage area for the value indicating the target to get job information. For example, if the value type to be set is char
* type, the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL
is specified, the parameter value is initialized (not set).

n

Number of elements of val_p

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c)

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_jobinfo_execute() function.
This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the

char *

- 113 -

scope *val_p Type of *val_p

calling node belongs is applied.
1 must be specified in n for the parameter.

PJCMD_SCOPE_RSCUNIT This parameter gets information on each resource unit and
specifies resource unit names as an array (number of elements is
n, equivalent to pjstat --rscunit).

If "*" is specified as a resource unit name, all resource units are
targeted.

char **

PJCMD_SCOPE_RSCGRP This parameter gets information on each resource group and
specifies resource group names as an array (number of elements
is n, equivalent to pjstat --rscgrp).

If "*" is set as a resource group name, all resource groups are
targeted.

char **

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_INVALID_PARAM

val_p or n is invalid.

C.2.3 pjcmd_jobinfo_get_scope()
pjcmd_result_t pjcmd_jobinfo_get_scope(const PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void

*val_p, uint32_t *n_p)

This function references the target range for getting the information that is set in a handle for job information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jobinfo_put_scope() function.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

n_p

The number of elements of val_p is stored in *n_p. The caller needs to prepare the area.

- 114 -

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_INVALID_ARGUMENT

val_p or n_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

PJCMD_ERROR_NODATA

A specified scope is not set in a handle.

C.2.4 pjcmd_jobinfo_put_condition()
pjcmd_result_t pjcmd_jobinfo_put_condition(PjcmdHandle_t *handle_p, pjcmd_jobinfo_condition_type_t

type, const char **item_pp, int n)

This function sets conditions for the job information to be obtained in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

type

Type of condition to get job information (See the following table.)

item_pp

Array of an acquisition condition item (character string). The value to be specified varies depending on the type argument. (See the
following table.)
If NULL is specified, a parameter value is initialized (not set).

n

Number of elements in the item_pp[] array

type item_pp[]

PJCMD_JOBINFO_GROUPING This parameter specifies a unit to group information (unit to obtain).

"usr": Information is grouped by user.
"grp": Information is grouped by group.
"rscu": Information is grouped by resource unit.
"rscg": Information is grouped by resource group.

Multiple units can be specified as the item_pp[] array.

Example:
Specifying "usr" and "rscg" indicates that information is grouped by the same user
and resource group.

- 115 -

type item_pp[]

If this parameter is not specified, information is not grouped by a specific unit. If
a resource unit or resource group is specified in the pjcmd_jobinfo_put_scope()
function, it is regarded that "rscu" or "rscg" is specified.

PJCMD_JOBINFO_CHOOSE
PJCMD_JOBINFO_NOT_CHOOSE

The information to be obtained is selected out of job information (*).
(*) Information that can be obtained by the command API is the same as the
information that can be output by the pjstat command (see pjstatsinfo(7).)

The PJCMD_JOBINFO_CHOOSE parameter specifies the information to be
obtained (equivalent to pjstat --choose). The
PJCMD_JOBINFO_NOT_CHOOSE parameter specifies information that is not
obtained. Either parameter can be specified. If neither parameter is specified, all
information is obtained.

The item name of the information to be obtained is specified in the item_pp[]
array. Only the job information items that are listed in the Table C.1 Items That
Can be Specified as Conditions to Get Job Information can be specified. Multiple
item names can be specified.

PJCMD_JOBINFO_FILTER Only the job information for the specified items with specific values is obtained
(equivalent to pjstat --filter).

Multiple conditions can be specified using the item_pp[] array. The condition is
specified in one array element in the "item = value" format. An item name listed
in the Table C.1 Items That Can be Specified as Conditions to Get Job Information
can be specified in item.
A wild card and an expression to specify a range can be used for value (based on
the --filter option format of the pjstat command).
If a resource unit and resource group are specified in the
pjcmd_jobinfo_put_scope() function, it is regarded that a corresponding item
(rscu or rscg) is specified.

PJCMD_JOBINFO_SORT This parameter specifies conditions to sort the information to be obtained
(equivalent to pjstat --sort).

Multiple conditions can be specified using the item_pp[] array. The conditions are
specified in one array element in the "item:order" format. An item name listed in
the Table C.1 Items That Can be Specified as Conditions to Get Job Information
can be specified in item. "A" (ascending order) or "B" (descending order) can be
specified in order. If specification of the job information order is omitted, it is
sorted in job ID order.

The following table lists the item names that can be specified as conditions to get job information (PJCMD_JOBINFO_CHOOSE,
PJCMD_JOBINFO_NOT_CHOOSE, PJCMD_JOBINFO_FILTER, and PJCMD_JOBINFO_SORT).

Table C.1 Items That Can be Specified as Conditions to Get Job Information

Item Description

jid Job ID or sub job ID

snum Number of sub jobs of a bulk job or step job

jnam Job name

jtyp Job type

jmdl Job model

usr Name of user executing job

grp Name of group executing job

rscu Resource unit

rscg Resource group

- 116 -

Item Description

pri Job priority

sh Shell path name

mail E-mail send flag

adr E-mail send destination address

sde Step job dependency relational expression

mask umask value of user submitting job

std Standard output file name

stde Standard error output file path

infop Statistical information file path

pcl CPU usage time limit by process

pcfl Core file limit by process

pcpl Max user process count limit by process

pdl Data segment limit by process

prml Lock memory size limit by process

pmql POSIX message queue size limit by process

pofl File descriptor limit by process

ppsl Signal count limit by process

ppl File size limit by process

psl Stack segment limit by process

pvml Virtual memory size limit by process

cmt Comment of job

rnum Retry count of job

lst Previous state of job

st Current state of job

adt Job submission time

qdt Last queuing time

sdt Job execution start time

edt Job execution end time

exc EXIT/CANCEL state transition time

thldtm Accumulated hold time of job

lhusr Last hold user name

holnm Hold count of job

prmdt Time when the job resource manager function collects data from each node

ec End code of shell script

sn Signal number

pc PJM code

ermsg Error message (REASON)

elpl Elapsed time limit of job (Executable time)

elp Execution elapsed time

- 117 -

Item Description

uctmut Total user CPU time of job

sctmut Total system CPU time of job

usctmut Total user CPU time and total of system CPU time

mszl Physical memory amount limit by node

msza Physical memory amount allocated to a node

mmszu Total max physical memory usage of nodes

cnumr Requested number of CPUs

cnumat Total number of CPUs allocated to job

cnumut Total number of CPUs used in job

nnumr Number of nodes and its shape requested by job

nnuma Number of nodes and its shape allocated to job

nnumu Number of nodes used by job

nnumv Number of unavailable nodes within the allocated nodes

nidlu Node ID list of the nodes used by job

tofulu Tofu coordinate list of the nodes used by job

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.2.5 pjcmd_jobinfo_get_condition()
pjcmd_result_t pjcmd_jobinfo_get_condition(const PjcmdHandle_t *handle_p,

pjcmd_jobinfo_condition_type_t type, char ***item_ppp, int *n_p)

This function references the contents of information acquisition conditions that are set in a handle for job information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

- 118 -

type

Identifier indicating the conditions to get job information to be referenced. The identifiers that can be specified are the same as those
of the pjcmd_jobinfo_put_condition() function.

item_ppp

The item names specified in type for information acquisition conditions are stored in the character string array (*item_ppp)[].
(*item_ppp)[] indicates an area that is set in a handle.

n_p

The number of elements in the character string array (*item_ppp)[] is stored in *n_p.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_INVALID_ARGUMENT

item_ppp or n_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

PJCMD_ERROR_NODATA

The acquisition conditions specified in type are not set.

C.2.6 pjcmd_jobinfo_put_param()
pjcmd_result_t pjcmd_jobinfo_put_param(PjcmdHandle_t *handle_p, pjcmd_jobinfo_param_t param, void

*val_p)

This function sets parameters related to job information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifiers of a parameter to be set that is related to job information acquisition (See the following table.)

val_p

Pointer to the storage area for the parameter value to be set. For example, if the value type to be set is int type, the caller must prepare
a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value is
initialized (not set).

param *val_p Type of *val_p

PJCMD_JOBINFO_USER_ID This parameter specifies the array of the target user ID
whose information is obtained. The last element in the
array must be -1.

uid_t *

- 119 -

param *val_p Type of *val_p

PJCMD_JOBINFO_USER_NAME This parameter specifies the target user name whose
information is obtained. The last element in the array
must be NULL.

char **

PJCMD_JOBINFO_GROUP_ID This parameter specifies the target group ID whose
information is obtained. The last element in the array
must be -1.

gid_t *

PJCMD_JOBINFO_GROUP_NAME This parameter specifies the target group name whose
information is obtained. The last element in the array
must be NULL.

char **

PJCMD_JOBINFO_HISTORY_DAY This parameter specifies information on a job that has
completed within the specified number of days
(equivalent to pjstat -H and -H day=n).

An integer value from 1 to 365 can be specified. If -1 is
specified, this parameter gets information on jobs that
were completed within the past 3 days (equivalent to a
case where the pjstat command does not have the -H
option argument).

int

PJCMD_JOBINFO_HISTORY_START This parameter specifies the start date of a period to get
information on completed jobs (equivalent to pjstat -H
start=date).

time

PJCMD_JOBINFO_HISTORY_END This parameter specifies the end date of a period to get
information on completed jobs (equivalent to pjstat -H
end=date).

time

PJCMD_JOBINFO_HISTORY_PERIOD This parameter specifies jobs that were completed within
the specified number of days after the first day specified
in the PJCMD_JOBINFO_HISTORY_START
parameter (equivalent to pjstat -H period=days).
The value range that can be specified is from 1 to
2147483647 days.

int

PJCMD_JOBINFO_VERBOSITY This parameter specifies the granularity of the
information to be obtained.

- PJCMD_JOBINFO_VERBOSITY_JOB
This gets only job information. (Default)

- PJCMD_JOBINFO_VERBOSITY_SUBJOB
This gets job information and sub job information
(equivalent to pjstat -E).

int

PJCMD_JOBINFO_SUMMARY This parameter specifies whether or not to get summary
information when getting job information.

- PJCMD_JOBINFO_NO_SUMMARY
Summary information is not obtained. (Default)

- PJCMD_JOBINFO_WITH_SUMMARY
Both summary information and job information are
obtained (equivalent to pjstat --with-summary).

- PJCMD_JOBINFO_ONLY_SUMMARY
Only summary information is obtained (equivalent
to pjstat --summary).

int

PJCMD_JOBINFO_LEVEL Level of information to be obtained int

- 120 -

param *val_p Type of *val_p

- PJCMD_JOBINFO_LEVEL_0
Only basic information is obtained (equivalent to
pjstat, default).

- PJCMD_JOBINFO_LEVEL_1
Basic information and additional information are
obtained (equivalent to pjstat -v).

- PJCMD_JOBINFO_LEVEL_2
Job statistical information is obtained (equivalent to
pjstat -s).

- PJCMD_JOBINFO_LEVEL_3
Job statistical information and node statistical
information are obtained (equivalent to pjstat -S).

PJCMD_JOBINFO_LEVEL_PATTERN If the level of information to be obtained is
PJCMD_JOBINFO_LEVEL_1, this parameter specifies
additional information to be obtained (equivalent to
pjstat -v pattern=n).

Currently, only 1 can be specified.

uint32_t

PJCMD_JOBINFO_OTHERSJOB This parameter specifies whether or not to get job
information submitted by other users (users other than
the user who called this function) (equivalent to pjstat -
A).

- PJCMD_JOBINFO_OTHERSJOB_NONE
Job information submitted by other users is not
obtained. (Default)

- PJCMD_JOBINFO_OTHERSJOB_ALL
Job information submitted by other users is also
obtained.
However, without privileges, some information
cannot be referenced.

int

PJCMD_JOBINFO_DATA Equivalent to the specification of the --data option in the
pjstat command

0: Not specified (Default)
1: Specified

This parameter does not affect the job information to be
obtained.

int

PJCMD_JOBINFO_DELIMITER Equivalent to the specification of the --delimiter option
in the pjstat command

If the PJCMD_JOBINFO_DATA parameter is
specified, this parameter specifies a character for
separating job information displayed by the
pjcmd_jobinfo_print_resp() function. If this parameter
is not set, a comma (,) is used as the character separating
job information.
This parameter does not affect the job information to be
obtained.

char *

PJCMD_JOBINFO_HELP Equivalent to the specification of the --help option in the
pjstat command

0: Not specified (Default)
1: Specified

int

- 121 -

param *val_p Type of *val_p

This parameter does not affect the job information to be
obtained.

As for the PJCMD_JOBINFO_USER_ID or PJCMD_JOBINFO_USER_NAME parameter and the PJCMD_JOBINFO_GROUP_ID
or PJCMD_JOBINFO_GROUP_NAME parameter, the parameter specified last in the respective pairs is valid. If it is not specified, the
user or group that calls the function is applied.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.2.7 pjcmd_jobinfo_get_param()
pjcmd_result_t pjcmd_jobinfo_get_param(const PjcmdHandle_t *handle_p, pjcmd_jobinfo_param_t param,

void *val_p)

This function references information acquisition-related parameters that are set in a handle for job information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jobinfo_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

- 122 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.2.8 pjcmd_jobinfo_execute()
PjcmdResp_t *pjcmd_jobinfo_execute(PjcmdHandle_t *handle_p)

This function requests the job operation management function to get job information based on a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about acquiring job information.
The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.
The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for job information acquisition.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

- 123 -

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

C.2.9 pjcmd_jobinfo_get_choosen_item()
pjcmd_result_t pjcmd_jobinfo_get_choosen_item(const PjcmdResp_t *resp_p, char ***jobinfo_item_ppp,

int *jobinfo_item_n_p, char ***nodeinfo_item_ppp, int *nodeinfo_item_n_p)

This function gets the information item name list included in job information acquisition results.

[ARGUMENTS]

resp_p

Pointer to a response information

jobinfo_item_ppp

The list of job information item names is stored in the character string array (*jobinfo_item_ppp)[]. For details on the item names
to be stored, see "Table C.2 Item Names, Names, and Values of Job Information (1)."

jobinfo_item_n_p

The number of elements in the (*jobinfo_item_ppp)[] array, in which the list of job information item names is stored, is stored in
*jobinfo_item_n_p.

nodeinfo_item_ppp

The list of job information item names for each node is stored in the character string array (*nodeinfo_item_ppp)[]. For details on
the item names to be stored, see "Table C.3 Item Names, Names, and Values of Job Information (2)."

nodeinfo_item_n_p

The number of elements in the array (*nodeinfo_item_ppp)[], in which the list of job information item names for each node is stored,
is stored in *nodeinfo_item_n_p.

The areas that are specified by jobinfo_item_ppp and nodeinfo_item_ppp are reserved areas in response information. The caller must
not directly release them. These areas are reserved until response information is released.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job information.

PJCMD_ERROR_INVALID_ARGUMENT

jobinfo_item_ppp, nodeinfo_item_ppp, or nodeinfo_item_n_p is invalid (NULL).

- 124 -

C.2.10 pjcmd_jobinfo_read_infogrp()
pjcmd_result_t pjcmd_jobinfo_read_infogrp(PjcmdResp_t *resp_p)

This function moves a reference position from the information group that is an acquisition unit of information stored in response information
to the next information group.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job information.

PJCMD_ERROR_NODATA

There is no next information group (all information was referenced).

PJCMD_ERROR_INVALID_PARAM

A parameter in response information is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

C.2.11 pjcmd_jobinfo_print_resp()
pjcmd_result_t pjcmd_jobinfo_print_resp(PjcmdResp_t *resp_p, pjcmd_jobinfo_print_type_t type)

This function outputs job information included in the reference target information group to the standard output based on the specification
in the pjstat command.

If the following operation is performed for the target information group, an error occurs.

- This function is called twice or more.

- The information group is referenced with the pjcmd_jobinfo_read_jobinfo() function before calling this function.

- 125 -

The job information in the target information group is referenced at the end after calling this function. Therefore, if the
pjcmd_jobinfo_read_jobinfo() function is called for the same information group after calling this function, job information cannot be
obtained.

[ARGUMENTS]

resp_p

Pointer to a response information

type

Output detail type

PJCMD_JOBINFO_PRINT_SUMMARY

Job summary information is displayed.

PJCMD_JOBINFO_PRINT_JOBINFO

Detailed job information is displayed.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in type.

PJCMD_ERROR_INVALID_PARAM

Information could not be obtained because the information acquisition range and the conditions specified in the
pjcmd_jobinfo_put_scope() function and pjcmd_jobinfo_put_param() function are invalid.
Alternatively the job information in an information group is referenced by the pjcmd_jobinfo_read_jobinfo() function before calling
this function.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

- 126 -

C.2.12 pjcmd_jobinfo_get_summary()
pjcmd_result_t pjcmd_jobinfo_get_summary(const PjcmdResp_t *resp_p, pjcmd_job_status_t status,

int64_t *num_p)

This function references the number of jobs and the number of sub jobs that are in a specific state out of the jobs included in an information
group.
If PJCMD_JOBINFO_VERBOSITY_SUBJOB is not specified as the granularity of information (PJCMD_JOBINFO_VERBOSITY) in
the pjcmd_jobinfo_put_param() function, the number of sub jobs is 0. Alternatively, if PJCMD_JOBINFO_HISTORY is not specified in
the pjcmd_jobinfo_put_param() function, the number of completed jobs cannot be obtained. In this case, an error occurs.

[ARGUMENTS]

resp_p

Pointer to a response information

status

Identifier indicating the status of jobs to be referenced (See the following table.)

status Description

PJCMD_JOB_STATUS_ACCEPT Job in the submission accept state (ACCEPT state)

PJCMD_JOB_STATUS_QUEUED Job waiting to be executed (QUEUED state)

PJCMD_JOB_STATUS_RUNNING_A Job whose execution is being requested (RUNNING-A state)

PJCMD_JOB_STATUS_RUNNING_P Job in the prologue process (RUNNING-P state)

PJCMD_JOB_STATUS_RUNNING Job that is being executed (RUNNING state)

PJCMD_JOB_STATUS_RUNNING_E Job in the epilogue process (RUNNING-E state)

PJCMD_JOB_STATUS_RUNOUT Job waiting for the completion process to complete (RUNOUT state)

PJCMD_JOB_STATUS_HOLD Job that is held by a user (HOLD state)

PJCMD_JOB_STATUS_ERROR Job that is held due to an error (ERROR state)

PJCMD_JOB_STATUS_REJECT Job whose submission was not accepted (REJECT state)

PJCMD_JOB_STATUS_EXIT Completed job (EXIT state)

PJCMD_JOB_STATUS_CANCEL Job whose execution was canceled (CANCEL state)

PJCMD_JOB_STATUS_ALL All jobs that have not completed (ACCEPT, QUEUED, RUNNING_A,
RUNNING_P, RUNNING, RUNNING_E, RUNOUT, HOLD, and ERROR
states)

PJCMD_JOB_STATUS_END Completed jobs (REJECT, EXIT, and CANCEL states)

PJCMD_JOB_STATUS_TOTAL All jobs (ACCEPT, QUEUED, RUNNING_A, RUNNING_P, RUNNING,
RUNNING_E, RUNOUT, HOLD, ERROR, REJECT, EXIT, and CANCEL
states)

num_p

The number of jobs and number of sub jobs are stored in the num_p[] array. The caller needs to prepare an array area where two
int64_t type values can be stored.

[RETURN VALUE]

PJCMD_OK

Success. The number of jobs is stored in the num_p[0] argument and the number of sub jobs are stored in the num_p[1] argument.

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 127 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_ARGUMENT

num_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in status.

PJCMD_ERROR_NODATA

There was an attempt to obtain the number of completed jobs when the completed job information was not included in response
information.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INVALID_PARAM

Information could not be obtained because the information acquisition range and the conditions specified in the
pjcmd_jobinfo_put_scope() function and pjcmd_jobinfo_put_param() function are invalid.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

C.2.13 pjcmd_jobinfo_get_infogrp_scope()
pjcmd_result_t pjcmd_jobinfo_get_infogrp_scope(const PjcmdResp_t *resp_p, char **rscunit_pp, char

**rscgrp_pp, char **uname_pp, char **gname_pp)

This function gets the resource unit name, resource group name, user name, and group name of the information group that is being referenced
now.

[ARGUMENTS]

resp_p

Pointer to a response information

rscunit_pp

The pointer to a resource unit name is stored in *rscunit_pp.

rscgrp_pp

The pointer to a resource group name is stored in *rscgrp_pp.

uname_pp

The pointer to a user name is stored in *uname_pp.

- 128 -

gname_pp

The pointer to a group name is stored in *gname_pp.

The areas specified by rscunit_pp, rscgrp_pp, uname_pp, and gname_pp are reserved areas in response information. The caller must not
directly release them. These areas are reserved until the response information is released or the next information group is read.

[RETURN VALUE]

PJCMD_OK

Success. A value that can be obtained is information in the acquisition target unit (resource unit, resource group, user, or group)
specified in the pjcmd_jobinfo_put_scope() function and the pjcmd_jobinfo_put_condition() function. Therefore, the names of
unspecified targets cannot be obtained. In this case, (char *) NULL is stored.

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_ARGUMENT

rscunit_pp, rscgrp_pp, uname_pp, or gname_pp is invalid (NULL).

C.2.14 pjcmd_jobinfo_read_jobinfo()
PjcmdJobinfo_t *pjcmd_jobinfo_read_jobinfo(PjcmdResp_t *resp_p)

This function gets the information on the next job that is included in an information group that is being referenced.
However, if the granularity of information (PJCMD_JOBINFO_VERBOSITY) that is specified in the pjcmd_jobinfo_put_param()
function is limited to summary information (PJCMD_JOBINFO_VERBOSITY_SUMMARY), the information on the next job cannot be
obtained.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

Job information.
If the function fails, NULL is returned and the cause is set in pjcmd_errcode. The contents of the job information to be returned are
undetermined after the next job information is read.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_NODATA

The next job information is not included in the current information group. Alternatively, only summary information is obtained.
Therefore, there is no job information.

- 129 -

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INVALID_PARAM

Information could not be obtained because the information acquisition range and the conditions specified in the
pjcmd_jobinfo_put_scope() function and pjcmd_jobinfo_put_param() function are invalid.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

C.2.15 pjcmd_jobinfo_get_jobinfo_item_num()
int pjcmd_jobinfo_get_jobinfo_item_num(const PjcmdJobinfo_t *jobinfo_p)

This function returns the number of information items included in job information.

[ARGUMENTS]

jobinfo_p

Pointer to a job information

[RETURN VALUE]

Number of information items included in job information.
This value indicates the total number of items that can be obtained as job information. Items that are not obtained are also included.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

jobinfo_p is invalid (NULL).

C.2.16 pjcmd_jobinfo_get_jobinfo_item_value()
pjcmd_result_t pjcmd_jobinfo_get_jobinfo_item_value(PjcmdJobinfo_t *jobinfo_p, int indx, char

**name_pp, char **val_pp)

This function gets the name and value of each information item contained in job information.

[ARGUMENTS]

jobinfo_p

Pointer to a job information

indx

Index of information that needs to be obtained. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from
a value that is obtained by the pjcmd_jobinfo_get_jobinfo_item_num() function.

name_pp

The pointer to the name of information specified in Indx is stored in *name_pp. For details on the names to be stored, see "Table C.
2 Item Names, Names, and Values of Job Information (1)."

- 130 -

val_pp

The pointer to an information value (character string) specified by Indx is stored in *val_pp. For details on the values to be stored,
see "Table C.2 Item Names, Names, and Values of Job Information (1)."

The areas specified by name_pp and val_pp are reserved areas in response information. The caller must not directly release them. The
area specified by name_pp is retained until response information is released. The area specified by val_pp is retained until response
information is released or until the next time this function is called.

[RETURN VALUE]

PJCMD_OK

Success. If information about specified items is not obtained, NULL is stored in (char *)*val_pp.
The PJCMD_JOBINFO_OTHERSJOB parameter (job information for other users is obtained) is set in
PJCMD_JOBINFO_OTHERSJOB_ALL (all job information is obtained) when job information is obtained, and the job information
for all users can be obtained. However, the character string that is specified by (char *) *val_pp becomes "?" for information without
the reference privilege.

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

jobinfo_p, name_pp, or val_pp is invalid (NULL).

PJCMD_ERROR_NODATA

The value of indx is out of range.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

C.2.17 pjcmd_jobinfo_get_jobinfo_node_num()
pjcmd_result_t pjcmd_jobinfo_get_jobinfo_node_num(const PjcmdJobinfo_t *jobinfo_p, uint32_t *num_p)

This function obtains the amount of information in a node unit (number of nodes) that is included in job information.

[ARGUMENTS]

jobinfo_p

Pointer to a job information

num_p

The amount of information (number of nodes) in a node unit is stored in *num_p.
If the target jobs are step jobs, summary jobs of bulk jobs, or jobs before execution, there is no node information. In this case, 0 is
stored in *num_p.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

Job information is invalid. Jobinfo_p is NULL, or the level of job information acquisition is not PJCMD_JOBINFO_LEVEL_3.

- 131 -

C.2.18 pjcmd_jobinfo_get_nodejobinfo_item_num()
int pjcmd_jobinfo_get_nodejobinfo_item_num(const PjcmdJobinfo_t *jobinfo_p)

This function returns the number of information items included in job information in a node unit.

[ARGUMENTS]

jobinfo_p

Pointer to a job information

[RETURN VALUE]

Number of information items included in job information in a node unit.
This value indicates the total number of items that can be obtained as job information. Items that are not obtained are also included.
However, if job information in a node unit is not obtained, an error occurs.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

jobinfo_p is invalid (NULL).

PJCMD_ERROR_NODATA

There is no job information in a node unit in job information.

C.2.19 pjcmd_jobinfo_get_nodejobinfo_item_value()
pjcmd_result_t pjcmd_jobinfo_get_nodejobinfo_item_value(PjcmdJobinfo_t *jobinfo_p, uint32_t

node_indx, int item_indx, char **name_pp, char **val_pp)

This function obtains the name and value of each information item contained in job information in a node unit.

[ARGUMENTS]

jobinfo_p

Pointer to a job information

node_indx

Node index in job information. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that
can be obtained by the pjcmd_jobinfo_get_jobinfo_node_num() function.

item_indx

Index of information that needs to be obtained. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from
a value that is obtained by the pjcmd_jobinfo_get_nodejobinfo_item_num() function.

name_pp

The pointer to the name of information specified by item_indx is stored in *name_pp. For details on the names to be stored, see
"Table C.3 Item Names, Names, and Values of Job Information (2)."

val_pp

The pointer to an information value (character string) specified by item_indx is stored in *val_pp. For details on the values to be
stored, see "Table C.3 Item Names, Names, and Values of Job Information (2)."

The areas specified by name_pp and val_pp are reserved areas in response information. The caller must not directly release them. The
area specified by name_pp is retained until response information is released. The area specified by val_pp is retained until response
information is released or until the next time this function is called.

[RETURN VALUE]

PJCMD_OK

Success. If information is not obtained, NULL is stored in *val_pp.

- 132 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

nodejobinfo_p, name_pp, or val_pp is invalid (NULL).

PJCMD_ERROR_NODATA

The node_indx or item_indx value is out of the specified range.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

C.2.20 Item Names, Names, and Values of Job Information
"Table C.2 Item Names, Names, and Values of Job Information (1)" lists information obtained by the following functions.

- Item names of information that are stored in the jobinfo_item_ppp argument of the pjcmd_jobinfo_get_choosen_item() function

- Information names that are stored in the name_pp argument of the pjcmd_jobinfo_get_jobinfo_item_value() function

- Values of information that are stored in the val_pp argument of the pjcmd_jobinfo_get_jobinfo_item_value() function

Table C.2 Item Names, Names, and Values of Job Information (1)

Item
(jobinfo_item_ppp)

Name
(name_pp)

Value
(val_pp)

jid JOB ID Job ID or sub job ID

The item has the same format as the job statistical information JOB ID
displayed by the pjstat command (see pjstatsinfo(7).)

snum SUB JOB NUM Number of sub jobs of a bulk job or step job

The format is the same format as the job statistical information SUB JOB
NUM displayed by the pjstat command (see pjstatsinfo(7).)

nnumr NODE NUM (REQUIRE) Number of nodes and shape that are requested by a job

The format is the same format as the job statistical information NODE NUM
(REQUIRE) displayed by the pjstat command (see pjstatsinfo(7).)

nnuma NODE NUM (ALLOC) Number of nodes and shape that are assigned to a job

The format is the same format as the job statistical information NODE NUM
(ALLOC) displayed by the pjstat command (see pjstatsinfo(7).)

Other than above Same as the items that are output by the pjstat command, among the job statistical information provided in
apjstatsinfo(7)

Example: If an item name is "jnam", the name is "JOB NAME" and the value is the job name.

"Table C.3 Item Names, Names, and Values of Job Information (2)" lists information obtained by the following functions.

- Item names of information that are stored in the nodeinfo_item_ppp argument of the pjcmd_jobinfo_get_choosen_item() function

- Information names that are stored in the name_pp argument of the pjcmd_jobinfo_get_nodejobinfo_item_value() function

- Values of information that are stored in the val_pp argument of the pjcmd_jobinfo_get_nodejobinfo_item_value() function

- 133 -

Table C.3 Item Names, Names, and Values of Job Information (2)
Item

(nodeinfo_item_ppp)
Name

(name_pp)
Value

(val_pp)

ntofu TOFU COORDINATE Tofu coordinates of a node

The item has the same format as the node/virtual node statistical information
TOFU COORDINATE displayed by the pjstat command (see
pjstatsinfo(7).)

node NODE COORDINATE Coordinates of a node to be used

The item has the same format as the node/virtual node statistical information
NODE COORDINATE displayed by the pjstat command (see
pjstatsinfo(7).)

Other than above Same as the items that are output by the pjstat command, among the node/virtual node statistical
information provided in pjstatsinfo(7)

Example: If an item name is "vnid", the name is "VNODE ID" and the value is the virtual node ID.

C.3 Getting Resource Information for Jobs
This section describes the functions for getting information on the system resources used to execute jobs.

Figure C.5 Requesting Resource Information Acquisition

- 134 -

Figure C.6 Referencing Resource Information

C.3.1 pjcmd_rscinfo_parse_pjstat_args()
pjcmd_result_t pjcmd_rscinfo_parse_pjstat_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification used when specifying the --rsc option in the pjstat command and
sets them in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for resource information acquisition.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

- 135 -

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.
This function recognizes only the --rsc option in the pjstat command and other options that can be specified with the --rsc option.

C.3.2 pjcmd_rscinfo_put_scope()
pjcmd_result_t pjcmd_rscinfo_put_scope(PjcmdHandle_t *handle_p,pjcmd_scope_t scope, void *val_p,

uint32_t n)

This function sets the target range for getting resource information.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier indicating the type of target range for getting information (See the following table.)

val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is
specified, the parameter value is initialized (not set).

n

Number of elements of val_p

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c)

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_rscinfo_execute() function.
This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.
1 must be specified in n for the parameter.

char *

PJCMD_SCOPE_RSCUNIT Array of a resource unit name (number of elements is n,
equivalent to --rscunit of the pjstat command)

If this parameter is not set, all the resource units in a cluster are
the target.

char **

PJCMD_SCOPE_RSCGRP Array of a resource group name (number of elements is n,
equivalent to the --rscgrp of the pjstat command).

char **

- 136 -

scope *val_p Type of *val_p

If this parameter is not set, all the resource units in a cluster are
the target.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for resource information acquisition.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_INVALID_PARAM

val_p or n is invalid.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.3.3 pjcmd_rscinfo_get_scope()
pjcmd_result_t pjcmd_rscinfo_get_scope(const PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void

*val_p, uint32_t *n_p)

This function references the resource information acquisition range that is set in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscinfo_put_scope() function.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

n_p

The number of elements of val_p is stored in *n_p. The caller needs to prepare the area.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 137 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for resource information acquisition.

PJCMD_ERROR_INVALID_ARGUMENT

val_p or n is invalid.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

PJCMD_ERROR_NODATA

A specified scope is not set in a handle.

C.3.4 pjcmd_rscinfo_put_param()
pjcmd_result_t pjcmd_rscinfo_put_param(PjcmdHandle_t *handle_p, pjcmd_rscinfo_param_t param, const

void *val_p)

This function sets parameters in a handle that are related to resource information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifiers of the parameters to be set that are related to resource information acquisition (See the following table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_RSCINFO_SHAPE Equivalent to the specification of the --shape option in the pjstat
command

0: Do not display maximum shape information for resource
group (Default)
1: Display maximum shape information for resource group

This parameter does not affect the contents of the information to
be obtained but does affect the contents displayed by the
pjcmd_rscinfo_print_resp() function.

int

PJCMD_RSCINFO_HELP Equivalent to the specification of the --help option in the pjstat
command

0: Not specified (Default)
1: Specified

This parameter does not affect the job information to be
obtained.

int

[RETURN VALUE]

PJCMD_OK

Success

- 138 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for resource information acquisition.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.3.5 pjcmd_rscinfo_get_param()
pjcmd_result_t pjcmd_rscinfo_get_param(const PjcmdHandle_t *handle_p, pjcmd_rscinfo_param_t param,

void *val_p)

This function references information acquisition-related parameters that are set in a handle for resource information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscinfo_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for resource information acquisition.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

- 139 -

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.3.6 pjcmd_rscinfo_execute()
PjcmdResp_t* pjcmd_rscinfo_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to get resource information based on a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about getting resource information for a resource unit/resource group.
The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.
The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for resource information acquisition.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

- 140 -

C.3.7 pjcmd_rscinfo_print_resp()
pjcmd_result_t pjcmd_rscinfo_print_resp(const PjcmdResp_t *resp_p)

This function outputs resource information acquisition results to the standard output based on the specification used when specifying the
--rsc option in the pjstat command.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource information.

- This is not response information that was successfully obtained.

C.3.8 pjcmd_rscinfo_get_rscinfo_num()
int pjcmd_rscinfo_get_rscinfo_num(const PjcmdResp_t *resp_p)

This function gets the amount of resource information contained in response information about acquiring resource information.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

Amount of resource information.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource information.

- This is not response information that was successfully obtained.

C.3.9 pjcmd_rscinfo_get_rscinfo_value()
pjcmd_result_t pjcmd_rscinfo_get_rscinfo_value(const PjcmdResp_t *resp_p, int indx,

pjcmd_rscinfo_item_t item, void *val_p)

This function gets values related to specific resource information from multiple pieces of resource information included in response
information about acquiring resource information.

- 141 -

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of resource information that needs to be referenced in response information. The specifiable value ranges from 0 to a value
that is calculated by subtracting 1 from a value that is returned by the pjcmd_rscinfo_get_rscinfo_num() function.

item

Identifier of an item that needs to be referenced in resource information (See the following table.)

val_p

A value is stored in *val_p based on the item type. The caller needs to prepare an area of a sufficient size according to the value type.

item *val_p Type of

*val_p

PJCMD_RSCINFO_ITEM_RU_NAME Resource unit name

The area specified by *val_p is undetermined after
the release of response information.

char *

PJCMD_RSCINFO_ITEM_RU_JOB_SUBMIT Whether or not jobs can be submitted to a resource
unit

0: New jobs cannot be submitted.
1: New jobs can be submitted.

int

PJCMD_RSCINFO_ITEM_RU_JOB_EXECUTE Whether or not jobs can be executed in a resource
unit

0: New jobs cannot be executed.
1: New jobs can be executed.

int

PJCMD_RSCINFO_ITEM_RU_SIZE Resource unit size

- If compute node is FX server: Tofu shape
(unsigned int)val_p[0]: Size in X direction
(unsigned int)val_p[1]: Size in Y direction
(unsigned int)val_p[2]: Size in Z direction

- If compute node is PRIMERGY server:
Number of nodes
(unsigned int)val_p[0]: Number of nodes
(unsigned int)val_p[1]: Not used
(unsigned int)val_p[2]: Not used

Array of
unsigned int
(Three
elements)
(*)

PJCMD_RSCINFO_ITEM_RG_NAME Resource group name

The area specified by *val_p is undetermined after
the release of response information.

char *

PJCMD_RSCINFO_ITEM_RG_JOB_SUBMIT Whether or not jobs can be submitted to a resource
group

0: New jobs cannot be submitted.
1: New jobs can be submitted.

int

PJCMD_RSCINFO_ITEM_RG_JOB_EXECUTE Whether or not jobs can be executed in a resource
group

0: New jobs cannot be executed.
1: New jobs can be executed.

int

- 142 -

item *val_p Type of
*val_p

PJCMD_RSCINFO_ITEM_RG_SIZE Resource group size

- If compute node is FX server: Node shape
(unsigned int)val_p[0]: Size in X direction
(unsigned int)val_p[1]: Size in Y direction
(unsigned int)val_p[2]: Size in Z direction

- If compute node is PRIMERGY server:
Number of nodes
(unsigned int)val_p[0]: Number of nodes
(unsigned int)val_p[1]: Not used
(unsigned int)val_p[2]: Not used

Array of
unsigned int
(Three
elements)
(*)

PJCMD_RSCINFO_ITEM_MAX_SIZE_NUM Number of variations of the maximum node shape
that can be assigned to a job

This is used to get the maximum node shape by
using the pjcmd_rscinfo_get_max_size() function.

unsigned int

(*) If the compute node is the PRIMERGY server, only the first element in an array is used. However, the areas must be prepared for
three elements.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in item.

PJCMD_ERROR_NODATA

The value of indx is out of range.

C.3.10 pjcmd_rscinfo_get_max_size()
pjcmd_result_t pjcmd_rscinfo_get_max_size(PjcmdResp_t *resp_p, int indx1, int indx2, unsigned int

*val_p)

This function gets the maximum node shape that can be assigned to a job for one piece of resource information contained in response
information.

- 143 -

[ARGUMENTS]

resp_p

Pointer to a response information

indx1

Index of resource information, which needs to be referenced, in response information. The specifiable value ranges from 0 to a value
that is calculated by subtracting 1 from a value that is obtained by the pjcmd_rscinfo_get_rscinfo_num() function.

indx2

Index that indicates one of the variations of the maximum node shape in resource information. The specifiable value ranges from
0 to a value that is calculated by subtracting 1 from a value that is obtained by the parameter
PJCMD_RSCINFO_ITEM_MAX_SIZE_NUM of the pjcmd_rscinfo_get_info() function.

val_p

The maximum node shape is stored in the val_p[] array. The caller needs to reserve the storage area for an unsigned int-type array
(number of elements is 3).

- If the compute node is the FX server: Node shape
val_p[0]: Size in X direction
val_p[1]: Size in Y direction
val_p[2]: Size in Z direction

- If the compute node is the PRIMERGY server: Number of nodes
val_p[0]: Number of nodes
val_p[1]: Not used
Val_p[2]: Not used

If the compute node is the PRIMERGY server, only the first element in an array is used. However, the areas must be prepared for
three elements.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in item.

PJCMD_ERROR_NODATA

The value of indx1 or indx2 is out of range.

C.4 Getting Limit Value Information When Submitting a Job
This section describes the functions for getting information on limit values when submitting a job.

- 144 -

Figure C.7 Getting Limit Value Information

Figure C.8 Referencing Limit Value Information

C.4.1 pjcmd_limitinfo_parse_pjstat_args()
pjcmd_result_t pjcmd_limitinfo_parse_pjstat_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification used when specifying the --limit option in the pjstat command
and sets the specified details in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

- 145 -

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for acquiring limit value information.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.
This function recognizes only the --limit option in the pjstat command and other options that can be specified with the --limit option at the
same time.

C.4.2 pjcmd_limitinfo_put_scope()
pjcmd_result_t pjcmd_limitinfo_put_scope(PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void *val_p)

This function sets the target range for getting the limit value information in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier indicating the type of target range for getting information (See the following table.)

- 146 -

val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is
specified, the parameter value is initialized (not set).

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c)

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_limitinfo_execute() function.
This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.

char *

PJCMD_SCOPE_RSCUNIT Resource unit name (only one name, equivalent to pjstat --
rscunit)

If this parameter is not set, the default resource unit of the
execution user is applied.

char *

PJCMD_SCOPE_RSCGRP Resource group name (only one name, equivalent to pjstat --
rscgrp)

If this parameter is not set, resource unit information is obtained.

char *

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for acquiring limit value information.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_INVALID_PARAM

val_p is invalid.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.4.3 pjcmd_limitinfo_get_scope()
pjcmd_result_t pjcmd_limitinfo_get_scope(const PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void

*val_p)

This function references a range for getting the limit value information that is set in a handle.

- 147 -

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier of the target range to get information to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_limitinfo_put_scope() function.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for acquiring limit value information.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

PJCMD_ERROR_NODATA

A specified scope is not set in a handle.

C.4.4 pjcmd_limitinfo_put_param()
pjcmd_result_t pjcmd_limitinfo_put_param(PjcmdHandle_t *handle_p, pjcmd_limitinfo_param_t param,

const void *val_p)

This function sets parameters in a handle that are related to limit value information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of the parameters related to the limit value information to be obtained (See the following table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is uid_t type, the caller must
prepare a storage area for the uid_t type value and specify a pointer (uid_t *) to the area in val_p. If NULL is specified, the parameter
value is initialized (not set).

param *val_p Type of *val_p

PJCMD_LIMITINFO_USER_ID Target user ID for which limit value information is obtained uid_t

- 148 -

param *val_p Type of *val_p

PJCMD_LIMITINFO_USER_NAME Target user name for which limit value information is
obtained

char *

PJCMD_LIMITINFO_GROUP_ID Target group ID for which limit value information is obtained gid_t

PJCMD_LIMITINFO_GROUP_NAME Target group name for which limit value information is
obtained

char *

PJCMD_LIMITINFO_HELP Equivalent to the specification of the --help option in the pjstat
command

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained.

int

As for the PJCMD_LIMITINFO_USER_ID or PJCMD_LIMITINFO_USER_NAME parameter, and the
PJCMD_LIMITINFO_GROUP_ID or PJCMD_LIMITINFO_GROUP_NAME parameter, the one specified last is valid, respectively.
If it is not specified, the user or group that calls the function is applied.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for acquiring limit value information.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.4.5 pjcmd_limitinfo_get_param()
pjcmd_result_t pjcmd_limitinfo_get_param(PjcmdHandle_t *handle_p, pjcmd_limitinfo_param_t param,

void *val_p)

This function references information acquisition-related parameters that are set in a handle for acquisition of limit value information.

[ARGUMENTS]

handle_p

Pointer to a handle

- 149 -

param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_limitinfo_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for acquiring limit value information.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.4.6 pjcmd_limitinfo_execute()
PjcmdResp_t *pjcmd_limitinfo_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to get limit value information based on a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about acquiring limit value information.
The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.
The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for acquiring limit value information.

- 150 -

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

C.4.7 pjcmd_limitinfo_print_resp()
pjcmd_result_t pjcmd_limitinfo_print_resp(const PjcmdResp_t *resp_p)

This function outputs restriction information acquisition results to the standard output based on the specification used when specifying the
--limit option in the pjstat command.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring restriction information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring restriction information.

- 151 -

- This is not response information that was successfully obtained.

C.4.8 pjcmd_limitinfo_get_limitinfo()
pjcmd_result_t pjcmd_limitinfo_get_limitinfo(const PjcmdResp_t *resp_p, pjcmd_limitinfo_item_t item,

void *val_p)

This function gets specific item information from the results of limit value information acquisition.

[ARGUMENTS]

resp_p

Pointer to a response information

item

Identifier indicating an information item to be obtained (See the following table.)

val_p

A value is stored in *val_p based on the item type. The caller needs to prepare an area of a sufficient size according to the value type.

item *val_p Type of *val_p

PJCMD_LIMITINFO_ITEM_RSCUNIT Resource unit name char *

PJCMD_LIMITINFO_ITEM_RSCGRP Resource group name char *

PJCMD_LIMITINFO_ITEM_USER Target user name char *

PJCMD_LIMITINFO_ITEM_GROUP Target group name char *

PJCMD_LIMITINFO_ITEM_USER_INFO_NUM Amount of limit value information for user uint32_t

PJCMD_LIMITINFO_ITEM_GROUP_INFO_NUM Amount of limit value information for group uint32_t

PJCMD_LIMITINFO_ITEM_ALL_INFO_NUM Amount of limit value information for total value
of all users

uint32_t

The resource unit name, resource group name, target user name, and target group name are pointers to character strings that are stored
in response information. Therefore, operation is undetermined when these character strings are referenced after the release of response
information.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring restriction information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in item.

- 152 -

C.4.9 pjcmd_limitinfo_get_limitinfo_value()
pjcmd_result_t pjcmd_limitinfo_get_limitinfo_value(const PjcmdResp_t *resp_p,

pjcmd_limitinfo_class_t class, int indx, pjcmd_limitinfo_value_t item, void *val_p)

This function gets user restriction information, group restriction information, or specific information values in all restriction information
from response information about acquiring limit value information.

[ARGUMENTS]

resp_p

Pointer to a response information

class

Identifier indicating the layer of limit value information to be referenced (user restriction information, group restriction information,
or all restriction information)

class Description

PJCMD_LIMITINFO_CLASS_USER Limit value information for user

PJCMD_LIMITINFO_CLASS_GROUP Limit value information for group

PJCMD_LIMITINFO_CLASS_ALL Limit value information for total value of all users

indx

Index of reference information in the limit value information layer indicated by class. The specifiable value ranges from 0 to a value
that is calculated by subtracting 1 from the amount of limit value information in each layer that is obtained by the
pjcmd_limitinfo_get_limitinfo() function.

item

Identifier indicating a limit value information item to be referenced (See the following table.)

val_p

A value is stored in *val_p based on the item type. The caller needs to prepare an area of a sufficient size according to the value type.

item *val_p Type of *val_p

PJCMD_LIMITINFO_VALUE_NAME Name of limit value char *

PJCMD_LIMITINFO_VALUE_UPPER Upper limit value uint64_t

PJCMD_LIMITINFO_VALUE_ALLOC Amount to be allocated uint64_t

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring restriction information.

- This is not response information that was successfully obtained.

- 153 -

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in item.

PJCMD_ERROR_NODATA

The value of indx is out of range.

C.5 Getting Information on the Job ACL Function Settings
This section describes the functions for referencing information on the job ACL function settings.

Figure C.9 Requesting to Get Information on the Job ACL Function Settings

- 154 -

Figure C.10 Referencing Information on the Job ACL Function Settings

C.5.1 pjcmd_jacl_parse_pjacl_args()
pjcmd_result_t pjcmd_jacl_parse_pjacl_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjacl command option and sets the specified details in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting job ACL information.

- 155 -

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

C.5.2 pjcmd_jacl_put_scope()
pjcmd_result_t pjcmd_jacl_put_scope(PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void *val_p)

This function sets a range to get the job ACL information in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier indicating the type of target range for getting information (See the following table.)

val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is
specified, the parameter value is initialized (not set).

scope *val_p Type of *val_p

PJCMD_SCOPE_RSCUNIT Resource unit name (only one. equivalent to pjacl --rscunit)

If this parameter is not set, the default resource unit of the
execution user is applied.

char *

PJCMD_SCOPE_RSCGRP Resource group name (only one. equivalent to pjacl --rscgrp)

If this parameter is not set, resource unit information is obtained.

char *

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 156 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting job ACL information.

PJCMD_ERROR_INVALID_PARAM

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.5.3 pjcmd_jacl_get_scope()
pjcmd_result_t pjcmd_jacl_get_scope(const PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void *val_p)

This function references the name of the target range (resource unit or resource group) for getting job ACL information that is set in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier of the target range to get information to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jacl_put_scope() function.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting job ACL information.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

PJCMD_ERROR_NODATA

A specified scope is not set in a handle.

- 157 -

C.5.4 pjcmd_jacl_put_param()
pjcmd_result_t pjcmd_jacl_put_param(PjcmdHandle_t *handle_p, pjcmd_jacl_param_t param, void *val_p)

This function sets parameters in a handle that are related to job ACL information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter related to the job ACL information to be obtained (See the following table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is uid_t type, the caller must
prepare a storage area for the uid_t type value and specify a pointer (uid_t *) to the area in val_p. If NULL is specified, the parameter
value is initialized (not set).

param *val_p Type of *val_p

PJCMD_JACL_USER_ID Target user ID for which limit value information is obtained uid_t

PJCMD_JACL_USER_NAME Target user name for which limit value information is obtained char *

PJCMD_JACL_GROUP_ID Target group ID for which limit value information is obtained gid_t

PJCMD_JACL_GROUP_NAME Target group name for which limit value information is obtained char *

PJCMD_JACL_DATA Equivalent to the --data option in the pjacl command

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained but
does affect the results output by the pjcmd_jacl_print_resp()
function.

int

PJCMD_JACL_DELIMITER Equivalent to the specification of a character that is used to
separate the information displayed using the --delimiter option
in the pjacl command.

This parameter does not affect the information to be obtained but
does affect the results output by the pjcmd_jacl_print_resp()
function. If this parameter is not specified, a comma (,) is used.

char *

PJCMD_JACL_HELP Equivalent to the specification of the --help option in the pjacl
command

0: Not specified (Default)
1: Specified

This parameter does not affect the job information to be
obtained.

int

As for the PJCMD_JACL_USER_ID or PJCMD_JACL_USER_NAME parameter, and the PJCMD_JACL_GROUP_ID or
PJCMD_JACL_GROUP_NAME parameter, the one specified last is valid, respectively. If it is not specified, the user or group that calls
the function is applied.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

- 158 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting job ACL information.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

val_p is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.5.5 pjcmd_jacl_get_param()
pjcmd_result_t pjcmd_jacl_get_param(const PjcmdHandle_t *handle_p, pjcmd_jacl_param_t param, void

*val_p)

This function references the set parameters in a handle that are related to job ACL information acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_jacl_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting job ACL information.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

- 159 -

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.5.6 pjcmd_jacl_execute()
PjcmdResp_t *pjcmd_jacl_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to get job ACL information based on a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about acquiring job ACL information.
The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.
The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting job ACL information.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node and compute cluster management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

Information acquisition cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

C.5.7 pjcmd_jacl_print_resp()
pjcmd_result_t pjcmd_jacl_print_resp(const PjcmdResp_t *resp_p)

This function outputs the results of job ACL information acquisition to the standard output based on the specification in the pjacl command.

- 160 -

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job ACL information.

- This is not response information that was successfully obtained.

C.5.8 pjcmd_jacl_get_jaclinfo_num()
int pjcmd_jacl_get_jaclinfo_num(const PjcmdResp_t *resp_p, pjcmd_jacl_class_t class,

pjcmd_jacl_type_t type)

This function gets the total number of job ACL definition items for specific definition targets and specific types of job ACL definitions from
response information about acquiring job ACL information.

[ARGUMENTS]

resp_p

Pointer to a response information

class

Identifier indicating the definition targets (USER, GROUP, or ALL definitions) of the job ACL definition items to be obtained

class Description

PJCMD_JACL_CLASS_USER USER definitions

PJCMD_JACL_CLASS_GROUP GROUP definitions

PJCMD_JACL_CLASS_ALL ALL definitions

type

Identifier indicating the definition types (define, joblimit, execute, permit, limit, or select) of the job ACL definition items to be
obtained

type Description

PJCMD_JACL_TYPE_DEFINE Definition type define

PJCMD_JACL_TYPE_JOBLIMIT Definition type joblimit

PJCMD_JACL_TYPE_EXECUTE Definition type execute

PJCMD_JACL_TYPE_PERMIT Definition type permit

PJCMD_JACL_TYPE_LIMIT Definition type limit

PJCMD_JACL_TYPE_SELECT Definition type select

- 161 -

[RETURN VALUE]

Total number of job ACL definition items.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job ACL information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in class or type.

PJCMD_ERROR_INVALID_PARAM

There is no definition item indicated by the combination of class and type.

C.5.9 pjcmd_jacl_get_jaclinfo_value()
pjcmd_result_t pjcmd_jacl_get_jaclinfo_value(const PjcmdResp_t *resp_p, pjcmd_jacl_class_t class,

pjcmd_jacl_type_t type, int indx, pjcmd_jacl_info_t info, void *val_p)

This function references values of job ACL definition information.

[ARGUMENTS]

resp_p

Pointer to a response information

class

Identifier indicating the definition target (USER, GROUP, or ALL definitions) of a job ACL definition item. The values that can be
specified are the same as those of the pjcmd_jacl_get_jaclinfo_num() function.

type

Identifier indicating the definition type (define, joblimit, execute, permit, limit, or select) of a job ACL definition item. The values
that can be specified are the same as those of the pjcmd_jacl_get_jaclinfo_num() function.

indx

Index of definition items that needs to be referenced among the job ACL definition items of the definition target class and the
definition type type. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is obtained
by the pjcmd_jacl_get_jaclinfo_num() function.

info

Identifier of a value to be referenced (See the following table.)

val_p

A value is stored in *val_p based on the info type. The caller needs to prepare an area of a sufficient size according to the value type.

info *val_p Type of *val_p

PJCMD_JACL_INFO_NAME Name of a job ACL definition item

The name is the same as the definition item name
that is described when setting the job ACL
definition.

char *

PJCMD_JACL_INFO_DEFINE_VALUE Value of a job ACL definition item whose
definition type is define

char *

- 162 -

info *val_p Type of *val_p

PJCMD_JACL_INFO_JOBLIMIT_LOWER Lower limit value of a job ACL definition item
whose definition type is joblimit

uint64_t

PJCMD_JACL_INFO_JOBLIMIT_UPPER Upper limit value of a job ACL definition item
whose definition type is joblimit

uint64_t

PJCMD_JACL_INFO_JOBLIMIT_DEFAULT Initial value of a job ACL definition item whose
definition type is joblimit

uint64_t

PJCMD_JACL_INFO_EXECUTE_VALUE Value of a job ACL definition item whose
definition type is execute

char *

PJCMD_JACL_INFO_PERMIT_VALUE Value of a job ACL definition item whose
definition type is permit

char *

PJCMD_JACL_INFO_LIMIT_VALUE Value of a job ACL definition item whose
definition type is limit

uint64_t

PJCMD_JACL_INFO_SELECT_VALUE Value of a job ACL definition item whose
definition type is select

char *

PJCMD_JACL_INFO_SELECT_DEFAULT Initial value of a job ACL definition item whose
definition type is select

char *

If the value type is char * type (a pointer to a character string), the character string is in an area in response information. Therefore,
operation is undetermined when the character string is referenced after the release of response information.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring job ACL information.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in class, type, or info.

PJCMD_ERROR_INVALID_PARAM

The specified parameter is invalid.

- The information info cannot be specified in the job ACL definition item type.

- There is no definition item indicated by the combination of class and type.

- The indx value is out of range.

C.6 Getting the Status of Job Resource Usage
This section describes the functions for getting the status of job resource usage.

- 163 -

Figure C.11 Requesting to Get the Status of Job Resource Usage

Figure C.12 Referencing Information Group (Information Acquisition Unit)

- 164 -

Figure C.13 Referencing Resource Information

Figure C.14 Referencing Custom Resource Information

- 165 -

C.6.1 pjcmd_rscstat_parse_pjshowrsc_args()
pjcmd_result_t pjcmd_rscstat_parse_pjshowrsc_args(PjcmdHandle_t *handle_p, int argc, char **argv_pp)

This function analyzes command line arguments based on the specification of a pjshowrsc command option and sets the specified details
in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting the resource usage status.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_INTERNAL

Internal error

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.

C.6.2 pjcmd_rscstat_put_scope()
pjcmd_result_t pjcmd_rscstat_put_scope(PjcmdHandle_t *handle_p, pjcmd_scope_t scope, const void

*val_p, uint32_t n)

This function sets a range to get the resource usage status in a handle.

- 166 -

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier indicating the type of target range for getting information (See the following table.)

val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is
specified, the parameter value is initialized (not set).

n

Number of elements of val_p

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pjstat -c)

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, all authorized clusters are applied.
This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which
the calling node belongs is applied.
1 must be specified in n for the parameter.

char *

PJCMD_SCOPE_NODEGRP Array of a node group ID (number of elements is n, equivalent
to pjshowrsc --nodegrp)

If this parameter is set in a handle, administrator privileges are
required for calling the pjcmd_rscstat_execute() function.

uint32_t *

PJCMD_SCOPE_NODEGRP_STR Array of a node group ID (character string) (number of
elements is n, equivalent to pjshowrsc --nodegrp)

Node group IDs can also be used to express a range ("ID1-
ID2").
If this parameter is set in a handle, administrator privileges are
required for calling the pjcmd_rscstat_execute() function.

char **

PJCMD_SCOPE_BOOTGRP Array of a boot group ID (number of elements is n, equivalent
to pjshowrsc --bootgr)

If this parameter is set in a handle, administrator privileges are
required for calling the pjcmd_rscstat_execute() function.

uint32_t *

PJCMD_SCOPE_BOOTGRP_STR Array of a boot group ID (character string) (number of elements
is n, equivalent to pjshowrsc --bootgr)

Boot group IDs can also be used to express a range ("ID1-
ID2").
If this parameter is set in a handle, administrator privileges are
required for calling the pjcmd_rscstat_execute() function.

char **

PJCMD_SCOPE_RSCUNIT Array of a resource unit name (number of elements is n,
equivalent to pjshowrsc --rscunit)

If "*" is specified as a resource unit name, all resource units are
targeted.

char **

PJCMD_SCOPE_RSCGRP Array of a resource group name (number of elements is n,
equivalent to pjshowrsc --rscgrp)

char **

- 167 -

scope *val_p Type of *val_p

If "*" is specified as a resource group name, all resource groups
are targeted.

PJCMD_SCOPE_NODE Array of a node ID (number of elements is n, equivalent to
pjshowrsc -n)

uint32_t *

PJCMD_SCOPE_NODE_STR Array of a node ID (character string) (number of elements is n,
equivalent to pjshowrsc -n).

Node IDs can also be used to express a range ("ID1-ID2").

char **

scope, the identifiers other than PJCMD_SCOPE_CLUSTER are exclusive of each other.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting the resource usage status.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

PJCMD_ERROR_INVALID_PARAM

val_p or n is invalid.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.6.3 pjcmd_rscstat_get_scope()
pjcmd_result_t pjcmd_rscstat_get_scope(const PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void

*val_p, uint32_t *n_p)

This function references the target range for getting the resource status that is set in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier of the target range to get information to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscstat_put_scope() function.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

n_p

The number of elements of val_p is stored in *n_p. The caller needs to prepare the area.

- 168 -

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting the resource usage status.

PJCMD_ERROR_INVALID_ARGUMENT

val_p or n is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

PJCMD_ERROR_NODATA

A specified scope is not set in a handle.

C.6.4 pjcmd_rscstat_put_param()
pjcmd_result_t pjcmd_rscstat_put_param(PjcmdHandle_t *handle_p, pjcmd_rscstat_param_t param, const

void *val_p)

This function sets parameters in a handle that are related to the resource status acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of parameters related to the resource usage status to be obtained (See the following table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_RSCSTAT_VERBOSITY Granularity of the resource status information to be obtained

- PJCMD_RSCSTAT_VERBOSITY_SELF
The information in the specified scope layer is obtained.
(Default)

- PJCMD_RSCSTAT_VERBOSITY_CHILD
Information in the layers under the specified scope is also
obtained.

- PJCMD_RSCSTAT_VERBOSITY_NODE
Even the node resource status is obtained.

int

PJCMD_RSCSTAT_INFO_LEVEL Level of information to be obtained when acquisition of
information in a node unit

int

- 169 -

param *val_p Type of *val_p

(PJCMD_RSCSTAT_VERBOSITY_NODE) is specified in
the PJCMD_RSCSTAT_VERBOSITY parameter
(equivalent to pjshowrsc -v)

0: Obtain compute resource amount (number of nodes,
number of CPU cores, memory amount, local file system size)
(Default)
1: Also obtain job IDs of running jobs in addition to above
information
2: Also obtain custom resource information in addition to
above information
3: Also obtain job IDs that use nodes as communication
routes, in addition to above information

PJCMD_RSCSTAT_EXCLUSIVE Whether or not to exclude jobs in other resource groups that
share resources, from the resource usage amount of a resource
group to be obtained (equivalent to pjshowrsc --exclusive)

0: Include resources of other resource groups (Default)
1: Exclude resources of other resource groups

int

PJCMD_RSCSTAT_CUSTOMRSC Whether or not to get custom resource information is specified
when a resource unit or resource group is the target
(equivalent to pjshowrsc --custom-resource).

0: Do not obtain custom resource information (Default)
1: Obtain custom resource information

int

PJCMD_RSCSTAT_STATUS Whether or not to get information for all nodes is specified
when nodes are targeted.

0: Obtain only information for available nodes (Default)
1: Obtain information for all nodes

int

PJCMD_RSCSTAT_RAW Equivalent to the specification of the --raw option in the
pjshowrsc command

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained
but does affect the results output by the
pjcmd_rscstat_print_resp() function.

int

PJCMD_RSCSTAT_DATA Equivalent to the specification of the --data option in the
pjshowrsc command

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained
but does affect the results output by the
pjcmd_rscstat_print_resp() function.

int

PJCMD_RSCSTAT_DELIMITER Equivalent to the specification of a character that is used to
separate the information displayed using the --delimiter
option in the pjshowrsc command

This parameter does not affect the information to be obtained
but does affect the results output by the
pjcmd_rscstat_print_resp() function. If this parameter is not
specified, a comma (,) is used.

char *

PJCMD_RSCSTAT_HELP Equivalent to the specification of the --help option in the
pjshowrsc command

int

- 170 -

param *val_p Type of *val_p

0: Not specified (Default)
1: Specified

This parameter does not affect the information to be obtained.

Information on job resource usage is obtained in the following units based on scope specified in the pjcmd_rscstat_put_scope() function
and the granularity of information specified in the PJCMD_RSCSTAT_VERBOSITY parameter of the pjcmd_rscstat_put_param()
function.

scope Granularity (*) Unit of Information to be Obtained

Cluster SELF Cluster unit

CHILD In system with compute cluster sub management node:
Node group

In system without compute cluster sub management node:
Boot group

NODE Node

Node group SELF Node group

CHILD Boot group

NODE Node

Boot group SELF Boot group

CHILD Node

NODE Node

Resource unit SELF Resource unit

CHILD Node

NODE Node

Resource group SELF Resource group

CHILD Node

NODE Node

Node Any Node

(*) "SELF" refers to PJCMD_RSCSTAT_VERBOSITY_SELF, "CHILD" refers to PJCMD_RSCSTAT_VERBOSITY_CHILD, and
"NODE" refers to PJCMD_RSCSTAT_VERBOSITY_NODE.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting the resource usage status.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

- 171 -

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

C.6.5 pjcmd_rscstat_get_param()
pjcmd_result_t pjcmd_rscstat_get_param(const PjcmdHandle_t *handle_p, pjcmd_rscstat_param_t param,

void *val_p)

This function references the set parameters in a handle that are related to resource status acquisition.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of the parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_rscstat_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting the resource usage status.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

C.6.6 pjcmd_rscstat_execute()
PjcmdResp_t *pjcmd_rscstat_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to get the resource usage status based on a handle.

- 172 -

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about acquiring the resource usage status.
The caller must release the obtained response information by using pjcmd_destroy_resp(). If a request to get job information has failed,
NULL is returned and the cause is set in pjcmd_errcode.
The response information indicates whether a request has succeeded or failed. Whether or not job information has been obtained
successfully needs to be checked with a result code in the response information by using the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting the resource usage status.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node.
The function can be called from the login node, compute cluster management node and system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_CONNECT

Communication with the daemon of the job operation management function has failed.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_BUSY

An operation cannot be requested because another operation request function is being processed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_SIGNAL

The process is interrupted because a signal has been received.

PJCMD_ERROR_INTERNAL

Internal error

C.6.7 pjcmd_rscstat_print_resp()
pjcmd_result_t pjcmd_rscstat_print_resp(const PjcmdResp_t *resp_p)

This function outputs the results of resource usage status acquisition to the standard output based on the specification of the pjshowrsc
command.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

PJCMD_OK

Success

- 173 -

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

C.6.8 pjcmd_rscstat_get_infogrp_num()
int pjcmd_rscstat_get_infogrp_num(const PjcmdResp_t *resp_p)

This function gets the number of information groups included in response information about acquiring the resource usage status.
An information group is information obtained in the information acquisition unit (cluster, node group, boot group, etc.) that is specified by
the pjcmd_rscstat_put_scope() function when getting information.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

Number of information groups.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

C.6.9 pjcmd_rscstat_get_infogrp_scope_type()
pjcmd_scope_t pjcmd_rscstat_get_infogrp_scope_type(const PjcmdResp_t *resp_p, int indx)

This function returns the type of information acquisition unit for a specific information group that is included in response information about
acquiring the resource usage status.

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_infogrp_num() function.

[RETURN VALUE]

Identifier indicating a unit for getting information on an information group.

Identifier Meaning

PJCMD_SCOPE_CLUSTER Cluster unit

- 174 -

Identifier Meaning

PJCMD_SCOPE_NODEGRP Node group unit

PJCMD_SCOPE_BOOTGRP Boot group unit

PJCMD_SCOPE_RSCUNIT Resource unit unit

PJCMD_SCOPE_RSCGRP Resource group unit

PJCMD_SCOPE_NODE Node unit

If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_PARAM

The indx value is out of range.

C.6.10 pjcmd_rscstat_get_infogrp_scope_value()
pjcmd_result_t pjcmd_rscstat_get_infogrp_scope_value(const PjcmdResp_t *resp_p, int indx,

pjcmd_scope_t scope, void *val_p)

This function gets the name (cluster name, resource unit name, or resource group name) or ID (node group ID, boot group ID, or node ID)
of an information acquisition unit for a specific information group that is included in response information about acquiring the resource
usage status.

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_infogrp_num() function.

scope

Type of information acquisition unit to get names or IDs. (See the following table.)
If the scope argument is different from the type of unit to get information groups, an error occurs.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name
The area specified by *val_p is undetermined after the release of
response information.

char *

PJCMD_SCOPE_NODEGRP Node group ID uint32_t

PJCMD_SCOPE_BOOTGRP Boot group ID uint32_t

- 175 -

scope *val_p Type of *val_p

PJCMD_SCOPE_RSCUNIT Resource unit name
The area specified by *val_p is undetermined after the release of
response information.

char *

PJCMD_SCOPE_RSCGRP Resource group name
The area specified by *val_p is undetermined after the release of
response information.

char *

PJCMD_SCOPE_NODE Node ID uint32_t

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

PJCMD_ERROR_INVALID_PARAM

- scope does not match the information group acquisition unit.

- The indx value is out of range.

C.6.11 pjcmd_rscstat_get_rscinfo_num()
int pjcmd_rscstat_get_rscinfo_num(const PjcmdResp_t *resp_p, int indx)

This function gets the amount of resource information included in a specific information group in response information about acquiring the
resource usage status.

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_infogrp_num() function.

[RETURN VALUE]

Amount of resource information.
If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

- 176 -

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_PARAM

The indx value is out of range.

C.6.12 pjcmd_rscstat_get_infogrp_customrsc_num()
pjcmd_result_t pjcmd_rscstat_get_infogrp_customrsc_num(const PjcmdResp_t *resp_p, int indx,

pjcmd_rscstat_customrsc_alloc_t type, uint32_t *num_p)

This function gets the number of custom resources for a specific information group.

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_infogrp_num() function.

type

Custom resource allocation type

Identifier Meaning

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_RU_RG Custom resources that are allocated to each resource
unit or resource group

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_NODE Custom resources that are allocated to each node

num_p

The number of custom resources is stored in *num_p. The caller needs to prepare the area.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_PARAM

The indx value is out of range.

- 177 -

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

C.6.13 pjcmd_rscstat_get_infogrp_customrscinfo()
PjcmdRscstatCustomRscinfo_t * pjcmd_rscstat_get_infogrp_customrscinfo(const PjcmdResp_t *resp_p, int

indx, pjcmd_rscstat_customrsc_alloc_t type, uint32_t cs_indx)

This function gets custom resource information for a specific information group.

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_infogrp_num() function.

type

Custom resource allocation type

Identifier Meaning

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_RU_RG Custom resources that are allocated to each resource
unit or resource group

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_NODE Custom resources that are allocated to each node

cs_indx

Index of custom resources. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_infogrp_customrsc_num() function.

[RETURN VALUE]

Pointer to custom resource information. If information that can be obtained is referenced after the release of response information,
operation is undetermined.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_PARAM

The indx value is out of range.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

PJCMD_ERROR_NODATA

The value of cs_indx is out of range.

- 178 -

C.6.14 pjcmd_rscstat_get_rscinfo()
PjcmdRscstatRscinfo_t *pjcmd_rscstat_get_rscinfo(const PjcmdResp_t *resp_p, int infogrp_indx, int

rscinfo_indx)

This function gets one piece of resource information in a specific information group.

[ARGUMENTS]

resp_p

Pointer to a response information

infogrp_indx

Index of information groups. The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_infogrp_num() function.

rscinfo_indx

Index of resource information to be referenced in an information group. The specifiable value ranges from 0 to a value that is
calculated by subtracting 1 from a value that is obtained by the pjcmd_rscstat_get_rscinfo_num() function.

[RETURN VALUE]

Pointer to a resource information.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not response information about acquiring resource usage status.

- This is not response information that was successfully obtained.

PJCMD_ERROR_INVALID_PARAM

The infogrp_indx or rscinfo_indx value is out of range.

C.6.15 pjcmd_rscstat_get_rscinfo_scope_type()
pjcmd_scope_t pjcmd_rscstat_get_rscinfo_scope_type(const PjcmdRscstatRscinfo_t *rscinfo_p)

This function gets the type of information acquisition unit for resource information.

[ARGUMENTS]

rscinfo_p

Pointer to resource information. This is a value returned by the pjcmd_rscstat_get_rscinfo() function.

[RETURN VALUE]

Identifier indicating a unit for getting information of resource.

Identifier Meaning

PJCMD_SCOPE_CLUSTER Cluster unit

PJCMD_SCOPE_NODEGRP Node group unit

PJCMD_SCOPE_BOOTGRP Boot group unit

PJCMD_SCOPE_RSCUNIT Resource unit unit

PJCMD_SCOPE_RSCGRP Resource group unit

PJCMD_SCOPE_NODE Node unit

- 179 -

If the function fails, -1 is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

Resource information rscinfo_p is invalid (NULL).

C.6.16 pjcmd_rscstat_get_rscinfo_scope_value()
pjcmd_result_t pjcmd_rscstat_get_rscinfo_scope_value(const PjcmdRscstatRscinfo_t *rscinfo_p,

pjcmd_scope_t scope, void *val_p)

This function gets the name (cluster name, resource unit name, or resource group name) or ID (node group ID, boot group ID, or node ID)
of a unit to get resource information.

[ARGUMENTS]

rscinfo_p

Pointer to resource information. This is a value returned by the pjcmd_rscstat_get_rscinfo() function.

scope

Type of information acquisition unit. (See the following table.)
If scope is different from the type of unit to get resource information, an error occurs.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name
The area specified by *val_p is undetermined after the release of
response information.

char *

PJCMD_SCOPE_NODEGRP Node group ID uint32_t

PJCMD_SCOPE_BOOTGRP Boot group ID uint32_t

PJCMD_SCOPE_RSCUNIT Resource unit name
The area specified by *val_p is undetermined after the release of
response information.

char *

PJCMD_SCOPE_RSCGRP Resource group name
The area specified by *val_p is undetermined after the release of
response information.

char *

PJCMD_SCOPE_NODE Node ID uint32_t

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

rscinfo_p or val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in scope.

- 180 -

PJCMD_ERROR_INVALID_PARAM

scope does not match the resource information acquisition unit.

C.6.17 pjcmd_rscstat_get_rscinfo_info()
pjcmd_result_t pjcmd_rscstat_get_rscinfo_info(const PjcmdRscstatRscinfo_t *rscinfo_p,

pjcmd_rscstat_rsc_name_t rscname, pjcmd_rscstat_rsc_value_t type, void *val_p)

This function references the total amount of specific resources, usage amount, or available amount from resource information.

[ARGUMENTS]

rscinfo_p

Pointer to a resource information

rscname

Identifier of a resource name to be referenced (See the following table.)

type

Identifier of a resource amount to be referenced (See the following table.)

val_p

A value is stored in *val_p based on the rscname type. The caller needs to prepare an area of a sufficient size according to the value
type.

rscname *val_p Type of *val_p

PJCMD_RSCSTAT_RSC_NODE Number of compute nodes uint32_t

PJCMD_RSCSTAT_RSC_CPU Number of CPU cores of compute node uint32_t

PJCMD_RSCSTAT_RSC_MEM Memory amount of compute node uint64_t

type Description

PJCMD_RSCSTAT_RSC_TOTAL Total amount of rscname resource

PJCMD_RSCSTAT_RSC_ALLOC Usage amount of rscname resource

PJCMD_RSCSTAT_RSC_FREE Unused amount of rscname resource

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

rscinfo_p or val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in rscname or type.

C.6.18 pjcmd_rscstat_read_jobinfo()
PjcmdSubjobid_t *pjcmd_rscstat_read_jobinfo(PjcmdRscstatRscinfo_t *rscinfo_p,

pjcmd_rscstat_jobtype_t type)

- 181 -

If resource information is the information in a node unit, this function returns one sub job ID structure of a job that is being executed using
the node resource, or one sub job ID structure of a job that uses the node as a communication route. The next relevant job is returned every
time this function is called.

[ARGUMENTS]

rscinfo_p

Pointer to a resource information

type

Type of job to be referenced

Identifier Meaning

PJCMD_RSCSTAT_RUNNING_JOBS Job that is being executed using a node resource

PJCMD_RSCSTAT_JOBS_USING_ROUTE Job that uses a node as a communication route

[RETURN VALUE]

Pointer to a sub job ID structure.
The contents of the area specified by the obtained pointer are undetermined after calling this function next time.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

rscinfo_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

PJCMD_ERROR_NODATA

There is no next job.

C.6.19 pjcmd_rscstat_get_rscinfo_customrsc_num()
pjcmd_result_t pjcmd_rscstat_get_rscinfo_customrsc_num(const PjcmdRscstatRscinfo_t *rscinfo_p,

pjcmd_rscstat_customrsc_alloc_t type, uint32_t *num_p)

This function gets the number of custom resources included in resource information.

[ARGUMENTS]

rscinfo_p

Pointer to a resource information

type

Custom resource allocation type

Identifier Meaning

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_RU_RG Custom resources that are allocated to each resource
unit or resource group

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC_NODE Custom resources that are allocated to each node

num_p

The number of custom resources is stored in *num_p. The caller needs to reserve the area.

- 182 -

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

rscinfo_p or val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

C.6.20 pjcmd_rscstat_get_rscinfo_customrscinfo()
PjcmdRscstatCustomRscinfo_t *pjcmd_rscstat_get_rscinfo_customrscinfo(const PjcmdRscstatRscinfo_t

*rscinfo_p, pjcmd_rscstat_customrsc_alloc_t type, uint32_t indx)

This function gets information on a specific custom resource that is included in resource information.

[ARGUMENTS]

rscinfo_p

Pointer to a resource information

type

Custom resource allocation type

indx

Index of custom resources. The specifiable value ranges from 0 to a value that is obtained by subtracting 1 from a value that is
obtained by the pjcmd_rscstat_get_rscinfo_customrsc_num() function.

[RETURN VALUE]

Custom resource information.
If the function fails, NULL is returned, and the cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

rscinfo_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

PJCMD_ERROR_NODATA

The value of indx is out of range.

C.6.21 pjcmd_rscstat_get_customrscinfo_value()
pjcmd_result_t pjcmd_rscstat_get_customrscinfo_value(const PjcmdRscstatCustomRscinfo_t *rscinfo_p,

pjcmd_rscstat_customrsc_value_t type, void *val_p)

This function references custom resource information individually.

[ARGUMENTS]

rscinfo_p

Pointer to custom resource information. This is the information obtained by the pjcmd_rscstat_get_rscinfo_customrscinfo()
function.

- 183 -

type

Identifier of information to be referenced (See the following table.)

val_p

A value is stored in *val_p based on the type type. The caller needs to prepare an area of a sufficient size according to the value type.

type *val_p Type of *val_p

PJCMD_RSCSTAT_CUSTOMRSC_NAME Custom resource name

Operation is undetermined when the obtained
value is referenced after the release of response
information.

char *

PJCMD_RSCSTAT_CUSTOMRSC_TYPE Custom resource amount type

PJCMD_RSCSTAT_CUSTOMRSC_NUM
Custom resources are of the numerical value
type.

PJCMD_RSCSTAT_CUSTOMRSC_KIND
Custom resources are of the kind type.

int

PJCMD_RSCSTAT_CUSTOMRSC_TOTAL Total amount of custom resources
(for custom resources of numerical value type)

int64_t

PJCMD_RSCSTAT_CUSTOMRSC_ALLOC Amount of custom resources in use
(for custom resources of numerical value type)

int64_t

PJCMD_RSCSTAT_CUSTOMRSC_FREE Amount of unused custom resources
(for custom resources of numerical value type)

int64_t

PJCMD_RSCSTAT_CUSTOMRSC_KIND_NUM Number of custom resources
(for custom resources of kind type)

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

rscinfo_p or val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

C.6.22 pjcmd_rscstat_get_customrscinfo_kind_value()
pjcmd_result_t pjcmd_rscstat_get_customrscinfo_kind_value(const PjcmdRscstatCustomRscinfo_t

*rscinfo_p, int indx, pjcmd_rscstat_customrsc_kind_value_t type, void *val_p)

This function references the resource information when the type of custom resource information is the kind type.

[ARGUMENTS]

info_p

Pointer to custom resource information (kind type)

- 184 -

indx

Index of custom resource information (kind type) to be referenced. The specifiable value ranges from 0 to a value that is calculated
by subtracting 1 from a value that is obtained by the pjcmd_rscstat_get_customrscinfo_value() function.

type

Identifier of information to be referenced (See the following table.)

val_p

A value is stored in *val_p based on the type type. The caller needs to prepare an area of a sufficient size according to the value type.

type *val_p Type of *val_p

PJCMD_RSCSTAT_CUSTOMRSC_KIND_NAME Name of custom resource type char *

PJCMD_RSCSTAT_CUSTOMRSC_KIND_TOTAL Total amount of custom resources int64_t

PJCMD_RSCSTAT_CUSTOMRSC_KIND_ALLOC Amount of custom resources in use int64_t

PJCMD_RSCSTAT_CUSTOMRSC_KIND_FREE Amount of unused custom resources int64_t

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_ARGUMENT

- rscinfo_p or val_p is invalid (NULL).

- rscinfo_p is not a custom resource of the kind type.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

PJCMD_ERROR_NODATA

The value of indx is out of range.

- 185 -

Appendix D Job Operation Control API Reference

D.1 Setting of Job Submission/Job Execution Permissions
This section describes the functions for setting permissions for job submission and job execution in job operations.

Figure D.1 Requesting to Set Permissions for Job Submission and Job Execution

D.1.1 pjcmd_pmpjmopt_get_command_type()
pjcmd_pmpjmopt_command_type_t pjcmd_pmpjmopt_get_command_type(int argc, char **argv_pp)

This function analyzes command line arguments as arguments of the pmpjmopt command to determine whether --show-rsc-ug or --set-rsc-
ug option is specified.

[ARGUMENTS]

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

Operation type of the pmpjmopt command

PJCMD_PMPJMOPT_SET_RSC_UG

The --set-rsc-ug option is specified.

PJCMD_PMPJMOPT_SHOW_RSC_UG

The --show-rsc-ug option is specified.

PCMD_PMPJMOPT_UNKNOWN_COMMAND_TYPE

Nothing could be determined (both options are specified, or either option is not specified).

- 186 -

[pjcmd_errcode]

PJCMD_SUCCESS

Success. This code is set when the return values are PJCMD_PMPJMOPT_SET_RSC_UG and
PJCMD_PMPJMOPT_SHOW_RSC_UG.

PJCMD_ERROR_UNKNOWN_OPTION

Nothing could be determined. This code is set when the return value is PCMD_PMPJMOPT_UNKNOWN_COMMAND_TYPE.

D.1.2 pjcmd_setpjmstat_parse_pmpjmopt_args()
pjcmd_result_t pjcmd_setpjmstat_parse_pmpjmopt_args(PjcmdHandle_t *handle_p, int argc, char

**argv_pp)

This function analyzes command line arguments based on the specification used when the --set-rsc-ug option in the pmpjmopt command
is specified, and sets the specified details in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for setting permissions for job submission and execution.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

- An exclusive option is specified.

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.
This function recognizes only the --set-rsc-ug option in the pmpjmopt command and the options that can be specified with this option at the
same time.

- 187 -

D.1.3 pjcmd_setpjmstat_put_scope()
pjcmd_result_t pjcmd_setpjmstat_put_scope(PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void *val_p)

This function sets the target range for job submission/execution permission in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier indicating the target range (See the following table.)

val_p

Pointer to the storage area for the value indicating the target range. For example, if the value type to be set is char * type, the caller
must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is specified, the
parameter value is initialized (not set).

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pmpjmopt -c)

If this parameter is not set, the PXMYCLST environment
variable value is applied.

If the parameter and the environment variable are not set, an
error occurs in the pjcmd_setpjmstat_execute() function.
This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.

char *

PJCMD_SCOPE_RSCUNIT Resource unit name (only one name; equivalent to pmpjmopt --
rscunit)

Specification of a resource unit name is required. If a resource
unit name is not specified, an error occurs in the
pjcmd_setpjmstat_execute() function.

char *

PJCMD_SCOPE_RSCGRP Resource group name array (equivalent to pmpjmopt --rscgrp)

The last element must be (char *)NULL. "*" in a resource group
name indicates all resource groups (equivalent to pmpjmopt --
all-rsc-groups).
If a resource group is not specified, the setting of each resource
group is based on the resource unit setting.

char **

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for setting permissions for job submission and execution.

- 188 -

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_INVALID_PARAM

val_p is invalid (NULL).

PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.1.4 pjcmd_setpjmstat_get_scope()
pjcmd_result_t pjcmd_setpjmstat_get_scope(const PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void

*val_p)

This function references the target range (cluster, resource unit, or resource group) of the set job submission/execution permission in a
handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_setpjmstat_put_scope() function.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for setting permissions for job submission and execution.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_NODATA

A specified scope is not set in a handle.

D.1.5 pjcmd_setpjmstat_put_param()
pjcmd_result_t pjcmd_setpjmstat_put_param(PjcmdHandle_t *handle_p, pjcmd_setpjmstat_param_t param,

const void *val_p)

- 189 -

This function sets parameters in a handle that are related to job submission/execution permission.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter related to job submission or execution permissions (See the following table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

param *val_p Type of *val_p

PJCMD_SETPJMSTAT_JOB_SUBMIT Job submission permission

0: Do not permit submission of new job
1: Permit submission of new job

If this parameter is not set, the job submission
permission does not change.

int

PJCMD_SETPJMSTAT_JOB_EXECUTE Job execution permission

0: Do not permit execution of new job
1: Permit execution of new job

If this parameter is not set, the job execution permission
does not change.

int

PJCMD_SETPJMSTAT_HELP Equivalent to the specification of the --help option in
the pmpjmopt command

0: Not specified (Default)
1: Specified

This parameter does not affect permissions for job
submission and execution.

int

If neither the PJCMD_SETPJMSTAT_JOB_SUBMIT parameter nor PJCMD_SETPJMSTAT_JOB_EXECUTE parameter is set, an
error occurs when the pjcmd_setpjmstat_execute() function is called.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for setting permissions for job submission and execution.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

- 190 -

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.1.6 pjcmd_setpjmstat_get_param()
pjcmd_result_t pjcmd_setpjmstat_get_param(const PjcmdHandle_t *handle_p, pjcmd_setpjmstat_param_t

param, void *val_p)

This function references the set parameters in a handle that are related to permissions for job submission and execution.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_setpjmstat_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for setting permissions for job submission and execution.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

D.1.7 pjcmd_setpjmstat_execute()
PjcmdResp_t *pjcmd_setpjmstat_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to permit job submission and execution based on a handle. Root privileges
are required for calling the function.

- 191 -

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about permissions for job submission and execution.
The caller must release the obtained response information by using pjcmd_destroy_resp(). If the request to permit job submission or
execution fails, NULL is returned and pjcmd_errcode is set.
The response information indicates whether the request has succeeded or failed. The determination of whether the request to permit job
submission or execution has been accepted successfully needs to be checked with a result code based on the response information by
using the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for setting permissions for job submission and execution.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node. The function can only be called from the system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_INTERNAL

Internal error

D.2 Referencing of Job Submission and Execution Permission
Information

This section describes the functions for referencing job submission and execution permission information for job operations.

- 192 -

Figure D.2 Requesting to Get Job Submission and Execution Permission Information

Figure D.3 Referencing Job Submission and Execution Permission Information

D.2.1 pjcmd_getpjmstat_parse_pmpjmopt_args()
pjcmd_result_t pjcmd_getpjmstat_parse_pmpjmopt_args(PjcmdHandle_t *handle_p, int argc, char

**argv_pp)

This function analyzes command line arguments based on the specification used when the --show-rsc-ug option in the pmpjmopt command
is specified, and sets the specified details in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

- 193 -

argc

Number of arguments

argv_pp

Array of an argument

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting information on permissions for job submission and execution.

PJCMD_ERROR_INVALID_ARGUMENT

argc or argv_pp is invalid.

PJCMD_ERROR_UNKNOWN_OPTION

An unknown option has been detected.

PJCMD_ERROR_INVALID_OPTION

A method to specify an option is invalid.

- A method to specify an option argument is invalid.

- A required argument for the option is not specified.

- An exclusive option is specified.

Calling this function moves arguments other than options to the end of the argv_pp[] array.
If an unrecognizable option is detected, analysis of arguments stops, and argv_pp[pjcmd_optind-1] indicates the option.
This function recognizes only the --show-rsc-ug option in the pmpjmopt command and the options that can be specified with this option at
the same time.

D.2.2 pjcmd_getpjmstat_put_scope()
pjcmd_result_t pjcmd_getpjmstat_put_scope(PjcmdHandle_t *handle_p, pjcmd_scope_t scope, const void

*val_p)

This function sets a target range to get the information on permissions for job submission and execution in a handle.

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier indicating the target range (See the following table.)

val_p

Pointer to the storage area for the value indicating the target to get information. For example, if the value type to be set is char * type,
the caller must prepare a storage area for the char * type value and specify a pointer (char **) to the area in val_p. If NULL is
specified, the parameter value is initialized (not set).

- 194 -

scope *val_p Type of *val_p

PJCMD_SCOPE_CLUSTER Cluster name (only one name, equivalent to pmpjmopt -c)

If this parameter is not set, the PXMYCLST environment
variable value is applied. If the parameter and the environment
variable are not set, an error occurs in the
pjcmd_getpjmstat_execute() function.
This parameter is valid only when called from the system
management node. When the parameter is called from a node
other than the system management node, the cluster to which the
calling node belongs is applied.

char *

PJCMD_SCOPE_RSCUNIT Resource unit name (only one name, equivalent to pmpjmopt --
rscunit)

Specification of a resource unit name is required. If a resource
unit name is not specified, an error occurs in the
pjcmd_getpjmstat_execute() function.

char *

PJCMD_SCOPE_RSCGRP Array of a resource group name (equivalent to pmpjmopt --
rscgrp)

The last element in the array must be (char *)NULL. "*" in a
resource group name indicates all resource groups.

If the resource group is not set, information on each resource unit
is obtained.

char **

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting information on permissions for job submission and execution.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_INVALID_PARAM

val_p is invalid (NULL).

PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.2.3 pjcmd_getpjmstat_get_scope()
pjcmd_result_t pjcmd_getpjmstat_get_scope(const PjcmdHandle_t *handle_p, pjcmd_scope_t scope, void

*val_p)

This function references a target (cluster, resource unit, or resource group) that is set in a handle in order to get information on permissions
for job submission and execution.

- 195 -

[ARGUMENTS]

handle_p

Pointer to a handle

scope

Identifier of the target range to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_getpjmstat_put_scope() function.

val_p

A value is stored in *val_p based on the scope type. The caller needs to prepare an area of a sufficient size according to the value
type.

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting information on permissions for job submission and execution.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown or unspecifiable value is specified in scope.

PJCMD_ERROR_NODATA

A specified scope is not set in a handle.

D.2.4 pjcmd_getpjmstat_put_param()
pjcmd_result_t pjcmd_getpjmstat_put_param(PjcmdHandle_t *handle_p, pjcmd_getpjmstat_param_t param,

const void *val_p)

This function sets parameters in a handle that are related to acquisition of information on permissions for job submission and execution.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter related to acquisition of information on permissions for job submission and execution (See the following
table.)

val_p

Pointer to the storage area for the value of parameter to be set. For example, if the value type to be set is int type, the caller must
prepare a storage area for the int type value and specify a pointer (int *) to the area in val_p. If NULL is specified, the parameter value
is initialized (not set).

- 196 -

param *val_p Type of *val_p

PJCMD_GETPJMSTAT_HELP Equivalent to the --help option in the pmpjmopt command.

0: Not specified (Default)
1: Specified

This parameter does not affect acquisition of information on
permissions for job submission and execution.

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting information on permissions for job submission and execution.

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_INVALID_PARAM

A parameter value is invalid.

- A specification method is incorrect.

- A value is incorrect.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

D.2.5 pjcmd_getpjmstat_get_param()
pjcmd_result_t pjcmd_getpjmstat_get_param(const PjcmdHandle_t *handle_p, pjcmd_getpjmstat_param_t

param, void *val_p)

This function references the set parameters in a handle that are related to acquisition of information on permissions for job submission and
execution.

[ARGUMENTS]

handle_p

Pointer to a handle

param

Identifier of a parameter to be referenced. The identifiers that can be specified are the same as those for the
pjcmd_getpjmstat_put_param() function.

val_p

A value is stored in *val_p based on the param type. The caller needs to prepare an area of a sufficient size according to the value
type.

- 197 -

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting information on permissions for job submission and execution.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in param.

PJCMD_ERROR_NODATA

A specified parameter is not set in a handle.

D.2.6 pjcmd_getpjmstat_execute()
PjcmdResp_t *pjcmd_getpjmstat_execute(const PjcmdHandle_t *handle_p)

This function requests the job operation management function to get the status of permissions for job submission and execution based on
a handle. Root privileges are required for calling this function.

[ARGUMENTS]

handle_p

Pointer to a handle

[RETURN VALUE]

Response information about getting information on permissions for job submission and execution.
The caller must release the obtained response information by using pjcmd_destroy_resp(). If the request to permit job submission or
execution fails, NULL is returned and pjcmd_errcode is set.
The response information indicates whether the request has succeeded or failed. The determination of whether the request to permit job
submission or execution has been accepted successfully needs to be checked with a result code based on the response information by
using the pjcmd_get_result() function.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Handle is invalid.

- handle_p is NULL.

- This is not a handle for getting information on permissions for job submission and execution.

PJCMD_ERROR_INVALID_NODE

This function cannot be called from this node. The function can only be called from the system management node.

PJCMD_ERROR_INVALID_PARAM

A parameter in a handle is invalid.

PJCMD_ERROR_NOMEM

Memory acquisition failed.

- 198 -

PJCMD_ERROR_NOPERM

Calling the function is not permitted.

PJCMD_ERROR_INTERNAL

Internal error

D.2.7 pjcmd_getpjmstat_print_resp()
pjcmd_result_t pjcmd_getpjmstat_print_resp(const PjcmdResp_t *resp_p)

This function outputs the results of getting job submission and execution permission information to the standard output based on the
pmpjmopt command specifications.

[ARGUMENTS]

resp_p

Pointer to a response information

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response information is invalid.

- resp_p is NULL.

- This is not a response information for getting information on permissions for job submission and execution.

- This is not response information that was successfully obtained.

D.2.8 pjcmd_getpjmstat_get_rscunit_info()
pjcmd_result_t pjcmd_getpjmstat_get_rscunit_info(const PjcmdResp_t *resp_p, pjcmd_getpjmstat_info_t

type, void *val_p)

This function references information on a resource unit from the response information about getting job submission and execution
permission information.

[ARGUMENTS]

resp_p

Pointer to a response information

type

Identifier of an information type to be referenced (See the following table.)

val_p

A value is stored in *val_p based on the type type. The caller needs to prepare an area of a sufficient size according to the value type.

type *val_p Type of *val_p

PJCMD_GETPJMSTAT_INFO_RSCUNIT Resource unit name

The area specified by *val_pis is undetermined
after releasing response information.

char *

- 199 -

type *val_p Type of *val_p

PJCMD_GETPJMSTAT_INFO_JOB_SUBMIT Job submission permission

0: Not permitted to submit new job
1: Permitted to submit new job
-1: Unknown

int

PJCMD_GETPJMSTAT_INFO_JOB_EXECUTE Job execution permission

0: Not permitted to execute new job
1: Permitted to execute new job
-1: Unknown

int

PJCMD_GETPJMSTAT_INFO_RSCGRP_NUM Number of resource groups in a resource unit

If the target for getting information is a resource
unit, 0 is set.

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_HANDLE

Response information is invalid.

- resp_p is NULL.

- This is not a response information for getting information on permissions for job submission and execution.

- The response information is not a result related to a resource unit but rather a result related to a resource group.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in type.

PJCMD_ERROR_INVALID_PARAM

The value of type cannot be specified in this function.

D.2.9 pjcmd_getpjmstat_get_rscgrp_info()
pjcmd_result_t pjcmd_getpjmstat_get_rscgrp_info(const PjcmdResp_t *resp_p, int indx,

pjcmd_getpjmstat_info_t info, void *val_p)

This function references specific resource group information from response information about getting job submission and execution
permission information.

[ARGUMENTS]

resp_p

Pointer to a response information

indx

Index of the resource group to be obtained.
The specifiable value ranges from 0 to a value that is calculated by subtracting 1 from the number of resource groups that is obtained
by the pjcmd_getpjmstat_get_rscunit_info() function.

- 200 -

info

Identifier of information to be referenced (See the following table.)

val_p

A value is stored in *val_p based on the info type. The caller needs to prepare an area of a sufficient size according to the value type.

info *val_p Type of *val_p

PJCMD_GETPJMSTAT_INFO_RSCGRP Resource group name char *

PJCMD_GETPJMSTAT_INFO_JOB_SUBMIT Job submission permission

0: Not permitted to submit new job
1: Permitted to submit new job
-1: Unknown

int

PJCMD_GETPJMSTAT_INFO_JOB_EXECUTE Job execution permission

0: Not permitted to execute new job
1: Permitted to execute new job
-1: Unknown

int

[RETURN VALUE]

PJCMD_OK

Success

PJCMD_ERR

Failure. The cause is set in pjcmd_errcode.

[pjcmd_errcode]

PJCMD_ERROR_INVALID_RESP

Response inforamtion is invalid.

- resp_p is NULL.

- This is not a response information for getting information on permissions for job submission and execution.

- This result is not from getting the resource group status but rather from getting the resource unit status.

PJCMD_ERROR_INVALID_ARGUMENT

val_p is invalid (NULL).

PJCMD_ERROR_UNKNOWN_PARAM

An unknown value is specified in info.

PJCMD_ERROR_INVALID_PARAM

The value of info cannot be specified in this function.

PJCMD_ERROR_NODATA

The value of indx is out of range.

- 201 -

Appendix E Sample Programs
This appendix provides sample programs that call the command API.

The source files of the sample programs are in the following installation directory of the login node, compute cluster management node, and
system management node.

/usr/src/FJSVtcs/pjm/pjcmd/

For details on how to compile a sample program, see documents in the above directory.

E.1 Submitting a Job
/usr/src/FJSVtcs/pjm/pjcmd/c/submit/pjcmd_submit.c

/*

 * Submit job

 */

#include <stdio.h>

#include <stdlib.h>

#include <FJSVtcs/pjm/pjcmd.h>

#define EXIT_SUCCESS 0

#define EXIT_FAILURE 1

const char *CMD_NAME = "pjsub_custom";

int main(int argc, char **argv)

{

 PjcmdHandle_t *handle_p;

 PjcmdResp_t *resp_p;

 char *script_p;

 int i, code;

 int32_t line;

 char *detail_p;

 PjcmdSubjobid_t *subjobid_p;

 char subjobid_str[PJCMD_MAX_SUBJOBID_STR_LEN];

 /* Create handle to submit job */

 handle_p = pjcmd_create_handle(PJCMD_SUBMIT);

 if (handle_p == NULL) {

 fprintf(stderr,

 "%s: Failed in create_handle : %s\n", CMD_NAME, pjcmd_strerror(pjcmd_errcode));

 exit(EXIT_FAILURE);

 }

 /* Analyze command line arguments and set them in handle */

 if (pjcmd_submit_parse_pjsub_args(handle_p, argc, argv) == PJCMD_ERR) {

 /* Terminate after displaying arguments that failed to be analyzed */

 fprintf(stderr, "%s: Failed in parse_args : %s\n", CMD_NAME, argv[pjcmd_optind - 1]);

 exit(EXIT_FAILURE);

 }

 /* Analyze instruction lines in job script and set them in handle

 * pjcmd_optind indicates remaining arguments = scripts

 * (For simplicity, only 1 script used)

 */

 if (pjcmd_optind == argc) {

 fprintf(stderr, "%s: job script does not specified\n", CMD_NAME);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

- 202 -

 }

 script_p = argv[pjcmd_optind];

 if (pjcmd_submit_parse_pjsub_scriptfile(handle_p, script_p, "#PJM", &line, &detail_p)

 == PJCMD_ERR) {

 fprintf(stderr, "%s: Failed to parse script %s (line=%d, arg=%s)\n",

 CMD_NAME, script_p, line, detail_p);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 /* Set script file name in handle */

 if (pjcmd_submit_put_param(handle_p, PJCMD_SUBMIT_SCRIPTFILE, &script_p) == PJCMD_ERR) {

 fprintf(stderr, "%s: Failed in setting script name : %s\n", CMD_NAME, script_p);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 /* Use set information in handle and submit job */

 resp_p = pjcmd_submit_execute(handle_p);

 if (resp_p == NULL) { /* If job submission failed */

 fprintf(stderr, "%s: Failed in submitting a job : %s\n", CMD_NAME, script_p);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 /* Display submission results */

 int64_t jobnum[2];

 pjcmd_get_jobresult_num(resp_p, jobnum);

 for (i = 0; i < jobnum[0]; i++) {

 /* Obtain sub job ID structure and convert it to character string */

 pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY,

 i, PJCMD_JOBRESULT_SUBJOBID, &subjobid_p);

 pjcmd_subjobid_to_str(subjobid_p, subjobid_str);

 /* Obtain result code */

 pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ANY, i, PJCMD_JOBRESULT_CODE, &code);

 /* Display result */

 printf("Job %s : %s\n", subjobid_str, (code == 0) ? "submitted" : "submit failed");

 }

 /* Release response information */

 pjcmd_destroy_resp(resp_p);

 /* Release handle */

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_SUCCESS);

}

E.2 Getting Job Information
/usr/src/FJSVtcs/pjm/pjcmd/c/jobinfo/pjcmd_jobinfo.c

/*

 * Display job status

 */

#include <stdio.h>

#include <stdlib.h>

#include <FJSVtcs/pjm/pjcmd.h>

#define EXIT_SUCCESS 0

#define EXIT_FAILURE 1

const char *CMD_NAME = "pjstat_custom";

- 203 -

int main(void)

{

 PjcmdHandle_t *handle_p;

 PjcmdResp_t *resp_p;

 /* Create handle for getting job information */

 handle_p = pjcmd_create_handle(PJCMD_JOBINFO);

 if (handle_p == NULL) {

 fprintf(stderr,

 "%s: Failed to create handle : %s\n", CMD_NAME, pjcmd_strerror(pjcmd_errcode));

 exit(EXIT_FAILURE);

 }

 /* Get information calculated in source unit or resource group unit */

 const char *grouping_items_p[2] = { "rscu", "rscg" };

 pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_GROUPING, grouping_items_p, 2);

 /* Set conditions as follows for job to be obtained:

 * - Status is RUN (pjstat --filter st=RUN)

 * - Job name begins with foo (pjstat --filter "jname=foo*")

 * - Job ID is 10 characters or less (pjstat --filter jid=-10)

 * - Priority is 5 or higher (pjstat --filter prio=5-)

 * - elapse limit is 1 to 2 hours

 * (pjstat --filter elpl=1:00:00-2:00:00)

 */

 const char *filter_exprs_p[5] = { "st=RUN", "jnam=foo*", "jid=-10", "prio=5-",

 "elpl=1:00:00-2:00:00" };

 pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_FILTER, filter_exprs_p, 5);

 /* Set job ID, job name, and job status as items to be obtained

 * (pjstat --choose jid,jnam,st)

 */

 const char *choose_items_p[3] = { "jid", "jnam", "st" };

 pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_CHOOSE, choose_items_p, 3);

 /* Sort jobs in ascending order of job submission time */

 const char *sort_items_p[] = { "adt:A" };

 pjcmd_jobinfo_put_condition(handle_p, PJCMD_JOBINFO_SORT, sort_items_p, 1);

 /* Get history (completed jobs)

 * information for past 5 days (pjstat -H=day)

 */

 int hist = 5;

 pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_HISTORY_DAY, &hist);

 /* Get summary information altogether (equivalent to pjstat --with-summary) */

 int summary = PJCMD_JOBINFO_WITH_SUMMARY;

 pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_SUMMARY, &summary);

 /* Get sub job information altogether (equivalent to pjstat -E) */

 int verbose = PJCMD_JOBINFO_VERBOSITY_SUBJOB;

 pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_VERBOSITY, &verbose);

 /* Get other users' job information altogether (equivalent to pjstat -A)

 * (If command is called with general user privileges,

 * items that cannot be referenced due to ACL settings are masked)

 */

 int othersjob = PJCMD_JOBINFO_OTHERSJOB_ALL;

 pjcmd_jobinfo_put_param(handle_p, PJCMD_JOBINFO_OTHERSJOB, &othersjob);

 /* Request acquisition of job information based on contents of handle */

 resp_p = pjcmd_jobinfo_execute(handle_p);

- 204 -

 if (resp_p == NULL) {

 fprintf(stderr, "%s: Request failed\n", CMD_NAME);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 int code;

 int subcode;

 char *detail_p;

 pjcmd_get_result(resp_p, &code, &subcode, &detail_p);

 if (code != 0) {

 fprintf(stderr, "%s: Request failed (code=%d)\n", CMD_NAME, code);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 /* Read information groups one by one from resp_p response information

 * (Job information group is read in unit of resource unit/resource group

 * based on acquisition conditions)

 */

 pjcmd_result_t ret;

 while (1) {

 ret = pjcmd_jobinfo_read_infogrp(resp_p);

 if (ret == PJCMD_ERR) {

 if (pjcmd_errcode == PJCMD_ERROR_NODATA) {

 break; /* All information groups are read */

 }

 fprintf(stderr, "%s: Cannot read infogrp\n", CMD_NAME);

 pjcmd_destroy_resp(resp_p);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 /* Display summary line of information group */

 pjcmd_jobinfo_print_resp(resp_p, PJCMD_JOBINFO_PRINT_SUMMARY);

 /* Display job information in information group */

 pjcmd_jobinfo_print_resp(resp_p, PJCMD_JOBINFO_PRINT_JOBINFO);

 }

 pjcmd_destroy_resp(resp_p);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_SUCCESS);

}

E.3 Deleting a Job
/usr/src/FJSVtcs/pjm/pjcmd/c/kill/pjcmd_kill.c

/*

 * Delete job

 */

#include <stdio.h>

#include <stdlib.h>

#include <FJSVtcs/pjm/pjcmd.h>

#define EXIT_SUCCESS 0

#define EXIT_FAILURE 1

const char *CMD_NAME = "pjdel_custom";

int main(int argc, char **argv)

{

- 205 -

 PjcmdHandle_t *handle_p;

 PjcmdResp_t *resp_p;

 PjcmdSubjobid_t *subjobid_p;

 char subjobid_str_p[PJCMD_MAX_SUBJOBID_STR_LEN];

 int i;

 int64_t num[2], total_num, ok_num, err_num, cnt;

 int help_flag;

 /* Create handle to delete job */

 handle_p = pjcmd_create_handle(PJCMD_KILL);

 if (handle_p == NULL) {

 fprintf(stderr, "Failed in create_handle : %s\n", pjcmd_strerror(pjcmd_errcode));

 exit(EXIT_FAILURE);

 }

 /* Analyze command line arguments */

 if (pjcmd_kill_parse_pjdel_args(handle_p, argc, argv) == PJCMD_ERR) {

 fprintf(stderr, "Failed in parse_args : %s : arg=%s\n",

 pjcmd_strerror(pjcmd_errcode), argv[pjcmd_optind - 1]);

 /* Display the usage of pjdel */

 pjcmd_print_stdcmd_usage(PJCMD_STDCMD_PJDEL, CMD_NAME);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 /* If --help option specified, exit after displaying method of use */

 pjcmd_kill_get_param(handle_p, PJCMD_KILL_HELP, &help_flag);

 if (help_flag != 0) {

 /* Display method of using pjdel */

 pjcmd_print_stdcmd_usage(PJCMD_STDCMD_PJDEL, CMD_NAME);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_SUCCESS);

 }

 /* Treat remaining arguments as job IDs of jobs to be deleted and set them in handle */

 if (pjcmd_optind == argc) { /* No job ID */

 fprintf(stderr, "Job id is not spesified.\n");

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 for (i = pjcmd_optind; i < argc; i++) {

 if (pjcmd_put_job_by_str(handle_p, argv[i]) == PJCMD_ERR) {

 fprintf(stderr, "Failed in put_job_by_str : %s\n", argv[i]);

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 }

 /* Request job deletion */

 resp_p = pjcmd_kill_execute(handle_p);

 if (resp_p == NULL) { /* If request fails */

 fprintf(stderr, "Failed in kill_execute : %s\n", pjcmd_strerror(pjcmd_errcode));

 pjcmd_destroy_handle(handle_p);

 exit(EXIT_FAILURE);

 }

 /* Display deletion result */

 pjcmd_get_jobresult_num(resp_p, num);

 total_num = num[0];

 ok_num = num[1];

 err_num = total_num - ok_num;

 if (err_num) { /* For error jobs */

- 206 -

 fprintf(stderr, "Operation failed for %ld jobs.\n", err_num);

 }

 /* Display only job IDs (sub job IDs) of failed jobs, one item per line */

 for (cnt = 0; cnt < err_num; cnt++) {

 pjcmd_get_jobresult_info(resp_p, PJCMD_JOBRESULT_ERR,

 cnt, PJCMD_JOBRESULT_SUBJOBID, &subjobid_p);

 pjcmd_subjobid_to_str(subjobid_p, subjobid_str_p);

 fprintf(stderr, "Failed for the job %s\n", subjobid_str_p);

 }

 pjcmd_destroy_resp(resp_p);

 pjcmd_destroy_handle(handle_p);

 exit((err_num == 0) ? EXIT_SUCCESS : EXIT_FAILURE);

}

- 207 -

	Title Page
	Preface
	Update history
	Contents
	Chapter 1 Command API Overview
	1.1 What is the Command API?
	1.2 Operation Flow
	1.3 Function Types

	Chapter 2 Using the Command API
	2.1 Header File
	2.2 Operations Using the Command API
	2.2.1 Generating a Handle
	2.2.2 Setting a Parameter
	2.2.3 Processing a Command Line Option
	2.2.3.1 Parameter Setting From a Command Argument
	2.2.3.2 Command Line Parser
	2.2.3.3 Option Analysis

	2.2.4 Requesting the Job Operation Management Function
	2.2.4.1 Operation Request Function Call
	2.2.4.2 Job Submission Operation
	2.2.4.3 Job Operation

	2.2.5 Referencing Results
	2.2.5.1 Referencing Response Information
	2.2.5.2 Error Information

	2.2.6 Releasing Handles, Command Line Parsers, and Response Information
	2.2.7 Precaution When Using the Command API

	2.3 Creating a Command
	2.4 Setting the Command API

	Appendix A Command API Common Reference
	A.1 Handle Operations and Response Information
	A.1.1 pjcmd_create_handle()
	A.1.2 pjcmd_clone_handle()
	A.1.3 pjcmd_reset_handle()
	A.1.4 pjcmd_destroy_handle()
	A.1.5 pjcmd_destroy_resp()

	A.2 Referencing of Operation Results
	A.2.1 pjcmd_get_result()
	A.2.2 pjcmd_get_jobresult_num()
	A.2.3 pjcmd_get_jobresult_info()

	A.3 Setting and Acquisition of Job IDs
	A.3.1 pjcmd_put_job()
	A.3.2 pjcmd_put_job_by_str()
	A.3.3 pjcmd_put_jobresult_mode()
	A.3.4 pjcmd_get_subjobid_info()
	A.3.5 pjcmd_subjobid_to_str()

	A.4 Analysis of Command Line Arguments
	A.4.1 pjcmd_getopt_long()
	A.4.2 pjcmd_delopt_in_parser()
	A.4.3 pjcmd_renameopt_in_parser()

	A.5 Display of Usage
	A.5.1 pjcmd_print_stdcmd_usage()

	A.6 Error-related Functions
	A.6.1 pjcmd_strerror()
	A.6.2 pjcmd_perror()
	A.6.3 pjcmd_error_read_errinfo()
	A.6.4 pjcmd_error_read_errinfo_by_sjid()
	A.6.5 pjcmd_error_get_info()
	A.6.6 pjcmd_error_get_detail_info()
	A.6.7 pjcmd_error_destroy_errinfo()
	A.6.8 pjcmd_error_clear_errinfo()

	A.7 Error Codes, Global Variables, and Constants
	A.7.1 Result Codes
	A.7.2 Detailed Error Code
	A.7.3 pjcmd_errcodejcmd_errcode Variable
	A.7.4 Variable pjcmd_optarg
	A.7.5 Variable pjcmd_optind
	A.7.6 Variable pjcmd_optopt
	A.7.7 PJCMD_UNLIMITED Constant
	A.7.8 PJCMD_UNDEFINED Constant
	A.7.9 PJCMD_MAX_SUBJOBID_STR_LEN Constant

	Appendix B Job Operation API Reference
	B.1 Job Submission
	B.1.1 pjcmd_submit_parse_pjsub_args()
	B.1.2 pjcmd_submit_parse_pjsub_scriptfile()
	B.1.3 pjcmd_submit_create_pjsub_parser()
	B.1.4 pjcmd_submit_destroy_pjsub_parser()
	B.1.5 pjcmd_submit_create_scriptfile_reader()
	B.1.6 pjcmd_submit_destroy_scriptfile_reader()
	B.1.7 pjcmd_submit_read_scriptfile_directive_line()
	B.1.8 pjcmd_submit_put_param()
	B.1.9 pjcmd_submit_get_param()
	B.1.10 pjcmd_submit_put_job_resource()
	B.1.11 pjcmd_submit_get_job_resource()
	B.1.12 pjcmd_submit_put_mpi_param()
	B.1.13 pjcmd_submit_get_mpi_param()
	B.1.14 pjcmd_submit_put_sched_param()
	B.1.15 pjcmd_submit_get_sched_param()
	B.1.16 pjcmd_submit_put_fileio_param()
	B.1.17 pjcmd_submit_get_fileio_param()
	B.1.18 pjcmd_submit_create_scriptfile_from_stdin()
	B.1.19 pjcmd_submit_create_scriptfile_by_args()
	B.1.20 pjcmd_submit_set_callback()
	B.1.21 pjcmd_submit_execute()
	B.1.22 pjcmd_submit_executev()

	B.2 Job Deletion
	B.2.1 pjcmd_kill_parse_pjdel_args()
	B.2.2 pjcmd_kill_put_param()
	B.2.3 pjcmd_kill_get_param()
	B.2.4 pjcmd_kill_execute()

	B.3 Job Hold
	B.3.1 pjcmd_hold_parse_pjhold_args()
	B.3.2 pjcmd_hold_put_param()
	B.3.3 pjcmd_hold_get_param()
	B.3.4 pjcmd_hold_set_callback()
	B.3.5 pjcmd_hold_execute()

	B.4 Release of a Job Hold
	B.4.1 pjcmd_release_parse_pjrls_args()
	B.4.2 pjcmd_release_put_param()
	B.4.3 pjcmd_release_get_param()
	B.4.4 pjcmd_release_set_callback()
	B.4.5 pjcmd_release_execute()

	B.5 Signal Sending to Jobs
	B.5.1 pjcmd_signal_parse_pjsig_args()
	B.5.2 pjcmd_signal_put_param()
	B.5.3 pjcmd_signal_get_param()
	B.5.4 pjcmd_signal_set_callback()
	B.5.5 pjcmd_signal_execute()

	B.6 Waiting for Job Completion
	B.6.1 pjcmd_wait_parse_pjwait_args()
	B.6.2 pjcmd_wait_put_param()
	B.6.3 pjcmd_wait_get_param()
	B.6.4 pjcmd_wait_execute()

	B.7 Job Parameter Change
	B.7.1 pjcmd_alter_parse_pmalter_args()
	B.7.2 pjcmd_alter_put_param()
	B.7.3 pjcmd_alter_get_param()
	B.7.4 pjcmd_alter_put_job_resource()
	B.7.5 pjcmd_alter_get_job_resource()
	B.7.6 pjcmd_alter_put_sched_param()
	B.7.7 pjcmd_alter_get_sched_param()
	B.7.8 pjcmd_alter_set_callback()
	B.7.9 pjcmd_alter_execute()

	Appendix C Information Acquisition API Reference
	C.1 Common Information of the Information Acquisition API
	C.1.1 pjcmd_pjstat_parse_command_type()

	C.2 Getting Job Information
	C.2.1 pjcmd_jobinfo_parse_pjstat_args()
	C.2.2 pjcmd_jobinfo_put_scope()
	C.2.3 pjcmd_jobinfo_get_scope()
	C.2.4 pjcmd_jobinfo_put_condition()
	C.2.5 pjcmd_jobinfo_get_condition()
	C.2.6 pjcmd_jobinfo_put_param()
	C.2.7 pjcmd_jobinfo_get_param()
	C.2.8 pjcmd_jobinfo_execute()
	C.2.9 pjcmd_jobinfo_get_choosen_item()
	C.2.10 pjcmd_jobinfo_read_infogrp()
	C.2.11 pjcmd_jobinfo_print_resp()
	C.2.12 pjcmd_jobinfo_get_summary()
	C.2.13 pjcmd_jobinfo_get_infogrp_scope()
	C.2.14 pjcmd_jobinfo_read_jobinfo()
	C.2.15 pjcmd_jobinfo_get_jobinfo_item_num()
	C.2.16 pjcmd_jobinfo_get_jobinfo_item_value()
	C.2.17 pjcmd_jobinfo_get_jobinfo_node_num()
	C.2.18 pjcmd_jobinfo_get_nodejobinfo_item_num()
	C.2.19 pjcmd_jobinfo_get_nodejobinfo_item_value()
	C.2.20 Item Names, Names, and Values of Job Information

	C.3 Getting Resource Information for Jobs
	C.3.1 pjcmd_rscinfo_parse_pjstat_args()
	C.3.2 pjcmd_rscinfo_put_scope()
	C.3.3 pjcmd_rscinfo_get_scope()
	C.3.4 pjcmd_rscinfo_put_param()
	C.3.5 pjcmd_rscinfo_get_param()
	C.3.6 pjcmd_rscinfo_execute()
	C.3.7 pjcmd_rscinfo_print_resp()
	C.3.8 pjcmd_rscinfo_get_rscinfo_num()
	C.3.9 pjcmd_rscinfo_get_rscinfo_value()
	C.3.10 pjcmd_rscinfo_get_max_size()

	C.4 Getting Limit Value Information When Submitting a Job
	C.4.1 pjcmd_limitinfo_parse_pjstat_args()
	C.4.2 pjcmd_limitinfo_put_scope()
	C.4.3 pjcmd_limitinfo_get_scope()
	C.4.4 pjcmd_limitinfo_put_param()
	C.4.5 pjcmd_limitinfo_get_param()
	C.4.6 pjcmd_limitinfo_execute()
	C.4.7 pjcmd_limitinfo_print_resp()
	C.4.8 pjcmd_limitinfo_get_limitinfo()
	C.4.9 pjcmd_limitinfo_get_limitinfo_value()

	C.5 Getting Information on the Job ACL Function Settings
	C.5.1 pjcmd_jacl_parse_pjacl_args()
	C.5.2 pjcmd_jacl_put_scope()
	C.5.3 pjcmd_jacl_get_scope()
	C.5.4 pjcmd_jacl_put_param()
	C.5.5 pjcmd_jacl_get_param()
	C.5.6 pjcmd_jacl_execute()
	C.5.7 pjcmd_jacl_print_resp()
	C.5.8 pjcmd_jacl_get_jaclinfo_num()
	C.5.9 pjcmd_jacl_get_jaclinfo_value()

	C.6 Getting the Status of Job Resource Usage
	C.6.1 pjcmd_rscstat_parse_pjshowrsc_args()
	C.6.2 pjcmd_rscstat_put_scope()
	C.6.3 pjcmd_rscstat_get_scope()
	C.6.4 pjcmd_rscstat_put_param()
	C.6.5 pjcmd_rscstat_get_param()
	C.6.6 pjcmd_rscstat_execute()
	C.6.7 pjcmd_rscstat_print_resp()
	C.6.8 pjcmd_rscstat_get_infogrp_num()
	C.6.9 pjcmd_rscstat_get_infogrp_scope_type()
	C.6.10 pjcmd_rscstat_get_infogrp_scope_value()
	C.6.11 pjcmd_rscstat_get_rscinfo_num()
	C.6.12 pjcmd_rscstat_get_infogrp_customrsc_num()
	C.6.13 pjcmd_rscstat_get_infogrp_customrscinfo()
	C.6.14 pjcmd_rscstat_get_rscinfo()
	C.6.15 pjcmd_rscstat_get_rscinfo_scope_type()
	C.6.16 pjcmd_rscstat_get_rscinfo_scope_value()
	C.6.17 pjcmd_rscstat_get_rscinfo_info()
	C.6.18 pjcmd_rscstat_read_jobinfo()
	C.6.19 pjcmd_rscstat_get_rscinfo_customrsc_num()
	C.6.20 pjcmd_rscstat_get_rscinfo_customrscinfo()
	C.6.21 pjcmd_rscstat_get_customrscinfo_value()
	C.6.22 pjcmd_rscstat_get_customrscinfo_kind_value()

	Appendix D Job Operation Control API Reference
	D.1 Setting of Job Submission/Job Execution Permissions
	D.1.1 pjcmd_pmpjmopt_get_command_type()
	D.1.2 pjcmd_setpjmstat_parse_pmpjmopt_args()
	D.1.3 pjcmd_setpjmstat_put_scope()
	D.1.4 pjcmd_setpjmstat_get_scope()
	D.1.5 pjcmd_setpjmstat_put_param()
	D.1.6 pjcmd_setpjmstat_get_param()
	D.1.7 pjcmd_setpjmstat_execute()

	D.2 Referencing of Job Submission and Execution Permission Information
	D.2.1 pjcmd_getpjmstat_parse_pmpjmopt_args()
	D.2.2 pjcmd_getpjmstat_put_scope()
	D.2.3 pjcmd_getpjmstat_get_scope()
	D.2.4 pjcmd_getpjmstat_put_param()
	D.2.5 pjcmd_getpjmstat_get_param()
	D.2.6 pjcmd_getpjmstat_execute()
	D.2.7 pjcmd_getpjmstat_print_resp()
	D.2.8 pjcmd_getpjmstat_get_rscunit_info()
	D.2.9 pjcmd_getpjmstat_get_rscgrp_info()

	Appendix E Sample Programs
	E.1 Submitting a Job
	E.2 Getting Job Information
	E.3 Deleting a Job

